Lecture XVII: Ceck Cohomology of sheases II

- $\partial^{2}=0 \Rightarrow \vec{B}^{\prime}(\underline{u}, \bar{J})=\operatorname{in}\left(\partial_{\mid C^{p-1}(\underline{u}, \bar{F})}\right) \subseteq \begin{aligned} & Z^{\prime}(\underline{u}, F)=\operatorname{kec} \partial \mid \\ & \text { waydes }\end{aligned} C^{\prime}(\underline{u}, \bar{F})$

$$
H^{p}(\underline{y}, \mathcal{F})=Z^{p}(\underline{u}, \tilde{\mathcal{F}}) / \bar{B}^{p}(\underline{u}, \tilde{F}) \quad \text { is ab } \mathrm{gp} / \text { rectr space }
$$

- If $\underline{v}<\underline{U}$ apimment, we fet $H^{\prime}(\underline{y}, \bar{J}) \xrightarrow{\sigma_{v}^{u}} H^{P}(\underline{v}, \bar{于})$

Key: This map is injective $p>p=1$ \& independent of \bar{b}.

$$
\begin{array}{r}
\text { - } H^{\prime}(X, \tilde{s}):=\frac{\lim _{\underline{w}} H^{\prime}(\underline{u}, \mathcal{F}) \quad \& H^{\prime}(X, \bar{F})=0 \Leftrightarrow H^{\prime}(\underline{U}, \bar{F})=0}{\forall \underline{u} \text { open corening }}
\end{array}
$$

Thurem: X R.S then $\begin{aligned} H^{\prime}\left(\underline{u}, \varepsilon^{(k)}\right) & =0 \quad \text { fr all } k=0,1,(1,0),(0,1), 2 \quad \forall \underline{u} \text { gencosering } \\ H^{\prime}\left(x, \varepsilon^{(k)}\right) & =0 \quad 1\end{aligned}$
§ 17.1 Mre chomulogy examples:
Therem 1: Assume X is a simply cannected R.S. \& tix \underline{U} sten oniming Then

$$
H^{\prime}(\underline{u}, \underline{\mathbb{C}})=H^{\prime}(\underline{u}, \underline{\mathbb{Z}})=0,
$$

where \mathbb{C} \& $\underline{\mathbb{Z}}$ an shases of lerally constant functions with alues in \mathbb{C}, map \mathbb{Z}.
In particular, $H^{\prime}(X, \mathbb{C})=H^{\prime}(X, \underline{\mathbb{Z}})=0$
Prod. (1) Finst we appe is $F=\mathbb{C} \subseteq \mathcal{E}$.

Given $(c)_{i j} \in Z^{\prime}(\underline{u}, \mathbb{C})$, we can find $g \in C^{0}(\underline{u}, \underline{E})$ with $\partial g=' c$, ie $\delta_{j}-g_{i}=c_{i j}$ is constant on $U_{i j}$
Thus, $\quad d g_{j}=d_{i} \quad m V_{i j}$ $m X_{\text {with }} \quad l_{u_{i}}=d \rho_{i}$. In particular $d \omega=0 \quad(\omega$ is closed) But X is simply connected, so w is exact. Pick $f \in{ }^{T}(X)$ with $d f=\omega$.

Set $c_{i}:=-f_{u_{i}} g_{i}$ on U_{i}

- $d c_{i}=-d f_{v_{i}}+d g_{i}=-\left.w\right|_{v_{i}}+\left.w\right|_{v_{i}}=0$ so c_{i} is bialy constant on U_{i}, that is $c_{i} \in \mathbb{C}\left(U_{i}\right)$.
Now $c_{j}-c_{i}=g_{j}-g_{i}=c_{i j} m U_{i j}$ so $\partial(c)=\left(c_{i j}\right)$ as we wanted
(2) $F_{r} \tilde{F}=\underline{\mathbb{}}$, we need T_{0} use $e^{2 \pi i z}$.

