Lecture XXIX: Canonical maps, Abel-Jacobi therry
Last Tines: base point fer complite limeer surterms m cmpact R.S X
Def: $|D|$ is base p t hee $\Leftrightarrow C_{D}(x) \neq \mathscr{C}_{D}(x) \quad \forall p \in X$.

$$
\Leftrightarrow \operatorname{dim} H^{0}\left(X, O_{D-p}\right)=\operatorname{dim} H^{0}\left(X, O_{\Delta}\right)-1 \forall p \in X
$$

Therem: Assume $|D|$ is bpf. Then:
ϕ_{S} is an umbedding $\Leftrightarrow \forall p, q \in X$ (pitentially equal) we hase $\operatorname{dim}_{\operatorname{Hem}^{0}}\left(X, \mathbb{O}_{D-p-q}\right)=\operatorname{dm} H^{0}\left(X, D_{D}\right)-2$ (ingetive : $p \neq f$ case; imumersim: $p=q$)
\$29.1 Conmical maps for cmpact R.S.:
Fix K canmical diniss m a cmpact $R . S \times$ of genes $\rho \geqslant 1 . K=(w)$ of sme meumurihic 1-form w on X (any other doia gines a limady apuin din'ss)
Lemme: IKI is base peint hee if $g \geqslant 1$
Broof: By Cowllay s 28.2 , we hare to show $\bigoplus_{k-p}^{(x)} \neq \bigoplus_{k}^{(x)} \forall p \in X$
Equinalently, $\operatorname{dim} H^{\circ}\left(X, O_{k-p}\right)=\operatorname{dim} H^{\circ}\left(X, O_{K}\right)-1=g-1$
$P_{\text {rop }} \xi 27.1, \operatorname{din} H^{\circ}\left(X, \cup_{[p]}\right) \leq 1$ because $X \nsim \mathbb{R}^{\prime}(\xi \geqslant 1)$
Since $1 \in H^{0}\left(X, \cup_{[p]}\right)$, we set $\operatorname{din} H^{0}\left(X, \bigoplus_{[p]}\right)=1$.
Riemann Roch $\Rightarrow 1=\operatorname{dim} \mathcal{H}^{0}\left(X, \cup_{[p]}\right)=\operatorname{dim} H^{\prime}\left(X, O_{[p]}\right)+1-g+\operatorname{deg}([p])$
$\Leftrightarrow \quad \operatorname{dim} H^{\prime}\left(x, 0_{[p]}\right)=g-1$
$\operatorname{dim} H^{\circ}\left(X, \Omega_{-[p]}\right)=\operatorname{dim} H^{0}\left(X, O_{K-[p]}\right)$
Q: When is ϕ_{K} injectire? We hare a partial cunswer.
Proporition 1: If $\exists p, q \in X$ with $p \neq q$ \& $\phi_{K}(p)=\phi_{K}(q)$ then $\exists f: X \longrightarrow \mathbb{P}^{\prime}$ holmurphic deg $z \mathrm{map}$, ie. X is hyfeelliptic.

Remark: Contraporieise statement is the one mast stten used X is hot hysecelliptic $\Rightarrow \phi_{k}$ is injectise"

Pwof: By Lemma, \& Thorem 1 28.2 , wh hase $0_{K-p}=0_{K-q}=O_{K-p-q}$ $\Leftrightarrow \operatorname{dim} H^{0}\left(X, O_{K-p-q}\right)=\operatorname{dim} H^{0}\left(X, O_{K-p}\right) \underset{|K| b p G}{\bar{I}} \operatorname{dim} H^{0}\left(X, O_{K}\right)-1$
Using Riemann-Roch, we set
$\operatorname{dim} H^{0}\left(X, 0_{p+q}\right)=\operatorname{dim}_{0} H_{0}^{\prime}\left(X, 00_{p+q}\right)+1-g+\operatorname{dig}(p+q)$

$$
\begin{aligned}
& =\operatorname{dim} H^{0}\left(X, O_{k-p-q}\right)+1-g+2 \\
& =\operatorname{dim} H^{\circ}\left(X, O_{k}\right)-1+1-\rho+2=s-g+2=2
\end{aligned}
$$

$\Rightarrow \exists f: X \rightarrow \mathbb{R}^{\prime}$ mew $\quad f \in \mathcal{O}_{1+1}$ nn-constant
Since $|K|$ is bpF, the same calculetion says:
$\operatorname{dim} H^{0}\left(X, O_{p}\right)=\operatorname{dim} H^{0}\left(x, \cup_{K-p}\right)+1-g+\operatorname{deg}([p])=g-1+1-g+1=1$ $\& \operatorname{dim} H^{0}\left(X, O_{f}\right)=1$
$\Rightarrow f$ has poles at both $p \& q$ of srder 1 , so dyb $=2$ \& $~ f: X \rightarrow \mathbb{P}^{\prime}$ turns X into a hyferelliptic cuese.

