Lecture XXI: The Riemann-Roch Theorem.
Recall: $\operatorname{Dinisis} m R S=\operatorname{Div}(x)$ ab $g p$

$$
\text { - } D: X \rightarrow \mathbb{Z} \quad \mid \text { supp } D_{\mid k} \mid<\infty \quad \forall K<X \text { compact }
$$

Examples: : (1) Pol dir: $D=(f) \quad f \in \mathcal{J}(x) \backslash\{0\}$

- If $X=$ compact $R S$, whee han $\operatorname{dog}(D)=\sum_{x \in x} D(x) \in \mathbb{Z} \leadsto \operatorname{dy}: \operatorname{Div}(X) \rightarrow \mathbb{Z}$ Lemma: $\operatorname{dy}(f)=0 \quad \forall f \in \Omega(x)-10\}$. op humenryhism
- C_{D} : sheaf m m with $O_{D}(0)=\left\{f \in \mathscr{G}(0): \operatorname{ord} x(f) \geqslant-D_{(x)} \quad \forall x \in U\right\}$ austen $(O)(D)$ is Algebraic Gentry notation)
Nae: $0 \in O_{D}(U) \forall U\left(\operatorname{ord}_{x}(0)=\infty\right)$
Stalks: $\left(O_{D}\right)_{p}=(z-p)^{-D(p)} \cdot \mathbb{C}_{\{z-p\}}$
Example: $ण_{0}=0$
Pepporitim: If $D=D^{\prime}+(g)$ for $\left.g \in \Omega(u)-30\right\}$, then $O_{D} \stackrel{-8}{\sim} \rightarrow O_{D^{\prime}}$
§ 21.1 More on O_{\square} :
Recall $H^{\prime}(\mathbb{D}, \mathcal{O})=0$, so brad chats in X with $U_{i} \simeq$ is are le ray fo O.
 (ofordu 1)

Theorem: Fix X a compact $R . S, D \in \operatorname{Dir}(X)$ \& $\underline{U}=\left(U_{i}\right)_{i \in I}$ an fen conning by local chats with $U_{i} \simeq \mathbb{D} \forall i$. Then, \underline{U} is a lay coning of order i fo O_{D}, ie $H^{\prime}\left(U_{i}, O_{D}\right)=0 \quad \forall i$.
Proof: $\left.\left.O_{D} \mid U_{i}\right)=3 f \in \sqrt{G}\left(U_{i}\right): \operatorname{srd}_{x}(f) \geqslant-D_{(x)} \quad \forall x \in U_{i}\right\}$
Since X is compact, Supp D is finite. The same is Tree for $D \|_{u_{i}}$

- If $S_{\text {user }} B / u_{i}=\varnothing$, then $O_{\Delta}(V)=O(V) \quad \forall V \leq U$, so $H^{\prime}\left(U_{i}, O_{D}\right)=H^{\prime}\left(U_{i}, 0\right)=0$ by Theorem $\$ 17.3$, cm sequence of Dobleanlt's Them
- Next, assume $\operatorname{supp} \Delta / v_{i} \neq \phi$ \& wite:

$$
D_{1_{u_{i}}}=-\sum_{k=1}^{N} a_{k}\left[p_{k}\right]+\sum_{k=1}^{M} b_{k}\left[q_{k}\right] \quad a_{k}, b_{k}>0 .
$$

(we can hart either $N \pi n=0$)
$\Rightarrow f \in \mathcal{O}_{D}\left(u_{i}\right)$ is of the from $f_{(z)}=g_{(z)} h_{(z)}$ with $g \in \mathscr{O}\left(u_{i}\right)$
\& $h \in \Omega\left(U_{i}\right)$ with puexcibed o's \& pres in $f_{1}, \ldots, q_{7}, p_{1}, \ldots, l_{N}$

$$
h_{(z)}=\prod_{k=1}^{N}\left(z-p_{k}\right)^{a_{k}} / \prod_{k=1}^{n}\left(z-q_{k}\right)^{b_{k}}
$$

Given \underline{V} covering of $U_{i} \simeq \mathbb{D}$, wat to show $H^{\prime}\left(\underline{U}, O_{D}\right)=0$.
Claim: We pick a suitable upimement $\underline{\omega}=\left(\omega_{j}\right)_{j \in J}$ when
(1) Each W_{j} has at most me dement pun $\left\{p_{1}-p_{N}, f_{1}, \ldots f_{n}\right\}$
(2) each $W_{j l}$ has $n o P_{s}$ ur q_{k}.
(We can do this because menes set is finite!)
How? Pick balls $D_{r j}\left(l_{j}\right), D_{s l}\left(f_{l}\right)$ with $r_{j}<\operatorname{dist}\left(l_{j}, \partial U_{i}\right) / 2 \quad s_{l}<d i s t\left(f_{l}, \partial U_{i}\right) / 2$ pairwise disjoint, each ball in sse $V_{k j}, V_{k e}$.

