Lecture X: Analytic continuation II & Elem symmetric functions <u>Recall.</u> Y Rs , 960a () given u: [o, 1] -> Y u(0)=a, we define ACu(4) (if it exists) as all where $\hat{u} \rightarrow |0| \rightarrow q$ $o \in [0,1)$ $\hat{u} \rightarrow Y \rightarrow q$ $\hat{u}(0) = q$ we can lift homotopies relative to p. Dependent of path unless Example : $f_{(z)} = \frac{1}{2} \frac{1}{2} = \left(1 - (1 - 2)\right)^{\frac{1}{2}} = \sum_{n=0}^{\infty} \frac{(1 - 2)^{n}}{2} \frac{1}{2} \left(\frac{1}{2} - 1\right) \cdots \left(\frac{1 - n + 1}{2}\right)^{\frac{1}{2}}$ F.C (Weinstrans) If we go around u, we get $-z^{1/2} = \hat{u}_{(1)}$ $ACu(z^{1/2}) = -z^{1/2}$. 2 101 is not connected =) • AC : quadruple (X, P, F, b) (1) X RS P: X -> Y unbranched holomorphic (2) f: X - (holo (3) $b \in X$, $p(b) = \alpha \leq p_*(p_b f) = \varphi$ $\left[\rho_{\star} \mathcal{O}_{\mathsf{X},\mathsf{x}} \longrightarrow \mathcal{O}_{\mathsf{Y},\mathsf{P}(\mathsf{x})} \quad \left[\mathsf{s} \right] \longmapsto \left[\mathsf{s} \circ \rho^{-1} \right] \quad \rho: \mathsf{U} \xrightarrow{\sim} \mathsf{V} \quad \mathsf{x} \in \mathsf{U}, \ \mathsf{P}(\mathsf{x}) \in \mathsf{V} \right]$ AC(9) => bath in X with starting pt 9 . MAC: for any other AC produple (Z, S, g, c) we have T: Z -> X hold with $Z \xrightarrow{F} X$ $Z \xrightarrow{F} X$ F(c) = b $S \xrightarrow{0} c p$ $S \xrightarrow{0} c f$ F(c) = b $\begin{cases} X = connected component of 101 containing <math>\varphi \\ P = PI_X & \text{if } P: 101 \longrightarrow Y & \text{if } Z \in O_Y \\ P = PI_X & \text{if } P: 101 \longrightarrow Y & \text{if } Z \in O_Y \\ P = PI_X & \text{if } P: 101 \longrightarrow Y & \text{if } Z \in O_Y \\ P = PI_X & \text{if } P: 101 \longrightarrow Y & \text{if } Z \in O_Y \\ P = PI_X & \text{if } P = PI_X & \text{if } Z \in O_Y \\ P = PI_X & \text{if } P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X \\ P = PI_X \\ P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X \\ P = PI_X & \text{if } P = PI_X \\ P =$ MAC & Gexist. ΤΗη Think: X = germs that can be obtained as analytic entirecations of P = collection of all paths is in X with $u(o) = a_1 elong which U can be analytically on t/$ $<math>(u \sim u')$ if $AC_u(U) = AC_{u'}(U)$ Kemark: By using 1761 - Y we can do AC of meronwephic germs. P will have branch points.

\$10.1 Examples:

2 JZ' We have $T = \mathbb{C}^{\times}$, a = 1 $\Psi = series expansion of Z''z mar 1$ $\Psi_{(z)} = z^{1/2} = (1 - (1 - 2))^{1/2} = \sum_{n=0}^{\infty} \frac{(1 - 2)^n \frac{1}{2} (\frac{1}{2} - 1) \cdots (\frac{1}{2} - n + 1)}{n!}$ We know $z^{1/2} = e^{\frac{1}{2} \log 2}$ so we can use Ac of log z around 1 to determine that of $z^{1/2}$. Need to build \overline{T} that makes these z diagram commute & X=Spinal <u>∓</u>, X' X= Spinal _____ X' log of the states The space X' of MAC(2,2); = built by further identifying points in odd, up. even floors (ie, by the parity of the second coordinate). This gives the map F., q(x) = T. (x) to XEX. Q: Alternative anstruction of X' that shows X' is a RS? A As a space $X' = \{(t, t^2) : t \in \mathbb{C}^{\times}\} = V(y^2 - x) \subseteq \mathbb{C}^{\times} \times \mathbb{C}^{\times}$. q : X' -> CX agrees with the second projection pr. C × C × ___ C × • $g: X' \longrightarrow \mathbb{C}^*$ _____ hist ____ $p_{r_1}: \mathbb{C}^* \times \mathbb{C}^* \longrightarrow \mathbb{C}^*$ b = (1,1) maps to 1 = a under q. Crollary: IF (X, P, F, 5) is an analytic ant of 400, then X is not compact SF/ F:X -> C is un-instant a holouwequic. But we cannot have this if X is compact by the Maximum Modulus Principle. I Remark: If we impactify, we'll obtain quadruples where p is a branched covering & F is a menomorphic function. The map f will be profer \$10.2. Analytec antimations and corenings. given Y RS, aEY, PEO, or build a maximal analytic cut (X, p, f, b) using X = cmn cmL g |0| untaining P, $p: |0| \longrightarrow Y$, $3 \in O_y \longrightarrow y$ $4= \Psi \notin f(\chi) = \mathcal{N}(p(\chi))$

∀γ∈X.

