Lecture XXIV : Sence Duality II
Recall: firen X RS \& $D \in \operatorname{Div}(X)$, we difine the shaves $\Omega_{\Delta} \subseteq \sqrt{6}^{(1)} \& O_{\Delta} \leq \sqrt{6} m X$ $\underset{\text { Hten }}{U \leq x}: \Omega_{\Delta}(u)=\left\{\omega \in r^{(1)}(u):(\omega) \geqslant-D_{1 U}\right\} ; \sigma_{D}(u)=\left\{f \in \pi(u):(f) \geqslant-D_{10}\right\}$ Exemple $\quad \Omega_{0}=\Omega, \quad \sigma_{0}=0$.
Lemma1: $D=D^{\prime}+(F)$ is $f \in \mathscr{F}(x) \cdots 30 \gamma \Rightarrow \Omega_{D^{\prime}} \frac{\sim}{\cdot F} \Omega_{D}$ iso Ifthane
Lenmaz : (1) $H^{0}\left(\mathbb{R}^{\prime}, \Omega\right)=\{0\}$ us $H^{0}\left(\mathbb{P}^{\prime}, 0\right)=\mathbb{C}$
(2) $H^{\prime}\left(\mathbb{T}^{\prime}, \Omega\right)=\mathbb{C}\left\langle\frac{d z}{2}\right\rangle$ us $H^{\prime}\left(\mathbb{R}^{\prime}, 0\right)=0$
(3) $H^{\prime}\left(\mathbb{D}_{R}(0), \Omega\right)=H^{\prime}\left(\mathbb{D}_{R}(0), 0\right)=0 \quad \forall 0<R \leqslant \infty \quad$ (by Dollbactit' T_{L})

This extends t_{0} a map of shaves $\quad \Omega_{-D^{\prime}} \oplus \mathcal{O}_{\Delta} \longrightarrow \Omega_{D-D^{\prime}} \quad$ \& fs $D^{\prime}=D$ we yt a bilimar map $\psi: H^{0}\left(X, \Omega_{-\Delta}\right) \times H^{\prime}\left(X, O_{\Delta}\right) \longrightarrow H^{\prime}(X, \Omega) \xrightarrow{\text { Res }} \mathbb{C}$ Tommerama cova U :

$$
\begin{aligned}
& \psi: H^{0}(X, \Omega, \Delta) \times H^{\prime}\left(X, O_{\Delta}\right) \longrightarrow H^{\prime}(X, \Omega) \xrightarrow{\text { Res }} \mathbb{C} \\
&\left(\begin{array}{ll}
\left.\left(H_{i j}\right]\right) & \longmapsto\left[f_{i j \omega}\right]
\end{array} \tau_{[\text {ToDAN }]}\right.
\end{aligned}
$$

Sere duality Thun: The Sene map + Res yield an is murphism

$$
\begin{aligned}
& i_{\Delta}: H^{0}\left(x, \Omega_{-\Delta}\right) \longrightarrow H^{\prime}\left(x, O_{b}\right)^{2} \quad \forall \Delta \in \operatorname{Div}(x) \\
& \omega \quad \longmapsto(\xi \longmapsto \operatorname{Res}(\xi \omega)) \\
& \text { (} X \text { ampact RS) }
\end{aligned}
$$

Consquences: (1) $\operatorname{dim} H^{\prime}(X, \Omega)=1$
(2) $d y K=2 g-2 \quad K$ cammical dinisos in a gemes g compact $R S$.
(3) $H^{0}\left(X, \Theta_{-D}\right) \simeq H^{\prime}\left(X, \Omega_{D}\right)$
\$24.1 Mre cmequences of Sene deadity
Tharem: Assume X is a compact RS of gemes g \& fix $~ D \in \operatorname{Biv}(X)$.
Then $H^{\prime}\left(X, O_{D}\right)=0$ if $\operatorname{deg} D>2 g-2$
Proof Fix $\left.\omega \in K^{(1)}(x)-30\right\}$ \& $K=(\omega)$ By Propsition $\xi 23.2$, whare

$$
0_{-D+K} \simeq \Omega_{-D} \Rightarrow H^{0}\left(X, 0_{-D+K}\right) \simeq H^{0}\left(X, \Omega_{-\Delta}\right) \simeq H^{\prime}\left(X, O_{D}\right)^{v}
$$

If $\log D>2 g-2=\operatorname{dog} K \Rightarrow \operatorname{dog}(-D+K)<0$
Than z
Exercise $(H W) \quad H^{0}\left(X, O_{D^{\prime}}\right)=0$ if $\operatorname{deg} D^{\prime}<0$.
Conclude: $H^{\prime}\left(X, O_{s}\right)=0$
Coorlayy: Assume X is a compact $R S$. Then, $H^{\prime}(X, \mathscr{b})=0$.
Boor: We pick an open corning $\underline{u}=\left(U_{i}\right)_{i \in I}$ of X \& show $H^{\prime}(\underline{l}, \vec{b})=0$ Fix $\xi \in H^{\prime}(\underline{u}, \boldsymbol{\jmath})$ \& a representation $\left(f_{i j}\right) \in Z^{\prime}(\underline{u}, \boldsymbol{b})$ with $\left[f_{i j}\right]=\xi$ Claim: $\exists \underline{v} \leq \underline{u}$ repmement $\& \quad\left(\rho_{k l}\right)=\left(\left.f_{\sigma_{k \zeta l}}\right|_{V_{k l}}\right) \in Z^{\prime}(\underline{v}, \pi)$ where the Total number of poles of all gee's is finite.
SF/ Refine by local chants $\left(U_{x}, \varphi\right) \cdot U_{x} \simeq \mathbb{D}$ \& take $V_{x}=\varphi_{x}^{-1}\left(D_{y}\right)$ with $x \in U_{x} \subseteq U_{i(x)=i}$ \& $f_{i j}$ is the extensin of $\delta_{x y}$ fun $V_{x y} t_{0} U_{i j}$.

$$
y \in U_{y} \subseteq U_{i(j)}=j
$$

Sima the pres of $f_{i j}$ an discrete \& $\varphi\left(\bar{D}_{1 / 2}\right)$ is contact, we see that $g_{x y}$ has finitely many poles.