Given $\left(a_{j k}\right) \in Z^{\prime}(\underline{U}, \underline{\mathbb{U}}) \subseteq Z^{\prime}(\underline{U}, \underline{\mathbb{C}})$ so we can find $\left(c_{i}\right)_{i} \in C^{0}(\underline{U}, \underline{\Phi}) \quad$ with $\quad a_{j k}=c_{k}-c_{j} \quad m \quad U_{j} \cap U_{k}$
Take $\exp (2 \pi i z)$ to get $1=\exp \left(2 \pi i a_{j n}\right)=\exp \left(2 \pi i c_{k}\right) / \exp \left(2 \pi i c_{j}\right)$
Conclusion: $\exp \left(2 \pi i c_{k}\right)=\exp \left(2 \pi i c_{j}\right)$ on $U_{j} \cap U_{k}$
Thus, then exists a bialy constant function $f \in \underline{O}(x)$ with $f_{u_{j}}=\exp \left(2 \pi i c_{j}\right)$
But X is connected, so this section is in fact a constant function
Choose $c \in \mathbb{C}$ with $\exp (2 \pi i c)=f$ \& set $a_{j}=-C_{\mid U_{j}}+c_{j}$ m U_{j} This is a locally constant fenctim on U_{j}, ie $a_{j} \in \mathbb{C}\left(U_{j}\right)$.

$$
\begin{aligned}
& -\exp \left(2 \pi i a_{j}\right)=\exp \left(2 \pi i c_{j}\right) / \exp (2 \pi i c)=f / f=1 m v_{j} \text { so } \\
& \Rightarrow a_{j} \in \mathbb{Z}\left(u_{j}\right)
\end{aligned}
$$

- $a_{k}-a_{j}=c_{k}-c_{j}=a_{j k} \quad m U_{j} \cap U_{k}$. ie $\partial\left(a_{j}\right)=a_{j k}$.

Conclusion: $\left(a_{j k}\right) \in B^{\prime}(\underline{u}, \underline{\mathbb{C}})$, so $\left(a_{j k}\right)=0$ in $H^{\prime}(\underline{u}, \mathbb{Z})$. D
§17.2 Leroy's Thuren
The examples we 're seen so far $\left(H^{\prime}\left(\underline{X}, \varepsilon^{(k)}\right)\right.$ for $k=0,1,(1,0),(0,1), 2$ \& $H^{\prime}(x, \mathbb{C})$ fri simply canucted) illustrate how to check if $H^{\prime}(X, \mathcal{F})=0$: show it for $H^{\prime}(\underline{U}, \bar{F})$ of \underline{U} abitiany open corenng.
Q: what to do when $H^{\prime}(x, 5) \neq 0$?
Leroy's Theoum will allow us to impute it as $H^{\prime}(U, F)$ from a Leroy corning It works in any Toprogical space (wot just R.S.!)
Definition: fires X top space, \mathcal{F} steal $x X \& \underline{U}=\left(U_{i}\right)_{i \in I}$ an open covering of X, we say \underline{U} is a le nay covering (of $1^{\text {st }}$ order) for if

$$
H^{\prime}\left(u_{i}, F\right)=0 \quad \forall i
$$

(In general, fr $p^{\text {th }} r d u$, we need $H^{H}\left(l_{i}, \bar{F}\right)=0 \quad \forall q \in\{1, \ldots, p\}$ \& $\forall i$)
Theorem (Leray): Fix a Topological space X, a sheaf of ab gps/rector sp Jean and am open coming $U=\left(U_{i}\right)_{i \in I} m X$ that is Lear fo \tilde{J}. Then,

$$
H^{\prime}(X, \mathcal{F}) \simeq H^{\prime}(\underline{U}, \bar{F}) \text {. (iso wit stmecture of } \bar{F} \text {) }
$$

