Lecture XX: Divisos m RS
Last Tims: Finiteness Thun \& its crollonies
THM: X RS, $Y_{1} ; Y_{2}$ al.compact open subsets $Y_{1} \in Y_{2} \in X$. Then, the ustuction map $H^{\prime}\left(Y_{2},()\right) \xrightarrow{\text { res }} H^{\prime}(Y, 0)$ has fimite dimensimal image.
In paticulan, if X is cumpact, then gemes $(X)=\operatorname{dim} \mathbb{C}^{H^{\prime}}(X, 0)<\infty$.
Conseprences:
(1) X any RS, $Y \in X$ \& $a \in Y$. Then $\exists f \in J^{6}(Y)$ mu-constant, hols on Y ia $\}$ with a pole at a
(2) X ampact $R S,\left\{a_{1}, \ldots, a_{i}\right\}$ npts $n X \&\left\{c_{1}, \ldots, c_{n}\right\} \subseteq \mathbb{Q}$. Then $\exists f \in \sqrt{6}(x)$ with $f\left(a_{j}\right)=c_{j} \quad \forall j=1, \cdots, n$
(3) X mo-cmpact $R S, Y \in X$. Then $\exists f \in \mathcal{O}(Y)$ mon-constant m each comected compment of Y
(4) X mon-cmpactRS, $Y \in Y^{\prime} \in X$. Then res: $H^{\prime}\left(Y^{\prime}, 0\right) \longrightarrow H^{\prime}(Y, 0) \equiv 0$. (Campare with THIR: X was generalin THII a now it's nem compact .We used (3) in the proof)

Lemman: Fix X a R.S. then $H^{\prime}(X, 0)$ is a module orer $C(X)$.
Proof Multiplicatim by $f \in O(X)$ defines a linear enderurphism

$$
\begin{aligned}
H^{\prime}(\underline{U}, 0) & \longrightarrow H^{\prime}(\underline{u}, 0) \\
{[(\xi)] } & \longrightarrow(f g)]=\left[\left(\left.f\right|_{v_{i j}} g_{i j}\right)_{i j}\right]
\end{aligned}
$$

ampatible with efinements $\underline{v}<\underline{U}$
NEXT: How many lim imdip mevo fenctens on cmpact RS can we hase with cutain (rder) ustrictions on ples?
\$20.1 Dinisors m R.S.
Definition: A dinisor D ma RS X is amap $D: X \longrightarrow \mathbb{Z}$ where fo cach $K \subset X$ coupact we have S upp $\left.\left|D_{k}\right|: 3 x \in K: D_{(x)} \neq 0\right\}$ is finite.
. $\operatorname{Div}(X)=\{$ dinisors on $X\}$ is an ab. group unden +
Obs: $\operatorname{Div}(X)$ is a poret: $D \leqslant D^{\prime}$ if $D(x) \leqslant D^{\prime}(x) \quad \forall x \in X$
Q: How to build dinsors?
Examples:(1) Dinisors pum menourphic functims m a R.S.X (= primcipal dinisers)
Fix $Y \subset X$ pen \& $a \in Y$

\Rightarrow giren $f \in \mathscr{G}(X) \backslash\{0\}$ we hare a diniss on X (a ppal divisor)

$$
D=(f): X \longrightarrow \mathbb{Z} \quad a \longmapsto \operatorname{rd}_{a}(f)
$$

Obs: Zenors a Poles of X are discute, so $\left|\operatorname{Supp}(f)_{k}\right|<\infty \quad \forall k \subset X$ compact. Noदe. $(f) \geqslant 0 \Longleftrightarrow f \in(1) \backslash\{0\}$.

