Lecture X: Analytic continuation II \& Elem symmetucic Functines
Recall. Y Rs, $\varphi \in \bigoplus_{a}$
(1) Girm $u:[0,1] \rightarrow Y \quad u(0)=a$, werdefine $A C_{u}(\varphi)$ (if it exists) as $\hat{u}_{(1)}$ where

Dependent if path undess we can lift honotopies ulatere to $p$.
Example:
(Weinstions)


$$
f_{(z)}=z^{1 / 2}=(1-(1-z))^{1 / 2}=\sum_{n=0}^{\infty} \frac{(1-z)^{n}}{n!} \frac{1}{2}\left(\frac{1}{2}-1\right) \cdots\left(\frac{1}{2}-n+1\right)
$$

If we go around $u$, we get $-z^{1 / 2}=\hat{u}_{(1)}$ $A C_{u}\left(z^{1 / 2}\right)=-z^{1 / 2}$.
(2) 101 is not unected
$\Rightarrow$ •央: quadufle $(X, p, F, b)$
(1) $X$ RS $P: X \rightarrow Y$ unbrancted holomurphic
(2) $f: X \longrightarrow \mathbb{C}$ holo
(3) $b \in X, p(b)=a \& p_{*}\left(\rho_{b} f\right)=\varphi$
$A C(\varphi) \leftrightarrow$ path on $X$ with stateng $1+\varphi$

- MAC: fr any then $A C$ pradurple $(z, f, g, c)$ we hare $F: z \rightarrow X$ holo with $\quad \begin{aligned} & Z \underset{Y}{F} \times P\end{aligned}$

$$
\underset{\substack{\mathcal{G}<f} \underset{\underset{Y}{\mathcal{F}} \times}{\underset{\sim}{F}}, \quad F(c)=b}{ }
$$

THI MAC of $\varphi$ exist. $\left\{\begin{array}{l}X=\text { comnected compment of } 101 \text { containing } \varphi \\ P=P I_{x} \text { mith } r:|1| \longmapsto y \text { if } r \in O_{y} . \\ f: x \longrightarrow \mathbb{C} \quad F_{(\eta)}=x_{(y)} \text { if } \eta \in \theta_{y} \text { (This is espind } \\ b=\varphi\end{array}\right.$
Tlink: $X=$ gumes that can be obtained as avalytec continuations of $\varphi$

Remark: By wing $|\Omega| \xrightarrow{P} Y$ we can do $A C$ of mewnurphic geems. $P$ will have $\begin{aligned} & \text { branch points. }\end{aligned}$ branch pient.
\$10.1 Examples:
(1) $\log z:$


$$
\begin{aligned}
& Y=\mathbb{C}^{x}, a=1 \quad \varphi=\text { series } \operatorname{expn} \text { of } \log z \text { near } 1 . \\
& \varphi_{(z)}=\log (z)=\ln (1-(1-z))=-\sum_{k=0}^{\infty} \frac{(1-z)^{k}}{k!}
\end{aligned}
$$

Weclaim there exists a $m \times l$ andylec cont of $\varphi$.
We take a cut $U=\mathbb{C}, \mathbb{R}_{\leq 0} \quad\left(=\right.$ ant for standard $\begin{array}{r}\text { log) }\end{array}$

$$
\begin{aligned}
\Rightarrow & { }^{\prime \prime} \log _{10}^{\prime \prime}(z): u \longrightarrow \mathbb{C} \\
& \ln ||z|)+i \arg (z) \text { with } \quad \text { arg }(z) \in(-\pi, \pi)
\end{aligned}
$$

Similarly, we can define "薢": $U \longrightarrow \mathbb{C} \quad \log _{z}(z)=\log _{0}(z)+2 \pi i k$

- No, take a path loop $u$ hum 1 to 1 surrounding $0 . \Rightarrow A C_{u}: O_{1} \longrightarrow 0_{1}$

$$
\begin{aligned}
& \Rightarrow A C_{u}\left(\log _{k}(z)\right)=\log _{k+1}(z)
\end{aligned}
$$

$$
\begin{aligned}
& z \times \mathbb{Z} / \sim:{\underset{\sim}{n}}_{L_{+}}^{(x, k)} \sim \underset{L_{-}}{\left(\underset{L_{-}}{x}, k+1\right)} \\
& \text { - no relations army other pts }
\end{aligned}
$$



$$
\begin{aligned}
& (z, k) \xrightarrow{\log _{k} "} \mathbb{C} \\
& \alpha \in U \\
& r \in L_{+} \\
& r \in L_{-} \longmapsto \log _{0}(\alpha)+2 \pi i k
\end{aligned} \quad \text { yields } \quad \log _{k}(r, k)=\log _{k+1}(r, k+1)
$$

