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Preface

In the spring of 2018 Misha Gromov asked me if I wanted to write a book, Infinite
Group Actions on Polyhedra, for Springer’s Ergebnisse der Mathematik series and
I agreed. This is the result. When I first mentioned the proposed title to Tadeusz
Januszkiewicz, he responded “Well, that includes just about everything.” Indeed,
the title encompasses much of the rapidly growing field of geometric group theory.
Since I have not kept up with many of the recent advances in the field, the project
has proved to be more difficult than I originally envisioned. In the end, I have
tried to focus on the subjects I understood best: nonpositive curvature, Coxeter
groups, Artin groups, groups acting on buildings, simple complexes of groups,
and hyperbolization techniques. My one attempt at covering a more recent topic is
Chap. 5 on the Haglund–Wise theory of special cube complexes and its application
by Agol to the theory of hyperbolic 3-manifolds.

The main ideas in geometric group theory originated in Gromov’s extended
essay, Hyperbolic Groups [136]. The key idea of a nonpositively curved polyhedron
appeared there as did the basic notion of a hyperbolic group. Many of the topics
in this book can also be found in the text by Bridson and Haefliger, Metric Spaces
of Non-positive Curvature [35]. There is also considerable overlap with my earlier
book, The Geometry and Topology of Coxeter Groups [82]. The book in hand should
be regarded as a companion text to the two aforementioned books. An important
feature of nonpositive curvature is that the universal cover of a nonpositively curved
polyhedron is .CAT(0) and hence, is contractible. The main subject of this book
is on infinite groups acting on contractible polyhedra. Here my focus has been on
describing techniques for constructing examples.

This book is intended for graduate students and researchers in geometric group
theory.

Because of my many typing mistakes, proofreading became a difficult time-
consuming task. I thank Jingyin Huang, Conchita Martinez, Grigori Avramidi,
Kevin Schreve, and Boris Okun for their comments and considerable help with
proofreading. Frédéric Haglund made a number of helpful suggestions, both
mathematical and typographical, concerning Chap. 5. I also thank my old friend
Elliott Stein for spending a good deal of time and effort proofreading the entire

v
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manuscript and making many substantial suggestions. My thanks also go to my
student, Katherine Goldman, for doing the figures and illustrations. I am grateful
to the editor of the series, Remi Lodh, who provided a good deal of help and
encouragement.

Columbus, OH, USA Michael W. Davis
December, 2023
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Chapter 1
Overview

Mathematics is only a story of groups.
(H. Poincaré)
The theory of groups can be summarily defined as a theory of
symmetry, indistinguishability and homogeneity.
(J. Tits)1

For over 170 years, the connection between group theory and the fields of geometry
and topology has held central in mathematics—the connection is that the symme-
tries of a geometric object form a group. For example, the full symmetry group of a
regular n-simplex is the symmetric group on .n + 1 letters. Hence, any finite group
can be realized as a group of symmetries of a regular simplex. As another example,
any finitely generated group G acts on its Cayley graph as a group of symmetries
of the graph. The pantheon of great mathematicians who worked on symmetry
groups during the second half of the nineteenth century includes Möbius, Schläfli,
Jordan, Cayley, Lie, Klein, and Poincaré. Around 1850 Möbius determined the full
symmetry group 3-dimensional regular polytopes (or equivalently of tessellations
of .S

2 by spherical triangles). This was extended to higher dimensions by Schläfli.
Möbius’ results were also extended to triangular tessellations of the euclidean and
hyperbolic planes by Riemann and Schwarz and later to polygonal tessellations
of the hyperbolic plane by Poincaré and Klein. In this early work the group was
a discrete group of symmetries of a geometric object, namely, a polytope or a
tessellation of a space by polytopes. Such discrete symmetry groups are the main
focus of this book. In the nineteenth century research also began on “continuous”
symmetry groups with work of Lie and Klein on Klein’s Erlangen Program. This
program identified a geometry with its group of symmetries. Discrete subgroups of
Lie groups acting an appropriate geometries also play a role in this volume. For
the first half of the twentieth century, we mention only the work Weyl, E. Cartan,
Chevalley, and Coxeter. The first three made important contributions to continuous

1 I found both of these quotes in a paper of Étienne Ghys.
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symmetry groups. Cartan’s theory of symmetric spaces and their isometry groups
(i.e., semisimple Lie groups), as well as the theory of locally symmetric spaces
(i.e., quotients of symmetric spaces by a discrete subgroups of isometries of cofinite
volume) stands out. In the 1930s Coxeter [66, 67] classified irreducible discrete
reflection groups on the n-sphere and on n-dimensional Euclidean space. He showed
that each was associated with a symmetry group of a regular tessellation or with
symmetry group of a root system. The theory of Coxeter groups developed out
of this work. The first half of the twentieth century also saw the introduction
into group theory of the notion of a “presentation” of a group via generators and
relations. This led to the introduction of topological methods in group theory and
to the field of combinatorial group theory. For the second half of the twentieth
century, we only mention Tits, Mostow, Thurston, and Gromov. Tits was responsible
for the theory of buildings (cf. Sect. 4.4). In particular, his theory of “spherical
buildings” provides polyhedra on which finite simple groups of Lie type (also called
“Chevalley groups”) act as symmetry groups. Mostow’s Rigidity Theorem showed
that in many cases, a locally symmetric space of finite volume is determined, up to
isometry and homothety, by the discrete subgroup of isometries of the symmetric
space. Thurston’s Geometrization Conjecture, in particular his work on putting
hyperbolic structures on 3-manifolds, vastly expanded our view of the connection
between group theory, geometry and topology. Beginning in the late 1970s Gromov
introduced some of the main ideas in geometric group theory: the basic idea was
to study “coarse” properties of a group G (i.e., properties of the Cayley graph of
G which are invariant under quasi-isometries). A early success appeared in Gromov
[135] where it is proved that any group of polynomial growth is virtually a subgroup
of nilpotent Lie group. An important idea of Gromov [136] was the notion of a
“hyperbolic group,” meaning a group that is coarsely negatively curved.

