Reading course in Tropical Geometry – Problem set 3 Tropical hypersurfaces, tropical varieties, recession fans and stable intersections

Problem 1. Find a polynomial $f \in \mathbb{C}\{\{t\}\} [x, y]$ giving rise to the (max) tropical plane curve below. Unless otherwise indicated, the multiplicity of an edge is assumed to be 1. The upper left ray has direction (-1, 2).

Problem 2. Draw the tropical hypersurface $\operatorname{Trop}(V(f_i))$ and the recession fan for each of the following Laurent polynomials over the field $\mathbb{C}\{\{t\}\}$.

- (i) $f_1(x,y) = t^3 y^3 + y^2 xy^2 y t^{-1} xy + x^2 y + t^2 + x + x^2 + t^2 x^3$;
- (ii) $f_2(x,y) = xy + 5xy^2 xy^3 + tx^2y + 3t^2x^2y^2 7t^2x^3y$;
- (iii) $f_3(x,y) = t + xy + x^{-1}y + xy^{-1} + x^{-1}y^{-1}$;
- (iv) $f_4(x, y, z) = 1 + 2x + 3y + 4z$;
- (v) $f_5(x, y, z) = t x + y + z$.

Repeat the calculation for $f_4(x, y, z)$ over $\overline{\mathbb{Q}}_2$ and $\overline{\mathbb{Q}}_3$.

(Useful Hint: You might want to investigate how to do some of the previous examples using the software Gfan, or the packages tropical.lib (for Singular) and tropical (for Macaulay2).)

Problem 3. Compute the tropical hypersurface in \mathbb{R}^9 defined by the tropically singular 3×3 -matrices (see Problem 3 of Problem Set 1). What is it's *f*-vector? Can you determine its lineality space and how many cones up to S_3 -symmetry does it have? (*Hint:* You might want to try using gfan or Macaulay2 for your computations)

Problem 4. Consider the ideal $I = \langle f, g \rangle \subset \mathbb{C}\{\{t\}\}[x^{\pm}, y^{\pm}]$ where

$$f = t^2 x^2 + xy + t^2 y^2 + x + y + t^2$$
 and $g = 5 + 6t x + 17t y - 4t^3 xy$.

- (i) For each $\omega \in \operatorname{Trop}(V(f)) \cap \operatorname{Trop}(V(g))$, compute in ωI . Is $\{f, g\}$ a tropical basis for I?
- (ii) There are four points in the variety $V(I) \subset (\mathbb{C}\{\{t\}\}^*)^2$. Compute the leading term of each point.

Problem 5. Consider the polynomial $f := t^2 x^2 + x y + (t^2 + t^3) x^2 + (1 + t^3) x + t^{-1} y + t^3$ in $\mathbb{C}\{\{t\}\}[x^{\pm}, y^{\pm}]$.

- 1. Compute the (max) tropical hypersurface $\operatorname{Trop}(V(f))$ and show that $\omega = (1,0)$ is a vertex of it.
- 2. Describe all points $(x, y) \in V(f)$ with $(-\operatorname{val}(x), -\operatorname{val}(y)) = \omega$, and verify that this set is Zariski dense in V(f).

Problem 6. Consider the linear ideal $I = \langle x_1 + x_2 + x_3 + x_4 + x_5, 3x_2 + 5x_3 + 7x_4 + 11x_5 \rangle \subset \mathbb{C}[x_1^{\pm}, \dots, x_5^{\pm}]$. The tropical variety $\operatorname{Trop}(V(I))$ is a three-dimensional fan with a one-dimensional lineality space. It is a fan over the complete graph K_5 . The fan has ten maximal cones and five codimensional-one cones. The following shows that a change of coordinates in $T = (\mathbf{K}^*)^5$ might change the structure of the tropical variety.

