$O Bad lows: K \in X, y \in \mathbb{P}^{-1} with \sum_{k=1}^{\infty} h_{i,k}(\underline{x}) y_{k} : \cdots : \sum_{k=1}^{\infty} h_{i,k}(\underline{x}) y_{k$

• Special case : J = I(Y) is $Y \subseteq X$ submutity. We call it the blow-up of X at Y. (Eg: X=Mⁿ $J = \langle X, ..., X_N \rangle$, then Y = 3.95.). We write it as Bly X.

Another use of blow-ups is to extend morphisms.
Proposition 1: Fix
$$X \leq |A^n|$$
 affine a $F_1, \dots, F_r \in O(X)$. The morphism
 $F \times \dots \to \mathbb{P}^{r-1}$ is defined outside $V_1(F_1, \dots, F_r)$. However, we can extend F to
a negalar morphism $F \cong \longrightarrow \mathbb{P}^{r-1}$ st $\cong \stackrel{F}{\longrightarrow} \mathbb{P}^{r-1}$
The Original Properties of F as $F = P_2|_{\widehat{X}}$.
By constanction: $F|_{T_1'(U)} = P_2|_{T_r} = F|_U$.

$$\frac{1}{5} \geq \frac{1}{2} \operatorname{Blow-ups} \int abstract varieties:$$

Working with open affine corress, we can extend the construction of blow-ups to arbitrary
algebraic varieties. Here proceeding,
Tix X in algebraic variety or $\mathbb{I}_{K} = \mathbb{I}_{K} = \mathbb{Y} \in X$ a subvariety.
Set $X = U_{1} \cup \cdots \cup U_{r}$ affirms of a core a define $U_{i} = \frac{1}{5} \operatorname{Blow}^{U_{i}}$
Tempretim 2: The blow-ups U_{i} can be glued together to a uniety \overline{X} Furthermore
 $X = V_{1} \oplus \cdots \oplus U_{r}$ is spen a $V_{i} \oplus \widetilde{U}_{i}$ is open dense.
 $V_{i} = U_{i} \vee Y \oplus U_{i}$ is open a $V_{i} \oplus \widetilde{U}_{i}$ is open dense.
 $We glue V_{i}$'s along $V_{i} \cap V_{j}$ to get $X \otimes V_{i}$.
This translates to a priving of \widetilde{U}_{i} 's along $V_{i} \cap V_{j}$ co \widetilde{U}_{i} of eves, to
 $V_{i} \wedge V_{i} \oplus \widetilde{X}$.
The map $X \cdot Y \oplus \widetilde{X}$ is obtained by gluing $V_{i} \oplus \widetilde{U}_{i}$ along
 $V_{i} \cap V_{j} \oplus \widetilde{U}_{i}$.

Definition: We call X the blow-up of X at Y.

A This construction rely works for subvarieties. For blow-ups at ideals, we need a modified version to be able to glue, leading to the notion of sheaf of ideals.

. For projective subvarieties we can do this directly, working with
$$h_{1}...,h_{r} \in S(X)$$

homogeneous of the same degree. Assume $X \subseteq \mathbb{R}^{n}$.
Set $U = X \setminus X \setminus V(F_{1r}...,F_{r}) \subseteq \mathbb{R}^{n}$.
Then $\Gamma_{F} = \Im(X, [F_{1}(x_{2}:...:F_{r}(x_{2}]) \in U \times \mathbb{R}^{r-1} \Im \subseteq U \times \mathbb{R}^{r-1} \subseteq \mathbb{R}^{n} \times \mathbb{R}^{r-1}$.
Since \mathbb{R}^{r-1} is a variety, Γ_{F} is closed in $U \times \mathbb{R}^{r-1}$.
Using the Segre embedding, we see $X \times \mathbb{R}^{r-1} \subseteq \mathbb{R}^{n}(r-1) + n + r-1$ is a projective variety.

Definition:
$$\tilde{X} = \overline{\Gamma_{f}} = \overline{\Im}(x, [f_{1}(x) \dots : h_{r}(x)]) \in \bigcup \times \mathbb{R}^{r-1} \mathcal{G} \subseteq X \times \mathbb{R}^{r-1}$$

By construction, \tilde{X} is a projective uniety.

\$3 Tangent ones.

