Lecture XV: Integration of differential 1-forms Last Time, we defined differential forms on RS by local coordinates. $\int C^{\infty} f_{em} dx = 0$ $\frac{\partial g}{\partial x} dy = \frac{\partial g}{\partial z} dz + \frac{\partial g}{\partial z} dz = \frac{\partial g}{\partial z} dz + \frac{\partial g}{\partial z} dz$ E(U) = 3 smooth C°- diff ble junctions mU { VSX ofen $\mathcal{E}^{(1)}(U) = 1 - forms = 32 f_k dg_k \qquad f_k g_k \in \mathcal{E}(U)$ $\mathcal{C}^{(2)}(U) = 2 - horns = \frac{1}{2} \sum_{\substack{k \\ \text{finite}}} f_{k} dh_{k} \wedge dg_{k} : f_{k} h_{k} g_{k} \in \mathcal{E}(U)$ $\xi(v) \stackrel{\ell}{\longrightarrow} \xi'(v) \stackrel{(v)}{\longrightarrow} \xi'(v)$ Chain complex: w= Efk dyk ~ Edfkndgh $F: X \rightarrow Y$ holouvephic $\longrightarrow F^{*}: \mathcal{E}_{Y}(U) \longrightarrow \mathcal{E}_{X}(F(U))$ k=0,1,2 $\bullet \underbrace{k=0}{F^{\star}(F)} = F \bullet F$ • $\underline{k} = F^{*}\left(\sum_{j} F_{j} d_{j}\right) = \sum_{j} F^{*}(F_{j}) d(F^{*}_{j})$ • $\underline{k=2} = F^* \left(\sum_{j} k_j d h_j \wedge d k_j \right) = \sum_{j} F^* (F_j) d (F^* h_j) \wedge d (F^* g_j)$ KET F* commutes with 2 (we'll use this today!) TODAY. Discuss integration of differential 1-forms & periods of closed 1-forms \$15.1 Integration of 1-forms: $F(x X \circ RS, \omega \in \mathcal{E}^{(1)}(X) \land$ Definition: We say a curre &: [0,1] ____ X is piecurise differentiable it we can find () a partition o=to=t, <...< tn=1 of (0,1]

(2) wordinate charts (U_{k}, z_{k}) with $U_{k} \xrightarrow{\sim} D$ $k \ge k = x_{k} + iy_{k}$ for $k = 1, \dots, z_{k}$ with $\mathcal{V}([t_{k-1}, t_{k}]) \subseteq U_{k}$ & $x_{k} \circ \mathcal{V} : [t_{k-1}, t_{k}] \longrightarrow \mathbb{R}$ an C^{-} differentiable $y_{k} \circ \mathcal{V} : [t_{k-1}, t_{k}] \longrightarrow \mathbb{R}$

$$F(z) \in C^{\infty} \text{ by constantion. Need to confirm } dF = \omega$$

$$\frac{\partial F}{\partial x} = \int_{0}^{1} \frac{\partial}{\partial x} (F(t_{x}t_{y}) \times + \delta(t_{x}t_{y}) y) dt$$

$$= \int_{0}^{1} (\frac{\partial F}{\partial x}(t_{x}t_{y}) + x + F(t_{x}t_{y}) + \frac{\partial}{\partial x} \delta(t_{x}t_{y}) \cdot t_{y}) dt$$

$$= \int_{0}^{1} (t (\frac{\partial F(t_{x}t_{y})}{\partial t}) + F(t_{x}t_{y})) dt = \int_{0}^{2} \frac{\partial}{\partial t} (t F(t_{x}t_{y})) dt$$

$$= t F(t_{x}t_{y}) \Big|_{t=0}^{t=1} = F(x_{y}y)$$

Symmetry gives
$$\frac{\partial F}{\partial y} = g(x,y)$$

Conclude: $dF = \omega$, as we wanted.

Remark: if w is holouorphic (ie
$$w = Fdz$$
 for $F \in O(O_{\Gamma}(o))$) the proof of Proportions
is simpler! Write $F = \sum_{n=0}^{\infty} c_n z^n$ a set $\overline{T} = \int \sum_{n=0}^{\infty} c_n z^n dz = \sum_{n=0}^{\infty} \frac{c_{n+1}}{n+1} z^{n+1}$
By construction $F \in O(O_{\Gamma}(o))$ (Abel's Theorem) a $dF = w$.

. Restrictions are inherited from E.

