Lecture XXII: Sene Duality I
Recall. X cmpact R.S, then genes $=\operatorname{dim} H^{\prime}(X, \vartheta)$

- $K=(\omega)$ if $\omega \in \mathscr{\sigma}^{(1)}(X)$ is a conmical disiser on X.

Riemann-Roch: For X anjact RS $2 \quad D \in \operatorname{Div}(X)$, we have $H^{0}\left(X, O_{B}\right), H^{\prime}\left(X, O_{D}\right)$ are firmite dimensimal \& $\operatorname{dim} H^{*}\left(X, O_{D}\right)-\operatorname{dim} H^{\prime}\left(X, \Theta_{D}\right)-\operatorname{dg} D=1-g$.
Remark: $\exists f \in \mathscr{R}_{(}(x) \backslash \mathbb{C}$ with apole (insequence of $\left.R-R\right) \Rightarrow d f \in \mathscr{J}^{(1)}(x)$ sires a men-constat emenent in $G^{\prime \prime \prime}(x)$ a so a men-Trinial $K=(d f)$
Lemma 1: Fo $\omega_{1}, \omega_{2} \in f^{\prime \prime \prime}(x)$ wh hare $\left(\omega_{1}\right) \sim\left(w_{2}\right)$ ere levearly equinelent canmical dinisos
Lemmar 2: $D=D^{\prime}+(f)$ then $O_{D^{\prime}}^{\sim} \xrightarrow{\sim} O_{D}$ ismurplism of shares.
Next poal: qise alternatiere ways to cupute the gerees of cmpact R.S.
(1) [Sene dudity] $g=\operatorname{din} H^{\circ}(X, \Omega) \quad \Omega=$ shap of holowithic 1. Corms
(2) $\operatorname{dg} K=2 g-2$

Fo (1) we'll build an ismorphism $H^{\prime}\left(X, 0_{B}\right) \simeq H^{0}\left(X, \Omega_{\square}\right)^{{ }^{\wedge}}$ dual ketre space (abse: $D=0$ cane) to be dfined $\left(\Omega_{0}=\Omega\right)$
The maip will be defined uning Residues of smorth 2-Frms, er eprinalantly, of mecomorphic 1 -F-rms.
§23.1 The strases $\Omega \Delta \&$ Sem duality
Recall: $\Omega=\operatorname{Ker}\left(\tilde{E}_{x}^{(1,0)} \xrightarrow{d} \zeta_{x}^{(2)}\right)$ shat fholourfthici-torms on $X=R S$.
On (U, z) chatt: $f d z \xrightarrow{d} \frac{\partial f}{\partial \bar{z}} d z A d \bar{z}$, so $f d z \in \Omega(U) \Leftrightarrow f \in \Theta_{\mid z)}$.
Assume X is a R.S. \& $D \in \operatorname{Div}(X)$
Definition: We define a sheof $\Omega_{b} m X$ ria

$$
\Omega_{\Delta}(u)=\left\{\omega \in \pi^{(1)}(U):(\omega) \geqslant-D m \cup\right\} \quad\left(a m a \log o f\left(D_{D}\right)\right.
$$

On charts $(u, z): \omega \in \mathscr{J}^{(11}(u) \Leftrightarrow \omega=F d z \quad f \in \mathscr{L}(D) \quad \operatorname{ord}_{x}(\omega)=\underset{(x)}{\operatorname{ord}_{(x)} f}$

