Lecture XVIII: Iutegatein s/2-troms \& Dolbcault's Thu Last timer, we used Dolbcoult's The To show $H^{\prime}\left(D_{R}(0),(0)=H^{\prime}(\mathbb{C}, 0)=0\right.$.
Notatim: $\mathbb{C}=D_{\infty}(0)$
Dolbeault's Thurem: Fix $\left.X=D_{R}(0)=3 z:|z|<R\right\}$ f $>0<R \leq \infty \& g E^{\prime \prime}(x)$
Then $\exists f \in \mathcal{E}(x)$ with $\frac{\partial f}{\partial \bar{z}}=g$
Today, weill rise a proof sketch of this result. We'll build I by an integral. Fothis, we need to tall about integatem of differentiable z-forms.
\$18.1. Integration of 2-forms on \mathbb{C} :
As usual, we start with the care $X=\mathbb{C}$. Fix $U \leq \mathbb{C}$ fen \& $w \in \mathcal{G}^{(2)}(U)$.
Write $\omega=f d x a d y$ with $f \in \mathcal{E}(U)$
Def: Assume f has compact suppret (ie $\exists k \leq U$ compact st $f V_{V, K} \equiv 0$). Then

$$
\iint_{U} w:=\iint_{U} f_{(x, y)} d x d y
$$

- Next, we want To see what happens under holmusephis carinate changes:
 $\omega \in \overbrace{(}^{(2)}(U)$, then $\iint_{U=\varphi(v)} \omega=\iint_{V}^{(u, r)} \varphi_{\omega}^{*} \omega$
Proof: Write $\varphi=x+i y \Rightarrow \frac{\partial(x, y)}{\partial(u, v)}=\left[\begin{array}{ll}x_{u} & x_{v} \\ y_{u} & y_{v}\end{array}\right]$
This gives $J(x, y)=\operatorname{det}\left(\frac{\partial(x, y)}{\partial(u, v)}\right)=x_{u} y_{v}-x_{v} \varphi_{u} \underset{\substack{y_{u} \\ \\ \text { CR }}}{ } \quad x_{u}^{2}+x_{v}^{2}=\left|\varphi^{\prime}\right|^{2}$

The classical change of coordinates gives $\iint_{U} f d x d y=\iint_{V} f_{0} \varphi \cdot J(x, y) d u d v$

$$
\begin{aligned}
& =\left|\varphi^{\prime}\right|^{2} d z \wedge d z \\
\Rightarrow \varphi^{*} \omega & =f_{0} \varphi \cdot\left|\varphi^{\prime}\right|^{2} d u \wedge d v \in \zeta^{(2)}(V) \text { sires } \iint_{U} \omega=\iint_{V} \varphi^{*} \omega .
\end{aligned}
$$

818.2. Integration of 2 -forms on R.S.:

Fix X RS T_{0} define integration, of 2 -frons we restrict to compact support.
Def: Given $\omega \in Z^{(2)}(x)$, the support of w is defined as

$$
\operatorname{Supp}(w):=\overline{\left\{a \in X: \omega_{(a)} \neq 0\right\}}
$$

To define $\iint_{x} \omega$ with Supp (ω) compact, we pored un 2 steps:
(1) we restrict to local charts \& compactly supprited scalars
(2) we use partition of unity to extend fum (1) To a general compactly supported w

STEP 1: Fix K (compact) support of ω \& assume we hare (U, φ) brat chat with $K \subseteq U$ Write $\varphi: U \xrightarrow{\sim} V \subseteq \mathbb{C}$ of en so $\left(\varphi^{-1}\right)^{*}: \tau^{(2)}(U) \rightarrow \tau_{(V)}^{(2)}$ Then $\iint_{x} \omega=\iint_{U} \omega:=\iint_{V}\left(\varphi^{-1}\right)^{*} \omega$