We call
$$\mathcal{F}$$
 the sheaf of primitives of w
Lemma3. \mathcal{F} is a sheaf \mathfrak{a} it satisfies the Identity Theorem
 $3F/$ Presheaf condition is clear. Since $\mathcal{F} \subseteq \mathcal{E}$ (sheaf) a the the differential

endition is compatible with gluing in
$$\mathcal{B}$$
, with that \mathcal{F} is a sheaf.
Any $h_1, h_2 \in \mathcal{F}(U)$ for U spin a converted neared differ by a constant. Hence,
if $J_0(h_1) - J_0(h_2)$ for sinci $g \in U$, we and ded the constant is $0 \neq so = h_1 = h_2 = 0$
Theorem 1: Fix $Y = R.S \neq w \in \mathcal{B}^{(1)}(Y)$ closed. Then, there exist
 $0 = RS \times \mathcal{E} = a$ covering map $P: X \longrightarrow Y$
 $(2) = primitive $\mathcal{F} \in \mathcal{B}(X)$ of the differential form P^*w .
Proof: Let \mathcal{F} be the shead of primitives of $w \neq a$ consider $P: |\mathcal{F}| \longrightarrow Y$ which
we know is a surjective local homeworkfulses (primitives exist locally by Proposition)
. Since Y is hourdorff a locally converted RSS \mathcal{F} eatisfies the Identity Them,
or know by Theorem 2 38.2 that $|\mathcal{F}|$ is thansdorff.
 \Rightarrow We use p local homes to make $|\mathcal{F}|$ into a RS \mathcal{R} P a belowerghic map
. Claim 1: p is a covering map.
 $\mathcal{F}/$ We clude the definition. Pick $y \in Y \mathcal{R}$ a local cleat $U(\mathcal{R})$ hors with $U\mathcal{R}$
By Prophitics 1, w_1 has a primitive on U , call it $f \in \mathcal{B}(U)$. Furthermore for
is also a primitive for $W \in \mathcal{C}$.
Thus, $f^{-1}(U) = \bigcup W(U, Free) \leq |\mathcal{F}|$ (The sets are primited disjoint by
 $\mathcal{R} = P(W(U, Free) : W(U, Free) = \omega U$ by construction (Theorem 2582)
a May connected component X of $|\mathcal{F}|$ gives 0
. We define $\mathcal{F}: X \longrightarrow \mathbb{C}$ by $\mathcal{F}(x) = x(y) = x(p(x))$
 $\frac{\mathcal{F}_{Y,0}}{\mathcal{F}_Y}$ such that $Y \in \mathcal{F}$ is bolowergheic \mathcal{R} of $\mathcal{F}(x) = x(y) = x(y) = x(W(U, f)) \leq X$
 $\frac{\mathcal{F}_Y}{\mathcal{F}}$ (ch $x \in X \in \mathbb{R}$ and $y = p(x) \in Y$. Fix $U \subseteq Y$ open connected with $y \in Y$, and
 a function f of w_1 with $J_0(e) = x$ Since X is connected with $y \in Y$, and
 a function f of w_1 with $J_0(e) = x$ Since X is connected with $y \in Y$, and
 a function f of w_1 with $J_0(e) = x$ Since X is connected with $y \in Y$, and
 a function f of w_1 with $J_0(e) = x$ Since X is connected with $y \in Y$, and
 a function f of w_1 with $J_0(e) = x$ Since X is connected with $y \in Y$.$