$$
\cup \underset{\vec{z}}{\sim} \mathbb{D}
$$

Example: $\Omega_{0}(U)=\left\{\omega \in \zeta^{(1)}(u):(\omega) \geqslant 0 \quad m \cup\right\}$
On a chat (V, z) with $V \subseteq U \quad w_{\mid V}=f d z \& \operatorname{cd}_{z(x)}(f) \geqslant 0 \forall x$, so f is holourghic on V, ie $\omega_{\mid V} \in \Omega(V)$. Conserse is clear.
Condude: $\Omega_{0}=\Omega$
Pcoppition: If $D=D^{\prime}+(f)$ f $\left.f \in \Omega(x), 30\right\}$, then $\Omega_{D^{\prime}}^{\sim} \underset{\cdot f}{\sim} \Omega_{D}$ is an ismurghism of sheases.
Lemma: (1) $H^{0}\left(\mathbb{P}^{\prime}, \Omega\right)=\Omega\left(\mathbb{R}^{\prime}\right)=\{0\}$
(2) $H^{\prime}\left(\left(u_{0}, u_{\infty}\right), \Omega\right)=\mathbb{C}\left\langle\frac{d z}{z}\right\rangle$
(3) $H^{\prime}\left(\mathbb{R}^{\prime}, \Omega\right)=\mathbb{C}$
$\mathcal{S}_{\operatorname{cov}} f(1) \Omega\left(\mathbb{P}^{\prime}\right)=\left\{\omega \in \zeta^{(1)}\left(\mathbb{R}^{\prime}\right) \quad(\omega) \geqslant 0\right\} \quad$ Assume $\exists \eta \in \Omega\left(\mathbb{P}^{\prime}\right) \backslash\{0\}$ We use the open corening $\left\{U_{0}, U_{\infty}\right\}$ of \mathbb{P}^{\prime} to describe η
$\eta l_{U_{0}}=f d z \quad f$ holo on $U_{0}=\mathbb{C} \quad \xi \mid U_{\infty}=g d \omega \quad$ o holo on $U_{\infty} \simeq \mathbb{C}$
Gluing $z=\frac{1}{\omega} \quad g(\omega) d \omega=f\left(\frac{1}{\omega}\right) \frac{-d \omega}{\omega^{2}}=\frac{f\left(\frac{1}{\omega}\right)}{\omega^{2}} d \omega$ in $U_{0} \cap U_{\infty} \simeq \mathbb{C}^{n}$ o holo man $\infty \Rightarrow f\left(\frac{1}{\omega}\right) \frac{1}{\omega^{2}}$ nolo mar 0 .
$\Rightarrow f$ has a poleat ∞ freing f to be a polyumial $f \neq 0$

$$
\operatorname{ord}_{0} f\left(\frac{1}{\omega}\right)-2=\operatorname{ord}_{\infty}(g) \geqslant 0 \Rightarrow \operatorname{ord}_{0} f\left(\frac{1}{\omega}\right)-2=-d_{g} f-2 \geqslant 0 \text { cant }
$$

(2) Pick $\underline{u}=\left\{U_{0}, U_{\infty}\right\}$ com of $\mathbb{P}^{\prime} \Rightarrow Z^{\prime}(\underline{u}, \Omega)=C^{\prime}(\underline{u}, \Omega)$ (nin Tiple $\begin{gathered}\text { inturctin) }\end{gathered}$

$$
\begin{aligned}
& \Omega\left(u_{0} \cap u_{\infty}\right)=\left\{f_{(z)} d z \quad f \in \mathscr{O}\left(\mathbb{C}^{*}\right)\right\} \\
& B^{\prime}(\underline{u}, \Omega)=\partial C^{0}(\underline{u}, \Omega) \quad \& C^{0}(\underline{u}, \Omega)=3\left(\rho_{0}(z) d z, \rho_{\infty}^{\Omega\left(U_{0}\right)} \epsilon^{\left.\left.\Omega\left(U_{\infty}\right) d w\right)\right\}}\right.
\end{aligned}
$$

Now, $f \in O\left(\mathbb{C}^{*}\right)$. Write $r(z)=\sum_{n=2}^{\infty} f_{-n} z^{-n}+f_{-1} z^{-1}+\sum_{l=0}^{\infty} f_{l} z^{l} \begin{gathered}\text { Lavent } \\ \text { expu a donts } \\ \text { Roc }=\infty\end{gathered}$
$\Rightarrow f(z) d z=f_{1} z^{-1} d z+\partial(\underline{g})$ where $\quad g_{\infty}(w)=-\sum_{n=2}^{\infty} f_{-n} w^{n-2} \in \Theta_{\left(U_{\infty}\right)}$