Lemma 1: The definitive is indef of the choice of cleats
Proof: Assume $\Psi: U_{1} \sim V_{1}$ is another choice of charts with $K \subseteq U_{1}$. We cam restrict to $U=U_{1}$ (othensise Tale $U \cap U_{1}=U^{\prime} \& V^{\prime}=\varphi\left(U^{\prime}\right)$.) $V_{1}^{\prime}=\Psi\left(v^{\prime}\right)$

Cmnider $\quad V, \xrightarrow{\Psi^{-1}} U \xrightarrow{\varphi} V$ biholourphifin.
By Lerma \& $18.1^{\omega} \quad \omega^{\prime}=\left(\varphi^{-1}\right)^{*} \omega$. satishies $\iint_{V} \omega^{\prime}=\iint_{V}\left(\varphi_{0} \psi^{-1}\right)^{*} \omega^{\prime}$
But $\left(\varphi_{0} \psi^{-1}\right)^{*} \omega^{\prime}=\left(\psi^{-1}\right)^{*} \circ \varphi^{*} \omega^{\prime}=\left(\psi^{-1}\right)^{*} \circ \varphi^{*} \circ\left(\varphi^{-1}\right)^{*} \omega=\left(\psi^{\prime}\right)^{*} \omega$
So $\iint_{V}\left(\varphi^{-1}\right)^{*} \omega=\iint_{V} \omega^{1}=\iint_{V_{1}}\left(\Psi^{-1}\right)^{*} \omega$, as we weated To show.
STEP 2. We come K with finitely many loral chats $\left(U_{k}, U_{k} \xrightarrow[\sim]{\varphi_{k}} V_{k} S \mathbb{C}\right)$ We use a patition of minity $\left(f_{i}\right)_{1 \leq i \leq n}$ subrdinate $\left.\left.t_{0}\right\}\left(U_{n}, \varphi_{k}\right)\right\}_{k=1}^{n}$ to deffine \iint_{j}.
Defruition: $\iint_{x} \omega=\iint_{K} \omega=\sum_{i=1}^{n} \iint_{U_{i}} f_{i} \omega$
Lemma 2. This is well-defined (ie, indey of choice of pen cosering apatition f1) Proof: It's mongh to show that the statement holds for ufinements (take common ufimement of 2 coeres si the essocicted patition of unity).
This is easy To decck by cosering gten chates \&s showing the deffinition of (1) agrees with (2) in this syecial case. All our sums an fimite so we can manange at will.
§18.3 Stoken' Thurem:
Next, us frumulate a special cose of Stokes' Then in the plone.
Therem 1: Fix $U \subseteq \mathbb{C}$ ofy \& $A \subseteq U$ cmpact at with ∂A smovoth. We rieat ∂A so that the resturad womal s the tongent reder frem a pritirely siented basis os \mathbb{C} (ic rientation inkeritedfuen $\left(\mathbb{C}\right.$). Then, fr any $w \in \mathcal{C}^{(1)}(0)$, we hase $\iint_{A} d \omega=\int_{\partial A} \omega$. We will mly ned the case when A is a disk or an anualeso, ie.

$$
A=\{z \in \mathbb{C}: \varepsilon \leqslant|z| \leq R\} \text { fo } 0<\varepsilon<R \text {. }
$$

If $\omega=f d x+g d y$, wh have $d \omega=\left(g_{x}-f_{y}\right) d x \wedge d y$

(*) $\iint_{\varepsilon \leqslant|z| \leqslant R}\left(g_{x}-f_{y}\right) d x d y=\int_{C_{R}}(f d x+\rho d y)-\int_{\uparrow \in}^{C_{\varepsilon}} \underset{\text { becanad rimatatice }}{ } f d x+g d y$ $\partial A=C_{R} \cup C_{\varepsilon}$ $A=\bar{D}_{R}-D_{\varepsilon}^{\circ}$.

