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IThe Xey o our classgiflcation is-a new relative classificati

theeren for actions with Twe orbit types. This wm developed

In gection &%, we classify regular actions "over a given
bage space®, A1l such actions are shown, in section 5, to be

consiructidble by an interesting pull-back construction, and this

‘-.-

ig used tu obtain several facts about such actions, such as the

GObzmmwwcwvmﬁsmmﬁﬁv@ osm.m: mmw w@s cases, and linear
embedding results,

“The classification of Hmucwmw actions up to equivariant
diffeomorphism (not Yover' a base m@womv.wm accomplished ww
section © and this is applied to “knot-manifolds™ (orbit m@moml
Tixed set a roaCAO@% sphere) in mmo&HoJ 7. The WbOAm

maniteld cage is gurrrisingly simnle, mmg all sue

o
<
ct

to be well known actions on Brieskorn varieties,
in the appendix, section 9, we gather some information

concerning the orbit map of twice the standard representation
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2, Relative classifcation for two orbit tynes,
Let KCG be compact Lie groups, let B:¥ —> os be a
representation which is transitive on the unit sphere

let H %be an isotropy group m"umawﬁo

wﬁaw._

« We have the twisted
n-1

Product

G ywﬁwu.

tae
u

which a smooth G-manifold with orbit types G/K and G/H

and with orbit space diffeomorphic to R'; see [1;VI.5].

The group muuﬁzm\Jzﬁv\m acts on the right of G X, R m\“‘lmvr

I
as a group of continuous self-equivalences(commuting with the

orvbit map) and we assume that G, K, H arec such that this action

e e T T

is smcoth. (This is probably always the case, and it is easily

verified in the situations of interest tc us in this paper; see
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that S 1is precisely the group of orthogonal G-bundle- eqguivalences
of the G-bundle m.xwmﬂg over the G-space G/K (with fiber wﬁv.

We shall wmmmﬂg the above data G, X, H, 8 as fixed
throughout this section,

Let X be a smooth (m+l)-manifold with boundary Muxwuxew\w
and with (acute) corner along the (m-l)-manifold w@"uN@\wa see
figure 1, | | |
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By a prover G-manifoid ¥ over X we shall mean a smooth

e b

G-manifold M wit boundary M tegether with a smooth map

Myt M ——> X which induces a diffeomorphism

" R gy @
My (/G M5/6) e (2,77,

where M/G has the fuanctional siructure induced from My such that

i) ¥ has only the orbit types G/H and G/K.

-

ii) B corresponds exactiy to the set of singular orbits G/X, .

(iii) Each singular orbit has a tudbular neighborhood equivalent
- Ny, M7 m s " ca s @ N
to Ao.xmmwvv,w ~{or R, for a singular orbit in M }s where X
~acts on R" wvia the given representation 8.
$
(The map My

explicitly in our notation,)

will usually be understood, and will not appear

°

‘Now suppose we are given a nrop2r G-manifold Y® over N@f

Then by a proper G-manifold (I, egv cver X and extending y®
we shall mean a proper G-manifold M over X together with a
smooth eguivalence

L Eg_ihmrw.ma
comnuting with the given maps of these to X%,

Two such pairs Aa,ezv and Azwezv 'will be called equivalent

over X if there is an equivariant diffeomorphism y: M —3 N

such that

commutes and such that
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commutes, where ig the restriction of ¢ to M,

The nurpose of Thig section is to give a classification of
these eguivalenceé gwmmmmm« We shall ﬁowwos the method and notation
of the proof of the absolute case given in mwmﬁ.OQ, We assume
familiarity with the basic facts developed there and in ﬁyan.o_,‘
The absolute casé is dus, in 2 weaker form, to Jinich [11] and the

Hsiangs | 8].
, n

The disk bundle G X..D  over G/K  may be identified with

®
the mapping cylinder M. of the projection w: G/H —> G/K,
We put , | )
zuuzm\mu m“uﬁzmﬂyzwv\m. |
We select, once and for all, a smocth collar IXB —> X of

B in X (and regard it as inclusion) where 1{0JX B is identified

with B. Let mp"uMpwx B, %y =X=-([0,1)XB), etc,

Let P Dbe a given G/H~-bundle over xw with structure group
znuzm\m. ngwm&mflvxw be the associated principal bundle, |
We shall consider those @%o@mw G-manifeolds over X whose principal
orbit bundle is macw<wwm5d to @w over NH. In particular, we
assume that the principal orbit bundle of the given proper

G-manifold Y® over X® is equivalent to p over Xj. We shall
denote by mHu m@,Amsg MM‘ the restriction of. P to _wwg .xe.,

and wwuuwH\JNog respectively,
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As shown in [11, Y is equivalent over X° tTo

K@A%@u AB@W um.@v ) = Agﬁ‘ Xm. E@v C.m.@mﬂ..\r XZ wu@.v‘

e

-

. . sk . - ®
where @ ig some principal S-bundle over By {and hence

. . oA SRV Y
zﬁ.Xﬂ@e is a G-manifold over IXB (LX) and
p

£ G/H Xg 0 —ZE—p q/H X, PY

is the equivalence canonically associated with a smooth S~reduction

%@m Q® !lw_w%
(where the same notation £ may be used since the correspondence
is canonical; see mw»<.w,wuv. It is no Homm ow‘mmSmmew&%,ﬁo
assume that, in fact, |
Y8 =1%(p°%, (2%, £%)).
Now suppose ém_ﬁw<m ww@ﬁowmd G-manifold Aﬁwsgv over X mva
extending Mau mﬁa whose principal orbit wssmwm ig equivalent

to. P over NH‘ Then, in a similar émssmwa there is no difficulty

in showing that Azwegv is eguivalent over X 1o

; A%vau,ﬁmw%vvo (Q,T,0))

constructed as follows, As above, Q is a principal S-bundle
over By (or over B) and

s Q — m.._.
is an m:wmQCO&wosm l.€4y

~ o

fi G/HXgQ—> G/ Xy P1

is an eguivalence, and

Y(Ps Q1)) = (M Kg Q) UplG/E K P)
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{Also, for simplicity, we may, by canonical changes, assume that
Q¥ is just the restriction of Q@ to ww. Then K@Amuﬁwu%vv
denotes the restriction of Y(P,(Q,f)) o N@.v

Furthermore, qmﬁﬁm%mﬂwgqm@v is mosm,mBGOﬁw self-equivalence

over M% of the restriction %@ of ¢ to ‘Nw. {(That is,
o1 G/H Yy P¥ ———> G/H X P°

ig @ G~-equivariant smooth equivalence commuting with the projections

to Xj.) Then

92, 7,0) 1 Y0(,(2,8)) —> Y*(p%, (% £™)) (+)
is defined to be the equivalence which is the identity on
mmemD@ and o™t on G/H xzms. (Here the composition £t

acts, as in [1;V,6], from left to right and is defined only ¢<mﬂ ww.v

Since we wish to have Y® -on the right in (¥), it is assumed

that fo t=£®; that is,
f= m.@q ~ over ww .

-

WMENSW 1., As stated above, we have assumed that Q w% is

jdentified with Q%. This is done in order to conserve notational
intricacy and simplify some remarks below, If this is not done
then one should add wo the data for @ an S-equivalence
] , .
g: @jsy —> q® over BJ. Then
9(0,f,0,8) 1 Y°(p,(0, 1)) —> ¥¥(p®, (a%,£%))

wmﬁﬁmm@zw<mwmbowzwwow.wmmos EAVAmog mﬁmwm GlH on
_

G/H sz@n Hence, it is demanded that

= mﬁe o over mm.

¥ g

5




R AL

o

-

N

Note that the latter equation devermines g uniquely from the

<

ey oncmi R T

other data A%w@,ﬁw@@u%@wav, “This formulation can be useful,

For example, let

C= (center N)(}S

and let
yi X% —2xc
be a smooth map, Then right multiplication by vy determines .

& .

. _ e
nabural self-equivalences ys: Q - §

. @ . B
and y: P~ —> P,

Since this commutes with f£%, by naturality, it defines an
equivalence S ’
©, 8 ;.8 .0, - TP S
Y M.A%um@ o I7)) |§JVK, A% s (Q7:17))

over X°, Then, with composition from left to right,

A%A%u (0, £)), w(Qyfy0,8)0v )

i

is a proper G-manifold over X extending v®

. Clearliy there is
an equivalence
A.KA%» (QsT))s 0(Qyfy0,8)0y) ™ AM:Ou (Q, %) )s @(Qsfyy

over X.

HQum<vv _

Remark 2, If the reader suspects that (*) may play havoc .

with differentiability, he is correct. This is so because we have

suppressed, as is not unusual, the details of smooth patching,

- What one really does, for example, is to bicollar By in X and

to bicollar everything above it. One may then mmmsam that all
patchings are defined on these bicollars and constant in the
eowwmw direction, This,; of course, iwwu.%owom G &o be constant
in the collar direction., Once we show, below, the invariance
under homotopies of the data, the necessity of all this disappears,

We should have no need to comment on svoeh well understood detalls

further,
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Thus, given the data P, 4, I, ¢ as above, with @_wwa.@

@ 8

LY

and fg=71 over By , we have congtructed the proper G-manifold

Amﬁ%wﬁau%vvw o{Q,f,0)) over X extending Y®, m&g we wmdw‘
commented that it is easily seen, as in [ 1;p.254 ], that all
such pairs can be constructed this way, up to m@5w<mwmbom over X,
We now investigate some of the redundancies in the data,

Piret, suppose wwww__mm Q ~—> @' .is an eguivalence over ww
of the S-reductions (Q,f) and (@',f'); that is,

o

Q e QY
//% e

i
By

»

commutes and g 1is S-equivariant. Then it is clear that there
is an induced eguivalence

Amﬂmwﬁﬁo%vvu %AQ“H..UQVV = H%A%uﬁwnwﬁ.vvo B.A@.m“m.uc.vvu

given by g on M X Q and the identity on - G/H X Ps and

similarly with the maps ¢, Note that g is uniguely determined

by £ and £°', since these are injections, and hence this

m@sw<mwmﬁom depends canonically on (G,f) and (Q',f'),.
WA

Next, suppose that emwzmdmAm“%vw that is,

. . ln.i.xll.\.w.m.nlli.v WA Y .
e..m\m”yzm > G/H X P
is an eguivalence over NH. Then the identity on Eqvam@ and

on ﬁ\mvﬁzw give an equivalenca {over X):

[y

A%A%wﬁpwﬁ.vvu BADQH..LQVV.,& AM.A%MA@“%SVV» GAOuH.E.uO\Evv. .

E

(We remark again that the compositions 7w and ow operate

from left to right,)
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Finally we consider homotopies of the data, Thus suppose that

o I }e Q/H X QXTI = G/H X P
. |ﬁ het y I u.

= LY cn

is a smooth homotopy  over By of S-~reductions; and tha

gy ¢ G/H X PO XTI —> G/H AP0

» v . . o s - ! - & ..
is a smooth homoctopy of self esquivalences over Z1s such that

B _ &
T nHm,osn over mub

o+

(We may, of course, assume that The homotopies are constant for
t near 0 and w.wmmﬁ Le) o
Congider the map , _ ;
w's Q\m % zmHXH e /H / wuu..,.x. I
defined by

....ux» 5

w' (x,t) = (xr ;7o Ly, ),

Also let .
. . @ o PR
w' s m\?%z PY X I e > G/H Xy P ¥ I
be .

W%, %) = (x-05log, ),

It is immediate that ' =wv" on their common domain G/H Ky ww XX
and that they both equal the identity for <+ near O. Together
with the identit these patch together as indicated in figure 2

b k f) m

to give a self _m@ﬂ?\mumsom w: G/H qu.uli.v G/H y.,z .
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{ 1x o ¢ ,. £ 25 P i a1 e . . ce
On uww w  eguals o 1 and on Nu it mpcwhc G O3 Hen

the operation by @ defines an m@zw<mHmdom
n.ﬁhw\.um A@.@ ..m.Ov ) s wa” M...Ou QOV )~ A%A%e.?ww H,H_.v )s GADW.,H.H“QHV ).

