SIL Openiew: •The construction of Riemann surfaces motivated by issue of ∃ holomorphic multivalued functions (eg: ln(z), J1+z, etc.) Ej: C ~ R₅₀ → C can't be extended holomorphically to z → lnz a function C → C but ∃ X R.S. & X F o C Fringle related holo. F ↓ O Inz • Locally modelled a open, connected subsets of C. (Assumed connected a Hausdolf) • Main examples: (1) C, D = 3 z ∈ C: 121<13, non-compact, games=0 (2) $\mathbb{R}^{1} = \mathbb{C}\mathbb{R}^{1}$, compact, genus=0 (3) $\mathbb{E}_{\overline{G}} = \frac{G}{Z+\overline{GZ}}$ (Z∈C generic), compact (~ SixS'), genus=1

() X R.S ~~~ X universal cover is a R.S. TU If $H \subset \operatorname{Aut}_{\operatorname{GL}}(\widetilde{X}) = \Im h: \widetilde{X} \to \widetilde{X}$ fishiholomorphic \Im is a subgroup a HCX proper discontinuous group action (=> with no fixed pts), then X/H is a R.S. Theorems: Deck (X/X) ~ T, (X) RS Y Gridopical $\iff \mathbb{T}_{I}(Y) \triangleleft \operatorname{Deck}(\widetilde{X}/X)$ "Galois compondence" $\operatorname{Deck}(Y/x) \simeq \operatorname{Deck}(\tilde{X}/x)/\mathbb{R}_{1}(Y)$ Galeis Corring Nain Tools: . (& (: Topological results (MATH 6801) - Corning spaces, path lifting properties, - Deck transformations relation with fundamental groups - excistence of universal covers, 2 & 3: Complex Analytic results (MATH 6221) - Properties of holoworphic /menorphic functions, Cauchy's fremula, Residues - I dentity Thorem, Open Mapping Theorem, Local Behavior of holomorphic functions 2 Forms a Integration m R.S. Stokes' Theorem. Periods m R.S. . Holy grail : find non-constant menophic functions on R.S. We'll de this for compact R.S. To de so, we'll develop: . Sheares Je m RS & Cech cohmology: - covering dependent def H^e(U,F) mono take a direct limit H^e(X,F) = <u>lim</u> H^e(U,F)

Leavy's Theorem :
$$H^{1}(X, \mathcal{F}) = H(\mathcal{U}, \mathcal{F})$$
 if \mathcal{U} is nice enough $(H^{1}(\mathcal{U}_{1}, \mathcal{F})=0)$
(X impact R.S.)
Thisteries result : IF X is impact, $H^{1}(X, 0)$ is finite dim'l C-v.sp.
Theorems - I non-constant measurophic functions on impact R.S.
- compact R.S. an algebraic
• Divisors n X (annucled divisors, sheares $\mathcal{O}_{\mathcal{D}}$, $\Omega_{\mathcal{D}}$, $(X : compact R.S.)$
- algebraic characterization of genus of X (impact) dim $H^{1}(X, 0)$
- 2. Gpgnus of X = r k H₁(X, Z) = dim_R H¹_{2R}(X) = dim_C H¹_{2R}(X, C) = dim_R H¹(X, C) = dim_C H¹(X, C) - deg D is indep.
• Riemann-Roch Theorem : dim $H^{0}(X, \mathcal{O}_{\mathcal{D}})$ - dim $H^{1}(X, \mathcal{R}_{\mathcal{D}})$ - deg D is indep.
• Jene duality : $\Omega_{-\mathcal{D}}(X) \simeq H^{1}(X, \mathcal{O}_{\mathcal{D}})$
- Riemann-Herwritz formula : atlating genera of n-sheeted coren $\chi \longrightarrow X$
between compact R.S.

.
$$X^{\$} \longrightarrow Jac(X)$$
 via Periods $\iff Pic(X) = \frac{Div_0(X)}{Ppd Div(X)} \simeq Jac(X)$

· Extra Topics? . Algebraic proofs of sme results

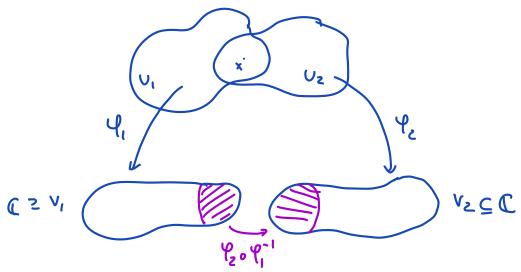
- . Applications of Riemann Roch (canonical embeddings, inflectional Weierstrass pts)
- Hurwitz Thury (count Y -> X maps between unpact R.S. with prescribed nomibication profile.)
- . Uniformization Thue (only simply connected R.S. are (, D & P')

\$1.2 The definition of a R.S:

INPUT: A z-dim'l manihold X, i.e. a connected Hausdorff topological space X s.t. $\forall x \in X \quad \exists \ U \subset X \quad with \ x \in U \quad st \ U \quad is homeomorphic to an$ $open set in <math>\mathbb{R}^2$

Definition: A complex chart on X is a homeomorphism $\Psi: U \longrightarrow V$ of an open subset $U \subset X$ onto an open subset $V \subseteq \mathbb{C}$

• Two charts $\Psi_i: U_i \longrightarrow V_i$ for i=1, z are holomorphically compatible if the map $\Psi_z \circ \Psi_i^{-1}: \Psi_i (U_i \cap U_z) \longrightarrow \Psi_z (U_i \cap U_z)$ is biholomorphic



