Lecture V: lune Lifting Property, Come, Deque of proper holomorphic maps
Last time Topplogy interlude
$$X = F Y$$
 plocal homes
 $Z \to Y$ initial conditions.
Q1: $\exists \hat{F}: Z \to X$ and with $Po\hat{F}=\hat{F}$ with $\hat{F}_{120} = x_0$?
(Lifting of F rulation to P) G "initial conditions".
Q2: Uniqueness?
THH1: Local diftings exist and are unique as genus at z_0 . $(\hat{F}=bp)'_0\hat{F} = m$
some $z_0 \in W$ open $wZ, x_0 \in V = R[U: U \longrightarrow V]$
THH2: If Z is connected, we have at mot I ylobal lift with prescribed initial
THH3: IF $F=H: [0,1] \times [0,1] \longrightarrow Y$ is a homeotopy a each $u_0(H) = H(0,5) \stackrel{V}{=} S$
has a lift with the same initial condition $\hat{U}_S(0) = \hat{a}$ (with $P(\hat{a}) = a = H(0,5) \stackrel{V}{=} S$)
then, $\exists \hat{H}: [0,1] \times [0,1] \longrightarrow Y$ lift with $\hat{H}(0,s) = \hat{a}$ $g \stackrel{V}{=} H(1,s) = \hat{H}(1,s)$

Fix X, Y top spaces

Def: A continuous map p: X→Y has the "curre lifting projecty" if the following endition holds: For every curre u: [0,1] → Y & every point xo ∈ X with $p(x_0) = u_{(0)} \exists \hat{u} : [0,1] \rightarrow X$ lift of u relative to p with $\hat{u}_{(0)} = x_0$. Obs: \hat{u} will be unique if p is a local homeomorphism by Theorem 2 § 9.3 Q: Why this projectly? A: It ensues liftings of ANY curt function f: Z→Y exist if Z is nice.

I herem 1: A some X, Y are Hausdorff top space a
$$p: X \rightarrow Y$$
 is a local homo-
with the "annual lifting property". Fix a top space Z which is simply annualid
a drally peth connected. Then, for every $f: Z \rightarrow Y$ and a every $z_0 \in Z$ a to $\in X$
with $f(z_{0,0} = p(x_0) \exists !$ lift $\hat{f}: Z \rightarrow X$ of I addites to p with $\hat{f}(z_{0,0}) = x_0$.
Single Since Z is connected a locally path connected, then Z is pathenise connected by
Lonnozo333. Pick $z \in Z$ a conce $u: [0,1] \rightarrow Z$ on Z joining Zo $z \in Then, thecurve $\psi = f \circ u: [0,1] \longrightarrow X$ joins $f(z_0) = y_0$ a $f(z_0) = y_0$.
By hypothesis, ψ can be lifted (uniquely) addition to p to a curve $\hat{\psi}: [0,1] \rightarrow X$
with $\hat{\psi}(o_0) = x_0$ (kince $p(x_0) = \psi(o) = y_0$)
 \exists think $\hat{f}: Z \longrightarrow X$ by $\hat{f}(z_0) = \hat{\psi}(1)$
(lamit: The definition of \hat{f} is independent of the choice of curve u . $\begin{bmatrix} U g : T \\ Z = > 0 \end{bmatrix}$
because $T_1(Z, z_0) = 30!$
. Fix $H: [0,1] \times [0,1] \longrightarrow Z$ housdays between $u \ge u'$
. Pick a different curve $u' \in Z$ for $H: [0,1] \times X$ with $\hat{\psi}(o) = X_0$.
Then $\psi \sim \psi'$ with the howstay $f(z_0) = \psi(1) = \hat{f}(0,1] \longrightarrow Z$ with $\hat{\psi}(o) = X_0$.
Then $\psi \sim \psi'$ with the howstay $f(z_0) = \hat{\psi}(0) = x_0$.
Then $\psi \sim \psi'$ with the howstay $f(z_0) = \hat{\psi}(0) = x_0$.
Then $\psi \sim \psi'$ is a the homotopy $f(z_0) = \hat{\psi}(0) = x_0$.
Then $\psi \sim \psi'$ is the homotopy $f(z_0) = \hat{\psi}(0) = x_0$.
Then $\psi \sim \psi'$ is the lowed homotopy $f(z_0) = \hat{\psi}(0) = x_0$.
With $\hat{\psi}(z_0) = \hat{\psi}(0) = \hat{\chi}(1) = \hat{\psi}(1) = \hat{\psi}(1)$$