This concludes our investigation of redundancies in the data,
We shall now introduce some notation which will allow us to
summarize our present knowledge in & convenient form,

Consider +he bundle with fiber S\N associated with uuc

We shall dencote this bundle over %H by

R = s- %ﬁw:,v = S\ X, P =S\P.

We are mainly w:wmwwm&@a in the restriction mw;ww of A%W to Bq.
- Recall that equivalence classes of w:Wm@ﬂOﬁwosm (@, f) of ww.
over ww are in one-one correspondence with- the set of nﬁomm
mmnﬁwosm_ _
e [T@®|py)

of Qﬂwww. In particular, the given S-reduction Aaw,%@v

corresponds to a section

. C2%e (R,
which is fixed once and for all, Now there is the right action
; & B, h;u.. H
PR ) Xmapip,p) = T (R|3))

denoted by (v,w) > 71w, which can dm.ﬁmmmwamag as above, as

composition of maps acting from left to right. Similariy we have

U (R183) X 1ap®(p®, %) —— [M(R)3])

with  (v,0) - w5, _ . v




suppose that we are given

T € ﬁJmﬁNMr and m‘%mw AQ %

with

Then T corresponds (uniquely to S-equivalence) to an S—reduction

; & e

Q,T') of p|B; such that (Q,f7) is S-equivalent to (Q%,7"g)

&

This mammzwdmdmsom over ww is uniquely determined

over ﬁ@

L
by f' and % and can be used to identify eﬂ By with g%,

After this canonical identification, f' will be relabled T and
we then have the S-reduction (Q,f) with

= %% over ww.
Suppose now that (Q,f,) and (Q,f) are S-reductions of %wmp
with corresponding sections Lo - .
B [ ¢ J P ,\ !
Ty ® ﬂx%ﬁﬁwwv and 7, e TQNE

and that og,,0q€ <)m Am o f *) are such that | S e

-8 _ .. ® !
ﬂo..ﬁ,qm and ﬂw..ﬁ QH over me

Suppose further that these are connected by woacwmwwmm
-1 : GO @ L8 | o
ﬁ.ﬁm ~ A%mevu Q.w.m%wmm ﬂmv o% vu .ﬂ..nlﬁ O&O<mH. w“_;. as

Then define T

o

.applied to the bundle P iiw %/%H then pswpwmm that the partial

£ = Ha Gy over. wM. 55@,904@&@3@ homotopy theorem

rd

homctopy wwﬁw over m% and  the wbwﬁwmw condition mo “¢can be

H.. Then nawﬂwv

S-gquivalent to {(Q,f). Hence we have the equivalence

extended to a homotopy «%wm ow S-reductions over B

(Y09, (0,70)) . 90, %4,60))A%(¥(p, (1)), 9(Q, £,0,)).




Ry

tne equivalence class over X o of
o)) depends only on the homotopy class

. & 8 . .
tion T=7v ¢ on By) of the pair (7,0),

£

oY
where ¢ ) (X

,) is the cross section corresponding to (q, £y,
Moreover {and, in fact, more generally) 1% is also dependent only

r——

on the orbit of ({v,c) under the right action ﬁﬁﬂuavwgc TLV.AAE,QSV

°

of %m.mA%mﬁv on these pairs,
Vi v e
Wow
e o P 4 /7
fap(apy = 11070
where

Vo= Wap (9:9)

is a bundle over X, with fiber N and structure group N acting

-

2
)

by conjugation {and is associated with .% Y. Also, of coursd,

zmva%@ﬁm@yu ﬂJAw@*w%v,

Lvraan

We shall denote the space of pairs (v,0), where

no Taﬂmwvw G e 1A§~va. and Te=7°G over w%uwwbxww

by |
QGA%‘MwHu V@Tm%v .

The right action

Or [e@ [y, 2z X Ly —> ﬁ.&ﬁ;mti?@

takes ({740),w) > {tw,ow). The action on hcomotopy classes

[r,6] induced by @w will be denoted by

$or o n@.ﬁ%mw% S?wv Xmo () —=>mg ﬁa&%ﬂ,mﬁﬁ?@ )

The orbit of [v,o] wunder the action @WV will be denoted by MAsau*.




il

In summary then, we have shown that the equivalence clags
over X of the proper G-manifold Awﬁmuﬂmuwvvu 0(Q,f,0)) over X
and extending KQHHM@Am@uA@@ww@VV depends only on the orbit
[v,0]" under mMom where Te ﬁiﬁqm~wwv corresponds to A@wwv.

We denote this equivalence class over X of proper G-manifolds

extending v® by
(1(ps[vy0l®)s o([7,0]%).

Remark.3, If vy: %w -~ C = (center N)/YS +then, as in

Remark 1, we have the proper G-manifold (Y(p,(Q, 1)), 0(QsT,0)ey)
over ¥. By Remark 1, we see that the equivalence class of %his

is Just (¥(g,[7v,v o], e[y te]")).

Qur main theorem can now be stated as follows: .

2,2 ‘Theeorem. With the above notation, the assiznment

[ey0]" —> (¥(p,[7y61%), o([7,0]%))

is a one-one correspondence between .the set of orbits of the

right action A@o of ﬂoﬁiﬂwwv on m, ﬂdaA@m~mwgw&Nvau and
.

i o

the set of smooth equivalence classes over X of smooth proper

&

G-manifolds over X extending Y and having principal orbit

m———.

undle .%. This remains true for topological equivalence classes

- of topological proper G-manifolds over X extending Y®,

Proof. The main part of the proof has already been
accomplished, Namely; we have shown that the correspondence isg

well defined and onto. This can also be pvroved, as in [1;V.6],




in exactly the same manner, Tor the topological ommmw given the
background information provided by the '"Tube Theorem' and
“Straightening Lemma™ of [1;V.4],

To complete the prcoof it remains to show that if
,

ﬁﬂmm\wA@Ow“m.Ovvw QAQOQH,O«.QOVV and A.K,Amvwﬁﬂu.uun..u.vvw SA@Hu%PaQHV.V

. s : M N . ks
re equivalent over ¥, then the data define the same orbit ﬁﬂwQu .

2y

o

since smooth eculivalence implies topological eguivalence; it

suffices to do this in the dowowomwomH case only. Thus we need

i

not pay attention to smoothness in the remainder of the proof,

We are given an equivalence

we (M Xg Q) CH.oS\m xzmuv.u;i..w (1 x.m Q) CSE\: XZ P)

over X, which, by assumption, commutes with the equivalences

o

9{Q;,f5,04) over X . Uhe veﬂawwﬁwwawv. are just the given

identifications M_ Xw Q3 = M Xm 0® over the collar IXB® and

hence u is also the identity there, Now the restriction p°

ow u o zqumW@o (the part over IXB) is homotopic, relative
to the part over anws“ to an S-equivalence u'; that is, a map
induced by some m:m@cw<m@WHm5d homeonmorphism @o Ll%,@H over wy
(This Tollows from ﬁﬁm Straightening Lemma mww<,¢.wu and from

[1:V.3.3(b)].) The restriction of this homotopy to  G/H xm Qg =2

n

b

G/H quw can then be placed over a collar [1,2]XB of By

X and patched with ' on [0,11X B and with the identity

1
outside [0,21¥ B, to obtain a new equivalence

(G/H Xy P)

T




“16m

such that ©' is an S-equivalence, - (Por more detalls of this

=11

!

see the proof of [13V.5,1].) Moreocver, W=y over x® ang

o f
L

S’

(s

hence also commutes with the equivalences o(Q 203

13

1

Looking at this map over mwm and putting w=u", we have the

commutative diagram

G/H X, Qg — P 0/ X O
o .
0 MHH
v
G/HX P = —~3 G/H X P .
1N N

which shows that the S-reductions .A@wwﬁgv and h@ouwogv - are
equivalent., Thus the sections Tgs Tq © ﬂxgmwmwv corresponding

to ADOu%Ov and A@Hu u.n.u.v mm‘&wmﬂ%v

T Vo
gn%mo<mﬁ@ since W m@ggs&mm with the _Gﬁawmwwquv over X,
the ombmﬁﬁsOﬁwoﬁ Oﬂv&wmmm maps wawwmm that
| Gy = Ot
QOSmm@zm:&H% mww“qw;"umﬁo“QOQEQ as was to be shown, ,

Note that since (Xy,By,Xx$)as(X,8,X%), all the bundles extend
over X and one can restate the Theorem by dropping all &mm
subscrints 1", We shall do this for our wzﬁﬁrmw remarks, -

This Theorem takes a somewhat simpler form when . ¢ 1is trivial,
in this case K _msm 7 are mHmo_dHM<me m/% and N-bundles

respectively, In this case we shall denote ﬂom\“@Aawwmuw@“Mav by
v : : % .

.

@
[B,X"; S\N, N uqe .




whien thus stands for the homotopy classes [v,0] of pairs..
_ ®

N . . ) " o
g3 B o SNN O oand o K e N mmow that T=7°g on B =BOX,

e . . . e . - T
(where .A@M BY w3 5N is given and to which Y over X is

ph

associated via the cle

'*n

wssification theorem in the absolute case).

. T P . - & ..
Alsc c_ ¥y =[%,0], which acts on [B,X"; S\, N] 4 via
b - . ) ,\ﬁ» .
the right transiation actions of N on SN and N, Thus we

~have the %owwoﬁwsm sor @za%%

2,2 Corellary. .If the bundle § of M%MSowme‘ONGWﬁm is

A A A Mt e P

trivial. then the correspondence of 2,1 is with

The main case of interest is that for which X 1is contractible,
In this case P will be trivial, so that 2.2 applies, and [%,N]

- . LY o~
n,ﬁoﬁsz the group of arc component

mmwmﬁmz. »wﬁﬁozmr.mo 5&<oﬁm@&wmmwsmswmwwmo&wo@%mﬁocw
¥ fixed throughout &Spo_m@oﬁwosm there ww no difficulty in
mm:mﬁmuwmwsm dwm Theorem- to the case in 55wn: K (and B) is
allowed +to vary over the components of B. Thus this wmmcHdw and

the absolute case, can be regarded as classification theorems for

general G-manifolds over the top twe strata of their orbit spaces;

see [1;1v.6.3], This remark surely indicates the general

importance of these theorems, It is remarkable that the classification,
given a smooth structure on the orbit space, shows no Qw%wmﬁmsom_ |
‘petween the differentiable and topological cases on the dow two )
strata, It wm only with the ﬁwva strats level that differentiability
begins to make .ogell wmww. (In these remarks we regard a singular

stratum which ccours as in [1;IV,6,3(i1)] to be at the &SH%@ level

or below., We ¢ 21line to make the meaning of *level® precise here o)




.

We shall conclude this section with a discussicon of the

0y

naturality properties of the classification theorem, For simplicity

1}

&

we ghall limit this discussion to the case in which the bundle P

of principal orbits is trivial, but the general case can be treated
eagily in the same way,
Suppose we are given another triple (X,X ,B) and a map
o . ,
ks X o3 X

Pl - u.. i

taking X~ (at least) ‘Yo _M@e B to B, and with k "B= B,
We assume, moreover, that k is transverse regular on B; that

ot

. A
takes gome collar of B in X by a collar map to a

!...lo
ot

gy 1
collar of B in X,

s
7e

. . e
Asasume we are also given a proper G-manifold over X

e d
r

and a smooth equivariant map Y §iw Y® cueh that the diagram
¥ —— y®
M , A
Me.!bﬁiwqxg
commutes, Then there is clearly a dowowomwomH eguivalence ow e
with the pull-back A ;
K*y® = W?L: c¥oXY® k(x) =u(y)fe

his puli-back is easily seen to be a smooth submanifold of

Lot Bty iy

3

T Xy, (Compare section 5 where more oogwwwomwm@ pull-backs
i e

are discussed in meve detail.,) Since Y is topologically

. g Soxr & s s . ) .
equivalent over X° to k"Y", +the clasgification theorem in the

2

absolute case [1;VI.6,2] implies that Y® is smoothly equivalent

ﬂ(\@ 1, . 3% . » . o
over X to x*Y®, wWithout loss of generality, then, we may as

. At s B
well zssume that Y©' =k“Y¥,
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Y

It mzmegv is a proper G-manifeld over ¥ extending VY

then we have the pull-back

3% «
wn H«.Hrl.. > |

,w ,w My
74

-~

X X

(where, again, k"M is seen, as in section 5, 1o be & smooth

—E
l\\

-Is\ N T : J. 3 3 o .n(\ ° ° o
submanifold of "X XM). The part of k*M over X° is just the

pull-back wxﬁg@y and the given eguivalence D3 M® —» Y% over
- . - ° . ks U S, & s
x® induces the m@ﬁy<mwm5n@ Waezn k¥p® 2k Mwn“w@.