Thurem1: If X is not hyfreelliptic \& $g \geqslant 2$, then $\phi_{K}: X \longrightarrow \mathbb{P}^{\rho-1}$ is an embedding. ($\Rightarrow K$ is reny ample)

Proof Simce $|K|$ is bpf \& ϕ_{k} is imjectise by Propsition, we weed to
 Agaen, by Riemann-Rech \& Senc derality, it's eurught to chech:

$$
\begin{align*}
\operatorname{dim} H^{0}\left(X, O_{2 p}\right) & =\operatorname{dim} H^{\prime}\left(X, O_{2 p}\right)+1-g+\operatorname{dg}(2[p]) \\
& =\operatorname{dim} H^{\circ}\left(X, O_{K-2 p}\right)+1-g+2 \\
& \stackrel{?}{=} g-2+1-g+2=1 \tag{*}
\end{align*}
$$

But $\operatorname{dim} H^{0}\left(X, O_{2 p}\right) \leq 2$ \& $\operatorname{dim} H^{0}\left(X, O_{p}\right)=1$ becales $g \neq 0$.
If $\operatorname{dim} H^{\circ}\left(X, O_{2 p}\right)=2$, then $\exists f \in H^{\circ}\left(X, O_{2 p}\right)$ holo un-constant
\Rightarrow Lhas to has a pole at p of order $\leqslant 2$.

- If rorder 2 , then $f: X \rightarrow \mathbb{P}^{\prime}$ is a hyprelliptic coren. Cutrn'
- If ordu 1 , then $f: X \rightarrow \mathbb{P}^{\prime}$ has dequei 1 ie f is a corening $\& X \simeq \mathbb{R}^{\prime}$

Cunclucle dim $H^{\circ}\left(x, O_{2 p}\right) \leqslant 1$ \&

$$
\begin{gathered}
\text { Cuts! } \\
(\rho \geqslant 2)
\end{gathered}
$$

But dim $H^{\circ}\left(x, O_{2 p}\right) \geqslant 1$ becoerar $\bigoplus_{2 p} \geq \bigoplus_{p}$, so $(*)$ is contiuned.
Thoremz: All geness 2 umpact R.S are hyperelliplic (\Rightarrow can put $\rho \geqslant 3$ in Thn)
Proof Sinc $|K|$ is bpf it's cuough to show $\phi_{k}: X \rightarrow \mathbb{P}^{\prime}$ is not inj
If ϕ_{K} is injectess, then its degpee is $1 \mid \#$ geves $=1$ and simple, othensise ϕ_{k} is brancked, \& so ϕ_{k} is not injective), hence biholansyluc. This can't happlen because genees $X=2 \neq 0$.
Q2: What does $\phi_{k}: X \rightarrow \mathbb{P}^{8-1}$ look like when X is hyferelliptic?
We can answer this by kiewing X as the algebraic tiencin of $Q_{(T)}=T^{2}-h(z)$ when $h \in \mathbb{C}_{[z]}$ square hee (dipaee $h=2 g+1 \quad \pi r g+2$)

$$
b_{\infty}=\text { branchpt } \rightarrow \infty \text { : nota } \text { braichpt }
$$

Recall : $H^{0}(X, \Omega)=\operatorname{Span}\left\langle\frac{z^{j-1} d z}{\sqrt{h(z)}}: j=1, \ldots, g\right\rangle \quad$ (Paopsition $s 26.1$)
Propsition 2: Fix X hyferelliptic of genes $\rho \geq 2$, then ϕ_{k} is the compsition of the double coren $\begin{aligned} X & \longrightarrow \mathbb{T}^{\prime}\end{aligned}$ and the Veconese map. $\mathbb{R}^{\prime} \hookrightarrow \mathbb{T}^{g-1}$

Broof Use $K=\left(w=\frac{d z}{\sqrt{h(z)}}=\frac{d z}{T}\right)$ view $0_{k} \simeq \Omega$ via $f \mapsto f \cdot w$

$$
\Rightarrow \text { Basis fo } H^{0}\left(X, O_{k}\right) \text { is }\left\{1, z, z^{2}, \ldots, z^{g-1}\right\}
$$

$$
\Rightarrow \phi_{k}: x \longrightarrow \mathbb{R}^{\rho-1}
$$

becomes
$X \longrightarrow \mathbb{R}^{\prime} \longrightarrow \mathbb{R}^{f-1}$

$$
(T, z) \rightarrow z \longmapsto\left[1: \cdots: z^{f-1}\right]
$$

$\log 2 \mathrm{dg} 1$
\Rightarrow degree $\phi_{k}=2$.
§ 29.2 Abel-Jacobi Theory