Z: $K L\{1, \ldots, N, N+1, \ldots, N+\pi] \longrightarrow K$
Then, \underline{w} cores $u_{i} \& \quad \underline{w}<v$.
$\Rightarrow O_{p}\left(W_{j k}\right)=O\left(W_{j k}\right) \quad$ fr all $j, k \quad\left(D_{w_{j k}}=0\right)$
Conclusin: $Z^{\prime}\left(\underline{W}, O_{\Delta}\right)=Z^{\prime}\left(\underline{W},(0)=B_{\downarrow}^{\prime}(\underline{W}, 0)\right.$

$$
\left[H^{\prime}\left(\underline{w},(0) \hookrightarrow H^{\prime}(\mathbb{D},())=0\right]\right.
$$

$\Rightarrow \xi \in Z^{\prime}\left(\underline{w}, O_{D}\right)$ becomes $\quad \zeta_{i_{0} i_{1}}=\partial g=g_{i_{1}}-g_{i_{0}}$ m $U_{i_{0} i_{1}}$ fr $g_{j} \in O\left(w_{j}\right)$
Nud to adjust gj to make it attain puscribed 0^{\prime} s \& ples at q q.s $\& p^{\prime} s$
Easiest: $f=g-h \quad$ pr a suitable $h \in O\left(U_{i}\right)$
What do we med? $C^{0}\left(\underline{W}, \cap_{D}\right)=\left(f_{k}\right)$ mans
(i) $f_{k} \in(1)\left(W_{k}\right)$ fr $k \in K \quad O_{k}$ (is h is holo)
(2) $f_{j} \in O_{>}\left(D_{r_{j}}\left(p_{j}\right)\right) m G_{j}=\Psi_{j}\left(z-P_{j}\right)^{a_{j}}, \quad \varphi_{j} \in\left(1\left(D_{r_{j}} \mid p_{j}\right)\right)$
(3) $f_{l} \in \emptyset_{\triangleright}\left(D_{s_{l}}\left(f_{l}\right)\right) \leadsto f_{l}=\frac{\psi_{l}}{\left(z-g_{l}\right)^{b l}} \quad \psi_{l} \in\left(\left(D_{s l} \mid g_{l}\right)\right) \quad$ ok because

If we use h holo, we an goord in (1) \& (3). Fr (2) we need to fix the roder of a_{k} as a zeo of g_{l}.

- Relabel so that g_{1}, \ldots, g_{n} conespand to discs fo p_{1}, \ldots, p_{n}.

Then write $g_{k}^{\text {iply }}=\sum_{j=0}^{a k-1} c_{k j}\left(z-p_{k}\right)^{j}$ where $g_{k}=\sum_{j=0}^{\infty} c_{k j}\left(z-p_{k}\right)^{j}$
Olen h should be a polynmial with in a nbud of P_{k} in W_{k}
(*) $\left.h\right|_{z=a j}=g_{j} \cdot j^{p o} y+(h o t) \quad \forall j$.

Our nartleama confirms we can find sach h.
$\Rightarrow U \operatorname{sing} f_{j}=g_{j}-h$, we get $\left(f_{j}\right) \in C^{0}\left(\underline{\omega}, 0_{\Delta}\right)$ \& $\partial f=\{$.
Conclude: $Z^{\prime}\left(\underline{w}, \mathscr{O}_{D}\right)=B^{\prime}\left(\underline{\omega}, \mathcal{O}_{D}\right)$ ie $H^{\prime}\left(\underline{W}, O_{D}\right)=0$.

$$
\begin{aligned}
& \Rightarrow H^{\prime}\left(\underline{v}, O_{\Delta}\right)=0 \quad \sin \varphi \quad \underline{w}<\underline{v} . \\
& \text { Then } 0=\frac{\lim _{\underline{v}} H^{\prime}\left(\underline{v}, O_{D}\right)=H^{\prime}\left(u_{i}, O_{\Delta}\right) \quad \forall i}{}
\end{aligned}
$$

