Lecture XIII: Examples of Algebraic functions & Puiseur Expansions Fix $Y \in RS \leq Q = T^n + c_1 T^{n-1} + \dots + c_n \in J^{\infty}(Y)[T]$ (meducible Debinition: An algebraic function for Q&Y is a triple (X,p,f) when (1) X is a RS (2) p: X -> Y is a proper un-const holmorphic map of degree n ["n-sheeted branched covering") (3) $f \in \mathcal{J}(X)$ with $(\underline{p^*Q})(F) = 0$. Ē(Y)[T] THAT: The triple is unique up to ! bildmorphism: If (Z, q, g) is another such triple, then I! J: Z -> X beholomorphism with $z \xrightarrow{\sigma} \times z \xrightarrow{\sigma} \times$ $z \xrightarrow{\sigma} \times z \xrightarrow{\sigma} \times$ $z \xrightarrow{\sigma} \times z \xrightarrow{\sigma} \times$ $z \xrightarrow{\sigma} \times z \xrightarrow{\sigma} x \xrightarrow{\sigma} \times z \xrightarrow{\sigma} x \xrightarrow{\sigma}$ \$13.1 Examples. Set Y = TP' h (z) = (z - d,) ···· (x - dm) polynomial with a distinct water & $Q(T) := T^{2} - h \in \mathcal{C}(T')[T] = \mathbb{C}_{z}[T]$ Claim: Q(T) is ineducible 3f/By intradiction, assume $\exists g \in \mathbb{C}(z)$ with $g^2 = h$ (soluto $T^2 = h$) • Then, $g \in O(\mathbb{C}, 3d_1, \dots, d_m)$ because $h \in O(\mathbb{C})$ By argument painciple $I := \frac{1}{2\pi i} \int \frac{S'(2)}{S(2)} d2 \in \mathbb{Z}$ (# gens of g m (\mathfrak{S} small enough) $I := \frac{1}{2\pi i} \int \frac{S'(2)}{S(2)} d2 \in \mathbb{Z}$ (\mathfrak{F} gens of \mathfrak{G} m $Int(\mathfrak{S})$) But $\frac{g'(z)}{g(z)} = \frac{z}{h} \frac{h'}{h}$ so $I = \frac{z}{z} \frac{1}{2\pi i} \oint \frac{h'(z)}{h(z)} = \frac{z}{z} \cdot I = \frac{z}{z} \notin \mathbb{Z}$ $\bigcup_{z \in h(z)} \int \frac{h'(z)}{h(z)} = \frac{1}{z} \cdot I = \frac{z}{z} \notin \mathbb{Z}$ => Using Theorem \$11.3, we have a RS X associated to Q + X pl, z-to-1 noter map $a g \in \mathcal{J}(X) \text{ with } (p^*Q)(g) = 0. \quad (write g:= "Jh")$ Note: p is holomorphic & unbrached ory C. 3 x1, ..., xmt = P ~ B with B = 3 di,..., dm & U3 00 f

9: What do these surfaces look like? (They correspond to hyperelliptic and). Where are the branch points of p?

First, we look at $p_{1\times'}: \times' = \times \cdot p^{-1}(B) \longrightarrow \Upsilon' = (-B)$ holourphic z-shuted unbranched conting

 $\Rightarrow q_{incn} any g \in Y' & \varphi \in O_{Y'y} \quad with \ \varphi^2 = p(h) \quad we can do enalytec ont in$ any path u in Y' starting from y $<math display="block">\begin{array}{c} \varphi \in X' \subseteq |O_{Y'}| \in |O_{P'}| \\ \exists : \hat{u} \quad X' \subseteq |O_{Y'}| \in |O_{P'}| \\ \vdots \quad \hat{u} \in (0, 1] \quad \forall Y' \ni y' \\ o \in [0, 1] \quad \forall Y' \ni y' \end{array}$

