Last time: 1) p: X -> Y unbranched profer hold map of degree n

$$f \in \mathcal{B}(X) \mod C_1 \cdots C_n \in \mathcal{B}(Y) \quad \dim syme tention of f$$

$$O_h \lor g_h \lor consider \downarrow_{(1)}^{(1)}, \quad \text{set} \quad F_1 = f \circ q_1 \quad \text{set} \quad q_1^{(2)} = (q_1)_1^{-1} \quad \text{as} \quad c_1 = (-1)^3 \quad s_1(f_1 \cdots f_n)$$

$$(F \quad satisfies \quad F^n + p^n c_1 \quad f^{n-1} + \cdots + p^n c_n = 0.)$$

$$(O \quad If \quad p_1: X \longrightarrow Y \quad is a proper hole map of here in a GSY is clear distrute.
antaining the cut values of p , set $A := p^{-1}(B)$. Pick $f \in O(X \setminus A)$ is unit.
 $C_1, \ldots, C_n \in O(Y_1)$ is a proper hole map of here in a GSY is clear distrute.
F estands helenophically to $p^{-1}(L) \iff C_1 \cdots C_n$ on tool holemorphically. The
(mecomorphically) to $p^{-1}(L) \iff C_1 \cdots C_n$ on tool holemorphically. The
(mecomorphically) $(P_1(V)) = P_1(V)$
TODAY: Builda RS X, a poper hole map $p: X \to Y \in F \in \mathcal{B}(X)$ algebraic order
 $p^n \mathcal{B}(Y) \subseteq \mathcal{B}(X)$
Sith Branched corning and full extensions:
Recall: $X = P \to Y$ proper non-const holemorphic map of here in a $P_1(V)$ is construction.
The get $p^n: \mathcal{B}(V) \longrightarrow \mathcal{B}(P_1(U))$ for $U \subseteq Y$ of $(S \circ p)$ is mean applied Y and $f(U)$ is construction.
The get $p^n: \mathcal{B}(Y) \longrightarrow \mathcal{B}(X)$ map of using \mathcal{B} both $\mathcal{B}(X)$ a $\mathcal{H}(Y)$ are $\mathcal{H}(U)$ is construction.
We get $p^n: \mathcal{B}(Y) \longrightarrow \mathcal{B}(X)$ map of using \mathcal{B} both $\mathcal{B}(X)$ a $\mathcal{H}(Y)$ are $\mathcal{H}(U)$ by construction.
 $\mathcal{F}^n + (p^n c_1)f^{n-1} + \cdots + (p^n c_n) = 0$ (see)
 $\mathcal{B}(X)$. The momentary symmetric functions of F and to p , we have, $f^n + (p^n c_1)f^{n-1} + \cdots + (p^n c_n) = 0$ (see)
The momentary symmetric functions of F and to p , we have, $f^n + (p^n c_1)f^{n-1} + \cdots + (p^n c_n) = 0$ (see)
 $\mathcal{B}(X)$ and $\mathcal{B}(X)$ is an algebraic field enters of digent $\mathcal{B}(X)$.$$

st
$$f(x_i) \neq f(x_j) \forall i \neq j$$
, then $[Jb(x) : Jb(y)] = n$.
Remark: We'll see later that the pair (F,g) always exists.
Snoof. The identity (***) follows from the definition of $c_1 \dots c_n \in Ib(x \setminus p')$ (witholes)
. Write L:= $Ib(x)$, $K = p^{\pm} Jb(y) \subset L$. By construction, we
see that min (F,K) has degree $\leq n$ for any $F \in L$, so $L|K$ is
algebraic.
. Pick no $\& F \in L$ where $n_0 = [K(F) : K]$ maximual.
Pick any $F \in L$ & fix $L' = K(F_0, F) \in L$. Then $[L':K_j < \infty \notin K_j]$
by the Primitive Element Theorem we can find $g \in L' \leq L$ with $L' = K(g)$
 $(C \leq K)$

Thus
$$LK(g): K] = [K(g): K(F_0)] [K(F_0): K]$$
, so by maximulity of n_0
 $[K(g): K(F_0)] = 1$ is $f \in K(F_0)$.

