Lecture XII: Algcbraic functions II
Recall $p: X \longrightarrow Y$ paoper holo $\operatorname{dig} n \Rightarrow\left[\mathscr{G}(x): p^{*} \boldsymbol{J}(Y)\right] \leqslant n \quad \&=$ if $\exists f \in \mathscr{G}(x)$ 2 $y \in Y$ with n values on $p^{-1}(y)$
Thoum 1: Fix Y a $R S \& Q=T^{n}+c_{1} T^{n-1}+\cdots+c_{n} \in \mathscr{G}(Y)[T]$. Assume that Q is ineducible. Thun \exists a Tiple (X, P, F) where:
(1) X is a RS ("algetraic fundin")
(2) $p: X \longrightarrow Y$ is a proter nm-cosst holmurphic map of degree n ("n-sheited,
(3) $f \in \mathscr{G}(x)$ with $\begin{aligned} & \left(p^{*} Q\right)(f)=0 . \\ & \in p^{*} \mathscr{G}(Y)[T] \subseteq \sqrt{6}(x)[T]\end{aligned}$ branclud corering")
satisfying the following unireesal profetty: If (Z, q, g) is another such triple, then $7!\sigma: z \longrightarrow x$ biholomarphic with $z \xrightarrow{\sigma} x \& \underset{0}{\sigma} x$ (ie fibenpesecriong $+\sigma^{*} f=g$)
Last Tinn: we prosed existence by tiest avriding disccimiment of Q a poles of $C_{i}\left(\begin{array}{l}x^{\prime} \leq 101 \\ y^{\prime}\end{array}\right.$) Ida: Pick $B=\mid$ Zenos of discrimimant of $Q\} \cup \bigcup_{i=1}^{n} 3$ poles of $\left.c_{i}\right\} \quad$ so on $Y^{\prime}=Y, B$: (1) $Q(T, y)$ ha simple woots in \mathbb{C} fo each $y \in Y^{\prime}$

$$
\begin{equation*}
\text { (2) }\left.c_{i} \in\right|_{y^{\prime}} O\left(y^{\prime}\right) \quad \forall i=1 \ldots, n \tag{*}
\end{equation*}
$$

- Build $X^{\prime} \subseteq\left|ण_{Y^{\prime}}\right|$ via $\left.X^{\prime}=3(y, \eta): j \in Y^{\prime}, \eta \in \emptyset_{Y^{\prime}, y} \& \rho_{y} Q(\eta)=0\right\}$

$$
\left(\rho_{y} Q=T^{n}+\rho_{y}\left(c_{1}\right) T^{n-1}+\cdots \cdot+\rho_{y}\left(c_{n}\right) \in \cup_{Y^{\prime}, y}[T] .\right)
$$

- $X^{\prime} \xrightarrow{P} Y^{\prime}$

$$
p(\eta)=y
$$

n-shected coseing (Ulaim)

- $x^{\prime} \xrightarrow{f} \mathbb{C} \quad f(\eta)=\eta(y)=x(\eta(\eta))$

$$
\left(f \in O_{(}\left(x^{\prime}\right)\right) \Rightarrow\left(p^{x} Q\right)=0 .
$$

Assuming X^{\prime} is convected we can extend p To (it fillows because Q is ined.)

p is hols, profer of lequeen (k)

- if will extend to X menomurphically since $C_{1} \ldots c_{n}$ an the elemsym
function off in Y^{\prime} \& the extend meanarphically to $Y \Rightarrow$ f extends to $V(x)$.
FO((x) : Show $P_{1 x}$ is a coring with n sheets \& use Key Lemma $\$ 11.2$ To yt
(1) Given $y \in Y^{\prime}$, let $\left\{w_{1} \ldots w_{n}\right\}$ be the n roots of $\rho_{0} Q(T, j) \in \mathbb{C}[T]$.
m Build $\varphi_{1} \ldots, \varphi_{n} \in \mathcal{O}_{Y^{\prime}, y}$ with $\rho_{y} Q\left(\varphi_{i}\right)=0 \quad \forall i=\cdots n$ $\varphi_{i}(y)=\omega_{i}$
 $\Rightarrow P^{-1}(U)=\bigsqcup_{i=1}^{n} \mathcal{N}\left(U, s_{i}\right) \subseteq X^{\prime} \quad$ \& we know $\left.P\right|_{r\left(U, s_{i}\right)}: N\left(U, s_{i}\right) \rightarrow U$ is $\left(\rho_{y}\left(s_{i}\right) \neq \rho_{y^{\prime}}\left(s_{j}\right) \quad \forall y^{\prime} \in U \quad\right.$ by the identity the. $\left(\rho_{y}\left(s_{i}\right)=\varphi_{i} \neq \varphi_{j}=\rho_{y}\left(s_{j}\right)\right)$.
(2) The key lumina from Lecture II ($\$ 4.2$ says extension $P: X \rightarrow Y$ is patter, nolo of degree n).

