Lecture IV: Branch Pts, liftings relative to local homonurphism Recall: Last Time we discussed (local) Lehanise of holomorphic functions return RS . Open Mapping Thm: F: X - Y non constant holomorphic map between R.S. is ofen <u>Identity Theorem</u>. If F,g: X→Y holomorphic maps agree in an inhimite set with a limit point, then F=8 . Local Behavior : f: X -> Tumanst. holomorphic map Letween R.S. a.E.X & 5= hast Then 3 N& coordinate charts $\begin{pmatrix} U & \widetilde{V} & D' \\ V & \widetilde{V} & D \end{pmatrix}$ with a $\in U \subseteq X \otimes G \otimes V \subseteq Y \otimes S$ (i) $\Psi_{U(\alpha)} = 0$, $\Psi_{V(b)} = 0$, (z) $h(u) \in V$ (3) Levelly: $\Psi_{v} \circ f \circ \Psi_{u}^{-1} : D \longrightarrow D$ is $z \mapsto z^{N}$ $\psi_{v} \circ f \circ \Psi_{u}^{-1} : D \longrightarrow D$ is $z \mapsto z^{N}$ Equivalently: & Vo noted of a I WEY noted of b & a E UEVo ofen st F'(y) AU has N elements & y ≠ b. (word per characterization of N) Name: N = branching number of f near a = multiplicity of f at a. \$4.1 Branch points: Fix F: X -> Y nm-constant holmorphic map between R.S. Proposition: For each yET, the fiber Figy is discute If not, by the Identity Theorem, f is constant. (= y). D Def: A point x & X is a branch point (<u>sr namification</u> pt) of f if there is no open set USX with x & U s.t f j is injective <u>Deb</u>: We say f is <u>unbranched</u> if it is non-constant & has <u>no</u> branch pts. (or unramified) Consequence 1: A=sit of branch points is discrite & closed 3F/ X-A is open level => fluisto) is injective for some zo EUSX).

Examples: (b), C
$$\longrightarrow$$
 C for NS1, 0 is the only branch pt
 $Z \longrightarrow Z''$
(2) $f_{1} \in x : \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ $f_{(2,3)} \in \mathbb{R}^{N}$ is unbranched.
(3) $\exp(C \longrightarrow \mathbb{C}^{n} = \mathbb{C}^{n} + [e_{2} = \mathbb{R}^{N}]$ is unbranched.
(4) $\mathbb{C} \xrightarrow{\mathbf{E}} \mathbb{C}_{p}$ for $\overline{\Gamma} = \mathbb{Z}^{n}$, $\odot \mathbb{Z}^{n} \geq 4 \operatorname{secult}$ rank z better is unbranched
Theorem 1: Fix $f: X \longrightarrow Y$ non-constant belowerphic function. TFAE:
(1) f is unbranched (locally injective)
(2) F is a local homeomorphism (ie $\forall x \in X \exists U \subseteq X$ of n with $x \in U \in U \in V \leq Y$ of $Y = \mathbb{R}^{n}$ of the boundarphism
(3) F is a local historian form $(i \in \forall x \in X \exists U \subseteq X \text{ of n with } x \in U \in U \in V \leq Y$ of $Y = 4$ for $(i + f_{10} \in U \to V)$ is homeomorphism)
(3) F is a local historian form $(i \in Y = x \in X \exists U \in X \text{ of n with } x \in U \in U \in V \leq Y = 4$ for $(i + f_{10} : U \to V)$ is homeomorphism)
(4) $(2) \Rightarrow (2)$ is for a brack historian form $(i \in V = x \in X \exists U \in X)$ of $(i \in V = V = V)$
 $U = Y = 4$ for $(i = f_{10} : U \to V)$ is homeomorphism)
(5) F is a local historian form x on - constant a breakly injective, so
 $f_{10} : U \to V = f(U)$ is bijective a holomorphic. By Hull Publen 8, f_{10} is
biolomorphic. (Mitrimatively: Une Tenetus Tenetus Tenetus Unbranched. D
 $f_{10} : U \to V = f(U)$ is bijective a homeomorphism our breakly injective, so
 $f_{10} : U \to V = f_{10}$ to be a theoremorphism our breakly injective former $(i = 1, 2 + \infty)$
 $i = 10$ Local tibelowerphism our breakly injective for $(i = 1, 2 + \infty)$
 $i = 10$ Local tibelowerphism our breakly injective for $(i = 1, 2 + \infty)$
 $i = 10$ Local tibelowerphism $(i = 1, 2 + \infty)$
 $i = 10$ Local tibelowerphism $(i = 1, 2 + \infty)$
 $i = 10$ Local $(i = 1, 2 + \infty)$ $(i = 1, 2 + \infty)$
 $i = 10$ Local $(i = 1, 2 + \infty)$ $(i = 1, 2 + \infty)$
 $i = 10$ Local $(i = 1, 2 + \infty)$ $(i = 1, 2 + \infty)$
 $i = 10$ Local $(i = 1, 2 + \infty)$ $(i = 1, 2 + \infty)$
 $i = 10$ Local $(i = 1, 2 + \infty)$ $(i = 1, 2 + \infty)$
 $i = 10$ Local $(i = 1, 2 + \infty)$ $(i = 1, 2 + \infty)$
 $i = 10$ Local $(i = 1, 2 + \infty)$ $(i = 1, 2 + \infty)$ $(i = 1, 2 + \infty)$
 $(i = 1, 2 + \infty)$ $(i = 1, 2 + \infty)$ $($