$\Rightarrow \log$ is defined $n X=Z \times Z / \sim$ as a single valued function $\log : X \longrightarrow \mathbb{C}$
The construction of $X$ ensures that we cannot build a loop in $X$ projecting
to a loop in $\mathbb{C}^{x}$ around 0 . This "usolses" the multivalue issue.
Well see later that $(X, P, \log , \overline{(1,0)})$ is the maximal analyser ont of $\varphi$ at 1 .

$$
\underset{\pi}{z \times \mathbb{Z}} \xrightarrow[x_{0} r_{p}]{r_{1}} \mathbb{C}^{x}
$$

(2) $\sqrt{z}$ We has $Y=\mathbb{C}^{*}, a=1 \quad \varphi=$ series expansion of $z^{1 / 2}$ mar 1

$$
\bar{\varphi}_{(z)}=z^{1 / 2}=(1-(1-z))^{1 / 2}=\sum_{n=0}^{\infty} \frac{(1-z)^{n}}{n!} \frac{1}{2}\left(\frac{1}{2}-1\right) \cdots\left(\frac{1}{2}-n+1\right)
$$

We know $z^{1 / 2}=e^{\frac{1}{2} \log z}$ so we can use Ac of $\log z$ around I to determine that of $z^{1 / 2}$. Need to build $F$ that makes these 2 diagram commute


The space $X^{\prime}$ \& $M A C\left(z_{1}^{1 / 2}\right):$ is built by further identifying points in odd, up. even floors (ie, by the parity of the second coordinate). This gives the map $F, q(\bar{x})=\pi,(x)$, fr $x \in X$. Q:Altenative construction of $x^{\prime}$ that shows $x^{\prime}$ is a RS?
A As a space $x^{\prime}=\left\{\left(t, t^{2}\right): t \in \mathbb{C}^{x}\right\}=V\left(y^{2}-x\right) \subseteq \mathbb{C}^{x} \times \mathbb{C}^{x}$

- $q: X^{\prime} \longrightarrow \mathbb{C}^{x}$ ares with the second projection $p_{2} \mathbb{C}^{x} \times \mathbb{C}^{x} \longrightarrow \mathbb{C}^{x}$
- $g: X^{\prime} \longrightarrow \mathbb{C}^{x}$ $\qquad$ fist $\qquad$ $P r_{1}: \mathbb{C}^{x} \times \mathbb{C}^{x} \longrightarrow \mathbb{C}^{x}$
- $b=(1,1)$ maps $T_{0} 1=a$ under $q$.

Colony: If $(X, P, F, b)$ is an cualytie cant of $\varphi \in \Theta_{a}$, then $X$ is not compact Sf/ $f: X \longrightarrow \mathbb{C}$ is un-constant \& holounglic. But we cannot hare this if $X$ is compact by the Maximum Modules Principle. I
Remark: If we compactify, we'll obtain quadruples where $p$ is a branched coseringe $f$ is a meeomoghic function. The map $f$ will be proper
\$10.2. Analytic continuations and coverings:
Given $Y$ RS, $a \in Y, \quad \varphi \in O_{a}$ we build a maximal analytic cut $(X, p, f, b)$ $\begin{aligned} & \text { using } X=\text { conn comb of }|0| \text { curtaining } \varphi, p:|0| \longrightarrow Y, b=\varphi \& f(\eta)=n(p(\eta)) \\ & \forall \in \emptyset_{y} \longrightarrow y \\ & \forall r \in X .\end{aligned}$

Hen is the main result:
Theorem 1: Assume that $\varphi \in Q_{a}$ admits an analytic contimenation along every curse in $Y$ which starts at a. Let $(X, p, F, b)$ be the maximal analytic curt. of $\varphi$. Then, $p: X \longrightarrow Y$ is a covering map.
Pf/ We know $p$ is a leal homeomorphism \& $Y$ is a competed manibld, so $p$ is sujectien To show $p$ is a careening it is enough to duck has the use lifting property (Then Is 5.2 ), because $X$ is Hausdorff.
given

Pick $\Psi \in X$ with $p(x)=c$ This mans that $x=\psi=A C_{v}(\varphi)(1)$ by construction fr some path $v$ joining a $T_{\sigma} c \quad(\tan \omega:[0,1] \rightarrow X, \omega(0)=\varphi \& \omega(1)=\psi$. so $v=$ po $\omega$ wok k!)