Corollary 2: If Y is a nimply connected R.S., every closed diffible 1-form in X is exact. (ie $\exists F \in \mathcal{E}(Y)$ with $\exists F = w \iff w \in \mathcal{E}'(Y)$ is closed). $\Im / id: Y \longrightarrow Y$ is the universal cover. We can reinterpret path integrals $\Im w$ using this corollary. Thuremz: Fix X RS, $\pi: \widetilde{X} \to X$ its universal cover. Fix $\omega \in \widetilde{\mathcal{E}}(\widetilde{X})$ closed $\mathcal{F} \in \mathcal{E}(\widetilde{X})$ primiture for $\pi^* \omega$. Grown a piecurise diff' path $\mathcal{F}: [0,1] \to X \notin \mathbb{R}$ a lifting $\hat{\delta}$ of δ relative to K, we have $\int \omega = F(\hat{\delta}_{(1)}) - F(\hat{\delta}_{(0)})$ "Inoof: since cornings have the curse litting, projecty, 3δ x [0,1] - X χ we can find $\hat{\delta}: [0,1] \longrightarrow \tilde{X}$ with $0\hat{\delta}=\delta$ $N_{\mathcal{F}\mathcal{W}} = \int \mathcal{W}$ $\hat{\mathcal{F}} = \int \mathcal{W}$ $\hat{\mathcal{F}} = \mathcal{F}_{\mathcal{F}} \hat{\mathcal{F}}$ by the definition of path integral So $\int \omega = \int \omega = \int \pi^* \omega = \int dF = F(\hat{\delta}_{(1)}) - F(\hat{\delta}_{(0)})$. $\delta = \int dF = F(\hat{\delta}_{(1)}) - F(\hat{\delta}_{(0)})$. Corollany 3: Fix X a R.S & w E & (X) a closed Liff'l 1-form. Then (1) $\overline{IF} = a, b \in X = \delta_1, \delta_2: [0,1] \longrightarrow X = homotopic curves with <math>\delta_1(0) = \tilde{\delta}_1(0) = a$ $\delta_2(1) = \delta_2(1) = b$. then $\int_{\mathcal{X}_1} \omega = \int_{\mathcal{X}_2} \omega$ (2) If $\chi_1, \chi_2 : [0, 1] \longrightarrow X$ are two closed armes that are free-hundopic $H(o,t) = \delta_{1}(t), \quad H(i,t) = \delta_{2}(t), \quad H(s,o) = H(s,i))$ $\underbrace{\frac{1}{2}}{\frac{1}{2}}s$ $(H:[0,1] \times [0,1] \longrightarrow X \quad \text{cmt}$ then $\int \omega = \int \omega$. Barof, (1) hunder T. X — X universal covering a liftings X, Je alto T with the same initial point. Since coverings lift hundopies (Thin 1 \$4.4 & Thin 2 \$5.1)
$$\begin{split} & \omega \in \hat{\mathcal{V}}_{1}(1) = \hat{\mathcal{V}}_{2}(1) \quad \text{So by Theorem } z \quad \int_{\mathcal{V}_{1}} \omega = F(\hat{\mathcal{V}}_{1}(1)) - F(\hat{\mathcal{V}}_{1}(0)) \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(0)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(1)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) - F(\hat{\mathcal{V}}_{2}(1)) = \int_{\mathcal{V}_{2}} \omega \\ & \psi \in F(\hat{\mathcal{V}}_{2}(1)) = \int_{\mathcal{V}_{2}} \omega \\$$
(2) Set $a = \delta_{1}(0) = \delta_{1}(1) = \delta_{2}(0) = \delta_{2}(1) = \delta_{2}(1)$ This curre join a tob. By Lemma \$4.4, J,~ & #J#20

$$= \int_{Y_{1}} W = \int_{Y_{2}} W = \int_{Y_{2}} W + \int_{Y_{2}} W = \int_{Y_{2}} W + \int_{Y_{2}} W - \int_{Y_{2}} W = \int_{Y_{2}} W + \int_{Y_{2}} W - \int_{Y_{2}} W = \int_{Y_{2}} W + \int_{Y_{2}} W$$

Idea, Pick p: X -> X minusal over & find a primitive F to p'w m X (This always exists by Corollary 1 \$ 15.2). Next, we'll need to find necessary ε sufficient anditions that en sur F descends to X. These will Le precisely the ramishing of all periods of ω. $\tilde{X} \xrightarrow{\mp} \mathbb{C}$ $GOAL: Tix T_0 \in \mathcal{E}(X) \quad with \quad T_0 \circ p = T \quad (p^* T_0 = T).$ P J O To We can do this I F is constant along the fibers of p. (ie F is fixed by Deck(XIX)) <u>Proposition 1</u>: Assume $F \in \mathcal{E}(\tilde{X})$ is fixed by $Deck(\tilde{X}|X)$. Thus $\exists f_0 \in \mathcal{E}(X)$ with f = p* fo. Furthermore, if h is holomorphic, so is fo. $\frac{\text{Baoof}}{\text{Plu}} \cdot U \xrightarrow{\sim} V \text{ homeor } (\mathbb{C}^{\infty}, \text{ by endowing } \tilde{X} \text{ with the manifold structure in herited from X nialt)}$ Then: $f_{0}(x) = f(\tilde{x})$. By construction, $h_0 = -\frac{1}{10} h_0 h_0^{-1} = \frac{1}{10} h_0^{-1} (F_{10})$ so it is in $(\infty^{(1)})$ Since h is invariant under $\text{Deck}(\tilde{X}|X) \approx p: \tilde{X} \longrightarrow X$ is Galois, fo is independent of the choice of $\tilde{x} \in p^{-1}(\kappa)$. So to is well-defined as a function on X Since p is holomorphic, fo will be holomorphic whenever h is. 2 KEY p is a local homeomorphism, so $\overline{T}_0 := P_* \overline{F} : \bigoplus P^* \overline{T}_0 = \overline{F}$. Proposition Z: Pick w & E (x) closed & fix F & B(x) with dF = p w. Then Fis constant along the fibers of $p: \tilde{X} \longrightarrow X$. if $g_{\omega} \equiv 0$ <u>Broof</u>: finn x EX pick x = (x, (1x) & x, E ('(xo) Since y is a Galois covering $\exists \sigma \in \operatorname{Dech}(\widetilde{X}|X)$ with $\widetilde{X}_{i} = \sigma(x_{o})$. \overline{X} is path connected so \overline{Z} \overline{X}_{σ} : $[0,1] \longrightarrow \overline{X}$ with $\overline{X}_{\sigma}(o) = \overline{X}_{o}$, $\overline{X}_{r}(i) = \overline{X}_{i}$