$$\begin{split} & \bigwedge' \text{ is not simply connected so we cannot guarantee we have a section SEO(Y)} \\ & \text{with } p_{y_{0}}(s) = \Psi \\ & \text{. We have 2 solutions } \Psi \text{ to } \Psi^{2} = p_{0}(h) \text{ , differing by sign. (2 points in <math>X' \text{ orea each } \mathcal{Y} = Y') } \\ & \mathbb{Q}: \text{ How many solutions do we have over each } b \in \mathbb{R}? \\ & \mathbb{A}: \text{ Only 1 over } d_{1,\dots,}d_{n}, \text{ Over so, it depends on the parity of m} \\ & \text{Lemma 1: } X \text{ hos exactly 1 point over each } di (\Longrightarrow \text{ branch pts of } P) \\ & \overline{SF/Idea}: \text{Isolate each } a_{i} \text{ by a clise and look at the notivition of } p \text{ on its primage} \\ & \text{The 2 connected comparents will have intersecting closures over } p_{-1}^{-1}(a_{i}). \\ & \text{Given } i \in SI, \dots, M \\ & \text{fix } rizo & \Psi_{i} = \mathbb{D}_{r_{i}}(a_{i}) = S \ge (12-a_{i})cr_{i} i \\ & \text{with } \Psi_{i} \cap \mathbb{B} = Sd_{i} i \end{cases}$$

• In vider $g(z) = \frac{h(z)}{z-d_i} = \prod_{j \neq i} (z-d_j)$ Note: g has us genoes in U_i & U_i is simply currected. By Corollary §9.1 we can find z sections G_{i,G_z} , $U_i \rightarrow 0$ with $G_i^z = g$ (solve for 1 secon e extend to a section)

Use
$$G=G_{1}$$
 to write $f_{(z)} = (z-d_{1})G_{(z)}^{2}$.
Fix $ocs < r$: a write $z \in (z, z)$ as $z = a_{1} + \delta e^{i\Theta} osered set$
set $\Psi \in (0_{Y/S})$ with $\Psi^{2} = f_{g}(h)$
Thus $\Psi_{(g)} = \sqrt{5}^{2} e^{i\Theta_{2}} G(g)$
By constanting, $AC_{1}\Psi = -\Psi$

This forces $p^{-1}(U_i)$ to have a single connected component. Otherwise, our classification of proper bold maps into D, unbranched over D* from Theorem 2 §8.1, would make each of the 2 connected components of $p^{-1}(U_i)$ biholoworphic to D & $AC_u Q = Q$ (peth in [U] would not leave the corresponding component.)

Lemma Z: The nature of $p^{-1}(\infty)$ depends on the parity of m. If m is odd, p is branched over ∞ (if $p^{-1}(\infty) = 31474$), but it is even, p is inbranched over ∞ , so $p^{-1}(\infty)$ ensists of z different ets.

where $F: \mathbb{P}' \longrightarrow \mathbb{P}'$ holomorphic & \overline{F} has no genoes in U. So by Lemma 1 applied to $g = \overline{F} \circ \Psi^{-1}$ we see that \overline{F} admits a square not in U. Write $V^* = p^{-1}(U^*)$ & notice $p: V^* \longrightarrow U^*$ is a z-shield covering We discuss two cases, depending on the pairty of m.

CASE 1: M is odd Using JF on U we can find $g = z^{\frac{m-1}{2}} F \in O(U)$ with $h(z) = z \lfloor g(z) \rfloor^2$. Using the same AC argument ("x;= w") for The form Lemma 1 insolving a sign change after looping around as with a cincle in U centered at 0 we see that p⁻¹ (as) has exactly 1 pt (V*is connected) CASE 2: m is heren We set hizz = Hizz for H = z^{m/2} [F. In this case, If has 2 distinct solutions : ±H(z) is each me will concepted to me connected comp of V*. Thus, we have a distinct pts mY over as & V* has 2 comp D We see two cucute examples: Example 1: n=1 odd & $f(z) = z \in \mathcal{K}(\mathbb{R}^{\prime})$ $Q_{(z)} = T^2 - z$ We have a square noots at Q, , me with value 1 at 1: n is old, so p has 2 cut pts: 0 & 00 Each gern can be extended to a holoworphic function of Crait 8 \$7 4 une (~ IR 20 For 9t : use C R SO + iR₂₀ -1 § $\begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix} + = - \begin{pmatrix} -1 \\ -1 \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} + = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$ Do analytic continuation of 4t beyond the cut to get 4-, so we can glue both sides along opposite signs, to get 1: P'& P', I I

