Last Time : base point free complete linear systems m compact R.S X $\underline{Def}:|D|$ is base pt free $\bigoplus (D_{D}(X) \neq (D_{D}-p)) = \dim H^{\circ}(X, (D_{D})-1) \forall p \in X$. $\bigoplus \dim H^{\circ}(X, (D_{D}-p)) = \dim H^{\circ}(X, (D_{D})-1) \forall p \in X$

Thuren: Assume IDI is bpF. Then:

$$\phi_{D}$$
 is an embedding $\iff \forall p, q \in X \text{ (potentially equal)} \text{ we have}$
 $\dim H^{\circ}(X, \mathcal{O}_{D} - p - q) = \dim H^{\circ}(X, \mathcal{O}_{D}) - 2$
 $(\text{injective } p \neq q \text{ case }; \text{ immension } p = q.)$

Fix K canonical divisor on a compact R.S X of genus $g \ge 1$. K = [w]for some neumorphic 1-brow w on X (any other choice gives a linearly equividivisor) Lemma. IKI is base point free if $g \ge 1$ Gradiently, bin $H^{\circ}(X, \mathcal{O}_{K-P}) = \dim H^{\circ}(X, \mathcal{O}_{K}) + \mathcal{O}_{K}^{(X)} + \mathcal{O}_{K}^{(X)} + \mathcal{O}_{K}^{(X)} + \mathcal{O}_{K}^{(X)}$ Equivalently, bin $H^{\circ}(X, \mathcal{O}_{K-P}) = \dim H^{\circ}(X, \mathcal{O}_{K}) - 1 = g - 1$ Prop ≥ 27.1 , din $H^{\circ}(X, \mathcal{O}_{EPI}) \le 1$ because $X \neq \mathbb{P}'$ $(g \ge 1)$ Since $1 \in H^{\circ}(X, \mathcal{O}_{EPI})$, we get din $H^{\circ}(X, \mathcal{O}_{EPI}) = 1$. Riemann Roch $\Longrightarrow 1 = \dim H^{\circ}(X, \mathcal{O}_{EPI}) = \dim H^{\circ}(X, \mathcal{O}_{K-EPI}) + 1 - g + \deg(EP)$ $\longleftrightarrow H^{\circ}(X, \mathcal{O}_{EPI}) = g - 1$ $\dim H^{\circ}(X, \mathcal{O}_{EPI}) = g - 1$

Remark: Catagoritics statement is the new mat often used
"X is bot hyperelliptic
$$\Rightarrow$$
 Φ_{K} is injective"
Recof: By Lomma, a Theorem 1 \$ 282, or have $\Theta_{K-P} = \Theta_{K-P} = \Theta_{K-P-P}$
 \Leftrightarrow bin $H^{0}(K, \Theta_{K-P-P}) = bin $H^{0}(X, \Theta_{K-P}) = bin H^{0}(X, \Theta_{K}) - 1$
Using Riemann-Roch, or set
 $H^{0}(X, \Theta_{P+Q}) = bin H^{1}(X, \Theta_{P+Q}) + 1 - 9 + big(P+Q)$
 $= bin H^{0}(X, \Theta_{K-P-Q}) + 1 - 9 + 22$
 $\Rightarrow \exists F: X \rightarrow \mathbb{R}^{n}$ new $F \in \Theta_{P+S}$ non-constant
Since $|K|$ is bpF , the same calculatine says:
 $bin H^{0}(X, \Theta_{P}) = bin H^{0}(X, \Theta_{K-P}) + 1 - 9 + big(P) = 9 - 1 + 1 - 9 + 1 = 1$
 $2 bin H^{0}(X, \Theta_{P}) = bin H^{0}(X, \Theta_{K-P}) + 1 - 9 + big(P) = 9 - 1 + 1 - 9 + 1 = 1$
 $2 bin H^{0}(X, \Theta_{Q}) = 1$
 $\Rightarrow F has poles at both p eq gl order 1, so high z a F: X $\rightarrow \mathbb{R}^{1}$
times X into a hyperelliptic curre.
Theorem: IF X is not hyperelliptic a $g \ge z$, then $\Phi_{K}: X \longrightarrow \mathbb{R}^{3^{-1}}$ is
an embedding. (\Rightarrow K is neg ample)
Secoff Since $|K|$ is bgF a Φ_{K} is injective by Proposition, we used to
check bin $H^{0}(X, \Theta_{ZP}) = bin H^{1}(X, \Theta_{ZP}) + 1 - 9 + big(2P)$
Argen, by Riemann Pack & Seme backet by \overline{P} to get 2(2P)
 $= bin H^{0}(X, \Theta_{ZP}) + 1 - 9 + 2 = 1$ (K)$$