- Fix X compact R.S. of genes $g \geqslant 1 \quad F i x p_{0} \in X$ (baa print for loo $1 \sin x$)
- Recall $H^{0}(X, \Omega)=H^{\prime}(X, 0)^{V}$ so $\operatorname{dim} H^{0}(X, \Omega)=9$

Fix a basis $\left.3 \omega_{1}, \ldots, \omega_{j}\right\}$ fo $H^{0}(X, \Omega)$

- Topologically we know $X \simeq$ Trues with g holes $\simeq \frac{\pi \# \cdots \# \pi}{\delta \text { limes }}$ $\Rightarrow H_{1}(x, \mathbb{Z})$ is a fee abclean group of eden as with generators $\left\langle\gamma_{1}, \ldots, \gamma_{\rho}, \gamma_{\rho+1}, \ldots, \gamma_{2 \rho}\right\rangle$
Theysatisfy $\gamma_{i} \cdot \gamma_{\rho+i}=1, \gamma_{\rho+i} \cdot \gamma_{i}=-1 \quad i=1, \ldots, g$
 $\& \gamma_{j} \cdot \gamma_{k}=0$ if $|k-j| \neq g$
Petinitein: Fires $\gamma_{j} \quad j=1, \ldots, z s$, we set $\pi_{j}=\left[\begin{array}{c}\int_{\gamma_{j}} \omega_{1} \\ \vdots \\ \int_{\gamma_{j}} \omega_{g}\end{array}\right] \in \mathbb{C}^{\delta}$
Note: $d \omega_{k}=0$ (because $\omega_{k}=f_{k} d z \quad f_{k} \in \Theta_{(V)}$ so $\frac{\partial f_{k}}{\partial \bar{z}}=0$) \Rightarrow Condlany 3 s 15.2 given $\int_{\gamma_{j}} \omega_{k}$ is independent in the hanotory doss of γ_{j}.
Remark: $H^{0}(X, \Omega) \longrightarrow H_{m \text { op }}\left(\pi_{1}\left(X, p_{0}\right),\left(\mathbb{C}_{1}+\right)\right)$ is a limen map $\omega \longmapsto \rho_{\omega}=\left(\gamma \longmapsto \int_{\gamma} \omega\right)$ [quid map]

Now: (\mathbb{C}, t) is an abelian group, and

$$
\text { (1) } \int_{\gamma * \gamma^{\prime}} \omega=\int_{\gamma} \omega+\int_{\gamma^{\prime}} \omega=\int_{\gamma^{\prime} \neq \gamma} \omega
$$

(2) $\int_{\gamma} \omega=-\int_{\gamma} \omega$

So ρ_{ω} extends to $\pi_{1}\left(x, \rho_{0}\right) / \underset{\left[\pi_{1}\left(x, \rho_{0}\right): \pi_{1}\left(x, \rho_{0}\right)\right]}{ }=H_{1}(x, \mathbb{Z})$.
By Main Theorem s 15.3 we know ω is exact $\Leftrightarrow \rho_{\omega} \equiv 0$.
Write $\pi=\left(\pi_{1}, \ldots T_{2 g}\right) \in \mathbb{C}^{\rho \times 2 g}$ call it a period matrix fo X
Proposition: The as pried rectors an linearly independent oren \mathbb{R}
Poof: We argue by contradicter n \& fix a dependency relation:

$$
a_{1} \pi_{1}+\ldots \cdot+a_{2 g} \pi_{2 g}=0 \in \mathbb{C}^{g}
$$

with $a_{1}, \ldots a_{2 g} \in \mathbb{R}$ wit all 0 .
Taking cunplux conjugate sires $a_{1} \overline{\pi_{1}}+\cdots+a_{2 g}{\overline{\pi_{2 j}}}=0 \in \mathbb{C} \delta$ with $\bar{\pi}_{j}=\left[\begin{array}{c}\int_{\gamma_{j}} \bar{\omega}_{1} \\ \vdots \\ \int_{\gamma_{j}} \bar{\omega}_{s}\end{array}\right]$
We write a square matrix of sine of $\quad \Omega^{*}=\left[\begin{array}{lll}\pi_{1} & \cdots & \pi_{2 g} \\ \pi_{1} & \cdots & \pi_{2 g}\end{array}\right]$ We know $\left.\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{2 g}\end{array}\right] \in \mathbb{R}^{2 g}, 3 \underline{0}\right\}$ lies in Her Ω^{*}, so $\left(k\left(\Omega^{*}\right)<2 g\right.$
In particular, the 2ρ apus of Ω^{k} an ℓd a we can find $\left[\lambda_{1}, \ldots, \lambda_{\rho}, \mu_{1}, \ldots, \mu_{\rho}\right]$ in $\mathbb{T}^{2 g}$ with $\int_{\gamma_{i}} \sum_{j=1}^{g} \lambda_{j} w_{j}+\mu_{j} \bar{w}_{j}=0 \quad \forall i=1, \ldots, 2 g$. with, $(\lambda, \mu) \neq 0$

