############################################## # Computing initial forms of A4, A6, and A12 # ############################################## # We use the computation of the Groebner fans and the subdivisions on each cell of M_2^trop done on the files: # "GrobnerConeComputationsAchar3.sage" # to compute the possible initial forms of each polynomial in the decomposition of A done in "Qrefinementwithx34Noa4BadPrimes.sage" # Recall that the Theta cone presented no characteristic issues, so it was not considered for our computations. # The precise genericity conditions are established by checking their residue classes of these initial forms with respect to the section w |--> 3^{w} to the valuation on K, and certifying they do not vanish. In our case, this is achieved by dividing by 3 and replacing each branch point by their initial form. # The polynomials A4, A6 and A12 induce no subdivision, and the polynomial A120 is a monomial. The sample points are computed in "allConesGenus2.sage" load("macroslocalJInvariantComputationsAndPrimesWithBadReduction.sage") # The polynomials are encoded in the following file, which we load. load("Qrefinementwithx34Noa4BadPrimes.sage") A4 = polynomialsAByCoefficients[4] A6 = polynomialsAByCoefficients[6] A12 = polynomialsAByCoefficients[12] A120 = polynomialsAByCoefficients[120] # The ring S contains the variables a6 through a1. # We create the fraction field of the ambient polynomial rings K = FractionField(S); # We try to factor over F_3[a6,a5,a4,a3,a2,a1] k = GF(3); k. = PolynomialRing(k) # The sample points for no subdivisions are obtained by loading the following file load("allConesGenus2.sage") ################# # Polynomial A4 # ################# ############################################## # Computation of leading terms for each cone # ############################################## ################# # Dumbbell Cone # ################# leadA4Dumbbell = computeLTSample(pointDumbbell,S,A4) # print factor(leadA4Dumbbell) # (-1) * a3 * a4 * a5^2 * a6^2 ##################### # Figure Eight Cone # ##################### leadA4FigEight = computeLTSample(pointFigEight,S,A4) # print factor(leadA4FigEight) # (-1) * a3 * a4 * a5^2 * a6^2 ############### # TypeIV Cone # ############### leadA4TypeIV = computeLTSample(pointTypeIV,S,A4) # print factor(leadA4TypeIV) # (-1) * a3 * a4 * a5 * (a5 + a4) * a6^2 ############## # TypeV Cone # ############## leadA4TypeV = computeLTSample(pointTypeV,S,A4) # print factor(leadA4TypeV) # (-1) * (a3 + a2) * a4 * a5 * (a5 + a4) * a6^2 ############### # TypeVI Cone # ############### leadA4TypeVI = computeLTSample(pointTypeVI,S,A4) # print factor(leadA4TypeVI) # (-1) * a3 * a4 * a5 * (a5 + a4 + a3) * a6^2 ################ # TypeVII Cone # ################ leadA4TypeVII = computeLTSample(pointTypeVII,S,A4) # print factor(leadA4TypeVII) # (-1) * a6^2 * (a5^2*a4*a3 + a5*a4^2*a3 + a5*a4*a3^2 + a5^2*a4*a2 + a5*a4^2*a2 + a5^2*a3*a2 + a4^2*a3*a2 + a5*a3^2*a2 + a4*a3^2*a2 + a5*a4*a2^2 + a5*a3*a2^2 + a4*a3*a2^2) ###################### # CONCLUSION for A4 # ###################### # We verify that A6 has the same leading term for