Lecture II : Holomorphic / Mersmorphic maps on R.S.

Recall A Riemann surface is a pair (X, Z) where :

- . X is a 2D real manifold that is Hausdorff & connected
- . E is a complex structure a X, ie a (mxl) collection of holomorphically compatible complex charts $J(U_i, \Psi_i, U_i \longrightarrow U_i \subseteq \mathbb{Q})$ is in $X = \bigcup U_i$. Here $M_i \otimes \Psi_i$ is $M_i \otimes \Psi_i$ if $X = \bigcup U_i$. $\Psi_i \otimes \Psi_i$ and hold compatible if $\Psi_i \otimes \Psi_i^{-1}$: $\Psi_i (U_i \cap U_i) \longrightarrow \Psi_i (U_i \cap U_i)$ is biholomorphic

$$(2 V_{1})$$

$$(2 V_{1})$$

$$(2 V_{1})$$

$$(2 V_{1})$$

$$(2 V_{1})$$

$$(2 V_{1})$$

$$(2 V_{2})$$

$$(2 V$$

<u>Note:</u> Can take $V_i = D$ a sisc centered at 0. (chart is a "coordinate ubbd") <u>Examples</u>: C, C^* , R', E = C, A = Zw, ΘZw_Z with w_Z , w_Z ? R-basis for C. Q: Which lattices give the same R.S.? <u>Answer</u> involves en hormally equivalent lattices, (later in the course) TODAY: Holomorphic/ menorphic on R.S & holomorphic functions hat ween R.S. \$ 2.1 Holomorphic / Mermorphic functions on I .:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad & \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

$$(=) \ u, \ v \ au \ harmonic, \ ie \qquad u_{xx} + u_{yy} = 0$$

$$i \ u, \ v \ au \ c^{2} - hunctions$$

Key Particly: Holoworthic functions an analytic (near each 2001
from be expressed as a prior series in (2-20) with a positive
readies of anneagence
$$\geq d(30,300)$$
)
Identity Therem: Fix USC open a connected a let $F, g: U \rightarrow 0$
be two boloworthic functions. Suppose $\exists A \subseteq U$ infinite at with a limit
pt in U with $f(a_0) = g(a_0)$ that $A \subseteq U$ infinite at with a limit
pt in U with $f(a_0) = g(a_0)$ that $A \subseteq U$ infinite at with a limit
pt in U with $f(a_0) = g(a_0)$ that $A \subseteq U$ infinite at with a limit
pt in U with $f(a_0) = g(a_0)$ that $A \subseteq U$ infinite at with a limit
pt in U with $f(a_0) = g(a_0, R) \to 1300$ is boloworthic, then $f(U) \subseteq C$ is
spin. In particular, firs an open map.
Say $U = D(2, R) = D(20, R) \to 1300$ is $f(A) = 0$.
Let what is the behavior of f near 30 ?
(1) Removable Singularity at z_0 : $\lim_{z \to z_0} (Z-z_0) f_{(z_0)} = 0$.
Equivalently: if F is bounded in U . ($\exists \Pi = z_0$) is $Z \to z_0$.
(2) Pole at z_0 :
 $\lim_{z \to z_0} |F(z_0)| = \infty$ is the induced in $Z = 20$ in $|F(z_0)| \leq \Pi$ therefore
 $Z \to z_0$ in $|F(z_0)| = \infty$ is $z = 0$ in $|Z = z_0|^2$ is $Z = 0$.
(3) For at z_0 :
 $\lim_{z \to z_0} |F(z_0)|^2 = \infty$ is $z = 0$ in $|Z = z_0|^2$ in $|Z = 0$.
(4) Pole at z_0 :
 $\lim_{z \to z_0} |F(z_0)| = z = 0$ is $Z = 0$ in $|Z = z_0|^2$ if $z = 0$.
(5) $f_{(2)}$ is a constant and $Z = 20$ in $|Z = z_0|^2$ is $Z = 20$.
(6) $\sum_{z \to z_0} |F(z_0)|^2 = z = 0$ is $Z = 0$.
(7) $\sum_{z \to z_0} |F(z_0)|^2 = z = 0$ is $Z = 0$.
(8) $\sum_{z \to z_0} |F(z_0)|^2 = z = 0$ is $Z = 0$.
(9) $\sum_{z \to z_0} |F(z_0)|^2 = z = 0$ is $Z = 0$.
(9) $\sum_{z \to z_0} |F(z_0)|^2 = z = 0$ is $Z = 0$.
(9) $\sum_{z \to z_0} |F(z_0)|^2 = z = 0$ is $Z = 0$.
(9) $\sum_{z \to z_0} |F(z_0)|^2 = z = 0$ is $Z = 0$.
(9) $\sum_{z \to z_0} |F(z_0)|^2 = z = 0$ is $Z = 0$.
(9) $\sum_{z \to z_0} |F(z_0)|^2 = z = 0$ is $Z = 0$.
(9) $\sum_{z \to z_0} |F(z_0)|^2 = z = 0$.
(9) $\sum_{z \to z_0} |F(z_0)|^2 = z = 0$.
(9) $\sum_{z \to z_0} |F(z_0)|^2 = z = 0$.
(9) $\sum_{z \to z_0} |F(z_0)|^2 = z = 0$.
(9) $\sum_{z \to z_0} |F(z_0)|^2 = z = 0$.
(9) $\sum_{z \to z_0} |F(z_0)|^2 = z = 0$