$$
\begin{aligned}
\Rightarrow \omega=\sum_{j=1}^{\delta} \lambda_{j} \omega_{j} & \& \varphi=\sum_{j=1}^{\delta} \bar{\mu}_{j} \omega_{j} \quad \in H^{0}(X, \Omega) \text { satisty } \\
& \int_{\gamma_{i}}(\omega+\bar{\varphi})=0 \quad \forall i=1, \ldots, 2 j \Rightarrow \rho_{\omega+\bar{\varphi}}=\int_{\gamma} \omega+\bar{\varphi}=0 \quad \forall \gamma \in H_{1}(X, Z)
\end{aligned}
$$

Now: $\omega+\bar{\varphi}$ is closed, then $\omega+\bar{\varphi}$ is exact by Main Them $\delta 15.3$ Lennuse below continues $\omega=\bar{\varphi}=0$ Since $\left\{\omega, \ldots, \omega_{8}\right\}$ is a θ-basis of $H^{0}(X, \Omega)$, we get $\lambda_{1}=\cdots=\lambda_{\partial}=\bar{\mu}_{1}=\cdots=\bar{\mu}_{\mathrm{g}}=0$, so $(\lambda, \mu)=\underline{0}$ This can't happen by ger choice of scalars (λ, μ). I

Lemma: Fix X a compact R.S \& w, φ in $\Omega(x) \subseteq \varepsilon^{\prime \prime}(x)$.
If $\omega+\bar{\varphi}$ is exact (ie $=d f$ fr $f \in \mathcal{E}(x)$), then $\omega=\varphi=0$.
Proof: We work bradly ma dat (V, z) of $X \Delta$ write $w=h(z) d z$

$$
\varphi=\delta(z) d z
$$

$$
\Rightarrow \varphi \wedge \omega=-\omega \wedge \varphi=0 \in \varepsilon^{(2)}(x)
$$

Similarly $\frac{i}{2} \varphi \wedge \bar{\varphi}=|g(z)|^{2} \frac{i}{2} d z a d \bar{z}=|g(z)|^{2} d u a d v \quad$ if $z=u+i v$ Claim: $\varphi=0$.
If/ We argue by contradiction a assume $\varphi \neq 0$. Then

$$
\left.\left.\frac{i}{2} \iint_{x} \varphi \wedge \bar{\varphi}=\iint_{X} \right\rvert\, \rho(z)\right)^{2} d u \wedge d v>0
$$

But $\varphi_{\wedge} \bar{\varphi}=0+\varphi_{\wedge} \bar{\varphi}=\varphi \wedge \omega+\varphi_{\wedge} \bar{\varphi}=\varphi_{\wedge}(\omega+\bar{\varphi})=\varphi \wedge d f$
$=-d f \wedge \varphi=-d(f \varphi)$ because φ is closed.
$f \varphi \in \mathcal{E}^{(\prime \prime}(x)$ \& has compact support ($X_{\text {comp. }}$.) so by Stokes 'The $\iint_{X} d(f \varphi)=0$.

$$
\Rightarrow \frac{i}{2} \iint_{x} \varphi_{a} \bar{\varphi}=-\frac{i}{2} \iint_{x} d(f \varphi)=0 \quad \text { Cain!! }
$$

The same Tick applied to ω gits $\omega=0$

$$
\begin{aligned}
& \left(\frac{i}{2} \omega \wedge \bar{\omega}=|h(z)|^{2} d u \wedge d v \quad n V, \bar{\varphi} \wedge \bar{\omega}=0\right. \\
& \Rightarrow \omega \wedge \bar{\omega}=0+\omega \wedge \bar{\omega}=\bar{\varphi} \wedge \bar{\omega}+\omega \wedge \bar{\omega}=d L \wedge \bar{\omega}=d((\bar{\omega}) \quad(\bar{\omega} \text { is dxad)} \\
& \quad(d \bar{z}=\overline{d z})
\end{aligned}
$$

Theorem: $\Gamma=\operatorname{Par}\left(\omega_{1}, \ldots, \omega_{g}\right)=\left\{\left[\begin{array}{c}\int_{\gamma} \omega_{1} \\ \vdots \\ \int_{\gamma} \omega_{g}\end{array}\right] \quad \gamma \in \pi_{1}\left(x, p_{0}\right)\right\} \subseteq \mathbb{C}^{\delta}$ is a rank $2 g$ lattice $m \mathbb{C}^{S}$. We call it the pried lattice.

