Lecture III : Homotopy of curses, Fundamental group

In these notes we review basics pointset topology that we'll need to build new Riemann surfaces from old ones.

53.1 Curres & humotopies of aures:

Throughout we fix a topological space X and denote the interval [0,1] by I. Def: A curve on X is a continuous map $u: [0,1] \longrightarrow X$

- Names: h(o) = starting pt of the curre . h(1) = ending pt of the curre
- Curres can be "multiplied" and reversed:
- - (1) The product curve $u \cdot v : [0,1] \longrightarrow X$ from $u_{(0)}$ to $v_{(1)}$ is defined by $(u \cdot v)_{[t]} = \begin{cases} u_{(2t)} & \text{for } 0 \le t \le \frac{1}{2} \\ v_{(2t-1)} & \text{for } \frac{1}{2} \le t \le 1 \end{cases}$

$$u \circ v = u \circ v$$

We call this operation concatenation.

(2) The inverse curve $u^- = u^{\circ p} : [0,1] \longrightarrow X$ from u(1) to u(0) is defined by $u^-(t) = u(1-t)$ $\forall t \in I$.

a
$$u$$
 b vs a u b $a=u(0)$ b $=u(1)$

(3) The <u>anstant nume</u> associated to $a \in X$ is defined as $a(t) = a \quad \forall t \in [0, 1].$ <u>Note</u>: $(u - \overline{)} = u \quad \& \quad (u - v)^{-} = v - u^{-}$

Definition: Fix X topspaa, a, seX and two arrows quile,
$$I \longrightarrow X$$
 with
 $u(a) = v(a) = a$ a $u(a) = v(a) = b$. A humitopy between u.e. a is a catinuous
function $H: [0,1] \times [0,1] \longrightarrow X$ with
 $(i) H(t, a) = u(t) \quad \forall t \in [0,1]$
 $(ii) H(t, a) = v(t) \quad \forall t \in [0,1]$
 $(iii) H(a, s) = a \quad A \quad H(a, s) = b \quad \forall s \in [0,1]$
The short: the values are $v(t)$
 $s \stackrel{f}{=} a \quad v(t)$
 $s \stackrel{f}{=} a \quad v(t)$
 B_3 construction for each $s \in [0,1]$ or get a curve $u_s(t) = H(t, s)$. The
family of anness $\delta u_s(t) \delta_{argss}$, is called a deformation (or humstopy) of u into v .
 $Definition:$ Two curves u, v are dimetopic if $u(a) = v(a)$ e $u(a) = v(a)$
 $a \quad H: [0,1] \times [0,1] \longrightarrow X$ humstopy between $u \neq v$. We note u, vv .
Lemma 1: Homotopy ditermines an equivalence relation in the space of yeths with
fixed starting and ending points.
 $St/a u \sim u$ via $H(t, s) = u(t) \quad V \in [0,1]$ $a \stackrel{u}{=} u$
 $I: u \sim v$ via H , then $v \sim u$ via $H'(t, s) = H(t, 1-s)$ Vs .
 $H: a \stackrel{u}{=} u \stackrel{u}{=} b \stackrel{u}{=} H' \stackrel{u}{=} u$
 $C: [0,1] \times [0,1] \longrightarrow X$ with $C(t, s) = [H(t, 2s) = ih (s + 2s + 2s)]$

H a
$$10^{10}$$
 b -0^{11} a 10^{10} b -1^{11}
B a 10^{10} b -0^{11} a 10^{10} b -1^{12}
C is entimeous by construction. D
Lemma 2: Fix a curre $u:[0,1] \rightarrow X$ a $9:[0,1] \rightarrow [0,1]$ is entimery.
with $9:0:=0$, $9:(1)=1$ then $u \sim uo9^{11}$.
Part By construction $uo9:[0,1] \rightarrow X$ is a curre a $uo9_{10}=u_{10}$
 $uo9_{11}=u_{11}$
Define A: $[0,1] \times [0,1] \longrightarrow X$ is a curre a $uo9_{10}=u_{10}$
 $uo9_{11}=u_{11}$
Define A: $[0,1] \times [0,1] \longrightarrow X$ is a curre $10^{10} \times 10^{10}$
Thus, A is entimered and $0.4 (t,0) = u(t)$
 $. A(t,s) = u(s9_{10}) = u(s)$
 $A(t,s) = u(s9_{10}) = u(t)$
So A is the densed hourstopy.

•

Lemma 3: Incatination, opposite specation factor through homotopy equiv.
Ilreprecisely, if
$$u_1 \wedge u_2 \otimes v_1 \wedge v_2$$
 with $u_1(1) = v_1(0)$, then
(1) $u_1 \circ v_1 \wedge u_2 \circ v_2$
(2) $u_1^{\circ P} \wedge u_2^{\circ P}$
Proof: Exercise
Lemma 4: If $u: [0,1] \longrightarrow X$ is a curve with $a = u_{(0)}$, $b = u_{(1)}$
then $u \circ u^{\circ P} \wedge A_a \otimes u^{\circ P} \circ u \wedge A_b$.