Equivalently:
$$f_{(B)} = \frac{A_{E}}{(2-2\sigma)} + \dots + \frac{A_{1}}{(2-2\sigma)} + f_{1}(z) = \Delta$$

 $f_{1}(z)$ is holomorphic on $D(z_{0}, F) = A_{E} \neq 0$.
(3) Essential singularity at z_{0} :
 $f_{(2)} = \sum_{n=-\infty}^{\infty} a_{n} (2-2\sigma)^{n} = \Delta = a_{n} \neq 0$ for inhimitely many $n < 0$.
(asotati-blainsteams Then: If f has an isolated emential singularity at z_{0}
then $\forall 8 \geq 0$: $\overline{f_{(D(a,S))}} = C$
Note: Non-isolated singularities satisfy $\overline{A}_{(2-2\sigma)} + f_{(2)}$ (in can think of non-isolated singularities satisfy $\overline{A}_{(2-2\sigma)} + f_{(2-2\sigma)} +$

Exercise: Show this definis atlas independent, &g. by working with mxl charts. Alternative definition h: Y_____ is mersmorphic if FPCY discute st. F: YIP___ is holomorphic, a · UpeP lim |f(y)| = ∞ (equin. P(UNP) has a robbed along which y=r.P fol'admits a Lourent series expansion at p) Notation: O(Y) = ning of holomorphic functions on Y. my sheaf (D on X)No (Y) = ____ mennisephic _____ nus sheaf No n X Remark: O(Y) = 16(Y) is a subring. Both are C-algebras . 16(Y) is a hild = Yis connected. (<u>Reason</u>: Zeroes & Poles of non-constant mensurphic functions are isolated) Removable Singularity Theorem: Fix X a R.S, Y S X ofen & aEY Pick FE ((Y, bat) & assume f is bounded mon a (ie I VEY of with a EV & MER, st IF (x) < M ¥ x EVIJay) Then, I extends to a holomorphic function on Y. 3F/ Let (U, P) be a chart with a EUSY & write D=P(UNV) with $z_0 = P(a)$. Then $q = f_0 P^{-1}$. Distance $\longrightarrow \mathbb{C}$ is a bounded holomorphic junction. By the Removable sing Thun for (, w=lein g(2) exists & this is the value assigned to F(a). Moreover, g is holomorphic on D g has a removable sing at a.

\$2.3 Holmorphic Functions between R.S.: Fix X, X, R.S. Definition: A continuous function F: X, -> Xz is holomorphic if for every pair of open charts (U, P1: U1 -> V1) & (U2, P2: U2 -> V2) in mel atlass for XIXX with $F(U_1) \subseteq U_2$ we have $P_2 \circ F \circ P_1^{-1} : V_1 \longrightarrow V_2$ is hold $\begin{array}{c} U_{1} \\ & &$ V_1 $\psi_1 \circ f_2 \psi_2^{-1}$ V_2 Observations: (1) This definition extends F: X -> a holomorphic. (2) Compositions of holomorphic functions between R.S are holomorphic. Proposition: h: X, -> X2 continuous is holomorphic iff for every T2 = X2 of $x \in O(Y_2)$: gof : $f'(Y_2) \longrightarrow \mathbb{C}$ is holomorphic. 36: Exercise This result allows us to define the notion of pullbacks of holomorphic functions between R.S. $F: X_1 \longrightarrow X_2$ holo $\longrightarrow F^*: \mathcal{O}(Y_2) \longrightarrow \mathcal{O}(F'(Y_2))$ 8 may gof $Y_Z \subseteq X_Z$ often Note: Ft is a ring hommorphism $(hof)^* = f^* o h^*$

