Lecture IX: Analytic entimetation

Recall: X top space, I pushed $n \times m$ $IFI = \bigcup_{x \in X} \mathcal{F}_x \xrightarrow{P} \mathcal{X} P|_{\mathcal{F}_x} \equiv X$ IFI has a basis for its topology $\mathcal{N}(U,F) = \frac{1}{P_x}(F) F \in \mathcal{F}(U), x \in X$ THOL: $|\mathcal{F}| \xrightarrow{P} \mathcal{X}$ is local homomorphism

<u>THUZ</u>: IF \mathcal{F} satisfies the Identity Theorem (for each U open connected a f, $g \in \mathcal{F}(U)$ we have f = g whenever $p_a(f) = p_a(g)$ for some a) a X is Hausdorff & here. convected then IFI is Hausdorff.

Grollary: Freezew X RS, |0| is Hausdorff & $p:101 \rightarrow X$ is holomorphic. where can make each connected component Z of 101 into a RS by pulling back the structure of X ria p_{1Z} . Then $p_{1Z}: Z \rightarrow X$ becomes holomorphic \underline{Q} : How to see if 101 is canceled / differmine its canceled components? A: Analytic entinuation!

§9.1 Analytic entimedian of germs along curs:
Fix a Riemann surface X and
$$O = O_X = sheaf of holomorphic functions nX.$$

Next goal: Study analytic entimedias of germs of functions $F \in O(U)$
along paths in X stating at pts in U. We work with germs of analytic functions
Definition: Given $q \in X$, P in O_A is $u: [O, 1] \longrightarrow X$ with $u_{(O)} = a$
 $u_{(G)} = 1$
the analytic entimedian of P along u (if it exists) is the unique lift
 $FC_{U}(P) = \hat{u}: [O, 1] \longrightarrow 101$ of u relative to p with $\hat{u}_{(O)} = P$. If P
 $e = [O, 1] = X$.
Remark: Uniqueness follows from I councted & p local homomorphism.
If their exists, we say $Z = AC_{U}(P) = \hat{u}_{(A)} \in O_{b}$ is the nould of performing

the analytic continuation of
$$\Psi$$
 along \hat{u} .
Equivalent Definition: We need a continuous family $\Psi_{t} = \hat{u}_{(t)} \in O_{u(t)}$ for $t \in [0,1]$.
This means that for all to $e[0,1]$ in need to find
(1) an interval $T \subseteq [0,1]$ with $t_0 \in T$
(2) an open $U_{T} \subset X$ with $u(T) \subseteq U_{T}$
(3) a function $F \in O(U_{T})$ with $P_{u(t)}(F) = \Psi_{t}$ HeFT.
Since $[0,1]$ is compact we can use the lebesque number of a finite subcover
of X is the $u(t) \subseteq U_{T}$ of t_{0} to get a partition $O = t_{0} < t_{1} < \cdots < t_{n} = 1$, opens U_{1}, \dots, U_{n}
of X with $u(t) \subseteq t_{0}, t_{1}$ a for $t \in O(U_{t})$ for $t = 1, \dots, n$ with
 $(1) P_{u}(F_{0}) = \Psi \rightarrow f_{b}(F_{h-1}) = Z$
(2) $F(t)_{V_{t}} = F(t+1)_{V_{t}}$ $\forall t = 1, \dots, n$ where V_{t} is the converse $u(t_{t})$.
 $u = \int_{U_{t}}^{U_{t}} \int_{U_{t$

Note: Topology on 101 makes û (+) = It into a cutinuous map.

 \underline{Q} : How much does $\underline{\gamma} = \hat{u}_{(1)}$ depend on the choice of the path \underline{u} ? \underline{A} : (July depends on $\underline{u} = \overline{u}_{(1)}$ depend on the choice of the path \underline{u} ?