Proof $F\left(x\right.$ refinement of U. Write $\underline{v}=\left(V_{k}\right)_{k \in K}$ \& pick $\tau: K \longrightarrow I$ Since

$$
\underset{\substack{\sigma_{v}^{u}}}{\left.H_{H^{\prime}(\underline{v}, \tilde{r})}^{H^{\prime}} \underline{u}, \tilde{v}\right)} H^{\prime}(X, \mathcal{F})
$$

it's enough to show $\underset{G_{v}^{u}}{u}: H^{\prime}(\underline{\underline{u}}, \vec{F}) \xrightarrow{\simeq} H^{\prime}(\underline{v}, \tilde{F})$ is an iso
if U is leary. By Therem $\$ 16.2$, it's enough to show r is suyictire

- Sick $f \in Z^{\prime}(\underline{v}, \tilde{F})$.

GOAL: Find $g \in Z^{\prime}(\underline{u}, F)$ with $G_{v}^{u}(\underline{g})-\underline{F} \in B^{\prime}(\underline{v}, \tilde{F})$, ie, $\exists h \in C^{0}(V, F)$ with $\zeta_{v}^{k}(g)=f+\partial h$ on $V_{k_{0}, k} \forall k_{0}, k, K^{2}$.
We build g by working on each $U_{i_{0} i_{1}}$ \& using the covering $\left(U_{i_{0} i_{1}} \cap V_{k}\right)_{k}$. Consider the stan covering of U_{i} given by $\underline{W}^{(i)}=\left\{U_{i} \cap V_{k}\right\}_{k}$.

Since $H^{\prime}\left(u_{i}, \mathcal{F}\right)=0 \quad \forall i$, we know $H^{1}\left(\underline{W^{(i)}}, \mathcal{F}\right)=0$
In particular $\left(\left.f_{k_{0} k_{1}}\right|_{U_{i} \cap V_{k_{0}} \cap V_{k_{1}}} \in \mathcal{F}\left(U_{i} \cap V_{k_{0}} \cap V_{k_{1}}\right)\right.$ satisfies the cocycle equation (inherited fine $f \in Z^{\prime}(\underline{v}, \mathcal{F})$), Thus, $\left(\Gamma_{k_{0} k_{1}} l_{i} \cap v_{k_{0} k_{1}}\right)_{k_{0} k_{1}} \in Z^{\prime}(\underline{W}, \mathcal{F})=B^{\prime}(\underline{W}, \tilde{F})$
$\begin{array}{ll}\text { Pick }\left(\varphi_{j}^{(i)}\right)_{j} \in C^{0}(\underline{w}, \tilde{J}) \quad \text { with } & f_{k_{0} k_{1}}=\varphi_{u_{i} \cap v_{k_{1}} k_{1}}^{(i)}-\varphi_{k_{0}}^{(i)} m u_{i} \cap v_{k_{0} \cap v_{k_{1}}} \\ \left(\varphi_{k}^{(i)} \in \tilde{F}\left(u_{i} \cap v_{k}\right) \quad \forall k \in K\right)\end{array}$
Foreack fixed pair $\left(i_{0}, i_{1}\right)$ we hare

$$
\begin{aligned}
f_{k_{0} k_{1}}= & \varphi_{k_{1}}^{\left(i_{0}\right)}-\varphi_{k_{0}}^{\left(i_{0}\right)}=\varphi_{k_{1}}^{\left(i_{1}\right)}-\varphi_{k_{0}}^{\left(i_{1}\right)} m U_{i_{0} i_{1}} \cap V_{k_{0} k_{1}} \forall k_{0}, k_{1} \\
& \varphi_{k_{1}}^{\left(i_{0}\right)}-\varphi_{k_{1}}^{\left(i_{1}\right)}=\varphi_{k_{0}}^{\left(i_{0}\right)}-\varphi_{k_{0}}^{\left(i_{1}\right)} m\left(U_{i_{0} i_{1}} \cap V_{k_{0}}\right) \cap\left(U_{i_{0} i_{1}} \cap V_{k_{1}}\right)
\end{aligned}
$$

By the shia f axiom, these flue T_{0} a ! section $g_{i o i} \in \mathcal{F}\left(U_{i_{0} i_{1}}\right)$ with \quad sioi, $\mid U_{i, i} \cap V_{k}=\varphi_{k}^{\left(i_{0}\right)}-\varphi_{k}^{(i)} \quad \forall k \in K$.

