Reading course in Tropical Geometry - Problem set 2 Minkowski sums, plane interpolation, tropical hypersurfaces

Problem 1. Find a polynomial $f \in \mathbb{C}\{\{t\}\}[x, y]$ giving rise to the tropical plane curve below. Unless otherwise indicated, the multiplicity of an edge is assumed to be 1 . The upper left ray has direction $(-1,2)$.

Problem 2. [Exercise 2.7.10 in [MS]] Pick 2 triangles P and Q that lie in non-parallel planes in \mathbb{R}^{3}.
(i) Draw their Minkowski sum $P+Q$ and its normal fan.
(ii) Write down the f-vector of $P+Q$ (i.e., describe how many faces of each dimension does $P+Q$ have).
(iii) Verify that the normal fan of $P+Q$ is the common refinement of the normal fans of P and Q.

Problem 3. Draw the tropical hypersurface associated to each of the following Laurent polynomials over the field $\mathbb{C}\{\{t\}\}$.
(i) $f_{1}(x, y)=t^{3} y^{3}+y^{2}-x y^{2}-y-t^{-1} x y+x^{2} y+t^{2}+x+x^{2}+t^{2} x^{3}$;
(ii) $f_{2}(x, y)=x y+5 x y^{2}-x y^{3}+t x^{2} y+3 t^{2} x^{2} y^{2}-7 t^{2} x^{3} y$;
(iii) $f_{3}(x, y)=t+x y+x^{-1} y+x y^{-1}+x^{-1} y^{-1}$;
(iv) $f_{4}(x, y, z)=1+2 x+3 y+4 z$;
(v) $f_{5}(x, y, z)=t x+y+z$.

Repeat the calculation for $f_{4}(x, y, z)$ over $\overline{\mathbb{Q}}_{2}$ and $\overline{\mathbb{Q}}_{3}$.
(Useful Hint: You might want to investigate how to do some of the previous examples using the software Gfan or the package tropical.lib in Singular.)