<u>Honolumy Theorem</u>: Fix a Riemann surbace X, two points a, $5 \in X \otimes$ two homotopic curves $u_{0}, u_{1} : [0,1] \longrightarrow X$ joining a to b. Consider a truntity $H: [0, 1] \times [0, 1] \longrightarrow X$ between $u_{0} \otimes u_{1}$, ε set $u_{s} := H(-, s)$ for $0 \le s \le 1$ Assume the grum $\Psi \in O_{a}$ admits an analytic continuation along each u_{s} . Then, the analytic continuations of Ψ along $u_{0} \otimes u_{1}$ give the same grum \mathcal{Y} in U_{s} .

Remark: "Trudromy": take
$$\alpha = b \ge u_0$$
 well-hundtopic path. $u_1 = 1/a$
Take $u_0 = 1/a \ge u_1 \sim u_0$, we get $AC_u(\Psi) = AC_{u_0}(\Psi) = \Psi$

- Corollary: IF X is a simply connected R.S., $a \in X \& l \in O_a$ is a germ admitting an analytic continuation along any curve starting at a, then we can find a global holomorphic function $F \in O(X)$ with $P_a(F) = P$.
- 3F/ Given $x \in X$, set $\Psi_X \in O_X$ be the function germ obtained from the analytic ent of Ψ along a path is joining a to x. The instruction of Ψ_X is path independent by the II modumy Theorem. Set $F: X \longrightarrow C$ $F(x) = \Psi_X$. Then F is holomorphic on X (locally holomorphic) & $P_X(F) = \Psi_X + X$. In particular, $P_X(F) = \Psi$.
- By the Idutity Theorem, I is uniquely determined.
- The defindency on the path will lead to a multivalued function (analytic cut.) $Q_a \ni \Psi \longrightarrow \hat{u} \in Q_b$ We'll make this precise next time
 - The formal construction of AC will achieve 2 things .
 - () solve the multivaluedness issue
 - Find a holmoephic function m a RS. X "representing" the perm 4. This will allow us hind all germs that can be constructed as AC of 4.

\$9.2. Weierstrass "analytic function element"

. The original construction of analytic cont. is due to Weierstrass for X = C P∈ Oa convergent power series in Z-a in a disc D = D(a) r=Roc>0. Q: Can we extend I beyond D? Fid $c \in D$ & with down the power series expansion of φ marc e compute its ROC r_1 . If $D_{r_1}(c) \notin D$, then we're extended φ outside D a we can repeat the process with $c_2 \in D_{r_1}(c) \setminus D$ Examples: () $\Psi = \sum_{n \ge 0} z^n \in []$ lifts to D. We can extend it to $F = \frac{1}{1-z}$ m()-sit $(P = \sum_{n \ge 0} Z^n : EQ gives a function on D. This function connot be$ extended beyond S' by proces centered at pts in D become the servis derenges for any nth root of $1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ (=> $r_1 < 1 - 1 < 1$). Proposition: p:101 -> X is not a covering map SF/ It's enough to find a curve on X with no lifting relative to p. Since X is a RS, we can replace X by an open chart $\mathcal{U} \xrightarrow{\sim} \mathbb{D}_{2}(0) \subseteq \mathbb{C}$ $(\mathbf{D} = \mathbf{D}_{(0)})$ Take $f = \sum_{n \neq 0} z^{n!}$ in $\mathcal{O}(\mathbb{D})$ a consider the permit- $\mathcal{P}_{0}(F) \in \mathcal{O}_{0}$.

Pick $u:[0,1] \longrightarrow X$ $u_{(t)} = 2t$ since F diverges madense net of S' (nomely, exp(zTtiQ)) we see that F does not have an analytic cationation along u. with initial value Ψ . In particular, $f_{0,1} = 101$ $f_{0,1} = 0$ $u_{(0)} = \Psi$

Lemma : 101 is locally pathwise currected BUT not connected

SF/. Since X is korally pathwise can. & p is a boat hours, the same holds to [10].
If [10] whe connected then we would have [10] path cannected, so any gene would
be connected to another by a path in [10]. This would say any 2 genus of
analytic functions would be analytic ant. I each other, which we know is false
. Next, we describe Weierstrass analytic function element".
S:= }(f, D_r(a)): f: D_r(a) = 0 hold 3
so f has a prover suries impansion in (Z-a) & roc >r.
We define an equivalence relation in
$$S$$
.
(f, D_r(a)) \sim (3, D_s(b)) if \exists u:[0,1] \rightarrow 0 with $u_{(0)}=a$
 $u_{(1)}=b$
st the analytic ants Ap(f) along u exists & aques with g. [Tore precisely
 $AC_u(F)_{(1)} = P_b(g)$