Proof fr ammules: We work with polar cordinates.
Set $z=r e^{i \theta} \quad \varepsilon \leqslant r \leq R \quad 0 \leq \theta \leq 2 \pi$

$$
x=r \cos \theta
$$

$$
\begin{aligned}
r=\sqrt{x^{2}+y^{2}} \quad \theta=\tan ^{-1}\left(\frac{y}{x}\right) \Rightarrow & \frac{d r}{d x}=\frac{x}{r}=\cos \theta \quad y=r \operatorname{sen} \theta \\
& \frac{d \theta}{d x}=\frac{1}{1+\frac{y^{2}}{x^{2}}} \frac{-y}{x^{2}}=\frac{-y}{x^{2}+y^{2}}=\frac{-\operatorname{sen} \theta}{r}
\end{aligned}
$$

It's enough T_{0} show it fr $\omega=\rho d y \& \omega=r_{x}$ separatiely, and use lixeraity.
STEP1: $w=g d y \quad$ Writh $\delta(x, y)=G(c, \theta)$

$$
\begin{aligned}
\Rightarrow g_{x} d x \wedge d y & =\left(\frac{\partial G}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial G}{\partial \theta} \frac{\partial \theta}{\partial x}\right)\left(\frac{\partial x}{\partial r} d r+\frac{\partial x}{\partial \theta} d \theta\right) \wedge\left(\frac{\partial y}{\partial r} d r+\frac{\partial y}{\partial \theta} d \theta\right) \\
& =\left(G_{r} \cos \theta+G_{\theta}\left(\frac{-\sin \theta}{r}\right)\right)(\cos \theta d r-r \sin \theta d \theta) \wedge(\sin \theta d r+r \cos \theta d \theta) \\
& =\left(G_{r} \cos \theta-G_{\theta} \frac{\sin \theta}{r}\right)\left(r \cos ^{2} \theta+r \sin ^{2} \theta\right) d r \wedge d \theta \\
& =\left(G_{r} r \cos \theta-G_{\theta} \sin \theta\right) d r \wedge d \theta=\left(\cos \theta \frac{\partial}{\partial r}(r G)-\frac{\partial}{\partial \theta}(\operatorname{sen} \theta G)\right) d r \wedge d \theta
\end{aligned}
$$

(LHS) of (x) becomes:

$$
\iint_{\varepsilon<(z) \leq R} \rho_{x} d x d y=\int_{0}^{2 \pi} \int_{\dot{0}}^{R} \cos \theta \frac{\partial}{\partial r}(r G)-\frac{\partial}{\partial \theta}(\operatorname{sen} \theta G) d r d \theta
$$

BuT $\int_{0}^{2 \pi} \int_{\varepsilon}^{R}-\frac{\partial}{\partial \theta}(\sin \theta G) d r d \theta=\left.\int_{\varepsilon}^{R} \sin \theta G(r, \theta)\right|_{0} ^{2 \pi} d r=0$, so only the finst tem survines:

$$
\iint_{\varepsilon<|z| \leq R} \rho_{x} \varepsilon_{x} d y=\int_{0}^{2 \pi} \cos \theta\left(R G_{(R, \theta)}-\varepsilon G(\xi \theta)\right) d \theta=(R H S) d(x)
$$

because

$$
\begin{aligned}
& \int_{C_{r}} g d y=\int_{0}^{2 \pi} G \cdot r \cos \theta d \theta \quad \forall \varepsilon \leqslant c \leqslant \varepsilon . \\
& (g d y=G(\cos \theta d \theta \quad \text { if } r \text { is fixed. })
\end{aligned}
$$

STEP $2 \quad \omega=f d x$ Use the change of coordinates $(x, y) \rightarrow-(y, x) \quad($ we weed the - $\overline{\text { to }}$ presence the rientatein)
This transformation has determinant I so

$$
\begin{aligned}
& \iint_{A} f_{y} d x d y=\iint_{A} \tilde{g}_{x} d x d y \\
& \int_{\partial A} f d x=\int_{\partial A} \tilde{g} d y
\end{aligned}
$$