Consider the automorphism $\varphi^* \colon T \to T$ defined by $x_1 \mapsto x_1, x_2 \mapsto x_2 x_3, x_3 \mapsto x_3 x_4, x_4 \mapsto x_4 x_5, x_5 \mapsto x_5$ and let $J = (\varphi^*)^{-1}(I) \subset \mathbb{C}[x_1^{\pm}, \dots, x_5^{\pm}].$

- (i) Show that $\operatorname{Trop}(V(J))$ has the same support as $\operatorname{Trop}(V(I))$.
- (ii) Show that the Gröbner structure of $\operatorname{Trop}(V(J))$ has 12 maximal cones, obtained as the cone over a subdivision of K_5 where 2 edges are subdivided. (*Hint:* You can use Gfan to verify this.)

Problem 7. Let I be the ideal in $\mathbb{C}[x_1^{\pm}, \ldots, x_4^{\pm}]$ generated by the five polynomials:

 $\{(x_1+x_3)^2(x_3+x_4), (x_1+x_2)(x_1+x_4)^2, (x_1+x_3)^2(x_1+x_4), (x_1+x_2)(x_1+x_3)(x_1+x_4), (x_1+x_2)(x_1+x_3)(x_3+x_4)^2\}.$

- (i) Find all associated primes of I and an explicit primary decomposition of I.
- (ii) Compute the tropical variety $\operatorname{Trop}(V(I))$ with its multiplicities.

Problem 8. Let X and Y be subvarieties of $(K^*)^n$, and let $\Sigma = \operatorname{Trop}(X) + \operatorname{Trop}(Y)$ be the Minkowski sum of their tropicalizations in \mathbb{R}^n .

- (i) Show that Σ is a tropical variety.
- (ii) Explain how to construct a subvariety Z of $(K^*)^n$ with $\Sigma = \text{Trop}(Z)$.

(*Hint:* Check out "An implicitization challenge for binary factor analysis" by Cueto, Tobis and Yu.)

Problem 9. Show that the k-skeleton of any n-dimensional polytope is connected through codimension 1. (*Hint:* Get started with k = 1 and n = 3.)

Problem 10. Let $X \subset (K^*)^{12}$ be the variety of 3×4 -matrices of rank at most 2.

- (i) Determine a fan structure on Trop(X).
- (ii) Draw the adjacency graph of the maximal cones and verify that Trop(X) is connected through codimension 1.

Problem 11. Show that if Σ is an *n*-dimensional weighted balanced Γ_{val} -rational polyhedral complex in \mathbb{R}^n , then the support $|\Sigma|$ equals \mathbb{R}^n , and the weight of each *n*-dimensional polyhedron in Σ is the same.

Problem 12. Recession fans and Stable intersection

(i) Given two polyhedral complexes Σ, Σ' in \mathbb{R}^n , show that the recession cones of $\Sigma \cap \Sigma', \Sigma$ and Σ' are related as follows:

$$\operatorname{rec}(\Sigma \cap \Sigma') = \operatorname{rec}(\Sigma) \wedge \operatorname{rec}(\Sigma').$$

(ii) Show that if L is a classical linear space in \mathbb{R}^n contained in the lineality space of two weighted balanced Γ_{val} -rational polyhedral complexes $\Sigma, \Sigma' \subseteq \mathbb{R}^n$, then L is contained in the lineality space of the stable intersection $\Sigma \cap_{st} \Sigma'$. In addition, prove the following identity:

$$(\Sigma/L) \cap_{st} (\Sigma'/L) = (\Sigma \cap_{st} \Sigma')/L.$$

Problem 13. Determinantal varieties and stable intersections

Consider the 3 \times 3-matrix of unknowns $A = (x_{ij})_{1 \leq i,j \leq 3}$ and its associated determinant f.

- (i) Show that the tropical 3×3 determinant $X := \operatorname{Trop}(V(f))$ is an eight-dimensional fan in \mathbb{R}^9 .
- (ii) Compute the fans $X \cap_{st} X$ and $X \cap_{st} X \cap_{st} X$.
- (iii) Realize these two fans as the tropicalization of two explicit varieties in the torus of 3×3 -matrices.