Uaim1 : $\left(g_{i o i_{1}}\right)_{i_{0} i}, \in Z^{\prime}(\underline{U}, \tilde{J})$

Bf/ $\left.\partial g\right|_{i_{0} i_{1} i_{2}}=g i_{1} i_{2}-\rho_{i_{0} i_{2}}+g_{i_{0} i_{1}} \stackrel{?}{=} 0 \quad$ on $U_{i_{0} i_{1} i_{2}}$
We check it $m \quad U_{i 0 i_{1} i 2} \cap V_{k} \quad$ fo $k \in K$

$$
\left.(L H S)\right|_{U_{i 0 i} i_{2} \cap V_{k}}=\underbrace{\varphi_{k}^{\left(i_{1}\right)}-\varphi_{k}^{\left(i_{2}\right)}}_{=s_{i_{1} i_{2}}}-\underbrace{\left.\varphi_{k}^{\left(i_{0}\right)}-\varphi_{k}^{\left(i_{2}\right)}\right)}_{g_{i_{0} i_{2}}}+\underbrace{\varphi_{k}^{\left(i_{0}\right)}-\varphi_{k}^{\left(i_{1}\right)}}_{g_{\left.i_{0} i\right)}}=0 m U_{i_{0} i_{1} i_{2} k}^{V \cap V}
$$

- Next, wi need T_{0} find $h \in C^{0}(\underline{V}, \mathcal{F})$ so

$$
g_{b_{k_{0}} \zeta k_{1}}-f_{k_{0} k_{1}}=(\partial h)_{k_{0} k_{1}}=h_{k_{1}}-h_{k_{0}} \text { on } V_{k_{0} k_{1}}
$$

U aim 2: $h_{K}=-\varphi_{k}^{(6 k)} \in \mathscr{F}\left(V_{k}\right)$ satisfies the conditemes.
PF/ ($0_{n} U_{\zeta_{k_{0}} \zeta k_{1}} \cap V_{k_{0} k_{1}}=V_{k_{0} k_{1}}$ wi have

$$
\begin{aligned}
& \Rightarrow g_{b_{k_{0}} \sigma_{k_{1}}}-f_{k_{0} k_{1}}=\varphi_{k_{1}}^{\left(\sigma_{k_{0}}\right)}-\varphi_{k_{1}}^{\left(\zeta_{k_{1}}\right)}-\left(\varphi_{k_{1}}^{\left(\tau_{k_{0}}\right)}-\varphi_{k_{0}}^{\left(\tau k_{0}\right)}\right)=\varphi_{k_{0}}^{\left(\zeta_{k_{0}}\right)}-\varphi_{k_{1}}^{\left(\zeta k_{1}\right)} \\
& =h_{k_{1}}-h_{k_{0}}=(\partial h)_{k_{0} k_{1}} \text { on } V_{k_{0} k_{1}} \text {. }
\end{aligned}
$$

For Riemann s sentraces, this will be enough, but the statement is more general:

General Leroy's Therme: Guise X Lop space, \tilde{F} sheaf $n X$ \& a Leroy cooking U of rode p fr F $\left(H^{q}\left(u_{i}, \bar{F}\right)=0 \quad \forall i \leq q \leq p \quad \forall i \in I\right)$, then

$$
H^{p}(\underline{u}, \mathcal{F}) \simeq H^{p}(X, \mathcal{F}) .
$$

Application: $H^{\prime}\left(\mathbb{C}^{*}, \underline{\mathbb{Z}}\right)=\mathbb{Z} \quad \& \quad H^{\prime}\left(\mathbb{C}^{*}, \mathbb{C}\right)=\mathbb{C}$
Proof: We sit $\tilde{r}=\mathbb{Z} \pi \mathbb{C}$ \& write $\mathbb{R}=\mathbb{Z}$ or \mathbb{C} fo the conespnding ing We need to find a Leroy open corer for \mathbb{C}^{x} (enough: use simply connected sets by Thurem $£(7.1$)