Then, we consider the path $w=v * u$. By hyp, this path yields a geum $\eta \in \mathcal{O}_{C^{\prime}}$, ria $\left.\eta=A C_{v * u} \varphi \cdot B_{v a t} \hat{v u}_{(1)}=A C_{v * u}(\varphi)_{(1)}=A C_{u}\left(A C_{v}(\varphi)_{(1)}\right)\right)_{(1)}^{\sin \varphi}$ $[0,1]$ is connected This mans: $\hat{u}$ exists $\& \hat{u}_{(t)}=A C_{u}(\psi)_{(t)}$.
Theorem 2: Assume that $\varphi \in O_{a}$ admits an analytic continueation along every curse in $Y$ which starts at a. Let $(X, p, F, b)$ be the maximal analytic cut of $\varphi$. Then,
(1) $\exists!F: \tilde{Y} \rightarrow X$ brat homo with $F(\tilde{a})=\varphi$ \& $\tilde{a}=(a,(1 a))$

(2) $\pi_{1}(X, b) \simeq \operatorname{Deck}(\tilde{Y} \xrightarrow{F} X)<\operatorname{Deck}(\tilde{Y} \mid Y) \simeq \pi_{1}(Y, a)$
(3) $N(\varphi)=\left\{\gamma \in \pi_{1}(Y, a) \mid \quad \Lambda C_{\gamma}(\varphi)=\varphi\right\}<\pi_{1}(Y, a)$ gires rise to $\tilde{Y} \xrightarrow{\pi} X^{\prime}=\tilde{Y} / N(\varphi)$
$\tilde{p} \nu_{Y} q$ arking with $\rho(\bar{z})=\tilde{P}(z)$.
PF/ (1) follows fum Thesem 1 simce $p$ is a coreeing $z \tilde{P}: \tilde{Y} \longrightarrow Y$ is the unisecsal coreing
(2) fellows by Thurean $1 \mathrm{~m} \$ 7.1847 .2$.
(3) By construction $A C_{\gamma_{1} * \gamma_{2}^{-}}(\varphi)_{(1)}=A C_{\gamma_{2}^{-}}\left(A C_{\gamma_{1}}(\varphi)_{(1)}\right)(1) \quad \forall \gamma_{1}, \gamma_{2}$ cunerst het can be cuncatenated. Se if $\gamma_{1}, \gamma_{2} \in N(\varphi)$, we get $\gamma_{1} * \gamma_{2}^{-} \in N(\varphi)$. This says $N(\varphi)$ is a subgoup.
The Gabis comespndence gires $X^{\prime}, \pi \& q$. I
Natural question: Dres $x^{\prime}=\tilde{Y} / N(\varphi)$ wrexpend $\bar{T}$ an analytie continuration of a germ at a $p t y \in Y$ ? If so, $X^{\prime}$ would cone with a nateral mon-censtant holomorphic bunction $: X^{\prime} \longrightarrow \mathbb{C}$. This need not exist ( eg, if $X^{\prime}$ is cmpact) We'll retern to this in the fustere (constanction of RS via differential 1-Corm)
Bacle to our examiples from 310,1 :
(1) We know that $\log$ admits analegtic certinnations along any path in $\mathbb{C}^{x}$ stanting at 1. Fenthermare, the spinal space $X=Z \times \mathbb{Z} / \sim$ is simply cannected \& $p$ is a corering map but Thun 1, so $X=\tilde{Y} \xrightarrow{\log } Y$ is the unisecsal corening of $Y=\mathbb{C}^{*}$
(2) Similarly, $z^{1 / 2}$ admits cualytic ent almy any path in $\mathbb{C}^{*}$ stanting at 1. So, we hase $\log _{0} z \in X \xrightarrow[\ddots]{F} X^{\prime}=A C\left(z^{1 / 2}\right) \ni \sqrt{z}$ with $F\left(\log _{0} z\right)=\sqrt{z}$

