Lecture XII: Algebraic functions II <u>Recall</u> $p: X \longrightarrow Y$ proper hold dig $n \Rightarrow [Jb(X): p^*Jb(Y)] \leq n = if \exists f \in Jb(X)$ eyer with n relues on $p^{-1}(s)$ Thusem1: Fix $Y \cap RS \land Q = T^n + C, T^{n-1} + \cdots + C_n \in \mathcal{J}(Y)[T]$ Assume that Q is ineducible. Then J a Triple (X,p,F) where: (1) X is a RS (2) p: X -> Y is a proper un-const holomorphic map of degree n ("n-sheeted branched covering") (3) $f \in \mathcal{J}(X)$ with $(\underbrace{p^*Q}_{F^*})(F) = 0$. $\in \mathcal{V}_{\mathcal{K}}(Y)[T] \subseteq \mathcal{V}(X)[T]$ satisfying the following universal property: If (Z, q, g) is another such triple, <u>Last time</u>: we proved existence by first anxiding discriminant of Q & poles of c: $\begin{pmatrix} x' \leq 10l \\ U' \end{pmatrix}$ I dea: Pick B = 2 2000 of discriminant of Q& U Ü 3 poles of cit so on Y'= Y ~ B : (1) Q(T,y) has simple roots in C for each y EY' (2) $c_i \in O(Y') \quad \forall i = \dots, n$ - Build $X' \subseteq |O_{Y'}|$ wa $X' = 3(y, z): j \in Y', z \in P_{Y,y} \leq p_{q}(z) = 0$ (*) $(g_{y}Q = T^{n} + g_{y}(c_{1}) T^{n-1} + \dots + g_{y}(c_{n}) \in O_{Y', y}[T].)$ • $X' \xrightarrow{P} Y'$ P(Z) = y n-sheeted covering (Uaim) $X' \xrightarrow{F} \mathbb{C} \qquad f(\mathcal{Z}) = \mathcal{Z}(\mathcal{Y}) = \mathcal{X}(\mathcal{I}(\mathcal{Z})) \qquad (f \in \mathcal{O}(X')) = \mathfrak{I}(\mathcal{P}^{*} \mathbb{Q}) = 0.$ Assuming X' is connected we can extend pto X => Y & show (if follows because gisimed.) X' -> Y' p is hold, profer of hegreen (K) . I will extend to X menumerphically since C1... Co are the elem sym

functions of F a Y' & the extend memorphically to Y => features to Ub(X).
For (K): Show
$$p_{1,x}$$
 is a concing with a sheets & and key lemma $\$11.2$ to st
() Given $y \in Y'$, let $sw_1 \dots w_n$ is be the a noots of $p_3Q(T, y) \in C[T]$.
 ms Build $p_1 \dots, p_n \in O_{Y',y}$ with $p_3Q(p_1) = 0$ to $!= \cdots n$
 $p_1(y_1) = w_1$
 \Rightarrow Lift to $s_1 \dots, s_n \in O_1(y)$ by U >y often $\tilde{w}_1 Y'$. so $Q(s_1, y) = 0$ to is
 $p_1^{-1}(U) = \bigcup_{i=1}^{W} N(U, s_i) \subseteq X'$ & we know $p_{1,x}(v_1, s_1) \rightarrow U$ is
 $p_{2i}(s_1) \neq p_{3i}(s_2)$ to $y' \in U$ by the identity then. ($p_{3}(s_1) = p_{1i}(y_1) \rightarrow U$ is
 $p_{3i}(s_1) \neq p_{3i}(s_2)$ to $y' \in U$ by the identity then. ($p_{3}(s_1) = p_{1i}(y_1 - p_{1i}(y_1))$
 \Rightarrow The key lemma from Lectical II ($\$$ U.2 says extension $p_{1,x} \rightarrow Y$ is poper, holds
 $p_{1i}(w_1 - y_1) = T^n + c_{1i}(x_2) T^{n-1} + \cdots + c_{ni}(x_1) \in C[T]$
has a simple noot, say we. Then, $\exists r$ with $0 < r < R < ! $Y \in O(b_{p_1}(x_2))$
with $P(x_2) = w_2 = Q(p_1) = Q^n + c_1 Q^{n-1} + \cdots + c_n = 0$ in $O(b_{p_1}(x_2))$ [T]$