 $\Rightarrow \text{ Basis for } \#^{0}(X, \mathbb{O}_{K}) \text{ is} \{1, 2, 2^{2}, \dots, 2^{\beta^{-1}}\}$ $\Rightarrow \Phi_{K} : X \longrightarrow \mathbb{P}^{\beta^{-1}} \qquad \text{becomes} \qquad X \longrightarrow \mathbb{P}^{1} \longrightarrow \mathbb{P}^{\beta^{-1}} \qquad (T, 2) \longrightarrow [1:2:2^{2}:\dots:2^{\beta^{-1}}] \qquad (T, 2) \longrightarrow 2 \longmapsto [1:\dots:2^{\beta^{-1}}] \qquad (t, 2) \longrightarrow 2^{\beta^{-1}} \longrightarrow 2^{\beta^{-1}} \longmapsto 2^{\beta$

- Fix X compact R.S. of genus $g \ge 1$ Fix $f_0 \in X$ (bas point for loops in X) • Recall $H^{\circ}(X, \Omega) = H'(X, \Omega)''$ so $\lim H^{\circ}(X, \Omega) = g$
- Fix a basis $3\omega_1, \ldots, \omega_g \notin fr H^o(X, \Omega)$ • Topologically we know $X \simeq Torus with g holes \simeq II \# \cdots \# II _{SH2}$ $\implies H_1(X, \mathbb{Z})$ is a free alchean group of order zgwith generators $<\delta_1, \ldots, \delta_g, \delta_{g+1}, \ldots, \delta_{2g} >$

They satisfy
$$\mathcal{J}_i \cdot \mathcal{J}_{g+i} = 1$$
, $\mathcal{J}_{g+i} \cdot \mathcal{J}_{i} = -1$ i=1,..., g
a $\mathcal{J}_i \cdot \mathcal{J}_k = 0$ if $|k-j| \neq g$

$$\frac{\text{Dehinitein}:}{\text{Name}: \text{Period vector}} \quad j = 1, \dots, 29, \quad \text{we get} \quad T_j = \begin{bmatrix} \int_{\sigma_j}^{\sigma_j} w_1 \\ \sigma_j \end{bmatrix} \in \mathbb{C}^3$$

Note:
$$dw_{k} = 0$$
 (because $w_{k} = f_{k}dz$ $f_{k}\in O_{(V)}$ so $\frac{\partial f_{k}}{\partial \overline{z}} = 0$)
=) Corollary 3 \$15.2 given $\int w_{k}$ is independent in the humotopy class of V_{j} .

$$\frac{\operatorname{Remark}_{:}}{W} \xrightarrow{\operatorname{H}^{\circ}(X, \Omega)} \xrightarrow{\operatorname{H}^{\circ}(T, (X, P_{0}), (\mathbb{Q}_{+}))} \text{ is a linear map}}{W \xrightarrow{\operatorname{P}^{\circ}_{W} = (X \xrightarrow{\operatorname{P}^{\circ}} \int W)} \xrightarrow{\operatorname{L}^{\circ}_{W} \operatorname{P}^{\circ}_{W}}$$