Lemma 5: $(U \cdot v) \cdot w \sim U \cdot (v \cdot w)$ whenever the curve can be concatinated. Broof: It is easy to see that $(u \cdot v) \cdot w = (u \cdot (v \cdot w)) \circ P$ where I: [0,1] - [0,1] is the piecewise affine linear function defined by 3/4 1/2 Then u.(v.w) of ~ u.(v.w) by Lemma 2. Lemma 6: If u is a curre on X, then In(10) - U N U N U . In(1). 11 · u = u of when I is the piecuvise affine leniar function (10) Yno

Since up Pro u by Lemma 3, the
similarly, u & y in the up of under this firmby
so u & y in u by Lemma 3.
So u & y in u by Lemma 3.
So u & y in by Lemma 3.
So u & y in pathemic (or accurice) connected spaces
Def: We say X is pathemic (or accurice) connected if
$$\forall x, y \in X$$
 we have a
une u: $[0,1] \longrightarrow u$ with $u_{10} = x \leq u_{11} = y$
. We say X is Intelly pathemic connected if $\forall x \in X \exists$ a nighborhood
basis $\mathcal{D}(x)$ of pathemic connected of $\forall x \in X \exists$ a nighborhood
basis $\mathcal{D}(x)$ of pathemic connected of $\forall x \in X \exists$ a nighborhood
basis $\mathcal{D}(x)$ of pathemic connected of $\forall x \in X \exists$ a nighborhood
basis $\mathcal{D}(x)$ of pathemic connected of $x \in X$ and $u_{10} \in X$
. We say X is consisted of u only if $\phi \neq X$ as the saley subsets of X
that are both of $u \in d$ and may if $\phi \neq X$ as the saley subsets of X
that are both of $u \in d$ and may if $\phi \neq X$ as the saley subsets of X
that are both of $u \in d$ as u with $x \in X = X$, $U \times z$ with both $X_1 \in X_2$ of $u \in M$
 $Since X$ is globally path constant of then $\exists u: [0,1] \longrightarrow X$ at with $u_{10} = x_2$.
Since u is continuous $u'(X_1)$, $u'(X_2)$ are both of u in $[0,1]$, m-impty
 $o \in$

and sisjoint site corring [0,1]. Thus, $[0,1] = u^{-1}(X_1) \sqcup u^{-1}(X_2)$, which cannot happen be cause [0,1] is connected.

If X is path connected, we call The (X,a) the fundamental group of X

Furthermore, it is independent of the chosen base point a. More precisely, if $u: [0,1] \longrightarrow X$ is a curve with $u(0) = a \otimes u(1) = b$, then $\overline{n}_1(X,a) \simeq \overline{n}_1(X,b)$ ria $\overline{n}_1(X,a) \xrightarrow{\Psi} \overline{n}_1(X,b)$ $\overline{v} = \overline{v} \cdot v$

Broof: Lemma 3 in § 4.1 ensure incalenation à inserve operations are compatible with the equivalence relation N. Associativity holds by Lemma 5; I is the rentral element by Lemma 6. Lemma 4 ensures the inserve path operation is the inserve in $\overline{R}_1(X, a)$.

•
$$\Psi$$
 is well-defined by Lemmas 3 & 5 from \$4.1 Ψ is invertible ria
 $\overline{L}_1(X, L) \longrightarrow \overline{L}_1(X, q)$

 $\alpha \longmapsto u \cdot \alpha \cdot u$

 $\frac{E \times amples}{(1) \text{ Star} - shaped} \quad \text{subsite of } \mathbb{R}^n \quad (ic \exists a \in X \text{ s.t. } \forall x \in X \text{ the sequent } [a, x] = } \land a + (1 - \lambda) \times : 0 \leq \lambda \leq 1 \} \quad \text{lies in } X) \quad \text{are simply connected} .$ $\frac{Why}{2} \quad By \quad \text{cust metion it's path connected} \quad \text{firen } u : [0, 1] \rightarrow X \quad \text{loop with}$