Now, wvia the absolute classification theorem, Y° iz associected

¢

A @ : . . S o a
with a map 7 3 B® ti%.m/é Gssuming 9 -is trivialized), It is

: @ =7 2 s T ws
then clear that the pull-back k™Y over. X¢ ig associated with
Y L . ‘@ 1 -~ 5, @ BN BT v.._ 2 2 1" : «
the cemposition v eks B® —3 B® ——> NN, (This is, of course, =z

special case of the following statement,)

2,3 Theorem, In the above. situation, suvpose that the

principal orbit hundle p of M is triviel and suppose that

ﬂgmezv 1 associated, via 2,2, to the pajir (v,¢) where
Tt B—>\N, 0 1 X% —> N are such that 7 =7% on BY,

Then the pull-back (k™u, Wﬂegv is associated to (tek, gok),

The proof is straightforward and will be omitted,




”~

\\)

wo gL 1}

3, Preliminaries on regular mnﬁw NS

in order to combine

) .

and symplectic actions,
Let d=1, 2 or &,

respectively, for o,aw

importance are the groups

Cs = center G and
e

.4 ;.
Note that f.aomw J

see the appendi:

-

we invtroduce the
in these

cs_

730, and !
-

ifold (n

the cases of regular orthogonal, unitary
following notation,

)

three cases, let G stand,

ng 2, £ particular

A Mr...)w.m H.OH» Qyuuvm N....k‘

.

wumv we shall mean a smooth

a
By a regular mwagms
s
. . 2 drk .
manifold M°9TE T with a

. - 4
1, The orbit types are G_/G
2, The representation of G_ ab

the standard representation plus a tri

representation.

3, ‘The glice repre

to the orbit of 2 point with isotropy

i

representation plus a tr

4, The bundle of ﬁﬁw

We remark

The condition 4 is not really needed to carry oul a clas

but will be ne
......... It is

intere

vosawmo& ince

-
o'
o
(&)

~~
n

and this implies 4,

smooth G

that, in

sted in’

this is true for the

a_ . . .
n" action such thavt:s
3
i S‘Nw

A

\Qs 1 and fixed points,

3’

- ovt a fixed point ig twice

al k-dinmensional real

fede
e

v

sentation of ma

. n ‘the no
-1 on

rmal space

group mm i 1is one standard
rivial (k+d+l)-dime

ncipal orbits is triwvial,

fact, condition 3 follows from 1 and =,

ggpary in order to frame the resulis in their final

wweful for notational convenience,
the casge in which the orbit space is

most interesting examples),

An assumption that the orbit space is

respectively;

al real representation,




contractible would not, however, siuplify the discussion
appreciably beyond the simplification already resulting from

condition 4,

. . . . G ! el -
Congider the fixed point set M {where m;umdp cf &

a

S;Emswwowa M, Thnis has a euclidean invariant tubular

regular G
neighborhood for which &5m4mwdmw can be considered as the
euclidean space of nX2-matrices (real; complex, or quaternionic,
according as d=1,2 or #4) with the fiber representation being

d

n® The structure group .

the left multiplication by matrices in G
v s . P 4 . . .
of this bundle is *the centraliger of @s in Qwaz and some

straightforward matrix manipulations show that this centralizer

is just mw acting by right multiplication on the nX 2-matrices.
Note that, since mm»“zﬂmwsmv\QMam in mmw mw is also the.

T+ ig not hard
i 18 o hax

s

to see, in fact, that the normal bundle (tubular neighborhood) of

MY  is associated with a restriction of the principal orbit bundle

G

to a certain copy of N~ in. M/G., (A short proof of this in the

.

orthogonal case d=1 1s given in mwu<m,wepu and it generalizes

~

directly to the other cases d=2,4, An extended proof can also

pe found in [5].) Since the principal orbit bundle is assumed to

be trivial, we conclude that the normal mm:wgsawm,ow % in M

G

is also trivial, Thus K~ has an invariant tubular neighborhood.-

of the Fform

6.+ ROOXRIOX G —— >

B

m mpsnuwgsVAwas via twice the standard

wnere G acte on R
. i .

representation, Given one such tubular neighborhood, all ctherg




which are cwﬁwomowmwwz_mws@csaw@ equivalent to it are oblained

. . . ; S . . 4 adnvy -.an
by operating on it, via the right action of Go on R™TTXAR T

. iy G -4
DY a smcoth map 5 e G5,

«

. . Y s : \ s ‘ d
In the appendix we show that the orbit space of @d on

a ¢ e L o s o4 . ° s JnT N Q.im‘ . . N .
m:syﬁx n can be identified with R AR 1 with a smooth orbit
mep Ldn., Ldn g4 1

3 RTXR

iTs It VA R

a

szOdMos

which is equivariant with respect to the given right G

dne, . ) . 's) . + a-+ .
on RUPX 2% and the right G,-azction on R XR 1 given by a

specific representation
At G ———> 0
2 gL

é a

" Moreover, this representation has kernel - om"unmsamw,mw, and image

0, for d=l, mom for d=2 and S05  for d=l, We shall identify

« PR % l \ﬂw " L. . . . L.
The image W1thn m\ﬂu:...._ = C.\N\ON via This H.mwvwmmws.ﬂm‘.ﬁnros.

The explicit homeomorphism

dn.,,,4dn r -
ﬂ.f;u ,m. \M.: : \/w muxxwg-*nu.

given in the appendix can be seen 1o be a diffeomorphism on the
complement of the origin (the fixed point), where the left hand

side has the functional structure induced by the orbit map from

b

, » AT, dn . . o .
c® R4 X R®? is not a diffeomorphism,

on « (At the origin, @
and the left hand side probably is really a solid cone based on

The componsition

=dn dn

- mg,umﬁi*x Hvtu..n Am+ XWQ&.HVX Em > R XR X EQ. ......II,W. 3*

O = Py

is a &o@owomwomw tubular neighborhood of Em MS E*HHE\@ msav
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we can ngwz@ a differentiable structure on its image by demanding
that it be a diffeomorphism, Since this mﬁwso&cwm coincides, on
the complement of :mm with the functional structure on ™
induced from B, these may be amalgamated to give a smooth

v

structure on M¥ which makes

a ‘gmooth {k+d+2)-manifcld

with boundary., The boundary consists of the singular orbits and
the fixed point set 1% is a kedimensional (codimension d+1)

smooth submanifold of 2™, (See [1;VI.5] for background on the

induced functional structure,)
Thig structure on M~ Qmﬁwaamw% depends on Tthe choice of

tubular neighborhood &f Em in M, It is also, unfortunately,

not natural; that is, an equivariant diffeo Bohb:wms M o—— M
neéd not induce a diffeomorphism M~ —> M*, However, the
structure is well definsd by M  up to diffecmorphism, 13 in

fact up to concordance, These facts are the reason that we will
have to control &3@ tubular neighborhoods ow ?Q in our discussion,
although they @Hm% no essential role in dwm classification theorems

we shall prove, Note that changing the tubular neighborhood via

the operation by a smooth map Em — mw does not affect the
differentiable struciture on z*.

Note that since the structure group [ is connected

for d=2,4, the normal bundle of _EQ in N has a canonic

(independent of the choice of the tube ¢, of M- in M)

fiber orientation in the unitary mﬁa_mwaﬁwmo&wo cases,

o
denote the unit disk in. x»gs

. o ~2 s
Note that mw orerates on D dn on the left and m on the right.

~

2dn ms

We shall let D Nyr

jo N

~—
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Z24n A1

oy .
fhe image w{D )< RTAR ig, according to the appendiX,

the solid truncated paraboloid _ _

-

) v J-Tzu g ’ : )
H.LC..N\ = WAX.«%.V ﬂww.T\K HurQ .w.ﬂ O\/,\,N.M/u.ﬁ.:%:.m.w. *

s

b

(0F course, one could change 1. by & diffeomorphism so that this .
ig taken into the unit naif-disk, but the explicit map .« of the

appendix is sometimes useful.) We put

ot = w?ﬁ%v. e kXY 0Lx=1- :%xmw
and ‘

. 1 NSV 5 N Y

van wuof. = w (0,¥) mw+ywm+hm ﬁi:.uww .

This notation will be fixed throughout this paper. Thus note that

in particular, b%@, will never ve used for .N:o“%v e RT X m%.ww :im
See ww®QWm 3e
~

a+1

<1b.

3




4, .Classification of regular actlio over a bage manifold,

Suppose we ars owéoz a mBoo& Ah+ +2y-manifold W with
boundary &W, Buppose we are glven a sSmooth mrfsww Tola

Mwﬁmwwﬂ of codimension d+1, and that we are also gilven =

f\

will be kept fixed throughout this section.

s | . . n , ~ o, A .
By a G -manifold over 4/ we shall mean a triple -

n

Aéw . Aﬁw+ma5. 5

/e = s O My)
wr s s R ,0,5. e _ .
where M is a regular @stmﬁwwowaw man X7 e B 18 &
fal

closed invariant smooth tubuler neighborhoecd of MY in M, and

Wyt M —=> W ig an invariant map which induces a diffecomorphism
3 SR L , . i . : R - . .
Mg s M° —= W (where oé. is used to define the smooth structure
Bl pie
3% . . - , .- \ o . \
on ¥ as in gection 3), such that the following diagram commutes:
G ;
I XL /E . —
a+2y G 7 La+2 L Lk ) a+2
i 2 Y ) L
D, N,\/r = > D, TXE = >D, AL
16, % 0
v i %
M = D W
- ' k -
where X =X(}) is a smooth map A: T !|4\~s9+~ and A is

defined by

K(x,y) = (X2 (¥)s ¥)s




Thare e s regarded
where ﬁW+PnW OQ+H 1s 2

W2 o b AL L -
pdte g X R4 in the canonic

+ £

is uniquely determined by the ot

4,1.\4# 2 3
Twe such OSsEmﬁwwowcm

SR
11

uﬁw = Aﬂwogwc ) ‘msm VNH.