Dumbbell and Figure Eight cones # leadA4Dumbbell == leadA4FigEight # True # factor(leadA4FigEight) # (-1) * a3 * a4 * a5^2 * a6^2 # factor(leadA4TypeIV) # (-1) * a3 * a4 * a5 * (a5 + a4) * a6^2 # factor(leadA4TypeV) # (-1) * (a3 + a2) * a4 * a5 * (a5 + a4) * a6^2 # factor(leadA4TypeVI) # (-1) * a3 * a4 * a5 * (a5 + a4 + a3) * a6^2 # factor(leadA4TypeVII) # (-1) * a6^2 * (a5^2*a4*a3 + a5*a4^2*a3 + a5*a4*a3^2 + a5^2*a4*a2 + a5*a4^2*a2 + a5^2*a3*a2 + a4^2*a3*a2 + a5*a3^2*a2 + a4*a3^2*a2 + a5*a4*a2^2 + a5*a3*a2^2 + a4*a3*a2^2) ################################################################################ ################# # Polynomial A6 # ################# ############################################## # Computation of leading terms for each cone # ############################################## ################# # Dumbbell Cone # ################# leadA6Dumbbell = computeLTSample(pointDumbbell,S,A6) # print leadA6Dumbbell # a6^2*a5^2*a4^2 ##################### # Figure Eight Cone # ##################### leadA6FigEight = computeLTSample(pointFigEight,S,A6) # print factor(leadA6FigEight) # a5^2 * a6^2 * (a4^2 + a3^2) ############### # TypeIV Cone # ############### leadA6TypeIV = computeLTSample(pointTypeIV,S,A6) # print factor(leadA6TypeIV) # a4^2 * a5^2 * a6^2 ############## # TypeV Cone # ############## leadA6TypeV = computeLTSample(pointTypeV,S,A6) # print factor(leadA6TypeV) # a4^2 * a5^2 * a6^2 ############### # TypeVI Cone # ############### leadA6TypeVI = computeLTSample(pointTypeVI,S,A6) # print factor(leadA6TypeVI) # a6^2 * (a5^2*a4^2 + a5^2*a3^2 + a4^2*a3^2) ################ # TypeVII Cone # ################ leadA6TypeVII = computeLTSample(pointTypeVII,S,A6) print factor(leadA6TypeVII) # a6^2 * (a5^2*a4^2 + a5^2*a3^2 + a4^2*a3^2 + a5^2*a2^2 + a4^2*a2^2 + a3^2*a2^2) ###################### # CONCLUSION for A6 # ###################### # We verify that A6 has the same leading term for Dumbbell, TypeIV and TypeV # leadA6Dumbbell == leadA6TypeIV # True # leadA6Dumbbell == leadA6TypeV # True # factor(leadA6Dumbbell) # a4^2 * a5^2 * a6^2 # factor(leadA6FigEight) # a5^2 * a6^2 * (a4^2 + a3^2) # factor(leadA6TypeVI) # a6^2 * (a5^2*a4^2 + a5^2*a3^2 + a4^2*a3^2) # factor(leadA6TypeVII) # a6^2 * (a5^2*a4^2 + a5^2*a3^2 + a4^2*a3^2 + a5^2*a2^2 + a4^2*a2^2 + a3^2*a2^2) ################################################################################ ################## # Polynomial A12 # ################## ############################################## # Computation of leading terms for each cone # ############################################## ################# # Dumbbell Cone # ################# leadA12Dumbbell = computeLTSample(pointDumbbell,S,A12) # print factor(leadA12Dumbbell) # a6^2*a5*a4*a3*a2 ##################### # Figure Eight Cone # ##################### leadA12FigEight = computeLTSample(pointFigEight,S,A12) # print factor(leadA12FigEight) # a2 * a3 * a4 * a5 * a6^2 ############### # TypeIV Cone # ############### leadA12TypeIV = computeLTSample(pointTypeIV,S,A12) # print factor(leadA12TypeIV) # a2 * a3 * a4 * a5 * a6^2 ############## # TypeV Cone # ############## leadA12TypeV = computeLTSample(pointTypeV,S,A12) print factor(leadA12TypeV) # a2 * a3 * a4 * a5 * a6^2 ############### # TypeVI Cone # ############### leadA12TypeVI = computeLTSample(pointTypeVI,S,A12) # print factor(leadA12TypeVI) # a2 * a3 * a4 * a5 * a6^2 ################ # TypeVII Cone # ################ leadA12TypeVII = computeLTSample(pointTypeVII,S,A12) # print factor(leadA12TypeVII) # a2 * a3 * a4 * a5 * a6^2 ####################### # CONCLUSION for A12 # ####################### # We verify that A12 has the same leading term for all cones except the Theta cone. # leadA12Dumbbell == leadA12TypeVII # True # factor(leadA12TypeVII) # a2 * a3 * a4 * a5 * a6^2 ################### # Polynomial A120 # ################### # print A120 # -a6*a5*a4*a3*a2*a1 ######################################################################## # We compute the sum of the terms divisible by 3 and the leading terms # ######################################################################## # To compute the leading term in A - 4*A4, we must take into account the choice of section w |--> 3^{w} to the valuation. This forces us to consider Q = (A - 4*A4)/3. Q = (6*A6 + 12*A12 + 120*A120)/3 # Since the summands of Q have disjoint supports, we know that the leading term of Q is constant on all cells of M_2^trop. ############################################## # Computation of leading terms for each cone # ############################################## ################# # Dumbbell Cone # ################# leadQDumbbell = computeLTSample(pointDumbbell,S,Q) # print factor(leadQDumbbell) # (2) * a4^2 * a5^2 * a6^2 ##################### # Figure Eight Cone # ##################### leadQFigEight = computeLTSample(pointFigEight,S,Q) # print factor(leadQFigEight) # (2) * a5^2 * a6^2 * (a4^2 + a3^2) ############### # TypeIV Cone # ############### leadQTypeIV = computeLTSample(pointTypeIV,S,Q) # print factor(leadQTypeIV) #(2) * a4^2 * a5^2 * a6^2 ############## # TypeV Cone # ############## leadQTypeV = computeLTSample(pointTypeV,S,Q) # print factor(leadQTypeV) # (2) * a4^2 * a5^2 * a6^2 ############### # TypeVI Cone # ############### leadQTypeVI = computeLTSample(pointTypeVI,S,Q) # print factor(leadQTypeVI) # (2) * a6^2 * (a5^2*a4^2 + a5^2*a3^2 + a4^2*a3^2) ################ # TypeVII Cone # ################ leadQTypeVII = computeLTSample(pointTypeVII,S,Q) # print factor(leadQTypeVII) # (2) * a6^2 * (a5^2*a4^2 + a5^2*a3^2 + a4^2*a3^2 + 2*a5*a4*a3*a2 + a5^2*a2^2 + a4^2*a2^2 + a3^2*a2^2) #################### # CONCLUSION FOR Q # #################### # We verify that Q has the same leading term for Dumbbell, TypeIV and TypeV # leadQDumbbell == leadQTypeIV # True # leadQDumbbell == leadQTypeV # True # print factor(leadQDumbbell) # (2) * a4^2 * a5^2 * a6^2 # print factor(leadQFigEight) # (2) * a5^2 * a6^2 * (a4^2 + a3^2) # print factor(leadQTypeV) # (2) * a4^2 * a5^2 * a6^2 print factor(leadQTypeVI) # (2) * a6^2 * (a5^2*a4^2 + a5^2*a3^2 + a4^2*a3^2) # print factor(leadQTypeVII) # (2) * a6^2 * (a5^2*a4^2 + a5^2*a3^2 + a4^2*a3^2 + 2*a5*a4*a3*a2 + a5^2*a2^2 + a4^2*a2^2 + a3^2*a2^2) # We try to factor over k = F_3[a6,a5,a4,a3,a2,a1] # print