Proof for the disc: Let $\varepsilon \rightarrow 0^{+}$for the amulaes $\&$ notice $\int_{C_{\varepsilon}} f d x+\rho d y \underset{\varepsilon \rightarrow 0^{+}}{\rightarrow 0}$
Theorem 2: Suppose X is a R.S \& $\omega \in \mathcal{G}^{\prime \prime}(x)$ is a differential from with compact support. Then $\iint_{X} d \omega=0$
Proof: Fix U often with $U>\operatorname{supp} X=K$ compact. Find local charts $\left(U_{i}, \varphi_{i}\right)_{i=1}^{N}$ corning K inside U s pick a patitim of wit supprdiecate to it. $\left\{f_{1}, \ldots, f_{N}\right\}$ Writ $\omega_{i}=f_{i} \omega$ so $\omega=\omega_{1}+\cdots+\omega_{N} \ldots$

Then read ω_{i} has compact support \& δ usp $\omega_{i} \subseteq U_{i} \quad \forall i=1, \ldots, N$ In this setting, we are reduced $T_{0} \quad X=\mathbb{C}, U_{i}=\mathbb{D}_{R} \supset \operatorname{Supp}\left(\omega_{i}\right)$ Then $\iint_{\mathbb{C}} d \omega_{i}=\iint_{|z| \leq R} d \omega_{i}=\int_{|z|=R} \omega_{i}=\int_{|z|=R} 0=0$.

$$
\begin{equation*}
\left.\operatorname{Supp}_{w_{i}} \cap\right\}|z|=R\{=0 \tag{NR}
\end{equation*}
$$ $r<R$

($\sin c e K_{i}=$ Suppowi $\subset \mathbb{D}_{R}$ is compact, $\exists 0 \leq r \subset R$ with $K_{i} \subseteq \mathbb{D}_{r}$)
\$18.3 Tolbeault's Lemma:
On must objective is to confirm $\operatorname{dim}_{\sigma} H^{\prime}(X, O)<\infty$ whenever X is a cmupact $R s$ w_{1} 'll show this is $X=\mathbb{P}^{\prime}$. In orduto do this, we need to solve the equation

$$
\frac{\partial f}{\partial \bar{z}}=s \operatorname{fo} F_{,} \rho \in G_{(X)} \text { fo } X=\mathbb{C}>D_{R}(0) \subseteq \mathbb{C}
$$

(Name: Inhomogeneous Cauchy-Riemann Eft)
Lemma | Dolbeault): Assume $g \in \mathcal{G}(\mathbb{C})$ has compact support. Then $\mathcal{F} f \in \mathcal{(} \mathbb{C})$ with $\frac{\partial F}{\partial \bar{z}}=g$

Proof The solution f is given by a Canchy-tyfe in tepral

$$
f(\xi)=\frac{1}{2 \pi i} \iint_{\mathbb{C}} \frac{\rho(z)}{\zeta-z} d z \wedge d \bar{z}=\frac{1}{2 \pi i} \iint_{D_{R}(\xi)} \frac{\rho(z)}{5 \zeta-z} 2 z a d \bar{z}
$$

if $\quad \operatorname{Supp}(\rho) \subseteq \bar{D}_{R}(\xi)$
U aim 1: $f \in \xi(\mathbb{C})$
We compute \iint in polar coordinates. Write $z=\xi+r e^{i \theta}=\xi+x+i y$

$$
\begin{aligned}
& \bar{z}=\bar{\zeta}+r e^{-i \theta} \\
& d z \wedge d \bar{z}=(d x+i d y) \wedge(d x-i d y)=-2 i d x \wedge d y \\
& \text { But } \quad \begin{array}{l}
x=r \cos \theta \text {, so } \quad d x=\cos \theta d r-r \sin \theta d \theta \\
y=r \operatorname{sen} \theta \\
d y=\operatorname{sen} \theta d r+r \cos \theta d \theta
\end{array} \\
& \Rightarrow d z \wedge d \bar{z}=-2 i\left(r \cos ^{2} \theta+r \operatorname{sen}^{2} \theta\right) d r \wedge d \theta=-2 i r d r \wedge d \theta
\end{aligned}
$$