Now:
$$(C, +)$$
 is an abelian group, and
(1) $\int_{X+Y} w = \int_{Y} w + \int_{Y} w = \int_{Y+Y} w$
(1) $\int_{X-W} w = -\int_{X} w$
So $\int_{W} extends to $Tr_{1}(X, p, r) = H_{1}(X, Z)$.
 $I Tr_{1}(X, p_{1}): Tr_{1}(X, p_{1})$
By their Theorem $15.5 we know w is exact $\Leftrightarrow f_{W} \equiv 0$.
Write $TT = (T_{1}, ..., T_{CS}) \in C$ $\int_{X-Z}^{X+Z} a call it a grained matrix for X$
Peoplystim: The 25 priod ketors are linearly independent on TR
 $\frac{Peoply}{1}$. We argue by entardiction a fix a dependency relation:
 $a_{1}T_{1} + \dots + a_{2g}T_{2g} = 0 \in C^{3}$
with $a_{1}, \dots, a_{2g} \in TR$ wit all 0.
Taking employ enjugate gives $a_{1}T_{1} + \dots + a_{2g}T_{2g} = 0 \in C^{3}$
with $\overline{Tr}_{j} = \begin{bmatrix} f_{1} w_{1} \\ 0 \\ \vdots \\ f_{j} w_{j} \end{bmatrix}$
We write a square matrix of sige $cg = \Omega^{*} = \begin{bmatrix} Tr_{1} & \dots & Tr_{2g} \\ Tr_{1} & \dots & Tr_{2g} \end{bmatrix}$
We know $\begin{bmatrix} a_{1} \\ 0 \\ \vdots \\ 4g \end{bmatrix} \in T^{3} \times J_{2}$ this in ker Ω^{*} , so $ck(\Omega^{*}) < zg$
In proticular, the 2g error of Ω^{*} can be a vector find $[A_{1}, \dots, A_{2}, A_{1}, \dots, A_{2}]$
 $in C^{28}$ with $\int_{S} \sum_{i=1}^{2} A_{i} w_{i} + A_{i} w_{i} = 0$ $V(z_{1}, \dots, z_{2}, \dots, A_{2}) + 0$$

 $\Rightarrow w = \sum_{j=1}^{\infty} \lambda_j w_j$ $\land q = \sum_{j=1}^{\infty} \mu_j w_j$ $\in H^{\circ}(\chi, \Omega)$ satisfy $\int (\omega + \overline{\varphi}) = 0 \quad \forall i = 1, \dots, 2g \quad \Longrightarrow p_{\omega + \overline{\varphi}} = \int \omega + \overline{\varphi} = 0 \quad \forall i \in \mathcal{H}_{1}(\overline{X} \ge)$ Now: w+ q is closed, then w+ q is exact by Their Thom \$15.3 Lemme below anhims w = 7 = 0 Since Swy .- , wy & is a l-basis of $H^{\circ}(X, \Sigma)$, we get $\lambda_1 = \cdots = \lambda_g = \overline{\mu_1} = \cdots = \overline{\mu_g} = 0$, so $(\underline{\lambda}, \underline{\mu}) = 0$ This can't happen by see choice of scalars (1, 12). I Lemma: Frx X a compact R.S & w, Pin S(X) = E(X). If $w + \overline{\varphi}$ is exact (ie = $df fr Fe \mathcal{E}(x)$), then $w = \Psi = 0$. Troof: We work locally ma chart (V,2) of X & write w=h12, d2 $\varphi = \mathcal{S}(z) \quad \varphi = \mathcal{Y}$ $\Rightarrow \Psi \wedge \omega = - \omega \wedge \Psi = \circ \in \mathcal{E}^{(2)}(X)$ Similarly $\frac{1}{2}PAP = |g(z)|^2 \frac{1}{2} dz A dz = |g_{(z)}|^2 du A dv \quad if z = u + zv$ Claim: $\Psi = 0$. 'SF/ We argue by contradiction & assume 4 \$\$0. Then $\frac{1}{2} \iint_{X} \varphi_{\Lambda} \overline{\varphi} = \iint_{X} |g_{(2)}|^{2} du \Lambda dv > 0$ But $\Psi \wedge \overline{\Psi} = 0 + \Psi \wedge \overline{\Psi} = \Psi \wedge \omega + \Psi \wedge \overline{\Psi} = \Psi \wedge [\omega + \overline{\Psi}] = \Psi \wedge dF$ $= -2f \wedge \varphi = -2(f\varphi)$ because φ is closed. FPEE'(X) à has compact support (X cmp.) so by Stokes Then II 2(FP)=0. $\Rightarrow \frac{i}{2} \iint_{X} \Psi \Psi \Psi = -\frac{i}{2} \iint_{X} d(F\Psi) = 0 \quad Cutn!.$ The same Trick applied to w girls w =0

$$\left(\begin{array}{c} \frac{1}{2} \otimes n \overline{\omega} = |h_{(2)}|^{2} & dx & Av & nV \\ \end{array}, \overline{\psi} & n \overline{\omega} = 0 \\ \end{array}$$