$$
J_{0}(z)=-\sum_{l=0}^{n=2} f_{l} z^{l} \in O\left(U_{0}\right)
$$

[Check: $\left.\delta_{\infty}\left(\frac{1}{z}\right)=-\left(\sum_{n=2}^{\infty} f_{-n} z^{-n}\right) z^{2} \Rightarrow \rho_{\infty}\left(\frac{1}{z}\right)\left(-\frac{d z}{z^{2}}\right)=\sum_{n=2}^{\infty} f_{-n} z^{-n}\right]$

$$
\Rightarrow[f(z) d z]=\left[f_{1} \frac{d z}{z}\right]=f_{1}\left[\frac{d z}{z}\right] \text { in } H^{\prime}(\underline{u}, \Omega)
$$

(3) Exercise (Hint: Show $H^{\prime}\left(D_{R}(0), \Omega\right)=0 \forall 0<R \leqslant \infty$. by Dolbeault's Thin)

Theorem (Sene duality) $F_{1 x} X$ compact $R S$ \& $D \in D i V(X)$. Then \exists a unodeng. paining $H^{0}\left(X, \Omega_{-\Delta}\right) \times H^{\prime}\left(X, O_{\Delta}\right) \longrightarrow H^{\prime}(X, \Omega) \xrightarrow{\text { "Res" "Residue map" }} \mathbb{C}$

$$
(\omega) \times[\xi] \longmapsto[g \omega] \longmapsto \operatorname{Res}([g \omega])
$$

Corollary 1: $\operatorname{dim}_{\mathbb{C}} H^{0}\left(X, \Omega_{\rightarrow}\right)=\operatorname{dim} \mathbb{C}^{\prime}\left(X, O_{\Delta}\right)<\infty \quad\left(b_{y} R R\right) \forall D$
Plop: $H^{0}\left(X, \Omega_{\rightarrow D}\right) \simeq H^{\prime}\left(X, O_{\Delta}\right)^{V} \quad \& \quad \operatorname{din} H^{\prime}\left(X, O_{\Delta}\right)<\infty \quad$ by RR so $H^{\prime}\left(X, O_{B}\right) \simeq H^{\prime}\left(X, O_{D}\right)^{V}$ (identify deal bases).
$\Rightarrow H^{0}\left(X, \Omega_{-D}\right) \simeq H^{\prime}\left(X, O_{D}\right)$ as finite dimensional \mathbb{C}-vector spaces. so their dimension ague.
Corollary 2: $\operatorname{dem} H^{0}(X, \Omega)=\operatorname{genes}(X)$ in any compact RS X
Broof: Take $D=0$ so $\Omega_{-0}=\Omega \quad$ Then, Corollary I says

$$
\operatorname{dim} H^{0}(X, \Omega)=\operatorname{dim} H^{\prime}(X, 0)=\operatorname{gevees}(X)
$$

 $D \in \operatorname{Div}_{\text {(}}$ (
Then, $\operatorname{dim} H^{\circ}\left(X, O_{-D}\right)-\operatorname{dim} H^{\circ}\left(X, \Omega_{\Delta}\right)=1-g-\operatorname{dug} D$ (use - D in RR instead of $D+$ (oovelery 1)
Next: understand the pairing in Sene's decality Thu
\$23.2 Ω_{D} vs $O_{D} \&$ Sene's paining:
Fix $X=$ compact R.S.
Proppritin: Given $\left.\omega \in \mathscr{V}^{\prime \prime \prime}(x) \backslash 30\right\} \& D \in \operatorname{Div}(x)$ we have an ismerphison 2 sheaves $\varphi: 0_{\Delta+K} \longrightarrow \Omega_{D} \quad f \longmapsto f \omega$ where $K=(\omega)$
Proof: Given $x \in X$, pick a localchait (U, z) around $x \cdot \underset{x \longmapsto}{\stackrel{\sim}{\rightleftarrows}} \mathbb{D}$ Waite $\omega /_{v}=g d z$ with $g \in \pi(D)$
 $U \subseteq V$. Then: ord $x(f) \geqslant-(D+K)_{(x)}=-D_{(x)}-\operatorname{ord} x(\omega)$
Write $k=D(x)$ \& $p=\operatorname{or} d_{x}(\omega)=\operatorname{ord} x(g) \quad$ Peach chart $U \subseteq V$

$$
\left.\Rightarrow f w\right|_{u}=(f g) d z \& \operatorname{ord}(f g)=\operatorname{ord}(f)+\operatorname{ord}(\rho) \geqslant-k-p+p=-k
$$