Thus $f(\xi)=\frac{1}{2 \pi i} \iint_{\substack{0 \leq r \leq R \\ 0 \leq \theta<2 \pi}} \frac{g\left(3+r e^{i \theta}\right)}{r e^{i \theta}}(-2 i r) d r d \theta=-\frac{1}{\pi} \iint \underbrace{s\left(\xi+r e^{i \theta}\right) e^{-i \theta} d r d \theta}_{\in \xi([0, R] \times(0,2 \pi])}$
Then shows f is well-cefined a it's a smooth function. I

- Claim z: $\frac{\partial f}{\partial \bar{\xi}}=g$

We compute partial derinters undue the sign integral

$$
\begin{aligned}
& \frac{\partial c}{\partial \bar{\xi}}=\frac{-1}{\pi} \int_{0}^{2 \pi} \int_{0}^{R} \frac{\partial g}{\partial \bar{\xi}}\left(\xi+r e^{i \theta}\right) e^{-i \theta} \frac{d r d \theta}{=\frac{d z \wedge d \bar{z}}{-2 i r}} \\
& =\overline{\bar{\beta}} \frac{1}{2 \pi i} \lim _{\varepsilon \rightarrow 0^{+}} \int_{B_{\varepsilon}} \frac{\partial g}{\partial \bar{\xi}}(\xi+z) \frac{d z \wedge d \bar{z}}{z} \\
& \text { alan cord cippessim } \\
& z=r e^{i \theta}
\end{aligned}
$$

Here, we used the fact that the first integral is well-defined To express it as a limit If an integral defined away from $z=0$.
Now : $\frac{\partial g}{\partial \bar{\xi}}(\xi+z) \frac{1}{z}=\frac{\partial g}{\partial \bar{z}}(\xi+z) \cdot \frac{1}{z}=\frac{\partial}{\partial \bar{z}}(g(\xi+z) / z)$ fr $z \neq 0$
So $\frac{\partial f}{\partial \bar{\xi}}=\frac{1}{2 \pi i} \lim _{\varepsilon \rightarrow 0^{+}} \iint_{B_{\varepsilon}} \frac{\partial}{\partial \bar{z}}(g(\xi+z) / z) d z \wedge d \bar{z}=-\lim _{\varepsilon \rightarrow 0^{+}} \iint_{B_{\varepsilon}} d \omega$ where $\omega(z)=\frac{1}{2 \pi i} \frac{\partial(\zeta+z)}{z} d z \quad(\zeta$ is a constant $\& z$ is the variable)
By Stoke's Thun n B_{ε} we get

$$
\begin{aligned}
& \frac{\partial G}{\partial \sqrt{S}}=-\lim _{\varepsilon \rightarrow 0^{+}} \iint_{B_{\varepsilon}} d \omega=-\lim _{\varepsilon \rightarrow 0^{+}} \iint_{\partial R_{\varepsilon}} \omega=-\lim _{\varepsilon \rightarrow 0^{+}}\left(\int_{C_{R}} \omega-\int_{C_{\varepsilon}} \omega\right) \\
& =-\int_{C_{R}} \omega+\lim _{\varepsilon \rightarrow 0^{+}} \int_{C_{\varepsilon}} \omega
\end{aligned}
$$

If $R \gg 1$, then $g=0 \cap C_{R}$ so $\int_{C_{R}} \omega=0$.