In this book the terms “cell complex” and “polyhedron” are used synonymously.
The cells are usually convex polytopes. We are primarily concerned with polyhedra
whose universal covers are contractible. The group of deck transformations is a
symmetry group of such a universal cover. Since we are implicitly assuming that
symmetries preserve the cell structure, these symmetry groups will be discrete
subgroups of the group of homeomorphisms of the underlying topological space. As
basic examples, the reader can think of tessellations of euclidean space or hyperbolic
space. However, such tessellations only give a tiny fraction of the possibilities.
For example, the universal cover of any connected graph is a tree, i.e., it is a
1-dimensional contractible polyhedron, usually not a manifold. The reasons for
studying polyhedra with contractible universal covers are rooted in topology.

In the mid twentieth century Alexsandrov and Busemann introduced notions of
what it means for certain singular metric spaces (geodesic spaces) to be “nonpos-
itively curved” (abbreviated as NPC). These notions give a geometric method for
proving that the universal cover of a connected polyhedron is contractible: if a
polyhedron admits a NPC polyhedral metric, then its universal cover is contractible.
This method was used by Gromov [136] to produce many new examples of
nonpositively curved polyhedra. The description of such examples is a principal
focus of this book. Although such polyhedra need not be manifolds, the case in
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which they are is particularly interesting. In Sect. 3.2 and Chap. 6 we construct NPC
metrics on polyhedra which happen to be topological manifolds. These manifolds
need not admit any nonpositively curved Riemannian metric. For example, the
universal cover of such an NPC polyhedral manifold, although contractible, need
not be homeomorphic to euclidean space. By the Cartan–Hadamard Theorem such
a manifold cannot admit any NPC Riemannian metric.

There are two methods for constructing actions of discrete groups on polyhedra.
One method involves the fundamental group and covering space theory. The other
method involves the theory of complexes of groups.

Covering Spaces If a space X admits a universal covering space (i.e., if X is
semi-locally 1-connected), then its fundamental group acts as the group of deck
transformations on its universal cover .˜X. Given a presentation for a group .π , there
is a standard construction of a 2-dimensional, connected CW complex X with
.π1(X) = π : start with a wedge of circles, one for each generator and then attach a
2-cell for each relation. It follows from van Kampen’s Theorem that .π1(X) = π .
One can continue to attach cells to X of dimension greater than 2 to kill the
higher homotopy groups, .πi(X), for all .i ≥ 2. The result is a CW complex with
fundamental group .π and with all higher homotopy groups equal to 0. We denote
such a space by .Bπ and call it the classifying space of .π . The CW complex .Bπ

is characterized by the fact that its universal cover, .Eπ , is contractible. Standard
arguments in homotopy theory show that .Bπ is unique up to homotopy equivalence,
e.g., see [146, Theorem 1B.8]. Thus, algebraic topological properties of .Bπ (such as
its cohomology groups) are properties of the group .π . The space .Bπ is also called
an “Eilenberg-MacLane complex” .K(π, 1). Any such space in which all higher
homotopy groups vanish is said to be aspherical.

Simple Complexes of Groups A 1-dimensional complex of groups is a graph of
groups as defined in Serre’s book [207]. The theory of graphs of groups inspired
several people, notably, Haefliger [138], to define a higher dimensional version
called a “complex of groups.” Roughly, the data for a complex of groups consists of
a cell complex X, a family of subcomplexes and an assignment of a group, called
the “local group” to each subcomplex in the family. This data defines a group, called
the “fundamental group” of the complex of groups, as well as a new cell complex Y ,
called the “universal cover of the complex of groups,” on which the “fundamental
group of the complex of groups” acts. The local groups are cell stabilizers. For
example, if each local group is trivial, then the fundamental group of the complex
of groups is the ordinary fundamental group of the underlying CW complex and its
universal cover is the ordinary universal cover. At the other extreme, there is the
notion of a “simple” complex of groups. Simple complexes of groups arise from
group actions on polyhedra with strict fundamental domains. This means that the
family of local groups is a poset of groups and that the fundamental group is just
the direct limit of this system of groups (at least in the case when the geometric
realization of the underlying poset is simply connected). In the case of a graph of
groups, the underlying 1-complex is a graph, the universal cover is a tree, and the
local groups are the stabilizers of edges or vertices. When the underlying graph
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is a tree, the graph of groups is a simple complex of groups; so, its fundamental
group is the direct limit of the poset of local groups. In dimensions greater than
1 the universal cover of a simple complex of groups need not be contractible. For
example, if a triangle of groups comes from the action of a discrete reflection group
on .S2, then its fundamental group is a finite Coxeter group and the universal cover
is .S2.