$$\left(\begin{array}{c} \frac{1}{2} \otimes n \overline{\omega} = 0 + \omega & n \overline{\omega} = \overline{\psi} & n \overline{\omega} + \omega & n \overline{\omega} = dF & n \overline{\omega} = d[n \overline{\omega}] & (\overline{\omega} & is & dwd) \\ \end{array}\right) \\ \left(\frac{1}{2} & \int_{X} w & n \overline{\omega} = \frac{i}{2} & \int_{Y} d(f \omega) = 0 & (uti!) & B \\ \end{array}$$

$$\left(\begin{array}{c} \frac{1}{2} & \frac{$$

If we pide another path
$$\mathcal{V}'$$
, then $d = \mathcal{V}' \mathcal{V} = \mathcal{E}_{1}(X, p_{0})$ so $\begin{bmatrix} \int w_{1} \\ \vdots \\ w_{1} \end{bmatrix} \in \Gamma$
Since $\int w_{1} = \int_{X} w_{1} + \int_{X} w_{1} = \int_{X} w_{1} - \int w_{1} \quad \forall i$, $\begin{bmatrix} \int w_{1} \\ \vdots \\ w \end{bmatrix} \in \Gamma$
we conclude $\begin{bmatrix} \int w_{1} \end{bmatrix}_{i} = \begin{bmatrix} \int w_{1} \end{bmatrix}_{i}$ und Γ . Thus $\Phi(p_{1}, p_{0})$ is well-defined.
We write $\int_{X} w_{2} = \int_{Y}^{1} w_{1}$
Set: $\Phi(p_{0}, p) = \int_{Y}^{1} w = -\int_{X} w = -\Phi(p_{1}, p_{0})$
Now, if $D \in Div_{0}(X)$, write $D = \sum_{i=1}^{m} a_{i} p_{i} - \sum_{j=1}^{m} b_{j} q_{j}$, with $\Sigma a_{i} = \Sigma i_{j}$
 $\Rightarrow D = \sum_{i=1}^{m} a_{i} (p_{i} - p_{0}) - \sum_{j=1}^{m} b_{j} (q_{j} - p_{0})$
Us set $\Phi(b) = \sum_{i=1}^{m} a_{i} \frac{\Phi(p_{1}, p_{0}) - \sum_{j=1}^{n} b_{j} \varphi(q_{j} - p_{0})}{\sum_{i=1}^{m} p_{i} \frac{p_{i}}{p_{0}} - \sum_{j=1}^{n} b_{j} \frac{q_{j}}{p_{0}} w_{j}} \in Tac(X)$

Name of = Abel-Jacobi map

Theorem (Abel-Jacobi) The hummorphism sequence

$$I_{0}(Y \mid 0 \mid = Ppal(X) \longrightarrow Div_{o}(X) \longrightarrow Jac(X) \longrightarrow o$$

is exact.
Equivalently the Abel Jacobi map induces an isomorphism
 $Pic_{0}(X) := Div_{0}(X) \xrightarrow{\sim} Jac(X)$
 $I_{0} q \geq 1$
 $Ppal(X)$

and hence, an inclusion
$$\wedge \longrightarrow 0_1v_0(X) \longrightarrow 3ac(X)$$

 $l \longmapsto l - lo \longmapsto \phi(l - lo)$

Remark 1: The construction depends on the choice of a base point p & a basis 3w, ..., wegt But the statements are independent of these choices. Remark 2: Exactness at Jac (X) is known as the Jacobi insersion theorem.

Thursem (Trelli) Two empact R.S X, X' of genues
$$g \ge 1$$
 are isomorphic
(ie $\exists \ 9: X \rightarrow X'$ biholoworphism) if early if they have the same period waters
after enveniently picking (commical) hundroogy bases (TT because [Ig Z])
 $\underline{\$zr.s}$ Elliptic enves:
Next: Understand Alel-Jacobi for elliptic enves. (= yernes 1)
• 2 in connations: $\textcircled{M} X = \fbox{M}$
(2) $X = \text{smooth which even in } \mathbb{R}^3$.
 $\textcircled{M} = \bigcirc \mathbb{C}$ Weierstroom \textcircled{P} -function
(2) \xrightarrow{P} Weierstroom \textcircled{P} -function
(2) \xrightarrow{P} Weierstroom \textcircled{P} -function
(2) \xrightarrow{P} \xleftarrow{P} \xrightarrow{P} \xrightarrow

$$X = \sqrt{N}$$

We normalize the hallice A a fire abasis $1, 2\xi$ with Iu(5>0. Basis 17 $H^{0}(X, \Omega) = 5 u = d \geq 5$ $\int_{a}^{b} d\xi = 2 \int_{a}^{b} = 1$ $\int_{a}^{b} d\xi = 2 \int_{a}^{b} = 3$ $\int_{a}^{b} d\xi = 2 \int_{a}^{b} d\xi = 3$ $\int_{a}^{b} d\xi = 3$