Lemma: Girten $p_{1}, \ldots, p_{n} \in \mathbb{D}$ \& $g_{j}(z)$ holourpphic on an spen $U_{j} \ni p_{j}$, thene $a_{11} \ldots, a_{n} \in \mathbb{Z}_{\geqslant 0}$
exists $h(z) \in \mathscr{(D)}$ s.t. $\rho_{j}(z)-h(z)$ vauishes at p_{j} to rder at least a_{j}.
Proof: Fr each $1 \leq j \leqslant n$, we ansider the Taylor series expansion abret P_{j} of the meunorphic fenctim $G_{j}:=g_{j}(z) \prod_{i \neq j}\left(z-p_{i}\right)^{-a_{i}}$

- G_{j} is holo at P_{j}, so $\quad G_{j}=\sum_{r=0}^{\infty} c_{j}^{(r)}\left(z-P_{j}\right)^{r}$
- Let φ be a memurphic fenctim m ID with prles exactly at p_{1}, \ldots, p_{4} st $1 \leq j \leq n$, the Lament seies expansin of φ wan $p j$ is of the frm

$$
\begin{aligned}
(* *) \quad \varphi= & \sum_{r=0}^{a_{j-1}} \frac{c_{j}^{(r)}}{\left(z-p_{j}\right)^{a_{j-r}}}+\text { holomurphic mar } p_{j} \\
\text { primcipal part of } \varphi & \text { at } p_{j}=\operatorname{Ppal}\left(\varphi, p_{j}\right)
\end{aligned}
$$

(Example: $\quad \varphi=\sum_{j=1}^{n} \operatorname{ppal}\left(\varphi, p_{j}\right) \quad$ works!)
Remark: ($1 * x$) is the "eary" rusin of Mittag-Lefflé's Therem (find a mermurphic henction φ with poles p_{1}, \ldots, p_{n}, holo a a rays ham $p_{1} \ldots p_{n}$ \& with prescubed primcipal parts at cach p_{j}) Hand: mplace the fimite set with a discute

- Let $h(z)=\varphi_{(z)} \prod_{i=1}^{n}\left(z-p_{i}\right)^{a_{i}}$. Coaly, $\varphi \in O(\mathbb{D})$.

Claim: $\forall 1 \leq j \leqslant n \quad g_{j}(z)-h(z)=\left(z-p_{j}\right)^{a_{j}}$. (nolo at $\left.p_{j}\right)$
Bf/ N N ${ }_{c}$: $\left(z-p_{j}\right)^{a_{j}} P_{p_{a}}\left(\varphi, p_{j}\right)=\sum_{r=0}^{a_{j}-1} c_{j}^{(r)}\left(z-p_{j}\right)^{r}$

$$
\begin{aligned}
\Rightarrow g_{j}(z)-h(z) & =\rho_{j}(z)-\left(z-p_{j}\right)^{a_{j}} \varphi(z) \prod_{i \neq j}\left(z-p_{i}\right)^{a_{i}} \\
& =\prod_{i \neq j}\left(z-p_{i}\right)^{a_{i}}\left(g_{j}(z) \prod_{i \neq j}\left(z-p_{i}\right)^{-a_{i}}-\left(z-p_{j}\right)^{a j} \varphi(z)\right) \\
& =\prod_{i \neq j}\left(z-p_{i}\right)^{a_{i}}\left(\sum_{r=0}^{a_{j-1}} c_{j}^{(r)}\left(z-p_{j}\right)^{r}-\sum_{r=0}^{a_{j-1}} c^{(r)}\left(z--p_{j}\right)^{r}+\left(z-p_{j}\right)\left(h_{0} b_{a} p_{p_{j}}\right)\right) \\
& =\left(z-p_{j}\right)^{a_{j}}\left(\prod_{i \neq j}\left(z-p_{i}\right)^{a_{i}} \cdot \operatorname{holo} \text { at }(j)\right.
\end{aligned}
$$

