Lecture VII: Deck Transformations & Galois conspondence

Last Time: We defined unicessal concerning:
$$p: \vec{Y} \rightarrow Y$$
 conving set $\forall j: \vec{z} \rightarrow Y$
concing a $j_0 \in \vec{T} \land z_0 \in \vec{Z}$ with $p(i_0) = j(z_0)$ converses
we have $q: \vec{F}, \vec{Y} \rightarrow \vec{Z}$ Billing of part to q_1 with $f(j_0) = z_0$.
THE is the universe of the unique is to unique is to
the universal concerning of a number of the universal is a they are the universal concerning of an universal concerning of a number of the upperbases on X, Y
THE I: Universal concerning of an uncertainty of a constrained
or preventived.
• Generalizations of THEELS is a useable the hypotheses on X, Y
• THEEL: Ensure to unique is \mathbf{F} is simply converted
• $p: X \rightarrow Y$ converted to the prevention of the imperiation of \mathbf{T} is a simply converted a density of the converted
• $p: X \rightarrow Y$ converted is \mathbf{F} in the set of \mathbf{F} one path converted
• $p: X \rightarrow Y$ converted is \mathbf{F} in \mathbf{F} one path converted
• $p = X \rightarrow Y$ converted in the lass of \mathbf{F} imply converted
• $p = X \rightarrow Y$ converted is \mathbf{F} in \mathbf{F} and \mathbf{F} one path converted
• $p = X \rightarrow Y$ converted is \mathbf{F} in \mathbf{F} or p is united
• $p = X \rightarrow Y$ converted is \mathbf{F} in \mathbf{F} or p is united
• $p = X \rightarrow Y$ converted is \mathbf{F} interval \mathbf{F} or p is \mathbf{F} or \mathbf{F} or \mathbf{F} in \mathbf{F} or \mathbf{F} is \mathbf{F} in \mathbf{F} or \mathbf{F} in \mathbf{F} or \mathbf{F} is \mathbf{F} or \mathbf{F} is \mathbf{F} or \mathbf{F} or

X 😁 9Febeck(X | Y) Remark . I permutes "pan cakes" over a connected open in Y P↓ ← • Since X is connected, given $X_0, X, \in X$ with $P(x_0) = P(x_1)$ $\exists at most me f \in Deck(X|Y)$ with $F(x_0) = X$, r 💿 Next goals (Compute Deck (F(Y) my galois covering) Build quotients X of \tilde{Y} & identify Deck ($\tilde{Y}|X$) with subporeps of Deck($\tilde{Y}|T$) ->> galois conespondence 37.1 Jalois Corrings. We are interested in special corerings, where points many given fiber can be related via a Deck transf. Definition: Assume X, Y are connected & Hausdorff. We say a coreing p: X -> Y is galois (alt. regular se normal) if given x., x, with P(xo)=P(x,) I fe Deck(XIY) with f(xo)=x, Remark 2: Some X is connected of F is a lift of p relative to p with fixed initial value f must be unique by Theorem 2 \$ 4.3. <u>Examples</u>: (1) $p: \mathbb{C}^{\times} \longrightarrow \mathbb{C}^{\times}$ $p_{(2)} = z^{k}$ is a concurring map. pis Jalois: IF 2"= 2" , then z = wz' for some well with wk=1 Then $f: \mathbb{C}^{\times} \longrightarrow \mathbb{C}^{\times} \xrightarrow{} w \xrightarrow{} w \xrightarrow{} is$ the corresponding element in $\operatorname{Deck}(\mathbb{C}^{\times} \xrightarrow{} \mathbb{C}^{\times})$ (2) P: IH & exp D where IH &= 3 2: Re(2)<0} is a galois corning $Deck(H^{\varrho} \rightarrow H^{\varrho}) = \frac{1}{2} \delta_{2\pi in}(z) = z + 2\pi in for n \in \mathbb{Z} \} \cong \mathbb{Z}$ The choice of terminology is not a coincidence . Theorem 1 : Assume Y is a connected manifold & let B: I - Y be its universal when $(\Im \widetilde{Y})$ is a connected mfld). Then, p is galvis & $\operatorname{Deck}(\widetilde{Y} | Y) \simeq \overline{\operatorname{II}}_1(Y)$. Proof: We show both claims separated a build an explicit group isomorphism. · Claim 1: p is galois: If Fix Xo, X, E T with P(Xo)=P(X,). Fix ! f lifting of p whatine to p with f(Xo)=X1 We need to show that f is a homomorphism. We do this by explicitly building f's showing it's untinuous