.CAT(0) Spaces and Nonpositive Curvature Geometric group theory essentially
begins with Gromov’s essay [136]. Nonpositive curvature is the main current in
the ocean of geometric group theory. One of the innovations of [136] was to
define the notion of a nonpositively curved (or a “locally .CAT(0)”) polyhedron.
Gromov defines a geodesic space to be .CAT(0) if each of its geodesic triangles
is “thinner” than a corresponding comparison triangle in the euclidean plane.
Any .CAT(0) space is contractible. The reason is that there is a unique geodesic
segment connecting any point to a base point: geodesic contraction then provides
the contraction. A prototypical example of a .CAT(0) space is the universal cover
of a closed, nonpositively curved Riemannian manifold. In this book we will be
concerned with “singular” geodesic spaces (e.g. spaces with polyhedral metrics)
which need not be manifolds. Such a geodesic space is nonpositively curved if it
is locally .CAT(0). The universal cover of any NPC space can then be seen to be
.CAT(0) and hence, to be contractible. This is the main use of nonpositive curvature
in geometric group theory—it provides a method for showing that a polyhedron
is aspherical. Similarly, one can define what it means for a geodesic space to be
.CAT(−1) or .CAT(1) by using comparison triangles in the hyperbolic plane .H

2

or the unit 2-sphere .S2, respectively. It is explained in Sect. 2.1 that a piecewise
euclidean polyhedron X is nonpositively curved (abbreviated NPC) if and only if
the link of any cell is .CAT(1). (See Theorem 2.11.) This condition on a polyhedron
X is called the “Link Condition.” It means, for example, that a piecewise euclidean
surface is nonpositively curved if and only if the cone angle at each of its vertices is
.≥ 2π .

Nonpositively Curved Cube Complexes A polyhedron X is a cube complex2

if each of its k-dimensional cells is combinatorially equivalent to the unit k-
dimensional cube in some euclidean space (possibly with some identifications of
faces on its boundary). Cube complexes can be given a piecewise euclidean metric:
just declare each cell to be locally isometric to the corresponding unit cube in
euclidean space. For cube complexes, the Link Condition is equivalent to an easy
combinatorial condition—the link of each cell must be a “flag complex.” This is
Gromov’s Lemma from Sect. 2.2. (A simplicial complex is a flag complex if every
complete subgraph of its 1-skeleton spans a simplex.) The study of nonpositively
curved cube complexes is a major subject in this book, in fact, it is the primary topic
in Chaps. 3 and 5.

2 Recently, the use of the term “cube complex” instead of “cubical complex” has come into vogue.
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Polyhedral Products and Their Universal Covers Polyhedral products provide
a method for constructing NPC cube complexes. The data for a polyhedral product
consists of a simplicial complex L, whose vertex set is denoted I , together with
an I -tuple .{(Ai, Bi)}i∈I of pairs of spaces. The polyhedral product .{(Ai, Bi)}L is
then defined to be a certain subspace of the product .

∏

i∈I Ai that depends on which
subsets of I are vertex sets of simplices in L (see Definition 3.1). A prototypical
example is the case when each .Ai is the interval .[−1, 1] and .Bi is its boundary .{±1}.
The polyhedral product .{([−1, 1], ∂[−1, 1])}L is denoted by .PL in Sect. 3.1. It is a
subcomplex of the cube .[−1, 1]I . It follows from Gromov’s Lemma that .PL is NPC
if and only if L is a flag complex (usually we assume this). Hence, its universal
cover .P̃L is a .CAT(0) cube complex, called the “Davis–Moussong complex.” Let
.C2 = {±1} denote the cyclic group of order 2 acting on .[−1, 1] by reflection across
0. Then .(C2)

I acts on .[−1, 1]I via reflections across the coordinate hyperplanes.
The fundamental domain for the .(C2)

I -action is the polyhedral product, where each
.(Ai, Bi) = ([0, 1], 1). This fundamental domain is denoted K . It is homeomorphic
to the cone on the barycentric subdivision of L. The subcomplex .PL is stable under
the .(C2)

I -action. The group of all lifts of elements of .(C2)
I to the universal cover

.P̃L is denoted by .WL and called the right-angled Coxeter group (abbreviated as

.RACG) associated to L. The Davis–Moussong complex together with its .WL-action
is one of the principal examples in this book.

More generally, given any I -tuple of discrete groups .(Gi)i∈I , take .(Ai, Bi) =
(Cone(Gi),Gi) and form the polyhedral product .ZL := {(Cone(Gi),Gi)}L. The
direct sum (i.e., the weak direct product), .

∑

Gi acts on .ZL. The group of all lifts of
elements of .

∑

Gi to the universal cover .Z̃L is called the graph product of the .Gi . It
is denoted by .

∏

L1 Gi . As before, if L is a flag complex, then .Z̃L is a .CAT(0) cube
complex. It is the basic example of a right-angled building (abbreviated .RAB). If
each .Gi is infinite cyclic, then the graph product .

∏

L1 Z is denoted .AL and called
the right-angled Artin group (abbreviated .RAAG) associated to the 1-skeleton of L.
The associated .RAB, .Z̃L, is called the Deligne complex for .AL in Chap. 4.

Polyhedral products also provide a method for constructing the classifying space
for a graph product .Γ = ∏

L1 Gi from the classifying spaces of the factors. In
fact, in the case .Ai = BGi and .Bi is a base point .∗i , we get that .BΓ is homotopy
equivalent to the polyhedral product:

.BΓ = {(BGi, ∗i )}L,

provided that L is a flag complex. (See Proposition 3.27 in Sect. 3.1.2 and
Theorem A.19 in Appendix A.4.) In the case of the infinite cyclic group, .Z, the
classifying space .BZ is .S1. So, the classifying space .BAL for the right-angled Artin
group .AL is the polyhedral product, .{(S1, ∗)}L, which is a subcomplex of the torus
.T

I (that is, the I -fold product of copies of .S1).