.

v PRUPEIS S ., <m ol g g ,..x =
ag acving on the right of

al manner, No

her date,

,41
. . ¢ ]
ent over. w@

n«\x . .
over m@ are said to be eguiveal

equivariant diffeomorphism

and a smooth map

such that the following diagram

commutes:

1T there is an

Umaﬁx sk | i 5 pedn ¥ sk
4 \
- o Q. / Q.
s i ~ ~ N M
1 ;,J,LS N u.v..c‘?ﬂz
2dn 4 .G Vi Zdn y .G
A‘C Al \ < D XN
. tﬁx \\ /ﬂz )
M e ~_ N
\V4 \ o o v
W — > N

Note then that

A = v (W)

by the abovs

(which follows easily from the diagrams on orbit spaces induced

diagrams), where the juxtaposition ¥A denotes the
d
G

n

projection

e ﬂ4m+w .msa the product in ﬁAQ+H»




. e PR O " o s - e g . )
(Wote that it /7= (0 0. ane T :A:“@mwzﬁv are both
i Y g ey k 3.0t e
Dmsimsrzoeg over W), then wAb\v > V7 AR TR == I Ly LiTte
Jwﬂ . ) q”. a1 . . T i \
to a map L -—-p» (5 anc they are aguivaient over o, s )
n this section, we shall classgify these equivalence classes,
Now let 95())) denote the set of framed cobordism classes
&+
. ) PP I o S RPN
{relative to ¢7) of melly framed manifolids V oW

with §F= gvitt

A

d=2,4 only, the framing

LR

of V induces the same fiber orientation of the norma 2l bundle

.

of £ in W as doss the tubs € We shall define below a

. A SN, o .
right operation of the group mgmswu on F(W). In cwm mos ﬁ

interesting case in which W is ooﬁdﬁ&o&wwwm“ this opex mdpos

. - . g . _ .
is frivial for d4=2,4 since mm is +then connected; and, for d=1;

it is operation by [W,0,]7~72, which simply multiplies the

framing ¢f V by -1, simultaneously on all components of ~ V,)
Then the main theorem of this section can be stated as
follows, pmovHH that, by assumption, the bundles of principal

orbits, of the mwaBmSywome we consider are trival,

4,1 Theorem., There is a one-one corregpondence between

oy %
the set of equivalence classes over W oo of ) :mekwow:

Rur

over )/ and the set
ﬂw\\:\«qvv\_l.f .mu

. N . \IJ . )
of orbits of the operation of [W,G,] on the set F (W) of

2 -

{ramed cobordism classes of (normally) framed cdsmSHwow@m of

oW QOUOQSQHSQ Z (and consistent with the fiber orientation of

the normal bundie of ¥ in W given by 6., for d=2,4),

et N WE s




the given tube
GRHRGEEZ

L5 e

as an inclusion, Then let
P -
X=W=-int(D  “XZI%)
B= X;J AR

Meu“uQ+FVAMW

i
.

8% = x®s = 59X 2F,
(Recall the notation convention introduced at the end of section 3.)
Now it is well known (see [12] for example) that the Thome
fontriagin construction give m.osmsoﬁm correspondence of mﬁx&&w

with the set

of homotopy classes of pairs (r,0) where
. ) . Q )
T3 B =3 S

_ : , S
T{x,¥) = x00{y) for (x,y) mmax 7%= p®,
(Here, as always, we regard [q ; (04, acting on the right of

s in the standard fashion.) | |
amwbmﬁsm%mOﬁﬁﬁmﬁ_Mpmm deformation retract of N@HHUQ+HVAM«.

and wsing the homotopy extension theorem, we see that there is a

. : B, d
canonical one-one corregpondence between [ EB.%n; S and:
. : ? P a1

a+wu@ *
which stands for the homotopy classes of pairs (c¢,g) where
! : o
- ~d o
T B =S : - : : ,

A S




and
I Gy LK
T=py on B =X /MB=SXT
Aok 0 . .. .. .
.where p: S XI5 —> 5 ie The projecilon, (As in section 2,
we use the juxtapcsition (po) here to denote the right operation
oL -y 3 - ~ N,@ Y IJ. - - - o ey ey v . @ AQ. s
of the set of maps X ‘!ngm+4 on the set of maps B ——» S7; etc,.)
Now there ig, as in seciion 2, the right operation
- ~d . - ;o - N T v @ .G i 1
_wayr PR N»_mi.ur.ﬁ@ X _,,Mwmmlw —— LBsiTy ST, Q.Z.sw@
) - . . a -
given by [v,0lfw] > [Tw,ow]s via the homomorphism G, Sl P

e
Ly

the ¢

corre

d
Go

uge

.

3

Since X £ we can

a deformation retract of W

. 0 . . _ :
1 and mfummu interchangeably. Through the above one-one

el " Q oy % ¥ ¢ .
of [W,G,] on F(W). Unfortunately, we do not know how to
P - describe thig action in a geometrical way, but it is clear that

age in which W is contractible works as stated above 4,1,
We have reduced the proof of 4,1 to selting up a one-one

spondence betwaen

~

@
LBy

~d R S &
LA B TQ..msur._U\th QWL

and the set of equivalence classes over W of mw:ﬁmswﬁowgm
. i .

over

-
S

ohjec

W,

..W .

~
’

To do thig we shall relate both of them to a third
which we now describe,

Liet us choose maps

#
[

&
T N ..\!..'IW. 1Q.+H.

Juie

)

which &re a complete set of representatives for the left cosets

.

d
5 in

.

Q-

G agsume that .

1
.

e i 4
Lx®, We may .

3

correspondences, we finally have defined the regquired right action




1
: - i
i ey 5

to alsc denote the induced map u° —-» [l ;. Then we

factors through the projection X7 =507 and shall

mw<mﬁv% AwsHVva”u@AdvaMAdv Ew@wm@” mﬁqmmnvmmw sswnw@

1te
[63]

-the projection, as above,

Consgider the disjoint union

i & G .07
a = U [B,x% %657
- 3 Z-pn .
i i
and put :
; , a
v o o & Q&. r~ ! : W,
D F....u,.ww.tx. Fa g u Q.Maue:_.,mv.c . AI;)\V.&.
. _ A
We map ks A —> A' -by putting Wmawquwnumﬂwswauu where the
subseript i denotes an element of the i-~th part of A4,
Suppose [r',0']leA’, Then Q.bnmwa for some ¢: X% —> mm
and .a unique index i, On 5% we have “'=ps‘ -~ pn.o and

this homotopy extends Te¢ a homotopy of ' to ¢ B =—3» &~

swﬁs T ® P06 on B®, Thue .WWﬂwQUM = ﬁﬂuzwau = [v',0'],
which shows that k is onto,

Now mxummu acts on the right of both 4 and A' and k
is elearly equivariant,

] . .. . Da. , Q. . . 3
Becalling that C,=center G, acts trivially on wnw we have

the left action of mM@meQ on A defined by

.

. m%uﬁ.ﬂ»ﬂuw = —H‘ﬁo<Q”_.,w.

Let mbeummu act trivially on A', Then kX is clearly equivariant
c

tion also,

i~
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By the choice of the 0 it is clear that k cannot take

elements of A Dbelonging to different valuves of 1 to the same

element of A',

e 2 .
Thus suppose that wﬂﬂqauw“umre.wq.me that is,
,1.‘ g U Y 5 7]
h_ mswo.u._!rr muﬁ.MQ ds

Without less of generality we may suppose that ¢ and o' are
. . s - O P : s
both compositions of maps I -3 G, with the projection

. & OJAm,» A - - < . I g ; . :
A= P“%:L % T, By the covering homotopy theorem we see that

e

_ . a..
we may also assume that ' =1, Butbt on B%=g X%, we have

P30 =T =

and hence

Q.Qzﬁﬂ:wg o Qm.

1

Since g,0 are constant on the fibver D7 of X" =DV "X, we

. -] @ “
conclude that o'og 1 X5 ==

[o'6™ M%s0d; = [e,0']; = [¥"a' ]s.

e&wm shows that two elements of A taken by k +to the
same element of 4' are ws.&wmvmmam owdww of the WOﬁMQS by
[x®,cS].

It follows that k induces a cne-one correspondence

o~

& dan . o d N W de
[x%050N /0%, 650 —Z— a' /{1,657 .

It now remains to exhibit a one-one correspondence between

[x%,051\8/0%, 65 ]

4.

™ kd ~ . K 4\ ) L
and the set of equivalence classes over VQ of @MeS@SHHOHQm oﬁmw.‘v@ﬁ




Congider the composition

G+l Lk "3 d+1

WOSXWQ§me.iLPjY.WTVx oy V.qum

X £F,

Y oo - ; . g\m ; : i
& LRGN k T 0+l lk 2 » padtly ok
v& = g ¢ Vu/ 3 .z.l...fw:.stn\a ¥ X 1 ) X2

st

. TS d
which defines a proper G

E
~
I§1

. ] k

s - @m g v*.o A%
manifold Y over ¥~ =D =X ot see

°

“section 2, This Y% will remain fixed throughout this section.

[

Lt

. - m v - L) b) - oy i 3 @ )
It follows from 2.3 &nd the append that this Y over X

corresponds’ o

"
-3

[<®1" e [8°, s%1/[x% ]

by the absolute version of the classiiication theorem £,2, where
e e_.d, ok . d
T =pist BT =STXET 2 57

{Note that pa; can also be interpreted as the composition

SR P _—
SEP "L "L

Thus the class

gives rise, via the classification theorem 2,2, to a proper
d
G
n

o

~given by ugt T —> X

A
.4
-
o

and we have the projection .3 M —>

M
on T and ﬂu@&qq on Urastmw — Um+«._mw. {Recall +that

-manifold Aau@av ocver X and extending M@. Thus we can form




RO+2 N s s o ~2GT ., o
@Ew bm XE =>4 is regarded as inclusion,} Let mﬁﬁ BN T e
. . . - S " . d C o
be the inclusion, Then %&”“ﬂﬁw@?wtﬁw 18 a G -manifold over
LT [
T 2 ox s < ; ; ; -1 _k T
W oand it is ¢agily checked that wﬁaévuusw S .i§¢,~.9+ws
Clearly, changing Aeueav by an equivalence over X changes -

- K 3 ) LY
xﬁ\obww by an equivalence over yQ‘. Thus 271 depends oniy on

. . o ; v . : L . A )
the orbit of hergw_ under right operation by e et

e ’A
d , . .
Yi I o Cz be a smooth map, and let

Vi D" xpk s g

>

pe V(%) = (x:v(y), y) which i

o
&
=
@

L)

G
. . s 2d Y .
the orbit map, Then the identity on T and ¥ on p<90¥yk

quivalence commuting wit

gilve an equivalence

) . " ) . N ’ % | .
Ty, xR —E s py _fnygky
O S S PpeY

over W/ « However, the @ﬂo@m&.thSmSM%owm A@maﬁwﬂv over X and

extending Y® corresvonds to

-1 SR - @ d .48-
L7sy o\u..w..;.< .:.\fnﬁwehww.ﬂ PS5 umm,w.bsw

~

. A . . . , 457
accoraing to Remark 3 of section <. This shows that M1l depends
only on the orbit

Fe %y ® o dn RS
_I\.ﬁwcu...w. @ w...vm uONl_/P Mxrwmwlwa

Now suppose that mﬁ!uq.uumnp gives mem_MB the same way to

WU = (5,0 .wtﬁ.v with

M
oo )
a&.q. o m@« ﬁ\_ A,UPO..S. VA, Mwnv ,
. . Ge«.
etc, Suppose that hN& and W' are equivalent over W/ via

©: M ——> }i'  angd irs Mw —— @m. Ag noted at the beginning of thiec




LE R A B vl

section, this implies that A(W]) =y (/') and hence that

-1 . - . .
:ﬁu.m#:&}“ that is, sw”ushé Hm But the choice of the n; then
- o g u -
implies that 1) and the egquation swnA:Hes implies that
Mﬁ “u, DU . ] ﬁ.m fy > . -
s o > C;=centerG, . The diagranm
< e . .
281 v K o 24 k
p“dn xg! & > D9 x s
] ﬁ
v . Al
M e > i

then shows that Aewmﬁ%ﬁv ig equivalent over X to (T', eeﬁv
“and hence that

ﬁ,@\t%x?,ﬂwﬂxﬁ = ﬁﬂ»éz,_duw.... T‘;wqqu

e 3t
-

e i ‘o . . . ) a . .
Finally, let W= {#,6 ,u,) be an arbitrary G -manifold

L . " . . 3 4] 4 ]
over W/ . It remains to show that 71l can be constructed, up to
equivdlence over U, as above.
- ™M .

e M ~ \,) 3 JHW;. N ! .«... 3 e @
The map A =A(#1): Ilwg a4 LS homotopic via Ayt I i§¢MJQ+H
¥ o a8

to wwnwé:mw for a unigue 1 and some map Vs L - Gy
(by the choice of the 1n;). Then the homotopy wymw can be

s

1ifted to a homotopy g MW l!&.mm starting at the identity.
Thus {4 covers Al = AN,V and hence A{N) uﬁéwm; sww.