$$
\begin{aligned}
& \text { Now } \frac{d z}{z}=\frac{d\left(\varepsilon e^{i \theta}\right)}{\varepsilon e^{i \theta}}=\frac{e^{i \theta} d \varepsilon}{\varepsilon e^{i \theta}}+\frac{i \varepsilon e^{i \theta} d \theta}{\varepsilon e^{i \theta}}=i d \theta \quad \text { on } C_{\varepsilon} \\
\Rightarrow & \int_{\left(\varepsilon_{i s} \omega \mathrm{cs}\right.} \omega= \\
C_{\varepsilon} & \int_{0}^{2 \pi} \frac{1}{2 \pi i} g\left(\xi+\varepsilon e^{i \theta}\right) i d \theta=\cdot \frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(\xi+\varepsilon e^{i \theta}\right) d \theta
\end{aligned}
$$

$$
\text { Conclude } \frac{\partial f}{\partial \bar{\xi}}=\lim _{\varepsilon \rightarrow 0^{+}} \int_{C_{\varepsilon}} \omega=\frac{1}{2 \pi} \underbrace{\lim _{\varepsilon \rightarrow 0^{+}} \int_{0}^{2 \pi} \delta \mid \xi+\varepsilon e^{(0)} d \theta}_{=g(\xi) 2 \pi \quad(\xi / \delta \text { argument) }}=g(\xi)
$$

We can revere the compact supper condition if we cork with $X=D_{R}(0)$.

$$
(R \in(0, \infty])
$$

The next result is a special case of Dylbrault's Lemma in several complex variables.
Dolbeault's Thereon: Fix $\left.X=D_{R}(0)=3 z:|z|<R\right\} \quad f r 0<R \leqslant \infty$ a $g \in G(x)$ Then $\exists f \in \mathcal{E}(x)$ with $\frac{\partial f}{\partial \bar{z}}=g$
Proof Take a sequence $R_{0}<R, c \ldots$ with $\lim _{n \rightarrow \infty} R_{n}=R$ \& set $X_{n}:=D_{R_{n}}(0)$ Take bump functions $\Psi_{n} \in \mathcal{E}(X)$ with. $\operatorname{supp}\left(\Psi_{n}\right) \subseteq X_{n+1}$ compact

- $\left.\Psi_{n}\right|_{x_{n}} \equiv 1$

$$
\operatorname{supp}\left(\psi_{n}\right) \cap \partial X_{n+1}=\varnothing
$$

$$
\text { Since } X_{n} \text { often a Supp }\left(X_{n}\right) \text { is pt. }
$$

By Dolbeault's Lemma applied to $g_{n}=\psi_{u g} \in \hat{\xi}\left(x_{n}\right) \exists f_{n} \in \varepsilon(x)$ with $\frac{\partial f_{n}}{\partial \bar{z}}=\Psi_{n} \rho$ н X_{n}
By induction m $n \in N_{0}$ we build $h_{0}, h_{1}, h_{2} \ldots$ st
(1) $\frac{\partial h_{n}}{\partial \bar{z}}=\delta_{\left.\right|_{x_{n}}}$ in x_{n}
(2) $\sup _{x \in \in \bar{X}_{n-1}}\left|h_{n+1}(x)-h_{n}(x)\right|=\left\|h_{n+1}-h_{n}\right\|_{x_{n-1}} \leqslant 2^{-n}$ (uniform convergence cuditim)
(Idea $h_{0}=f_{0}, h_{n}=f_{n}-P$ iss a suitable polynomial using fum the Taylor series expansion of $f_{n+1}-h_{n}$ absent 0 with suitable brand m the tail).

$$
\begin{aligned}
& f=\lim _{n \rightarrow \infty} h_{n}(z) \text { \& show } f_{\left.\right|_{X_{n}}}=h_{n}+\underbrace{\sum_{k=n}^{\infty}\left(h_{n+1}-h_{k}\right)}_{\text {nolmurphic }} \text { i } X_{n} \\
\Rightarrow & f \in E\left(X_{n}\right) \forall_{n} \& \frac{\partial f}{\partial \bar{z}}=g_{\left.\right|_{x_{n}}} _X_{n} .
\end{aligned}
$$