$\left.\Rightarrow \downarrow \omega\right|_{U} ^{\in} \Omega_{D}(U) \quad$ These sections agree an recaps (they ae delernened by the same frumela $\delta \omega$!) so they fire a section $f \omega \in O_{\Delta}(V)$.

- Enough To check φ is iss m stalks WLOG, given $x \in X$ \& the choir (U, z), we can assume assume Supp $D \cap \cup \subseteq\{x\}$ (Supp D is finite because X is compact.)
Injective: Fix $f \in O_{\Delta+K, x}$ with $\varphi(f)=0 \in \Omega_{D, x}$
$[f-\omega]_{x}=[f g d z]_{0}$ says Loverent prover series exp of fg at 0 is 0 .
Since $g \neq 0$ (D connected), we conduce $[f]_{x}=0$.
Suyctive: Fix $\eta \in \Omega_{D, x}$ so $\exists \operatorname{chant}(v, z)$ around $x \& h \in \Omega_{0}(u)$ with $\eta=[h d z]$. In particular $h \in \pi(U), h \in \mathcal{V}_{U^{*}}\left(U^{*}\right) \& \operatorname{ord}_{x}(h) \geqslant-D(x)$ (We pick U so that $\operatorname{supp} D \cap \cup \subseteq\{x\}$.)

Then $(\omega / u) \sim(h d z) m \operatorname{Div}(u)$, so $\exists f \in \mathbb{D}(u)$ with $\eta=(f)+|\omega| u)$ $\operatorname{ord}_{y}(f)=\operatorname{ord}_{y}(\eta)-\operatorname{odd}_{y}(\omega \mid u)= \begin{cases}0-\operatorname{ord}_{y}(K) & \text { if } y \neq x \\ \geqslant-D_{(x)}-\operatorname{ord}_{x}(k) & \text { if } y=x\end{cases}$

So $f \in \cap_{D+K}(u) \& \quad f w_{l u}=h d z m U$
Conduce: $[f \omega]_{x}=\eta$ ie $\varphi(f)=\eta$
Obs: We can reinterpect the presides result as a map of shone

$$
\begin{aligned}
& \Omega_{-K} \oplus 0_{\Delta+K} \longrightarrow \Omega_{D} \\
& D=-k+D+k \\
& \text { On U: } \\
& \begin{array}{ccc}
\Omega_{-k}(u) & \times 0_{D+k}(u) & \longrightarrow \Omega_{D}(u) \\
\omega & f & \longmapsto f w
\end{array} \\
& (\omega)=K \geqslant-(-K) \\
& \text { sen }
\end{aligned}
$$

Remark: Same ideas of Propssition produce a no ap of shores ria multiplication

$$
\begin{aligned}
\Omega_{-D^{\prime}} \oplus \cup_{D} & \longrightarrow \Omega_{-D^{\prime}+D} \\
(\omega, F) & \longmapsto \omega
\end{aligned}
$$

In particular, fo $D^{\prime}=-D$ we get $\Omega_{-D} \times \theta_{D} \longrightarrow \Omega$
Serve's paining: The multiplication map $\Omega_{\Delta} \times \Theta_{\Delta} \longrightarrow \Omega$ induces a bilinear map $\Psi: H^{0}\left(X, \Omega_{-D}\right) \times H^{\prime}\left(X,\left(O_{D}\right) \longrightarrow H^{\prime}(X, \Omega)\right.$
How? $H^{0}\left(X, \Omega_{-D}\right)=\Omega_{-D}(X)=\left\{\omega \in J^{(1)}(X): \quad(\omega) \geqslant D\right\}$

$$
H^{\prime}\left(X, O_{D}\right)=\frac{\lim }{\underline{u}} H^{\prime}\left(\underline{u}, O_{D}\right)=\frac{\lim _{\underline{u}} Z^{\prime}\left(\underline{u}, 0_{D}\right) / B_{B^{\prime}}\left(\underline{u}, O_{D}\right)}{}
$$