Claim 2: F is continuous [Use: Z is locally pathwise connected & p local homo 3F/ Pick zez a X=F(z) . Fix a neighborhood Up of x in X. We want to find $W \subseteq Z$ spen with zEW so that $\hat{f}(w) \subseteq V_0$. (=) $\hat{f}(v_0)$ would be spen in Z) Since p is a local home, we can find $U' \subseteq U_0$ with $x \in U' \in P(x) = f(z)$ with P(x, U' = V') homes with Plus: U' -> V' home. Next, W' = F'(V') open in Z & ZEW'. Since Z is locally path wise connected 3 W S W ofen & pathwise connected with ZEW. We need to show $f(w) \leq U_0$, ie $f(z') \in U_0$ $\forall z' \in W$. zo "W" Pick a path u' in W joining z & z'. Then u + u' is a path in 2 joining 20 to 2'. The curre v' = fou' lies entirely in V', with v'(o) = f(z). The curve lifting projecting a local hours condition ensures or lifts uniquely wrt p to a curve \hat{v}' with $\hat{v}'(o) = \hat{F}(z)$ $(\hat{v}' = (\underline{P}_{|V}) \hat{o} v')$ Then i & i' can be concatenated to a curve vxv'= i x i' lifting $v * v' = f_0(u * u')$ relative to p with $\dot{v} * \dot{v}'(o) = \dot{v}(o) = x_0$. Thus, $\hat{F}(z') = \hat{v} \star \hat{v}'(1) = \hat{v}'(1) \in U' \subseteq U_0$ \Box

<u>Remark</u>: Counterexample if Z is not locally path connected? <u>A2</u>: Which continuous functions have the "curve lifting projecty"? <u>A</u>: Coverings!

$$\frac{\partial e^{f_{1}}}{\partial e^{f_{2}}} = A \text{ and } \sup p: X \longrightarrow Y \text{ is a converse of } Y \in Y \exists V \subseteq Y \text{ open}$$
with $y \in V$ is a collection $3U_{j} t_{j \in I} d$ pairwise disjoint opens of X with
(1) $p^{-1}(V) = \prod_{j \in I} U_{j}^{*}$ ($T = T_{(Y)}^{*}$)
(2) $p_{1U_{j}}: U_{j} \longrightarrow V$ is a homeomorphism
 $A \text{ converses are subjective!}$
 $\underbrace{fxomyles}_{2}$ (1) $p: \mathbb{C}^{\times} \longrightarrow \mathbb{C}^{\times}$ is a comment $\forall N$
 $2 \longmapsto 2^{N}$
 $p_{1U_{j}}^{*}: U_{j}^{*} = 32, \quad WZ, \quad \cdots, \quad W^{N-2} if where W is an N^{*} primitive noortof 1
 p is a local homeomorphism so $\exists U_{0}$ open which $d \neq Z$ is \mathbb{C}^{\times} with
 $P_{1U_{0}}: U_{0} \longrightarrow V_{0}$ local homeon.
(*) $p^{-1}(V_{0}) = U_{0} \cup W \cup_{0} \cup \cdots \cup W^{-1}U_{0}$
Then; we can uplace U_{0} ($a \lor_{0}$ accordingly) by a disc $D_{(0,T)}$ with $r > 0$ small enough
To ensure $U_{0} \cap W \cup U_{0} = \emptyset \quad \forall j \text{ in } 31, \dots, N-1$?
 $W \oplus W_{0} = \emptyset \quad V = \bigcup_{n \in V} V_{n}$
Thus: (1) The collection $\{U_{0}, WV_{0}, \dots, W^{n-1}U_{0}\}$ is pairwise disjoint and
partitions $p_{-1}^{-1}(V_{0})$$

(2) D ~ C is not a covering (it's not sanjective!)