Since X is canpect, we can assume \underline{V} is a finite open coven (just take a pinite subcoser of \underline{V}).
\Rightarrow fathering the poles of ill sig we can build a dinn'son $D \geqslant 0$ of deg $D>2 g-2$ with $\delta_{k l} \in C_{D}\left(V_{k l}\right) \quad \forall k, l \quad\left(\right.$ wo conditions in genevas of $\rho_{k e}$ \& $D_{(x)} \geqslant-0 r_{x}\left(g_{k e}\right)$

So $\quad \rho_{k e} \in Z^{\prime}\left(\underline{v}, O_{D}\right) \underset{T k_{m}}{ }=B^{\prime}\left(\underline{v}, O_{D}\right) \subseteq B^{\prime}(v, r)$ $\forall x$ plea ike)

§24.2 Sene duality for $\mathbb{P}^{\prime}: \quad$ Fix $D \in \operatorname{Div}\left(\mathbb{P}^{\prime}\right)$
Define: $H^{\prime}\left(\mathbb{R}^{\prime}, \Omega\right)=\mathbb{C}\left\langle\frac{d z}{z}\right\rangle \xrightarrow{\text { Res }} \mathbb{C}$ picks up the coff.
GOAL: Compute bases of $H^{0}\left(\mathbb{P}^{\prime}, \Omega_{-D}\right), H^{\prime}\left(\mathbb{P}^{\prime}, \Theta_{D}\right)$ that are deal to each other. via the Sere pairing

We know: O_{Δ} \& $\Omega_{\rightarrow \Delta}$ my depend μ class of D modulo linear equivalence.
Proposition: $D_{n} \mathbb{P}^{\prime} \quad D \sim D^{\prime} \leftrightarrow \operatorname{deg} D=\operatorname{deg} D^{\prime}$
Proof: $(\Rightarrow) \quad \operatorname{deg}(f)=0$ \& $\operatorname{deg}: \operatorname{Div} \mathbb{P}^{\prime} \longrightarrow \mathbb{Z}$ is roup hon.
(\Leftarrow) It's enough to show $D \sim \operatorname{dg} D[p]$ is any $p t p \in \mathbb{R}^{\prime}$
Mreores, it's enough to show the statement is the ifs effective divisors.
Write $D=D^{\prime}-D^{\prime \prime} \quad$ when e $D^{\prime}, D^{\prime \prime} \geqslant 0$ \& $\quad \operatorname{supp} D \cap \operatorname{Supp} D^{\prime \prime}=\varnothing$
$\left(D^{\prime}=\sum_{x_{(x)} \geqslant 0} D_{(x)}[x]\right.$ \& $D^{\prime \prime}=\sum_{D_{(x)}<0}-D_{(x)}[x]$). Assume e (*) Thee $f, D^{\prime} D^{\prime \prime}$,
we wite $D^{\prime}=\left(f^{\prime}\right)+\operatorname{deg} D^{\prime}[1]$ \& $D^{\prime \prime}=\left(f^{\prime \prime}\right)+\operatorname{deg} D^{\prime \prime}[p]$ fo $\left.f^{\prime}, f^{\prime \prime} \in \sqrt{b}(x)-30\right\}$.

$$
\Rightarrow D=D^{\prime}-D^{\prime \prime}=\left(f^{\prime}\right)+\operatorname{deg} D^{\prime}[P]-\left(f^{\prime \prime}\right)+\operatorname{deg} D^{\prime \prime}[P]=\left(f^{\prime} / f^{\prime \prime}\right)+\operatorname{dg} D[P]
$$

ie $D \sim \operatorname{dy} D[P]$.
We prove (*) fr $D \geqslant 0$ by induction on $d=\mid$ Supp $D \mid$
Base cases: $d=0$ mans $D=0=0[p]$ so their are lin equip

$$
d=1 \quad D=a[q] \quad(a \geqslant 1) \text { Claim }[q] \sim[p] \quad \text { via } f=\frac{z-q}{z-p} M \mathbb{R}^{\prime}
$$

$\Rightarrow a[q] \sim a[p]$ na $\left(f^{a}\right)$
Inductive Step: We write $D=\sum_{i=0}^{d} a_{i}\left[q_{i}\right] \quad a_{i} \geqslant 1$.

$$
\Rightarrow D=\sum_{i=0}^{d} a_{i}\left[q_{i}\right] \underset{\substack{d \\ d=1 \text { case }}}{\sim} \sum_{i=0}^{1} a_{i}[p]=\left(\sum_{i=0}^{d} a_{i}\right)[p]=\operatorname{deg} D[p]
$$

Conclusion: We weed mly conpute sere painimg for $D=n[0]$. for $n \in \mathbb{Z}$. We compute $H^{0}\left(\mathbb{P}^{\prime}, \Omega_{\rightarrow}\right)$ \& $H^{\prime}\left(\mathbb{P}^{\prime}, O_{D}\right)$ suparately.
(1) Computation of $H^{0}\left(\mathbb{T}^{1}, \Omega_{-n}[0]\right)$:

Write any $\eta \in H^{0}\left(\mathbb{T}^{\prime}, \Omega_{-n[0]}\right)$ ie $(\omega) \geqslant-(-n[0])=n[0]$, by its restrictious to $U_{0} \& U_{\infty}$.

$$
\begin{array}{lll}
\eta U_{U_{0}}=z^{n} \delta_{0}(z) d z & m U_{0} & \text { with } g_{0} \in O\left(U_{0}\right) \\
\eta U_{U_{\infty}}=\delta_{\infty}(\omega) d \omega & m U_{\infty} & \delta_{\infty} \in O\left(U_{\infty}\right)
\end{array}
$$

