Reading course in Tropical Geometry – Problem set 2 Gröbner bases over valued fields, Gröbner complex, Minkowski sums

Problem 1. (Valued field extensions through tropicalization) Consider a valued field (K, val) and a finite field extension L of K. It is known that the valuation on K can be extended (in at most $[L:K]^{sep}$ ways) to a valuation on L.

- (i) Assume that α ∈ L is algebraic over K, and let min(α, K) be the minimal polynomial of α over K. If L=K(α), prove that for any extension of val to L, -val(α) is a zero of the (max) tropical polynomial trop(min(α, K)).
- (ii) [†] The quotient ring $L = \mathbb{Q}[s]/\langle 3s^3 + s^2 + 36s + 162 \rangle$ is a field. Describe all valuations on this field that extend the 3-adic valuation on \mathbb{Q} .

Problem 2. Solve the equation $x^5 + t x^4 + t^3 x^3 + t^6 x^2 + t^{10}x = t^{15}$ in the Puiseux field $\mathbb{C}\{\{t\}\}$ (*Hint:* Use Puiseux's method for solving equations, as in the proof of Theorem 2.1.5 of [MS]).

Problem 3. Solve the equation $x^5 + 2x^4 + 8x^3 + 64x^2 + 1024x = 32768$ over the field \mathbb{Q}_2 . (*Hint:* Use Problem 1 (iii) in Problem set 1)

Problem 4. (Gröbner basis computations) Given a valued field K with a splitting of val $a \mapsto t^a$, a homogeneous polynomial $f = \sum_u c_u x^u \in K[x_1, \ldots, x_n]$ and $\omega \in \mathbb{R}^n$, recall that $\operatorname{in}_{\omega}(f) = \sum_u \overline{c_u t^{\operatorname{trop}(f)(\omega) - \langle u, \omega \rangle}} x^u \in \tilde{K}[x_1, \ldots, x_n]$, where \tilde{K} is the residue field of K. The following outlines how to compute an initial ideal $\operatorname{in}_{\omega}(I)$ when the valuation is trivial and I is homogeneous.

- (i) Given any monomial ordering \prec , show that $\operatorname{in}_{\prec} \operatorname{in}_{\omega} I = \operatorname{in}_{\prec_{\omega}} I$ where \prec_{ω} is the monomial order refining the ω -order by \prec , i.e. $x^{\alpha} \prec_{\omega} x^{\beta}$ if $\langle \alpha, \omega \rangle < \langle \beta, \omega \rangle$ or $\langle \alpha, \omega \rangle = \langle \beta, \omega \rangle$ and $x^{\alpha} \prec x^{\beta}$.
- (ii) Show that if $\{g_1, \ldots, g_s\}$ is a Gröbner basis for I with respect to \prec_{ω} , then $\operatorname{in}_{\omega}(g_i)$ is a Gröbner basis for $\operatorname{in}_{\omega} I$ with respect to \prec . (*Hint:* A Gröbner basis for a monomial order generates the ideal.) Conclude that $\operatorname{in}_{\omega} I = \langle \operatorname{in}_{\omega} g_1, \ldots, \operatorname{in}_{\omega} g_s \rangle$.
- (iii) [Optional] What happens if the valuation on K is non-trivial?

Problem 5. Let K be a valued field. Show that if $I \subset K[x_0, \ldots, x_n]$ is a principal homogeneous ideal generated by a homogeneous polynomial f, then $\{f\}$ is a universal Gröbner basis for I. (*Hint:* Look at the proof of Lemma 2.6.2 (3) of [MS]).

Problem 6. Let $I = \langle 7 + 8x_1 - x_1^2 + x_2 + 3x_2^2 \rangle \subset \mathbb{C}[x_1^{\pm}, x_2^{\pm}].$

- (i) Compute all initial ideals of $I_{\text{proj}} \subset \mathbb{C}[x_0, x_1, x_2]$ and draw the Gröbner complex of I_{proj} .
- (ii) Draw $\{\omega \in \mathbb{R}^2 : in_\omega(I) \neq \langle 1 \rangle \}.$

(iii) Repeat (i) and (ii) for the ideal $J = \langle t x_1^2 + 3 x_1 x_2 - t x_2^2 + 5 x_0 x_1 - x_0 x_2 + 2 t x_0^2 \rangle \subset \mathbb{C}\{\{t\}\}[x_0, x_1, x_2].$

(*Hint:* Consider Theorem 2.5.7 in [MS].)

[†]Hard problem!

Problem 7. Let I be the homogeneous ideal in $\mathbb{Q}[x, y, z]$ generated by the set

$$\mathcal{G} := \{x+y+z, x^2\, y+x\, y^2, x^2\, z+x\, z^2, y^2\, z+y\, z^2\}.$$

- (i) Show that \mathcal{G} is a universal Gröbner basis (i.e., \mathcal{G} is a Gröbner basis for I for all $\omega \in \mathbb{R}^3$).
- (ii) Show that \mathcal{G} is not a tropical basis.

Problem 8. Pick 2 triangles P and Q that lie in non-parallel planes in \mathbb{R}^3 .

- (i) Draw their Minkowski sum P + Q and its normal fan.
- (ii) Write down the f-vector of P + Q (i.e., describe how many faces of each dimension does P + Q have).
- (iii) Verify that the normal fan of P + Q is the common refinement of the normal fans of P and Q.

Problem 9. Let Σ_1 be the polyhedral complex consisting of all faces of the cube $[-1, 1]^3$, and let Σ_2 be the collection of all faces of the octahedron conv $\{\pm e_1, \pm e_2, \pm e_3\}$. Determine the common refinement $\Sigma_1 \wedge \Sigma_2$.