Given $\xi \in H^{\prime}\left(x, O_{s}\right)$ pick \underline{u} \& a representative $\left(F_{i j}\right) \in Z^{\prime}\left(\underline{U}, O_{\Delta}\right)$ with $\left[f_{i j}\right]=\xi \in H^{\prime}\left(\underline{u}, O_{\Delta}\right)$.

We define $\Psi_{\underline{u}}: H^{0}\left(X, \Omega_{-\Delta}\right) \times H^{\prime}\left(\underline{U},\left(_{D}\right) \longrightarrow H^{\prime}(\underline{\underline{U}}, \Omega)\right.$

$$
w \times\left[f_{i j}\right] \longmapsto\left[f_{i j} \omega_{l_{v_{i j}}}\right]
$$

(
Pf/ $\left.\quad f_{i j} \omega\right|_{v_{i j}} \in \Omega_{\left(U_{i j}\right)}$ by the Remark $(-\Delta+\Delta=0)$

$$
\begin{aligned}
& \partial\left(f_{i j} w_{v_{i j}}\right)_{i_{0} i_{1} i_{2}}=f_{i_{1} i_{2}} \omega_{\left.\right|_{i_{1, i}}}-f_{i_{0} i_{2}} w_{\|_{i_{0} i_{2}}}+f_{i_{0} i_{1}} \omega_{\|_{i_{0} i_{1}}} \text { o } U_{i_{0} i_{i, 2}} \\
& =(\partial f)_{i o i_{1} i_{2}} \omega \|_{U_{i o i i i_{2}}}=0 \quad m \quad m U_{i o i_{1, ~}}
\end{aligned}
$$

(Key: ω is a global sectim of Ω_{-D}).
Claim 2: $\Psi_{\underline{e}}$ is well-defimed a bilinear
Bf/. The bilimar condition is chan.

- Well-del, $\left[f_{i j}\right]=\left[g_{i j}\right]$ in $H^{\prime}\left(\underline{u}, O_{\Delta}\right) \Leftrightarrow \exists h \in C^{0}\left(\underline{u}, O_{\Delta}\right)$ with

$$
\begin{array}{r}
\rho_{i j}=f_{i j}+(\partial h)_{i j} \forall_{i j} \\
\psi_{i} \in \Omega_{-D}\left(v_{i}\right)
\end{array}
$$

$$
\begin{aligned}
& (\partial h)_{i j} w_{v_{i j}}=\left(h_{j}-h_{i}\right) w_{\mid v_{i j}}=h_{j} w_{v_{i j}}-h_{i} w_{v_{i j}}=\partial\left(h_{i} \tilde{m}_{i} \omega / v_{i}\right) \\
& \text { so }\left(h_{i} w / v_{i}\right) \in C^{0}(\underline{u}, \Omega) \\
& \underbrace{\Theta_{\Delta}\left(v_{i}\right)}_{\in \Omega\left(v_{i}\right)} \\
& \Rightarrow\left[\left.\rho_{i j} \omega\right|_{v_{i j}}\right]=\left[\left.f_{i j} \omega\right|_{v_{i j}}+(\partial h) \omega_{v_{v i j}}\right]=\left[f_{i j} \omega_{v_{i j}}+\partial\left(h_{i} \omega_{v_{i}}\right)\right] \\
& =\left[\left.f_{i j} \omega\right|_{v_{i j}}\right] \text { m } H^{\prime}(\underline{u}, \Omega)
\end{aligned}
$$

