Reading course in Tropical Geometry – Problem set 3 Gröbner bases over valued fields, Gröbner complex, and tropical varieties

Problem 1. Gröbner basis computation. Given a valued field **K** with a splitting of val $a \mapsto t^a$, a homogeneous polynomial $f = \sum_u c_u x^u \in K[x_1, \ldots, x_n]$ and $\omega \in \mathbb{R}^n$, recall that $\operatorname{in}_{\omega}(f) = \sum_u \overline{c_u t^{\operatorname{trop}(f)(\omega) - \langle u, \omega \rangle}} x^u \in \mathbb{K}[x_1, \ldots, x_n]$. The following outlines how to compute an initial ideal $\operatorname{in}_{\omega}(I)$ when the valuation is trivial and I is homogeneous.

- (i) Given any monomial ordering \prec , show that $\operatorname{in}_{\prec} \operatorname{in}_{\omega} I = \operatorname{in}_{\prec_{\omega}} I$ where \prec_{ω} is the monomial order refining the ω -order by \prec , i.e. $x^{\alpha} \prec_{\omega} x^{\beta}$ if $\langle \alpha, \omega \rangle < \langle \beta, \omega \rangle$ or $\langle \alpha, \omega \rangle = \langle \beta, \omega \rangle$ and $x^{\alpha} \prec x^{\beta}$.
- (ii) Show that if $\{g_1, \ldots, g_s\}$ is a Gröbner basis for I with respect to \prec_{ω} , then $\operatorname{in}_{\omega}(g_i)$ is a Gröbner basis for $\operatorname{in}_{\omega} I$ with respect to \prec . (*Hint:* A Gröbner basis for a monomial order generates the ideal.) Conclude that $\operatorname{in}_{\omega} I = \langle \operatorname{in}_{\omega} g_1, \ldots, \operatorname{in}_{\omega} g_s \rangle$.
- (iii) [Optional] What happens if the valuation on K is non-trivial?

Problem 2. Consider the ideal $I = \langle f, g \rangle \subset \mathbb{C}\{\{t\}\}[x^{\pm}, y^{\pm}]$ where

$$f = t^2 x^2 + xy + t^2 y^2 + x + y + t^2$$
 and $g = 5 + 6t x + 17t y - 4t^3 xy$

- (i) For each $\omega \in \operatorname{Trop}(V(f)) \cap \operatorname{Trop}(V(g))$, compute in ωI . Is $\{f, g\}$ a tropical basis for I?
- (ii) There are four points in the variety $V(I) \subset (\mathbb{C}\{\{t\}\}^*)^2$. Compute the leading term of each point.

Problem 3. Consider the linear ideal $I = \langle x_1 + x_2 + x_3 + x_4 + x_5, 3x_2 + 5x_3 + 7x_4 + 11x_5 \rangle \subset \mathbb{C}[x_1^{\pm}, \ldots, x_5^{\pm}]$. The tropical variety $\operatorname{Trop}(I)$ is a three-dimensional fan with a one-dimensional lineality space. It is a fan over the complete graph K_5 . The fan has ten maximal cones and five codimensional-one cones. The following shows that a change of coordinates in $T = (\mathbf{K}^*)^5$ might change the structure of the tropical variety.

Consider the automorphism $\varphi^* \colon T \to T$ defined by $x_1 \mapsto x_1, x_2 \mapsto x_2 x_3, x_3 \mapsto x_3 x_4, x_4 \mapsto x_4 x_5, x_5 \mapsto x_5$ and let $J = (\varphi^*)^{-1}(I) \subset \mathbb{C}[x_1^{\pm}, \dots, x_5^{\pm}].$

- (i) Show that $\operatorname{Trop}(J)$ has the same support as $\operatorname{Trop}(I)$.
- (ii) Show that the Gröbner structure of $\operatorname{Trop}(J)$ has 12 maximal cones, obtained as the cone over a subdivision of K_5 where 2 edges are subdivided. (*Hint:* You can use Gfan to verify this.)