Reading course in Tropical Geometry - Problem set 3 Gröbner bases over valued fields, Gröbner complex, and tropical varieties

Problem 1. Gröbner basis computation. Given a valued field \mathbf{K} with a splitting of val $a \mapsto t^{a}$, a homogeneous polynomial $f=\sum_{u} c_{u} x^{u} \in K\left[x_{1}, \ldots, x_{n}\right]$ and $\omega \in \mathbb{R}^{n}$, recall that $\operatorname{in}_{\omega}(f)=\sum_{u} \overline{c_{u} t^{\operatorname{trop}(f)(\omega)-\langle u, \omega\rangle}} x^{u} \in$ $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$. The following outlines how to compute an initial ideal $\mathrm{in}_{\omega}(I)$ when the valuation is trivial and I is homogeneous.
(i) Given any monomial ordering \prec, show that $\mathrm{in}_{\prec} \mathrm{in}_{\omega} I=\mathrm{in}_{\prec_{\omega}} I$ where \prec_{ω} is the monomial order refining the ω-order by \prec, i.e. $x^{\alpha} \prec_{\omega} x^{\beta}$ if $\langle\alpha, \omega\rangle<\langle\beta, \omega\rangle$ or $\langle\alpha, \omega\rangle=\langle\beta, \omega\rangle$ and $x^{\alpha} \prec x^{\beta}$.
(ii) Show that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I with respect to \prec_{ω}, then $\operatorname{in}_{\omega}\left(g_{i}\right)$ is a Gröbner basis for $\mathrm{in}_{\omega} I$ with respect to \prec. (Hint: A Gröbner basis for a monomial order generates the ideal.) Conclude that $\mathrm{in}_{\omega} I=\left\langle\mathrm{in}_{\omega} g_{1}, \ldots, \mathrm{in}_{\omega} g_{s}\right\rangle$.
(iii) [Optional] What happens if the valuation on K is non-trivial?

Problem 2. Consider the ideal $I=\langle f, g\rangle \subset \mathbb{C}\{\{t\}\}\left[x^{ \pm}, y^{ \pm}\right]$where

$$
f=t^{2} x^{2}+x y+t^{2} y^{2}+x+y+t^{2} \quad \text { and } \quad g=5+6 t x+17 t y-4 t^{3} x y
$$

(i) For each $\omega \in \operatorname{Trop}(V(f)) \cap \operatorname{Trop}(V(g))$, compute $\operatorname{in}_{\omega} I$. Is $\{f, g\}$ a tropical basis for I ?
(ii) There are four points in the variety $V(I) \subset\left(\mathbb{C}\{\{t\}\}^{*}\right)^{2}$. Compute the leading term of each point.

Problem 3. Consider the linear ideal $I=\left\langle x_{1}+x_{2}+x_{3}+x_{4}+x_{5}, 3 x_{2}+5 x_{3}+7 x_{4}+11 x_{5}\right\rangle \subset \mathbb{C}\left[x_{1}^{ \pm}, \ldots, x_{5}^{ \pm}\right]$. The tropical variety $\operatorname{Trop}(I)$ is a three-dimensional fan with a one-dimensional lineality space. It is a fan over the complete graph K_{5}. The fan has ten maximal cones and five codimensional-one cones. The following shows that a change of coordinates in $T=\left(\mathbf{K}^{*}\right)^{5}$ might change the structure of the tropical variety.

Consider the automorphism $\varphi^{*}: T \rightarrow T$ defined by $x_{1} \mapsto x_{1}, x_{2} \mapsto x_{2} x_{3}, x_{3} \mapsto x_{3} x_{4}, x_{4} \mapsto x_{4} x_{5}, x_{5} \mapsto x_{5}$ and let $J=\left(\varphi^{*}\right)^{-1}(I) \subset \mathbb{C}\left[x_{1}^{ \pm}, \ldots, x_{5}^{ \pm}\right]$.
(i) Show that $\operatorname{Trop}(J)$ has the same support as $\operatorname{Trop}(I)$.
(ii) Show that the Gröbner structure of $\operatorname{Trop}(J)$ has 12 maximal cones, obtained as the cone over a subdivision of K_{5} where 2 edges are subdivided. (Hint: You can use Gfan to verify this.)