Claim 3: $\Psi_{\underline{u}}$ is compatible with refinements ie $\Psi_{\underline{v}}=t_{\underline{v}}^{\underline{u}} 0 \Psi_{\underline{u}}$
Consequence: $\Psi_{\underline{u}}$ descends to a bilinear map $\Psi: H^{0}\left(X, \Omega_{\Delta}\right) \times H^{\prime}\left(X, O_{\Delta}\right) \rightarrow H^{\prime}(X, \Omega)$
Next: we need τ_{0} define a limen map $H^{\prime}(x, \Omega) \xrightarrow{\text { Res }} \mathbb{C}$. We'lldo this next time.
Sene duality Thun: The Sene paining + Res yield an is murphism

$$
\begin{align*}
i_{\Delta}: H^{0}\left(X, \Omega_{-D}\right) & \longrightarrow\left(H^{\prime}\left(X, O_{\Delta}\right)^{2}\right. \tag{Div}\\
\omega & \longmapsto(\xi \longmapsto \operatorname{Res}(\xi \omega))
\end{align*}
$$ (X compact RD

\$23.4 Conseprences of Sure duality:
Therem 1: X campact RS \& $D \in \operatorname{Div}(x)$. Then $H^{0}\left(X, \Theta_{-B}\right) \simeq H^{\prime}\left(x, \Omega_{\Delta}\right)^{v}$
Phoof: Fix $\left.\omega_{0} \in \mathscr{H}^{\prime \prime}(x)>30\right\}$ \& set $K=\left(\omega_{0}\right)$. By Propsition $\$ 23.2$ we have

$$
\begin{aligned}
\varphi_{\Delta+K} \simeq \Omega_{D} \quad \&{O_{-D} \simeq \Omega_{-D-K} \quad\left(D^{\prime}=-D-K\right)}^{\Rightarrow} \quad H^{0}\left(X, O_{-D}\right) \simeq H^{0}\left(X, \Omega_{-D-K}\right) \quad \& \quad H^{\prime}\left(X, \Omega_{D}\right)^{v} \simeq H^{\prime}\left(X, D_{\Delta+K}\right)^{v}
\end{aligned}
$$

- Sene duality applied to $D^{\prime}=-\Delta-K$ gises

$$
H^{0}\left(X, \Omega_{-D-K}\right) \simeq H^{\prime}\left(X, 0_{D+K}\right)^{v},
$$

so we get the desiud ismorplism
Cocollany 1: dim $H^{\prime}(X, \Omega)=\operatorname{din} H^{\circ}(X, 0)=1$
Proof. $H^{\circ}(X, 0)=O(X)=\mathbb{C}$ becaese X is compact

- Use $D=0$ in presious Thu to get the equality of dimensims

Therem 2: The deque of any cannical diniser n a compact $R S$ of genes g is $2 g-2$. Broof Fix $\left.\omega \in \mathcal{J}^{\prime \prime \prime}(x) \backslash 30\right\}$ \& set $K=(\omega)$. By Riemame-Roch applied to K we get $\operatorname{dim} H^{0}\left(X, O_{K}\right)-\operatorname{dim} H^{\prime}\left(X, O_{K}\right)=1-g+\operatorname{dg} K$.
By Propsitim §22.2 $\Omega \simeq 0_{K} \quad($ take $D=0)$ so

$$
\left.\begin{array}{rl}
& 1-g+\operatorname{dg} K=\underbrace{\operatorname{dim} H^{0}(X, \Omega)}_{=1 \text { by Cow } 1}-H^{\prime}(X, 0)^{v}
\end{array}\right)=g \text { by Simeduality } H^{\prime}(X, \Omega)=g-1
$$

Coorlany 2: Fr any rank-2 latice $\Lambda \subseteq \mathbb{C}$, the R.S. \mathbb{C} / Λ has genees 1. Pnoof $d z$ is a 1 -from sn \mathbb{C} s it descends T_{0} a t trom $\omega M X=\mathbb{C} / \Lambda$

- ω is holmurphic \& has no zers on X, so dy $\omega=0$
- But $0=\operatorname{dog} \omega=2 g-2$ by Thorem 2, $\omega 9, g=1$.

Obs: This says the topslogical genees of \mathbb{C} / Λ matches the abgebnaic/yemetic $\left(\mathbb{C} / \AA\right.$ is lumis to $\left.\$^{\prime} \times S^{\prime}\right)$