- Principal dinisos from a subgoup of $\operatorname{Div}(X) \operatorname{sinc}(f g)=(f)+(g)$.

$$
(1 / f)=-(f)
$$

Def: $D, D^{\prime} \in \operatorname{Div}(X)$ an equivalent if $D-D^{\prime}=(F)$ fosme $\left.f \in \mathscr{G}(X), 30\right\}$ Wiute $\operatorname{Pic}(X):=\operatorname{Biv}(X) / \sim$ (lenealy)

Ex: $D: \mathbb{C} \longrightarrow \mathbb{Z} \quad D(0)=3, D(x)=0 \quad \forall x \neq 3 \quad \Rightarrow D=\left(z^{3}\right)$
$D: \mathbb{R}^{\prime} \longrightarrow \mathbb{Z}$
$D(0)=3, \quad D(x)=0 \quad \forall x \neq 3 \quad$ is not jimcipal! O $\left(\mathbb{P}^{\prime}\right)=\mathbb{C}$.
QI: How to ditermini limady equiralence?
(2) Dinisors fum meumurphic 1 -forms on a $R S X$. ($=$ cammical divisors)

- Def $\mathscr{G}^{(1)}$: sheaf of meromorpluc 1 -formes on X
O_{n} a chart $(U, z), \quad \omega \in \Pi^{(1)}(u)$ if $\omega=f d z \quad$ ps $f \in \mathscr{G}(U)$

Gkeing works as we did fs holmurphic 1-trues.

- Giren $Y \subset X$ rpen, $a \in X$ \& $\omega \in \sigma^{(1)}(Y)$, cos a bral chact (U, z) aroond a T_{0} express $\omega / u=f d z$ fo $f \in \sqrt[b]{(U)}$.
Def: $\operatorname{od} a(\omega)=\operatorname{rod}_{0}(f)$
Lemma 1: $r^{2}(\omega)$ is well defined
3F / If we hase $U \frac{\sim}{z} \mathbb{D} \frac{\sim}{\overline{z^{\prime}}} U^{\prime}$ two charts around a

$$
\omega=\int(z)=g_{\left(z^{\prime}\right)} d z^{\prime} \quad \text { is given by the gleving condilim: }
$$

$$
g d z^{\prime}=g\left(z^{\prime} \circ z^{-1} \circ z\right) d\left(z^{\prime} \circ z^{-1} \circ z\right)
$$

$$
=g(\varphi \circ z) d\left(\varphi_{0} z\right)=\underbrace{(\delta \circ \varphi)_{(z)} \varphi^{\prime}}_{=f_{(z)}} d z
$$

\Rightarrow Girren $\omega \in \sqrt{6}^{(1)}(X),\{0\}$ we define a new dinisor (canarical dir)
Definitim: $\quad D=(\omega): X \longrightarrow \mathbb{Z}$

$$
a \longmapsto r d_{a}(\omega)
$$

Obs: Girmen $K \subseteq X_{Y}$ compact, ares it with finuitely many charts $\varphi^{-1}\left(\Delta_{\frac{1}{2}}(0)\right)$ cming the $(U, z) \cup \cup \mathbb{D}$.
wite $w I_{U}=f d z \quad f \in \pi(U) \Rightarrow f$ has fimitely many zeass a prles on $\varphi^{-1}\left(\bar{D}_{\frac{1}{2}}(0)\right)$, which woen K.
Cnclude $\left|\operatorname{Supp}^{(\omega)}\right|_{K} \mid<\infty \quad$,so $\quad(\omega)$ is a dinisor.
Lemma 2: Canmical dinises are liecarly equiralent アf/ $\quad(f \omega)=(f)+(\omega) \quad$ fr $\omega \in \mathscr{J}^{(1)}(x, \quad f \in J(x)$.
Giren $\omega_{1}, \omega_{2} \in \mathscr{C}^{(1)}(X)$ beally on chants (U, z) we can write $w_{1}=f_{1} d z \quad w_{2}=f_{2} d z \quad \Rightarrow \quad g_{u}=\left.\frac{f_{1}}{f_{2}} \in \mathscr{b}(U) \& g_{u} \cdot w_{2}\right|_{u}=w_{1} \|_{u}$

Note g_{0} is unique with this property, Since w_{1}, w_{2} cu defined m X, the sections $j 0$ agree m roulaps. Lima \sqrt{b} is a shaef, we get a! $g \in \sqrt{b}(x)$ with $\delta l_{u}=$ gu $\forall(u, z)$ local chart.