Similar maxing builds :
$$g: \tilde{Y} \longrightarrow \tilde{Y}$$
 lefting of p atlating
to p with $g(x_1) = x_0$.
Thus for $g, gof: \tilde{Y} \longrightarrow \tilde{Y}$ lift p rul to p with $gof(x_0) = x_0$ a for $g(x_1) = x_1$
We conclude : $fog = gof = id_{\tilde{Y}}$ by uniqueness of lifts (\tilde{Y} is consulted).
• Rick $\tilde{g}_0 = (g_0, \alpha) \in p^{-1}(g_0)$, e.g. $(g_0, [g_0, g_0])$. We build an explicit map
 $\tilde{\Phi}$: Deck ($\tilde{Y}|Y$) \longrightarrow $\tilde{W}_1(Y, g_0)$
 $\sigma' \longrightarrow [pod \sigma]$
where $\delta\sigma: [o, 1] \longrightarrow \tilde{Y}$ is any unice with $\tilde{Y}_{\sigma}(o) = \tilde{g}_0$ a $\tilde{g}(1) = \sigma(\tilde{g}_0)$.
 $\tilde{\Phi}$ is well-defined since [$\delta\sigma_1$ is uniquely determined by the endpiects (\tilde{Y} is simply constants)
a $[pov] = [pov']$ if $Lr] = [v']$ (if $v \sim v'$ via H , thus pov $v pov'$ via poH)
• $\frac{1}{\sigma_2}$ joining \tilde{g}_0 a $\sigma_1(\tilde{g}_0)$ in \tilde{Y}
 \tilde{Y}_{σ_2} joining \tilde{g}_0 a $\sigma_1(\tilde{g}_0)$ in \tilde{Y}
Thus $\sigma_1 \circ \delta\sigma_2$ joins $\sigma_1(\tilde{g}_0) = \tilde{Y}_1 \circ \sigma_2(\tilde{g}_0)$ so $\chi_0^{+}(\tilde{g}(\sigma_2))$ joins $\tilde{g}_0 = \sigma_0 \circ \sigma_2$
Thus $\tilde{\Phi}(\sigma_1 \circ \sigma_2) = [po \delta_{\sigma_1 \circ \sigma_2}] = [po \delta_{\sigma_1 \circ \sigma_2}] = [po \delta_{\sigma_1}] + [po \delta_{\sigma_2}] = 0$

• Uain 3:
$$\Phi$$
 is injective
 $SF/F(x \in with \Phi(\sigma) = [II_{30}]$ Then $[Po\delta\sigma] = [II_{30}]$.
But $u = Po\delta\sigma$ is null-humstopic $wY = it$ has a unique lift to \tilde{Y} with
 $\hat{u}_{(30)} = (y_0, [II_{30}]) = \tilde{y}_0$. By construction, \hat{u} is a loop by Prop 1 § 5.1 (it lifts a
null-humstopic loop) Uniqueness of lifts gives $\hat{u} = \delta_{\sigma}$ and $\tilde{y}_0 = \hat{u}_{(1)} = \delta\sigma(i)$, so $\delta\sigma$ is
a loop around \tilde{y}_0 . We get $\sigma(\tilde{y}_0) = \tilde{y}_0$. The uniqueness in Remark 2 gives $\sigma = id\tilde{y}$.
• Uain 4: Φ is surjective.