Remark: The statement of the Theorem and the mex o of its proof can be phased using ses n shares \& long exact sequences on cohumolopy.
\$21.2 The Riemann-Rrch Theorem
Theorem $R-R$ Fix X a compact $R S$ of genes g \& $D \in \operatorname{Div}(X)$. Then $H^{0}\left(X, O_{\Delta}\right)$ \& $H^{\prime}\left(X, O_{\Delta}\right)$ an finite dimensinal \mathbb{C}-vector space \&

$$
\operatorname{dim} H^{0}\left(X, O_{D}\right)-\operatorname{dim} H^{\prime}\left(X, O_{D}\right)-\operatorname{dg} D=1-g
$$

Example $D=0$. Then $D_{\Delta}=(1)$

$$
(f i m i t)
$$

$$
\begin{aligned}
& \underbrace{\operatorname{dim} \underbrace{H^{0}(x, 0)}_{=O(x)=\mathbb{C}})}_{=1}-\underbrace{\operatorname{dim}_{H^{\prime}(x, 0)}^{H_{0}}}_{\begin{array}{c}
=\rho \\
\text { (hamite) }
\end{array}}-\operatorname{deg} 0_{0}^{0}=1-g \\
& \text { (Finite) } ノ
\end{aligned}
$$

Proof of R-R W_{e} 'll do it by establishing finiteness \& Proving: $\operatorname{dim} H^{0}\left(X, O_{D}\right)-\operatorname{dim} H^{\prime}\left(X, O_{D}\right)-\operatorname{deg} D$ is independent of D $(\Rightarrow$ constant $=1-g$ fo $D=0$.
Pf/ By induction on \mid Supp $D \mid$.

- Base case S app $D=\varnothing$ ie $D=0$
- Inductive step: if the for D, slow it for $D+[p] \quad \forall p \in X$. (support may decease if ord $D=-1$)
Fo the inductive step well weed to relate $O_{D} \& O_{D \pm}[p]$ using ses m shores This will also prose finiteness. We'll discuss it next time.

Applicative Find lowe bounds for the dimension of $O_{D}(x)$
$\left(G_{\Delta}(x) \geqslant f\right.$ with prescribed \geqslant rider of zens $\& \leqslant$ order of pales .)
Coorllay! Fix X a compact RS of genes g \& $a \in X$. Then $\exists f \in G(X) \backslash \subset$ where f has at most a pole at a of eden $\leqslant g+1$.
(We'k seen $\exists f \in \Omega(x)-\mathbb{C}$ with a pole at a, but r den of this cunifue pile wasn't bounded. This was Cowllayy $\$ 19.3$ (consequence of finiteness the))

Proof: Apply RR To the divisor $D=(g+1)[a]$

$$
O_{\Delta}(U)=\left\{f \in G_{(}(U): \quad \operatorname{ord}_{x}(f) \geqslant-D_{(x)} \quad \forall x \in U\right\}
$$

if $a \notin U \Rightarrow O_{\Delta}(U)=O(U)$
if $a \in U \Rightarrow O_{D}(U)=\left\{f \in \mathscr{G}(U)\right.$, hols away fauna \& with $\left.\operatorname{rd}_{a}(f) \geqslant-(g+1)\right\}$ (rours/acosapres $s+1$.

- $H^{0}\left(X, O_{D}\right)=O_{D}(X) \quad$ want to show: $\operatorname{dim} \geqslant 2\left(\mathbb{C} \subseteq O_{D}(x)\right)$

By RR: $\operatorname{dim} H^{\circ}\left(X, O_{D}\right) \geqslant \operatorname{dim} H^{\prime}\left(X, O_{D}\right)+1-g+\operatorname{dg} D$

$$
\geqslant 0+1-g+(1+g)=2
$$

Corllayy 2: Fix a compact $R S X$ of genees g. Then, $\exists f: X \rightarrow \mathbb{P}^{\prime}$ holo branched proser map with at must $g+1$ sheets (depee of $f \leqslant g+1$)
Paod Use f puna Corollay 1: $f \in \mathbb{K}(x)-\mathbb{C}$ gives $f: X \rightarrow \mathbb{P}^{\prime}$ holo $\&$ un-constant, so it is proper \& degeee $=\left|f^{-1}(\infty)\right|=-\operatorname{rde}_{a}(f) \leqslant g+1$.

