Lectore XXV: Riemann-Hwerits \& Toplagy of cmp act R.S.
Recall giren $\omega \in \zeta^{\prime \prime \prime}(x) \cdot 10 \%$ on X curpat Riemamen surtica, then $K=(\omega)$ is call the canurical din'sos of X. It's unique up T limes equirdence

$$
\begin{aligned}
\operatorname{deg} K=\sum_{x \in X} K(x)=2 g-2 \quad \text { where } \begin{aligned}
& g=g e m e s \\
&(x)=\operatorname{dim} H^{\prime}(X, 0) \\
&=\operatorname{dim} H^{\circ}(x, \Omega) \\
& \text { The Riemann-Humists Thirem: }
\end{aligned} & =\text { Sene duality. }
\end{aligned}
$$

§25.1 The Riemann-Hucrits Therem:
Fix X, Y cumpact RS \& $F: X \rightarrow Y$ mu-custant holmurphic wal of degree n $\Rightarrow n=\left|F^{-1}(y)\right|=\sum_{x \in F_{(y)}^{\prime \prime}} \gamma(f, x) \quad$ whene $\gamma(f, x)$ is the multiplicity of
fat x (locally max x iy we write $f: D_{0}^{D} \longrightarrow \mathbb{D}$ as $f_{(z)}=z^{k}$) $k=\nu(b, x)$
Definition. $b(r, x)=\nu(f, x)-1$ is called the broncheing roder. of f at x
In paticular: F unbrandud at $x \Leftrightarrow \delta(6, x)=0 \Leftrightarrow \gamma(6, x) \Rightarrow F$ local humumirphisu mar x.
Lemma: (1) $D=\sum_{x \in X} b(F, x)[x]$ is a diniss $a X$ (brandiung diniserff)
(2) $D^{\prime}=\sum_{y \in Y}[y]$ is a din'ss on Y (critical maus of f)

Proof (1) We know Supp $D^{\text {ge }}$ is is dip discute 2 dosed br cause F is a profee, mn-cunstant wole map X is cumpact, so Supp D is disunte a compact, ie firite (55.3)

Definition. $b(f):=\sum_{x \in x} b(f, x)=\operatorname{deg} D$ is called the total branching rodes off.
Therem: (Riemenn- Heeswitz Froula) In the abse silling, we have

$$
s_{x}=\frac{b(f)}{2}+\operatorname{dgrec}(f)\left(g_{y}-1\right)+1
$$

Equivalatly, $2 g_{x}-2=b(f)+$ degue $(f)\left(2 g_{y}-2\right)$.

Proof: We consider comical divisors a $X \& Y$.
For : Pick any $\omega_{Y} \in \mathcal{K}^{(1)}(Y) \cup\{0\}$ \& set $K_{Y}=\left(\omega_{Y}\right)$
Fo $X:$ Use $f^{*} w_{Y} \in \pi^{(1)}(X) \backslash\{0\}$ \& set $K_{X}=\left(f^{*} w_{Y}\right)$

- Next, we write $f^{*} \omega_{x}$ in leal coordinates to compute K_{x}
- Hew? Fix $x \in X$ \& $y=f_{(x)} \in Y$ a pict local cordiciates (U, z) fo x with
\Rightarrow If $\omega_{Y}=\varphi_{\left(z^{\prime}\right)} d z^{\prime} \in \breve{\zeta}^{\prime \prime \prime}(V)$ bally around y, we hasp

$$
\begin{align*}
& \qquad f^{*} \omega_{Y}=\varphi\left(z^{\prime} \circ f\right) d\left(z_{0}^{\prime} f\right)=\varphi\left(z^{k}\right) d z^{k}=\varphi\left(z^{k}\right) k z^{k-1} d z \in \int^{(1)}(\tag{U}\\
& \Rightarrow \operatorname{ord}_{x}\left(f^{*} \omega_{Y}\right)=k-1+\operatorname{ord}_{0} \varphi_{\left(z^{k}\right)}=k-1+k \cdot \operatorname{ord} \varphi=\underbrace{k-1}_{=b(f, x)}+k(f, x) \\
& \text { - Summing ser } x \in f^{\prime \prime}(y) \text { we get: }
\end{align*}
$$