with $l(o) = wo \& Q(\varphi) := l' + c, l' + \dots + c_n = 0$ in $O(b_{\Gamma(o)})$ $(=) P_0(\varphi) \text{ solves } P_0(\Re)[T] = 0$ in $O_{b_{\mathcal{E}}(o), o}$ <u>Broof</u>, We consider $w \in \mathbb{C} \& Z \in D_{\mathcal{E}}(o) \& the polynomial$

 $F(z,\omega) := \omega^{n} + c_{1}(z) \omega^{n-1} + \dots + c_{n}(z). \in \mathbb{C}[z,\omega]$ Since $F(o,\omega_{0}) = 0$ & ω_{0} is a simple root of $F(o,\omega)$ we can find $\varepsilon > 0$ such that $F(o,\omega)$ has anly a grow in $D_{\varepsilon}(\omega_{0}) = \frac{1}{2}\omega : |\omega-\omega_{0}| \le \varepsilon_{0}\frac{1}{2}$ (the groves of $F(o,\omega)$ are discrete) By entimity of F a compactness of $\frac{1}{2}|\omega-\omega_{0}|=\varepsilon_{1}^{2}, \frac{1}{2}$ order $\varepsilon + \frac{1}{2}$ has no groves on: (z,ω_{0})

 $\beta(z,w)$: $z \in b_{\Gamma}(o) = [w-w_0] = E$

We will build Q by Residue type Formula, using the circumference Collin-uske?
First, we define
$$Z: D_{r}(o) \longrightarrow C$$
 as

$$Z_{(e)} = \frac{1}{2\pi i} \oint_{C} \frac{\partial_{U} T_{(e,w)}}{F(e,w)} dw = \# of such of F(e,T) in |T-wol < E$$
[Reason: if $P(+) = \frac{\pi}{11} (t-s_{3})^{n_{3}} \implies \frac{P'(1)}{P(H)} = \sum_{j=1}^{L} \frac{n_{j}}{t-s_{j}} & \frac{1}{2\pi i} \oint_{C} \frac{P'(H)}{P(H)} dt = \sum_{j=1}^{L} n_{j}]$

$$g_{i} = \frac{\pi}{11} (t-s_{3})^{n_{3}} \implies \frac{P'(1)}{P(H)} = \sum_{j=1}^{L} \frac{n_{j}}{t-s_{j}} & \frac{1}{2\pi i} \oint_{C} \frac{P'(H)}{P(H)} dt = \sum_{j=1}^{L} n_{j}]$$

$$g_{j} = \operatorname{structure} Z \text{ is cultineous and im} (Z) \subseteq Z \text{ , so it's custant}$$
Since $P(o) = \operatorname{sult}(w_{0}, F_{(0,w)}) = 1$ by an close of E_{j} we get $Z(e_{3} \equiv 1)$.
We define $Q: D(o, r) \longrightarrow C$ via $Q(z) := \frac{1}{2\pi i} \oint_{C} \frac{1}{W(e_{j})} dw$

$$\frac{\operatorname{claim}}{F(e,w)} dw$$

$$\frac{\operatorname{claim}}{F(e_{j})} = \frac{\pi}{11} (t-s_{3})^{n_{3}} \implies \frac{1}{2\pi i} \oint_{C} \frac{tP(H)}{P(H)} dt = \sum_{j=1}^{L} n_{j} dj$$