Definition: The Jacobian of a compact R.S X of genes $g \geqslant 1$ is defined as the eqotient $J_{a c}(X):=\mathbb{C}^{8} / \Gamma \quad$ (ab group under)

Note: Picking a basis fo Γ (plarigation), realises $J_{a c}(X)$ as a product of g copies of elliptic causes.

Q: How much $\operatorname{Jac}(X)$ kurus about X ? What happens for elliptic ceres?
Next, we construct sp ham $\Phi: \operatorname{Div}_{0}(X) \longrightarrow \operatorname{Jac}_{a c}(X)$ with $\operatorname{Div}_{0}(X)=3 \Delta \in \operatorname{Div}(x)$ $\operatorname{leg}(D)=0$ -
In ridden T_{0} do this, it's enough to define Φ in divisors of the form p - p_{0}.
Recall: 0 -chains in $X=C_{0}(x)=\mathbb{Z}<x: x \in X>\Rightarrow \operatorname{Div}(X)=C_{0}(x)$

$$
\text { 1-chacins o } x=c_{1}(x)=Z<\gamma:[0,1] \rightarrow x>\beta_{1+4 s} \rightarrow \quad{ }^{2} \gamma_{(1)}-\gamma_{(0)}
$$

Fix $p_{0} \in X$ Fr each $p \in X \quad$ fix a $p a l l i=\gamma=\gamma_{p}:[0,1] \rightarrow X$ with $\gamma_{(0)}=p_{0}$

$$
\text { Fo } D=p-p_{0} \text {, write } \Phi(D)=\left[\begin{array}{c}
\int_{\gamma} \omega_{1} \\
\vdots \\
\int_{\gamma} \omega_{\rho}
\end{array}\right] \in \mathbb{C}^{g} / \Lambda
$$

If we pice another pall γ^{\prime}, then $\alpha=\gamma_{*}^{\prime} * \gamma^{-} \in \pi_{1}\left(x, p_{0}\right)$ so $\left[\begin{array}{c}\int_{\alpha} \omega_{1} \\ \vdots \\ \text { Since } \int_{\alpha} \omega_{i}=\int_{\gamma}, \omega_{i}+\int_{\gamma} \omega_{i}=\int_{\gamma^{\prime}}, \omega_{i}-\int_{\gamma} \omega_{i} \forall i,\end{array}\right] \in \Gamma$ we conclude $\left[\int_{\delta} \omega_{i}\right]_{i} \equiv\left[\int_{\gamma} \omega_{i}\right]_{i}$ nard Γ. Thess $\phi\left(P-p_{0}\right)$ is well-sefined. we wite $\int_{\gamma} \omega_{i}=\int_{\rho_{0}}^{1} \omega_{i}$
St: $\Phi\left(p_{0}-p\right)=\int_{\gamma^{-}} \omega=-\int_{\gamma} \omega=-\phi\left(p-p_{0}\right)$
Now, if $D \in D_{i v_{0}}(x)$, write $\quad D=\sum_{i=1}^{m} a_{i} p_{i}-\sum_{j=1}^{n} b_{j} f_{j}$ with $\sum a_{i}=\sum b_{j}$

$$
\begin{aligned}
& \Rightarrow D=\sum_{i=1}^{m} a_{i}\left(p_{i}-p_{0}\right)-\sum_{j=1}^{n} b_{j}\left(q_{j}-p_{0}\right) \\
& W_{l} \text { set } \phi(D) \\
& =\sum_{i=1}^{m} a_{i} \Phi\left(p_{i}-p_{0}\right)-\sum_{j=1}^{n} b_{j} \phi\left(q_{j}-p_{0}\right) \\
& \\
& =\left[\begin{array}{l}
\sum_{i=1}^{m} a_{i} \int_{p_{0}}^{p_{0}} w_{1}-\sum_{j=1}^{n} b_{j} \int_{p_{0}}^{p_{j}} w_{1} \\
\sum_{i=1}^{m} a_{i} \int_{p_{0}}^{p_{i}} w_{g}-\sum_{j=1}^{n} b_{j} \int_{p_{0}}^{q_{j}} w_{j}
\end{array}\right] \in \operatorname{Jac}(X)
\end{aligned}
$$

Name $\phi=$ Abel-Jacobi map
Theorem (Abed-Tacobi) The humurpplism seperence

$$
\operatorname{So}_{0}(x) \cup 00=P_{\text {pal }}(x) \longrightarrow \operatorname{Div}_{0}(x) \longrightarrow J_{a c}(x) \longrightarrow 0
$$

is exact.
Equivalently the Abel Jacobi map induces on isomorphism

$$
P_{i c_{0}}(x):=\frac{\left.\operatorname{Div}_{0} x\right)}{\operatorname{Ppal}(x)} \underset{\longrightarrow}{\sim} J_{\text {ac }}(x) \quad \text { fr } g \geqslant 1
$$

Remork1: The cunstuction depends n the chria of a base point $1 \&$ a basis $3 w, \ldots, \omega \mathrm{~g}\}$ But the statements are independent of these choices.
Remork 2: Exactress at $J_{a c}(X)$ is known as the Jacobi insersinn theren.