$$
\sum_{x \in f^{-1}(y)} \operatorname{od}_{x}\left(f^{*} \omega_{y}\right)=\sum_{x \in f^{-1}(y)} b(f, x)+\underbrace{\sum_{x \in f^{-1}(y)} \nu(f, y)}_{=\operatorname{deque}(f)} \cdot \operatorname{ord}_{y} \omega_{y}
$$

Now, we sum oren $y \&$ we ne (LHS) is pinite $\left(=\operatorname{dy}\left(f^{*} w_{y}\right)\right)$

$$
\begin{aligned}
& \operatorname{dy} f^{x} w_{Y}=\sum_{x \in X} \operatorname{ord}_{x}\left(f^{x} \omega_{Y}\right)=\sum_{y \in Y} \sum_{x \in f_{(0)}^{-1}} \text { ord }\left(f^{*} w^{*}\right) \\
& =\underbrace{\sum_{y \in Y} \sum_{x \in F^{-1}(y)} b(f, x)}_{=b(f)}+\operatorname{degrem}(f) \underbrace{\sum_{y \in Y} \operatorname{ord}\left(\omega_{y}\right)}_{=\operatorname{dg}\left(\omega_{Y}\right)} \\
& \Rightarrow 2 g_{x}-2=b(f)+\operatorname{degree}(f)\left(2 g_{y}-2\right)
\end{aligned}
$$

Example: $Y=\mathbb{P}^{\prime}$ \& $f: X \rightarrow \mathbb{P}^{\prime}$ is a degree n holomorphic nom-cust map with X compact, we get $2 g-2=b(f)+n(2 \cdot 0-2) \quad$ In particular, $b(f)$ is even!

$$
g=\frac{b(f)}{2}-n+1
$$

Skial case: $n=2$, we say the map $6: X \longrightarrow R^{\prime}$ is a hypeulliptic coren (mure n this
§ 25.2 Toplogical classification \& E uler characteristec
Naxt, we want to atudy cmpact R.S. from the Toprlogical perspectiere. This will gise another prool of Riemanu-Hmwits.

Our stanting point is a classificatein therem of riantable dosed sutraces of geness:
Classification Thum: Fix S an onentable differenteable sserface of geness g. Then, $S \simeq \sum_{g}=\sum_{S-1} \# \pi^{2}=\underbrace{\pi^{2} \# \cdots \pi^{2}}_{g \text { tames }}$ whene π^{2} is the 2 -Trus $=S^{\prime} \times S^{1}$

So $\Sigma_{g}: \infty=\infty=$

($=$ a spleu S^{2} with g handles attacked)
Examples: $\quad \rho=0 \quad S^{2} \quad, \rho=1 \quad \$^{\prime} \times S^{\prime} s^{\prime \prime}-g$ dises $\backslash 1$.

- These 2 can be obtained by gleimg edges of a polygin. \& can be triangulated using these polygars:

$$
s=0 \quad s^{2}
$$

$S=1 \quad S^{\prime} \times S^{1}$

ms

3 uectives 3 edges
2Δ (fpat a back)

$$
x\left(s^{2}\right)=3-3+2=2=2-2 g
$$

$9=18.3 / 6$ vertices (each reatex is in 6 thiangles)
$27=18.3 / 2$ edges (each edge is shoud by 2 liangles) 18 Triangles

$$
x\left(\$^{\prime} \times s^{\prime}\right)=9-27+18=0=2-2 g
$$

Definition: The Euler characteristic of a smooth rimitable surface withoatboundary is

$$
x(s)=r k\left(H^{0}(x, \mathbb{Z})\right)-r k\left(H^{\prime}(x, \mathbb{Z})\right)+r k\left(H^{2}(x, \mathbb{Z})\right)
$$