(3) $\exp: \mathbb{C} \longrightarrow \mathbb{C}^{\times}$ is a conving map. (use a local branch of log + fiber $\exp^{-1}(\exp z) = z + 2\pi i \mathbb{Z} = z + rk - i$ discute lattice) (4) $\mathbb{C} \longrightarrow \mathbb{V}_{\Gamma^{2}}$ is a covering map (same argument as (3))

Lemma 1: Graving maps are local homeomorphisms

$$3F/$$
 Prick x $\in X \in P(x) = 3$ Then $\exists v \in V \leq V \text{ phase 3} \cup 3$ homes.
 $3F/$ Prick x $\in X \in P(x) = 3$ Then $\exists v \in V \leq V \text{ phase 3} \cup 3$ homes.
Theorem 2: Every converge map $p: X \rightarrow Y \neq J$ topological spaces has the curre
lifting property. Furthermore, liftings are unique then initial and there are prescribed
 \underline{Steod} : Uniqueness follows by Lemma 1 84.5 & Theorem 2.84.3 (uniqueness of
lifts additive to local homeomorphisms.
 $\cdot \underline{Excistence}: F(x = curre u; (D, 1] \rightarrow Y with u(0) = 4, eT = prick x_0 eX with $p(x_0) \neq 4$
Glue local historys of u is a convenient partition of (D, 1] with parentled initial
constituted using the fact that p is a converge map.
 F_{Vis}
The each te (D, 1], we can find $V^{(0)} \equiv Y$ of an with $u(y) \in V^{(1)} =$
 $3 \cup_{i=1}^{10} y_{i=1}^{10} y_{i=1}^{$$

a (chesque number 5>0 is uburner t, s
$$\in [0,1]$$
 satisfy $0 \le t \le \xi$,
then $\exists i \ge 1, \dots, n$ with $[t,s] \subseteq W_i$ (see land of Prope \$3.3)
(neclusion: Fix $0 \le s \le s_1 \le s_2 \le \dots \le s_n = 1$ partition of $[0,1]$ of noted length $\le B_0$ allowing negatitions of V_i a calabeling if measures, we have
(i) $u|_{[s_i, s_{i+1}]} \subseteq V_i$ for all $i \ge 0, \dots, n-1$
(i) $u|_{[s_i, s_{i+1}]} \subseteq V_i$ for all $i \ge 0, \dots, n-1$
(i) $P^{-1}(V_i) = \bigsqcup_{j \in U_i} \bigcup_{j \in U_i} (U_j^{(i)}) = \bigcup_{j \in U_i} \bigcup_{j \in U_i} (U_j^{(i)}) = \bigcup_{j \in U_i} \bigcup_{j \in U_i} (U_j^{(i)}) = \bigcup_{j \in U_i} \bigcup_{j \in U_i} \bigcup_{j \in U_i} (U_j^{(i)}) = 0$ is $1 \le 0, \dots, n-1$ on $t = u \ge u_0 \times \dots \times u_{K_n}$
(b) $u_i = u|_{[s_i, s_{i+1}]} := 0, \dots, k-1$ on $t = u \ge u_0 \times \dots \times u_{K_n}$
(lanim: We can find! lifts \hat{u}_i of u_i with appropriate initial anditions
with \hat{u}_0 $(s_0) = x_0$, \hat{u}_i $(s_{i+1}) = \hat{u}_{i+1}(s_{i+1})$ $\forall i = Q_{\dots, N-2}$.
The concatenation $\hat{u}_{\pm}\hat{u}_0 \times \dots \times \hat{u}_{K-1}$ will be the lift of u with prescates
initial value x_0 .
 $3t/$ We protecod inductively.
 $\hat{u}_i = 0$ \hat{u}_i