Coollary 3: X compact $R S$ of geness 0 . Then $X \simeq \mathbb{I}^{\prime}$.
Paoof Pick $f: X \longrightarrow \mathbb{P}^{\prime}$ hun Corollay 2 (proper, un cmstont, wolo map of degue $\leqslant 1$). But $d y \geqslant 1$, so tique $=1 . \quad L: X \longrightarrow \mathbb{R}^{\prime}$ loral hamo \& poser is bihohmurphic.
§21.3 Sky scafer shoares:
Next Want to relate O_{D} \& $O_{D}+[p]$ for $p \in X$ a point ($M>O_{D}$ vs $O_{D+D^{\prime}}$) For this, we need the notim of the Sky scaafer sheaf \mathbb{C}_{p}.
Definition: Fix X any RS \& $p \in X$. The skyscooper shaf $\mathbb{C}_{p} n X$ is defined as $\mathbb{C}_{p}(U)= \begin{cases}\mathbb{C} & \text { if } p \in U \\ 0 & \text { ilse }\end{cases}$
with nestrictions $\rho_{U V}: \mathbb{C}_{P}(U) \longrightarrow \mathbb{C}_{P}(V) \Rightarrow \rho_{u V}= \begin{cases}0 & \text { if } \mathbb{1} \nmid V \\ \text { id } & \text { if } P \in V\end{cases}$

$$
(f) \longmapsto \begin{cases}(0) & \text { if } p \notin V \\ (f) & \text { if } p \in V\end{cases}
$$

Stall: $\left(\mathbb{C}_{p}\right)_{p}=\mathbb{C} \&\left(\mathbb{C}_{p}\right)_{x}=0 \quad \forall x \neq p \quad$ (hence, the wamu!)
Propsition: (1) $H^{0}\left(X, \mathbb{C}_{p}\right)=\mathbb{C}_{p}(X)=\mathbb{C}$
(2) $H^{\prime}\left(X, \mathbb{C}_{p}\right)=0$

P noof (2) Need to show $H^{\prime}\left(\underline{U}, \mathbb{C}_{p}\right)=0 \quad \forall \underline{U}=\left(U_{i}\right)_{i \in I}$ open corening of X
$\left(H^{\prime}\left(\underline{U}, \mathbb{C}_{p}\right) \longleftrightarrow H^{\prime}\left(X, \mathbb{C}_{p}\right)\right.$ by Proproition $\left.2 \S 16.3\right)$
Clain: \exists a eufimement $\underline{V}<\underline{U}$ with $V=\left(V_{K}\right)_{k \in K}$ st p is intained in exactly me V_{K}.

$W=\varphi^{-1}\left(D_{\frac{1}{2}}(0)\right)$ fen nblud of p \& $\bar{W} \subseteq U$ compact
 $\underline{v}<\underline{u}$ ria ζ

Conspumen: $\operatorname{sinc} \mathbb{C}_{p}\left(V_{k e}\right)=0$ west $Z^{\prime}\left(\underline{V}, \mathbb{C}_{p}\right)=\{0\} \Rightarrow H^{\prime}\left(\underline{v}, \mathbb{C}_{p}\right)=0$.

$$
\left.\left(f_{n e} \in \mathbb{C}_{p}\left(V_{n e}\right)=30\right\} \quad \forall k, l \text { so } C^{\prime}\left(v, \mathbb{C}_{p}\right)=3 \underline{0}\right\}
$$

But $H^{\prime}\left(\underline{u}, \mathbb{C}_{p}\right) \stackrel{\underline{U}_{\underline{v}}^{u}}{\longrightarrow} H^{\prime}\left(v, \mathbb{C}_{p}\right)$ by Thuremslo. 2 , so $H^{\prime}\left(\underline{u}, \mathbb{C}_{p}\right)=0$.
Taking dierct limit sun U. we set $H^{\prime}\left(X, \mathbb{C}_{p}\right)=0$.
§21.4 Exact seprences:
Recall: Gisen X top space a shease $\mathcal{J e}^{e}, G$ (of ab poups / vectr spaci) $14 X$ $\alpha: \mathcal{F} \longrightarrow C_{\mathcal{G}}$ muphism of sheares $\equiv \alpha_{u}: \mathcal{F}_{(0)} \rightarrow \mathscr{G}(0)$ homomarhism of ab $\mathrm{yps} / \mathrm{rectr}$ spaces compatible with restrictim maps fos $\tilde{k} \& / g$.
$m \alpha$ induces $\alpha_{x}: \mathcal{F}_{x} \longrightarrow G_{x}$ mosphism n stalks.
$[f] \longmapsto\left[\alpha_{V}(f)\right]$ if $f \in \mathcal{Y}_{(}(V) \leftrightarrow n x \in V$.
Definition: We say $\alpha: \vec{J}^{2} \longrightarrow \mathcal{G}$ is am ismouphism if $\exists B: \mathcal{G} \rightarrow \vec{F}$ morphisen of straves with $\beta \circ \alpha=i d \bar{J} \& \alpha_{0} \beta=i d$ cy.