Definition: A map
$$F: X_1 \longrightarrow X_2$$
 is bibelowerphic if it is bijective
and both $F = F^2$ are holowerphic.
. Two R.S. X_1, X_2 are isomorphic if $\exists F: X_1 \longrightarrow X_2$ hibelowerphics
Iduity Theorem: Fix $X_1 = X_2$ R.S = $F, g: X_1 \longrightarrow X_2$ holowerphics
Assume $\exists A \subset X_1$ infinite with an accumulate $pt = F(a) = g(a)$
VaCA. Then, $F = g$.
 $\Im F/$ Fix $a_0 = a.leinit pt of A, take charts around $a_0 = F(a_0) = g(a)$
where the C-analytic product.
Alternatively, define $G = 3 \times e X_1$; \exists open set $U \subseteq X$ with $x \in U = x$
 $Flu = 8lU \stackrel{?}{3}$
. G is obside. Fick $x \in \partial G$ as a sequence $(\pi_1) \subseteq G$ with $x_n \to x$
Since $F(x_n) = g(x_n)$ Va \in F, g are can thus $F(x_1) = g(x_1)$.
Let (U, V_1) be a coordinate which in X_1 with $x \in U$ $=$
 $(U_2, V_2) \longrightarrow X_2$ with $F(U_1) \subseteq U_2$
 $U_1 = \frac{\Psi_1}{W} \stackrel{W}{=} C \stackrel{W}{=} f_2 \circ g \circ V_2$ (by Id Thum a C applied to $A_2 i x_1 t_n eb)$
 $U_2 = \frac{\Psi_2}{W} \stackrel{W}{=} E$$

. Same logic says all accumulation pts of A are in G., so $G \neq \phi$ Since X, is connected & $G \neq \phi$ is open & closed, we get G = X, \Box

Example Fix n=1 &
$$F(e) = e^{n} + c_1 e^{n-1} + \dots + c_0 \in C(e]$$

Thun, F defines a holomorphic function $f: C \rightarrow C$
Since $\lim_{z \to \infty} |f_{(2)}| = \infty$, then we have $F \in JG(\mathbb{P}^{1})$
Next, we uninterpart $JG(X)$ as $3f_{1}:X \rightarrow \mathbb{P}^{1}$ holomorphic}
How? $F(x) X \in F \in JG(X)$. Let P be the set of poles of f
Define $\tilde{F}: X \rightarrow \mathbb{P}^{1}$ via $\tilde{F}(x) = \begin{cases} f(x) & \text{if } x \notin P \\ \infty & \text{if } x \notin P \end{cases}$
Theorem: IF $f \in JG(X)$, then $\tilde{F}: X \rightarrow \mathbb{P}^{1}$ is holomorphic.
Convender, if $h: X \rightarrow \mathbb{P}^{1}$ via $holomorphic, f \notin \mathbb{P}^{1}$
Theorem: IF $f \in JG(X)$, then $\tilde{F}: X \rightarrow \mathbb{P}^{1}$ is holomorphic.
Convender, if $h: X \rightarrow \mathbb{P}^{1}$ is holomorphic, the $h_{1} = \infty$ $\forall x \in X$ re
 $h_{1}(\infty)$ is describe, $a \exists F \in JG(X)$ with $\tilde{F} = h$.
 $\Im f(a)$ is describe, $a \exists F \in JG(X)$ with $\tilde{F} = h$.
 $\Im f(a)$ is describe, $a \forall F \in JG(X)$ with $\tilde{F} = h$.
 $\Im f(a)$ is holomorphic $m X \cdot P$
. Pick $g \in P$ a coordinate duart $(U, P; U \rightarrow D)$ with $p \in U = P_{1}^{1}g_{0}^{1}$
Then $\bigcup \frac{w}{P} \longrightarrow \bigoplus_{i=1}^{n} \frac{\varphi_{i} \circ f_{0} \varphi_{i}^{-1}}{1}$ (Less a
 $\lim_{i=1}^{n} \frac{\varphi_{i}}{\varphi_{i}} \subset \bigoplus_{i=1}^{n} \frac{\varphi_{i}}{\varphi_{i}} = 0$
 $\lim_{i=1}^{n} \frac{\varphi_{i}}{\varphi_{i}} \subset \bigoplus_{i=1}^{n} \frac{\varphi_{i}}{\varphi_{i}} = 0$
 $\lim_{i=1}^{n} \frac{\varphi_{i}}{\varphi_{i}} = 0$ (D), is \tilde{F}_{i} is holomorphic
(a) $h_{i} \circ \frac{\varphi_{i}}{\varphi_{i}} = 0$ (D), is \tilde{F}_{i} is holomorphic
(w) $f(x) = 0$.