-

As remarked at the beginning of this sectinn, this implies that

(up to equivalence over @&sv we may assume that M (W) =n.".
Then let T be that part of M over X and T°=3T, that
; +31., ) ) T
over x%= d ;,xvum, Define Ot 7® — .Ynummcs kxmw to be

the composition




-1 v ., LG
0 1 X4 “ R .
Y 3 A FANE SR it \ 3 4 ~ .
by c20n=1 i L e flne-l. ol ;
Hﬂ.@ e e &n dn=-1 X M&Q L > 5 1 X = uw@ .
- o . Qi eo1d over ¥ extendi v @
Then mhueev_ is a proper G -manifold over X extending Y~ ..

The map

-

2, 0*4xs5) 2
Pr

which is the inclusion on T and is the composition

(1x g |u¢

. 8

¢! M

e ]

20
4

23n k

on DTUXET, together with the trivial map s gk d

. . ol T .
then gives an eguivalence over ) , as desired. (The reader

may check that o commutes with the maps to W,)

‘Let us now note the: following addendum tc Theorem 4,1,

Le%t M&Q"nnawmamtzv be a mm:ams»wowg over M&ﬂ. Let f:(W,3) 1mwAﬁwmv

be a diffeomorphism that is an orthogonal bundle isomorphism on

the tubular neighborhood  © (and preserving fiber orientation

T
il

' 1
o n (] : . - h\r. .
Tor d=2,4); that is, there is a smooth map ww“ L7 e—> Q]

such that the diagram

. vr l . =] .
Uw.Tu.v/. M.W 1 X iM N DW+HXMW isﬁm:!:wf UM+HXMW
f
6y | O
/\
o f i

, i ; . i . ¥
commutes, Then xﬁw"nﬁﬁw@EwHotﬁv is a mmssmSHwowg over wt .

(Note that a(H) = A.i@jaw.@?ﬁv




o~

4.2 Proposition. If /f/= (i,0,,u ) gcorresponds to a
o s o k+1 ) s Jk . N/
framed manifcld V.o “cobounding I via 4,1, then w%$,iﬁgwmﬁwwotév
i - ¢ +

corresponds to (Vi)

Proof, This fact followsg from the naturality of all of our
constructions and from 2,3, The details are straightforward and

will be omitted. It is most easily viewed as & pull-back

M L > M

v Mg
ﬁw o1

W o W

and the result generalizes to appropriate pull-backs in general;

see section 5, _
kid+2

We now turn to the special case in which W is acyeclic
and ,MV is a homology sphere, The following result alsc holds

in the orthogonal case d=1, but will be excluded since it is a
very special case of stronger known results which will be +treated
separately in 4.4 and 4.5,

4,3 Corollary. Consider the unitary and symplectic

o 4 0 et ot
\ k+d+2
cases d=2,4, Assume that G- d

O RN

[
n
o

acyclic and that % is

inifold in @W, Then

na

a homology sphere which bounds a framed m

. | a
the equivalence classes over s/ of G

d
. e
~manifolds over kw. are

SO e

in one-one correspondence with
Tyee1 (Gqes 5054100

of degree one;

where Gat1 is onhe space of maps 37 —> §

gee hmwymp,




Kbk 2 o

Proof. MNote that [ . umqﬁ; for ¢=2,4. Let R, n
G KPARZ e s . o o oas
&w be the interior of a disk neighborhood of a point “5
. I S Qv
2% with nw e Mw“uxy {standardly embedded in Y.

We may assume that this intersects the given tubular neighborhood

- : . s ’ k+1 A » . .
suppese that the given w amed manifold v cobounding Mw

18 represented by

..... . Q , e " -
Ty B o 57, c: ¥ —> 3 d+1
. oy - _ a x k+ - .
fwith +=ps on 8% =g XE%). We may assume that V© H_ intersects
Ktd+ L | kHAv2a 8. . . . . _ .
R b= Ry TN W in 2 linear half gpace sPﬁs standard framing.
. kAL Ktd+1 a+1 — e
(That is, on R NB =R - (D rxﬂw )s T is projection
to the esguator mg.v
“ - T ﬂ;nw. . 1 o) » - e .Y, B
Llet ¢ B ~—>» 37, Gt 3 —> voa+w represent some other

class [v,0]e[B,5; S wmog+wu@. since tX-RE is acyclic,

obstruction theory implies that ¢ is homotopic to a map which

equals & on xf- Nw. Suppose that Aﬂouqov and Aawquv are

such maps with- maouqoun“mﬁwquu via the homotopy (v.,u.).

, - kL kooL o : ; _
Then Qﬁwaowmr.,w 1s a homotopy between the constant maps to.

mm,moa+w. Again, obstruction theory implies that this homotopy

(and hence Aﬁﬁuaﬁvv can be changed so that wddp I uﬁmw.awwvva

—> 504,, is given by (x,t) b gt ¢804, ?sam.@m%mi of w_vw

.

with g;=e =gy . Then Aﬁ&vo ) = éqdmd»;qﬁmﬁv is a mosoao@%

4

between Aﬁowqov and Aaquwv such tha” oi=0¢ on Mw..ww.




Thus we may as well ccensider only maps (7,;6), and homotopies

weern them, such that

Y S N L TV e
2 PR 0N - .TN VV flf MU -/., N\_ =

Now the inclusions

59— s X (25 - k") —s B-R

o

induce isomorphisms in cohomology by Alexander duality,

k+d+:1

My,

{Note that B=R o

g=0g

&

JKkdRL Ld k.
Thus mm,,mxfg -, Uov«AMﬁ..xxvv

foliows from obstruction theory and the homotopy extension

thecorem that we may resitrict our attention to maps (v,0), and

homotopies of them, such
TET. 0N

QU.“Q Ow\w

-

Since, by choice, =

coordinate neighborhood

homotopy classes of such pairs are in one-one correspondence
. ; - , . v k o~ kAt
with the same thing for the standard sphere mwnrgvx H.

we have 'a one-one correspondence with

that

B -

%

k

N

- R

Slebd+l

FRY

mmgy“ww+wumwﬁ.mg.ma

ag claimed,

lemark. Note that

[rtchstotvingcpirtunng

d

v C 9w, then 211 other ¢
framed manifolds which coincide with

coordinate neighborhood in W, in which

on %

k

Q+wu@

d

-ma.
n

subspace with standard framing.

B is a homotopy equivalence,)

Hk+a+1

s

and ¢ are standard on the boundary of the

the proof of 4,3 shows that given one

mﬁagmbwwowg over umaﬁmm in 4,3) corresponding to a framed manifold

nifolds over M correspond o

, and hence

has trivial cohomology, and it

it follows +that the

That is,

Mer1Gar1950341) s

outside a given

is a2 linear




For completeness, we shall end this section with a discussio

(l\

cf Tthe impl .omﬁwaJo of the main Theorem 4,1 for the orthogonal
cage d=1, mmomcmm of the 4@%@ fortuitous fact that, in the
orthogonal case, the attachment of a tubular i neighborhood of the

L.

fixed point set to its complement is eggentially unique, these

results can be derived from the absolute classification theorem

for two orbit types, and hence these results nhave been knovn

for 'some time; see [1,10]. However, it takes no effort to deduce
them from 4,1,

b b wGﬁodwﬁhk [10]. The set of eguivaience classes over

g 0" Lx y B g
FVMHAEW..w MW» 6y) of O sggﬁwwOPQm over A/ is in one-one

corregpondence with

B Gw-3; 2)
[} ..~.x:4.ww.ﬂc: NV \.\ NN
o L vy
where JHAQE..M" Z)s. denotes the subset of Aw« -Z3; Z) consisting
1

of elements whose restriction to each unit circle S in a

: 1
normal plsne to % in dW is a generator (&1) of mwﬁm;“

Lrovasiuy

15
4

i is induced by inclusion AW -x C Wy and 4» acts via the

)\J

automorphism ~1 of the coefficients 7,

Froof, Suppose that +v: B > 5T is a map whose restriction
: 1 4. Ao fon s g oK
to  S™X {x} ~> S8~ has degree +1  for each point =xzex™, Let
Mo be a component of Mw and consider the restriction

T mpxﬂmo.!Jv mp. Ir ¢ mwmgmu; Z) is the canonical generator,
then in .
(st xzgs 2) & mhst 2y @ H (S5 2)

we have




R

(e

adyw 1

consider the map POy STA Mo e S

8 T Qom MA s ()

2

given by  (x,¥) > NQQoQ.T It is a routine matter toc compute

4

shat thig does to .mh.Amu.v/.. Mom Z2) = mu‘nmww 7))@ zwﬁuom Z) and one

sees from this that there is a unigue ﬁqou € ﬁmoaomg such that

S.uaﬁ.vv.m,«.i = (+ L 0) na*Q\v, Thus there is a map g: 3 —> 0,,

0

» - . e .“—. —n .
unigue up to homotovy, with po=x+v on B =287 Xz, Up to

homotopy we may suppose that po=+v., Moreover, when <« can be
written in the form pe  on mwx Ly it is clear that the equation

v Epd determines ¢  uniquely., This shows that the map

tv,0l b [v] of
mwmjw MHuowu@.i!iW mmewHu

-

18 & oné~one correspondence to the mz,cm.m,.w.ow those elements

[t]e ,_xwmmw.u_:n 1 (B Z2) having degree + 1 on each _mw,\%wu&. for
X et mmomu‘ww&w that mw — ﬁm | is a double oo<mﬁ.wsm 0, = O
it is routine %o oSmoW.ﬁsW& the o@mwmﬁob by msﬁmumﬁ on

(B, mu.uomuv corresponds to addition by elements of wu*mwcf N‘v

and possible change of sign,

4,5 Corollary. E_w in 4.4, we have mwﬁ.w«: Z)=0= mmnwzw Z),

RN,

then there is a one-one correspondence between the equivalence

classes over v/  of ¢, ~manifolds over HJ and the set of choices

s . WK . . . X
of orientations of 2% modulo simultaneous change of orientation

k -k

"on all components of %%, Given an orientation of ¢ s the

corresponding osssmSMwoug is that one associated {(via 4,1) to a

. K vy . . - . . .
framed manifold 'V +Hﬁlw,,.w cobounding ,ww wnich is consistent

with the given orientation of Mw.,




5 o . wert § e

g orientable singe

e (RENEF)) e BT(W) = 0

I
- " e PR e & N B R | ot 3 K} R
wa zee that - (R X corresponds to the oet of elements

ol

el

cval signs 4+ 1 .depend

s H\.
o~ el T ey o sy Y ew ~l o A i @ S 4]
original tubular nelghborhcod 6,: R XD e Y,
S - esn Fhat 4 .
Byhy 37,04, 1% cleay that the sign
- i~
ct¥ ¥ is 41 or. -1 corresponding to

takes .. into mom or not, Choose an

the above sign is 41 or -1, This orientation of Mr is then : w

¢

clearly conslstent with that of a framed manifold cobounding 2 |

to {v,0l, and the result

et




oull-back cons ﬁﬁcsﬁwmb,

5. The

his smeection we ghall

In T
. d . .\
of the G -~manifold over

w@w‘s o kG2 W
n

=00 UM‘_
Wo
]

o given framed manifelid cobounding I

4
1

; hd a3 —ll
pair of maps 7,0 representing an element of [B,Z: §7,

We shall apply this construction to identify the re

an mmszwoﬁwww to a U -action and the rés strict
3 .

gpondence with fr

to an Sp_~action in terms of the corre

shall regard, the given tubs 6,

r e
W

Suppose we.are given

€3 B -3 O

I TV )
ot % g4
\ - : . N P R
T(x,y) = xegl{y)  Tor Qﬂ: eSTXE =B,
o ) T b S - . 1. - - : bt o X .....Aw...*.w
We shall first extend 1 1o a smooth map <1 W ——> L
in a oarticular way. - To do this, define
bbg Q.lTMW N k- -, 4@1_; N
T .U.ﬁ K oD e D
3 h
to be 7T(x,y) =stretch(x):g(y) where
. ; a+2 G2
stretch: c¢‘. — b+.
. - e C - s s . 1 .
is as defined in the appendix, (It is swmcoth, {gepp-eauiy

he identity near 0, and collapses a collar of

°

Then we extend this to a collar [0,e]XB of the pa Fﬁ

Q;TMX va

1 E
_Amun@vnmku in Amww&v (XD 17 nmeans of

{W,mo ouv =4 D

ion of a U,
.r\

pd+l 4o pd

G+l o G2

Mebee Daia

give a useful explicit construction
corresponding to

t is, to a given

ﬁ%‘ 1 J o)

gtriction of

n......r .WM.O.D

amed manifolds,

oz.m\{v; «.