In \tilde{A}^n example, we saw that E parameterizes targent lines of A^n through \underline{o} . This has a natural analog for \tilde{X} and any Y = sas through tangent ones This K an algebraic uniety \mathcal{B} pex a point. Set $\tilde{X} = B\ell_p X \quad \mathcal{E} : T: \tilde{X} \longrightarrow X$ Then E: TC'(p) can be built from $B\ell_p W$ where $W \in X$ is an ofen affine cutaining p. IF $W \leq K[x_1, \dots, x_n]$, then $E \leq 3p\ell \times \mathbb{R}^{n-1} \simeq \mathbb{P}^{n-1}$

Special con: IF
$$X \subseteq \mathbb{N}^n$$
 is offine a $p = 0$, we view $Cp(X) \subseteq C(\mathbb{N}^n) = \mathbb{N}^n$
. Is a cotableary to Theorem 1 we get .
Cotableary 1: bein $C_p X = cotain X[P]$
Supple: Replacing X with an open offine W containing P, we have
(1) $C_p X \cong C_p W$ (by Lemma P 3312)
Terthermore, we can assume every inducedule component f W supple p (otherwise, take
 $W' = \overline{W \cup W_1} \subseteq W$. Every component f W supple p (otherwise, take
 $W' = \overline{W \cup W_1} \subseteq W$. Every component f W supple p (otherwise, take
 $W' = \overline{W \cup W_1} \subseteq W$. Every component f W supple p (otherwise, take
 $W' = \overline{W \cup W_1} \subseteq W$. Every component f W supple W . Containing
 p since)
Case 1: IF $W \subseteq PY \subseteq A^n$. Alon $C_p W \equiv \mathbb{R}^n$, color $p = W$.
Case 2: IF $W \subseteq A^n$ a $W \neq Pp$, then dim $W \ge 1$, $W_1 \in W \subseteq W, U \subseteq W$.
Since down $W \ge 1$ $\exists z$ with dim $W \ge 1$. Fix such a component.
Note: $W_1 \notin V (X_1(r_1), \dots, X_n(r_n))$ since $W_1 \neq Pp$ is less codemonsion
one in $W_1 \subseteq W_1 \times \mathbb{P}^{n-1}$. Theo,
(Laim : dom $Z \equiv dom W_1 - 1 = dom W_1 - 1$ (W_1 a W_1 are bination))
 $\frac{1}{2}W A^n \times A^{n-1} \cong A^{2n-1}$ is calenoong (using one down of conductive lon length $Z = 1$).
a dim $Z = dom Z \cap (A^n \times U_1)$ if $Z \cap (A^n \times U_1) \neq A^n$.
Since $C_p W_1 = C(E) = \bigcup C_p Z$ is an incolucible decomposition of $C_P W_1$:
 M_1 , surge component d (q W_1 has dimension dim W_1 . Let $(Z_1) = dim W_1 = 1$
 M_1 , surge component d (q W_1 has dimension dim W_1 . Let $(Z_2) = dim Z + 1$)
incoloce: him $C_p W_1 = max$ dim $(Z_2 = max$ dim $W_1 = dom W_2 = coloring P_1$
 M_1 dim $W_1 = 0$, then $W_1 = 4P_1$ $w_1 = 0$, $W_1 = dm_1 W_2 = dW_1$
 $M_1 = 0$, then $W_2 = 4P_1$ $w_1 = 0$, $W_1 = dw_1 = 0$, $W_1 = dw_1 = 0$, $W_1 = coloring P_1$
 W_1 , setup component d (q W_1 has dimension dim W_2 . Let $W_1 = dw_1 = dw_1$.
If dim $W_1 = 0$, then $W_1 = 4P_1$ $w_1 = 0$, so $E = T_1(M_1) = 0$
dees wit containibute U_1 the component construction

• It follows that
$$C_{\mu}W = \bigcup_{\substack{kin W_i \geq 1 \\ W_i \neq kin W_i \geq 1}} C_{\mu}W_i$$
 has dimension:
 $\dim C_{\mu}W = \max_{\substack{kin W_i \geq 1 \\ W_i}} W_i \neq kin W_i \neq kin W_i$ where M_i with M_i

 $\frac{\text{Examples}:}{X_{1}} \quad \text{Set } TT: \widetilde{A}^{2} \longrightarrow A^{2} \quad \text{a meridu 3 plane cuares through } p=(o,o)$ $X_{1} = V(X_{2} + X_{1}^{2}) \leq A^{2} \quad X_{2} = V(X_{2}^{2} - X_{1}^{2} - X_{1}^{3}) \quad X_{3} = V(X_{2}^{2} - X_{1}^{3})$ $\frac{X_{2}}{X_{1}} \quad X_{1} \quad X_{2} \quad X_{1} \quad X_{2} \quad X_{2} = V(X_{2}^{2} - X_{1}^{3}) \quad X_{3} = V(X_{2}^{2} - X_{1}^{3})$

 $\widetilde{X}_{3} = \pi^{(X_{3} - 30)}$ $\widetilde{\chi}_{z} = \pi(\chi_{z}, \chi_{2}, \xi)$ $\widetilde{X}_{I} = \overline{\mathcal{T}}(X_{1}, Y_{0})$ by lifting Xiljot along TC 2 adding the missing Its We get X1, X2, X3 = A Ei = exceptional divisor of the llow-up of Xi at (0,0). The added joints correspond to Ez=zits Ezzirt E,= int ĨĂ² XL π ↓ π. π