In particular: $-\omega^{-n-2} \rho_{0}\left(\frac{1}{\omega}\right)=\rho_{\infty}(\omega)$ in $\cup\left(U_{0} \cap U_{\infty}\right)=O\left(\mathbb{C}^{*}\right)$
$\Rightarrow \rho_{0}$ is holo at ∞ so it weent be a polymmial
Wh hav: $\operatorname{ord}_{0}(\eta)=n+\operatorname{ord}_{0} g_{0}(z)$

$$
\operatorname{ord}_{\infty}(\eta)=-n-2+\operatorname{ord} g_{0}=-n-2-\operatorname{deg} \rho_{0}
$$

We hase 2 cases to analyze: $n \geqslant-1$ \& $n \leq-2$ (wite $n=-2-l$
Lemma 1: $H^{0}\left(\mathbb{T}^{1}, \Omega_{-n[0]}\right)=306$ if $n \geqslant-1$.
Snoof: $\operatorname{ord}_{0}(\eta) \geqslant n \geqslant-1$. frim U_{0}

$$
\operatorname{ord}_{\infty}(\eta)=-n-2-\operatorname{deg} s_{0} \geqslant 0
$$

If $\eta \neq 0 \Rightarrow s_{0} \neq 0$ so dg $s_{0}>0$. We get a cutradiction
Since $\quad-2 \geqslant-2-\operatorname{dog} S_{0} \geqslant n \geqslant-1$ is impssible!
Cinclude $H^{0}\left(\mathbb{T}^{1}, \Omega_{-n[0]}\right)=0$.
Lemma 2: $H^{D}\left(\mathbb{P}^{\prime}, \Omega_{-(2+l)[0]}\right)$ has dimensin $l+1 \quad \forall l \geqslant 0$
Troof ord $(\eta)=(z+l)-2-\operatorname{deg} \rho_{0}=l-\operatorname{deg} \rho_{0} \geqslant 0$ pim U_{∞} frees $\operatorname{deg} \rho_{0} \leq l$

Fram hen we get a basis fo $H^{0}\left(\mathbb{P}^{\prime}, \Omega_{-(2+l)[0]}\right)=\left\{z^{-l-2+i} d z\right\}_{i=0}^{l}$
(1) Computation of $H^{\prime}\left(\mathbb{T}^{\prime}, \mathcal{O}_{n[0]}\right)$:

Remark By Thm 521.2, we know that ofen covers by local chats, homu to enit discs are Leray corenings of $1^{\text {it }}$ rder fo O_{D}. The same prool works for chorts hamo to discs $\mathbb{D}_{R^{(0)}}$ is $O \subset R \leq \infty$ (we arly uned Supp D isfinite o Dolbcoult's Then, which is maid fo $D_{R}(0)$).

Theis remork enseres $H^{\prime}\left(\mathbb{P}^{\prime}, O_{n[0]}\right)=H^{\prime}\left(\underline{u}, 0_{n}[0]\right) \quad$ on $\underline{u}=\left\{u_{0}, U_{\infty}\right\}$

$$
H^{\prime}\left(\mathbb{P}^{\prime}, 0_{n[0]}\right)=\frac{z^{\prime}\left(\underline{u}, 0_{n}[0]\right)}{B^{\prime}\left(\underline{u}, 0_{n[0]}\right)}=\frac{C^{\prime}\left(\underline{u}, 0_{n}[0]\right)}{B^{\prime}(\underline{u}, 0, n[0])}
$$

no hiple inten sectim so $C^{2}(\underline{4}, 0)=0$. $n=0$.

- $C^{\prime}\left(\underline{u}, \cup_{n}[0]\right)=O_{\left(U_{0} \cap U_{\infty}\right)}$ becouse $\quad \operatorname{supp}(n[0]) \cap U_{0} \cap U_{\infty}=\varnothing$ - $n\left[_{0}\right]$.
\Rightarrow We need to ditermine $B^{\prime}\left(\underline{u}, 0_{n[0]}\right)=\partial C^{0}\left(\underline{u}, 0_{0}[0]\right)$
- $C^{0}\left(\underline{u}, 0_{n}[0]\right)=\left(z^{-n} f_{0}, f_{\infty}\right) \quad f_{0} \in O_{\left(U_{0}\right)}$ \& $f_{\infty} \in O\left(U_{\infty}\right)$
- Idea: Identity presims of the Laument series expansimabout of any $g \in O\left(U_{0} \cap U_{\infty}\right)$ as $\partial\left(\bar{z}^{-n} f_{0}, f_{\infty}\right)$ is appropriate f_{0}, f_{∞}.

Again, or break oen analysis in 2 cases: $n \geqslant-1 \& n \leqslant-2\binom{$ wite $n=-2-l}{l \geqslant 0}$
Lemma 3: $H^{\prime}\left(\mathbb{P}^{\prime}, O_{n[0]}\right)=308$ if $n \geqslant-1$

- If $n \geq 0 \quad g=\underbrace{\sum_{k=-n-k}^{\infty} \delta_{-k} z^{-k}}_{=h_{\infty}}+z^{-n} \underbrace{\sum_{k=0}^{\infty} \delta_{k} z^{k+n}}_{=-f_{0}}$

Lemma 4: $\quad H^{\prime}\left(\mathbb{P}^{\prime}, C_{-(2+l)[0]}\right)$ has dimension $l+1 \quad \forall l \geqslant 0$
Snoop $\left.C^{0}(\underline{u},)_{-(2+l)[0]}\right)=\left(z^{2+l} f_{0}, f_{\infty}\right)$

$$
\text { Write } g=\underbrace{\sum_{k=0}^{\infty} \rho_{k} z^{k}}_{=f_{\infty}}+\delta_{1} z+\cdots+g_{1+l} z^{1+l}+z^{2+l} \underbrace{\sum_{k=2+l}^{\infty} \rho_{k} z^{k-(2+l)}}_{=-f_{0}}
$$

$$
\Rightarrow[\rho]=\left[\rho_{1} z+\cdots+\rho_{1+e} z^{1+l}\right]=s_{1}[z]+\cdots+\rho_{1+e}\left[z^{1+e}\right]
$$