Nt
)
(8,8%) =

val

18
+1

nowwmw map:s




(See the msm of section 3.) Then we can clearly extend this to
the remainder of X (i.e., the remainder of W) taking this
remainder into the ooswwmamﬁﬁ of the collar mo“mwv«ma in Uw+w.
(This can be done in an explicit manner, or by application of
the Tietze extension &wmoﬁma,mwa smoothing, ) ewwm omswwm&mm the
ammo%p@ﬁwos of the map 7T:¢ W zlv.wm+m extending 7: B :!W.mg.
Recall the map (construcited explicitly in the appendix)
e mmgs.iJv gHx pdtd which is Hmmwwama as the orbit map of

. s o 2 "
twice the standard representation of ma,.os R Qs. We define

e

i

W

u\w .
&\Afu& waxwmmb\. -T(w) uqiwvw,w; |

.

that is, M- is defined by the pull-back diagran

" N wmmb
My w
W T M*&Xm%,p.
The %mwwmmmsﬁm&wos of mm on Mmaz induces a Qm:moﬁwos on W, . |
Since the image of 7 is in ,Um+m we may also consider this a
the @zwwydmow.mwmmhwa
W A > pcdn
Moy - ﬁ . |
N R
M Ts pit2

We have the map

0,0 DEUXEE s gy
given by _ .
O () = ((n(x)a ) "hy), stretenlx)) o (0I*2y pk) X 20y yp2dn,
éwmwma,mﬁwmﬁos:vwm defined in the memﬁmwx and satisfies ﬂﬁm&wmﬁosﬁwvv _g

= streteh(n{x)).




: , lilym

5.1 Theorem, With the functional structure on N

a

induced from that of ﬁvAmnasm Agumzwtgv is a smooth G -manifold

over ) and it corresponds, via 4,1, to the given pair (v,q).

(Thet is, it corresponds %o the framed manifold <W+u.nquwﬁw-Nv

. ! :
where Na“wa i a regular value of =7: B - ST and the ray
2

a+l
.)

+ . . c . +
Rz is given the gtandard normal framing in R XR

Proof, We must show that N is a smooth submanifold of

E@Ammgs& (Note thet M will be tangent to the boundary wﬁwAmmns

24n

of WXR whefe they meet. If questions about the boundary

worry the reader, he should note that 7 extends to an exterior

collar of W to an exterior collar of m+vAm@+H in WVAmQ+Hmuw@+

To show this, consider the smooth map

gr WXRZIH o g2 o .

given by
plw,x) =mw(x) ~T(w),

G+2

We claim that the origin OeR is a regular value of o,

The verification of this breaks up into the following three cases.,

k

Let o(w,x)=0; so that a(x)=7(w),
{i) If T(w)=0, then wegyx

i
w we see that the differential of ¢ at (w,x) is onto since

that of + at w 3is onto,

- : . ¥
(ii) 1t ,:;avﬂx Wowa% 1 then ﬂ?&ﬂ ,.MOW.X w%w and hence
£

the differential of m at W 1is onto, and thus so Ig that of o,

(iii) ¥ owmﬂﬁsvgwwoWy”wQ+H then, by fixing x and

verying w, we see that the image of the differential of o

. o . PV IRV L +1
containg a non-zero normal vector % m0my~ma 1 in RX RITL

and, by fixing x and varying

whv




by fixing w and varying =x, we see (since m(w)#0) that it

also contains the tangent space to MOWVAwQ+H.

Note ﬁwmﬁ thig also shows that M has a trivial normal

bundle in &Xmmgs.

Since the composition
8

HWQSXMW M 3 - N sXmm%u
is clearly an embedding, 6 is an embedding, It is then

. a . A oy
is a ms;amspwowg over W,

M

routine to verify that (5 8,5 1)

The fact that il corresponds to (v,g) is a straightforward,

if long, check through the proof of the classification theorem

4,1 using 2,3, and will be omitted. (It is simply a consequence
of &sm naturality of the invariants in ﬁwm.opmmmwﬁwmmdwob wwmo%mamv

K+l

It is clear that the correspending framed manifold V is as

described, once one makes the eagy check that T 1is transverse

-
regular on R 2z,

We shall now study the restriction of Gmﬁxmoﬁwobm to mvs

and of QNSnmo&Hosm to _dﬁ

Consider the maps

) w /

~defined by

W I ’
o R 2
1,2 s & X 32

usNANwmwdwov = (x+c”, a, D)

2 2

Emaﬁﬁxuwudwow@wmv = (x+d"+e’; 8, b, ¢) .




-

The diagrams

Ln

ﬂN ﬂu.

. -
mxmm 2% 5 gFx R KX RS 212 5 gty R

denotes the orbit map

d d that

then commute (see the appendix) where 1y
or oms., Not

for twice the standard representation ow m

~_these maps restrict to

.
6 Y2 .4 N
+ P

o

W
D M . 1,2 > Uw

Also let wq: RTXR ~—> m+ and w,: w+VAWN - dm defined by

8wﬁwwnv"ux¢‘omm ENANw@.mvu“x+.@m+.mm.

“Then .the diagrams

y)

RYXRI —= RV XR R XR? —> »"

| ~
5..._- : : /M\E N
rR" ¥

D
Z\J

~8H
N\
W.*. XW .s.!....llui‘v mw.l_r

o
.

..!i?av R

DS IR

re pull-back diagrams where the horizontal maps are projections,

(Bxplicitly, the maps on top are (x,a,b,c)l—> (x,c) and

Axmmud»o“mumv T!V (x,d, mv )

..w\w\;.\ AMW.T\M.

of] Mw —> 0, , and

Now let avw

and consider the diagram

oWt - m+vamm be as above,




I ,
Ag«3+w ‘ S m#s
M T
M 2
1t
W z > RV XRg7 —> RYXR
Wy,2 )
W T > RT X R? > RT

'

in which M, TW, and 7' _mHm.QmeSQQ so that the squares are
pull-backs, Let @i W —> RT  denote the mmswomwﬁpoz along the
“ bottom, whose image is IT=[0,1]. (We note, but will not use,
that if more care is taken in the definition of 7T in the
interior of ﬁ,.osm can do it w:;m_omSOSWOmH way for swwo:, o)

is then independent ow the particular <« we start with, and

thus depends only on M/ .) Note that ¢ maps a collar of 2V
in W by .a collar map to a collar of fol in [0,1] and maps
the .regst of W away from wow.

The diagram

W — —

R XR ‘ |
| | |
} o ,
W 2 > RT .

is a pull-back diagram (and can be takén as the definition of
. the "thickening® TW  of zv.v Thus

. B + _ ) ’ N N )

ezu AM?,.:xuovmszm xw,; e?cux+ow N\OH

v S(w,e) e WXR | 2L o(w)}
flme) ewxn | J




A8

and it is clear from this that TW is diffeomorphic to IXW

with the corners straightened, We may regard W as a submanifold
of TW wvia the inclusion W —=> TW taking w b—> (w,0) ¢ WXR;

that is, setting c¢=0 above,

Define
L, _x .
QHE» U+V,M —— T
by
. L .
oezﬁxw%v"nﬁneummﬁwi%vm stretch(x)s ¢*(y)) ¢ WXD, .W\?oﬂu«
where . ”
. o(y) o] | | S
¢'(y) = JE S :
o 41
(with sign +1 according as o{y) €80, or o(y)e 0, =50,). : .
wmmmﬁgwsm_ mez ~as an inclusion, we then see that ﬂ.“qu. on
2 - wn — m Hm YA P | S o~ - Ao 3 4 \A\) ‘
STXEIT=DXE 1 9(TW) where «°' is the restriction of (t to

b .
mir) - int(D, x£F),  Put
TH = (1,55, 00,) .

Now the outer sguare of the diagram

. 7
M N
i
T2
A e . 2
i z > RT X &7
[¢3}
1,2
v oo- v
W ol gt xR2

. v
is a pull-back and thus M ie the ombnsmzwwown over M agssociated

N . - + s - _
th the framec wmanifold T HAm z) where gz is a regular value of r,
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Since Ty is the orbit map for the action of the subgroup
d;muwoms, we see easily that qxunuﬁz“ozetmvm swav 6y as defined
above via W (or using the analogous construction via W),
is a U -manifold over ™A and it clearly corresponds to the
pair (v',¢'). WNote that the framed manifold associated with
(+',0') is simply the framed manifold <W+HAH,U2AMqueva with
the given framing extended by the positive normal field of oW
in vﬁzgv This framed manifold in mAHEV is called the |

Ysuspension®! of <W+Hmnfvﬁ in 4vﬁezv, Thus we have shown the

following fact.,

.

5.2 Theorem, If &ﬁuuA§¢5+w O My v is an 0, xSWSH%OHQ,

o i e WA

b<mw.\rw Aﬁme zv associated to the framed manifold <W+H

in dW cobounding Mw. then the restriction of the zction to U

‘ ction to
s : , n

m
}_a‘-

gives m_dﬁnsmbwﬁowa SQQHHAzuoagtwv over the thickening

ewmﬁtﬁmeavw+: z meﬁv which is associated to the suspension

of <W+H
Similarly, in the Uy, case, consider ﬁ%ﬁuﬁéw+r k mﬂvw
-k . . =, okl 3 . : ,
g1 7 > S04 and T —> RTXR given as above and
consider &smngwmqﬂms
> gO1
Ci ’ ; ﬁ'E‘
- )
o r
o4y 4, > RY XR” ——— ’Y XR
.
!
Wz, u w2
v _ v
! QR > RY XR? e BT,




- 50=

As above; the “"double thickening® emﬁ can be defined by the

pull-back diagram

W —> R XR

and hence

PoY w:fﬁgBVmEXW+x%wfe?&ns+gmf%w xWow

fonae) ewxa® | a®+ e < ot}

which wm.mwﬁwmoaow@swo ﬁo Evﬁcm zwﬁvoowﬁmﬁm mﬁwmwmwﬁmsmga

o—

&wmws ﬂAPxe ‘W as the set where d=e=0 and dmm d,e coordinates

‘define a normal frame of JIW in wﬁewava This normal frame added

. k+1 : Wt s k+1l
to a Wh&?om submanifcld V of W give V as a T
N

"

rame a
submanifold of J(T7W) omwwmg the "double suspension® of <H+uq

dJust as in the oms case, we have the following theoremn,

. ’ 0
5.3 Theorem, If wsuuﬁacs+w“®3wtgv is a Uy ~manifold

+4 _k k+1

over @%uuﬁa 275 0y) associz sted to the framed manifold -V

in Jw ‘cobounding Mwu then the ﬁmmﬁﬁwo&wos of the action to

Sp, #lves an m@ﬁzﬁ&MuHOHQ = AEU Ooby)  over the double

thickening ummuﬁﬁe ivh+o k mnm ) which is associated +to
Iy ,

the double suspension of <W1H.

Remark, One would expect that the pull-back type of

construction used here will be very useful in studying other
questions ana ogher types of actions. Indeed it has provided
an elegant setiing for the proof of the results announced in

[3]s see [2].




We shall conclude this section by applying Theorem 5.1 to

some questions of embeddability, ZOﬁm that any regular

QMnsmswwowa can be given the structure of a mm:smsHWOHm over
some 0@Yu W, T, o:v where, of course, A:V+H ,Mav (M7, 1 qv.
1 W2 oipeds in R™ then M embeds in  R™y g29M

by the ﬁcwwudmow construction. This @wo<mm_ﬁsm Tollowing result,

5.4 Theorem, Let zm@s+w Ummﬁmmswmw Qm

i

-manifold and

assume that the orbit space M* embeds smoothly in R™, Then

;i.lllll.