Thurem (Trelli) Two cmpact R.S X, X^{\prime} of genes $g \geqslant 1$ and ismurphic (ie $\exists: X \rightarrow X^{\prime}$ biholuurphiom) if sonly if the have the same period matux arter conseniently piching (commical) homology bases (Π becmees $\left[I_{g} Z\right]$)
§29.3 Elliptic cunes :
Next: Undustand Alel-Jacohi or elliptic curves. (= genes 1)

- 2 incounations: (1) $X=\mathbb{C} / \Lambda$
(2) $X=$ snooth ubic auns in \mathbb{P}^{2}.
(1) \Rightarrow (2) Weiastrass P-function
(2) \Rightarrow (1) $\quad x=R S f^{-2}-h(z) \quad h(z)$ cubric with 3 simple wots $\& ~ \Lambda=\operatorname{Pu}\left(\frac{d z}{T}\right)$
(1) $X=\mathbb{\pi} / \Lambda$

We urmalize the lattice Λ a fix abasis $\{1, \zeta\}$ with In $\sigma>0$. Basis if $H^{0}(x, \Omega)=\{w=d z\}$

$$
\begin{aligned}
& \int_{a} d z=\left.z\right|_{0} ^{1}=1 \\
& \int_{b} d z=\left.z\right|_{1} ^{1+6}=6
\end{aligned}
$$

$$
\Rightarrow \operatorname{Par}(\omega)=[1,6] \mathbb{Z}^{2}
$$

$$
=\mathbb{Z}\langle 1, \zeta\rangle=\Lambda
$$

\& $\operatorname{Jac}(X) \cong \mathbb{C} / \Lambda=X$.
Can ve wite Φ explicifly? Fix $D \in b_{i v}(X)$ \& pick representaties
of pints in $\operatorname{Supp}(\Delta)$ in the fundamental domain.

- By a queric perturbation $(\varepsilon \ll 1)$ of \square, we can assume $\operatorname{Supp}^{D} \subseteq \operatorname{Iuc}^{2}(\square)$.

$$
\text { Write } \begin{aligned}
D & =\sum_{i=1}^{n} q_{i} p_{i}-\sum_{j=1}^{n} b_{j} q_{j} \\
& =p_{i_{1}}+p_{i_{2}}+\cdots+p_{i d}-q_{j 1}-\cdots-q_{j+1} \\
& d=\sum_{i=1}^{n} q_{i}=\sum_{j=1}^{m} b_{j} .
\end{aligned}
$$

Fix paths $\gamma_{i_{k}}$ joining potopik

$$
\beta_{j k}=p_{0} \text { to } q_{j k}
$$

$$
\Rightarrow C=\sum_{k=1}^{d} \gamma_{i k}-\beta_{i k} \in C_{1}(x)
$$

$\& \partial C=D$

$$
\begin{aligned}
\Rightarrow \int_{C} d z & =\sum_{k=1}^{d} \int_{\gamma_{i k}} d z-\int_{\beta_{i k}} d z=\sum_{k=1}^{d}\left(p_{i_{k}}-p_{0}\right)-\left(q_{i_{k}}-p_{0}\right) \\
& =\sum_{k=1}^{d} p_{i k}-\sum_{k=1}^{2} f_{i k}=D . \\
\Rightarrow \phi(D) & =D \bmod \Lambda .
\end{aligned}
$$

- $X \hookrightarrow \operatorname{Div}_{0}(D) \xrightarrow{\Phi} \operatorname{Jac}(X)$ so $x \hookrightarrow \operatorname{Jac}(X)$ is
$x \longmapsto x-0 \longmapsto \int_{0}^{x} d z=x \in \mathbb{C} / \Omega$ the identity map!
Corollary: $\operatorname{Ker}(\Phi)=\operatorname{Ppal}(X)$ has the following interputatim: $D=\sum_{i} a_{i} p_{i}-\sum_{j} b_{j} q_{j} \quad$ is principal $\Leftrightarrow \sum_{i} a_{i} p_{i}-\sum_{j} b_{j} q_{j} \in \Lambda$

This says when can we build mewomayhic feenctims with prescribed o's 4 poles in \mathbb{C} / Ω. The explicit function is cusstencted with θ-functimes (Jacobi)