So $H^{\prime}\left(\mathbb{P}^{\prime}, 0_{-(2+l)}[0)\right.$) hoo dim $1+l$ \& basis $\left\{\left[z^{1+l-j]}\right\}_{j=0}^{l}\right.$
Q: What's the sene map $H^{0}\left(\mathbb{R}^{\prime}, \Omega_{-n(0)}\right) \times H^{\prime}\left(\mathbb{P}^{\prime}, \varphi_{n(0)}\right) \longrightarrow H^{\prime}\left(\mathbb{R}_{\|}^{\prime}, \Omega\right)$?
Case 1: $n \geqslant-1$ we get $0 \times 0 \longrightarrow \mathbb{C}$ is the 0 -map. $\mathbb{C}\left\langle\frac{d z}{z}\right\rangle$

Case 2: $\quad n=-2-l(l \geq 0)$ we ret.

$$
\left.\left.\left.\Psi \mathbb{C}<\left[z^{-l-2+i} d z\right]\right\rangle_{i=0}^{\ell} \times \mathbb{G}\left\langle\left[z^{1+l-j}\right]\right\rangle\right)_{j}^{l} \longrightarrow \mathbb{C}\left[\frac{d z}{z}\right]\right\rangle
$$

a basis dements: $\left(z^{-l-2+i} d z, z^{1+l-j}\right) \longmapsto\left[z^{-l-2+i+1+l-j}\right]$

$$
=\left[z^{i-j-1}\right]
$$

$$
\text { So we get }=\left\{\begin{array}{cl}
{\left[\frac{1 z}{z}\right]} & \text { if } i=j \\
0 & d x
\end{array}\right.
$$

The Residue map $H^{\prime}\left(\mathbb{P}^{\prime}, \Omega\right) \rightarrow \mathbb{C}$ pides up the coefficient of $\left[\frac{d z}{z}\right]$.
So we see that Res. ψ is a pafect paining. This is Sene denality for \mathbb{R}^{\prime} $\cong \mathbb{C}$ (aftentre fact)
Next tasks: (1) Define Res : $H^{\prime}(X, \bar{\Omega}) \longrightarrow \mathbb{C}$ without using $\sin H^{\prime}(X, \Omega)$
(2) Relate the construction T_{0} computation of vesideves of $1-$ forms. $\left(i \delta \operatorname{Tes}\left(\frac{d z}{z}\right)=1\right.$.
§24.3 Residues in $\varepsilon^{(2)}(x)$:
Recall the ses of shares on any RS X

$$
\begin{equation*}
0 \longrightarrow \Omega \longrightarrow \varepsilon^{(1,0)} \xrightarrow{d} \xi^{(2)} \longrightarrow 0 \tag{K}
\end{equation*}
$$

On stalks $a \in X$: use (U, z) bal chart around a small enough.

$$
\begin{aligned}
& \Omega_{a}=\{f d z: f \text { hols m } D\} \\
& \varepsilon_{a}^{(1,0)}=\{f d z: f \text { smooth } m D\} \\
& \varepsilon_{a}^{(2)}=\{g d z \wedge d \bar{z}: g \text {, } \\
& d_{a}(f d z)=\frac{\partial f}{\partial \bar{z}} d z \wedge d \bar{z} .
\end{aligned}
$$

- Exact at $\xi^{(2)}$ by Dolbeault's Theorem.
- Exact at Ω by $C R$ equations
- Exact at $\varepsilon^{(1,0)}$ by $\frac{\partial f}{\partial \bar{z}}=0 \Leftrightarrow \delta \in O$ (D).

The ses $(*)$ induces a long exact seppeence:

$$
\begin{aligned}
& 0 \longrightarrow H^{0}(X, \Omega) \xrightarrow{\text { inc }} H^{0}\left(X, \varepsilon^{(1,0)}\right) \xrightarrow{d^{0}} H^{0}\left(X, \xi^{(2)}\right) \\
& H^{\prime}(X, \Omega) \xrightarrow{\text { inc }} H^{\prime}\left(X, \varepsilon^{(1,0)}\right) \xrightarrow{d^{\prime}} H^{\prime}\left(X, \xi^{(2)}\right) \\
& 0 \text { by Collar si l6.4 } 0 \\
& \hline
\end{aligned}
$$

Definition: Assume X is a compact RS. Them:
Res : ${ }_{\varepsilon^{(2)}}(x) \longrightarrow \mathbb{C}$

$$
\omega \longmapsto \frac{1}{2 \pi i} \iint_{x} \omega
$$

As a consequence of Stoles's Then: Res $(d \eta)=0 \quad \forall \eta \in \varepsilon^{(1,0)}(x)$. (Theremz $\left.£ 18,3\right)$ Consequence: Res descends to a linear map

$$
\text { Res: } H^{\prime}(x, \Omega) \longrightarrow \mathbb{C}
$$

$$
\xi \longmapsto \operatorname{Res}(\omega) \quad \text { if }[\bar{\delta} \omega]=\xi
$$

This is well-depined since Res $\left.\right|_{d} \zeta^{(1,0)} \equiv 0$.
Q How do we se $\operatorname{Res}\left(\left[\frac{d_{2}}{z}\right]\right)=1$ for $x=\mathbb{P}^{\prime}$? A: Identify $\omega \in \varepsilon^{(2)}(x)$ with a collection of 1 -forms \& define then $\xi x 1.4 R_{\text {residues }}$ on $\xi^{(1,0)}$ asides.