A <u>complex atlas</u> on X is a system U=34::U:→Vi fier of holomorphically compatible charts with X = UU; . It defines a <u>complex structure</u> on X <u>Def</u>: A <u>Riemann Surface</u> (R.S.) is a pair (X, Z) where X is a (connected) 2D manifold and Z is a complex structure on X.
<u>Remarks</u>: Two complex atlases U, U' are <u>analytically equivalent</u> if UUU' is a complex atlas. They define equivalent complex structures on X, ie the same R.S.
The last notion is an equivalence relation on complex strass on X.
We can define a prat structure on complex atlases. Every atlas U has a unique much atlas U* refining it. This is often used when defining Z

Remark. (an always pick charts with 4:11 → D = 3 = 171(1) (cord. mbld)
×etu
×etu
×etu
×etu
×
$$\frac{1}{2}$$
 o
Som X can be endowed with dettenant appex structures.
Eq: X empact mes X is determined by its typological genus 3
(\simeq S^e with 3 handles glued in it)
But if $g=1$ X \simeq S'×S' (emplex torus). (1 topology)
glues one 5m, algebraic curves /C au completely dettermined by their j-insurant
mes moduli space do, of complex structures on X (1-deminiciael)
81.3 Examples.
(i) X = C , Z : C ^{id} = C
(i) U \subseteq C open connected with in C (es C*= C·lot, C·R₅₀)
(3) CR¹ = R' = Ĉ Riemann sphere / projecter love.
Us¹(x,y): x ≠ 0 t → X = C = R²
Us¹(x,y): x ≠ 0 t → X = C = R²
Us¹(x,y): x ≠ 0 t → X = C = R²
Us¹(x,y): x ≠ 0 t → X = C = R²
Us²(x,y): x ≠ 0 t → X = C = C¹(0, 1) = C = C
S(0,1): well → w
Use = R' · (ot Y=) C = C = C¹(Use) = F = C¹(0 zero)
Poo Po¹: Y = (Uo NU₀) = C[×] = C² = Po₀(Uo NU₀) is theolomorphic
= $2 \longrightarrow \frac{1}{2} = 2R^{2}$
Note: R' is compact (CUSeof with 1-pt compactification \simeq S² = R³
via steneographic projection)

(4) Rick w,
$$w_{2} \in \mathbb{C}^{\times}$$
 st $w_{2} \notin \mathbb{R}$ $(\lambda w, w_{2} + \lambda i \text{ ser } \mathbb{R})$
 $\Lambda = 2w_{1} + 2w_{2} \subseteq \mathbb{C}$ is a discrite lattice
($\exists \varepsilon_{0} \circ st |z| > \varepsilon$ if $z \in \Gamma \setminus \langle o t \rangle$)
 $\cdot z, z'$ in \mathbb{C} are Λ -equivalent if $z - z' \in \Gamma$
(norder $E = \mathbb{C}/\Gamma$ with the quotient Topology induced by $\pi \int_{\mathbb{C}}^{\mathbb{C}} \mathbb{C}/\Gamma$
($U \subset E$ is open ($\Rightarrow T^{-}(U) \subseteq \mathbb{C}$ is open) So \mathbb{T} is continuous ε
thus, E is contribut.
 $\cdot T$ is an open map: Fix $V \subseteq \mathbb{C}$ open
 $\mathbb{T}(V) \subseteq E$ is open ($\Rightarrow T^{-1}(T(V)) \subseteq \mathbb{C}$ is open
 $\mathbb{E}(V) \subseteq E$ is open ($\Rightarrow T^{-1}(T(V)) \subseteq \mathbb{C}$ is open.
 $\mathbb{E}(s = 4$ theored of f top space because Λ is discribe. ($\mathbb{F}(D(z_{0}, \varepsilon))$ separate
 $\cdot E$ is a model to be space because Λ is discribe. ($\mathbb{F}(D(z_{0}, \varepsilon))$ separate
 $\cdot \varepsilon$ is compact:
 $\partial \varepsilon \mathbb{C} \longrightarrow \mathbb{G}_{2}^{-1} \ge + \lambda_{1}w_{1} + \lambda_{2}w_{2}$: $\lambda_{1} \in [0,1]$ } $\overset{w_{2}}{=} \int_{w_{1}}^{\mathbb{C}} \mathbb{G}$
 ϑ is structure:
For each $x \in E$, Rich $v \in \mathbb{F}(x) \in v \in V \subseteq \mathbb{C}$ open st $\mathbb{F}[_{V}$ is injective.
Then $U \equiv \mathbb{F}(V)$ is open in \mathbb{E} , $x \in \mathbb{E} = \mathbb{F}[_{V}: V \rightarrow U$ is home.
 \Rightarrow Define $\Psi = (\mathbb{F}_{V})^{-1}: U \longrightarrow V$ as our unplux chast.
 \cdot There chasts an holomorphically empotable. (Exercise . Use Λ is discribe.
 $Exercise : \mathbb{C} = \mathbb{R}w_{0}\mathbb{R}[w_{2} \longrightarrow (e^{2\pi i\lambda_{1}}, e^{2\pi i\lambda_{2}})$
 $\&$ gives a horusmythism $\mathbb{C}_{1}^{-1} \cong \mathbb{S}^{-1} \times \mathbb{S}^{-1}$ (action theorem)