By constuction, $F(\overline{(x, k}))=\overline{(x, \bar{k} \bmod z)}$ in $Z \times\{0,1\} / \sim$
$N(\varphi)=2 \mathbb{Z}$ (parity of winning memble of $\varphi$ arsundo)
$\Delta$
$z=\pi_{1}\left(\mathbb{C}^{x}, 1\right) \simeq \operatorname{Deck}(x \mid y)$

$$
\begin{gathered}
\left.\Rightarrow \operatorname{Deck}\left(X \xrightarrow{F} X^{\prime}\right)=\mathbb{Z}_{2} \simeq \operatorname{Deck}(X \mid Y) / N \mid \varphi\right) \\
\simeq \pi_{1}\left(X^{\prime}, \sqrt{Z}\right) \quad \text { Sh Stume Rabivis }
\end{gathered}
$$

$\simeq \pi_{1}\left(x^{\prime}, \sqrt{z}\right)$ by stuong galois conespmdence (HW3).

Nextgoal: Build Riemamn Sunfaces for algebraic germs ( = germs satisfying a prlysumial equation) is $\quad \varphi=z^{1 / 2}$ solses $T^{2}-z=0$ in $\mathbb{Q}_{[z][T]}$.

- Show a galois corespindence: $\mathbb{G}(Y) \xrightarrow{p^{*}} \sqrt{G}(X) \Longleftrightarrow X \xrightarrow{P} Y$ branded
\$10.3 Elementary symmetric functions
Setteng: $X \xrightarrow{P} Y$ n-shected, unbranched, holomorphic corering map between RS. $f \in \mathscr{C}(x)$ mecomorphic functin.
- Gurn $y \in Y$, pick $y \in V \leq Y$ ofer \& $\left.3 U_{1}, \ldots, U_{n}\right\}$ ofens with (1) $p^{-1}(v)=L_{i=1}^{n} v_{i}$
(2) Pluvi $: U_{i} \xrightarrow{\sim} V$ homos Write $q_{i}=\left(P / U_{i}\right)^{-1}: V \longrightarrow U_{i}$

Then $f_{i}=f_{0 g_{i}}: V \longrightarrow \mathbb{C}$ is meumorphic

- Fix $T$ indetermimate, \& write $\prod_{i=1}^{n}\left(T-f_{i}\right)=T^{n}+c_{1} T^{n-1}+\cdots+c_{n}$ where $c_{i} \in \Omega(V)$
Lemma 1: $c_{i}=(-1)^{i} s_{i}\left(f_{1}, \ldots, f_{n}\right)$ where $s_{i}=i^{\text {th }}$ den symun fuc on $n$ vous $\left(s_{i}(\underline{x}):=\sum_{i \leq j_{j}<j_{j i} \leqslant n} x_{j i} \cdots x_{j i}\right)$
Lemma 2: The constreection is independent in the choice of $y \in Y$ in the nbldV (ie functives will apee on the recelaps \& labelling of $U_{i}^{\prime}$ 's is inelevant)
$\Rightarrow$ They glue to functions $c_{1}, \ldots, c_{n} \in \mathscr{V}(Y)$
Det : We call $c_{1}, \ldots, c_{n}$ the "elementacy symmutic functions of $f$ wrt the coreieng $p$ ".

Q: What happens if $P$ is branched?
branched ( $\Rightarrow$ proser)
A: Everything works rut in the same way!
Theorem 1: Fix X,Y RS \& $P: X \longrightarrow Y$ a proper men constant hole map of degree $n$
Fix $B \subseteq Y$ cased discecte set containing all critical values of $P, \&$ write $A:=P^{-1}(B) \quad$ (dosed $\&$ discrete, contains all branch points of $P$ )
Fix $f \in\left(O(X \backslash A)\right.$ \& let $c_{1}, \ldots, c_{n} \in O(Y \backslash B)$ be the clem symm function of $f$ writ $p$. FixbeB. Then, f can be continued to $X$ wolmorphically, esp mesourphically, to $p^{-1}(b)$ if, and $m l y$ if, all $c_{1}, \ldots, c_{n}$ can be cant nolo, neap mess to $b$.
Pf/ Idea: $B$ is closed s discrete, so we con connect points in $Y$ along paths in $Y^{\prime} \backslash B$. The concspinding $c$ 's will match.