8 prints in Supplb) in the fundamental domain.
By a queric petrobation (E<1) of
$$\square$$
, we can assume Suppl \subseteq Sut(\square).
9 $\stackrel{\text{at.} \dots \times K}{\underset{k=1}{N}}$ unput d l's
9 $\stackrel{\text{at.} \dots \times K}{\underset{k=1}{N}}$ unput d l's
9 $\stackrel{\text{at.} \dots \times K}{\underset{k=1}{N}}$ unput $D = \sum_{i=1}^{n} a_i p_i - \sum_{j=1}^{n} i_j q_j$
9 $\stackrel{\text{at.} \dots \times K}{\underset{k=1}{N}}$ unput $D = \sum_{i=1}^{n} a_i p_i - \sum_{j=1}^{n} i_j q_j$
9 $\stackrel{\text{at.} \dots \times K}{\underset{k=1}{N}}$ unput $D = \sum_{i=1}^{n} a_i p_i - \sum_{j=1}^{n} i_j q_j$
9 $\stackrel{\text{at.} \dots \times K}{\underset{k=1}{N}}$ unput $D = \sum_{i=1}^{n} a_i p_i - \sum_{j=1}^{n} b_j q_j$
9 $\stackrel{\text{at.} \dots \times K}{\underset{k=1}{N}}$ unput $\stackrel{\text{at.} \dots \times K}{\underset{k=1}{N}}$ $\stackrel{\text{at.} \dots \times K}{\underset{k=1}{N}}$ $\stackrel{\text{at.} \dots \times K}{\underset{k=1}{N}}$
9 $\stackrel{\text{at.} \dots \times K}{\underset{k=1}{N}}$ \stackrel

$$\& \partial C = D$$

$$= \sum_{k=1}^{d} \int_{k=1}^{d} \int_{k=1}^{d} \int_{k=1}^{d} \int_{k=1}^{d} (Pi_{k} - P_{0}) - (Qi_{k} - P_{0}) - (Qi_{k$$

 $\Rightarrow \Phi(D) = D \mod \Lambda$.

$$X \longrightarrow Div_{0}(D) \xrightarrow{\Phi} Jac(X) \qquad so \qquad X \longrightarrow Jac(X) \qquad is x \longmapsto x-0 \qquad \longrightarrow Jet = x \in C/A \qquad the identity map! (orollary: Ker(Φ) = Ppal(X) has the following interpretation:
 $D = \sum_{i=1}^{n} p_{i} - \sum_{j=1}^{n} p_{j} = is paincipal \implies \sum_{i=1}^{n} a_{i}p_{i} - \sum_{j=1}^{n} p_{j} \in A$$$

This says when can we build meno morphic functions with prescribed O's a poles in O/A. The explicit function is custometed with O-functions (Jacobi) Theorem (Abel) : (=) Part of Corollary (ie $Ppal(X) \subseteq Ker(\Phi)$) Fix a deubly periodic menusciphic functions f: (-> P', with f(2+1)=f(2) F(5+2)=F(5)(so F determines a mennieghic function h: X -> P') Assume F is non-constant. Then (1) f has poles & geness $f'(0) = 3 p_1, \dots, p_m \gamma$, $f'(\infty) = 1 q_1, \dots, q_m \gamma$ mult q_1 and $mult = b_1, \dots, b_m$ (2) $\sum_{i=1}^{n} a_{i} = \sum_{j=1}^{m} b_{j}$ (= degree (F)) (3) $\sum_{i} a_i p_i - \sum_{j} b_j q_j \in \Lambda$ \mathcal{B}_{aoof} : Pick parallelogram so $f'(0) \cup f'(\infty) \subseteq \operatorname{Jut} \begin{pmatrix} t + \delta \\ - \end{pmatrix}$ (z) \ddagger genoes $-\ddagger$ poles $= \sum_{i=1}^{2} a_{ii} - \sum_{j=1}^{2} b_{jj} = \frac{1}{2\pi i} \int_{F(z)} \frac{F'(z)}{F(z)} dz = 0$ F double periodic (3) $\sum a_i p_i - \sum b_j q_j = \frac{1}{2\pi i} \int \frac{f'(z)}{f(z)} dz$