Sty Fix de E.(T, 4.) a v sopin Y based at yo with
$$[v_1] = d$$
. Pick the
unique lift \hat{U} of v relations to p with $\hat{U}(0) = \tilde{g}_0 d$ white $\tilde{g}_1 = \hat{U}(1)$, so $p(\tilde{g}_1) = \tilde{g}_0 P(\tilde{g}_0)$.
Thus, since p is Galois, we have $\sigma \in Deck(\tilde{Y}|Y)$ with $\sigma(\tilde{g}_0) = \tilde{g}_1$.
We can take $\tilde{g}_0 = \hat{U}$, so $\Phi(\sigma) = [p_0 \tilde{V}_0] = [p_0 \tilde{U}] = [v_1] = d$
Examples. (1) exp: $C \longrightarrow C^{\times}$ is the universal convinged C^{\times} because C is simpley can
a exp is a verticing (There is 86.1)
object $n \in \mathbb{Z}$, write $\tilde{G}_n: C \longrightarrow C$ $\tilde{G}_n(2) = \tilde{r} + 2\tilde{n}(n, kons & eq(\tilde{h}_1)) = exp(2)$, so
 $\tilde{G}_n \in Deck(C|C^{\times})$.
. From $g \in Eeck(C|C^{\times}) = exp(\sigma(\sigma)) = 1$ so $\sigma(\sigma) = 2\tilde{n}(n = \tilde{G}_n(\sigma))$
 $\Rightarrow \sigma = \tilde{G}_n$ by uniqueness
(actuaring : $\pi_1(C^{\vee}) = Deck(C|C^{\times}) = 3\tilde{G}_n: n \in \tilde{r} + 2\tilde{n}(n)$, $C^{\times} \circ V(\Gamma) = 2\tilde{n}(n = \tilde{G}_n(\sigma))$
 $\Rightarrow \sigma = \tilde{G}_n$ by uniqueness
(actuaring : $\pi_1(C^{\vee}) = Deck(C|C^{\times} C^{\vee}) = 3\tilde{G}_n: n \in \tilde{r} + 2\tilde{n}(n)$, $C^{\times} \circ V(\Gamma) = 2\tilde{n}(n = \tilde{G}_n(\sigma))$
 $=\tilde{r} \sigma = \tilde{G}_n$ by uniqueness
(actuaring : $\pi_1(C^{\vee}) = Deck(C|C^{\times} C^{\vee}) = 3\tilde{G}_n: n \in \tilde{r} + 2\tilde{n}(n)$, $C^{\times} \circ V(\Gamma) = 2\tilde{n}(n) = \tilde{G}_n(\sigma)$
 $exp(n) X \in \Gamma$, pick \tilde{G}_Y . $C \longrightarrow C$ $\tilde{G}_Y(2) = 2 + Y$ homes $\pi(\tilde{G}_Y)_{(2)} = \pi(2)$ the
universal conving of $\sqrt{\Gamma}$.
. Given $X \in L$, pick \tilde{G}_Y . $C \longrightarrow C$ $\tilde{G}_Y(2) = 2 + Y$ homes $\pi(\tilde{G}_Y)_{(2)} = \pi(2)$ the
so $\tilde{G}_Y \in Deck(C|C|_{T}^{\wedge})$, we get $\pi(\sigma(\sigma)) = \tilde{n}(\sigma) = 0 \in \tilde{G}/\Gamma$
 $\nabla(\sigma) = Y = \tilde{G}_{10} \in T$ so $\sigma = \tilde{G}_Y$.
(andusin $\pi_1(C/p) = Deck(C|C|_{T}^{\wedge})$, we get $X \in T^{\vee} Y \cong T \cong Z \times Z$
[Ansistent with $C/T \cong S^{\vee} S^{\vee}$.]

§ 7.2 Galois conespondence:

Our next goal is to build corning maps from subgroup of Deck ($\tilde{Y}|Y$). This is the content of the "galois correspondence". In order to do this, we'll need the notion of a projer discontinuous action on locally impact spaces (eg monifolds)

Since p is a conving, we can lift v to $\hat{u}(uniquely)$ relative to p with $\hat{u}(o) = a$. We need to check that $f \circ \hat{u} = u$.