To finch building X^{\prime}, we need T_{0} pros (*) We can do it fo $Y^{\prime}=D_{R}(0)$ \& $y=0$: Lemma 1: Fix $c_{1}, \ldots, c_{n} \in \mathcal{O}_{\left(D_{R}(0)\right) \text { with } D_{R}(0)=\{z:|z|<R\} \& \text { assume } .}$

$$
Q_{0}(T)=T^{n}+c_{1}(0) T^{n-1}+\cdots+c_{n}(0) \in \mathbb{C}[T]
$$

has a simple not, say wo. Then, $\exists r$ with $0<r<R \&!\varphi \in\left(O\left(D_{r}(0)\right)\right.$ with $\varphi(0)=\omega_{0} \quad \& \quad Q(\varphi):=\varphi^{n}+c_{1} \varphi^{n-1}+\cdots+c_{n}=0$ in $O_{\left(D_{r}(0)\right)}[T]$ $\left(\Rightarrow \rho_{0}(\varphi)\right.$ soles $\rho_{0}(Q)[T]=0$ in $\left.\varphi_{B_{R}(0), 0}\right)$
Proof: We consider $\omega \in \mathbb{C} \& z \in D_{R}(0)$ \& the plepormial

$$
F(z, w):=w^{n}+c_{1}(z) w^{n-1}+\cdots+c_{n}(z) . \in \mathbb{C}[z, \omega]
$$

Since $F\left(0, \omega_{0}\right)=0$ \& ω_{0} is a simple not of $F(0, \omega)$ we can find $\varepsilon>0$ such that $F(0, \omega)$ has only 1 zero in $\left.\overline{D_{\varepsilon}\left(\omega_{0}\right)}=3 w:\left|w-\omega_{0}\right| \leqslant \varepsilon_{0}\right\}$ (the gules of $F(0, \omega)$ are discrete)

By continuity of F s compactness of $\left\{\left|\omega-\omega_{0}\right|=\varepsilon\right\}, \exists 0<r<R$ st $F_{(z, \omega)}$ has no zees on:

$$
\left.3(z, w): \quad z \in D_{r}(0) \quad \&\left|\omega-w_{0}\right|=\varepsilon\right\}
$$

. We will build φ by Residue type Formula, using the circumference $\left.C=3\left|\omega-\omega_{0}\right|=\varepsilon\right\}$ Font, we define $\eta: D_{c}(0) \longrightarrow \mathbb{C}$ as

$$
\eta_{(z)}=\frac{1}{2 \pi i} \oint_{C} \frac{\partial_{\omega} F(z, \omega)}{F(z, \omega)} d \omega=\# \text { of sold of } F(z, T) \text { in }\left|T-\omega_{0}\right|<\varepsilon
$$

[Reason: if $\left.P(t)=\prod_{j=1}^{e}\left(t-\alpha_{j}\right)^{n_{j}} \Rightarrow \frac{P^{\prime}(t)}{P(t)}=\sum_{j=1}^{l} \frac{n_{j}}{t-\alpha_{j}} \& \frac{1}{2 \pi_{i}} \oint_{c} \frac{P^{\prime}(t)}{P(t)} d t=\sum_{j=1}^{e} n_{j}\right]$ By construction η is continuous and $i m(\eta) \subseteq \mathbb{Z}$, so it's constant Since $n(0)=\operatorname{mult}\left(\omega_{0}, F_{(0, \omega)}\right)=1$ by an choice of ε, we get $\eta(z) \equiv 1$.