 $\frac{(m clude: C_0 X_1 is i line, comparing to the tangent line to X_1 at <u>o</u>$ $C_0 X_2 is the unim of 2 lines <u>lines</u> to the 2 beanches of X_2 to$ $C_0 X_3 is i line,$ $Samily cluck: codemp X_i = (a lim C₁ X_i =).$ $<u>B</u>: How do we compute C_0 X_i?$ $<u>Example:</u> <math>\widetilde{A}^2 = V(\langle X_1 Y_2 - X_2 Y_1 \rangle)$ by Example 2 § 40.2. $\widetilde{X}_2 = J((X_1, X_2), [Y_1: Y_2]) (X_1, X_2) \in X \cdot Sol \& X_1 Y_2 - X_2 Y_1 = 0 f \subseteq \#^2 X \mathbb{P}^1$ Thus $x_2^2 - x_1^2 - x_1^5 = 0$ & $x_1y_2 - x_2y_1 = 0$. In particular : $(x_1, x_2) \in X_2 \setminus 305$, then $3(x_1, x_2), (y_1, y_2) = 0$ as l.i. We can write $y_1 = \lambda x_1$ as $y_2 = \lambda x_2$ for $\lambda \in \mathbb{K}^k$. Thus $\lambda^2(x_2^2 - x_1^2 - x_1^5) = y_2^2 - y_1^2 - y_1^2 x_1 = 0$ in \mathbb{F}_{f}^2 . Thus $\tilde{X}_2 = V(y_2^2 - y_1^2 - y_1^2 x_1, x_1y_2 - x_2y_1) = A^2 x \mathbb{P}^1$. On $\mathcal{E} = \mathbb{K}^1(0)$ we have $x_1 = x_2 = 0$, so $\tilde{X}_2 \cap \mathbb{E} = V(y_2^2 - y_1^2) \in \mathbb{P}^1$ But $y_2^2 - y_1^2 = (y_2 - y_1)(y_2 + y_1)$, so $\tilde{X}_2 \cap \mathbb{E} = S[1:1], [1:-1] \in \mathbb{R}^1$ Thus : $C_0 X_2 = V((x_2 - x_1)(x_2 + x_1)) \leq A^2$ is the union of the 2 diagonal lines in the picture.

Recipe: Start with the equation for X2 in H2 & toss out the higher order terms.

=>
$$C_{o} X_{1} = V(X_{2}) \leq IA^{2}$$
 & $C_{o} X_{3} = V(X_{2}^{2}) = V(X_{2}).$

Theorem 3 (Conjulation of tangent comes).

Fix $J \subseteq K_{[X_1,...,X_n]}$ ished a let $X = V(J) \subseteq H^n$ be the associated which J. Assume $Q \in X$ a consider the blow-up $\widetilde{X} \subseteq \widetilde{A}^n \subseteq \mathbb{R}^n \times \mathbb{R}^{n-1}$ at $X_1,...,X_n$. Write the homogeneous coordinates of \mathbb{R}^{n-1} as $Y_1,...,Y_n$. Then: (1) $\widetilde{A}^n = \bigcup V_i$ where $V_i = \widetilde{A}^n \cap (A^n \times U_{i-1})$ $U_{i-\frac{n}{2}} \cdot Y_i \neq 0 \in \mathbb{R}^n$ $V_i = \frac{1}{2} (X_i Y_1 : \dots : X_i : \dots : X_i Y_n)_j (Y_1 : Y_2 : \dots : \Delta : \dots : Y_n), X_i \in \mathbb{K}$ $Y_i = \frac{1}{2} (X_i Y_1 : \dots : X_i : \dots : X_i Y_n)_j (Y_1 : Y_2 : \dots : \Delta : \dots : Y_n), X_i \in \mathbb{K}$ A^n (2) $BI_0(X) \wedge V_1 = V (\leq \frac{F(X_1, X_1 Y_2, \dots : X_i Y_n)}{X_1} : F \in J >) \subseteq A^n$ where mindup F = smallest degree of a minimized in F. (3) $E = \frac{1}{2} \cdot \delta \times V (F^{in} : F \in J) \subseteq \frac{1}{2} \cdot \delta \times \mathbb{R}^{n-1}$ where $F^{in} = initial$ term in F = sun of all minimized of lowert degree in F. Thus $C_0 X = V (F^{in} : F \in J) \subseteq A^n$ \widehat{A} $C_0 X \neq V (< F_j^{in} : J^{=1,\dots,m})$ if $J = < F_{1,\dots,n} F_m >$