Lecture XIII: Examples of Algcbraic functions \& Paisenex Expansins
Fix Y a $R S \& Q=T^{n}+c_{1} T^{n-1}+\cdots+c_{n} \in \mathscr{G}(Y)[T]$. ineducible
Pefinition. An alges raic function fo $Q \& Y$ is a tiple (X, p, f) when
(1) X is a RS
(2) $p: X \longrightarrow Y$ is a prosen nem-cosst holmurphic map of degree n (" n-sheeted,
(3) $f \in \mathscr{G}(X)$ with $\underset{\in \sqrt{G}(Y)[T]}{\left(p^{*} Q\right)}(f)=0$. brandud correing")

THM: The tiple is unigue wto! biblourephism: If (Z, q, g) is anothen such

§13.1 Examples.
Set $Y=\mathbb{T}^{\prime} \quad h(z)=\left(z-\alpha_{1}\right) \cdots\left(x-\alpha_{m}\right)$ pelymanial with n distenct wots \&

$$
Q(T):=T^{2}-h \in \mathscr{C}\left(\mathbb{T}^{\prime}\right)[T]=\mathbb{C}_{(z)}[T]
$$

Clain: $Q(T)$ is imeducible
BF/By contradiction, assume $\exists g \in \mathbb{C}(z)$ with $g^{2}=h$ (soln to $T^{2}=h$)

- Then, $\left.f \in O\left(\mathbb{C}, 3 \alpha_{1}, \ldots, \alpha_{m}\right\}\right)$ because $h \in O(\mathbb{C})$
- By argament painciple $I=\frac{1}{2 \pi i} \int_{0} \frac{\rho^{\prime}(z)}{\rho(z)} d z \in \mathbb{Z}$ (\# gens of ρm
(O small enough)
But $\frac{\rho^{\prime}(z)}{\rho(z)}=\frac{1}{2} \frac{h^{\prime}}{h}$ so $I=\frac{1}{2} \frac{1}{2 \pi i} \oint_{\bigodot_{\alpha i}} \frac{h^{\prime}(z)}{h(z)}=\frac{1}{2} \cdot 1=\frac{1}{2} \notin \mathbb{Z}$
\Rightarrow Using Thucrem s 11.3 , we hase a RS X associated $T_{0} Q+\underset{P_{1}}{P}{ }_{\frac{\downarrow}{1}}$, $2-T_{0-1}$ Inster map \& $g \in \mathbb{K}(X)$ with $\left(P^{*} Q\right)(g)=0$. (write $g: \not \mathbb{P}^{\prime} \sqrt{h}{ }^{\prime \prime}$)
N施: p is holousephic \& unbrached on $\left.\mathbb{C}, ~ 3 \alpha_{1}, \ldots, \alpha_{m}\right\}=\mathbb{P}^{\prime}, ~ B$ with $\left.B=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\} \cup 3 \infty\right\}$

Q:. What do these surfaces look like? (They conespend to hypeelliptic ceres)

- Where are the broach points of p ?
-First, we look at $\left.P\right|_{X^{\prime}}: X^{\prime}=X \backslash P^{-1}(B) \longrightarrow Y^{\prime}={ }^{\prime}\left(-B \quad \begin{array}{l}\text { uobmarphic } 2 \text {-sheeted } \\ \text { un h ranched corcuing }\end{array}\right.$ unbranched corning
\Rightarrow Given any $g \in Y^{\prime} \& \varphi \in O_{Y_{1, y}^{\prime}}$ with $\varphi^{2}=\rho_{y}(h)$ we can do conalytec cont in any path u in Y^{\prime} starting han y

(1) Y^{\prime} is not simply connected so we cannot guarantee we hare a section $s \in \emptyset_{\left(Y^{\prime}\right)}$ with $\rho_{y}(s)=\varphi$
- We have 2 solutinus φ to $\varphi^{2}=\rho_{g}(h)$, differing by sign. (2 points in X^{\prime} oren each $\left.y \in Y^{\prime}\right)$

Q: How mary solutives do we hare oren each $b \in B$?
A: Only 1 one $\alpha_{1}, \ldots, \alpha_{m}$ Over ∞, it depends on the parity of m
Lemma 1: X has exactly 1 print oren each $\alpha_{i}(\Rightarrow$ branch pts of p)
Pf/Idea: Isolate each a_{i} by a disc and look at the natrictim of p on its primate The 2 connected ampments will hare intersecting doseres over $\rho^{-1}\left(a_{i}\right)$.
given $i \in\{1, \ldots, m\}$ fix $r_{i}>0 \& U_{i}=\mathbb{D}_{r_{i}}\left(q_{i}\right)=\left\{z| | z-q_{i}\left|<r_{i}\right\rangle\right.$ with $\left.U_{i} \cap B=3 d_{i}\right\}$

- Consider $g(z)=\frac{h(z)}{z-\alpha_{i}}=\prod_{j \neq i}\left(z-\alpha_{j}\right)$

Note: g has wo revers in U_{i} a U_{i} is simply amucted. By Corollary ह9.1 we can find z sections $G_{1}, G_{2}: U_{i} \rightarrow \mathbb{C}$ with $G_{i}^{2}=g \quad$ (solve for 1 gene \& extend to a sectim)

Use $G=G$, To write $\quad f(z)=\left(z-\alpha_{i}\right) G^{2}(z)$.