Conclude: $\left(\omega_{1}\right)=\left(g \omega_{2}\right)=(g)+\left(\omega_{2}\right)$ so $\left(\omega_{1}\right) \sim\left(\omega_{2}\right)$
Ex: $D: \mathbb{C} \longrightarrow \mathbb{Z} \quad D=3(0)=\left(z^{3}\right)$ is commical $=\left(z^{3} d z\right)$ $D: \mathbb{P}^{\prime} \longrightarrow \mathbb{Z} \quad D=3 .(0)$ is wit conical
If $D=(\eta) \quad$ then $\eta=\frac{f}{(z)} d z=\left(z^{3}+\right.$ hot $) d z \quad$ m U_{0}.
Biharis at ∞ ? It's at worst a poe, so K is a prlynmial!
But then $z=\frac{1}{\omega} \quad m U_{0} \cap U_{\infty}$

$$
\begin{aligned}
& \Rightarrow f(z) d z=f\left(\frac{1}{\omega}\right) \frac{-1}{\omega^{2}} d \omega=g(\omega) d \omega \\
& \Rightarrow \operatorname{ord}_{\infty}(g)=\operatorname{dg} f+2
\end{aligned}
$$

So $(\eta)=3[0]-(\operatorname{deg} f+2)[\infty] \neq 3[0]$.
Q2: How to decide if a divisor is canonical?
\$20.2 Degree of divisors
From now m, well restrict to the compact case.
Fix $X=$ compact RS. \& $D \in \operatorname{Div}(X) . \Rightarrow W_{r i t a} D=\sum_{i=1}^{N} P_{\left(x_{i}\right)} x_{i}$

$$
\left.\left(\mid x \in X: D_{(x)} \neq 0\right\}=\left\{x_{1} \ldots, x_{N}\right\}\right)
$$

Definition: The degree of a divisor $D m$ a compact RS X is defined as

$$
\operatorname{deg}(D)=\sum_{x \in X} D(x)
$$

(The sum involves finitely many nun-zew terms!) m Deque map deg: $\operatorname{Div}(X) \longrightarrow \mathbb{Z}$

Lemma: d geg is a group houndurphism
Ex $D=3[\underline{Q}] \mathrm{m} \mathbb{R}^{\prime}$

$$
\operatorname{dy}(D)=3
$$

$$
D=3[\underline{0}]-4[\underline{\infty}]
$$

$$
\text { in } \mathbb{P}^{\prime} \quad \operatorname{deg}(D)=-1
$$

Propsition: $\operatorname{dg}(f)=0 \quad \forall f \in J / J(x)>30\}$.
1] $\mathbb{F}: \mathbb{P}^{\prime} \longrightarrow \mathbb{C}$ memurphic is a profer holo map $L_{1} \mathbb{T}^{\prime} \rightarrow \mathbb{P}^{\prime}$
If F is not constant, it has a dequee $=\left|f^{-1}(\nu)\right| \forall \nu \in \mathbb{R}^{\prime}$. (Theoremss.3) This is not the deque of the dimisos (f).
Proof:. If f is custant, then $(G)=0$ so $\operatorname{deg}(G)=0$

- If f is not constant, the sise of each tiber of f is the same ($=$ depreeoff)

Corollay 2 ss.3 says \#guves of $=$ \# ples of f (counted with mult)

$$
\begin{aligned}
& \Rightarrow \sum_{a y \omega w} \operatorname{ood}_{a}(f)=\sum_{b \text { pread }} \operatorname{rd}_{b}(f) \& \operatorname{sop}^{\operatorname{deg}}(f)=0 \\
& 0=\sum_{a \text { ado }} \operatorname{rdd}_{a}(f)+\sum_{\text {brle }} \operatorname{ord}_{b}(f)=\operatorname{deg}(f) .
\end{aligned}
$$

Remark: Thes sires a necessary cudition (not sufficient!) To be a principal disisss on a cmpact RS.

Obsuration: We'll see later that if K_{X} is a cononical diniser na a coupact RS X, then $g=$ gemes $(X)=\frac{1}{2} \operatorname{dg} K+1 . \quad \begin{gathered}(\text { necessayy aituion fr being } \\ \text { a commical dinisor })\end{gathered}$ Equivaleatly: dy $K=2 g-2$.