Now, for a u byth lift v allatte to q. (go for
$$u = por u = v = goa)$$

a catisfy for (c) = f(a) = u(o). By uniqueness of lifts, we let for $u = u$
 $\overline{tr}(z)$, By contraction any $h: \overline{Y} \rightarrow \overline{Y}$ homo with for $h = h$ satisfies
go for $h = go f$, so, $poh = p$ is $h \in Deck(\overline{Y}|Y)$
(laim 3: $f: \overline{Y} \longrightarrow X$ is the universal converged X . (\Rightarrow $T_1(X) = Deck(\overline{T}|X)$)
because X is constrained
 $\overline{Y} \rightarrow \overline{Y}$ is the universal converged X . (\Rightarrow $T_1(X) = Deck(\overline{T}|X)$)
 $\overline{Y} \rightarrow \overline{Y}$ is the universal converged L addition \overline{T} is simply connected because
 $g:\overline{Y} \rightarrow \overline{Y}$ is the universal converged L addition \overline{T} is simply connected because
 $g:\overline{Y} \rightarrow \overline{Y}$ is the universal converse X (is a converted manifold (use Theorem 2 §G.))
Since X is a connected manifold, $h:\overline{Y} \rightarrow X$ is the universal converged $\overline{Y} X$ (use Theorem 2 §G.))
 $g:\overline{Y} \rightarrow \overline{Y}$ is the universal converse X (is a converged for f
 $a \in \overline{Y} - \frac{2!}{2} = 2$
 $g:u = gog' = u = universal gog' = u = universal gog for f
 $a \in \overline{Y} - \frac{2!}{2} = 2$
 Y ($\mu = g(2g)$) ($\mu = g(2g)$) ($\mu = g(2g) = g(2g) = g(2g) = g(2g) = g(2g) = g(2g) = g(2g)$
 $Y = g(2g)$ with $g(2g) = 2 = 2$ ($g(2g') \circ g = p$.
 $Y = g(2g)$ ($\mu = g(2g)$) ($\mu = g(2g) = g(2g) = g(2g) = f(2g) = f(2g)$
 $f = g' \circ g$, as we wanted, u
 $F = g' \circ g$, as we wanted, u
 $F = g' \circ g'$, as we wanted, u
 $F = g' \circ g'$, as we wanted, u
 $F = g' \circ g'$, as we wanted, u
 $F = g' \circ g'$, as we wanted, u
 $F = g' \circ g'$, as we wanted, u
 $F = g' \circ g'$, as we wanted, u
 $F = g' \circ g'$, as we wanted, u
 $F = g' \circ g'$, $f = T = \sigma(a) = a'$ ($f = sme$ $F \in H$, then $f_{ab} = f = a'$, is a galaxies, $T = g'$.
 $F = g' \circ g'$, $f = T = \sigma(a) = a'$ ($f = sme$ $F \in H$, $f = g' = a'$, $i \in a \sim \mu a'$.
 $F = g' \circ g'$, $f = T = \sigma(a) = f = g' = T = \sigma($$

Toposethis, we used an interlude to fixed-pt her proper disentimenon actions.
Recall: G yroup a X a top space. A yroup action GGX is an action
of 6 on the set IXI st g. : X -> X is a contenuous map for each gGG.
Def: We say GGX is properly discontinuous if for each KCX empet
the set 38 EG : g(K) NK
$$\neq \emptyset$$
? is finite.
Examples :(i) Z CR by translation.
(2) SL₀(Z) C H = 3 Im (2) >0? by Lowar fractional transf
Austria important example is the following:
Lemma 1: beck (TIY) C T is properly descontinuous (Same is true for any subprop
Lemma 2: IF X is Handolff bradly compact & GCX is properly discontinuous
the X can continue X = V_{H} = f=t; T ->>> X the quotient map
. Since f is continuous, and F is commated than so is X.
By Lemma 2, X is Handolff .
Next, we define $q : X ->$ Y via $q(X) = p(a)$ if $f(a) = X$.
(Laim 2, X is Handolff .
Next, we define $q : X ->$ Y via $q(X) = p(a)$ if $f(a) = X$.
(Laim 1: q is coll-def
3F/ Pick X = T/H = $q = 4$ with $f(a) = x = f(a)$. This means
 $\exists \sigma \in H \subseteq Deck(TIY)$ with $T(a) = a'$. Then $P(a) = f^{0} T(a) = f(a)$.
So q is well-defined.
I define $x = q$ is continuous.