Definition: A function element is an equivalence class of S under this relation.
Remark: Since local lifting rel to p exist & paths in
$$D_r(a)$$
 are homotopic, we get
 $(f, D_r(a)) \sim (f, D_r(b)),$

Nove generally, small perturbations of a give the same analytic function.

(11re ditails next Time!)

<u>Conclusion</u>: firm $\Psi \in O_a$, \mathfrak{a} $(f, b_r(a)) \in S$ with $P_a(F) = \Psi$, the Weierstress function element corresponding to $(f, b_r(a))$ is exactly the connected comp Z of 101 containing Ψ . The result will be a R.S. since $P|_Z : Z \longrightarrow X$ will be a local homomorphism.

Next, we premalize Weierstrass construction: analytic cultinuation is a nulti-valued function, since it depends in the path is starting at a \in Y. In order to consider the space of all possible analytic extensions of $P \in U_a$, we'll work with the connected composited intaining P. This will give us a natural Riemann surface $Y \ni P + a$ local horizon $P: X \longrightarrow Y \qquad if <math>3 \in O_{2}$.

• Then, we get a <u>pull back</u> map of germs $f^*: \mathcal{O}_{X, K(x)} \rightarrow \mathcal{O}_{X, X}$ $f(\chi) = f_X(gof)$ if χ is represented around $y=f_{(X)}$ by $g \in Q_Y(V)$ with $y \in V$ open. (This is well-defined & an isomorphism because f is a local homeonweightism)

Recall, Grinn a pursheaf
$$\exists m X$$
, we have $f_{\pm}(\exists)(U) = \exists (f^{-1}(U)) \quad \forall U \subseteq Y$ open.
 $\Rightarrow f_{\pm}(\exists)$ is a pursheaf in Y .
This descends to a map m stalks $f_{\pm}: \exists_{X} \longrightarrow f_{\pm}(\exists)(f(x))$ where if $\exists \in \exists (V)$.

&
$$f_{(x)} \in V \text{ of } un$$
, then $f_{x}([s]) = [s]_{c}^{-1}(u)_{N}VJ$
In our case, we get the push-forward map $f_{x}: O_{X,x} \longrightarrow O_{Y}, f_{(Y)}$

Rimark: Since F is a local house, we get
$$f_{F} = (f^{-1}; O_{X,X} \longrightarrow U_{Y,L_{YY}})$$

Definiting: Fix Y a RS, a eY a PEOa. An analytic continuation of P
is a quadwaple (X, p, f, b) where:
(1) X is = RS a $p: X \longrightarrow Y$ is an unbranched holowerphic map
(2) F: Y \longrightarrow C is a holomognic function on Y.
(3) b is a pt in X with $f(t) = a + p_{X}(p_{b}(f)) = \Psi \in O_{a}$.
We say (X, p, f, b) is maximal (in unincutal) if it satisfies the following
property: "Given (Z, 9, 5, c) another analytic cat. there exists $F: Z \longrightarrow Y$ bets
satisfying $p_{0}F = q$ ("hile quantity") with $F(c) = b = f_{0}F = q$
 $Z \xrightarrow{F} Y$ $Z \xrightarrow{Z} Y$
 $S \xrightarrow{Q} F$
Lemmal: A maximal sublytic interaction of $\Psi \in O_{a}$ is unique up to is morphism
 S' Take two meta analytic interactions $(X, p, f, b) \in (Z, q, q, c)$
so $\exists F: Z \longrightarrow X \in G: X \longrightarrow Z$ is descriptions with $F(c) = b - G(b) = c \in Z$
 $Z \xrightarrow{F} X$ $Z \xrightarrow{G} X = Z \xrightarrow{F} X$ $Z \xrightarrow{G} X$
 $S \xrightarrow{Q} f f$
But then $G_{0}F: Z \longrightarrow Z$ satisfies $G_{0}F(b) = b$
 $S = G_{0}F = (d_{X}, b) = G_{0}F(b) = b$
Some reasoning gives $T_{0}G = id_{Y}$. We include that Fies a biolewaphism.
 $\Rightarrow, q = p_{0}F$ is uniquely attended