Thurem (Abel): \Rightarrow Pat of Corolany (ie $\operatorname{Ppal}(X) \subseteq \operatorname{Kec}(\Phi)$)
Fix a doubly prisdic menurephic functius $f: \mathbb{C} \longrightarrow \mathbb{P}^{\prime}$, with $f(z+1)=f(z)$ $f(z+6)=f(z)$
(so f determines a meururphic fenction $h: X \longrightarrow \mathbb{P}^{\prime}$)
Asseme F is won-castant. Then

(2) $\sum_{i=1}^{n} a_{i}=\sum_{j=1}^{m} b_{j} \quad(=\operatorname{deg}$ nee $(f))$
(3) $\sum_{i} a_{i} p_{i}-\sum_{j} b_{j} q_{j} \in \Lambda$

Pnoof: Pich panallelogram so $f^{-1}(0) \cup f^{-1}(\infty) \subseteq J_{a} t\left(\frac{t+c}{\sum_{t}}\right)^{1+b+t}$
(z) A geoses-\#poles $=\sum_{i} a_{i}-\sum_{j} b_{j}=\frac{1}{2 \pi i} \int_{\sum_{2}^{\prime} \neq 7} \frac{f^{\prime}(z)}{f(z)} d z=0$
(3) $\sum a_{i} p_{i}-\sum b_{j} q_{j}=\frac{1}{2 \pi i} \int_{z=\{ } z \frac{f^{\prime}(z)}{f(z)} d z$
$\Delta g_{(z)}=z \frac{f^{\prime}(z)}{f(z)}$ is wot drubly peirdic, so we han a conpute the integral explicitly. We group the intenal into $(I)=\frac{1}{2 \pi i}\left(\int_{t}^{1+t} \rho(z) d z+\int_{1+t+6}^{t+6} \rho(z) d z\right)=\frac{1}{2 \pi i}\left(\int_{t}^{1+t} g_{(z)} d z-\int_{t+6}^{1+t+\sigma} \delta(z) d z\right)$

$$
\begin{aligned}
&(I \pi)=\frac{1}{2 \pi i}\left(\int_{t}^{t+\zeta} \rho(z) d z+\int_{1+t}^{1+t+\sigma} \rho(z) d z\right) \\
&(I)\left.=\frac{1}{2 \pi i}\left(\int_{t}^{1+t} \frac{z}{f^{\prime}(z)} \frac{f z}{f(z)}-\int_{t+\sigma}^{1+t+\sigma} \frac{f^{\prime}(z)}{f(z)} d z\right)=\frac{1}{2 \pi i} \int_{t}^{1+t} \frac{f^{\prime}(z)}{f(z)} d z-\int_{t}^{1+t}(\omega+\sigma) \frac{\left.f^{\prime}(w) d \omega\right)}{f(\omega)}\right) \\
&=\frac{-\sigma}{2 \pi i} \int_{t}^{1+t} \frac{f^{\prime}(z) d z}{f(z)} \quad l(\omega+\sigma)=f(\omega) \\
& f^{\prime}(\omega+\sigma)=f^{\prime}(\omega)
\end{aligned}
$$

Claim: $\frac{1}{2 \pi i} \int_{t}^{t+1} \frac{f^{\prime}(z)}{f(z)} d z, \frac{1}{2 \pi i} \int_{t}^{t+6} \frac{f^{\prime}(z)}{f(z)} d z \in \mathbb{Z}$

$$
\begin{aligned}
& \left(0 \notin \gamma f^{-1}(0) \cap[t, t+\delta]=\phi\right. \text {. } \\
& \Rightarrow \sum a_{i} p_{i}-\sum b_{j} q_{j}=(I)+(\mathbb{I}) \in-\zeta \mathbb{Z}+\mathbb{Z}=\mathbb{Z}+\mathbb{Z} G=\Lambda .
\end{aligned}
$$

Jacobi's Inversion Thun: If $D \in \operatorname{Div}_{0}(x)$ lies in $\operatorname{Kec}(\phi)$, then $D \in \operatorname{Ppal}(x)$ To prone this statement, Jacobi used θ functions. Next, we describe the construction of the lattice $\mathcal{A}=\mathbb{Z}+\mathbb{Z} \sigma$ with $\operatorname{Ian} \zeta>0$.
Definition: A theta function is a holounrphic function $\theta: \mathbb{C} \longrightarrow \mathbb{C}$ satisfying
(1) $\theta(z+1)=-\theta(z) \quad \forall z$
(2) $\theta(z+\sigma)=e^{-\pi i \sigma} e^{-2 \pi i z} \theta(z) \quad \forall z$
(3) $\theta(z)=0 \Leftrightarrow z \in \mathcal{A}=\mathbb{Z}+\mathbb{Z} \mathbb{Z} \quad$ \& all it's gives are simple
(4) [Normalization undition] $\partial^{\prime}(0)=1$