The .K(π, 1)-Question Suppose .G = {Gσ }σ∈Q is a simple complex of groups with
local groups .Gσ indexed by a poset .Q. Let .Γ be the fundamental group of the
complex of groups .G and let .Y (G) be the universal cover of its development. One
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can glue together the corresponding classifying spaces .BGσ to get a new space
.BG. It follows from van Kampen’s Theorem that the ordinary fundamental group of
.BG is .Γ . The .K(π, 1)-Question for .G asks: Is .BG homotopy equivalent to .BΓ ?
In other words, if we use a simple complex of groups to glue together a poset
.{BGσ } of aspherical complexes, is the result a .K(π, 1)? In fact this question was a
principal motivation for the early development of the theory of complexes of groups
by Gersten and Stallings (cf. [209]). Indeed, they showed that for nonpositively
curved triangles of groups, the answer is affirmative. In general, it turns out that the
answer is affirmative if and only if the universal cover .Y (G) of .G is contractible. In
particular, this is true if .Y (G) is .CAT(0). Therefore, it follows from the previous
paragraph that the .K(π, 1)-Question has an affirmative answer for the simple
complex of groups corresponding to .RACGs, .RAAGs and .RABs (cf. Sect. 4.1.3).

Right-Angled Reflection Groups on Manifolds In Sect. 3.2 we use polyhedral
products to start the discussion of right-angled reflection groups on aspherical
manifolds and their universal covers. If L is a piecewise linear triangulation of .Sn−1,
then the fundamental chamber K (.= K(W, S)) is an n-disk, .PL is an n-manifold,
the action of .(C2)

I as a reflection group on .PL is locally linear and the cubical
structure on .PL is dual to its cellulation by chambers. If the simplicial complex L is
only required to be a generalized homology .(n − 1)-sphere, then .PL is a homology
n-manifold that is NPC. When L is simply connected, .PL actually is a topological
manifold. When L is not a PL-sphere, we can get examples where the .CAT(0)

manifold .P̃ is not simply connected at infinity and hence, is not homeomorphic to
euclidean n-space. (These topics are discussed in Sect. 3.2, as well as in my earlier
book, [82].) In Sect. 3.2 we also take an extended detour into some related topics: the
theory of real quasi-toric manifolds (or “small covers” of the fundamental orbifold
K), as well as the theory of higher-dimensional Haken manifolds. In Sect. 3.2.6
we explain the Reflection Group Trick. The main consequence of this trick is that
given an finite aspherical complex B, there is a closed aspherical manifold M which
retracts onto it. Actually, .π1(M) is a torsion-free subgroup of finite index in a
reflection group which has as its fundamental chamber a thickening of B. Projection
onto the fundamental chamber is a retraction that leads to a retraction on the level of
groups, .π1(M) → π1(B). From this one sees that many pathological properties
which are for fundamental groups of aspherical polyhedra are also possible for
fundamental groups of aspherical manifolds. For example such groups need not be
residually finite.

Chapter 4 The heart of this book is Chapter 4: Coxeter groups, Artin groups,
buildings. It describes the main classes of examples of group actions on polyhedra in
which we are interested. Each of these three classes is based on the theory of Coxeter
systems. In contrast to the right-angled examples discussed above, these examples
need not be cube complexes. However, each has an associated simple complex of
groups which is often (conjecturally always is) nonpositively curved.
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Coxeter Groups The theory of (not necessarily right-angled) Coxeter groups is
essentially synonymous with the theory of groups generated by reflections. If a
group W is a discrete group generated by isometric reflections on a simply con-
nected manifold M of constant curvature, then there is a natural strict fundamental
domain for the W -action on M , namely, the closure of any component of the
complement of the union of reflecting hyperplanes in M . If we choose one such
component and denote its closure by K , then K is a convex polytope and the set
of reflections S across its codimension-one faces is a set of generators for W (K
is called a “fundamental chamber.”) The pair .(W, S) is a Coxeter system and W is
a Coxeter group. The theory of Coxeter groups is the topic of my previous book
[82]. It is shown in [82] how to reverse this procedure: given an “abstract” Coxeter
system .(W, S) one can build a .CAT(0) cell complex .Σ(W, S), called the “Davis–
Moussong complex,” on which W acts as a proper, cocompact reflection group with
a strict fundamental domain, denoted by .K(W, S). A key feature is that the strata
of .K(W, S) correspond to the subsets J of S that generate finite subgroups of W ;
these are the so-called spherical subsets of S. It follows that the cells of .Σ(W, S)

are “Coxeter zonotopes” corresponding to the spherical subsets of S. General, not
necessarily right-angled, Coxeter systems are intimately connected to buildings, as
well as to Artin groups. We discuss some of these connections in the next two
paragraphs.

Buildings The theory of buildings was developed by Tits, cf. [216, 218]. A
“building” .C is a certain combinatorial object .C consisting of a set of “chambers,”
.Ch(C), that satisfies certain additional conditions. Each building has an associated
Coxeter system .(W, S) called its type. In the standard realization of a building each
element of .Ch(C) is homeomorphic to the fundamental chamber .K(W, S) of the
associated Coxeter system .(W, S). The “standard realization” of .C is the polyhedron
.|C| formed by gluing together copies of .K(W, S), one for each element of .Ch(C),
along codimension-one faces. The piecewise euclidean metric on .K(W, S) induces
a piecewise euclidean metric on .|C|. The space .|C| is a union of copies of .Σ(W, S);
each such copy is called an “apartment.” It follows from the axioms for buildings
that each apartment is a totally geodesic subspace of .|C| and that .|C| is a .CAT(0)

