
 Lecture XI Integrationofdifferential I forms
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15.2 PrimitiveForms
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Prior we define thesheafofprimitives of a closed form

Definition Given Ya RS W E EYy closed wedefine a sheaf 8 as follows

For each U E Y open we set Je101 3 te 810 I th win
Restrictions areinherited from E

We call I the sheaf of primitivesofw

Lemmons F is a sheaf it satisfies the IdentityTheorem

Pf Presleaf condition is clear Sima 5 E3 Isaf the thedifferential



audition is compatible with gluing in 8 weget that F is a sheaf
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15.3Periods
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15.4Summandsof Automorphy
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