$$g = f_0 F$$

$$c = F(b)$$

Q: How to build a maximual analytic entimination?
A Use ennetted emp X of 101 containing
$$P \in O_{F,a}$$

Theorem: Given a RS Y & $P \in O_{F,a}$ for some $a \in Y$, the exists a mode
analytic entimination. Moreorer, it equals (X, P, F, P) , when
(1) X is the unnetted emp of 10x1 entaining $P \in O_{F,a}$ a
(2) $P = P_{1X}: X \longrightarrow Y$ if $Z \in O_{F,a}$.
(3) $F: X \longrightarrow C$ $F(Z) = P(P_{1}(Z))$

D

<u>Broof</u>: By anstruction, X is a RS & p is holomorphic. In addition, p(p) = aTo show that (X, p, F, P) is an analytic ant of P, it remains to chuch z things We do this in z separate chains.

3F/ Recall p is a local homeomorphism
$$p: \mathcal{N}(U,s) \xrightarrow{\sim} U$$
 for $U \in Y$ of a consistent $y \in X \implies \exists U \subseteq Y \And s \in \mathbb{O}_{F}(U)$ will $\exists \in \mathcal{N}(U,s)$.
9 ince $\exists \in X \implies \exists U \subseteq Y \And s \in \mathbb{O}_{F}(U)$ will $\exists \in \mathcal{N}(U,s)$.
• U is connected, so $\mathcal{N}(U,s)$ is also connected. Since X is the concompt \exists , we get
 $\exists \in \mathcal{N}(U,s) \subseteq X$
 $\implies f|_{\mathcal{N}(U,s)} = [s]_{\Im}(p([s]_{Y})) = s(y)$ $\forall y \in U$ ($[s]_{Y} \in \mathcal{O}_{T,Y})$
 $\implies \exists \in \mathcal{N}(U,s) = f = U$
 $\implies f : s holoworphic by definition.
 $p|_{U} = s holo$$

We chuck that It satisfies the equin characterization of ACu(4).

We use the global function $g: Z \longrightarrow C$ to build patches for $AC_u(U)$ along spens containing $u_{[0,1]}$. These patches will glue because g exists.

For each $t_0 \in [0, 1]$, write: $y_0 = u(t_0) = q_0 v(t_0) = q(z_0)$ bine $q_0 is a local homes$ $\exists z_0 \in U_0 \subseteq Z$ & $y_0 \subseteq V_0 \subseteq Y$ opens with $q_{|U_0|}$; $U_0 \xrightarrow{\sim} V_0$ homes. We write $h = q_0 (q_1)^{-1} : V_0 \longrightarrow C$, so $h \in O(V_0)$

Then $g = q^*(h) \in \mathcal{O}_2(\mathcal{V}_0)$ a we have $q_*(\mathcal{F}_2(g)) = \mathcal{F}_{q(2)}(h)$. $\forall \gamma \in \mathcal{V}_0$ Side open usual T of to in [0,1] with $v(\tau) \in \mathcal{V}_0$. For each teT we have $\mathcal{F}_{u}(t)(h) = \mathcal{F}_{qov}(t)(h) = q_*(\mathcal{F}_{v}(t)(g)) = \mathcal{P}_t$. (take $\gamma = u(t)$)

These guys glue together (as in the spirit of Weierstrass's definition) so we get that Ψ_{f} is the unique lifting of a rel to p with $\hat{u}(o) = \Psi$.

Cinclude
$$\hat{\alpha}_{(1)} = AC_{\mu}(\Psi)_{(1)} = \Psi_{\mu} = \Psi$$
.