Pick
$$y \in V \subseteq V_0$$
 wordinate that with $\Psi: V \longrightarrow D \subseteq \mathbb{C}$ house. Then
 $U = \prod_{i=0}^{-1} (V) \cap U_0$ satisfies (1) $x_0 \in U$
(2) $U \subseteq X$ is often
(3) $\Psi: \Psi \circ P_{iU}: U \longrightarrow V \longrightarrow D$ is homeon

• lon patibility: We need to check if
$$(\bigcup_{x_i \in U_i}, \Psi_i)$$
, $(\bigcup_{x_i \in V_i}, \Psi_i)$ are cosed charts
then $\Psi_i = \Psi_i \circ \mathfrak{p}|_{\bigcup_i}$ & $\Psi_z = \Psi_z \circ \mathfrak{p}|_{U_z}$ with $\mathfrak{p}: \bigcup_i \longrightarrow V_i$ homeonormality
Pick $x_o \in \bigcup_i \cap U_z$. Then $\Psi_z \circ \Psi_i^{-1}$: $\Psi_i (\bigcup_i \cap U_z) \longrightarrow \Psi_z (\bigcup_i \cap U_z)$ requests $\Psi_z \circ \Psi_i^{-1}$
 $\Psi_i (\overset{"}{\mathfrak{p}}(\bigcup_i \cap U_z))$ $\Psi_z (\overset{"}{\mathfrak{p}}(\bigcup_i \circ U_z))$

which is a biholouwaphism between opens in C

$$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & &$$

 \Rightarrow id is a local Liholomorphism, hence a biholomorphism. Thus $(X \not \Sigma) \simeq (X \not \xi_1)$ shows $Z = Z_{1}$.

- Next Goal: Count points in fibers of non-custant holomorphic maps $h:X \longrightarrow Y$ (with multiplicities) & show it's the same for all hibers.
 - Idea: IF his locally injective at xo EF'(0), we count it with wull 1. If xo is a branch pt, then we count xo with mult = branching number of F at xo
 - We'll ser that if X is compact (or F is proper), then all pibers are finite & have the sizes (counted with multiplicities)

$$\frac{We}{Sct} = \frac{1}{|F'(0)|} =$$

. To define Lybwe'll need an interlude on covering maps Letween top spaces & lifting cont maps through local homeomorphisms. (<u>TODAY & Next Time</u>!)