$$\frac{\operatorname{claim}}{P(e_{j})} = \frac{\pi}{1} (t-s_{3})^{n_{3}} \implies \frac{1}{2\pi i} \oint_{C} \frac{tP(H)}{P(H)} dt = \sum_{j=1}^{L} n_{j} dj$$
Bot since $Z(e_{j}) = 1$, we know $F(e_{j,w})$ and use 1 and $n \in E_{j,w}$ is $P(e_{j,w}), s_{3}$

$$P(e) = w_{0} = \frac{1}{2} \text{ custimation}$$

$$P(e) = \frac{1}{2} \text{ custimation}$$

$$P(e) = \frac{1}{2} \text{ custimation}$$

$$P(e) = \frac{1}{2} \text{ custimation}$$

Next time: We'll see how to build (X, p, F) for $Y = \mathbb{R}^1 \& Q_{(T)} = T^2 - g_{(R)}$ $\mathcal{I}_{b}(Y) = \mathbb{C}_{(R)}$ \$12.1 Proof of Uniqueness in Thurem 1 (\$11.2)

To prove the uniqueness of the triple (X,p,F) for Theorem 1 we need the following technical result:

Proposition 1: Suppose we have 3 Riemann surbaces X, Y, Z and Z proper n-sheeted holomorphic branched cornings $p: X \longrightarrow Y$ a $q: Z \longrightarrow Y$. Fix BSY closed, discute a write $Y' = Y \setminus B$, $X' = X \setminus p^{-1}(B)$, $Z' := Z - q^{-1}(B)$ Assume $I|_{X'}: X' \rightarrow Y'$ a $q|_{Z'}: Z' \rightarrow Y'$ are concurring maps. Thus, every biholomorphism $\sigma': Z' \longrightarrow \chi'$ with $\rho \circ \sigma' = q_{1Z'} \approx f \circ \sigma' = q_{1Z'}$ con be extended to a unit biholomorphism o: Z -> X with poo = 9 & hoo = 9. Remark: In particular, this gives a bijection from Deck (X IY) to Deck (X IY) given by restaiction. Definition : We say a branched holimorphic proper map P: X -> Y is galois ; F the associated covering map p:X~A -> T~B (where B=cuit values (1) & $A = P^{-1}(B)$ is falois. Prost of Proposition 1: • Fix bEB & a coordinate ubbd (V,z) for b (Z:V~>D). Write V* = V 166. & assume V is small enough so that q & q are unbranched over V^* (ie $V^* \cap sout pts f = V^* \cap sout pts f = \phi$). We can 20 this because ait pts of profer non-const maps are discrete & closed. . Fix U1.... Un to be the councted components of U:= 8" (V) mEn - $W_{1}, -, W_{s}$ - $W_{sq}'(V) s \in N$ Write $U_i^* := U_i \setminus p^{-1}(b)$ $i = 1, \dots, m \in U^* = \bigcup_{i=1}^m U_i^*$ $j = 1, \dots, s$ 4 $W^* = \sum_{j=1}^{s} W_j^*$ $--- |W_{\star}^{\star}| := W_{J}^{-} \wedge g_{-}^{-}(b)$

 $\underbrace{\operatorname{Claim}}_{\mathrm{Cur}} : \operatorname{W}^{\ast} \longrightarrow \operatorname{U}^{\ast} \text{ is biholomorphic } so = S.$ 3F/ poo = q so T: W^{*} > U^{*}. Since peg are surjective, T is. Thus, J is biholoworphic onto U. . We norder so flat $\sigma_{|w_i^{*}} : w_i^{*} \longrightarrow U_i^{*}$ is biholouwephic. . View $P: U_i^* \longrightarrow V^*$ as a finite sheeted covering & $P_{U_i}: U_i \longrightarrow V$ is a baanched covering, with $V^* \cong D^*$ of $V \cong D$. By our classification of proter maps to D, unbranched over DK, Vi=1D* & Ui-Ui* = lipty. Call this pt a. . - Similarly, working with give set W: W: = Scif fra migen pt ci EZ <u>Undersing</u> : we can extend σ_{1win} to w_i mig $\sigma(c_i) = a_i$. $\forall i=1,...,m$ By construction, JW: W > U is biholomorphic lextension is home & hold by Removable singularity Thm, just restrict to the corresponding map $(V_i \rightarrow V_i)$ s extud by b →b via Wit ~ D*~U!) We do this extension for each $S \in S$ to get $T: Z \to X$ biholomorphic. By construction $p \circ T = q$ holds 2 for T = q follows from entirely