base a, we have a homotopy between u & Ia via:
$H: [0,1] \times [0,1] \longrightarrow X \qquad H(t,s) = s \cdot a + (1-s) u(t)$
a a (more along arguments) s t u a
(2) (4 every disc in (is simply currected (they are star-shaped)
Proposition Z. Pick U, Uz = X open with X=U, UUz Assume U, Uz are
ofen, simply connected subsets & U, NUz is path connected. Then, X is
simply connected.
Proof (Proposition 5.2.1 in Aquitar, bitler & Pricto "Algebraic Topology hom a Homotopical
rieupoint")
Pick x e U, NUz & a loop u: [0,1] -> X based at xo.
• IF in $[u] \leq U_1$, in $(u) \leq U_2$, we conclude $u \sim I_{x_0}$ in $T_1(U_1, x_0)$ a
$u \sim \mathcal{I}_{X_0}$ in $T_1(U_{Z_1}X_0)$ so u is null-humotopic in X.
. On the entrony assume in (u) \$U, & im (u) \$U2. By construction,
Su'(U1), u'(U2) + is an open cover of [0,1]. It is non-trained by construction.
•Then exists a number S>0 (called the <u>Lebesgue number</u> of this cover) such that if
$0 \le t - s \le \delta$, then $[s,t] \subseteq u'(V_{j})$, $r [s,t] \le u'(V_{2})$. [Hint: Ux [0,1] is an part]
Hence, we can partition [0,1] by 0=toct, c < tre=1 so that
$u[t_0,t_1] \subseteq V_1, u[t_1,t_2] \subseteq V_2, u[t_2,t_3] \subseteq V_3, \ldots, u[t_{k-1},t_k] \subseteq V_2$
U_1 U_2 In particular $u(t_i) \in U_1 \cap U_2$ $\forall i = b_7 k_{-1}$.

Then:
$$V_i \cdot u_{|[t_i, t_i]} \cdot V_{i+1}$$
 is a loop in either $U_i = U_a$ based at u_o
Since both $T_i(U_i, x_o) \notin T_i(U_a, x_o)$ are trivial, we get $\delta_i \cdot u_{|[t_i, t_i]} \cdot \delta_{i+1} \cdot u_b$
In addition $\mathcal{I}_{u_{|[t_i]}} \sim V_i \cdot V_{i+1}$ since both $\delta_i \notin \delta_{i+1}$ are curves in $U_i \cap U_a$.
8 the humilopy can be performed in either $U_i = V_a$.
Thus, $u \sim (V_o \cdot u_o \cdot \mathcal{I}_{u_{|(t_i)}} \cdot u_i \cdot \mathcal{I}_{u_{|(t_i)}} \cdot u_a \cdot \cdots \cdot \mathcal{I}_{u_{|(t_{k-1})}} \cdot u_{k-i} \cdot \delta_k$
 $\mathcal{N}(V_o \cdot u_o \cdot \delta_o) \cdot (V_i \cdot u_i \cdot \delta_i) - (V_a \cdot \cdots \cdot u_{k-2} \cdot V_{k-1}) \cdot (V_{k-1} \cdot U_{k-1} \cdot V_{k-1} \cdot V_{k-1$

Crollary:
$$\mathbb{R}'$$
 is simply connected
 \mathbb{P}/\mathcal{L}' Cover \mathbb{R}' with $(U_0 = \mathbb{R}' \cdot \frac{1}{3} \cos \frac{1}{2}, \frac{1}{9} \cos \frac{1}{2} - \frac{1}{2} -$

Proposition: (Functional Behavior)
Fix XY top space a fix—or cationion. If
$$u:[o_1] \rightarrow X$$
 is a curve,
then four $[o_1] \rightarrow Y$ is a curve. If second, if $u curve and in X$ then
four no four as curves in Y (Take forth where H is the heardopy
between $u a (v)$. Thus, we get a map:
 $f_{K} : F_{1}(X, x_{0}) \longrightarrow F_{1}(Y, f(x_{0}))$
This map is a group homosphism since $fo(u \circ v) = four) \circ (f \circ v)$
Furthermore if $g: Y \rightarrow Z$ is cationized then $(gol)_{K} = g_{K} o f_{K}$.
§4.4 Free-homotopics:
Fix a top space X a curves $u, v: [o_{1}] \rightarrow X$ which do not necessarily
have the same initial point.
 $gold f:$ We say $u a v$ are free homotopic if there exists a cationized map
 $A: [o_{1}] \times [o_{1}] \longrightarrow X$ with
(i) $A(t, o) = u(t_{0}) + t \in [o_{1}]$
 $(a) A(t, i) = v(t)$ $V t \in [o_{1}]$
Then $w_{0}(v) + h(v, s) : [o_{1}] \rightarrow X$ defines a curve joining $u(o) \otimes v_{10}$
 $w_{10}(s) = h(v, s) : [o_{1}] \rightarrow X$ defines a curve $(gh(o, s)) = h(1, s) + s \in [o_{1}]$
 $b us is a loop based at $A(o, s) + s \in [o_{1}] \oplus u_{0}$
(i) $I + u d v$ are loops, then we have $f(h \in (o, s)) = h(1, s) + s \in [o_{1}]$
 $g = h(v, s) = (v + v)$ is the lose point of the loop $u_{0} = u_{1}$
 $(a) Fit he loop setting, $w_{0}(s)$ is the lose point of the loop $u_{0} = u_{0}$$$