space. Here is the picture to have in mind: in an apartment exactly 2 chambers
meet along each codimension-one face of .K(W, S), while in a building the number
of adjacent chambers along any codimension-one face is always .≥2. For example,
any tree without terminal vertices is a building (whose type is the infinite dihedral
group), the chambers are the edges, an apartment is an embedded geodesic line in
the tree. Any product of trees is an example of a right-angled building (abbreviated
as .RAB). The cube complex associated to any graph product of groups is another
example of a .RAB. If .C admits a group G of automorphisms that is transitive on
.Ch(C), then the isotropy subgroups of G give us a simple complex of groups over
.K(W, S). The local groups are the parabolic subgroups .GJ corresponding to the
spherical subgroups J of S. The universal cover of this simple complex of groups is
.|C|.
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Artin Groups Associated to any Coxeter system .(W, S) there is a presentation for
an Artin group A (.= A(W,S)). The set of generators .{as}s∈S in the presentation is
bijective with the set of generators S for the Coxeter group, except that now the
generator .as corresponding to s will have infinite order rather than order 2. In the
Coxeter group we had a relation .(st)m(s,t) = 1 for each edge .{s, t} of the 1-skeleton
of L, while in the Artin group this relation is replaced by an “Artin relation” of the
form:

. prod(as, at ;m(s, t)) = prod(at , as;m(t, s)),

where .prod(a, b;m) means the alternating word in a, b of length m starting with a.

As before we get a simple complex of groups over .K(W, S); the local groups
are the spherical Artin groups. The fundamental group of this simple complex of
groups is the Artin group A. Its universal cover (also called its “development”) is the
Deligne complex, denoted by .Λ(W, S). If A is a .RAAG, then its Deligne complex
is a .RAB.

For any Coxeter system the Davis–Moussong complex, .Σ(W, S), is contractible.
The same is true for the standard realization of any building. However, for the
Deligne complex, .Λ(W, S), associated to an Artin group, the answer is not known.
Conjecturally, as in the case for Coxeter groups and buildings, the Deligne complex
is .CAT(0). (See Conjecture 4.54 in Sect. 4.3.1.) As explained above, this would
imply that the .K(π, 1)-Question for the complex of spherical Artin subgroups .{Aσ }
has a positive answer. This is the “.K(π, 1)-Conjecture for Artin groups”. It is the
most important unsolved problem in this area. The answer is known in many cases,
for example, when A is spherical type, is type FC, or when .dim Λ(W, S) ≤ 2.
(See Corollaries 4.59 and 4.57 in Sect. 4.3.1.) It is also known to be true when the
associated Coxeter system is euclidean, cf. [188].

The General Theory of .CAT(0) Cube Complexes In Chap. 5 we return to cube
complexes. For any cube complex there are naturally defined “hyperplanes.” These
are certain totally geodesic immersed subcomplexes of codimension one. In a
.CAT(0) cube complex X, each hyperplane is embedded and separates X into two
open “half-spaces;” furthermore, each such hyperplane is itself a .CAT(0) cube
complex.

Sageev [200] gave a definition of an abstract .CAT(0) cube complex as a
certain poset, the elements of which are called “half-spaces,” which satisfies certain
properties. This abstraction is called a “pocset,” a “half-space system,” or sometimes
a “wall set.” Given an abstract half-space system one can recover a geometric
.CAT(0) cube complex. (See [182, 197, 202].) Sageev used this construction in
the following way: given a group G and a “sufficiently deep,” codimension-one
subgroup H , one can define a half-space system where the abstract half-spaces are
certain subsets of G. Hence, one obtains a G-action on a .CAT(0) cube complex.
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The basic example to keep in mind is when G is the fundamental group of a
manifold M and H is a .π1-injective codimension-one submanifold N that separates
M into two pieces, .M1 and .M2, with respective fundamental groups, .G1 and .G2.
The lifted hypersurfaces divide the universal cover .M̃ into regions, each of which is
a copy of the universal cover of either .M1 or .M2. In this way we get a decomposition
of G as an amalgamated free product .G = G1 ∗H G2, where .H = π1(N), so that
G acts on the associated Bass-Serre tree with one vertex for each region tree with
one vertex for each region (cf. Fig. 5.1 in Sect. 5.1.2). Sageev realized that if the .π1-
injective hypersurface N is only required to be immersed, then we can still require
the lifts of N to be embedded hypersurfaces that intersect transversely. The regions
then correspond to most of the vertices of a .CAT(0) cube complex. Thus, groups
acting on such .CAT(0) cube complexes are a generalizations of graphs of groups.

As examples, Niblo–Reeves [183] proved that every Coxeter group (not nec-
essarily right-angled) acts properly on a .CAT(0) cube complex. Also, Bergeron-
Haglund-Wise [17] proved that the fundamental group of any “standard” arithmetic
hyperbolic n-manifold acts on a .CAT(0) cube complex.

Special Cube Complexes The theory of special cube complexes was developed
by Haglund–Wise [143]. An NPC cube complex is “special” if certain types of
intersections of hyperplanes are avoided—the main requirement is that hyperplanes
with self-intersections are forbidden. The main result of [143] is that if X is an NPC
special cube complex, then X isometrically immerses in the standard cube complex
of some .RAAG. (See Theorem 5.27.) Alternatively, X isometrically immerses in the
Davis–Moussong complex for some .RACG. It follows that .π1(X) virtually embeds
in some .RAAG (i.e., that .π1(X) has a subgroup of finite index which embeds in a
.RAAG). This is important because .RAAGs have good separability properties which
are inherited by subgroups. For example, any .RAAG is residually finite and all of its
“word quasi-convex subgroups” are virtual retracts. Using work of Kahn-Marković
[162] and a result of Agol [3], one can show that the fundamental group of any
hyperbolic 3-manifold is virtually special (i.e., has a subgroup of finite index that
acts on a special cube complex). As a consequence of the resulting separability
properties for hyperbolic 3-manifold groups, Agol [3] proved Thurston’s remaining
conjectures about 3-manifolds, e.g., every closed hyperbolic 3-manifold is virtually
Haken. This also uses Agol’s proof of a conjecture of Wise: if a word hyperbolic
group acts properly and cocompactly on a .CAT(0) cube complex, then it is virtually
special.