Conclude:
$$L = K(F_0) \ll [L:K] = n = n$$

Finally, if $n_0 < n$, then $\min_{(x_0)} \min_{(F,K)} = f_{+}^{n_0} p(\alpha'_{,}) f_{-}^{n_0} + \cdots + p(\alpha'_{,n}) = 0$
 \ll when evaluated at $x \in p^{-1}(y)$ $f_{(x_0)}$ can have at most no values (solutio (x_0))
indicated in y
This intradicts the hypothesis in the pair (F, y).

<u>Next goal</u>: Build Riemann surfaces & branched concings of Y from $Q \in Jb(Y)[T]$ Theorem 1: Fix Y a RS & $Q = T^n + c_1 T^{n-1} + \dots + c_n \in Jb(Y)[T]$. Assume that Q is irreducible. Then \exists a Triple (X, p, F) where: (1) X is a RS

(2) p: X -> r is a proper un-const holmorphic map of degree n ["n-sheeted branched covering") (3) $f \in \mathcal{J}(X)$ with $(\underbrace{p^*Q}_{\in \mathfrak{f}^*\mathcal{J}(Y)}(F) = 0$. $\in \mathfrak{f}^*\mathcal{J}(Y)[T] \subseteq \mathcal{J}(Y)[T]$ satisfying the following universal property: If (Z, q, g) is another such triple, Definition: (X, P, F) is called the "algebraic function" defined by Q. Main example: $Y = \mathbb{P}'$, so $\mathcal{T}_{0}(Y) = \mathbb{C}_{(y)} \Rightarrow P: X \longrightarrow \mathbb{P}'$ is proper (branched holmorphic covering with finite fibers), so X is also compact. <u>I dea</u>: Build X'<u>P</u>, Y'holomorphic comme fell(X'), for Y'= Y B B dosed & discute & then "fill the holes" in X'&Y' to set X <u>P</u>, Y deg n profer holomorphic map & FEJE(X). We'll use our classification of unbranched projer corrings of D* (see § 8.1) Next, we write the key lemma that allows us to restrict to unbranched puper holo maps. (ie "how to Fill holes") Key Lemma, Fix YRS, BEY doud a discute set a set Y'= Y-B Assume we are given p': X' -> Y' profer unbranched holomorphic covering. They p'extends to a branched projer holmorphic covering of Y, ie we have (1) a RS X (2) a projer holmosphic map p: X -> Y (3) a biholomorphism $X \sim p'(B) \xrightarrow{F} X'$ with $p' \circ F = p|_{X \sim p'(B)}$ $\frac{\text{Broof: Locally Y'=10^{*}, i(0) \xrightarrow{P'} D^{*} \text{ proper correspondence (a) sheeted) even the to extend be is)}{(a) x and be is)} = X' Us finitely many pts f$ Issue: p'(D*) will be disconnected, but it will have finitely many connected components. Adding one of to each component will make each homeomorphic to D.

. These "filled" consisted comparato will have charts compatible with those in X'
(because while classified projections maps to D, interested
we possible in The 2 883) 2 the filling pt will
$$X'_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1$$