Obs: If S has genus g, then $X(s)=1-2 g+1=2-2 g$
b_{2} uncles per handles.
Peopssitim: Fix a compact 2 -manifold S (possible with boundary) e assume S has a Triangulation Δ. Then $X_{(\Delta, S)} S^{i}=V-E+T$ with $V=\#$ vertices of Δ $E=\#$ edges of Δ
is imaviont under afirements of Δ.

$$
T=\# \text { Triangles of } \Delta
$$

Feuthermirs, if S is rentable without boundary, then S can be Triaupulated \& $\chi(s)=\chi_{(\Delta, s)}$.
Proof :(1) Need to see (RHS) is imariant under refinements of triangulations 3 ways of repining:

1) Subdivide an edge by adding a rectex \Rightarrow need T_{0} subdinide the z
triangles containing it

$$
\rightarrow \begin{aligned}
& V^{\prime}=V+1 \\
& E^{\prime}=E+3 \\
& T^{\prime}=T+2
\end{aligned} \Rightarrow V^{\prime}-E^{\prime}+T^{\prime}=V-E+T
$$

2) Add a rester in the interiors of a Triangle
\Rightarrow stellar subdinisim of the Δ

$$
\begin{aligned}
& V^{\prime}=V+1 \\
& E^{\prime}=E+3 \\
& T^{\prime}=T+2
\end{aligned} \quad \Rightarrow \quad V^{\prime}-E^{\prime}+T^{\prime}=V-E+T
$$

These 2 operations ane called elementary refinements of Tiaugelatius pos surfaces without boundary
3) If S has a boundary a we have an edge $e \subseteq \partial S$, we can add 1 more refinement ofecatim: subdivide an edge e in ∂S by adding a $p t$. Then subdinide the! Triangle containing e : e θ

$$
\begin{aligned}
& V^{\prime}=V+1 \\
& E^{\prime}=E+2 \quad \Rightarrow \quad V^{\prime}-E^{\prime}+T^{\prime}=V-E+T \\
& T^{\prime}=T+1
\end{aligned}
$$

Key: Any 2 Gianpulations hast c comm refinement (supecimpss them \& add enters \& edges that tum this decmpisitin into a Liaugulation).
(2) To prose part II, we meed to show we can Triangulate $\Sigma_{g} \& g+X_{\left(\Sigma_{\rho}\right)}=X_{\left(\sum_{g} \Delta\right)}$ We can do this by induction $m g$.

- Basecases $\rho=0 \& 1$ was dive in examples cibose.
- Inductive step: Use $\sum_{g+1}=\sum_{\rho} \# \mathbb{R}^{2}$. We can take gut the interior of any Triaugule in the triangulation of $\Sigma_{g} \& \Sigma_{1}=\pi^{2} \&$ glue them. The new Tiangulatim will has:
$V=V_{1}+V_{2}-3$ (we identified reties on 2 Triangles, ne m each side)

$$
E=E_{1}+E_{2}-3 \quad(\square)
$$

$T=T_{1}-1+T_{2}-1$ (we removed i triangle m each side)

$$
\begin{aligned}
\Rightarrow V-E+T & =\left(V_{1}-E_{1}+T_{1}\right)+\left(V_{2}-E_{e}+T_{2}\right)+(-3-(-3)-2) \\
& \left.=2-2 g{ }^{\prime \prime}\right)+0^{\prime \prime}+\text { care }+(-2) \\
& =2 g=2-2(g+1)=\chi(s)
\end{aligned}
$$

Q: How can we compute $X(S)$ fr S compact R.S?