Morse Theory on result .CAT(0) Polyhedra “Morse theory” on polyhedra is an
important tool for studying the topology of .CAT(0) polyhedral complexes. Given a
real-valued function f on a .CAT(0) polyhedron Y , one asks how the topology of the
level sets .f −1(t) changes as t crosses the value of f at a vertex. (Often one requires
that the restriction of f to each cell be an affine map.) The answer is that the level
set is changed by attaching a copy of the cone on the “ascending link” of f at v,
denoted by .Lk↑(v). It consists of the directions in .Lk(v) in which f is increasing.
The following two uses of Morse theory are explained in Chap. 7:
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(i) The first use is to study the topology at infinity of Y .
(ii) Secondly, suppose G is a group that acts properly and cocompactly on a .CAT(0)

cube complex Y and that .ϕ : G → Z is an epiomorphism corresponding to a
Morse function .f : Y → R. In [23] Bestvina and Brady analyzed the finiteness
properties of the group .ker ϕ by studying the level sets .f −1(t).

With regard to (i), suppose .f : Y → [0,∞) is the distance from a given vertex .v0,
i.e., .f (y) = d(y, v0). The level set .f −1(t) is then the sphere of radius t about .v0.
One can then prove a result of Brady-Meier [34]: if each ascending link .Lk↑(v0) is
m-acyclic (resp. m-connected), then Y is m-acyclic (resp. m-connected) at infinity.
(The relevant definitions can be found in Sects. 7.1.2 and 7.1.3.) Applications to the
topology at infinity of .RACGs and .RAAGs are given in Sect. 7.1.3.

The main case of interest for (i) is when .G = AL, the .RAAG corresponding
to the flag complex L. The cube complex .BAL denotes the standard model for its
classifying space as a subcomplex of .T

I ; its universal cover is the .CAT(0) cube
complex .YL = EAL. The vertex set of .YL can be identified with .AL. Let .ϕ : AL →
Z be the homomorphism which sends each Artin generator .ai to the element .1 ∈ Z.
The homomorphism .ϕ extends to a function .f : YL → R which is an affine map
on each cube. The group .ker(ϕ) acts freely and properly on any level set .f −1(t).
The link of each vertex in .YL is the simplicial complex OL formed by “doubling
each vertex.” Each ascending link .Lk↑(v) is a certain subcomplex of OL that can
be identified with L. Bestvina–Brady prove that each level set .f −1(t) is homotopy
equivalent to .YL if and only if each ascending link L is contractible and hence,
that .f −1(t)/ ker ϕ is a model for .B(ker ϕ). Moreover, the inclusion .f −1(t) ↪→ YL

induces an isomorphism on homology if and only if L is acyclic. The main result
of [23] is that if the simplicial complex L is acyclic but is not simply connected,
then the subgroup .ker ϕ is type FP but not type F. (This means that .ker ϕ has the
homological properties required for .B(ker ϕ) to be a finite complex except that it
need not be finitely presented.) Interesting relatives of this result are explained in
Sect. 7.4. First, if Q is a finite group of simplicial automorphisms of L, then the
wreath graph product .AL � Q, acts properly on .YL, i.e., .YL is a cocompact model
for .E(AL � Q), the universal space for proper .AL � Q-actions. Leary–Nucinkis
[170] show that there are examples where .ker ϕ is type F yet there is no cocompact
model for .E(ker ϕ � Q). Other relatives of Bestvina–Brady groups are studied by
Leary [169]. He shows that there are uncountably many groups of type FP which
are not finitely presentable (and hence, are not type F).

Examples The principal theme of this book is the description of some general
methods for constructing examples of group actions on contractible polyhedra.
These methods include Coxeter groups, Artin groups, graph products and wreath
graph products of groups, groups acting on buildings and the theory of complexes
of groups. Another general method for constructing examples is the technique of
hyperbolization, which is the subject of Chap. 6. It also is briefly discussed two
paragraphs below. We begin by highlighting some other 2-dimensional examples.
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– Polygons of groups (cf.Sect. 2.4.5). Some of the first work on complexes of
groups, by Gersten and Stallings, was on triangles of groups.

– Gromov polyhedra. This term refers to 2-dimensional polygon complexes which
are regular in the sense of Coxeter, i.e., their symmetry group is transitive on
the set of 2-simplices in the barycentric subdivision of the polygon complex.
So, Gromov polyhedra can be constructed from triangles of groups. (See
Example 4.17.)

– Burger–Mozes groups. The product of two locally finite trees is a .CAT(0) square
complex. Burger–Mozes showed that such products of trees can have cocompact
symmetry groups which, as abstract groups, are simple (cf. Sect. 2.4.4). In other
words, there is a compact NPC square complex whose universal covers is a
product of trees and whose fundamental group is simple. Although the Burger–
Mozes groups were quite surprising when they were first discovered, nowadays
it is known to be a quite common phenomenon for a building to have a discrete
cocompact group of automorphisms which is an infinite simple group. (See the
last paragraph of Sect. 4.4.8 and [52] for more details.)