 Set $\varphi \in \bigcup_{Y_{, \xi}^{\prime}}$ with $\varphi^{2}=\rho_{\xi}(h)$
Then $\varphi_{(\xi)}=\sqrt{\delta} e^{i \theta / 2} G(\xi)$
By construction, $\quad A C_{u}^{\varphi}=-\varphi$
This pres $p^{-1}\left(U_{i}\right)$. To have a single connected compment. Otherwise, ore classification of proper hob maps into \mathbb{D}, unbranched one D^{*} from Thurem $2 \leqslant 8.1$, would make each of the 2 connected compments of $p^{-1}\left(U_{i}\right)$ biholaurphic to \mathbb{D} \& $A C_{u} \varphi=\varphi$ (path m $|D|$ would not lease the conespmeiding cmupment.)

Lemma 2: The nature of $p^{-1}(\infty)$ defends on the parity of m. If m is odd, p is branched on ∞. (ie $\left.p^{-1}(\infty)=31 p+8\right)$, but if m is even, p is mbrauched on ∞, so $p^{-1}(\infty)$ insists of 2 different its.

Proof: We consider a unbid U of ∞. Set $\left.U^{*}=3 z:|z|>r\right\}$ fr $r \gg 1$ so that
 Since $h(\infty)=\infty$ \& $\nu(\infty, f)=m$, we car write

$$
f_{(z)}=z^{m} F_{l}
$$

where $F: \mathbb{P}^{\prime} \longrightarrow \mathbb{P}^{\prime}$ holourphic \& F hes no zees in U. So by Lemmal applied to $g=F_{0} \Psi^{-1}$ we see that F admits a square nos tim U - Write $V^{*}=P^{-1}\left(U^{*}\right)$ \& notice $P_{\mid V^{x}}: V^{*} \longrightarrow U^{*}$ is a 2 -sheeted cornering We discuss tor cases, depending on the parity of m.

CASE 1: m is odd
Using \sqrt{F} on U we can find $g=z^{\frac{m-1}{2}} \sqrt{F} \in \cup(U)$ with $h(z)=z(g(z))^{2}$.
Using the same $A C$ argument (" $\alpha_{i}=\infty$ ") for \sqrt{h} from Lemma 1 insotring a sign change after loping around ∞ with.a circle in U centered at O we see that $P^{-1}(\infty)$ has exactly Apt (V^{*} is connected)

CASE 2: m is even
We set $h(z)=H(z)^{2}$ fo $H=z^{m / 2} \sqrt{F}$. In this case, \sqrt{G} hes 2 distinct solutions: $\pm H(z)$ a each se will conesfud to reconnected comp of $\overline{V^{*}}$. Thess, we has 2 distinct pts $m Y$ oren $\infty \& V^{*}$ has 2 cop D We see tor crate examples:
Example 1: $n=1$ odd $\left.\& f(z)=z \in \operatorname{l}^{\prime}\right) \quad Q_{(z)}=T^{2}-z$ We hare 2 square pots at ${O_{Y, 1}}$, one with value 1 at 1 : n is odd, so p has 2 chit pts: $0 \& \infty$
End germ can be extended To a holmurphic function $\mu \mathbb{C}$, cut Fo φ^{+}: use $\mathbb{C} \backslash \mathbb{R}_{\leqslant 0}$ \& for φ^{-}un e $\mathbb{C}, \mathbb{R}_{\geq 0}$

ξ

$$
\left(\begin{array}{r}
\infty \\
-9
\end{array}+\right.
$$

Do analytic continuation of φ^{+}beyond the cut to set φ^{-}, so

We hase 1 choice of $\sqrt{z}: Y \longrightarrow \mathbb{C}$ meromurphic (Simple alued)
Example 2: $n=2$ esen \& $f_{(z)}=(z-\lambda)(z-\mu)$
Now, we hase 2 pts: $\lambda, \mu ; \infty$ is not a cait pt fos p. We make a slit along the line seguent jrining $\lambda \& \mu$. We can pich 2 beanches of $\sqrt{f} m$ the conflement. So we hase 2 choices

\sqrt{f}

We glan them to get $\begin{aligned} & =\mathbb{P}^{\prime} \\ & \left.\begin{array}{l}\downarrow \\ \mathbb{P}^{\prime} \\ \\ \\ \\ \\ \end{array}\right]\end{aligned}$
Example 3: $n=3$ red \& $f(z)=(z-\lambda)(z-\mu)(z-\alpha)$
We hase 4 citical priuts $\lambda, \mu, \alpha \& \infty$. We make 2 cuts: one alug the segreent jerining $\lambda \& \mu$ \& me aloug flu live jremeng α to ∞. Ow the complement we can pich 2 brouches of \sqrt{F} :