 $F \in O(X)$ But X is compact, so F is constant. These w = dF = 0. \Box

§ 15.4 Summands of Automorphy

Fix X RS & p: $\tilde{X} \longrightarrow X$ its universal way Recall Deck ($\tilde{X}|X$) C $\tilde{C}(\tilde{X})$ via $\overline{U} \circ F = F \circ \overline{U}^{-1}$ This action is a linear ($\overline{U} \circ (F + g) = \overline{U} \circ F + \overline{U} \cdot g$) and triplication ($\overline{U} \circ (F - g) = (\overline{U} \circ F)(\overline{U} \cdot g)$

Definition: $F \in \mathcal{E}(\bar{X})$ is called additively automorphic with constant summands of automorphy if $\exists a_{\sigma} \in \mathbb{C}$ set $F - \sigma \cdot F = a_{\sigma}$ $\forall \sigma \in \text{Deck}(\bar{X}|X)$ $a_{\sigma} = \text{summand}$ of automorphy for σ <u>Example1</u>: If $F \in \mathcal{E}(\bar{X})$ is fixed by $\text{Deck}(\bar{X}|X)$, then it's additively autom. By Prop 2 primitives of exact 1-forms are fixed by $\text{Deck}(\bar{X}|X)$

Example 2: $W = \frac{d^2}{2}$ cloud 1-form $M \mathbb{C}^*$, not exact $M \mathbb{C}^*$ $log_{2=}F: (\mathbb{C}^*) \longrightarrow \mathbb{C}$ is additively automorphic with constant semimounds of automorphy, and $a_{\overline{V}} = \overline{F} - \overline{V} \cdot \overline{F} = 2\overline{L} \operatorname{in}$ if $\overline{V} \subset \mathbb{N}$ under $\operatorname{beck}(\overline{\mathbb{C}}^* | \overline{\mathbb{C}}) \simeq \overline{\operatorname{II}}(\mathbb{C}^*) = Z$.

since
$$A_{\overline{\tau},F}^{(\overline{\tau})} = (\overline{c},F - \overline{\tau},\overline{c},F) = (\overline{f},-\overline{\tau},F) = (\overline{f},-\overline{\tau},F) = (\overline{f},-\overline{\tau},F) = (\overline{f},-\overline{\tau},F) = (\overline{f},\overline{r},F) = (\overline{$$

The next two nexts relate periods of closed forons to summands of automorphy.

Theorem 1 Fix X a RS &
$$p: \tilde{X} \longrightarrow X$$
 its universal cover. Fix $w \in \tilde{\mathcal{E}}^{(1)}(X) = closed$
from & $F \in \tilde{\mathcal{E}}(\tilde{X})$ with $dF = p^* w$. Then,
(1) F is additively automorphic with constant summands of automorphy.

(c) Under the isomorphism $\overline{\Pi}_1(X) \simeq \text{Deck}(\overline{X}|X)$, the summands of automorphy are the periods of ω .