Lemma: \exists ! θ satisfying these unditines.
Proof Uniqueness: Assume e we have 2 sech F anctims $\theta_{0} \& \theta_{1}$. Then, their
ratio $\frac{\theta_{0}}{\theta_{1}}$ is holomorphic \& doubly-perivdic writ the rank z lattice Λ. Therefore, it is constant. The normalization condition says $\frac{\theta_{0}}{\theta_{1}}=1,10 \theta_{0}=\theta_{\text {, }}$
Existence: Set $f=e^{2 \pi i \sigma}$. Since $I_{m} b>0$ we have $|q|<1$.
Set $\partial_{(z)}=\frac{\sin (\pi z)}{\pi} \prod_{n \geqslant 1} \frac{\left(1-q^{n} e^{2 \pi i z}\right)\left(1+q^{n} e^{-2 \pi i z}\right)}{\left(1-q^{n}\right)^{2}}$

- We can duce that the infinite product converges unitormly n discs $\bar{D}_{(0, R)}$ in \mathbb{C}, so θ is holomorphic
- Conditions (1) though (4) follow by custructives

Poof of Jacobi Interim: Fix $D=\sum a_{i} p_{i}-\sum b_{j} q_{j} \in \operatorname{Div}_{0}(x)$ with $\phi(D)=0$ in $\operatorname{Jac}(X)$. Writing D as $D=\sum_{i=1}^{d} \alpha_{i}-\sum_{j=1}^{d} \partial_{j} \quad$ (allowing nefetiou)
We hare $\sum_{i} \alpha_{i}-\sum_{j} \beta_{j}=\lambda \in \Lambda$
Now, change α_{n} to $\quad \tilde{\alpha}_{n}=\alpha_{n}-\lambda$ \& sit $\tilde{\alpha}_{i}=\alpha_{i}$ for $i<n$
Now $\sum \tilde{\alpha}_{i}-\sum \beta_{j}=0$
Check $G=\prod_{j=1}^{d} \frac{\theta\left(z-\tilde{\alpha}_{i}\right)}{\theta\left(z-\beta_{i}\right)}$ is a meromorphic function on $X=\mathbb{T} / \Omega$
(doubly-puidic in \mathbb{C}) with zeroes at $\tilde{\alpha}_{1}, \ldots \tilde{\alpha}_{d}$ \& poles at $\beta_{1}, \ldots, \beta_{d}$ ce $(f)=D$, as we wanted.
(2) Algebraic picture: X RS. associated to equation $T^{2}-h(z)=0$ where $h(z)$ is a cubic with 3 distinct roots. ($z_{0}, z_{1}, z_{2} \in \mathbb{C}$)

Basis for $H^{0}(X, \Omega)=\left\{\omega=\frac{d z}{\sqrt{h(z)}}=\frac{d z}{T}\right\}$
Q: How to pick loops in X?

A: Use cuts \& glue (Letare 13)

We dow the path a eack coply of \mathbb{P}^{\prime}, cut

we need to add a jump in the walue $p \omega>\omega$ becmes $-\omega$ ($\sqrt{h(t y}$ doanges sim)

Pich $l_{0} \in X \&$ assugn $p \longmapsto \int_{p_{0}}^{p} \omega \in \mathbb{C} \quad$ (Name = Ellip
This integral is well-defired mly up to \mathbb{Z}-combimatius of $\int_{a} \omega+\int_{b} \omega$
 - P mermurphic on \mathbb{C} / Λ \& with am rdu 2 pole at $0 . \Rightarrow 2$ geases on \mathbb{C} / Λ.

- Wriestrass dhourd that $\left(\gamma, \gamma^{\prime}\right)$ lies m $T^{2}-h(x)=0$ fo h ubic.

Mre precirily: $\left(\gamma^{\prime}\right)^{2}-4 \gamma^{3}-a \gamma-b=0$ in suitalle $\left.a, b \in \mathbb{C}\right)$
\Rightarrow Define $\mathbb{C} / \Lambda \xrightarrow{\left(1, B, P^{\prime}\right)} \mathbb{R}^{2}$

- $P_{s \rightarrow \text { gines a vici focmela for then integrals }}$

$$
\int_{p_{0}}^{u} \frac{d t}{\sqrt{P(t)}}=\int_{t=\gamma_{(z)}}^{\bar{j}} \int_{\left(P_{0}\right)}^{\theta_{(u)}} \frac{\gamma_{(z)}^{\prime}}{\theta_{(z)}^{\prime}} d z=\gamma_{(u)-\gamma\left(p_{0}\right)} \quad\binom{\sqrt{P\left(\gamma_{(z)}\right)}=y=P^{\prime}}{P_{(z)}=4 z^{3}+a z+b}
$$

Catch: any $h(z)$ can be put inthe from $p(z)=4 z^{3}+a z+b$ by lineor cordinste changes in \mathbb{P}^{\prime}, so we can "compute" elliptic integpals with P.