SF/ Pick UEY open. Then: g^{-'}(U) ⊆ X is open ⊂ T^{-'}(g^{-'}(U)) ⊆ T is open the spectrum open open the spectrum open th $\varsigma'(U) = J \times \in X$ with $\varsigma(x) \in U$ = $JT(a) : a \in \tilde{Y}$ with $P(a) \in U$ tt'(q'(u)) = 3acT with $p(a) \leq U^{2} = p'(u)$ a this set is often in T. Chaim 3: q is a corring SF/ \tilde{Y} \tilde{G} ; contribut by H γ \tilde{G} \tilde{G} given yer, pick yever open & 30 ; to opens in ~ with (i) $P'(V) = \bigcup_{j \in J} \bigcup_{j} Z$ (2) $P|U_j : \bigcup_{j} \longrightarrow V$ home V_j . Take $W_j = f(U_j)$ W_j & remove repetitions to get a collection $\int W_j f_{j\in J'}$ for some $J' \in J$. By construction W_j is often since $Ti'(W_j) = \bigsqcup_{s \in S_j} U_s$, where Sj:=3keJ | I JEH with U(Uk)=Uj]. In addition. $q_{W}: W_{j} \longrightarrow V$ is home V_{j} since $q_{W}' = T_{0}(\eta_{U_{j}})^{-1}$ is continuous. Claim 4 : X is a manifold & f is a covering 35/ Pullback the manifold structure of Y via the local homomorphism of To turn X inte a manifold. Then, we can use Theorem 1(1) \$7.2 & Claims to conclude that fis a covering. . Using Thm 1 (2), (3) \$7.2 & Claims 1 through 4 we conclude that $H = \text{Deck}(\tilde{Y}|X)$. \$ 7.3 . Proof of Lennas 1 & 2 \$ 7.2 Lemma I. Deck (YIY) CT is properly discontinuous.

<u>Broof</u>. We know $G = beck(\tilde{\gamma}|\gamma) \ \mathfrak{G} \, \tilde{\gamma} \ by definition. To cleck it's properly disc., we ment to show that <math>|\beta g \in G : gK \cap K \neq \phi f| < \infty$ for each $K \subseteq \tilde{\gamma} \ compact$. Take $K' = p(K) \subset \tilde{\gamma} \ compact$. For each $g \in K'$ pick $V_g \subseteq \tilde{\gamma} \ for a g$. $3U_j^{(g)}f_{j} \in J_g$ has the definition of covering. Since K' is compact, we can pick

a finite set 1V1,..., Vn & covering K'& the corresp collections of opens in T 4 Ujiljet; These cover K, so we can restrict to a finite number of opens of Y corning K. Ł The may get with gKAK # \$ are the ones stabilizing one of the subcollections $\bigcup_{k=1}^{m_i} \bigcup_{k=1}^{(i)} fra fixed index <math>\hat{z}_{z1, \dots, n}$ By the unit property of $\tilde{Y} \longrightarrow Y$, each pair $U_{jk}^{(i)}$, $U_{js}^{(i)}$ k/s is permuted by a single geb, so the stabilizer of each $\bigcup_{k=1}^{m_i} \bigcup_{k=1}^{(i)}$ is finite. This implies that GCF is propuly discontinuous. Lemma Z: IF X is locally impact, Hausborth& GCX is properly discritinuous, thin XG (with the quotient top) is Hausdorff. 3F/ We show the statement by proving any $X \neq X'$ in X can be reparated by two G-invariant open ubbas U > X & U'> X' (Ginnariant mous U=TT'(T(U))) . Claim 1. We can reduce to the case when U is open & U' is G-invariant. 34 Since $U \cap U' = \phi$, given any geo where $\phi = g \cdot \phi = g \cup \Omega g U' = g \cup \Omega U'$. We then get W=G.U is open, G-invariant, XEN & WNU'=\$, A · We start by picking U & V opens separating X & X' by the Hausdorff condition on X. Using the local compactness we find spensu, V, with $\overline{U_1 \land V_1}$ compacts $X \in U_1 \subseteq \overline{U_1} \subseteq U$ $x' \in V_1 \subseteq \overline{V_1} \subseteq V$ · Claimz: We have U, NgV, = \$ 10 all but finitely many geV. 3F/ Since K_= UI & K_2 = VI are compact & GCX is projuly disc, we have finitely many elements s,,..., Ss EG with K, Agi Kz = Ø. But this implies $\cup_{i} \cap g \vee_{i} = \emptyset \quad \forall g \notin \{g, \dots, g_{g}\}.$ By Claim 2, we can purther shrink U, to ensure the remaining finitely many intersection

are empty. Indeed, since gV_i is compact & X is Hausdorff, then gV_i is closed. Since $X \notin gV_i$ we can shrink U_i to get $U_i \cap gV_i = \emptyset$ for each $g \in SS_1 \dots SS_i$.

This gives U, & U=UgV, as the neighborhoods of x & X' required in Claim 1. SEV