We define $\varphi: D(0, r) \longrightarrow \mathbb{C}$ via $\varphi(z):=\frac{1}{2 \pi i} \oint_{C} \omega \frac{\partial \omega F(z, \omega)}{F(z, \omega)} d \omega$
Claim. $\varphi(z)=$ the value wot the unique ger o of $F(z, \omega)$ fr $\omega \in D_{\mathcal{E}}\left(\omega_{0}\right)$. Pf/ If $P(t)=\prod_{j=1}^{l}\left(t-\alpha_{j}\right)^{n j} \Rightarrow \frac{1}{2 \pi i} \oint_{C} \frac{t P^{\prime}(t)}{P(t)} d t=\sum_{\substack{j=1 \\ \alpha_{j} \in I_{i}+(c)}}^{n_{j} \alpha_{j}}$
But since $\eta(z)=1$, we know $F(z, \omega)$ any has 1 ger in $D_{\varepsilon}\left(\omega_{0}\right)$, so $\varphi(z)$ collects its value.

- $\varphi(0)=\omega_{0}$ by construction
- φ depends holomorphically on z so $\varphi \in C\left(D_{c}(0)\right)$.

The construction gives uniqueness of be! (The integral primula coup utes the solution by the R esidue Thorium).

Next Time: $W_{e}^{\prime} l l$ see how T_{0} build $(X, 1, F)$ for $Y=\mathbb{P}^{\prime} \& Q_{(T)}=T^{2}-g_{(z)}$ $\mathscr{G}(Y)=\mathbb{C}(z)$
§12.1 Proof of Uniqueness in Theorem 1 ($\xi 11.2)$
To prove the uniqueness of the hiple (X, P, F) hon Theorem 1 we need the following technical usult:
Pappritinn 1: Suppose we han 3 Riemann surfaces X, y, z and 2 proffer n-sheeted holomorphic branclud coursings $p: X \longrightarrow Y$ \& $q: Z \longrightarrow Y$. Fix $B \subseteq Y$ Cred, discrete \& wite $Y^{\prime}=Y \backslash B, \quad X^{\prime}=X-p^{-1}(B), \quad Z^{\prime}:=Z-q^{-1}(B)$ Assume $11 x^{\prime}: X^{\prime} \longrightarrow Y^{\prime}$ \& ${ }^{\prime} 1_{z^{\prime}}: Z^{\prime} \longrightarrow Y^{\prime}$ are corecing maps.
Thun, eseny biholomorphism $\sigma^{\prime}: Z^{\prime} \longrightarrow x^{\prime}$ with $p \circ \sigma^{\prime}=q_{I_{z^{\prime}}}$ \& for $^{\prime}=g_{1 z^{\prime}}$ combe extended T a unit biholomorphism $\sigma: z \longrightarrow X$ with $p \circ \sigma=q$ \& for $=g$.
Remark: In particular, this sires a bijection tron Decl $(X \mid Y)$ to $\operatorname{Deck}\left(X^{\prime} \mid Y^{\prime}\right)$ siren by restriction.
Definition: We say a branched holunghic proper map $P: X \longrightarrow Y$ is galois if the associated covering mop $P^{\prime}: X \backslash A \longrightarrow Y \backslash B$ (where $B=$ cut values (t) \& $A=P^{-1}(B)$) is galois.
Proof of Propsintim 1:

- Fix $b \in B$ \& a coordinate unbid (V, z) fo $b(z: V \underset{b}{\sim} \underset{\longrightarrow}{\longrightarrow})$. Write $V^{*}=V,\{b\}$ \& assume V is small enough so that $p \& q$ are unbranched oren V^{*} (ie $V^{*} \cap 3$ crit pts of $\}=V^{*} \cap 3$ cut pts of $q_{q} \varepsilon=\phi$). We can do this because ait pts of proper non-const maps are discrete 4 closed.
- Fix U, \ldots, U_{m} to be the connected compreants of $U:=p^{-1}(V) m \leq n$
- _ $W_{1}, \ldots, W_{s} \quad W_{:}=q^{-1}(V) s \leq n$

Write $U_{i}^{*}:=U_{i} \backslash p^{-1}(b) \quad i=1, \ldots, m \quad \& \quad U^{*}=\bigsqcup_{i=1}^{m} U_{i}^{*}$

$$
W_{j}^{*}:=W_{j} \backslash f^{-1}(b) \quad j=1, \ldots, s \quad \& \quad W^{*}=\bigsqcup_{j=1}^{s} W_{j}^{*}
$$

Uaim: $\sigma_{i \omega^{*}} W^{*} \longrightarrow U^{*}$ is biholourphic, so $m=s$.
SF/ $p \circ \sigma=q$ so $\sigma_{\mid W^{*}}^{:} \omega^{*} \longrightarrow U^{*}$. Simce peqare suyjective, σ is.
Thes, $\sigma_{W^{*}}$ is biholmarphic onto U^{*}.