Assume we have constructed $\hat{u}_0, \dots, \hat{u}_i$ frisk-2 & set $y_i = u_i(s_{i+1}) \in V_i \cap V_{i+1}$ Since $\hat{u}_i(s_{i+1}) = x_i$ with $P(x_i) = y_i$, we can find $j \in J_{i+1}$ with $x_i \in U_j^{(i+1)}$. Thun, $\hat{u}_{i+1} = (P|_{U_j^{(i+1)}})^{-1} \circ u_{i+1}$ lifts u_{i+1} with $\hat{u}_i(s_{i+1}) = x_i$ $\prod_{j=1}^{n}$

Q: What happens to liftings of loops?
A: We need not get a loop!
Eg:
$$p: \mathbb{C}^{\times} \longrightarrow \mathbb{C}^{\times} \times_{0} = y_{0} = 1$$
 e u: to, $I \to \mathbb{C}^{\times} u_{(1)} = e^{2\pi i t}$
 $\frac{1}{2} \longrightarrow e^{2}$
Then $\hat{u}: to, I \to \mathbb{C}$ is top-somicistle $\hat{u}_{(1)} = e^{\pi i t}$ so $\hat{u}_{(1)} = -1$.
However, this will not be the case if u is null-humotopic, traceively
because humotopics ALWAYS lift allater to coverings (at yest local homes !)
Furthermore, lifts will also be null-humotopic.
Proposition! Let X Y be Hausdorff top, spaces a $p: X \to Y = local homes$
bits the case lifting projecty (eg: a covering) Fix you'Y a XoEX with
 $P(x_0) = \Im_0 = lift \hat{u}: [o, I] \longrightarrow Y$ be a loop based at yo. If u is null-humotopic
then any lift $\hat{u}: [o, I] \longrightarrow Y$ of u culative to p with $\hat{u}_{(0)} = X_0$ is
also a loop. Furthermore, \hat{u} is null-humotopic.
By the curve lifting projecty, we have $\hat{u}_{S}: [o, I] \longrightarrow X$ lifting us
allot us $= H(-,S)$. Note $u_{S}(o) = y_{0}$ VS.
By the curve lifting projecty, we have $\hat{u}_{S}: [o, I] \longrightarrow X$ lifting us
allotive to p with $\hat{u}_{S}(o) = X_0$. Furthermore $\hat{u}_{0} = \hat{u}_{0}$.
Thus, the hypothesis of Them 1 89.4 apply a $\hat{H}(t, S) = \hat{u}_{S}(t)$ is a humotopy
 $\hat{u}_{0} = 1_{X_0} \otimes \hat{u}$. In posterial, $\hat{u}_{(1)} = \hat{u}_{0}(I) = X_0$. So \hat{u} is a
loop based at $x_0 \otimes \hat{u}$ is null-humotopic in X.

This result has a direct ensequence: fibers of coverings are in bijective with each other if Y is pathwise connected (or 10 R.S.)

lordlang Z: IF Y is pathwise connected & p: X -> Y is a local homeo with the curre lifting property, then p is surjective. Corollong 3: If p:X->Y is a coming & Y is pathwise connected, we conclude all fibers have the same size. We call it the <u>number of sheets</u> of the conving