Lemma: α is an ismorphism iff α_{x} is bijectere $\forall x$
Proof: \Leftrightarrow Is clean: $\left(\alpha^{-1}\right)_{x}=\left(\alpha_{x}\right)^{-1} \quad \forall x$.
\Leftrightarrow We'll show that $\alpha_{U}: \tilde{F}(U) \longrightarrow \mathcal{G}(U)$ is an iso if all sen $U \subset X$.
If so $\left(\alpha^{-1}\right)_{v}=\left(\alpha_{u}\right)^{-1} \&$ the compatibility of the map with the restrictions will follow ham that of α.

$$
\begin{aligned}
& g(v) \stackrel{(\alpha v)^{-1}}{\stackrel{\left(Q^{\alpha u}\right.}{\rightleftarrows}} \tilde{F}^{\sim}(u) \\
& \rho_{v, v}^{y} \downarrow \\
& \xi(v) \underset{\alpha_{v}}{\stackrel{(\alpha v)^{-1}}{\rightleftarrows}} \mathcal{J}_{v, v}^{\rightleftarrows}(v)
\end{aligned}
$$

- α_{v} is ingecters: Pick $s \in \mathscr{F}(U)$ with $\alpha_{v}(s)=0$ Then $\alpha_{x}\left(s_{x}\right)=\left[\alpha_{u}(s)\right]$ Thees $s_{x}=0 \quad \forall x$. This frees $s=0 \quad\left(\forall x \in U \exists V_{x} \subseteq U\right.$ rem with $=[0] \forall x$ $x \in V_{x}$ sit $S_{\left.\right|_{V_{x}}}=0$ These sections ${ }^{s}\left(v_{x}=0 \in \tilde{F}\left(V_{x}\right)\right.$ agree on the oredols, so by the shall axiom $m \tilde{F}^{r}$, since $s \& 0 \in \mathcal{F}(u)$ satisfy $s / v_{x}=0$, we st $s=0$ by the uniqueness)
- α_{u} is sajjectise: Pick $t \in G(u)$ Then, $t_{x} \in G_{x}=\alpha_{x}\left(\mathcal{F}_{x}\right) \forall x \in X$.

Therefore, we can find $U_{x} \ni x$ often $U_{x} \subseteq U$ \& $f_{x} \in F\left(U_{x}\right)$ with $\alpha_{x}\left(\left[f_{x}\right]\right)=t_{x}$ We consider $\alpha_{V_{x}}\left(f_{x}\right) \in \xi(u)$. By construction $\left[\alpha_{V_{x}}\left(f_{x}\right)\right]=[t]$ on g_{x}. In paticalar, shining x if weed, we see $\alpha_{v_{x}}\left(f_{x}\right)=t_{I_{x}}$ (by definition of stalk y_{x}) Pick x,y $\cup U$ \& sit $V=U_{x} \cap U_{y}$. Then

$$
\alpha_{v}\left(f_{x} \mid v\right)=\rho_{v_{x} v}\left(\alpha_{v_{x}}\left(f_{x}\right)\right)=\rho_{v_{x} v}\left(t_{\left.\right|_{x}}\right)=t_{l_{v}}=\rho_{v_{y} v}\left(t_{v_{y}}\right)=\rho_{u_{y} v}\left(\alpha_{v_{y}}\left(f_{y}\right)\right)=\alpha_{v}\left(f_{y} \mid v\right)
$$

Since α_{v} is ingectise, we get $\left.r_{x}\right|_{v}=f_{y} l_{v}$.
Conclusion $f_{x} \in \mathcal{F}\left(U_{x}\right)$ ague in the recaps so $\exists!f \in \mathcal{F}(U)$ with $f l_{U_{x}}=f_{x} \quad \forall x \in U$.
Now: $\alpha_{u}(f)_{{v_{x}}}=t_{{U_{x}}_{x}} \in \mathscr{G}\left(U_{x}\right) \quad \forall x$ agree n the orualaps