- We fix $b \in B$ \& $P^{-1}(b)=\left\{{\underset{\nu}{1}}^{a_{1}, \cdots, a_{2}} \mathcal{\nu}_{m}\right\} \quad m \leqslant n \quad$ with $\sum_{i=1}^{m} \nu\left(a_{i}, p\right)=n$ Since $Y$ is locally compact \& $B$ is discrete, we can find $(V, Y)$ word ubhdo/b with $\varphi: V \underset{b}{\sim} \underset{\longrightarrow}{\longrightarrow} \mathbb{D}, \bar{V}$ compact \& $V \cap B=3 b\}$. Write $\left.V^{*}=V, 36\right\}$
Then $U=p^{-1}(V)$ is a melotirely compact nblhd of each $a_{1}, \ldots, a_{m}$. Write $U^{*}=U \backslash p^{-1}(b)=U,\left\{a, \ldots, a_{m}\right\}$
- We do the holomorphic a menourphic cases separately:
(1) Holomorphic Case:

Pick a point in $V \backslash B$, write $c_{i}$ 's using $S_{i}$ in $n$ variables
$\Leftrightarrow$ If $f$ can te continued holouirphically $T_{0}$ all $a_{1}, \ldots, a_{m} \Rightarrow$ The corresponding $f$ i's can be continued fum $V^{*}$ to $V \Rightarrow c_{i}$ 's can be untinged fume $\left.V \leq i b\right\}$ to $b$ ( $s_{i}\left(f_{1}, \ldots, f_{n}\right)$ will be bended $\left.n V-3 b y\right)$.
Mover $c_{i}(b)=(-1)^{i} s_{i}(\underbrace{f_{1}(b), \ldots, l_{\nu}(b)}_{\nu_{1}}, \cdots \cdots, \underbrace{f_{n+r_{m}}(b), \ldots, f_{n}(b)}_{\nu_{m}})$.
(F) Consusely, if all $c_{i}$ 's can be continued holomorphically $T_{0} b$ then all $c_{i}$ 's ans branded on $V\{i b\}$. Thun: all $c_{1}(f(x)), \cdots, c_{n}\left(l_{(x)}\right)$ are bended in $U^{*}$

Using the identity:

$$
f_{(x)}^{n}+c_{1(p(x)} f_{(x)}^{n-1}+\cdots+c_{n(p(x))}=0
$$

on U*, we set that (*)
$G$ is also brunded in $U^{*}$. By Remorble sing Thun, f cam be extended holmurphically To $\left.\} a_{1}, \ldots, a_{n}\right\}=p^{-1}(b)$.
(2) Mewmorphic Case:

We proved in a similar lashio, but now we need to multiply $f$, map $c_{1} \ldots, c_{n}$ by appropriate unumials \& check boundedness m $U^{k}$, resp $V^{k}$.
. For $V^{*}$ use the local coordinate $z m \mathbb{D} \simeq V$

- For each comp $f U^{*}$ use $\varphi=P_{l_{v_{i}}^{*}}(z) \in O_{\left(U_{i}\right)}$ vanishes at $a_{j} \in \overline{U_{i}}$. Write $\varphi=p^{*}(z)$, so $\varphi$ vanishes on $p^{-1}(b)$.
$\Leftrightarrow$ Assume $p^{k} f$ can be continued holomorptically to $a_{1}, \ldots, a_{m}$ Then, our holomorphic calculation says $z^{k i} c_{i}$ can be continued hohmorphically $T_{0} b$. So $c_{i}$ can be continued mecomorphically to $b$ $(\Leftarrow)$ Fr each $i$ we have $k_{i} \geqslant 0$ such that $z^{k_{i}} c_{i}$ con be cont'd holomorphically $T_{0} b$. Take $k:=\max \left\{k_{1}, \ldots, k_{m}\right\} \Rightarrow z^{k i} c_{i} \in(1)$ Multiplying the identity ( $*$ ) by $\varphi^{k n}$ we see that:

$$
0=\varphi^{k n}(*)=\left(\varphi^{k} f\right)^{n}+\left(\varphi^{k}\left(c_{1}, p\right)\right)\left(\varphi^{k} f\right)^{n-1}+\cdots+\varphi^{k n}(c, o p) \operatorname{si} \theta_{\left(U^{*}\right)}
$$

Here $\varphi^{k i}\left(c_{i} \circ p\right)_{(x)}=p^{*}\left(z^{k i} c_{i}\right)$, so it is bounded in $O\left(U^{*}\right)$ By the holomorphic case, $\varphi^{k} f$ can be extended holumerphically to $U$. So $f$ con be extended meromorphically to $U$.

Remark. We don't need the condition that $X$ is mancted. So ce can take $X=U X_{i} X_{i}$ Rs