– 1-relator groups. There are many groups with 2-dimensional models for their
classifying spaces which are not NPC polyhedra. A 1-relator group is a group
that has a presentation with just 1-relation, such that the relation is not a nontrivial
power. It is a classical result that the presentation complex of any 1-relator group
is aspherical. For example, the fundamental group of any aspherical surface is
a 1-relator group (cf. [146, p. 51]). Another example of a 1-relator group is the
Baumslag–Solitar group .BS(n,m) defined by the presentation,

.BS(n,m) = 〈x, y | xnyx−ny−m〉.

Its presentation complex cannot be given a nonpositively curved structure unless
it is a torus or Klein bottle. (The action of .BS(n,m) on the universal cover of
the presentation complex cannot be by semisimple isometries since the relation
implies that the elements x and y usually must have translation length equal to
0.)

– Higman groups. Let H be the group defined by the presentation:

.H = 〈x1, x2, x3, x4 | xixi+1x
−1
i = x2

i+1; i ∈ Z/4〉.

We note that H is a square of groups. Each vertex group is isomorphic to the
Baumslag–Solitar group .BS(1, 2) and each edge group is infinite cyclic. Higman
[148] used this group to give the first proof of the existence of a finitely generated
infinite simple group, namely, the quotient of H by a maximal normal subgroup.
(See Corollary 2.46 in Sect. 2.4.3.)

Hyperbolization In [136] Gromov shows that nonpositively curved polyhedra
and manifolds are quite common. For example, among closed surfaces only the
sphere and the real projective plane fail to be aspherical. Some initial evidence
demonstrating the genericity of asphericity was provided by the result of Kan–
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Thurston [163]: any compact polyhedron P has an “asphericalization,” .A(P ),
together with a map .c : A(P ) → P that induces an isomorphism on homology.
So, the asphericity of a CW complex imposes no condition on its homology.
One drawback of the Kan–Thurston procedure is that one cannot require such
an asphericalization to take closed manifolds to closed manifolds—there is no
aspherical 2-manifold to choose for .A(S2). However, Gromov noticed that if
one weakens the requirement of being an isomorphism on homology to being a
surjection on homology, then it is easy to produce such a procedure taking closed
manifolds to closed manifolds; moreover, one can require that the asphericalization
be nonpositively curved. Such a method is called a “hyperbolization” procedure.

Starting with a simplicial complex J , a hyperbolization procedure converts it into
a nonpositively curved polyhedron .H(J ), usually a cube complex, by defining .H(J )

to be the union of hyperbolized simplices .H(σ ) where .σ is a simplex of J . If J is an
n-manifold, then so is .H(J ). There is a map .c : H(J ) → J . In many situations the
map c induces a surjection on homology. The main use of hyperbolization has been
to produce examples of nonpositively curved manifolds. In Sect. 6.2 we explain the
following two corollaries to the existence of such procedures.

(i) Any manifold .Mn is cobordant to an aspherical manifold .H(Mn). Moreover, if
two aspherical manifolds are cobordant, then the cobordism may be taken to be
an aspherical .(n + 1)-manifold (cf. [136, pp. 117–118] and [96]).

(ii) There are aspherical topological n-manifolds (.n = 4 or .n ≥ 6) that cannot be
triangulated.

In Sect. 6.3.1 it also is explained how the Reflection Group Trick is essentially
the same as a certain relative version of hyperbolization that is compatible with
nonpositive curvature. Thus, for any nonpositively curved polyhedron B, there is
a nonpositively manifold which retracts onto it. In Sect. 6.5 we explain a “strict”
hyperbolization procedure which produces complexes and manifolds with curvature
.≤ −1.

This book is far from being a comprehensive survey of the field. First of all, there
is no discussion of the vast literature on cell complexes for the mapping class group
or other outer automorphism groups such as .Out(Fn). Because of this I have also
not discussed many related recent concepts involving the term “hyperbolic,” such as
“acylindrically hyperbolic” or “hierarchically hyperbolic” groups (cf. [70]). Instead,
I have focused on older topics that I better understand. As for nonpositive curvature,
some major areas are completely absent from this book, e.g., the theory of systolic
spaces and groups developed by Januszkiewicz–Świa̧tkowski [160] (and others), as
well as the relatively new theory of Helly spaces and groups (cf. Huang–Osajda
[157]). Originally I had planned to include discussions of several minor topics
concerning examples of nonpositively curved cube complexes, e.g., configuration
spaces of graphs (cf. [2, 125, 213]), polygonal complexes with Platonic symmetry
(cf. [212]) and alternating link complements (cf. [19], [35, Thm. 5.35, p. 220];
however, I could not find a good place to include them here.



Part II
Nonpositively Curved Cube Complexes



Chapter 2
Polyhedral Preliminaries

This chapter deals with cell complexes (also called “polyhedra”) with metrics of
piecewise constant curvature. In other words, each cell is required to be isometric
to a convex polytope in a space of constant curvature .κ . As .κ = −1, 0,+1
such metrics are called, respectively, piecewise hyperbolic, piecewise euclidean, or
piecewise spherical. A geodesic metric space is .CAT(κ) if geodesic triangles in
it satisfy Gromov’s comparison inequality of Cartan, Aleksandrov and Toponogov
with respect to triangles in a plane of constant curvature .κ . The fundamental result
is that a piecewise constant curvature polyhedron is locally .CAT(κ) if and only if
the Link Condition holds for each of its cells, i.e., if each such link is .CAT(1). The
link of a cell in a cube complex is a piecewise spherical complex with “all right”
simplices. Gromov’s Lemma asserts that such a link is .CAT(1) if and only if it is a
flag complex.

In Sect. 2.3 we state two standard results about group actions on .CAT(0) spaces,
the Bruhat–Tits Fixed Point Theorem and the Flat Torus Theorem. Some examples
of nonpositively curved polygons of groups are explained in Sect. 2.4: Higman
groups in Sect. 2.4.3, Burger–Mozes groups in Sect. 2.4.4 and nonpositively curved
polygons of groups in Sect. 2.4.5.