Peopl of Uniqueness in Theorem 1:

Uniqueness will follows for Proposition 1 & showing that after 16 remove the bad points to set top cruines & our hands on tied to define a restriction of T Pede another edg function (Z, G, G) & consider the discute closed set $B = G(S \text{ poles of } G(S)) \cup S$ wit values of $G(S) \subseteq T$ Set $Y' = Y \cdot B$, Z' = G'(Y'), $X' = P'(Y') \subseteq 101$. Build $T': Z' \longrightarrow X'$ biholoworphism compatible with P.G., fag

Fix
$$z \in 2'$$
 c unit $y_{i}=J_{(2)} \in Y'$, but $\Psi = q_{in} (J_{2}(Q)) \in Q_{13}$ ($y_{i}=1, y_{i}=1, y_$

•

compact in
$$X' \Rightarrow p(K)$$
 is compact in Y'
 $\Rightarrow q^{-1}(p(K)) \leq X'$ is compact.

Now, we work at the diagram
$$\sigma''_{(K)} \leq 2' \xrightarrow{\sigma'} X' \geq K$$

 $q \geq 0' \neq P$
 $\gamma' \neq P$
To enclude : $\sigma''_{(K)} \leq q^{-1}(P(K)) = \gamma(\sigma)^{-1}(K)$ is impact

$$\frac{1}{(\chi')} = \frac{1}{(\Gamma(\chi))} = \frac{1}{(\Gamma(\chi))} = \frac{1}{(\chi')} =$$

Claim 5: Jis biholomorphic:

Since q e p Loth have the same degree, we unclude that heg (5)=1. Since 5 is a proper degree 1 holomorphism, we unclude it's biholomorphic onto its image. The surjectivity from claim 4 shows T'(Z') = X'. . To finish, we use Proprietin 1 to extend $T':Z' \longrightarrow X'$ to $T:Z \longrightarrow X$ biholomorphically ensuring gov = q a fov = g. We thus get $g = \sigma^* f$.

Uniqueness of $\underline{\sigma}$: Any other $\overline{c}: \overline{z} \to X$ with $g = \overline{c}^* f$ will have to aque with $\overline{\sigma}$. Otherwise $\overline{c}(\overline{z}') = X'$ by construction, & $\underline{c}:=\overline{c}_{0}\overline{\sigma}_{1x}^{-1}$, is a

Finthermore $\chi^{*}(f) = f$ because $(\sigma_{X'}^{-1})^{*} = (\sigma_{X'})^{*} \approx 5\sigma$ $\chi^{*} f = (\sigma_{X'}^{-1})^{*} \circ \delta^{*} f = (\sigma_{X'}^{-1})^{*} (\mathfrak{g}) = (\sigma_{X'}^{-1})^{*} ((\sigma_{X'})^{-1})_{*} (\mathfrak{g}) = f$

However, f takes distinct values over each of the n points in j'(y) $\forall y \in Y$, so x must be id_x for the identity $x^*f = f$ to hold.