- We aerder so that $\sigma \mid w_{i}^{*}: w_{i}^{*} \longrightarrow U_{i}^{*}$ is biholmurephic.
. View $P_{\text {lu }}: U_{i}^{*} \rightarrow V^{*}$ as a finite sheeted corering \& $P_{l_{U}}: U_{i} \rightarrow V$ is a baanched cosening, with $V^{*} \cong \mathbb{D}^{*} \& V \simeq D$. By our lassification of proter mops to \mathbb{D}, unbranched oren $\mathbb{D}^{*}, U_{i}^{*} \frac{\mathbb{D}_{\text {ihoto }}}{\mathbb{D}^{*}} \& U_{i} \backslash U_{i}^{*}=\{1$ pt\}. Call this pta.
- Similarly, workenig with q we get $\left.W_{i} \backslash W_{i}^{*}=b c_{i}\right\}$ f刀 a mingen pt $c_{i} \in Z$

Cunclusin : we can extend $\sigma_{1 w_{i}^{*}} T_{0} w_{i}$ nia $\sigma\left(c_{i}\right)=a_{i} \cdot \forall i=1, \ldots m$ By construction, $\sigma_{1_{w}}: W \longrightarrow U$ is biholourephic (extension is homis \& holo by Remorable singularity Thm, just nestrict to the conespanding map $\left.W_{i}^{*} \rightarrow U_{i}^{*}\right)$ a extand by $b \longrightarrow b$ ria $W_{i}^{*} \simeq \mathbb{D}^{*} \simeq U_{i}^{*}$)
. We do this extensim for cach $b \in B$ to st $\sigma: z \rightarrow X$ biholourephic.

- Byconstmectrin $p \circ \sigma=q$ holds \& fिo $\sigma=g$ follous has cutinuity.

Proof of Uniqpeeness in Thurem 1:
Uniqueness will follows hur Propsiteml a showing that after ke nemose the bad points to get top cosesings \& om hands are tied to defime a restrictim of σ
Pich anotber alg functim (z, f, g) \& unsider the discute closed set $B=q(3$ poles of $\rho\}) \cup\{$ nit values of $q\} \leq T$
Set $Y^{\prime}=Y, B, Z^{\prime}=q^{-1}\left(Y^{\prime}\right), \quad X^{\prime}=P^{-1}\left(Y^{\prime}\right) \subseteq|0|$

- Build $\sigma^{\prime}: Z^{\prime} \longrightarrow X^{\prime}$ biholourorphism cmpatible with p,q,fty

Uaimal: $\quad Q(\varphi)=0$
Pf/

$$
\begin{aligned}
& Q(\varphi)=Q\left(q_{*}\left(\rho_{z}(g)\right)=q_{k}\left(\rho_{z}\left(q^{*}(Q)(g)\right)\right)=q_{k}\left(\rho_{z}(0)\right)=q_{*}(0)=0\right. \\
& \because(Y)[T] \\
& \text { def of als finction. }
\end{aligned}
$$

$(* *)\left[(T-a)\left(q_{x}\left(\rho_{z}(y)\right)\right)=f_{*}\left(\rho_{z}(g)\right)-a=q_{*}\left(\rho_{z}(\rho)-\rho^{*}(a)\right)=q_{*}\left(\rho_{z}\left(q^{*}(T-a).\right)(g)\right)\right]$
Define: $\sigma^{\prime}(z):=\varphi . \in X^{\prime} \quad \sigma^{\prime}: z^{\prime} \longrightarrow X^{\prime}, P_{\mid x^{\prime}}^{\circ} \sigma^{\prime}(z)=y=q_{\left.\right|_{z^{\prime}}(z)}$
$f \circ \sigma_{(z)}^{\prime}=g_{(z)}$ because $f\left(f_{*}\left(\rho_{z}(g)\right)=f_{*}\left(\rho_{z}(g)\right)(y)=\rho_{z}(\rho)(z)=\rho(z)\right.$
Uaim 2: σ^{\prime} is contimuous
Bf/ Pcck $W(U, s)$ ofen in $|O|$ away fum $P^{-1}(B), s_{D} U \subseteq Y^{\prime}, s \in \oplus \mid(U)$

$$
\text { Then } \begin{aligned}
\left(\sigma^{\prime}\right)^{-1}(N(U, s)) & =\left\{z \in z^{\prime} \mid \sigma^{\prime}(z) \in \mathcal{N}(U, s)\right\} \\
& =\left\{z \in z^{\prime} \mid q_{*}\left(\rho_{z}(g)\right)=[s]_{y} \quad f \Rightarrow y=q(z) \in U\right\} \\
& =q^{-1}(U) \text { is ofin }
\end{aligned}
$$