Solutions:
Q: How to check if
$$p: X \longrightarrow Y$$
 is a covering?
Necessary enditions (i) surjection, (autimatic fram (2010) if Y is connected)
(2) Each homesmorphism.
(3) Each homesmorphism.
(3) Each difting projecty
IF we restrict our hypothesis in X & Y we get sufficient indictions:
Theorem 1: Assume X is Haundorff, Y is a manifold a yick $p: X \longrightarrow Y$. onta surj
TFAE: (i) p is a coroning
(2) p is a local homesmorphism with the care lifting projecty
NUE: IF Y is connected, surged & follows by Goodbarg 2 SSI because Y will be path-con.
 $SF/(1) \Longrightarrow (2)$ I is a horal homesmorphism with the care lifting projecty
holds by Thorem 2 851.
(2) \Rightarrow (i) We know that p is surjective. For $y \in Y$ a label the file
by J, ie $P^{-1}(y) = hy; j \in SS$. Since Y is a manifold, we have a cheat (16,9)
around y with $\Psi: V_0 \xrightarrow{\sim} W_0 \in \mathbb{R}^n$, by the Staint Wo to a hall around $\Psi_{(2)}$ around y with $\frac{1}{2}$ with $\frac{1}{2}(W) = \frac{1}{2}(W)$.
New, We is bound that p is a file M to be track induces
New, We is bound $\frac{1}{2}(W) = H_1(W)$. We think of Wo as a first the induces
New, We is bound $\frac{1}{2}(W) = \frac{1}{2}(W)$.
 $\frac{1}{2}(W) = \frac{1}{2}(W)$.
 $\frac{1}{2}(W) = \frac{1}{2}(W) = \frac{1}{2}(W)$.
 $\frac{1}{2}(W) = \frac{1}{2}(W) = \frac{1}{2}(W) = \frac{1}{2}(W) = \frac{1}{2}(W)$.
 $\frac{1}{2}(W) = \frac{1}{2}(W) = \frac{1}{2}(W) = \frac{1}{2}(W) = \frac{1}{2}(W)$.
 $\frac{1}{2}(W) = \frac{1}{2}(W) = \frac{1}{2}(W) = \frac{1}{2}(W)$.
 $\frac{1}{2}(W) = \frac{1}{2}(W) = \frac{1}{2}(W) = \frac{1}{2}(W) = \frac{1}{2}(W)$.
 $\frac{1}{2}(W) = \frac{1}{2}(W) = \frac{1}{2}(W) = \frac{1}{2}(W) = \frac{1}{2}(W)$.
 $\frac{1}{2}(W) = \frac{1}{2}(W) = \frac{1}{2}(W) = \frac{1}{2}(W) = \frac{1}{2}(W)$.
 $\frac{1}{2}(W) = \frac$

Conclusion: By Usims 1 through 4, p is a covering.

\$5.3 Profer Maps:

In the retion we give a second sufficient cudition for being a converse when
$$X, Y$$

an breakly compact. Throughout, we assume $X \in Y$ are Hausdorff.
 $\underline{\exists ef:}$ Fix X a top space. We say X is brakly empact (ic) if X is Hausdorff &
every t has an open neighborhood U with \overline{U} empact (ic) if X is Hausdorff &
every t has an open neighborhood U with \overline{U} empact (ic) if X is Hausdorff Φ
every t has an open neighborhood U with \overline{U} empact (ic) if X is Hausdorff Φ
every t has an open neighborhood U with \overline{U} empact (ic) if X is Hausdorff Φ
Equivalently, $\forall x \in X \notin U$ open nobel of $X \exists V$ open which $d \times w$ with $(i) K \in V \in U$
Dis: Riemann surfaces are LC (see Lemma 1 Φ 5.9)
 $\underline{\Im ef}$; Tix $X \Leftrightarrow Y$ beally compact spaces Φ $p:X \rightarrow Y$. We say p is proplet
if $p^{-1}(K)$ is empact in X for all K $\subseteq Y$ compact.
Remarks: In History, $E: X \longrightarrow Y$ is proper if it's universally closed a supercedid,
 $i \in \{0\}$ $X_X \notin X$ is closed $\forall F_1 \in \mathbb{P}^*$ ont
 $i \oplus \frac{1}{2} = \frac{1}{2}$ Y
(i) $\Delta \in X_X \chi \times$ is closed
If K, Y are smally compact, there conditions will be ratioshed if $\Phi^{-1}(K)$ is compact when
 $K \leq Y$ is. [See Stacks Project $\frac{1}{2} \le 1$]
Lemma i: If X is impact 4 Y is breakly empact, then any $p: X \rightarrow Y$ cost is propler.
 F/S since Y is Hausdorff, any $K \subseteq Y$ empact is closed. So $p^{-1}(K) \subseteq X$ is
closed in a compact space, here it is compact.
Lemma 2: Profee mass are closed.
 $SF/$ Rich $2 \subset X$ closed. We want to show $P(E) \subseteq Y$ is closed. By Lemma 3
(bulow), it's enough to show $p(E) \cap K$ is empact for all $K \subset Y$ compact
 $E = \{0 \ge 0, NK = 0, (2 \cap 0, 0, K)\}$ are it is compact for all $K \subset Y$ compact
 $E = ef(E \cap K = 0, (2 \cap 0, 0, K))$ is empact because p is ent-
 $empact$ (closed in a empact set) D