N .
dn where mm

M embeds mSoo&ﬁ%% and eguivariantly in R™XR

acts trivially on mﬁ and by twice the standard representation

2dn - wgsx was.

on R
‘ . ; .4 .
5¢5 Corollary., Let ™M be a regular G,~manifold such .
i b h g L . .
that w7 i 2 disk z¢w.uw+a+wf. Then M- embeds in the
e . w+ +2
representation gpace d .Xm
i N T c ) o e
It d=2,4, W is a homology sphere and N 18 a disk
k+d+2 . . s =
D™ s we shall prove in section 7 that the action extends to
. . . I+ . .
a regular O, -action with orbit space D w. Thus, in this
2ntk

case, 5,5 implies that N msvmgm in ww+wvAwmaz. Since
a contractible manifold Ao%vawamwmwoﬁ mwmmﬁmw than 4) always
embeds with codimension one in euclidean space, tThese regults
ooﬁmnpcc te a substantial improvement and simplification of the
embeddability results in [9].

. < s : 2dnt+k d -
5.6 Proposition., Let M be a regular G -manifold.

Then M is a wm-manifold if and only if M ig & w-manifold,




Ly
, e )
Proof, By the proof of 5.1, M is the inverse image of a
s 2dn g+2 \ . ,
regular value of a map M"XR -—> R and hence M embeds

in W xR with trivial normal bundle. Thus M is w?sm,_‘&&@
it m¥ is one, Conversely, note that since E*»“E*..ﬂoowwmwv,

and since, by assumption, z_.wmm Trivial @HM&OM@@HAowdwﬁ bundle,
~there isg a oOQMSmSmHmb zero embedding AE*vAwmgszAgwmv — 1,

Thus M ig a qr-manifold if ¥ is one,

a

5:§mswwowg such +that

5.7 Theorem. Let M be a regular G

the orbit space M~ is a m-manifold. Then ™ is the boundary
o . = . d :
of a w-manifold M with a regular mz

Proof. If I is a QM;BNSwﬁOHQ over W =

-actlion extending that of M.

akFad+2 _k
(W s X wmﬁv

- masrss 0 2rg S

. i . ‘
and corresponds Tto a- framed manifold <W HAH oW then consider
the thickening 1TW, We may also thicken ‘<W+H to TV 3 (TW)

(with a canonical extension of the framing). {Note that

] - . . : : N ) -
Mz+wuuwAa<v is the double of VE H,v Now there is a regular
a = ; - . . : . .
Go-manifold M* over TW corresponding toc TV, The inclusion

W TW  divides T¥W, and hence ' into two pileces, If W is
the closure of one of these pieces then JW is that part of W
over WP and it is clearly equivalent to M., Now TW isg

a m-manifold since W 1s one and thus ¥ is a m-manifold by 5,6,

Note that the fact that M bounds a regular action does

S
Ky 3

not depend on the assumption that M is a m-manifold,
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5]
2]

Y.

6. Classification of regular actions,

In this section we shall consider the clagssification of
d e o A . . . .
regular QstmSPHOHQm up to equivariant diffeomorphism, not
necessarily respecting the base manifold {(or tubular neighborhoods

of fixed point sets),

Let

s Iy Oy

9= (WETOTZ sk o
be ag in section 4, In &sm_cawﬁmﬁ% and symplectic cases d= 2,4,

the given tubular neighborhood mz induces a fiber orientation
. Ve '

O of the normal bundle to ¥ in oW, As noted in section 3,
. +20n . e d - . ..

if EW an is g regular mssamsHHowgv d=2,4, then there is alsoc
an induced canonical fiber orientation Oy of the 50&§&w bundle
of zm in JdM° (defined via any choice of an invariant tubular
e e - SAn . _dn. G .. e e e e e -
neighborhood R XRT XM’ -2} and the induced tubular

G 3

. ) . . 2% - .
neighborhood of M° in M"). In the orthogonal case d=1, we

il %
all results in this section,

regard the data o, and o ags deleted from the statements of

+2dn . -
kt2dn Hmmwmmzwmw m@wSmSHﬁowg

6.1 Theorem., Suppose that WM n

and suppose we are given a diffeomorphism

% .G Com
he (M7, M7, o) > (W, Ty 05 )«

2dn

Given an inveriant tubular neighborhood 6..: D

1

i

—
=

N . il . - . .
which the smooth structure of M i1g defined, there exists a map

Myt M —> % such that 7= (i, ogmtgv is a mw:BmSH%owg over &&W

»( 1 ———_

)
A 2%
(&)

and such that the diffeomorphism tw. ¥° —> W  1is smoothly

i
isotopic, relative to gmw to h.

s

e <
X" = I, Through

-




5 F

ar

© i

e Hlfm

Proof, The invariant tubular neighborhood @, induces

@g*m Um+mwﬁzm —> 4%, The composition
, =11 o O n
b0y g XD 2 02y 0 s B

defines a tubular neighborhood of Mw in W which may not

coincide with 8y but which gives the correct fiber orientation.

By the uniqueness theorem for closed tubular neighborhoods, we

)

Wﬁoé.&wm& this tubular neighborhood 1is ambient isotopic (relative

Cto va to a tubular SmwmrdOHwoo@ which is ow&ﬁomodeH% bundle

equivalent to 6, see [1;VI.2,6]. Moreover, this preserves

. fiper orientation when d= 2,4, Thus, h is isotopic to a

diffeomorphism k such that there ig @ smooth map Xt MW idwgia+w
for which the diagram

k

>}
W
w

34, 7 . .th., |
pEH2 x4 1xahef | a2y

At e . I
commutes. Then N&nuhaumzt ko), where w: M —% M is the
. ) . a s o § . .
orbit map, 18 a QSsSwSFwOHm over X , as required.

6.2 Theorem, Let M= (15 0y Mgy and 70 = (1, Oy, ty)

rneee

d manifolds over W nhﬁwmgmﬁv and. let <W+h and <W+H
> smsamenn N

1 5

be fremed manifolds in 4W cobounding MW to which N& and

ites

7 correspond via 4.1, Then I and N are equivariantly

diffeomorphic if and only if there ig a diffecmorphism
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+ ! , 1+. .. 3
B TS EE o) s P2 K ) cuon that [rvh I* =

r<m+wg* where [V] denotes the frame cobordism class of V

and [V]" its orbit under the right action by [w,c2].

Proof, If o': M —> N ~is an equivariant diffeomorphism

then, by the uniqueness theorem for invariant tubular
neighborhoods, [1;VI.2,6] and [1;VI.3.1], o' is equivariantly
isotopic to a diffeomorphism @i M —=> N which is an equivariant

orthogonal bundle equivalence on the tubular neighborhoods oa

and mz, Thus ¢ induces a diffeomorphism 0¥, M¥ — n*
~and ‘there is a smooth map s Mw iiw.mm such that the -following

diagram commutes (where f is defined by commutativity).

Coixu lu® 6, o
. N_ | __. { H
- LXu Mzo 6 Vo on T W
2an,, ) N zan, o Oy + My
p“dny ok TN p<dn y G Nan Ny Ny

Thus umwnuﬁaw ﬁﬁw%atgv; is a QMnsmbwwowg over m&%. which
aowammwosaw to &wm:wwmsma manifold %N<Ev. by @.N (or by section 5).
The above diagram shows that ,NNW is mngw<mwmsﬁ,o<mﬁ W to
7l wand it follows from 4,1 that L2V I* = v J%

Conversely, suppose that T2 (W;z) LiwvAmva is a diffeomorphism
such that mwﬁ<zvu*u“m<zu*. Ry obNS@wsm f by an Mmowowww we
‘may suppose that £ ig mB.dﬁ&ﬁo%osmH bundle equivalence on the

W
N@%uuﬁzu Oy Toby ) over A corresponds to the framed manifold

given tubular neighborhood 6. +to itself, Then the QMgS@nwwowm

£(vy) by 4.2, Since [f(v, )1 ={v 1%, m&w and 2L are
equivalent ove-: w&s, In particular, ¥ and N are equivariantly

v

diffeomorphic.
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6,3 Coroliary. The set of equivariant diffeomorphism classes

miawswwopam ER+NQ5
A£w+@+mwmwuo

such that AS*.Emwozv

of regular G is

diffeomorphic to ig in one-one correspondence with

5

- SR
Taw,x, o.) /LW, e5]
Diff(¥W,T,0u)

where wﬂxwﬁummowv is the get of framed cobordism classes of

framed submanifolds of W cobounding ¥ and (when d=2,4)

consistent with the given fiber orientation o5, of the normal

bundle of ¥ in. JW.

. ottt o 8 [rvinse

6,4 Corollary. The set of eguivariant diffeomorphism classes
+G42 . .
k+d k s

MV fuaabase)

in cne-one correspondence with

& k¥+d+1 _k
mw\ A m.‘.‘..ﬁ.s.;,r s P OM v.\NN

WASLE 4p

where 2. acts by multiplying the frame by -1 (trivial for a=2,4),

Proof. If V, and V, are framed manifolds cobounding =

and if 1 gktaFl gkl 5o 5 qiffeomorphism carrying Vv, into

UW+Q+N

Vos it suffices to extend I o . This may not be possible,

However, it is well known that there is a diffeomorphism h of

mw+p+w which is the identity outside a Gisk UW+Q+Hw not touching

Vos and such that hf is isotopic to an orthogonal map, Thus hf

extends to DETOFTE

and takes <H to V,. Hence 6.4 follows
from 6.3, | ‘ | |

We note mwmo.dwmﬁ @wg msm u.m have corresponding formulations
of this ﬁ%@mr, In fact, this is ¥the version in which 4,4 occurs

in [10].
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7. Classification of unitary and symplectic knot manifolds

Ry a QMEWSQﬁ manifold we shall mean an oriented regular

mm:amﬁpwowg gmm3+w such that vﬂz*vzmv is diffeomorphic to

k+d+2 k

(D s va smem % is a onOﬁo@% k-sphere ws_,mw+a+p.

k is required osww.ﬁo be a wosowom% mﬁrmew:drws Mo owill

be called a wosowomk QMnWSO& manifold,

if z

When d=2 or d=4, "oriented" simply means that M is

oriented in the usual sense, Since the normal bundle of gm in
M has a canonical fiber orientation, it follows that EQ inherits
e

an orientation from that of M. Also, the normal bundle of

.

in M* has the canonical fiber orientation oy 8o that WK
1.

_inherits an orientation, - (Note that the commection between the

o

orientation of M and that of N can also be specified by

choosing an orientation of the principal orbit, Thig is

. . \ a \ .
canonical since *the group G, of self-eguivalences of QM\@M:V

is connected for d= 2, 4.) Thus, specification of an orientation
G

for any one of the three manifolds M. M M determines that
. ’ 3 .

k+d+2

of the others. We regard D ~as having its canonical

. . . , . . s o . LA G
orientation and can demand the given diffeomorphism (M uzov&

+3+2 _k : .
(pXtd »&7)  to preserve orientation, Thus x&

inherits an
orientation and, as before, its normal bundle has an induced
.wwwmﬁ owwmsﬁmwwos (denoted by G5, in mmo&wos 6).

. When d=1 and n ‘is even,  "oriented" means that
orientations are specified for both M and AE*V 1>mmpsu the

G in ‘M (but not in M*) has a canonical -

G

normal bundle of ¥

fiber orientat?on and hence I (and consequently va inherits

A7,

S

an orientation The choice of orientation for both M and W




G

can also be thought of as an orientation of M and a specification

of a wo@co&wo& of the structure mwOsw 0, of the equivariant

normal bundle of Em in M to the mcdmwon@ S0, It is done

so as to make the operation of equivariant ooﬁﬁmo&ma sum well defined,
The case da=1 and n 0dd will not concern us (primarily)

wu this section but we remark that, in this ommm,,.Omes&m@:

means the choice of an orientation of M and one of Emn The

orientation of @ induces one of M* since the group O, of
self equivalences of the principal orbit o;\ow 5 Dreserves

. i . -
orientation for n odd.

our previous classification theorems all have obvious

- analogs for the oriented case and we shall make use of this

sw&sOS& further comment, . o .
zted sum
operation Awoﬁ given n, m and k) is well defined by mH"<H,m.mun
Two o :WSo« manifolds zo and zw will be said to be
ol

mch<uwg&3&Hk h-~cobordant if there is an oriemted regular D ~manifold

M with boundary wa..zw..zo such ﬁsm& (3" ,z ) is en

h-cobordism (of pairs) between amw Emv mﬁg Ata ﬁwv.