These topological tools will be used to build new Riemann surfaces as quotients of universal corers of R.S.

\$4.2 Lifting (57 Factoring) maps via local homomorphisms. $Z \xrightarrow{k} Y$ p local homo General Setting: X, Y, Z topological spaces & With $z_0 \in 2$ ($x_0 \in X$ st $P(x_0) = F(z_0)$.) Q1: Can we factor & through X (with value X. at Z.)? Det. It i exists, we call it a <u>lifting of F with respect to P</u>. QZ: Are liftings migue? A: Summary of Resulto: 1) Local littengs elways exist & will be unique under connectedness assumptions mZ + Hausdurff assumptions m X&Y. (2) If unres u: [0,1] -> Y can be lifted wit p & Z is nice (simply connected & locally path connected) then any f: Z -> X cont. can be lifted w.r.t. p 3 This curre lifting projecty" holds fr (topological) coming. Def: A cut mop p: X -> Y is a covering if tyEY I VEY ofen with y EV & a collection 3U; t JEJ of painwise disjoint ofens of X with (i) $b_{-1}(\Lambda) = \prod_{i=1}^{j \in 2} \Omega_i^{g}$ (2) $P|_{U_j}$: $U_j \longrightarrow V$ is a hypermorphism Lemma 1: Covering maps are local homomorphisms 3F/ Proch x e X & P(x) = y Then 3 y e V = Y ofm & 3 U; f and in the

definition. By (), Z! juith x e Uj. By (2), Pluj: Uj ~ Vj hours.

\$4.3. Local liftings w.c.t. local homomorphisms / Uniqueness:

Setting: X, Y Hausdriff Top spaces & p: X -> Y local homemorphism Theorem 1: firm f: Z -> X & ZOEZ, XOEXO with P(XO) = f(20), ∃ W ⊆ Z with x. ∈ W & F. W → X with lifting of Flw w.r.t. P with F(z.) = x0 Furthermore, \hat{F} is unique (Two local lifts will agree on W'ofen with $z_0 \in W' \leq W_1 \cap W_2$) (as a green at z_0) Broof: Given $K_0 \in X$ & $y_0 = P(K_0) \in Y$, pick U, V ofens with $X_0 \in U \leq X$ $y_0 \in V \leq Y$ $e P_{1,1}$: $U \longrightarrow V$ homes. Take $W = f^{-1}(U)$. Then . zo E W . Wissten (fis antinuous) & pof=f • $f = P_{IU} \circ f_{W} : W \longrightarrow X$ is cut. . È is unique because p is a local homeomorphism : any other lift has This formula after restricting its domain to a smaller neighborhood of Z. Thurem 2: (Uniqueness of Global Liftings) Assume Z is connected selits, Sz: Z -> X be two (slotal) liftings of h relative to p. If $g_1(z_0) = g_2(z_0)$ for some $z_0 \in Z$, then $g_1 = g_2$. $BF/Lat T = Sz \in Z : g_1(z) = g_2(z)$ • T≠Ø since zo∈T • T is closed since $T = (g_1 \times g_2)^{-1}(\Delta)$ where $\Delta = 3(g_1, g_2) : g \in Y$ is the diagnal (closed set). . Tisopen since & admits! local lifts around 30 with value 3, (20) at? by Thurum 1. (FWSZ open with 20EW & F=g1=g2 on W). Since Z is connected, we have T = Z so $g_1 \equiv g_2$. D

Theorem 3 (Liftings for R.S. & holomorphic maps)
Assume X, Y are R.S &
$$p: X \longrightarrow Y$$
 is unbranched & holomorphic
If Z is a RS & $f: Z \longrightarrow Y$ is holomorphic, then every lifting
 $\hat{f}: Z \longrightarrow Y$ is holomorphic.