factor(k(leadQTypeVI)) # (-1) * a6^2 * (a5^2*a4^2 + a5^2*a3^2 + a4^2*a3^2) # print factor(k(leadQTypeVII)) # (-1) * a6^2 * (a5^2*a4^2 + a5^2*a3^2 + a4^2*a3^2 - a5*a4*a3*a2 + a5^2*a2^2 + a4^2*a2^2 + a3^2*a2^2) ############### # CONCLUSION: # ############### # None of the monomials in the support of A4 and Q hace integer multiples of 3 as factors: the valuation of these coefficients is always zero. # Dumbbell: both 4*A4 and 3*Q have monomials as their leading terms. In characteristic 3, the valuations are: # For 4*A4: w3 + w4 + 2*w5 + 2w6 # For 3*Q: -1 + 2*w4 + 2*w5 + 2w6 Thus, the true valuation will be obtained by comparing w3 to w4 - 1. # For the lower dimensional cells, assuming there is no cancellation among the leading terms of A4 and Q individually, the true valuation will be obtained by comparing the same 2 quantities. When w3 = w4-1, in addition to the genericity obtained from each individual leading form, we must ensure no cancellation occurs between these two leading forms. # Notice that: the class of 4 agrees with the class of 1, so we don't need to work with 4*leadA4. ################# # Dumbbell Cone # ################# # factor(leadA4Dumbbell + leadQDumbbell) # (-1) * (-2*a4 + a3) * a4 * a5^2 * a6^2 # factor(k(leadA4Dumbbell + leadQDumbbell)) # (-1) * a4 * (a4 + a3) * a5^2 * a6^2 ##################### # Figure Eight Cone # ##################### # factor(leadA4FigEight + leadQFigEight) # a5^2 * a6^2 * (2*a4^2 - a4*a3 + 2*a3^2) # factor(k(leadA4FigEight + leadQFigEight)) # (-1) * (a4 - a3)^2 * a5^2 * a6^2 ############### # TypeIV Cone # ############### # factor(leadA4TypeIV + leadQTypeIV) # (-1) * a4 * a5 * a6^2 * (-2*a5*a4 + a5*a3 + a4*a3) # factor(k(leadA4TypeIV + leadQTypeIV)) # (-1) * a4 * a5 * a6^2 * (a5*a4 + a5*a3 + a4*a3) ############## # TypeV Cone # ############## # factor(leadA4TypeV + leadQTypeV) # (-1) * a4 * a5 * a6^2 * (-2*a5*a4 + a5*a3 + a4*a3 + a5*a2 + a4*a2) # factor(k(leadA4TypeV + leadQTypeV)) # (-1) * a4 * a5 * a6^2 * (a5*a4 + a5*a3 + a4*a3 + a5*a2 + a4*a2) ############### # TypeVI Cone # ############### # factor(leadA4TypeVI + leadQTypeVI) # a6^2 * (2*a5^2*a4^2 - a5^2*a4*a3 - a5*a4^2*a3 + 2*a5^2*a3^2 - a5*a4*a3^2 + 2*a4^2*a3^2) # factor(k(leadA4TypeVI + leadQTypeVI)) # (-1) * a6^2 * (a5^2*a4^2 + a5^2*a4*a3 + a5*a4^2*a3 + a5^2*a3^2 + a5*a4*a3^2 + a4^2*a3^2) ################ # TypeVII Cone # ################ # factor(leadA4TypeVII + leadQTypeVII) # a6^2 * (2*a5^2*a4^2 - a5^2*a4*a3 - a5*a4^2*a3 + 2*a5^2*a3^2 - a5*a4*a3^2 + 2*a4^2*a3^2 - a5^2*a4*a2 - a5*a4^2*a2 - a5^2*a3*a2 + 4*a5*a4*a3*a2 - a4^2*a3*a2 - a5*a3^2*a2 - a4*a3^2*a2 + 2*a5^2*a2^2 - a5*a4*a2^2 + 2*a4^2*a2^2 - a5*a3*a2^2 - a4*a3*a2^2 + 2*a3^2*a2^2) # factor(k(leadA4TypeVII + leadQTypeVII)) # (-1) * a6^2 * (a5^2*a4^2 + a5^2*a4*a3 + a5*a4^2*a3 + a5^2*a3^2 + a5*a4*a3^2 + a4^2*a3^2 + a5^2*a4*a2 + a5*a4^2*a2 + a5^2*a3*a2 - a5*a4*a3*a2 + a4^2*a3*a2 + a5*a3^2*a2 + a4*a3^2*a2 + a5^2*a2^2 + a5*a4*a2^2 + a4^2*a2^2 + a5*a3*a2^2 + a4*a3*a2^2 + a3^2*a2^2) ################################################# # CONCLUSIONS: 3 possible genericity conditions # #################################################