By the shoal axim in $G: \alpha_{U}(b)=t$
Definition: α is a momorphisa if α_{x} is imjectire $\left.\forall x \quad\left(K(\alpha)_{x}=30\right\} \forall x\right)$
α is en epiciurphition iff α_{x} is surjectese $\forall x \quad\left(B(\alpha)_{x}=G_{x} \forall x\right)$
Lemma द : If α is a mumouophism, then $\forall \cup$ often $\alpha_{v}: \mathcal{F e}_{(}() \rightarrow G_{(U)}$ is ingectire Ff/ This is part of the proof of Lemma 1 .
11 The analogous statement is epimirphisms tails!
Example: $X=\mathbb{C}^{*} \quad \mathcal{F}^{*}=0 \xrightarrow{\text { exp }}{O^{*}=\mathscr{y}}^{*}$

- At stalls, the map is injectise beconese we have branches of log mar each pt (after making a cut)
- We don't han a global log, so $\exp _{x}: O_{(x)} \longrightarrow O_{(x)}^{k}$ is st subjective $\left(z \notin \operatorname{im}\left(\exp _{x}\right) \subseteq O^{*}\left(0^{*}\right)\right)$

Def: A sepennce of shores $\mathcal{T e}^{\alpha} \mathscr{\longrightarrow} G \xrightarrow[B]{ }$ is exact if proven $x \in X: \mathcal{F}_{x} \xrightarrow{\alpha_{x}} g_{x} \xrightarrow{\beta} \mathscr{H}_{x}$ is exact (sequence of ab sps/vector spaces)
Lemma 3: If $0 \rightarrow \vec{r} \xrightarrow{\alpha} C \mathcal{B} H \rightarrow 0$ is exact then $\forall U \subseteq X$ ore, the sequence $0 \rightarrow \mathcal{F}(u) \xrightarrow{\alpha_{u}} \mathscr{Y}_{(v)} \xrightarrow{B_{u}} \mathscr{H}_{(v)}$ in $\mathscr{F}=A b$ ovect exact.
I We lose exactness at fo. This is what cohmology will masers
Poof. Exactness at $F(U)$ holds by Lemma z

- In $\alpha \cup \operatorname{Ker} \beta_{u}:$ Pick $g \in F(u)$ a set $f=\alpha_{v}(\rho) \in \operatorname{Cg}(u)$.

Want to show $B(F)=0$.
$\operatorname{Sin} \varphi \mathcal{F}_{x} \xrightarrow{\alpha_{x}} \mathscr{G}_{x} \xrightarrow{\beta_{x}} \mathscr{H}_{x}$ is exact $\forall x$, given $x \in X \exists V_{x}$ often with
$x \in V \subseteq U \quad$ and $\quad \beta_{v_{x}}\left(\left.g\right|_{v_{x}}\right)=\left.\beta(g)\right|_{v_{x}}=0 \quad\left(\beta_{x}=\rho_{x}=\beta_{x}\left(\alpha_{x}(f)\right)=0\right)$
By sheaf axion $\left.\beta(\rho)\right|_{v_{x}}$ glee to $\beta(\rho)$ \& to 0 , so $\beta(\rho)=0$.

- $\operatorname{Ker} \beta_{u} \subset \operatorname{Im} \alpha_{u}:$ Fix $~ g \in \operatorname{Ker}\left(\beta_{u}\right)$ ie $\beta_{u}(\delta)=0$. with $f \in \mathcal{G}(u)$.

Since Ker $\beta_{x}=\operatorname{In} \alpha_{x} \quad \forall x$ we can find an yean cosecing $\left(V_{x}\right)_{x \in U}$ of U \& elments $f_{x} \in \mathcal{F}\left(V_{x}\right)$ with $\alpha\left(f_{x}\right)=\delta / V_{x} m V_{x}$ We want to flue $f_{x} \in \mathcal{F}\left(V_{x}\right)$ to $f \in \bar{J}(U)$.
($n_{n} V_{x} \cap V_{y}: \alpha\left(f_{x}\right)=f \mid V_{x} \cap V_{y}=\alpha\left(f_{y}\right)$ ie $\alpha\left(f_{x}-f_{y}\right)=0$
Simee $\operatorname{Ker} \alpha_{V}=0 \quad \forall V$ ofen by Lemumaz z then $f_{x}-h_{y}=0 m V_{x} \cap V_{y}$
Thus, the sectimes $h_{x} \in \mathcal{F}\left(V_{x}\right)$ ague on the oreclaps \& they gleee $t_{0} f \in \vec{F}(U)$ with $f_{\gamma_{x}}=h_{x}$.
By construction $\left.\alpha(f)\right|_{v_{x}}=\alpha\left(\left.f\right|_{v_{x}}\right)=\delta \mid v_{x} \quad \forall \cdot v_{x}$.
The shiaf axion on G gives $\alpha(f)=g$. (gleing is usiqu!!) D
Thurem: X top space. Then, a ses $0 \longrightarrow \sqrt{k} \xrightarrow{\alpha} G \xrightarrow{\beta} \mathscr{O}$ of shases in X indere a long exact seguence n cohmology.