7.1 @ﬁﬁ%@ For d=2,4 and k>5, ecguivariantly

h-cobordant mg xnot nmanifolds with WzawaSmwosmH fixed point

sets are equivariantly diffeomorphic ﬂdwm erving orientation).

Proof. Since _EM. is oouaHmOﬁWUHm, Ew is simply connected
of dimension k=5, and the codimension of Pm in WSN is
a+1 = wu the . amwﬁﬁv<m h-cobordism theorem implies that Azsw%o¢
¢l

ig diffeomorphic to nor+9+m wvvaw for some knot w ﬂnmw# .




,W.TN ﬂ. mwh.TQ..TH V/\ H

Then M corresponds to some framed manifold
cobounding XTI and which is “constant® near mm+c+wx\wHa
(This follows easily from the ''closed' case of 4,1 by simply

doubling - ¥ and using the interpretation in terms of homotopy

k+2

classes [v,0] before passing to V© °,) - Then

.\ . .vv . .
<W+H“u<x+m\JAmw+a+HyuMONV msg <W+H“”<W+{\/Amx+a+wv«wHwv

are framed manifolds to which | and My correspond,

0
> k+2 . ) . o - ‘
Since V is a cobordism between them, My, and My are

equivalent by 4,1,

-

We remark ﬁwmd‘ﬂ.w also holds for k=1, See the ﬁmsmﬂx

. following 7.2.

K, G o . C .
Let mwxmmﬁv denote the sget of equivariant h-cobordism
d

~-knot manifolds with k-dimensional fixed sets,

classes of G

By 7.3, mwwﬁmmv can be interpreted as the set of equivariant

a
n

a

oriented equivalence classes ow.m knot SWSMwowgm when d=2,4
and mem, Standard remarks show that mwwﬁmmv is an abelian
group with respect to connected sum when k=21,
Recall. the standard notation
oz  for k=3 (mod Iy
,ww+wu“ Z, for k=1 (mod wi
| 0 for k even,

. : . \ . k.4
m 3 \ oy Y : Ty s - i
7.2 Theorem., There is a homomorphism ¢z mw AQSV tlw_mw+w.

pom—

. . .k : I K, ,
For Xk#3 0y 3 &) (C,) —> P,q is onto, g, @ (Ug) = Py

. . : ¥, . . . .
18 an isomorphism, and I mw Amw5v i!w.mw+w 18 an isomorphlsn,




=50

Proof., ILet M Dbe a QMAWSOﬁ manifold and suppose that it

k+d+2

corresponds to the knot (D wmwv and the framed manifold

cobounding Mw. We define GQAEV to be zero

for k even, .stamxﬁ<w+wv Tor k=3 (mod 4), and the Arf

k+1

<W+H.HHMA+Q+H

invariant of the framed manifold V¥ for k=1 (mod 4);

see [12], ‘The proof of 7,1 shows that the framed cobordism

class (not ambient and with an h-cobordism on the doswamwwv
of <W+H depends only on the equivariant h-cobordism class
of M, and hence that ¢, is well defined. (FPor d=2,4 and

k25 this also follows directly from 7.1 and 6,3.) Using,

for example, the construction in section 5, we see that a connected

K+d+2  ktd+l Lkl Lk
i H mML v

gum of framed manifolds (D s v givesg rise

. . . d . .
to the connected sum of the corresponding mﬁ;%mbwﬁowgmm and 1t
follows that Pq is a homomorphism, For x#3 there is a

wwwSmaw almost closed, mgdamzwﬁowg <www of mw+m {and hence
0o i3 ._hw.ﬂ+ ..W

s
of S and s

mv with any given Arf invariant for k=1 (mod &),
or sny given multiple of 8 as index for k=3 (mod 4), Thus

9q is onto for k# 3, by 4.1, ‘ |
Suppose now that d=2,4 and k#¥ 3 and let M be a

mm;w5o& manifold with _sQAEvﬁuo. Then M corresponds to

AUW+@+mm <W+Hv where <w+H is a framed submanifold of mw,_,%,H
cobounding a homotopy wﬁﬁmww, Mw, Now emaav”uo which, d% w&mu
@m%w%wﬁwobw is the only obstruction to Emwwww <w+w madwmsaww
.frame cobordant (relative to va to a contractible Smﬁwﬁopg
since k # 3; see [12; 4,77, Thus we may assume that <W+H s

k+1

contractible. (If k#2,3,% then, of course, V is a disk.)
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(k+1)+d+3
D,

Consider the half disk as half the thickening

of D3 ang comsider a (half) thickening (TV)F'2 of yE*l
in mAW+Hv+Q+u\JUMW+Hv+Q+u. Then there is a QM:S&ﬁ%WOHQ i
over UMW+PV+Q+u with boundary M and with fixed set the

k+2 kt+1

“"boundary* of (TV) s which is diffeomorphic to V and

hence is contractible; compare 5.7, By deleting an invariant

open disk neighborhood of a fixed point in the interior of ¥
we then obiain an h-cobordism between M and the linear action.

Thus 04 is a monomorphism,

Remark, Suppose k=1 and d=2,4, It can be computed

that ﬂmAmmwmouv»“Nm»“ﬂmAmm“momv and hence there are at most

4 knot manifolds for k=1 by 4,3 and the fact

n
K JEW @ _ H. . i,
does not knot in S or S°. But @ AGSV“«NNH« m%gcwzv

two inequivalent G
that ST
by 7.2, and it follows that 7.1 also holds true for k=1, .
Since ﬂmammwwomvn"o and $° does not knot in S7, this also
holds for k=2 and d=4,

Let me+m+Hux be &wm group of h-cobordism classeg of

k+d+1

oriented k~knots (homotopy spheres) in S (oriented).

We have the homomorphism

K ) d ~k+d+1. k
@) —> @+

given by assignment of the orbit knot. .
. ~ k+d+1,k
There are the homomorphisms o : ww+psdv S ¥
for d=2,4 and k#¥3 defined in [12], They are given by

embedding an appropriate framed almost closed (k+1)-manifold




. k+d+1 MW C s ktd+1

in S and passing to its boundary There 1is

also the epimorphism

@?Ngw

given by assigning the appropriate index or Arf invariant of

Tt

P ]
—> 1 k+1

the knot,
1t then follows from 5.2, 5,3 and 4.5 that, for k# 3,

the following diagrams commutes:

K regtriction K,
= AGNMV : \\./\1 AU@SV
/ 9 ey
- .
>
Pre1
2 _
///w :
\/ P // v o .
@iy k ,,2%320{ RN @x.&w k
k regtriction w ..W
@ Aowﬁ.v , 7 @ Adsv -
NG e
Ny
N £
= P
=kl
v ot w. N v
+vN. L sSren i - n«n)
e N mcaﬁ nsion vwmww 35k




1S a

k3% .
pey T2 QT

monomorphism {(which is the case for k#1) then a U, ~knot manifold

e e AT

7.3 Theorem. Let k# 3. If d: P

]

is oos pletely determined, up to equivariant h-cobordism, by its

orbit knot M%AH< w. If 9: ww+u 3 mww+www.

is a monomorphism

.

‘s

m@ -knot

. . y . . . : oKt 5
menifold is comrletely determined by its orbit knot 3 Aﬂ x

(which is the case for k>5 and k#2% ~3) then a

up to equivariant h-cobordism (and hence up to equivariant

L
]

diffeomorphism for k#2,3,4),

~Proof., This is immediate from the diagrams abpve, -The

Lot hnnohne

.

parenthetical remarks follow immediately from the results of

Levine [12] and ‘Browder [4], mwomﬁﬁ for the case of U x&o&posm

v ....\. o . ; 1] e )
wilth wnumhgeuf. awm fact that J: mw¢w+?utw+:

wgw+m

3

ig a monomorphism for r21 (even when w"umu.fwv will be

shown in section 8,

7.4 Theorem. Suppose that the knot dimension k¥ 3.

TSR ——

Then each homology m@ﬁa%:o& manifold is the restriction to

mﬁsmﬂmdms of a homology amzzwzoﬁ manifoid, Also each honmolog

U_~knot manifold is the restriction to cﬁmeoJ of a homology

n

1 de negan S0 - e voe . 3 1. . W+m
so=Xnot manifeld, In varticular, the knot M s
—

k+3 .@w+m

(resp.

(resp. )o 1L this

0 1
£ s"* ) decuspends to S
d

esuspension is specified then the extension of the Sp,-action

to U, (resp, U to Jv is unique up to eguivariant h~cobordism,
il » :

wesemar on arearmas v 3

Proof., If the knot ° is a soSowodewaWmﬁWmsﬁrwmwm

Jeatipuncibedimri

immediate from the diagrams preceding 7.3. (In fact, in this
. . . o S kD
case, the first diagram shows that tre ~zsuspension of Mrmﬂ.vw 7

] -y v.lT . '3 . PN
to ¥ s¥T? s unigue,) Thus assums. that k>3,




hounds a frawned man

frame cobordien

Cig the  suspension old in R
theorem follows immediately from this, 5,2 5.3,

framed wmanifeld in S

ant as doeg V and

o . )
bounding & homotopy

ety e b s bme e

I7s ) . . ) HT.-T Hmt .
Ly (We shell use the same notation V5 for the sus

dant in

the normal framegs, U 7 can be

(since k+2206), But D77, and

ig amblent isotopic to a subspace

o K3 + ] : PR . N F O
{1esp, Lyfmrl.aw ), by the unigueness theorem of Tubul:

L2
neighhorhoods,

For the swaéaswav gtetement suppose, Tor exumple, That

i A
M. and W, are Gmﬁsaﬁzwﬁowwm over (D7 7,5
correspond to the framed manifolds V

Locording to 4,3, and the remark below Hdw we can assume that

v, <J\\< where <w+w ig a framed manifold cobounding the

L o KA - . P . .
w ndard mr»}.mpnm. Then WM. - # where ¥ 1s T

iy . oo R . ; ey
corresponding to <r H, sssuming that M, and M, are

e
@
<
3

[
3
=
o
g
=
=
i”,
o]
!
~

as wbﬁssmSHwowamm we conclude that <Hv and V., naeve the sane
index or Arf invariant, since these arve frame cobordism and

diffeomorphism invariants. But then V has

linsar

g
(o]
%—}
joF]
¢
=
=
&
=
X
i
n
o]
[
(o]
G
~
<
%
i
hocyad
Lanl
N
1)
}_us
Fis]
ot
=
=2
o

o
mn
o

~-manifolds, as claimed.

o)

}._l
O
£
i

::
D

=
?
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w3 e

now turn te the

{f direct homology ca

or the

o

prool of [1;v.

L

-

I
<A
23

Let T the usual honomorph

}_..'

?"1

L
b

the boundary of almost closed, framed

d . mRdrtk

\.J...W [ N
G 6) >

. PR R S,
ary aCuiOng

Let

gnment of the

of aven whern

@0, ) =2, @)~

/

N e _
Crhntk . Wtk
S/ . m.u

4, i N Y

In fact these follow immediately from

and the commutativity in the omsmomm@a The latter case

from { 2,3 ].
In fact one can give explicit examples of all U

knot menifolds as

+
~
i
>
cu
o
4
i-.-l

follows Le
v@s.,‘lm Z(dnrr)+

PG »ww,

with the

-+
!WJ

Briegkorn manifold W =

which 18 -the
. s ~An .Hrw . .
of the unit sphere in ¢ variely

and consider the

inte

the disgrans preceding 7

o

Tollows




£ 50e

x@:+$;5m4w old, this is well known to

l.,..l "

torus link (knot, when D and ¢ are HmAMN

type (p,q); see ﬁwmqmwou for example. Also,

. g . Gl s . , . .
a Seifert surface V in $7 O%.;dwsmccm%amu
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