Lemma 3: Assume X is breakly compact and VCX. Then,
V is closed (=>
$$\forall K \leq X$$
 compact VNK is compact
 $\Im ()$ V is closed & K is compact (so closed by Hausdorff andition). Then, VNK is
closed in K compact, hence compact.
($)$ Rick $x \in V$ at fix W ofen nobed of x in X st \overline{W} is compact ($x \in X = U$
 $a \times is L.C.$). Then $\overline{W} \cap V$ is compact.
Since $x \in \overline{V}$ \exists sut $x_{ix} \rightarrow x$ with $x_{ix} \in V \forall R$. But $x \in W$ ofen so
 \exists subset $x_{ix} \in W$, which converges $\overline{b} \times b_{i}$ the model of \overline{f} and \overline{f} and

Theorem 1: If X, Y are L.C. & $f: X \rightarrow Y$ is proper & discute (is fibers an discute), then:

(2) For each $y \in Y$ a $U \subseteq X$ open neithborhood of F'(y), $\exists V \subseteq Y$ open not hold of Y with $F'(Y) \subseteq U$.

(2) $f(X \cup U)$ is closed by Lemma 2 \$5.3. Since $y \notin f(X \cup U)$ (because $U \ge f'(y)$), We can fixed $V \subseteq Y \cup (f(X \cup U))$ open with $y \in V$. Thus $V \cap f(X \cup U) = \emptyset$, and so $f'(V) \subseteq U$. The next result prices another exteria for being a covering map if X, X & P are special Theorem Z: Fix $P: X \rightarrow Y = proper map with X, Y L. c. Assume p is surjective.$

Then: pis a local homomorphism (=> pis a covering map.