$$(\mathbf{I}) = \underbrace{(\mathbf{J})}_{2\pi\mathrm{i}} \left(\underbrace{\int}_{\mathbf{t}} \frac{1}{4} \underbrace{(\mathbf{J})}_{\mathbf{t}} \underbrace{(\mathbf{J})}_{\mathbf{t}} \frac{1}{4} \underbrace{(\mathbf{J})}_{\mathbf{t}} \underbrace{(\mathbf{J})} \underbrace{$$

Notion
$$\Theta_{\mathcal{G}_{i}}^{c}$$
 is holomorphic a houldy-prevadic with the name z halffere A .
Therefore, it is constant. The normalization condition says $\frac{\Theta_{0}}{\Theta_{1}} = 1, 100 \oplus \Theta_{0}^{c} = \frac{1000}{\Theta_{1}}$.
Existence: Set $g = e^{z \operatorname{IT} i \overline{C}}$. Since $\operatorname{Im} Z > 0$ we have $1g1 < 1$.
Set $\Theta_{(\overline{Z})}^{c} = \frac{\sin(|\overline{T}_{Z})}{|\overline{T}_{c}|} \frac{|\overline{T}_{c}|^{c} e^{2|\overline{T}(i\overline{Z})}(1+g^{m} e^{2|\overline{T}(i\overline{Z})})}{(1-g^{m})^{2}}$.
ble can check that the infinite product converges uniformity m discs $\overline{D}(QR)$
in C , so Θ is holomorphic
. (additions (1)) through (4) follow by constructions
 $\frac{\operatorname{Suppl} d}{1 \operatorname{Suppl} 1 \operatorname{Suppl} 1} \frac{\operatorname{Suppl} 2}{\operatorname{Suppl} 2} = \frac{1}{2} \operatorname{Ai}_{i}^{c} - \frac{1}{2} \operatorname{Ai}_{i}^{c}$ (allowing reputation)
we have $\overline{Z} \operatorname{Ai}_{i}^{c} - \overline{Z} \operatorname{Ai}_{j}^{c} = \lambda \in \mathbb{A}$.
Now, change $\operatorname{Ai}_{m}^{c} = \operatorname{Ain}_{m} - \lambda$ is not $\operatorname{Ain}_{i}^{c} = \operatorname{Ain}_{m}^{c} + \operatorname{Ain}_{i}^{c} = \operatorname{Ain}_{m}^{c} + \operatorname{Ain}_{m}^{c} = \operatorname{Ain}_{m}^{c} + \operatorname{Ain}_{m}^{c} = \operatorname{Ain}_{m}^{c} + \operatorname{Ain}_{m}^{c} = \operatorname{Ain}_{m}^{c} + \operatorname{Ain}_{m}^{c} = \operatorname{Ain}_{m}^{c} + \operatorname{Ain}_{m}$

(doubley-periodic on C) with zeroes at $\tilde{\alpha}_1, - \tilde{\alpha}_d$ æpoles at B_1, \dots, B_d ie (F) = D, as we wanted.

2) Algebraic picture : X RS. associated to equation
$$T^2 - h(z) = 0$$

where $h(z)$ is a subject with 3 distinct noots $(z_0, z_1, z_2 \in \mathbb{C})$
Basis for $H^0(X, \Omega) = \frac{1}{2}w = \frac{dz}{\sqrt{h(z)}} = \frac{dz}{T}$
Q: How to pick Loops $m \times 2$

$$\int_{0}^{\infty} \frac{\partial L}{\partial P(H)} = \int_{0}^{\infty} \int_{0}^{\infty} \frac{\partial (z)}{\partial z} dz = \delta(u) - \delta(v) \qquad \left(\begin{array}{c} \sqrt{P(\sigma(z))} = y = b' \\ v = y = z + a \ge b \\ v = y = z + a \ge b \end{array} \right)$$

<u>(atch</u>: any h(z) can be put in the form $p_{(z)} = 4z^3 + az + b$ by linear coordinate changes in \mathbb{R}^1 , so we can "compute" elliptic integrals with \mathcal{P} .