.
$$h'(\infty)$$
 is closed so $X' = X \cdot h'(\infty)$ is open. a $h|_{X'}$ is hold.
(holmorphic map in each connected component of X').
. Pts in $h'(\infty)$ or isolated by the Identity Theorem in holomorphic
maps between R.S.
. Set $F = h|_{X \cdot h'(\infty)} X \cdot h'(\infty) \longrightarrow C$. It's holmorphic by construction.
Since h is entireness, we get $\lim_{X \to Y} |F(x)| = \infty$ for each $p \in h'(\infty)$,
 $\sum_{X \to Y}$
so h is meromorphic $g \cdot h'(\infty) = poles of h .
Exercise: Show $JG(R') = C(z)$.
The following usual to follow from the definition of holomorphic functions between
R.S. + results from C-analysis from $2.1.
(coellary 1 (Open Napping Thm) $f \cdot X_1 \longrightarrow X_2$ holmorphic is often
(coellary 2 (Naximum Prainciple))
The fixtomer Prainciple)
The fixtomer No. $F(rs)$
 $3F/F(X)$ is open so if $|f(\alpha)| = \sup_{X \in X} |f(\alpha)| = Exo$ set
 $D(F(\alpha), E) = F(X)$ so $|F(\alpha)|$ was not nicele both of the poly of the set
holomorphic. Then, either (1) his constant $\pi(e)$ is surjective $g Y$ is compact
 $g'(X)$ is sign X , Y are R.S. $a X$ is emperted $f(X) = Y$ is formed
holomorphic. Then, either (1) his constant $\pi(e)$ is spin
But $F(X)$ is compact in Y so its closed (Y is Hearsbord).
Since T(X) is compact in Y so its closed (Y is Hearsbord).
But $F(X)$ is compact in Y so its closed (Y is Hearsbord).$

$$f(X) = Y$$
 & Y is compact. \square
lorollang 4: If X is R.S & $F: X \rightarrow U$ is holomorphic, then h is
constant.

Solution is the following two results from C-analysis:
We'll need the following two results from C-analysis:
Inverse Function Theorem: Assume
$$U \leq C$$
 spin a connected a fix all
Let $F, U \rightarrow C$ be bolomorphic with $f'(a) \neq 0$. Then, there exists $\Gamma_1, \Gamma_2 > 0$
with $D(a, \Gamma_1) \leq U$ st. F_1 : $D(q, \Gamma_1) \longrightarrow D(F(a), \Gamma_2)$ is biholomorphic.
 $\frac{3F}{idea}$. After translation a scientian by F_{a} , we assume $a = 0$, $F(a) = 0$ a $F'(a) = 1$
Tick a prior series expansion of F around 0 so $F_{(a)} = 2 + c_2 a^2 + \dots$
 k/e propose a formal prior series $g = 2 + b_2 a^2 + \dots$ with $f \circ g = id$.
Hard part: Show $roc(g) > 0$

Now generally:
Local behavior IF USC open, connected with a EU, f: U
$$\rightarrow$$
 C holoworphic
and f'(a) = ... = $f'^{(N-1)}_{(a)=0}$ but $f^{(N)}_{(a)\neq0}$. Then $\exists r_1, r_2 > 0$ with $D_{[q,r_1]}$.
s.t $f|_{D_{[q,r_1]}}$: $D(q,r_1) \longrightarrow D(f(q),r_2)$ is N-to-1 in the punctured disco.
It respect, we can reparametering theory so that f horally hooks like $z \mapsto z^N$.
Broof: Assume $a = f(q) = 0$ & $f'_{(a)} = 1$ as Take Teylor revies expansion of f around 0.
 $f_{(z)} = z^N + c_{N+1} z^{N+1} + \dots$.
GOAL: Write f as g^N for some prover veries g with $g(q) = 0$ & $g'(q) \neq 0$.
 $g(z) = b_1 z + b_2 z^2 + \dots$ $b_1 = g'(q) = b_1^N = 1$.

We have N solutions for by = n⁴⁴ not of 1. Once by is fixed, the next of
the by's are uniquely determined.
Why?
$$F = 2^{10} \left(1 + c_{uq1} + \cdots \right) = 2^{10} \left(b_1 \left(1 + b_2 + \cdots \right)\right)^N$$