We have I choice of $\overline{12}$; $Y \longrightarrow \mathbb{C}$ meanscriptic (simple induced) <u>Example 2</u>: n=2 then a $F_{(\frac{2}{2})} = (\frac{2}{2} - \lambda)(\frac{2}{2} - \mu)$ Now, we have 2pts: λ, μ ; ∞ is not a cast pt for p. We make a slit along the line segment joining $\lambda \ge \mu$. We can pick 2 bean class of $\overline{1F}$ in the complement. So we have 2 choices $I \xrightarrow{I}_{F} \xrightarrow{I}_{F}$ We gleer them To get $Y = \overline{P}^{1} \xrightarrow{2}_{F}$ We gleer them To get $Y = \overline{P}^{1} \xrightarrow{2}_{F}$

Example 3: n=3 odd & F(2) = (2-2)(2-u)(2-d) We have 4 critical points 2, e, x & ∞. We make 2 crets: one along the sequent jaining 2 & e & me along the line journey of to ∞. On the complement we can pick 2 branches of FF;

General custuration:
$$h(x) = \prod_{r=1}^{n} (2-ri)$$
 we build $\lim_{z \to z} slits$

$$\begin{cases} \vdots joining all pain $d_{1}, d_{1+1} & \text{if } m \text{ dren} \\ \vdots & \text{if } m$$$

Lift ci To $M(D_{r}^{*}(o))$ a call the sections ci. Since Fisiened, be may assume the lift $F(z, w) \in M(D_{r}(o))(w)$ is also inedexcelle. In addition, F(o, w)has only simple roots, so o is away from the discriminantal locus of F. Pick r > o so that $\forall a \in D_{r}(o)$: F(a, w) has only simple roots (we need

To avoid the discuminant brees, but we can do this since 0 is not in it)
. Using Thue 1 \$ 11.2, we consider the algebraic function
$$(Y, p, f)$$
 defined by
 $F(z,w) \in \mathcal{T}_0(D_r(0))[w]$, so $p: Y \longrightarrow D_r(0)$ is a degree n profer holo
map, unramified see $D_r^{(*)}(0)$. Set $Y' = Y - p^{-1}(0)$ (connected)
By our classification Thue 1 \$ 8.1 $\exists \Psi: Y' \longrightarrow D_r^{(*)}(0)$ Ψ biholomorphic
 $p \downarrow \bigcup_{r=0}^{\infty} \bigcup_{r=0}^{\infty}$

Furthermore $p^{-1}(o) = \frac{1}{pt} \frac{pt}{s} = \frac{1}{s} \frac{pt}{s} + \frac{1}{$

Write
$$d = \Psi^{-1} \cdot D_{c'm}^{(0)} \longrightarrow Y$$
. Then pod $(z_{3}) = z_{3}^{m}$

Since
$$F(p, f) = f_{(w)}^{n} + c_{1}op_{(w)}f_{(w)}^{n-1} + \dots + c_{n}op_{(w)} = 0$$
 in $G(w]$, we get
 $F(r_{5}^{n}, food(r_{5})) = (food(s_{5}))^{n} + c_{1}op(d(s_{5}))(food)^{n-1} + \dots + c_{n}op(d(s_{5}))$
 $= d^{*}(F(p, f)) = d^{*}(o) = 0.$

Take
$$P = fool_{3}$$
 to endude.

<u>Note</u>: We can recover the power veries expr of $f = 4 \circ d^{-1}$ if we can solve for 4directly & we can compute $4 = d^{-1}$.

Summary: So far, we have built new RS from old mes from 3 perspecteres: (1) X RS my X unit core & quotients by subgroups of Deck (X | X) (2) Y RS 400, my X = 101 come comp of 101 containing 4 (analytic cont) (3) Y RS & Q(T) = Jb(Y)(T) maic, and my (X, P, F) alg fundim <u>Hissing construction</u>: Build RS from differentiable 1-forms. (next lectures)