 $\frac{Obs}{Obs}: \Delta \text{ can be computed as } \Delta = (-1)^{\frac{m(m-1)}{2}} \operatorname{Res}_{T}(Q, Q') = (-1)^{\frac{m(m-1)}{2}} \prod_{1 \leq i \leq j \leq m} (r_{i} - r_{j})^{2}$ if $Q = \prod_{i=1}^{m} (T - r_{i})$ is the factorization over $\overline{\mathcal{T}_{G}(Y)}$. • Consider $\mathbf{B} := \{j \in Y : \Delta_{(j)} = o \} \cup \bigcup_{i=1}^{n} \{j \in Y : j \in \mathbb{Z} | j \in \mathcal{F} \}$ By construction, B is closed a discute a for $Y' = Y \cdot B$ we have (i) $c_{i|_{Y}} \in \mathcal{O}(\gamma')$ $\forall i = 1, ..., n$ (2) $\Delta_{(y)} \neq o$ $\forall y \in \Upsilon'$ ($\Delta \in \mathcal{O}(\Upsilon')$ since $\Delta \in \mathbb{Z}[c_1, ..., c_n]$) <u>Ulaim</u>: Q_(T) EQ_(T) has a distinct root in C (fun the def of DaY) STEPZ: We build X' a RS& p': X' >> Y' n-sheeted (unbranched) hold covering We construct X' using 101 & then noots of each Qy(T). $\underline{\text{Claim 2}}: X' := 3 \underline{\gamma} = [y, \underline{\gamma}] \quad \forall y \in Y', \ \underline{\gamma} \in \mathcal{O}_{y} \notin Q_{y}(\underline{\gamma}) = 0 \}$ (Here we ria Qy(T) E Oy[T] & we need to find solutions to Qy(T) = 0. We'll see this can be done in Lemma 1 & brollary 1 below) . Set $\varrho': X' \longrightarrow Y'$ 2 ~ y if zeloy Claim 3: p' is an n-sheeted unbranched covering (see Lemma 2 below) STEP 3 : Assume X' is unmethed & build X RS & p: X -> Y extending p': X' ~> Y' using Key Lemma \$105. p is n-sheeted branched projer hold map. STEP4: Build $F \in \mathcal{J}_{0}(X)$ with $(P^{*}(Q))(F) = 0$ *€Љ(*()[] First define $F: X' \longrightarrow \mathbb{C}$ with $F(\mathcal{P}) = \mathcal{P}(p'(\mathcal{P})) = \mathcal{P}(g)$ Claim 4: h is holimorphic

St/ given
$$p \in X'$$
 (convected), find $U \leq Y'$ of a $e \leq 0(0)$ with $p \in M(U_S) \leq X'$
 $(\gamma \in U_S)$
Then $f \mid M(U_S) = s \circ p'_M(u_S)$ is holomorphic \Box
• Take $|P'|S_{(T)} = T^n + (|P'|)_{C_1}^n + \cdots + (|P'|)_{C_n}^n$
 $= T^n + c_1 \circ t'_{(S)} T^{n-1} + \cdots + c_1 \circ p'_{(X)} \in J_0(X')[T]$
Uain 5: $(P)^{N}Q(F) = 0$ (chan from the def of X' and F)
Uain 6: F extends uniquely To $F \in J_0(X) \notin P^*Q(F) = 0$
 $3F/$ We know $C_1 \circ p' f$ extend meanscriptically To $S c_1 \circ p f$, so by
Thorean 1 stas. F exitinds uniquely To $F \in J_0(X)$ $\# P^*Q(F) = 0$
STEP 5: Show that X' is connected
Assume the costeary and costs with the finitely many connected $conf g X'$,
say X'_1, \dots, X'_S with $S \in n$ (because $g' = n - shelled)$.
We can refeat STEPS $3ef$ for each $X'_{(-1)} = 1, \dots, s \in Find$
 $\begin{cases} \cdot X_1 \stackrel{P}{\longrightarrow} Y$ bounded consing with n_1 -shelts extending $g'_{X'_1} \times X'_1 \rightarrow T'_1$
 $\cdot f_1 \in J_0(X_1)$ with $(P_1^*Q)(F_1) = 0$
Here, $\sum_{i=1}^{n} n_i = n$ by extinction.
Using the elementary symmetric hunctions of F_1 is can build $Q_1 \in J_0(Y)[T]$
of degree n_1 satisfying
 $Q(T) = Q_1(T) Q_2(T) \cdots Q_S(T)$
(because (RHS) $1Q_1(T)$ eistraic of degree n)
This contradicts the assamption that Q_1 is invalued by each $s = 1(-2X') s configure$

To implete the passof of Theorem 1 we need some technical results to settle Claims 2

and 3. L'emma 1 & Worldary 1 below are used for Claim 2, whereas Lemma 2 confirm Claim 3.