To define usidues, we need to allow simpelarities on 1 -forms in $\zeta^{(1,0)}$ Fix $Y \subseteq X$ for sit in a $R S, a \in Y$ \& $\left.\omega \in \zeta^{\prime \prime}(1,0)(Y-3 a\}\right)$ holomorphic $F_{I X}(U, Z)$ a cord chart of a with $U \subseteq Y$ \& $Z(a)=0$. Write $w=f d z \quad$ is $\left.f_{0} z_{-1} \in(1)(U, 3 a \varepsilon) \simeq O_{(1)}(30\}\right)$
Write the casement serves expansion of $f: \quad f=\sum_{n=-\infty}^{\infty} c_{n} z^{n}$ about o id D Def. . If $c_{n}=0 \quad \forall n<0$, then a is a unovable sing of w

- If $c_{n}=0 \quad \forall n<-k \& a_{-k} \neq 0$, then a is a pole of w of rda k
. If $c_{n} \neq 0$ for infinity mary $n<0, a$ is an essential sing of ω
Def: $\operatorname{Res}_{a}(\omega)=c_{-1} \quad(\Rightarrow$ it's additive)
Lemma l. The definition is independent on the choice of chart (U, z).
Proof: Idea: it we pick a different chart, the wefficient of f changes, but not the me fum fdz . We separate fdz in to ar exact from + something with easy usidue. We compute the usidues of each pat separately

Claim 1: If $w=d g$ fog $\in \mathcal{O}(V-\langle a r)$ then Res $(d g)=0$ s so it's indef of choices
3F/ Ware $f \circ\left(z^{-1}\right)=\sum_{n=-\infty}^{\infty} c_{n} z^{n}$ to the Lament series exp of ρ abreact
Then dg $=\left(\sum_{n=-\infty}^{\infty} n c_{n} z^{n-1}\right) d z \quad$ so costs of z^{-1} is 0 .
No matter the chat, the cusswer is 0 .
Claim 2: If w is a wolmarybic 1 -pom at a, them $\operatorname{Res}(\omega)=0$
Sf/ We write $\omega=f d z^{\prime} \quad f \in Q(V)$. Then $L d z=\sum_{n=0}^{\infty} c_{n} z^{n} d z \& \operatorname{Res}(\omega)=0$ It's indus of choices because fra any then cord chart $\omega=h d z$ with $h \in \mathcal{O}(U)$.

Claim 3: If $\varphi \in Q(v)$ \& $\varphi \in m_{a} \backslash m_{a}^{2}$, then $\operatorname{Res}_{a}\left(\varphi^{-1} d \varphi\right)=1$ \& so it is indyendent of the choice of chart.
3F/ Write $\varphi=z h$ is $h \in U(v) \quad h(a) \neq 0$.
Then $d \varphi=h d z+z d h \quad \& \quad \frac{d \varphi}{\varphi}=\frac{d z}{z}+\frac{d h}{h}$
Since $h(a) \neq 0$ we have $\frac{d h}{h}$ is a holmurphic 1 -form at a \& so $\operatorname{Res}_{a}\left(\frac{d h}{h}\right)=0$ by Claim 2.

$$
\Rightarrow \operatorname{Res}_{a} \frac{d \varphi}{\varphi}=\operatorname{Res}_{a} \frac{d z}{z}+0=1 \quad \text { (indup of durice by construction) }
$$

-The general statement is obtained by umpiring Claims 183.
Write $\omega=f d z$ with $f=\sum_{n=-\infty}^{\infty} c_{n} z^{n}$
Consider $g=\sum_{n=-\infty}^{-2} \frac{c_{n}}{n \rightarrow 1} z^{n+1}+\sum_{n=0}^{\infty} \frac{c_{n}}{n+1} z^{n+1} \in$ (O)(V ;ar)
Then $\omega=d g+c_{-1} z^{-1} d z \quad \operatorname{Res}_{a} \omega=\operatorname{Res}_{a} d g+c_{-1} \operatorname{Res}_{0}\left(\frac{d z}{z}\right)$

$$
=0+c_{-1} \cdot 1=c_{-1}
$$

Next, we confirm this decomposition behaves well under corrdísete changes.
Pick $\left(V, z^{\prime}\right) \quad z^{\prime}: V \longrightarrow \mathbb{D}$ another cord chat around a.
Then $w=f d z=h d z^{\prime}$
This mans $H_{\left(z^{\prime}\right)} h o\left(z^{\prime}\right)^{-1} d z^{\prime}=\underbrace{F_{0} z^{-1} 0 \varphi_{\left(z^{\prime}\right)} d\left(\varphi_{\left(z^{\prime}\right)}\right)=F_{0} \varphi_{\left(z^{\prime}\right)} \varphi^{\prime}, ~}_{F(z)}$

The decomposition of $F(z)=\left(g+\frac{c_{-1}}{z}\right) d z$ becomes

$$
\underset{\left(z^{\prime}\right)}{H} d z^{\prime}=\left(\rho_{0} \varphi\right) \varphi^{\prime} d z^{\prime}+c_{-1} \frac{\varphi^{\prime}}{\varphi} d z^{\prime}=d g+c_{-1} \frac{\varphi^{\prime}}{\varphi} d z^{\prime}
$$