Q: Can we find $w \in \mathscr{G}^{(1)}(X)$ that is holmurphic \& nowhere vanisking $m X$? If so $K=(\omega)=0 \quad\left(\operatorname{ord}_{x}(\omega)=0 \quad \forall x \in K\right)$.
Then $\log K=0$ ie $\rho=1$ so $X=\mathbb{E}=\mathbb{C} / \Lambda$ (ellipticcurre!) Con we find such w on E?
$A=Y E S!\quad d z \in \varepsilon^{\prime}(\mathbb{C})$ gires a holourphic 1-form ME (it's inraniant under translations by the lallice)
$\Rightarrow K=(d z)$ is a cammical diniser on $E=\mathbb{C} / \Omega$.
Examples $n \mathbb{P}^{\prime}$: Write $\mathbb{T}^{\prime}=U_{0} \cup U_{\infty}$.
(1) $d z$ on U_{0} is holmurphic \& nowhere varisking but has a pole of order 2 at ∞.

Why? $z=\frac{1}{\omega}$ on $U_{0} \cap U_{\infty} \Rightarrow d z=\frac{-1}{\omega^{2}} d \omega \Rightarrow$ so we ser a

$$
\Rightarrow K=-2[\infty] \quad \operatorname{dg} K=-2(=2.0 .2)
$$ ple of rou 2

(3) Another expressin fos a connical dinisor m \mathbb{P}^{\prime} :

$$
\eta=\frac{d z}{z} \quad \in \boldsymbol{J}^{(1)}\left(\mathbb{P}^{\prime}\right) \quad \frac{d z}{z}=\omega d\left(\frac{1}{\omega}\right)=\omega \frac{-1}{\omega^{2}} d \omega=-\frac{d \omega}{\omega}
$$

$\Rightarrow \eta$ has poles at $0 \& \infty$, both of rder 1 .

$$
\Rightarrow K=(\eta)=-[0]-[\infty] \quad \log K=-2
$$

Clarly $(d z) \sim\left(\frac{d z}{z}\right)$ (as we expected fim Lemma 2 \& 20.1)
§ 20.3 Sinal 0_{D}
Fix X any $R S$ a $D \in \operatorname{Div}(X)$
Definition: 1_{D} a shaf $m X$

$$
(f)+D_{10} \geqslant 0
$$

(1) $U \subset X$ sfen $O_{\Delta}(U)=\left\{f \in \mathscr{G}(U): \operatorname{ord}_{x}(f) \geqslant-D(x) \forall x \in U\right\}$
(2) mestriction maps inherited fore $\sqrt{6}$ mugets of D sire \geqslant rden of zeos of its - sine worst reder ofpled

- Gluing conditim in π_{6} is cmpatible with $(f)+D_{10} \geqslant 0 \Rightarrow O_{0}$ is a skeaf

Q How to think about $O_{\Delta}(u)$?
A: Assume Supp D is finite (it's discrete) \& crite

$$
D=-\sum_{i=1}^{N} a_{i}\left[p_{i}\right]+\sum_{j=1}^{M} b_{j}\left[p_{j}\right] \quad \text { with } a_{i}, b_{j}>0 \quad \forall i, j
$$

(we allow N r $M=0$)

$$
\left.\Rightarrow O_{\Delta} \mid U\right)=\left\{f \in \pi_{(U)}: \operatorname{rd}_{x}(f) \geqslant-\Delta_{(x)} \quad \forall x \in U\right\}
$$

.Fr $x \notin \operatorname{supp}(D) \quad \operatorname{or}_{x}(F) \geqslant 0$, so F is holomorphic at x

- Fr $X=P_{i}$
$\operatorname{ord}_{i}(F) \geqslant+a_{i}$, so p_{i} is a new of hor rower $\geqslant a_{i}$

$$
\Rightarrow f_{(z)}=\left(z-p_{i}\right)^{a_{i}} \varphi \quad \varphi \in \mathbb{O} \quad \text { near } p_{i}
$$

. Fr $x=q_{j} \quad$ ord $f_{j}(f) \geqslant-b_{j}$ so at worst, f_{j} is a pole of f of oder $\leqslant b_{j}$.

$$
\Rightarrow f(z)=\frac{\varphi}{\left(z-q_{j}\right)^{b j}} \quad \varphi \in O \text { mar } q_{j}
$$