$$
\mathbb{C}^{x}=U_{0} \cup u_{1} \text { with } \quad u_{0}=\begin{gathered}
\mathbb{C}^{x}, \mathbb{R}_{<0}, \quad u_{1}=\mathbb{C}^{x}, \mathbb{R}_{>0} \\
\\
\hline 1 / 1 / 1 / 1,1 / 1
\end{gathered}
$$

- Both $U_{0} \& U_{1}$ are simply connected, so by Thurema $H^{\prime}\left(u_{0}, \mathbb{Z}\right)=H^{\prime}\left(u_{1}, \mathbb{Z}\right)=0$
- There are no Tuple intersections, so $Z^{\prime}(\underline{U}, \bar{J})=C^{\prime}(\underline{U}, \mathcal{F})=\bar{J}\left(U_{0} \cap U_{1}\right)$ $\left(C^{2}(\underline{L}, F)=\{O\}\right)$
$U_{0} \cap U_{1}=\mathbb{C}, \mathbb{R}$ has 2 cemented compsenents (super \& lower halt plane)
so $Z^{\prime}(\underline{U}, \mathcal{F}) \simeq R \oplus R$
Q: What is $B^{\prime}(\underline{u}, \bar{F}) \subseteq Z^{\prime}(\underline{u}, \overline{5}) ? \quad C^{0}(\underline{u}, \bar{F})=F\left(U_{0}\right) \oplus F\left(U_{1}\right)=R^{2}$
The cobsundary apuator $\partial: C^{0}(\underline{u}, \mathcal{F}) \longrightarrow B^{\prime}(\underline{u}, \mathcal{F}) \subseteq Z^{\prime}(\underline{u} F)$

$$
\left(h_{0}, h_{1}\right) \longrightarrow\left(h_{1}-h_{0}\right) \in \mathcal{F}\left(U_{0} \cap U_{1}\right)
$$

On each comment of $U_{0} \cap U$, it tales the same value, so we view $B^{\prime}(\underline{u}, \bar{F}) \subseteq Z^{\prime}(\underline{U}, \bar{J}) \simeq R^{2}$ as the diagmal.
Thee $H^{\prime}(\underline{U}, F)=\frac{R^{2}}{R(1,1)} \cong R$
By Leroy's Theorem: $H^{\prime}(\underline{U}, \bar{F}) \simeq H^{\prime}(X, \bar{J})$, so we are dive D
Next Topic: Proof idea of finite dimensionality of $H^{\prime}(X, 0)$ fo X ampact R.S
$\$ 17.3 H^{\prime}\left(D_{R}(0),(0)=H^{\prime}\left(\mathbb{C},(0)=H^{\prime}\left(\mathbb{P}^{\prime},(0)=0\right.\right.\right.$
In rode to show $H^{\prime}(X, 0)=0$ fo $X=D_{R}(0), \mathbb{C} \& \mathbb{P}^{\prime}$ well med the following statement (see Lecterns 18 iss a proof sketch) of Dolbcault.

Notation: $\mathbb{C}=D_{\infty}(0)$.