lance 2^{10} in both sides to get
 $1 + c_{uq1} + 2 + \cdots = \left(1 + b_2 + \cdots \right)^N = (1 + h(g))^N$
Take dog: $J_n \left(1 + c_{uq1} + \cdots \right) = N \log \left(1 + h(g)\right)$
(holomorphic assend 0
 \Rightarrow the series for log $(1 + h(g))$ is uniquely determine by the series in the (US)
which has $(cc_{gr_1} > 0)$.
Take approximated to get the series for $1 + h(g)$ is denice for $h(g)$.
 $\Rightarrow F(g) = \left(2 \left(1 + h(g)\right)^N$ is $S_{(g)} = 2 \left(1 + h(g)\right)$ instructs to a
bibotomorphics $S_{(g)} = 2 \left(1 + h(g)\right)^N$ is $S_{(g)} = 2 \left(1 + h(g)\right)$ instructs to a
bibotomorphics $S_{(g)} = 2 \left(1 + h(g)\right)^N$ is $S_{(g)} = 2 \left(1 + h(g)\right)$ instructs to a
bibotomorphics $S_{(g)} = 2 \left(1 + h(g)\right)^N$ is $S_{(g)} = 2 \left(1 + h(g)\right)$ instructs to a
bibotomorphics $S_{(g)} = 2 \left(1 + h(g)\right)^N$ is $S_{(g)} = 2 \left(1 + h(g)\right)$ instructs to a
bibotomorphics $S_{(g)} = 2 \left(1 + h(g)\right)^N$ is $S_{(g)} = 2 \left(1 + h(g)\right)$ instructs from function.
Then, $g \log M_{g}$, f loops like $3 \mapsto 3^{2^N}$ indich solves free for $N = 1$ and $N = 1$.
Therefore, $F(x) = 1$, $X_{x} \times X_{x} = R = F(x_{1})$. Then $\exists N > 1$ integer is coordinated which g
 $(U_{1}, Q_{1}; U_{1} \rightarrow D) = U_{2}$
 $(z) \quad Q_{1}(a_{1}) = P_{2}(a_{2}) = 0$
 $(z) \qquad S_{1}(a_{1}) = P_{$

Furthermore, N is independent of the choice of charts.

$$3F/.$$
 (onditions (1) & (2) are easy to achieve since h is open.
 $Prod. a_geld'_2 \xrightarrow{\Psi_{a}} V_2$ with $U'_2 \subseteq F(X)$. Take $b_2 D(a_2, r) \subseteq V_2$ as $U_2 = V'_2(b_2)$
Then $\Psi_2: U_2 \xrightarrow{\longrightarrow} D_2 \xrightarrow{\frac{V_1}{V_1}} D(\Psi(a_2), 1) \xrightarrow{\longrightarrow} D(a, 1)$ gives the chart.
 $V_1 \sqcup_2 \xrightarrow{\longrightarrow} V_2 \xrightarrow{\longrightarrow} D(\psi(a_2), 1) \xrightarrow{\longrightarrow} D(a, 1)$ gives the chart.
 $V_2 = V'_2(a_2)$
 $Do the same with a dast (U'_1, Ψ_1) around a_1 with $U'_1 \subseteq F^{-1}(U'_2)$
 $For (3)$ consider $g: D \longrightarrow D$ Note: $g(a_2) = 0$ and g is not constant
 $Prode N \ge 0$ with $g(a_2 = g^{(1)}(a_2) = \cdots = g^{(N-1)}(a_2) = 0$ & $g^{(N)}(a_2 \neq 0.$
By the charrical nearly: \exists disco $D(a_1r_1)$ as $D(a_2r_2)$
 $g: D'(a_1r_1) \longrightarrow D'(a_1r_2)$ is $N-To-1$. However,
 $g = (2h(a_2))^N \le S_2=2h(a_2): D(a_1r_1) \longrightarrow D(a_2r_2^N)$ is biholomorphic
 $U_2 \xrightarrow{\Psi_2} \frac{V_1}{V_2} \xrightarrow{\Psi_2} U_2$$

<u>(rollary)</u>. $\forall a \in X_1 \& a \in U_0 \subseteq X_1, \exists U \subseteq U_0 \text{ nbhd of } a_1 \& W of a_2 = f(a_1) = t \quad f(y) \cap U \quad has precisely N elements for all <math>y \in W \cdot 3a_2 f$ $N = branching number of f near a_1 = multiplicity of f at a_1.$

 $\frac{E_{\text{Xencise}}}{E_{(2)}} : \prod F = z^{N+c}, z^{N-1} + \dots + C_{0} \quad \text{then} \quad F: \mathbb{R}^{1} \longrightarrow \mathbb{R}^{1} \text{ is hold}$ $g \in F(\infty) = \infty \qquad \text{Show mult}(F_{j,\infty}) = N$

(rollary Z: If f: X, → Xz is holomorphic and injective, then f: X, → F(X,) is biholomorphic.
3F/ Branching number is 1 by injectivity, F(X) is often & f is locally of the form Z→Z, so its inverse is also holomorphic.