\$12.2. Algebraic functions and field extensions:

From Paoporition 1 \equiv 12.1 we have a good notion of Deck(X|Y) whenever $p: X \longrightarrow Y$ is a proper hope in holomorphic map. Furthermore, we have $\underline{\Phi}$ $\text{Deck}(X|Y) \longrightarrow \text{Aut}(Jb(X))$ defined as $\overline{\nabla} \longrightarrow (F \longmapsto \overline{\nabla} F:=Fo \overline{\nabla}^{-1})$

• I is a group homomorphism (
$$Dech(X|Y)$$
 C $\mathcal{T}_{0}(X)$.)
• The action hixes $P^{K}\mathcal{T}_{0}(Y) \subseteq \mathcal{T}_{0}(X)$ ($(P^{K}g) \circ \sigma^{-1} = g \circ \rho \circ \sigma^{-1}$
 $= g \circ \rho = \rho^{K}g$.)
Conclude: $Deck(X|Y) \subseteq Gal(\mathcal{T}_{0}(X)|P^{*}\mathcal{T}_{0}(Y))$

Our next theorem relates algebraic functions with the constructions from \$ 11.3 Thuranz: firm Y RS, Q = 16(Y)(T] ined a minic , consider (X, p, f) the algebraic function defined by Q & the field extra $p^*: \mathcal{T}_{G}(Y) \longrightarrow \underbrace{P^* K \subseteq \mathcal{T}_{G}(X)}_{= K}$ Thus (1) $[L:K] = n \quad a \quad L \simeq K[T]/(Q(T))$ (2) $\operatorname{Deck}(X|Y) := \frac{1}{2} \quad \forall : X \longrightarrow X : Po \forall = P \quad \stackrel{}{\xrightarrow{}} \quad \stackrel{}{\xrightarrow{}} \quad \operatorname{Gal}(L|K)$ (3) $p: X \longrightarrow Y$ is "galois" (ie $p: Y' \longrightarrow X'$ unbranched hold may is a galois com) LIK is a galois extension. $\frac{Y_{aoof}}{(1)} \text{ We know for any } y \in Y' = Y \setminus (2! \text{ disce of } Q \} \cup \bigcup_{i=1}^{n} 1? \text{ she of } ci \}$ I has exactly a distinct alues a p-1(y). By the second part of Theorem 11.1, we see that [L:K]=n. ble have a ring humonwephism K[T] ___ L Now pQ(F) = 0 by definition $R \longrightarrow R(F)$

Thus, the sing homomorphism factors through the ning him K(T) Y L
The source is a field, so Y is injectur - both source and target are field extended to be an experience of
$$\neq F$$
 $\forall \sigma \neq id_X$
of K of here n , so Y is an isomorphism.
(2) We know $\overline{\Phi}$: Deck(X/Y) \longrightarrow Gal(L1K) because $\sigma F \neq F$ $\forall \sigma \neq id_X$
(F takes in different where $np(\eta)$ to each $\eta \in Y' = Y \cdot [2(disc(\eta)) \cup 3(de effecth) d[q])$
(laim: The map $\overline{\Phi}$ is also surjective, so $\overline{\Phi}$ is an iso.
 $3F/$ Rick $\alpha \in Gal(L1K)$. Then $(X, p, do F)$ would also be an
algebraic function defined by $Q(T)$ ($p^*Q(do F) = \sigma$ because $p^{Q}(F) = \sigma$
is the galois group permutes the noots of R^*Q).
By the uniqueness, we can find $\overline{E} \in Deck(X|Y)$ with $dF = \overline{C}^*F$
Take $\overline{\tau} = \overline{C}^{-1} \leq natee$ $\overline{\tau} F = F\sigma \overline{C}^{-1} = F\sigma\overline{C} = \overline{C}^*F = \alpha F$.
Since $L = K(F)$, we see that $(F \to \sigma F) \in Gal(L1K)$ agrees with cl
so $d = \overline{\Phi}(\sigma)$.
(3) Use the definition! $p: X \to Y$ is Galoris $\bigoplus p': X' \to Y'$ is Galoris
 (Ξ) Deck(X'|Y') has a elements
Similarly : L1K is Galors iF Gal(L1K) has size $[L:K] = n$.
Since $Deck(X'|Y') \simeq Gcl(L1K)$ by (z), the statement holds D