$$
\begin{aligned}
& \begin{aligned}
0 & \longrightarrow H^{0}(x, \tilde{r}) \xrightarrow{\alpha^{0}} H_{\delta}^{0}(x, y) \xrightarrow{\beta^{0}} H^{0}(x, \mathcal{H}) \\
\longrightarrow H^{\prime}(x, \tilde{J}) \xrightarrow{\alpha^{\prime}} H^{\prime}(x, y) \xrightarrow{\beta^{\prime}} H^{\prime}(x, \mathcal{H})> & \begin{array}{c}
\text { (lomg exact seq } \\
\text { (absis/v.sp) }
\end{array}
\end{aligned} \\
& \text { (absps/r.sp) } \\
& \rightarrow H^{2}(x, \overline{5}) \xrightarrow{\alpha^{2}} \ldots
\end{aligned}
$$

1! This will not be tuce it we work with lech columology melatere To corneings (undess the weseimp are Leray of arbithay rdes is $\bar{F}, g_{\&}$ \& H !)

We'll see more n this vext Time!

Example: Fix X compad RS, $D \in \operatorname{Div}(X)$ \& $p \in X$
We build a sefuence of shases of \mathbb{C}-vecter spaces
(*) $0 \longrightarrow 0_{D} \xrightarrow{i c}\left(_{D+[p]} \xrightarrow{\beta} \mathbb{C}_{p} \longrightarrow 0\right.$

- $O_{D} \subset \Theta_{D+[p]}$ since $r d_{x}([p])=\left\{\begin{array}{ll}1 & x=p \\ 0 & d\end{array}\right.$ se so $f \in \bigoplus_{D}(U)$ gines

$$
\operatorname{ord}_{x}(F) \geqslant-D_{(x)} \geqslant-(D+[p])_{x} \quad \forall x \in U .
$$

- Definition of $B: \quad \beta_{U}=0$ if $p \notin U$
if $p \in U$ build a bral chort (V, z) around p in U with $V P \stackrel{\rightharpoonup}{\longmapsto} \underset{\square}{\longmapsto}$
\Rightarrow gisis $f \in \mathcal{O}_{D+\rho}(U)$, write the Lawent series expansin of f on V :

$$
\begin{aligned}
& f=\sum_{n=-k-1}^{\infty} c_{n} z^{n} \text { with } k=D(p) \\
\Rightarrow \beta_{U}(f)=c_{-k-1} & \in \mathbb{C}=\mathbb{C}_{p}(U) .
\end{aligned}
$$

(Chait indypendent because stalks couspind to laceent suies expansin a transitius becme $D \xrightarrow{\varphi}$ iD bibulunaphisus)

- $\left(B_{0} \text { oinc }\right)_{U} \equiv 0 \quad\left(C_{-k-1}=0\right.$ if $f \in O_{D} \subset\left(O_{D+C_{P}}\right)$

Lemma 4 The sequence (*) is exact
Phoof: We work with stalks.

- If $x \neq p:\left(Q_{D}\right)_{x}=\left(Q_{D+[p]}\right)_{x}$ \& $\left(\mathbb{C}_{P}\right)_{x}=0$ inc iso \& $B_{x} \equiv 0$
- If $x=p: \quad \operatorname{Im}\left(\emptyset_{D} \longrightarrow\left(D_{D+p p}\right)_{p} \quad \operatorname{ord}_{p}(f) \geqslant-D_{(p)}>-D_{(p)^{-1}}\right.$
inc p is ingectise \& B_{p} is samjectire \forall_{p}

$$
\text { if } \left.R_{p}(\rho)=0 \Rightarrow \rho=\sum_{n=-k} c_{n} z^{n} \quad\left(c_{-n-1}=0\right) \text { so } g \in\left(\emptyset_{D}\right)_{p}\right)
$$