ξ

\Rightarrow weget ∞ so $Y=\mathbb{E}$
general custunctim: $\quad h(x)=\prod_{i=1}^{n}\left(z-\alpha_{i}\right) \quad$ we build $\left\lceil\frac{m}{2}\right\rceil$ slits
$\left\{:\right.$ jorning all pain α_{i}, α_{i+1} if m even \quad is $i=\left\lceil\frac{m}{2}\right\rceil-1$ \& $\quad \alpha_{m}$ to ∞ ifmodd
We set Y by gluing

Mapp $? \quad X=V\left(T^{2}-h(z)\right) \leq \mathbb{P}^{2}$

$$
\Rightarrow Y=\underbrace{00 \cdots 0}_{\text {suhac of gumes }}
$$

$\left[\frac{m}{2}\right]-1$
§13.2 Puisuex expansim:
We idutity $b_{0}=$ germs of mermurptic function of \mathbb{C} at $x=0$ with $\mathbb{C}_{\|} z \varepsilon \varepsilon=\left\{\sum_{\gamma=-k}^{\infty} a_{\gamma} z^{\gamma} \quad k \in \mathbb{Z}, a_{\gamma} \in \mathbb{C}\right.$, curtenging im sime $0<|z|<r\}$
Pick $F(z, w)=\omega^{n}+c_{1}(z) w^{n-1}+\cdots+c_{n}(z) \in \mathbb{C} 33 z\{ \}(w]$.
 a Laument series $\left.\varphi(\xi)=\sum_{\nu=-k}^{\infty} a_{\nu} \xi^{\nu} \in \mathbb{C} 3 ; \xi \xi\right\}$ with $F\left(\xi^{n}, \varphi(\xi)\right)=0$ riewed in $\mathbb{C} 33\}\left\}\right.$. Funthernaver it $\left.\varepsilon_{i} \in \mathbb{Q}\right\} z \varepsilon$, then $\varphi \in \mathbb{C}\{z\}$ as well.

Egeimalently: $F(z, \omega)=0$ can be solsed by riewing ω as a sevies in $z^{1 / h}$ Remark: Then will be exactly n solutius ($\omega=\varphi(\varepsilon \xi)$ when $\varepsilon^{n}=1$)

So $\mathbb{C} 33^{3}$ 绝 is the splitting field of $F \in \mathbb{C} 3 z \in\{[\omega]$.
Proof of Thurem:
 thlifift $F(z, \omega) \in \boldsymbol{K}^{6}\left(D_{r}(0)\right)[\omega]$ is aloo imeduccible. In additim, $F(0, \omega)$ has mely simple noots, so 0 is awray them the discrimimantal brees of F - Pick $r>0$ so that $\forall a \in D_{r}^{*}(0): F(a, w)$ has only simuple noots (we ned
T_{0} avid the discumimant licees, but we can do this simce O is notin it)

- Using Thun $£ 11.2$, we consider the alpebreic fenctin (Y, P, f) difined by $F(z, \omega) \in \mathscr{G}\left(D_{r}(0)\right)[\omega]$, so $p: Y \longrightarrow D_{r}(0)$ is a deguee n proter holo map, unnamitied ree. $D_{c}^{*}(0)$. Set $Y^{\prime}=Y-P^{-1}(0)$ (cmuncted)

Furthermore $p^{-1}(0)=\{1$ pt $\}=$ la \& Ψ extends ! to a biholourphism $\Psi: Y \rightarrow \mathbb{D}^{(0)}$ with $\psi(a)=0$.
Write $\alpha=\Psi^{-1}: \mathbb{D}_{1 / n}^{(0)} \longrightarrow Y$. Then $p \circ \alpha(\xi)=\xi^{n}$
Sime $F(p, f)=f_{(\omega)}^{n}+c_{1} \circ p_{(\omega)} f_{(\omega)}^{n-1}+\cdots+c_{n} \circ p_{(\omega)}=0$ in $\mathbb{0}[\omega]$, we set

$$
\begin{aligned}
F\left(\xi^{n}, f \circ \alpha(\xi)\right) & =\left(f_{0} \alpha(\xi)\right)^{n}+c_{1} \circ p(\alpha(\xi))(f \circ \alpha)^{n-1}+\cdots+c_{n} \circ p(\alpha(\xi)) \\
& =\alpha^{*}(F(p, f))=\alpha^{*}(0)=0
\end{aligned}
$$

Take $\varphi_{(\xi)}=f_{0} \alpha_{(\xi)} \quad T_{0}$ condude.
Note: We can maores the proer series expn of $f=\varphi_{0} \alpha^{-1}$ if we can solre fos φ directly \& we can cmpute $\Psi=\alpha^{-1}$.

Summayy. So for, we hass built new RS from old ones frem 3 pens fecteres:
(1) X RS m \bar{x} unis cone \& quotients by subgoups of Deck ($(\bar{x} \mid x)$
(2) YRS $\quad \varphi \in O_{Y, g} m \quad X \subseteq|O|$ comm unp of $|O|$ containing φ (analytec cunt)
(3) Y RS \& $Q_{(T)} \subseteq \mathcal{H}_{(}(Y)(T)$ mmic, ined mo (X, P, F) alf functim

Missing constauction. Build RS from differentiable 1-forms. (next lectueres)

