Reading course in Tropical Geometry - Problem set 2 Gröbner bases over valued fields, Gröbner complex, Minkowski sums

Problem 1. (Valued field extensions through tropicalization) Consider a valued field (K, val) and a finite field extension L of K. It is known that the valuation on K can be extended (in at most $[L: K]^{\text {sep }}$ ways) to a valuation on L.
(i) Assume that $\alpha \in L$ is algebraic over K, and let $\min (\alpha, K)$ be the minimal polynomial of α over K. If $L=K(\alpha)$, prove that for any extension of val to $L,-\operatorname{val}(\alpha)$ is a zero of the (max) tropical polynomial $\operatorname{trop}(\min (\alpha, K))$.
(ii) ${ }^{\dagger}$ The quotient ring $L=\mathbb{Q}[s] /\left\langle 3 s^{3}+s^{2}+36 s+162\right\rangle$ is a field. Describe all valuations on this field that extend the 3 -adic valuation on \mathbb{Q}.

Problem 2. Solve the equation $x^{5}+t x^{4}+t^{3} x^{3}+t^{6} x^{2}+t^{10} x=t^{15}$ in the Puiseux field $\mathbb{C}\{\{t\}\}$ (Hint: Use Puiseux's method for solving equations, as in the proof of Theorem 2.1.5 of [MS]).

Problem 3. Solve the equation $x^{5}+2 x^{4}+8 x^{3}+64 x^{2}+1024 x=32768$ over the field \mathbb{Q}_{2}. (Hint: Use Problem 1 (iii) in Problem set 1)

Problem 4. (Gröbner basis computations) Given a valued field K with a splitting of val $a \mapsto t^{a}$, a homogeneous polynomial $f=\sum_{u} c_{u} x^{u} \in K\left[x_{1}, \ldots, x_{n}\right]$ and $\omega \in \mathbb{R}^{n}$, recall that $\operatorname{in}_{\omega}(f)=\sum_{u} \overline{c_{u} t^{\operatorname{trop}(f)(\omega)-\langle u, \omega\rangle}} x^{u} \in$ $\tilde{K}\left[x_{1}, \ldots, x_{n}\right]$, where \tilde{K} is the residue field of K. The following outlines how to compute an initial ideal $\operatorname{in}_{\omega}(I)$ when the valuation is trivial and I is homogeneous.
(i) Given any monomial ordering \prec, show that $\operatorname{in}_{\prec} \operatorname{in}_{\omega} I=\operatorname{in}_{\prec \omega} I$ where \prec_{ω} is the monomial order refining the ω-order by \prec, i.e. $x^{\alpha} \prec_{\omega} x^{\beta}$ if $\langle\alpha, \omega\rangle<\langle\beta, \omega\rangle$ or $\langle\alpha, \omega\rangle=\langle\beta, \omega\rangle$ and $x^{\alpha} \prec x^{\beta}$.
(ii) Show that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I with respect to \prec_{ω}, then $\operatorname{in}_{\omega}\left(g_{i}\right)$ is a Gröbner basis for $\mathrm{in}_{\omega} I$ with respect to \prec. (Hint: A Gröbner basis for a monomial order generates the ideal.) Conclude that $\mathrm{in}_{\omega} I=\left\langle\mathrm{in}_{\omega} g_{1}, \ldots, \mathrm{in}_{\omega} g_{s}\right\rangle$.
(iii) [Optional] What happens if the valuation on K is non-trivial?

Problem 5. Let K be a valued field. Show that if $I \subset K\left[x_{0}, \ldots, x_{n}\right]$ is a principal homogeneous ideal generated by a homogeneous polynomial f, then $\{f\}$ is a universal Gröbner basis for I. (Hint: Look at the proof of Lemma 2.6.2 (3) of [MS]).

Problem 6. Let $I=\left\langle 7+8 x_{1}-x_{1}^{2}+x_{2}+3 x_{2}^{2}\right\rangle \subset \mathbb{C}\left[x_{1}^{ \pm}, x_{2}^{ \pm}\right]$.
(i) Compute all initial ideals of $I_{\text {proj }} \subset \mathbb{C}\left[x_{0}, x_{1}, x_{2}\right]$ and draw the Gröbner complex of $I_{\text {proj }}$.
(ii) Draw $\left\{\omega \in \mathbb{R}^{2}: \operatorname{in}_{\omega}(I) \neq\langle 1\rangle\right\}$.
(iii) Repeat (i) and (ii) for the ideal $J=\left\langle t x_{1}^{2}+3 x_{1} x_{2}-t x_{2}^{2}+5 x_{0} x_{1}-x_{0} x_{2}+2 t x_{0}^{2}\right\rangle \subset \mathbb{C}\{\{t\}\}\left[x_{0}, x_{1}, x_{2}\right]$.
(Hint: Consider Theorem 2.5.7 in [MS].)

[^0]Problem 7. Let I be the homogeneous ideal in $\mathbb{Q}[x, y, z]$ generated by the set

$$
\mathcal{G}:=\left\{x+y+z, x^{2} y+x y^{2}, x^{2} z+x z^{2}, y^{2} z+y z^{2}\right\} .
$$

(i) Show that \mathcal{G} is a universal Gröbner basis (i.e., \mathcal{G} is a Gröbner basis for I for all $\omega \in \mathbb{R}^{3}$).
(ii) Show that \mathcal{G} is not a tropical basis.

Problem 8. Pick 2 triangles P and Q that lie in non-parallel planes in \mathbb{R}^{3}.
(i) Draw their Minkowski sum $P+Q$ and its normal fan.
(ii) Write down the f-vector of $P+Q$ (i.e., describe how many faces of each dimension does $P+Q$ have).
(iii) Verify that the normal fan of $P+Q$ is the common refinement of the normal fans of P and Q.

Problem 9. Let Σ_{1} be the polyhedral complex consisting of all faces of the cube $[-1,1]^{3}$, and let Σ_{2} be the collection of all faces of the octahedron $\operatorname{conv}\left\{ \pm e_{1}, \pm e_{2}, \pm e_{3}\right\}$. Determine the common refinement $\Sigma_{1} \wedge \Sigma_{2}$.

[^0]: ${ }^{\dagger}$ Hard problem!