Lemma 1: Riemann surface are boolly conject
SF/ Rich
$$x \in X RS$$
 $g \in V$ spin while. Pick a coord, chart (U, P)
at x with $U \subseteq V_d$ set $W = P^{-1}(B(o, k_d))$ if $P:U \rightarrow D$
Then $\overline{W} \cong \overline{B(o, k_d)}$ is impact a set $W \subseteq U$. X is Handorff by dif of RS.
Sutip: $F:X \longrightarrow Y$ projer, non-constant holomorphic map (=>dissuit)
Recall $h=1\times 1$ F is next beelly inject = out of beauch pts of F
 $\overline{B}:=F(A) = out of extircal values of F
Conclude: A is descute a closed (q holomorphic)
 B is closed a discute because pis projer, (un Theorem 10) $5.2)
Set $X':=X \setminus F^{-1}(B) \subseteq X \setminus A$ $A \in F|_{X'}: X' \longrightarrow Y'$
 $Y':=Y \setminus B$
Lemma 2: (i) $F^{-1}(B)$ is closed and discute
(ii) $X' \land Y'$ or $R.S$.
(iii) $F|_{X'}$ is a surjetive projer, unboarched holomorphic map
 $L \Rightarrow F_{1X'}$ is a surjetive projer. Pick $V \Rightarrow b$ open with $V \cap B$ -difference
 $V \Rightarrow b$ a varie $b = F(c)$. Rick $V \Rightarrow b$ open with $V \cap B$ -difference
 $V \Rightarrow b \in F_1(B) \cap U' = f^{-1}(b) \cap U' = b \in S$.
 $V \Rightarrow b \in F_1(A) \cap U' = f^{-1}(b) \cap U' = b \in S$.
 $V \Rightarrow b \in F_1(A) \cap U' = f^{-1}(b) \cap U' = b \in S$.
 $V \Rightarrow b \in F_1(A) \cap U' = F^{-1}(b) \cap U' = b \in S$.
 $V \Rightarrow b \in F_1(A) \cap U' = F^{-1}(b) \cap U' = b \in S$.
 $V \Rightarrow b \in F_1(A) \cap U' = F^{-1}(b) \cap U' = b \in S$.
 $V = F^{-1}(B) \cap U' = F^{-1}(b) \cap U' = b \in S$.
 $V = F^{-1}(B) \cap U' = F^{-1}(b) \cap U' = b \in S$.
 $V = F^{-1}(B) \cap U' = F^{-1}(B) \cap U' = b \in S$.
 $V = F^{-1}(B) \cap U' = F^{-1}(B) \cap U' = b \in S$.
 $V = F^{-1}(B) \cap U' = F^{-1}(B) \cap U' = b \in S$.
 $V = V \cap W = F^{-1}(B) \cap U' = F^{-1}(B) \cap W$.$

Since
$$F'(b)$$
 is finite (historie a compact) a X is Hausdorff, we can shrink
W to W'De so that $F''(b) \Omega W'=let.$ (include $F'(b) \Omega W'=let.$
(e) It's enough to show that if Z is a R.S. a FSZ is diserted a closed.
Hun Z F is a R.S. It's open in a Hausdorff space, so Z FS Knodelff.
Simularly, the neutrition of the much offers Z to F is an atla 10.52F.
To show that 2 F is connected, we prove it's path wise connected.
Fix 2, EZFA Lt 3, EZF. Since Z is path wise connected.
Fix 2, EZFA Lt 3, EZF. Since Z is path wise connected.
New $u([0,1]) \cap F$ is discute a closed in the compact set $u([0,1])$,
so it's finite. Wate it as $u(b_1) = g_1, \dots, u(b_3) = us t \in Z$.
We can modify u by picking a coord cheat $U_i \cong D$ with $U(\Omega F=2)_{ij}$
a going ensured y_i instead of through y_i (U_i is well-humotopic)
 $u \longrightarrow u'$
 $U_i = U$
The run curve u' live in Z iF, so $Z \setminus F$ is path connected.
(3) By construction f_1x_i is proper, surjectively will follow from the connected haves of I_{ij} is a local homeomorphism.
If we show $F_{1X'}$ is proper, surjectively will follow from the connected hours of Y'_i
(see Remark 2 § 5.2)
 $Fred K \subseteq Y'$ compact. Then $K \subseteq Y$ is compact. (Y' is ont).
But $F'_{1X'}(K) \cap X' = F'(K)$ by construction, so it's compact.
 $Fred K \subseteq Y'$ compact. Then $K \subseteq Y$ is contaction, so it's contact.
 $Fred K \subseteq Y'$ compact. Then $K \subseteq Y$ is contact.
 $Fred K \subseteq Y'$ compact. Then $K \subseteq Y$ is contact.
 $Fred K \subseteq Y'$ compact. Then $K \subseteq Y$ is contact.
 $Fred K \subseteq Y'$ compact. Then $K \subseteq Y$ is contact.
 $Fred K \subseteq Y'$ compact. Then $K \subseteq Y$ is contact.
 $Fred K \subseteq Y'$ compact. Then $K \subseteq Y$ is contact.
 $Fred K \subseteq Y'$ compact. Then $K \subseteq Y$ is contact.
 $Fred K \subseteq Y'$ compact. Then $K \subseteq Y'$ is contact.
 $Fred K \subseteq Y'$ compact. Then $K \subseteq Y'$ is contact.
 $Fred K \subseteq Y'$ compact. Then $K \subseteq Y'$ is contact.
 $Fred K \subseteq Y'$ compact. Then $K \subseteq Y'$ is contact.
 $Fred K \subseteq Y'$ compact. Then $K \subseteq Y'$ is contact.
 $Fred K \subseteq Y'$ compact. Then $Fred Y'$ is $Fred Y'$ is $Fred Y'$.