Why? Since q is anbrauched $M Z^{\prime}, q$ is a bocal homerphison Thus, firen $y \in U \& z \in g^{-1}(y)$ we hare $q: V_{V}^{\prime} \xrightarrow{\sim} \longrightarrow \bigcup_{U}^{\prime} \subseteq U$ fos saitable

$$
\Rightarrow g_{\left.\right|_{V^{\prime}}}=q^{*}\left(\left.s\right|_{U^{\prime}}\right) \quad \text { says }\left(\sigma^{\prime}\right)^{-1}\left(w\left(u^{\prime}, s\right)\right)=V^{\prime} \rightarrow z
$$

Claim 3: σ^{\prime} is holonurphic \& um-constant. (g is not custant)
 So σ^{\prime} is holomurphic

Claim 4: σ^{\prime} is proper. $\left(\Rightarrow \sigma\right.$ is suyjectise by Lamna 2 $\ddagger 5.2$, becana σ is un-cust, $2 x^{\prime}$ is connected)

3f/ The statement holds because $p_{\mid Y \text { is }}$ continuous a $q_{I_{Z^{\prime}}}$ is profes. Indud, if K is compact in $X^{\prime} \Rightarrow P(K)$ is cmpact in Y^{\prime} $\Rightarrow q^{-1}(P(K)) \subseteq X^{\prime}$ is cmpact

Now, we look at the diagram

$$
\begin{aligned}
& \sigma^{\prime \prime}(k) \leq Z^{\prime} \xrightarrow{\sigma^{\prime}} X^{\prime} \geq k \\
& q y^{\prime} \swarrow p
\end{aligned}
$$

To conclude: $\underbrace{\sigma^{\prime}(K)}_{\text {closed }} \subseteq \underbrace{q^{-1}(P(K))}_{\text {compact }} \Rightarrow\left(\sigma^{\prime}\right)^{-1}(K)$ is cmpresfect.
Slain 5: σ is biholmorphic:
Since f ep b beth have the same degree, we curclucle that $\operatorname{deg}\left(\sigma^{\prime}\right)=1$. Since σ is a proper digger 1 holnurphism, we conclude it's bilolaurgleic onto its image. The serjectisity him claim 4 shows $\sigma^{\prime}\left(z^{\prime}\right)=x^{\prime}$.

- To finish, we use Propsitim I to extend $\sigma^{\prime}: z^{\prime} \rightarrow x^{\prime}$ to $\sigma: z \rightarrow x$ biholourphiaally ensuring $p \circ \sigma=q$ a $f o \sigma=g$. We thus set $g=\sigma^{*} f$.

Unigeesesess of σ : Any other $\sigma: Z \rightarrow X$ with $g=\sigma^{*} G$ will hare to apse with σ. Otherwise $\zeta\left(z^{\prime}\right)=X^{\prime}$ by construction, \& $\alpha:=\sigma \sigma \sigma_{1 x^{\prime}}^{-1}$, is a

Finthenmere $\alpha^{*}(f)=f$ because $\left(\sigma^{-1} x^{\prime}\right)^{*}=\left(\sigma_{\mid x^{\prime}}\right)_{*} \quad \& \quad$ s

$$
\alpha^{*} f=\left(\sigma^{-1} \mid x^{\prime}\right)^{*} \circ \sigma^{*} f=\left(\sigma^{-1} \mid x^{\prime}\right)^{*}(g)=\left(\sigma^{-1}\left(x^{\prime}\right)^{k}\left(\left(\sigma \mid x^{\prime}\right)\right)_{*}(f)=f\right.
$$

However, f takes distinct values one each of the n points in $\left.\right|^{-1}(y) \forall y \in Y$, so α must be id x for the identity $\alpha^{*} F=F$ to hold.
\$12.2. Algebraic functions and hild extensins:
Frum Propositime 1 \$12.1 we hase a good notim of $\operatorname{Deck}(X \mid Y)$ wheneren $p: X \rightarrow Y$ is a profer degree x holmurplic mop.
Furthenmre, we hare $\Phi \operatorname{Deck}(x \mid y) \longleftrightarrow \operatorname{Aut}(\Omega 6(x))$ defined as

$$
\sigma \longmapsto\left(f \longmapsto \sigma \cdot f:=f \circ \sigma^{-1}\right)
$$

