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29.1 Canonicalmaps for compact R.S
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29.2 Abel Jacobi Theory

Fix X compact R S ofgenus g I Fix poet Haspointerloopsmx
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www.xetmitnsm t
tjfgj
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a It t t azgitzg O E As
with a age IR wt all o

Taking amplix conjugate gives a I t t azg g
o e 48

with Ij 8

j.ws
We write a squarematrix ofsize as rt II I
We know

Ej ER 321 lies in Kerr't s skirt cog

In particular the ag nous of It an ld e we can find di its mygig
in 928 with É dj w t Mj it so ti ti 2g with

1,1149
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Now wtf is closed thas wtf is exact by MainThom 15.3

Lemme below confirms W Y o Sima lui ing4 is a f basis of
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and hence an inclusion X as Div IX Is Jack
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after conveniently picking canonical homology bases T beanies Is Z

Sze Elliptin aura

Next Understand Abel Jacobi for elliptic curves I genes 1

2 incarnations X HA
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817 81 8121

so f determines amemurphic function C X I

Assume f is non constant Then

i f has poles zeroes f 10 I pi rpm G lo fi gut
melt a am melt by bn

K É hi Ébj f degree It

137 E ai pi g b Fj EA
Proof Pich parallelogram so f lo of la e Int j
x genes poles Fai Ej's Ii I 1 d

Ians penni
13 I ai pi 257 ft ft de

Di

get 4 is not doubly periodic so we have a compute the integralexplicitly

At the Itt Atta

tf

Wegroupthe integral into I Ifsa de ftp.sczidtly.lfgiz dz f sized
II Ei said It dz

Itt Itt te itt Itt
I E 241,4 I

2

1
t ti de fatalityt

substitution z wtz fatal few

E I ydt total tin



te
I aside II de Iti I definitelya

substitution Z Wti Gluth few
flinty if N

Iii ftp dz

to
Claim It I II It E f EI de EZ

loopbasedat fit
Pt EITI d w ng I Winding do c21 8 list on d

around o 1 48 f loin t.at

aloofbased at bHI

II dw f day winding of0 ez 0 81st 0.7 a
around 0

1048 f lolAft 61 0

I aipi Es g II II e 221 2 2 216 A
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To prom this statement Jacobi and O functions Next wedescribethis
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ratio too is holomorphic doubly periodic wit the rank 2 latticeA

Therefore it is constant The normalization audition say E to8 0
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Moreprecisely 10 2 903 a P b o fr suitable a SEQ

Deline x a

Pi gives a niceformula for these integrals

Fa Ip 47 dz Plus Pie IRI 4 8

PE 4 Z'taz b

Catch
any hits can be put in the form pit at't at th ly linear

coordinate changes int S