Dolbeault's Thurem: Fix $\left.X=D_{R}(0)=3 z:|z|<R\right\} \quad f>0<R \leqslant \infty$ a $g \in G(x)$
Then $\exists f \in \mathcal{E}(x)$ with $\frac{\partial f}{\partial \bar{z}}=g$

Thusern: Suppose $X=D_{R}(0)$ fo $\Delta \subset R \leqslant \infty$. Then $H^{\prime}(X,(0)=0$.
Proof: Take an arbitrary fen corer $\left.\underline{u}=3 u_{i}\right\}_{i \in I} \&$ a coracle $\left(g_{i j}\right) \in Z^{\prime}(\underline{u}, 0)$ Recall $H^{\prime}(x, \varepsilon)=0$ \& $Z^{\prime}(x, 0) \leq Z^{\prime}(x, \varepsilon)$ so $\left(g_{i j}\right) \in B^{\prime}(x, \varepsilon)$ Pick $f \in E(x)$ with $g_{i j}=f_{j}-f_{i}$ a $U_{i j}$.
But $s_{i j} \in U\left(u_{i j}\right)$ so $\quad \bar{\partial} g_{i j}:=\frac{\partial g_{i j}}{\partial z}=0$
$\Rightarrow \bar{\partial} f_{j}-\bar{\partial} f_{i}=0 \quad n U_{i j}$ so by the sheaf axiom, the sections $\bar{\partial} f_{i}$ on $\varepsilon\left(U_{1}\right)$ glue to a global function h on $\varepsilon(x)$ with $\left.h\right|_{u_{i}}=\bar{\partial} f_{i}$ By Dolbeault's Therm s17.9, we can find $F \in \mathcal{E}(X)$ with $\frac{\partial F}{\partial \bar{z}}=h$ Define: $G_{i}=f_{i}-F$ or $\varepsilon\left(U_{i}\right)$
Now : $\frac{\partial G_{i}}{\partial \bar{z}}=\frac{\partial F_{i}}{\partial \bar{z}}-\frac{\partial \bar{F}}{\partial \bar{z}}=\left.h\right|_{v_{i}}-\left.h\right|_{v_{i}}=0 \operatorname{m} v_{i} \Rightarrow G_{i} \in O\left(v_{i}\right)$

- $G_{i}=F_{i}-\bar{r}=F_{j}-F=G_{j} m U_{i j}$ so G_{i} lift to $G \in O(X)$
- $\rho_{i j}=f_{j}-f_{i}=\left(f_{j}-F\right)-\left(F_{i}-F\right)=G_{j}-G_{i}$ so $\rho_{i j}=\partial G_{i j}$

Conclude $\left(g_{i j}\right) \in B^{\prime}(X, O)$ so $H^{\prime}(X, O)=0$.
Grollary: $H^{\prime}\left(\mathbb{P}^{\prime},(0)=0\right.$
Proof We show $\left.H^{\prime}(\underline{U}, 0)=0 \quad f\left(\underline{U}=\left\{\underline{\mathbb{P}_{1}^{\prime}}\langle 30\} ; \mathbb{R}^{\prime},\right\}=0\right\}\right\}$
$u_{\infty}^{\prime \prime} \quad u_{0}^{\prime \prime}$

Advantage: There are us thiple iutersectires, so the Cech cmplex is fimite.

$$
0 \rightarrow C^{0}(\underline{y}, 0) \longrightarrow C^{\prime}(\underline{u}, 0) \longrightarrow 0=C^{2}(\underline{u}, 0) .
$$

Uaim: $H^{\prime}(\underline{u},(0)=0$

$$
\text { 3F/ } \quad C^{\prime}(\underline{u}, 0)=Z^{\prime}(\underline{u}, 0)=O\left(u_{0} \cap u_{1}\right)=O\left(\mathbb{C}^{*}\right)
$$

Any. $f \in O\left(\mathbb{C}^{*}\right)$ has a poren suies expansin:

$$
\begin{aligned}
f=\sum_{n=-\infty}^{\infty} f_{n} z^{n} & =\underbrace{\sum_{n=0}^{\infty} f_{n} z^{n}}_{\in O\left(U_{0}\right)}+\underbrace{\sum_{n=0}^{\infty} f_{n} z^{n} f_{n} z^{n}}_{\in O\left(U_{\infty}\right)} \\
& =\sum_{n=-\infty}^{\infty}\left(-f_{-n}\right) z^{-n}
\end{aligned}
$$

So $f \in B^{\prime}(\underline{u}, 0)$.

