
 
LectureXXV Riemann Hurwitz Topologyof compact RS

Recall Gisen WE b x1 109 on X ampactRiemannsurface then K lw is

call the canonical divisor ofX It's unique upto linear equivalence
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dim ti X R
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Fix x Y impact RS fix Y mi constant holomorphic map ofdegree n
n If m I If 8 Gx when ok x is the multiplicityof

fat x locally man x ay wewrite 8 I I as Liz 3 I
K V It x
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ProofNW knowSupp D is cute closed because h is a properun constant hole mop
X is compact so Supp D is discrete ampact is finite
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Definition blf Ei blf x degD is called the total branchingorderof

Theorem Riemann HurwitzFormula In the above selling we have
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Proof We consider canonical divisors m X Y

In Y Pick any Wye bYy 105 set Ky was

FnX Use fwy E B x 301 set Kx It'wy
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Now we sum over y we see LHS is finite dig fwy
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Special case n 2 we say the map t X I is ahypullipticoser moreonthis
later

525.2 Topological classification Eulercharacteristic

Next wewantto study compact RS fromthe topological perspective Thiswillrise
another proofofRiemann Hurwitz

Our starting point is a classification theorem of orientable closedsurfaces ofgenesg
Classification Then Fix S an orientable differentiable surface ofgenusg Then
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These z can be obtained by gluing edgesof a polygon can betriangulate
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Definition The Euler characteristic ofa smooth orientable surfacewithoutboundary i
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Obs If S hasgerm g then Xis I 29 1 2 28
z cyclesperhandle

Proposition Fix a compact 2 manifold S possible withboundary assume

S has a triangulationD Then X D V Ett with V vertices of D
E edgesof A
Ti triangle HDis invariant under refinements of A

Furthermore if S is orientable withoutboundary then S can betriangulated
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ProofO Needto see Rast is invariantunderrefinements of triangulations

3 ways of refining
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These z operations are called elementary refinements of triangulation for surfaces
without boundary

3 If S has a boundary we have an edge E E 25 we can add I
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To prom part I we needto show we can triangulate Eg get719171g
We candothis by induction on g
Basecases go I was dm in examples aboss

Inductive step Use Igt Eg I We can take at the
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The new triangulation Ii't hav
U V V2 3 I we identifiedverticeson 2triangles one oneach side
E E Ez 3 I edge

T T I I I weremand i triangle on eachside

V E tt N E Til t IV2 E tie 1 3 1 3 z

2 295 t o f
n

t ta

2g 2 219 17 Xis s

Q How can we compute XIs h S ampact R S

A Use polygon descriptionofEg givenby the following topologicalmodelfor Ig
Theorem A genusg o compactRS can be obtainedby taking a 9g gon rent

counterclockwise withedges a is ai bit 92 ba ai bit ag.bgas b
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Induction on g gives thegeneral statement

Usingthistopological model we can upon the Riemann Hurwitz formula

ProofofRiemann Haunt

We write atriangulation for't use f to lift it to a triangulationof
We pick a triangulation of Y whose vertices include all criticalpointof f

How can we build a triangulationof x fun this



Pictorially
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If A s y is a triangle then G Int ID Q Int ID
Taking chosen of by f Intiall wegeta triangulationof X inducedby f

By refining the inputtriangulation of Y Ibystellar subdivisions we may
assume each D on't has at most I critical pt as a telex

If B E Y B then D lifts to n triangles
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If D has avertex y in B XE tip is a branch pt xmy u

with right i then the way f around xbehaves like Z H 2k I
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X x Xx Ex Tx by Proposition
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