Reading course in Tropical Geometry - Problem set 1 The Tropical semiring, valuations, tropical plane curves

Problem 1. The Tropical Fundamental Theorem of Algebra

(i) Prove the tropical fundamental theorem of algebra: every non-constant tropical polynomial

$$
F(x)=x^{\dot{d}} \oplus c_{d-1} \odot x^{\odot(d-1)} \oplus \ldots \oplus c_{0} \in \overline{\mathbb{R}}_{\text {trop }}[x]
$$

when viewed as a function $F: \mathbb{R} \rightarrow \mathbb{R}$ factorizes as a product of linear forms $\bigodot_{k=1}^{d}\left(x \oplus \lambda_{k}\right)$.
(ii) Define the multiplicity of a root λ of a non-constant tropical polynomial to be the number of times it appears in the factorization from (i), that is $\operatorname{mult}(\lambda, F)=\#\left\{k \in\{1, \ldots, d\}: \lambda_{k}=\lambda\right\}$.
Prove that for any $f \in \mathbb{C}\{\{t\}\}[x]$, the multiplicity of a root ω in $\operatorname{trop}(f)$ equals the number of roots in $\operatorname{in}_{\omega}(f) \in \mathbb{C}^{*}$ (counted with multiplicity).
(iii) How many roots in $\mathbb{C}\{\{t\}\}$ does the polynomial $t^{3} x^{5}-x^{2}+t^{4}$ have? Describe the first few terms of each series.

Problem 2. Valued field extensions through tropicalization Consider a valued field (K, val) and a finite field extension L of K. It is known that the valuation val on K can be extended (in at most $[L: K]^{\text {sep }}$ ways) to a valuation on L.
(i) Assume $L=K(\alpha)$ for some α and prove that for any extension of val to $L,-\operatorname{val}(\alpha)$ is a zero of the tropical polynomial $\operatorname{trop}(\min (\alpha, K))$, where $\min (\alpha, K)$ is the minimal polynomial of α over K.
(ii) [Exercise 2.7.3 in $[\mathrm{MS}]]^{\dagger}$ The quotient ring $L=\mathbb{Q}[s] /\left\langle 3 s^{3}+s^{2}+36 s+162\right\rangle$ is a field. Describe all valuations on this field that extend the 3 -adic valuation on \mathbb{Q}.

Problem 3. Tropical plane quadrics

(i) How many combinatorial types of plane quadrics (degree two) are there? For a few cases, find an example of $f \in \mathbb{C}\{\{t\}\}[x, y]$ or $\overline{\mathbb{Q}_{p}}[x, y]$, draw the corresponding Newton subdivision and the tropical curves $\mathcal{T} f$.
(ii) Given five general points in \mathbb{R}^{2}, there exists a unique tropical quadric passing through these points. Compute and draw the tropical quadric through $(0,5),(1,0),(4,2),(7,3)$ and $(9,4)$.

Problem 4. Prove tropical Bézout's theorem for transverse intersetions: two plane tropical curves C and D of degrees c and d (so they are dual to subdivisions of the 2 -simplex dilated by c and d, respectively) that meet transversely have exactly $c \cdot d$ intersection pooints (counted with multiplicity). The multiplicity at a point p is given by the formula:

$$
\operatorname{mult}(e) \operatorname{mult}(f)\left|\operatorname{det}\left(\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right)\right|
$$

where e and f are the edges of C and D containing p, and $e^{\prime}=\left(u_{1}, v_{1}\right), f^{\prime}=\left(u_{2}, v_{2}\right)$ are the primitive vectors in \mathbb{Z}^{2} in the directions of e and f, respectively. (Hint: Consider $C \cup D$ as a tropical plane curve.)

[^0]
[^0]: ${ }^{\dagger}$ Optional (for extra credit)