In short: OD prescribes behavior of gens a poles is meumurfhic functions
Q: When is ${O_{D}}_{D}(U) \neq\{0\}$? $\quad\left(0 \in \cup_{D}(U) \forall U\right.$ oren since $\left.r_{x}(0)=\infty \forall x\right)$
A: Look at stalks a work with charts!
$\left(O_{\Delta}\right)_{p}=\left\{f \in \Omega_{p} \quad \operatorname{ocd} p(f) \geqslant-D_{(p)}\right\}$ (prescribed behavior atp \&

$$
\left.\left.\left.D_{(x)}=0 \quad \forall x \in U \backslash\right\} p\right\} \quad \bar{U} \simeq \bar{D}_{\frac{1}{2}}\right) \text { ? }
$$

\Rightarrow Lament series $\exp \operatorname{man} p$ is $\quad f=\frac{1}{(z-p)} D_{(p)} \varphi \quad \varphi \in \mathbb{C} \llbracket z-p \rrbracket$.
So for each $1 \exists V \nexists p$ open with $\Theta_{D}(v) \neq\{0\}$.
Ex: $\bigoplus_{0}=0$
$O_{n} \mathbb{P}^{\prime}:\left(O_{3[0]}=? \quad\right.$ Look af charts $(U, z) . \quad U \simeq \mathbb{D}$

$$
O_{3[0]}(u)= \begin{cases}O_{(u)} & \text { if } \circ \notin u \\ O_{(u)}\left(\frac{1}{z^{3}}\right) & \text { if } 0 \in U\end{cases}
$$

\Rightarrow Stalks: $\left({ }^{O_{3}(0)}\right)_{p}=\left\{\begin{array}{cl}\mathbb{C} \llbracket z-p \rrbracket & \text { if } p \neq 0 \\ \left.\left(\frac{1}{z^{3}}\right) \mathbb{C} \llbracket z\right] & \text { if } p=0\end{array}\right.$

Peopprition: If $D \sim D^{\prime}$, then $O_{D} \simeq \mathcal{O}_{D^{\prime}}$
Proof: Waite $D=(g)+D^{\prime}$ fr $\left.g \in \sqrt{b}(X) \times 30\right\}$

$$
\begin{aligned}
\Rightarrow O_{D}(U) & =\left\{f \in r_{0}(U): \operatorname{rid}_{x}(f) \geqslant-D_{(x)}=-r_{x}\left(g_{)_{u}}-D^{\prime}(x) \forall x \in U\right\}\right. \\
& \left.=3 f \in r_{0}(u): \operatorname{ord}(f g) \geqslant-D^{\prime}(x) \quad \forall x \in U\right\} \\
& =\left\{f \in r_{0}(x): f g \in O_{D^{\prime}}(U)\right\}
\end{aligned}
$$

$\Rightarrow O_{D}(U) \xrightarrow{\cdot g / U} O_{\Delta}^{\prime}(U) \quad \forall U$. insectile because f, g ane
 neumuftic
$\Rightarrow O_{D} \xrightarrow{-\rho} O_{D^{\prime}}$ is the ismurplism.
Summary: If X is a compact $R S$, where $\operatorname{den} H^{\prime}(X,())<\infty$ Q: What happens to $H^{\prime}\left(X, O_{D}\right)$ in $D \in \operatorname{Div}(X)$?
A $\operatorname{dinen}_{\mathbb{C}} H^{\prime}\left(X, O_{\infty}\right)<\infty$! (This is pant of Riemamen-Roch.)

- How do we compute this dimension? Es: If we hare a lay corning of X is O_{B}, res task is easier. Can we find such a Le ray covering?
Hint: $H^{\prime}\left(\mathbb{D}, \underset{0_{0}}{(0)}=0\right.$. by Theorem $\$ 17.3$, in sequence of Doblecolt's Thun.
Theorem: Fix X a compact R.S, $D \in \operatorname{Div}(X) \& \underline{U}=\left(U_{i}\right)_{i \in I}$ an ten corning by local darts $U_{i} \simeq \mathbb{D} \forall i$. Then, \underline{U} is a Lay corning for O_{D}, ie $H^{\prime}\left(U_{i}, O_{D}\right)=0 \quad \forall i$.

PF/ Next time!