But $\operatorname{Res}_{a} d \rho=0 \quad$ so $\operatorname{Res}_{a} H_{\left(z^{\prime}\right)}=c_{-1} \operatorname{Res}_{a} \frac{\varphi^{\prime}}{\varphi} d z^{\prime}$
Since φ is a biholmurphism $\varphi_{\left(z^{\prime}\right)}=a z^{\prime}+\Theta_{\left(\left(z^{\prime}\right)^{2}\right)} \& a \neq 0$
By claim $3 \quad \operatorname{Res}_{a} \frac{\varphi^{\prime}}{\varphi} d z^{\prime}=1$.
Conclusion: Res $h d z^{\prime}=c_{-1}$ as we wanted to show.
Alternative poof: $\operatorname{Res}_{a} \omega=\frac{1}{2 \pi i} \int_{\bigotimes_{a}} \omega \quad$ fr a cinch small enough around a.
Residue Theorem: Assume X is compact \& consider n distinct prints $a_{1} \ldots, a_{n} \in X$ Assume $\omega \in \mathcal{E}^{(1)}\left(X,\left\{a_{1}, \ldots, a_{n}\right\}\right)$ is holomorphic. Then, $\sum_{j=1}^{n} \operatorname{Res}_{a_{j}} \omega=0$.
Frs a proof, see $₹ 24.6$.
\$24.5 Comparism of Residues:
Q: How is Res on $H^{\prime}(x, \Omega)$ m lated to Res a $\mathcal{E}^{(1,0)}(x)$?
A: We can say so an a subspace of $H^{\prime}(\underline{U}, \Omega)$, namely the subspace of Mittag-Leffler distributions
(We know by sure decality that dim $H^{\prime}(\underline{u}, \Omega)=1$, if $\underline{\underline{x}}$ is rice enough, eg leary,
so this subspace is lither 0 or all of $H^{\prime}(X, \Omega)$. The latten will be the case!)
Definition Fix an open corning $\underline{u}_{=}\left(U_{i}\right)_{i \in I}$ I X \& $\left(g_{i}\right)_{i} \in C^{0}\left(\underline{U}, \boldsymbol{J}^{(1)}\right)$ with
$\left(\partial_{-g}\right)_{i j}=g_{j}-g_{i} \in \Omega\left(u_{i j}\right)$. Then $\partial_{g} \in Z^{\prime}(\underline{u}, \Omega)$
We call (gi): a Mittag-Leffler distributim for le
Example: $X=\mathbb{P}^{\prime} \quad \underline{u}=\left(u_{0}, u_{\infty}\right) \Rightarrow \underline{g}=\left(-\frac{d z}{z}, 0\right)$ is a ML disturb. $\partial g=\frac{d z}{z} \in \Omega\left(\sigma^{*}\right)$.
Key: We have a mia fromela for $\operatorname{Res}([\partial g])$ if (git is a ML disturb
Theorem 2: $\operatorname{Res}([\partial g])=\sum_{a \in x} \operatorname{Res}_{a}\left(g_{\dot{q}_{a}}\right)=: \operatorname{Res}(\underline{g})$ if $a \in U_{i(a)}$.
Note: If $a \in U_{i} \cap U_{j}$, then $\operatorname{Res}_{a}\left(g_{i}\right)=\operatorname{Res}_{9}\left(g_{j}\right)$ because $g_{i}-g_{j} \in \Omega\left(U_{i j}\right)$ This say the choice of $i_{(a)}$ is imelerant.

Lemme fire $g_{i}: \operatorname{Res}{ }_{a}\left(S_{i}\right) \neq 0 \quad f>$ only finitely mary $a \in X$ In particular since X is crppact, we can replace \underline{X} by a finite seebcoser. This will show the sum on (RHS) is finite.
Proof By cosstanction, we know the poles of Si^{\prime} 's an discrete \& carnot accumulate in U_{i} If $\left\{\right.$ poles of $\left.\rho_{i}\right\}$ woe infinite, then find a subsequence $\left(a_{i}\right)_{j} \in U_{i}$ converging To $a \in \partial U_{i} \subseteq X$. (X is bally Endidion \& compact) But $a \in U_{j}$ will say that Sj will hare a as apple $\&$ that a is an accumulation p of poles of $g j$ Cutin!

Poof of Thurem 2: To show $\operatorname{Res}([\partial \rho])=\operatorname{Res}(g)$ ae need T_{0} find $\omega \in \varepsilon^{(2)}(x)$ with $\delta \omega=[\partial \delta]$ on $H^{\prime}(X, \Omega)$.

$$
\left(\partial \rho_{i j}=\rho_{j}-\rho_{i} \in \Omega\left(u_{i j}\right) \subseteq \xi^{(1,0)}\left(u_{i j}\right) \& H^{\prime}\left(x, \varepsilon^{(1,0)}\right)=0\right. \text {, so }
$$

$\exists-\eta \in C^{0}\left(\underline{u}, \varepsilon^{(1,0)}\right)$ with $(\partial \rho)_{i j}=\left(\partial \eta_{-}\right)_{i j}$, ie $\delta_{j}-s_{i}=\eta_{j}-\eta_{i}$ o $U_{i j}$.
Claim 1: $d\left(\partial_{j}-\rho_{i}\right)=d^{\prime \prime}\left(\rho_{j}-\rho_{i}\right)=0 \quad\left(d^{\prime \prime}{ }_{\Omega=0}\right)$
Pf/. Lorallyma chant : $\rho_{j}=f_{j} d z \quad f_{j} \in \sqrt{6}$

$$
\begin{aligned}
\Rightarrow d g_{j} & :=d f_{j} \wedge d z \\
d^{\prime \prime} \rho_{j}:= & =\left(\frac{\partial f}{\partial z} d z+\frac{\partial f}{\partial \bar{z}} d \bar{z}\right) \wedge d z=-\frac{\partial L}{\partial \bar{z}} d z \wedge d \bar{z}
\end{aligned}
$$

- $J_{j}-g_{i}$ is holomorphic 1-forn so $f_{j}-f_{i} \in O\left(U_{i j}\right)$ ie $d^{\prime \prime}\left(f_{j}-f_{i}\right)=0$.

$$
\Rightarrow d\left(\eta_{j}-\eta_{i}\right)=0 \text { ie } d \eta_{j}=d \eta_{i} \text { in } u_{i j}
$$

Since $\varepsilon^{(2)}$ is a sheaf, the sections $d \eta_{i} \in \mathcal{E}^{(2)}\left(U_{i}\right)$ glue to al $\in \mathcal{G}^{(2)}(X)$ with $\omega / v_{i}=d \eta_{i} \quad \forall i$.