Here is the main result:

Theorem 1: Assume that $\Psi \in O_q$ admits an analytic criticities along every curve in Y which starts at a. Let (X, p, F, L) be the maximal analytic cut. of Ψ . Then, $p: X \longrightarrow Y$ is a covering map.

JF/ We know p is a local homeomorphism & Y is a connected manifold, so p is surjection To show p is a covering it is enough to check has the curre lifting property (Thurss.r.), because X is Hansdorff.

Given
$$X$$
 with $u(0) = c \in Y$ we know we have a path $w:[0,1] \rightarrow Y$
 $[0,1] \xrightarrow{u} Y$ joining a to c . Fix $c' = u(1)$

Bide $\Psi \in X$ with p(x) = c This means that $x = \Psi = AC_{V}(\Psi)(1)$ by construction for some path v joining a to c (tale $w: [0,1] \rightarrow X$, $w(0) = \emptyset \otimes w(1) = \Psi$. so $v = p_{0} \otimes works!$)

Thus, we unside the path $w = v \star u$. By hyp, this path yields a germ $Z \in O_{C}$, Na $Z = AC + \varphi$. But $v \star u = AC + (\varphi) = AC + (AC + (\varphi)(1))$, since $v \star u$ [0,1] is connected. This means : $\hat{u} = x i s t s = \hat{u}_{(t)} = AC + (\varphi)_{(t)}$. Theorem 2: Assume that $\varphi \in O_{A}$ admits an analytic continuation along every curve in Y which

starts at a. Let (X, p, F, b) be the maximal analytic cut. of G. Then,

 $(1) \exists ! F: \tilde{Y} \longrightarrow X \text{ local hooms with } F(\tilde{a}) = \Psi & \tilde{a} \in \tilde{Y} \underline{F}, X \Rightarrow b = \Psi \\ \tilde{a} = (a, (1a)) & \text{units} \quad \tilde{P} \downarrow \underline{U} P \text{ units} \\ \tilde{a} \in V \\ \tilde{b} \in V \\$

(e)
$$T_1(X,b) \simeq \text{Deck} (\tilde{Y} \xrightarrow{F} X) < \text{Deck} (\tilde{Y} | Y) \simeq \overline{T}_1(Y,a)$$

(3) $N(\Psi) = I Y \in T_1(Y,a) | NC_Y(\Psi) = \Psi \} < \overline{T}_1(Y,a)$ gives rise to
 $\tilde{Y} \xrightarrow{T} Y' = \tilde{Y}/N(\Psi)$ with $\Psi(\overline{\Psi}) = \tilde{P}(\overline{Z})$.

SF/ (1) fillows from Theorem 1 since p is a coreing & P: S→Y is the universal coreing (2) follows by Theorem 1 m \$7.18 a7.2.

(3) By construction $AC_{\gamma_1 \times \delta_2}(\Psi)_{(1)} = AC_{\gamma_2}(AC_{\gamma_1}(\Psi)_{(1)})_{(1)} \quad \forall \; \delta_1, \delta_2 \; convertible t$ can be concatenated. So if $\delta_1, \delta_2 \in N(\Psi)$, we get $\delta_1 \times \delta_2 \in N(\Psi)$. This says $N(\Psi)$ is a subgroup.

The galois anespendence gives X', TT & q. D

Natural question: Does $X' = \tilde{Y}/N(\varphi)$ wreapond to an analytic calimitation of a germ at a pt $y \in Y$? It so, X' would come with a natural non-constant holomorphic bunction $g: X' \longrightarrow \mathbb{C}$. This need not exist (eg, if X' is compact) We'll return to this in the future (constantion of RS via differential 1-born) Back to our examples from \$10.1:

I We know that log admits analytic internations along any path in \mathbb{C}^{\times} starting at i. Furthermore, the Spinal space $X = 2 \times 2/2$ is simply innected a p is a covering map but Thm s, so $X = \widetilde{Y} \xrightarrow{\log} Y$ is the universal covering of $Y = \mathbb{C}^{\times}$

(2) Similarly, $z^{\frac{1}{2}}$ admits enalytic out along any path in (* starting at 1. So, we have $\log_{0} z \in X$ $\xrightarrow{F} X' = AC(z^{\frac{1}{2}}) \ni Jz$ with $F(\log_{0} z) = Jz$ unit $\log_{0} \sqrt{2} \times \sqrt{\sqrt{1}}$ writing $\int_{0}^{\infty} E \times \sqrt{\sqrt{1}}$ writing $\int_{0}^{\infty} E \times \sqrt{\sqrt{1}}$ writing $\int_{0}^{\infty} E \times \sqrt{\sqrt{1}}$ $\int_{0}^{\infty} E \times \sqrt{\sqrt{1}}$

$$Q$$
: What happens if p is branched?
A: Everything works out in the same way!
 A : Everything works out in the same way!

Pick a point in V B, write ci's using
$$S_i$$
 m n variables
(=) If f can be entired holomorphically to all $a_1, \dots, a_m \implies$ The corresponding
fi's can be entired from V^* to $V^* \implies c_i$'s can be entired from Visisy
to b $(s_i(f_1, \dots, f_n))$ will be bounded in V-355).
Nower $c_i(b) = (-1)^2 s_i(f_1(b), \dots, f_n(b)), \dots, f_n(b)), \dots$

Remark. We don't need the endition that X is immeted. So we can take X = UX: Xi RS