- Φ is a group homanzfhism $(\operatorname{Dech}(X \mid Y) \subset \mathscr{V}(X)$.)
- The actim fixes $p^{k} \mathscr{H}(Y) \subseteq \Omega(x) \quad\left(\left(p^{*} \rho\right) \circ \sigma^{-1}=g \circ p \circ \sigma^{-1}\right.$

$$
\begin{aligned}
& =\rho \circ 00 \\
& \left.=\rho \circ p=p^{x} g .\right)
\end{aligned}
$$

Conclude: $\left.\operatorname{Deck}(X \mid Y) \subseteq \operatorname{Gal}^{(J)}(X) \mid P^{+} J(y)\right)$

Onernext theoren relatrs algebraic fuenctions with the constructions fun $\$ 11.3$
Therum2: Gisen $Y R S, Q \subseteq \mathscr{G}(Y)[T]$ ined a monic, cmisider (X, P, f) the algebraic function defined by Q \& the field extu $\begin{gathered}p^{*}: \sqrt{G}(Y) \\ =K\end{gathered} \longrightarrow \underbrace{p^{*} K}_{=L} 5$
Then: (1) $[L: K]=n \quad \& \quad L \simeq K[T] /(Q(T))$
(2) $\operatorname{Deck}(X \mid Y):=\{\sigma: X \underset{\text { holo }}{\longrightarrow} X: \operatorname{Po\sigma }=P\} \simeq \operatorname{Gal}(L \mid K)$
(3) $p: X \longrightarrow Y$ is "gabois" (ie $p: Y$ ' $\longrightarrow X$ ' unbranched holo map is a Galois come \Longleftrightarrow L|K is a Galois extension.

Paoof :(1) We know hor any $y \in Y^{\prime}=Y, ~\left(Z\{\right.$ disce of $Q\} \cup \bigcup_{i=1}^{n}\left\{P\right.$ ples of $\left.\left.c_{i}\right\}\right)$ I has exartly n distinct values on $p^{-1}(y)$. By the secand pat of Therem II.), we see that $[L: K]=n$.

Wh hase a ring hauomirphism $K[T] \longrightarrow L \quad$ Now $P^{*} Q(F)=0$ by defnition $R_{(T)} \longrightarrow P^{x} R(f)$

Thus, the ring honotworphism factors though the ring han $\frac{K(Q)}{(Q)} \xrightarrow{\psi} L$
The source is a field, so ψ is injetere. Both source and tacit are field ext of k of dequeue n, so Ψ is an is murphism.
(2) We know $\Phi: \operatorname{Deck}(X / Y) \longleftrightarrow G a l(L \mid K)$ because $\sigma f \neq L \quad \forall \sigma \neq i d_{X}$ (f talus in different values $m P^{-1}(y)$ to each $y \in Y^{\prime}=Y(Z($ diss $(Q)) \cup\{$ pres of coff $d Q\})$ Usia: The map Φ is also sujectire, $\Phi \Phi$ is an iso.
Pf/ Pick $\alpha \in G a\left((L \mid K)\right.$. Then $\left(X, p, \alpha_{0} f\right)$ would also be am algebraic function defined by $Q(T) \quad\left(P^{*} Q(\alpha, f)=0\right.$ because $P^{*} Q(f)=0$ s the Galois group permutes the roots of $P^{x} Q$).
By the uniqueness, we can find $G \in \operatorname{Deck}(X \mid Y)$ with $\alpha f=G^{*} f$
Take $\sigma=\zeta^{-1}$ \& wotere $\sigma_{0} f=f_{0} \sigma^{-1}=f_{0} \sigma=\zeta^{*} f=\alpha f$.
Since $L=K(f)$, we see that $(f \rightarrow \sigma f) \in G_{a l}(L \mid K)$ agrees with α so $\alpha=\Phi(\sigma)$.
(3) Use the definition! $p: X \rightarrow Y$ is Golvis $\Leftrightarrow p^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ is galois
$\Leftrightarrow \operatorname{Dcck}\left(X^{\prime} \mid Y^{\prime}\right)$ has n elements
Similarly: LIK is Galois if Gal(LIK) ha size $[L: K]=n$. Sima $\operatorname{Deck}\left(X^{\prime} \mid Y^{\prime}\right) \simeq G a l(L \mid K)$ by (2), the statement holds a