Claim 2: $\quad \delta^{*} \omega=\partial \rho \quad$ in $Z^{\prime}(\underline{u}, \Omega) \quad$ by construction + def of δ^{*}

$$
\Rightarrow \operatorname{Res}([\partial \delta])=\frac{1}{2 \pi i} \iint_{x} \omega
$$

To finish, we need \bar{T}_{0} show $(\vec{R} H S)=\operatorname{Res}(g)$
Write $\left\{a_{1}, \ldots, a_{n}\right\}$ Is the sit of poles of of $\left(=\bigcup_{i \in I}\right.$ pres $\left.\left(g_{i}\right)\right)$
Set $X^{\prime}=X-\left\{a_{1}, \ldots, a_{n}\right\}$.
$\eta_{j}-g_{j}=\eta_{i}-g_{i}$ m $U_{i j} \cap X^{\prime} \Rightarrow \exists \sigma \in \varepsilon^{(1,0)}\left(X^{\prime}\right)$ with $\sigma_{1 u_{i}}=\eta_{i}-g_{i}$
$\Rightarrow \omega=d(\sigma)$ on $X^{\prime}\left(\right.$ because $g_{i} \in \Omega\left(U_{i} \cap X^{\prime}\right)$ so $\left.d g_{i}=0 \quad \forall_{i}\right)$
GOAL: Extend (RHS) To X so that visiduer at a_{n} 's appear naturally:

- Given a_{k}, perch $i_{n} \in I$ with $a_{n} \in U_{i_{k}}$.
- Fix pairwise dissing cord charts $\left(V_{k}, z_{k}\right)$ around each a_{k} with $V_{k} \subseteq U_{i_{k}}$

In particular, $a_{j} \notin V_{K}$ if $j \neq k$. $V_{k} \frac{\sim}{z_{k}} D$

- Build bump ferritins $f_{k} \in \mathcal{E}(x)$ with
(1) $\operatorname{Supp}\left(f_{k}\right) \subseteq V_{k}$
(2) $f_{k} \equiv 1$ brolly around a_{k} (Say om $V_{k}^{\prime} \subset V_{k}$)

Define $\Psi:=1-\left.\left(f_{1}+\cdots+f_{n}\right) \in \varepsilon(x) \quad \Rightarrow \psi\right|_{v_{k}^{\prime}}=0 \quad \forall \sigma$
$\Rightarrow \psi_{\sigma} \in \varepsilon^{(1,0)}(X)$ by defining it as 0 m $\bigcup_{k=1}^{n} V_{k}^{\prime}$.
By Stolu's'Thm, $\iint_{x} d\left(\Psi_{\sigma}\right)=0$.
Claim 3: $d\left(f_{k} \sigma\right) \in^{\xi^{(2)}}\left(x^{\prime}\right)$ stands to x
Bf/ $\cdot d\left(f_{k} \sigma\right)_{\left.\right|_{v_{j}^{\prime}} ^{\prime}} d\left(\left.f_{k \sigma}\right|_{v_{j}^{\prime}}\right)=d(0)=0$ is $j \neq k$. so the extansin to a j is Tincal.

- On $\left.V_{k}^{\prime} \backslash 3 a_{k}\right\}$, we hare $d\left(f_{k} \sigma\right)=d(\sigma)=d\left(\sigma / v_{i}\right)=d\left(\eta_{i}-s_{i}\right)=d\left(\eta_{i}\right)$

Since $\eta_{i} \in \varepsilon^{(1,0)}\left(v_{i}\right) \& d \eta_{i} \in \varepsilon^{(2)}\left(v_{i}\right)$ then $d\left(f_{k} \sigma\right)$ extends to a_{k}. o $s_{i=1}^{2} \in \Omega\left(v_{k}^{\prime}\right)$

$$
\begin{aligned}
& \Rightarrow \omega=d(\psi \sigma)+\sum_{k=1}^{n} d\left(h_{k} \sigma\right) \\
& \Rightarrow \quad \iint_{x} \omega=\underbrace{\iint_{x} d\left(\Psi_{\sigma}\right)}_{=0}+\sum_{k=1}^{n} \iint_{x} d\left(f_{k} \sigma\right)=\sum_{\substack{ \\
\text { sup } h_{k} \subseteq V_{k}}}^{\iint_{V_{k}}^{n} d\left(f_{k} \sigma\right)} \\
& =\sum_{k=1}^{n} \iint_{v_{k}} d\left(f_{k} n_{i_{(k)}}-f_{k} g_{i(k)}\right)=\sum_{k=1}^{n} \underbrace{\iint_{v_{k}} d\left(f_{k} \eta_{i_{i k)}}\right)}-\sum_{k=1}^{n} \iint_{V_{k}} d\left(f_{k} \rho_{i k j}\right) \\
& =\int_{X} d\left(C_{k} \eta_{i(K)}=0\right. \text { by Stoles. Thun }
\end{aligned}
$$

Cain: $\quad \iint_{V_{k}} d\left(f_{k} g_{\substack{i_{(k)} \\ \sup _{p_{k}} \leq V_{k}}}\right)=-2 \pi i \operatorname{Res}_{a_{k}}\left(g_{j_{k}}\right)$.

$$
\begin{aligned}
& \text { Sf/ } \quad \iint_{V_{k}} d\left(f_{k} g_{i(k)}\right) \stackrel{I}{=} \lim _{\varepsilon \rightarrow 0^{+}} \iint_{\varepsilon \leqslant\left|z-a_{k}\right| \leqslant R} d\left(f_{k} \rho_{i k}\right)=\lim _{\varepsilon \rightarrow 0^{+}} \underbrace{}_{=0 \text { if } R \gg 0} f_{|z|=R} f_{k} g_{i}-\int f_{|z|=\varepsilon} f_{i} \\
& =-\lim _{R \rightarrow 0^{+}} \int_{|z|=\varepsilon} g_{i}=-2 \pi i \operatorname{Res}_{a_{k}}\left(g_{i}\right) \quad D
\end{aligned}
$$