The first limit a says we can find a gern solving a polynomial in $O_y[T]$ if we can solve the polynomial in O[T] obtained by evaluating at y using a simple root. Lemma 1: Fix $C_1, \ldots, C_n \in O(D_R(0))$ with $D_R(0) = 3 \ge 121CR$ & assume

$$Q_{0}(T) = T^{n} + C_{1}(0) T^{n-1} + \cdots + C_{n}(0) \in \mathbb{C}[T]$$

has a simple not, say up. Then, $\exists c$ with $0 < c < R \leq ! \varphi \in O(D_{\Gamma}(0))$ with $\varphi(o) = wo \geq Q(\varphi) := \varphi^{n} + c_{1} \varphi^{n-1} + \cdots + c_{n} = 0$ in $O(D_{\Gamma}(0))[T]$ $(=) P_{0}(\varphi)$ solves $P_{0}(\varphi)[T] = 0$ in $O_{D_{E}(0),0}$ <u>Proof</u>. We consider $w \in C \leq z \in D_{R}(0) \geq the polynomial$

$$F(z,\omega) := \omega^{n} + c_{1}(z) \omega^{n-1} + \dots + c_{n}(z).$$

Since $F(o, \omega_{0}) = o$ & ω_{0} is a simple noot of $F(o, \omega)$ we can find $E > 0$
such that $F(o, \underline{\omega})$ has maly a grow in $\overline{D_{E}(\omega_{0})} = \frac{1}{2}\omega : |\omega - \omega_{0}| \le \varepsilon_{0}\frac{1}{2}$
(the gross of $F(o, \underline{\omega})$ are discrete)
By intermulty of F a compactness of $\frac{1}{2}|\omega - \omega_{0}| = \varepsilon_{1}^{2}\frac{1}{2}$ order so the gross on:
 (z, ω) : $z \in D_{\Gamma}(o)$ a $|\omega - \omega_{0}| = \varepsilon_{1}^{2}$

We will build I by Residue type Formula, using the circumference C= 31w-wster

First, we define
$$Z: D_{r}(0) \longrightarrow C$$
 as

$$Z_{(z)} = \frac{1}{2\pi i} \oint \frac{\partial_{w} F_{(z,w)}}{F_{(z,w)}} dw = \# of such of F(z,T) in |T-w_{0}| < E$$
Reason: if $P(z) = \prod_{i=1}^{n} (z_{i})^{n} = \sum_{i=1}^{n} \frac{P'(z)}{F(z,w)} = \sum_{i=1}^{n} \frac{P'(z)}{P(z)} dz = \sum_{i=1}^{n} \frac{P'(z)}{P(z)} dz$

$$\frac{1}{P(H)} = \frac{1}{j} = \frac{1}{P(H)} = \frac{1}{j} = \frac{1}{P(H)} = \frac{1}{j} = \frac{1}{2} = \frac{1}{$$

We define
$$\Psi: D(q,r) \longrightarrow C$$
 via $\Psi(q) := \frac{1}{2\pi i} \oint_{C} w \frac{\partial w F(q,w)}{F(q,w)} dw$
(taim $\Psi(q) = the value wold the unique gas of $F(q,w)$ fr $w \in D_{g}(w_{0})$.
 $3F/$ IF $P(q) = \prod_{j=1}^{n} (1-d_{j})^{n,j} \Rightarrow \frac{1}{2\pi i} \oint_{C} \frac{tP(d_{j})}{P(q)} t = \int_{j=1}^{n} r_{j} d_{j}$
But since $\mathcal{D}(q) = 1$, we know $F(q,w)$ ruly has rapps in $D_{\mathcal{C}}(w_{0})$, so
 $P(q) = w_{0}$ by instantian
 $P(q) = w_{0}$ by $(q) = m_{0}$ by $(q) = m_{0}$ by $(q) = m_{0}$
 $P(q) = w_{0}$ by $(q) = m_{0}$ by $(q) = m_{0}$ by $(q) = m_{0}$
 $P(q) = w_{0}$ by $(q) = m_{0}$ by $(q$$

)