PF/ Unbranched holomorphic maps are locally biholomorphic by Thm 1 §4.1
Pick
$$z_0 \in \mathbb{Z}$$
 & $x_0 = \hat{F}(z_0)$. Then by Thm 2 §4.3, \hat{F} agrees with
 $(P_{|U})^{-1} \circ F$, where $P_{|U}: U \longrightarrow V$ is biholo & $x_0 \in U$ & $y_0 = P_{|X_0} \in V$
Since $f \in (P_{|U})^{-1}$ are holo, so is \hat{F} .

§4.4 Lifting curves a humstopics:
Setting: X, Y Hausdriff top spaces a p: X
$$\rightarrow$$
 Y local homomorphism
Theorem 1: (Lifting humstopic curves) Assume a, b \in Y a $\hat{a} \in X$ with $\hat{p}(\hat{a}) = a$
Assume $H: (0, 1) \times (0, 1) \longrightarrow Y$ is continuous with $H(0, 5) = a$ a
 $H(1, 5) = b$ $\forall s \in [0, 1]$ Consider the collection of paths $U_{S}(t) = H(t, s)$
joining a a b in Y.
If every path us lifts to a curve \hat{U}_{S} relative to p with $\hat{U}_{S}(o) = \hat{a}$ then
 $\hat{H}: [0, 1] \times [0, 1] \longrightarrow X$ with $\hat{H}(t, s) = \hat{U}_{S}(t)$
is a continuous lifting of H relative to p . Furthermore, \hat{H} is a homotopy
between $\hat{U}_{O} \in \hat{U}_{1}$. In policular $\hat{U}_{O} \le \hat{u}_{1}$ have the same and point.
Proof: We need to show continuity a $\hat{H}(1, -)$ is constant. If so, the construction
yields poff $(t, s) = p \circ \hat{U}_{S}(t) = U_{S}(t) = H(t, s)$ a $\hat{H}(0, s) = \hat{a}$ so $\hat{U}_{O} \times \hat{U}_{1}$ visit

We show calinuity by working one a grid. & [0,1]x(9,1]
Fix
$$\hat{a} \in U \in X$$
 a $a \in V \in Y$ with $\int_{U} : U \rightarrow V$ local homeon $\int_{V} \int_{V} \int$

By instruction
$$\widehat{H}|_{(\delta-\xi,\delta+\xi)\times(s_0-s,s_0+\delta)} = (\widehat{P}|_{(0')})^{-1} \circ \widehat{H}|_{(\delta-\xi,\delta+\xi)\times(s_0-s,s_0+\delta)}$$

(Uniqueness of Local Lifts) $(\delta-\xi,\delta+\xi)\times(s_0-s,s_0+\delta)$
So \widehat{H} is intruced on $(\delta,\delta+\xi)\times(s_0-s,s_0+\delta)$
Laim 3: $\widehat{H}(1,s) = \widehat{U}_0(1)$ $\forall s$.
Sf/ \widehat{H} is a lumetary, so $\widehat{H}(1,s) = \widehat{U}_0(1) = b$ $\forall s$.
Since p is local homes, then $p^{-1}(b)$ is discute.
Now: $\widehat{H}(1,-): [0,1] \longrightarrow \mathbb{Z}$ is a lifting of $\widehat{H}(1,-)=b$.
with $\widehat{H}(1,0) = \widehat{U}_0(1)$, so $\widehat{H}(1,s) \leq p^{-1}(s)$ $\forall s \in [0,1]$
But $\widehat{H}(s_1(s_1(s_1)))$ to immediate set, so it is constant
 $\Rightarrow \widehat{H}(1,s) = \widehat{H}(1,0) = \widehat{U}_0(1)$ $\forall s \in [0,1]$.

Next Time : Courre Lifting Projecty. Remark : Corering (=> Surjective Local Homomorphism + Ceure Lifting Projecty (so the curre lifting projecty can be tested on the cases we care about)