Cunclude $: \frac{1}{2 \pi i} \iint_{x} \omega=\sum_{k=1}^{n} \operatorname{Res}_{q_{k}}\left(g_{i(k)}\right)=\operatorname{Res}(g)$ as we wanted.
Peopsition: \exists a Mittag-Leflerdistributim $\rho \in C^{0}\left(X, \xi^{(1)}\right)$ with $\operatorname{Res}(\underline{\rho})=1$
Therefore, $[\partial g] \neq 0$ on $H^{\prime}(X, \Omega)$. \& Res: $H^{\prime}(\mathbb{C}, \Omega) \longrightarrow \mathbb{C}$ is unt unst.
Proof gisen $a \in X$, pich (U, z) chait around $a, U \stackrel{Z}{\cong} \mathbb{D}$.
a cassides the corciny $\underline{U}=\left\{U_{0}=U, U_{i}=X \backslash z^{-1}\left(\bar{D}_{1 / 2}\right)\right\}$
Set $\delta=\left(\rho_{0}, \delta_{1}\right) \quad \rho_{0}=\frac{d z}{z} \quad$ \& $\quad g_{1} \equiv 0$

- $\operatorname{Res}(g)=\operatorname{Res}_{0}\left(f_{0}\right)=1$ distrib.
§24.6 Proof of Resider Thurem:
For each aj, we pich a cordinate nbhe $\left(U_{j}, z_{j}\right)$ so that
(1) $\left\{U_{j}\right\}_{j=1}^{n}$ are paimise disjoint
(2) $U_{j} \xrightarrow{z j} \mathbb{D}$ with $z_{j}\left(a_{j}\right)=0$.

Next, we build bump functims f_{1}, \ldots, f_{n} interplating between U_{j} \& an ofen $V_{j} \subseteq U_{j}$
Conditions: (1) $f_{j}: X \longrightarrow[0,1]$ is smooth
(2) $\exists a_{j} \in V_{j} \leqslant U_{j}$ open with $\left.f_{j}\right|_{V_{j}}=1, f f_{j}=0$ outside $U_{j} \&$ supp $f_{j} c U_{j}$ is compact.

Define $g=1-\left(f_{1}+\cdots+f_{n}\right)$ Then, g is smoth $\left.n X \& g\right|_{V_{j}}=0 \forall j$. In particular $g \omega \in \xi^{(1)}(X)$ is holomorphic (assigu it value 0 on $\quad \forall j$) \& has compact suppert.

By Stokes' Thuoum $\iint_{x} d(q \omega)=0$
Then $\iint_{x} d \omega=\sum_{j=1}^{n} \iint_{x}^{x} d\left(f_{j} \omega\right)$.
U致 1: $\iint_{x} d \omega=0$
BF/ $\omega_{\text {rite }}{ }^{x} x^{\prime}=X, ~ \bigcup V_{j} \quad$ Then $\omega_{\mid} \in \mathcal{E}_{x^{\prime}}\left(x^{\prime}\right)$ is holomorphic
so $\iint_{X^{\prime}} d \omega=0$ by The z $\Rightarrow \iint_{x} d \omega=\sum_{j=1}^{n} \iint_{V_{j}} d \omega$
Sim V_{j} can be abbikarily small, the (RHS) has limit 0 as $V_{j} \rightarrow a_{j}$.
Claim 2: $\iint_{x} d\left(f_{j} \omega\right)=-2 \pi i \operatorname{Res}_{a j} \omega$
TF/ Since Supp $d f_{j} \omega \subseteq U_{j}$, we have $\iint_{x} d f_{j} \omega=\iint_{U_{j}} d f_{j} \omega$
We identify U_{j} with \mathbb{D} bia $z_{j}: U_{j} \rightarrow \mathbb{D}$ \& assume $\underset{w}{f_{j}}: \mathbb{D} \rightarrow \mathbb{R}$ ω is a 1 -from m
By compactness or $\operatorname{Supp}_{0 \in V_{j}} d f_{j} \omega$, we can find ε, R with $0<\varepsilon<R<1$ st
(1) Supp $F_{j} \subseteq\left\{\left|z_{j}\right|<R\right\} \&$

Then $\iint_{V_{j}} d f_{j} \omega=\iint_{\substack{\varepsilon \leqslant\left|z_{j}\right| \leqslant R \\ \text { (Anodes) }}} d f_{j} \omega=\int_{\left|z_{j}\right|=R} f_{k} " \omega-\int_{\left|z_{j}\right|=\varepsilon}^{0} f_{k} \omega=-\int_{\left|z_{j}\right|=\varepsilon} \omega$
$=-2 \pi i R_{e_{0}} \omega$ by the Residue Thu in the complex plane.
Using the Residue tho rem, we can recon Coollanyz $£ 5.3$

Gollayy: If X is a compact $R S$ \& $~ F: X \longrightarrow \mathbb{P}^{\prime}$ is holomorphic mr-constant, then \# zeroes of $f=\#$ poles of f (counted with melt)
By shifting, we she that the size of each fiber off is constant (f is say.)
Proof Consider the 1 -form $w=\frac{d f}{f}$ it is meromorphic on $X \&$ its ally singularities ane the gees and poles of f.
Res $_{a} \omega=$ ordn of vanishing as a new /-order of pole. fr each singularity a of ω
Since $\sum_{j=1}^{n} R_{e_{s_{a j}}} \omega=0$ where $3 a_{1}, \ldots, a_{n} Y=F^{-1}(0) \cup f^{-1}(\infty)$ by Theorem, separating this sem by sign will gist us the statement.