But
$$\int \omega = \int \omega = F(\mathcal{X}_{\sigma}(1)) - F(\mathcal{X}_{\sigma}(0)) = F(\tau(\tilde{\mathcal{X}}_{o})) - F(\tilde{\mathcal{X}}_{o})$$

[pode] $\int pode \int \mathcal{X}_{\sigma}$ lifts pode rul to $p = -(F - \sigma^{-1}F)(\tilde{\mathcal{X}}_{o})$
(rollary 3 \$15.3 Theorem 2 \$(5.2) = $a_{\sigma^{-1}}$ (constant)
 $= -a_{\sigma^{-1}} = a_{\sigma^{-1}} = a_{\sigma^{-1}} = a_{\sigma^{-1}} = a_{\sigma^{-1}}$

Thursen Z: Fix X a RS & T: X -> Xits universal over. Fix FE 6(x) an additively automorphic function with constant summands of automorphy. Then I! w E E'(x) closed with $dF = p^* \omega$. Snoof: Write ag:=F-J.F. Then: $\sigma^{*}(dF) = d(\sigma^{*}F) = d(F \circ \sigma^{-1}) = d(F - \alpha_{\sigma}) = dF$ In particular dF is invariant under Deck(XIX) (X)"3 <u>6</u> (X)3 Now p is local home, so pt is p*↓ (⁴) ↓ p* impitelle & (p*) = p* Waite $\omega_{:}= \rho_{*}(dF)$. Locally m REX, pick (V/2) local chart = V = D & 3Uitier openson X with $P^{-1}(V) \xrightarrow{\sim} \bigsqcup_{i \in U} U_i \cong P_{|U_i|} : U_i \xrightarrow{\sim} V$ house $\forall z \in [m, U_i]$ we can use the local chart (Ui, Zoplui) Since dF is intervient under Deck (X|X) $dF_{|U_i} = d(F_0 \nabla^{-1})|_{\nabla(U_i)}$ So we set $w_{|v|} = (p_{|v|}) (dF_{|v|})$ By construction (RHS) is indep of the choice of zEI = wis well-befined We can glue To $\omega \in \mathcal{E}(X)$ since \mathcal{E}'' is a sheaf. • <u>(lain</u>: dw =0 : 3F/p*(dw)=2p*w = ddF=d²F=0 & p is a local homeomorphism. • By construction $(P^*\omega) = (P_{|\nu_i})^* \omega|_V = (P_{|\nu_i})^* (P_{|\nu_i})_* (dF_{|\nu_i}) = dF_{|\nu_i}$ Conclude : p*w=dF Uniqueness: any other w' will have $p^* w = p^* w' = dF$ so $p^* (w - w') = 0$ Since p^* is local home, we get w - w' = 0.

Example:
$$\Gamma = \mathbb{Z}a + \mathbb{Z}b$$
 $3\pi, 58$ R-linearly indep in \mathbb{C} and $X = \mathbb{Y}_{\Gamma}$ RS
P: $\mathbb{C} \longrightarrow \mathbb{Y}_{\Gamma}$ is the universal entring \mathbf{z} $\text{Deck}(\mathbb{C}|X) \cong \Gamma$ (translation!)
 $F = \text{id}: \mathbb{C} \longrightarrow \mathbb{C}$ is hold a additively automorphic with $a_{\sigma} = \sigma$ $\forall \sigma \in \Gamma$.
Thus, dF is imminiant under $\text{Deck}(\mathbb{C}/X) \otimes \exists \omega \in \mathcal{E}^{(1)}(X)$ holomorphic
with $p^* \omega = dZ$ Periods of ω are Γ . ($\int \omega = a_{\sigma} = \sigma$)
[Pollow]

Q: Why study these antimorphic functions with constant summands of autimorphy?
A: Allow us to build holomorphic 1-forms in a non-compact Riemann unbace
with prescribed periods (Behnke-Stein) To this we work with

$$p: X \rightarrow Y$$
 holomorphic avering of Riemann surfaces (unbranched!)
 a Deck (XIY) [see ≤ 28 Forster]
 $mag = F - \sigma \cdot F \in Q(X)$ whenever $F \in Q(X) \otimes \sigma \in \text{Deck}(XIY)$
o IF p is Galois & $a_{\sigma} = 0$ to, then $F \in P^* Q(X) \subseteq Q(Y)$, which
we identify with $Q(X)$

There (Behnke-Steen) IF X is a non-compact RS
$$a \notin \overline{u}, |X\rangle \longrightarrow a$$

is a group homomorphism, then $\exists a$ holomorphic (-form $w \in X (=> closed)$)
with $\int_{X} w = a_{\chi}$ $\forall X \in \overline{U}, |X\rangle$
 $3 \underline{evof}$ Build FEU(x) with semimands of automorphy a_{σ} (this requires some
work!) Then, $d \neq is a$ holomorphic (-form $m \propto with periods a_{\chi}$ (use
 $X = C po \delta_{\sigma}]$ for each $\sigma \in Deck(\overline{X}|X)$). The 1-form $w = p_{\star}(d \neq)$ has the
same periods.