Theorem: A genus $g>0$ impact R.S can be obtained by taking a $4 g$-goo rented crunterclock wise, with edges $a_{1}, b_{1}, a_{1}^{-1}, b_{1}^{-1}, a_{2}, b_{2}, a_{2}^{-1}, b_{2}^{-1}, \ldots, a_{g}, b_{g}, a_{g}^{-1}, b_{g}^{-1}$. identified accordingly.
Example: $g=1$
(4gen)

cut the Tors along these
2 loops

How to interput this? Gleer two polygus coruspnding to $\pi^{2}, ~ \mathbb{D}$.
(In feneral: $\Sigma_{g}=\sum_{g-1} \# \pi^{2}$)

$$
\pi^{2}, \mathbb{D}:
$$

$\Rightarrow \pi^{2} \# \pi^{2}$ is obfained as

- Indudion on g fistes the general statement.

Using tios Top-logical model, we can uppose the Riemamn-Hernits frumela.
Proof of Riemamn - Hewnits
We write a Thiaugulation for Y s use $f T_{0}$ lift it to a tiangulatin of X We pick a tiangealatem of Y whos restices indude all critical prints of f. How can we build a Crianpulation of X hum this?

Pidrially:
diane $f=6$

local multiplicities $1,2,3,6$
$B=$ critical values of $G=F$ (Branch divisor)

- $f_{X \cdot f_{(B)}^{-1}}: X \cdot f^{-1}(B) \longrightarrow Y, B \quad$ is an n-sheeted corning
\Rightarrow If $\Delta \subseteq Y$ is a triangle, then $f^{-1}(\operatorname{Int}(\Delta)) \simeq \cup_{n} \operatorname{In}(\Delta)$
\Rightarrow Taking diseen of $\bigcup_{\Delta \leq Y} f^{-1}\left(I_{n} t(\Delta)\right.$) we set a triangulation of X induced by f
- By refining the input Triangulation of Y (by stellar subdivisions), we may assume each $\Delta m Y$ has at most I critical it as a vertex.
- If $\Delta \subseteq Y, B$, then Δ lifts To n triangles
\Rightarrow Varices, Edges of Δ au also multiplied by n
- If \triangle has a vertex y in $B \Delta x \in f^{-1}(y)$ is a branch ot

with $\nu(f, x)=k>1$, then, the map f around x behaves like $z \mapsto z^{k}$
Then, the preimage of T around x consists of k many Δ, al with a crumum vertex x.
\Rightarrow Number of triangles sedges in th i prisage is $\sum_{x \in F^{\prime}(y)}^{1} \gamma(f, x)=n$
\qquad entices in the primate of a critical value y is $\sum_{x \in f^{-1}(y)} 1$
But $\sum_{x \in f^{-1}(y)} 1=\sum_{x \in f^{-1}(y)}(\gamma(f, x)-\underbrace{\left(f^{(f, x)-1)}\right)}_{=b(f, x)}=n-\sum_{x \in f^{-1}(y)} b(f, x)$
$\Rightarrow \chi(x)=V_{x}-E_{x}+T_{x}$ by Papprition

$$
\Rightarrow=n\left(V_{Y}-|B|\right)+\sum_{y \in B} \sum_{x \in F^{-1}(y)} 1-n E_{Y}+n T_{Y}
$$

sparate count freatios in $B \quad$ note $\quad y \in B \quad x \in F^{-1}(y)$

$$
\begin{aligned}
& =n\left(V_{Y}-|B|\right)+\sum_{y \in B}\left(n-\sum_{x \in f_{(y)}^{-1}} b(f, x)\right)-n E_{Y}+n T_{Y} \\
& =n\left(V_{Y}-E_{Y}+T_{Y}\right)-b(f)=\operatorname{dqueq}(f) X(Y)-b(f)
\end{aligned}
$$

Pupsorition
Changing siges we get $\quad 2 g x^{-2}=-x(x)=b(f)+$ degree (f) $\left(2 g y^{-2}\right)$