Name:
$$n = d_{3}(F_{1,x}) = "deque of F" ("quantically, hiers of F have even")
To finish, we'll show that $|F^{-1}(y)| = v$ for all $y \in Y$, if we count fibers over
B appropriately. The branching numbers will do the trick.
The bee provide $F_{1,x}' = 3 \in ..., c_{k}$ be have a metion of local mult:
(or branching wave each c_{1}) World $m_{c} = V(F, c_{1})$ for $i = v = k$.
(Locally, around c_{1} F behaves as $2 \mapsto 2^{m_{1}}$.
Befinition: $m = V(b) = \sum_{k=1}^{k} m_{1}$ dequee at $b \in \mathbb{R}$
 $(V_{0,2}) = i$ if $y \in Y \setminus B$
Theorem: IF $F(X) \rightarrow T$ is a num-constant peopler bedien exactly $n_{1}P_{1}$
and $deg(F) = n$, then $\forall y \in Y = V(z) = n$ ("Files have exactly $n_{1}P_{2}$
for both $VIB = 3bb$. By Theorem 10085.2 $F^{-1}(b)$ is binite, say $F^{-1}(b) = 3c_{1}, \dots, c_{k}$
We know $F_{1,2}$ is descende a compact, so finite $-ic_{1}, ..., c_{k}$?
Meter shimking V is necessary, pick U_{k} coord dual for c_{k} in X so that
 $F_{1,U_{2}} = 0$ (M)
By Theorem 1 (2) $\leq s_{2} = U = UU_{k}$ is a model of $F_{1,U_{2}} = m_{1} \forall y \in V \setminus H_{1}^{2}$
 $V' night of b with $F^{-1}(V') \in U_{0}$ building, we assume $V \leq V$.
The $y \in V'Abb$. Then $|F_{1,D}^{-1}| = m_{1} + \dots + m_{k}$ by (M) a fixed
 V' which of b with $F^{-1}(V') \in U_{0}$ by long, we assume $V \leq V$.
But $y \notin k \leq s |F_{1,D}^{-1}| = n = deg(F)$. By longbury 1.5 3
(modeline $2 \leq 1F_{1,D}(1) = n = deg(F)$. By longbury 1.5 3
(modeline $2 \leq 1F_{1,D}(1) = n = deg(F)$. By longbury 1.5 3
(modeline $2 \leq 1F_{1,D}(1) = n = deg(F)$. By longbury 1.5 5.3
(modeline $2 \leq 1F_{1,D}(1) = n = deg(F)$. By longbury 1.5 5.3
(modeline $2 \leq 1F_{1,D}(1) = n = deg(F)$. By longbury 1.5 5.3
(modeline $2 \leq 1F_{1,D}(1) = n = deg(F)$. By longbury 1.5 5.3
(modeline $2 \leq 1F_{1,D}(1) = n = deg(F)$. By longbury 1.5 5.3
(modeline $2 \leq 1F_{1,D}(1) = n = deg(F)$. By longbury 1.5 5.3
(modeline $2 \leq 1F_{1,D}(1) = n = deg(F)$. By longbury 1.5 5.3
(modeline $2 \leq 1F_{1,D}(1) = 1 = f^{-1}(\infty) 1$ ($\pm genes of F = \#$ poles of F , counted with mult.)$$$