2.1 Cell Complexes, Links

By a cell complex we will mean a space X formed by gluing together convex poly-
topes (in some euclidean space) via isometries between faces. The decomposition
of X into polytopes (“cells”) is part of the structure. The word “polyhedron” will
be used synonymously with “cell complex.” In the classical definition of a convex
cell complex, one often adds the conditions that each cell is embedded and that
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the intersection of two cells is either empty or a common face of both. We call
these two requirements the classical conditions. The first of these conditions rules
out the possibility of a 1-gon, while the second rules out a 2-gon. (Even when X

does not satisfy the classical conditions, the induced cell structure on its universal
cover might well satisfy the classical conditions.) Two types of cell complexes are
of particular interest: first, if each cell is required to be a simplex we have a “.Δ-
complex” in the sense of Hatcher [146, Section 2.1]: second, if each cell is a cube,
we have a “cube complex.” A .Δ-complex or a cube complex can have “multiple
faces;” for example, in a .Δ-complex two different simplices can have the same
vertex set. If a .Δ-complex satisfies the classical conditions, then it is a simplicial
complex.

Given a face F of a convex polytope P and a point x in its relative interior,
the normal cone .N(F, P ) is the set of all inward-pointing tangent vectors at x that
are orthogonal to F . It is a convex polyhedral cone in the tangent space .TxP . The
dimension of .N(F, P ) is the codimension of F in P . The link of F in P , denoted
.Lk(F, P ), is set of unit tangent vectors in .N(F, P ). In other words, .Lk(F, P ) is the
space of inward-pointing normal directions to F in P . It is a geodesically convex
polytope in the unit sphere of .TxP . If .F < F ′, where .F ′ is another face of P , then
.Lk(F, F ′) is identified with a face of .Lk(F, P ). Given a cell .τ of a cell complex X,
we can then glue together the corresponding links to form a cell complex:

. Lk(τ,X) :=
⋃

σ
τ<σ

Lk(τ, σ ), (2.1)

and call it the link of .τ inX. (The above definition (2.1) needs to be slightly modified
when there are self-gluings. For example, if P is the polytope corresponding to the
cell .σ and faces .F1, .F2 of P are identified to get a single cell .τ of X, then .Lk(τ, σ )

should be interpreted to be the disjoint union, .Lk(F1, P ) � Lk(F2, P ).)
A convex polytope P of dimension n is a simple polytope if the link of each of

its k-dimensional faces is a spherical .(n − k − 1)-simplex. For example, a simplex
is simple; so is a cube. An octahedron is not simple. If each cell of a convex cell
complex X is a simple polytope, then each link of X is a .Δ-complex. If each link
is, in fact, a simplicial complex, then X is a simple cell complex. For example, if
X is the square complex formed by doubling a square along its boundary to get a
“pillow,” then X is not simple since the link of any vertex is a cycle of length 2. On
the other hand, if X if the square complex formed by identifying opposite edges of
a square to get a 2-torus, then X is simple, since the link of a vertex is a cycle of
length 4. If all cells of the cell complex X are simple polytopes and if X satisfies the
classical conditions, then it is a simple cell complex.

If P an n-simplex and .F < P is a k-dimensional face, then .Lk(F, P ) is a
spherical .(n − k − 1)-simplex. So, if X is a .Δ-complex and .σ is a cell in X,
then .Lk(σ,X) is a .Δ-complex. Moreover, if X is a simplicial complex, then so is
.Lk(σ,X). Similarly, if F is a k-dimensional face of an n-cube P , then .Lk(F, P ) is
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an .(n−k−1)-simplex. Hence, if X is a cube complex, then .Lk(σ,X) is a .Δ-complex
and if X is a simple cube complex, then .Lk(σ,X) is a simplicial complex.

Piecewise Constant Curvature Polyhedra In any simply connected space of
constant curvature .κ one can define the notion of a geodesically convex polytope.
In dimension .n ≥ 2 the possibilities are: euclidean n-space, .E

n for .κ = 0, the n-
sphere of curvature .κ , .Sn

κ , for .κ > 0, and hyperbolic n-space of curvature .κ , .Hn
κ , for

.κ < 0. A cell complex X made by gluing together polytopes in a space of constant
curvature .κ is called a piecewise constant curvature polyhedron. For more details
see [35, Ch. I.7] or [82, Appendix I.3]. (In [35] these are called .Mκ polyhedral
complexes.) We shall be interested only in the cases .κ = +1, 0, or .−1. Then X is
piecewise spherical, piecewise euclidean or piecewise hyperbolic, respectively. If
a piecewise constant curvature polyhedron X is connected, then it inherits a natural
length metric as follows. The length of a geodesic segment in a polytope of constant
curvature .κ is defined by the usual formulas as in [35, Ch. I.2]. If .x, y ∈ X, then
.d(x, y) is defined to be the infimum of the lengths of all piecewise linear paths from
x to y. If X is locally finite (or more generally if it has finitely many shapes of cells,
cf. [35, Ch. I.7]), then X has the structure of a geodesic space meaning that the
infimum .d(x, y) is always realized by a geodesic path, i.e., an isometric embedding
.γ : [0, d] → X with .γ (0) = x, .γ (d) = y. (For more details see [35, Ch. I.3, I.7].)

Cones Suppose L is a piecewise spherical polyhedron. Define the euclidean cone
on L by

. Cone L := (L × [0,∞))/ ∼, (2.2)

where .L × 0 is identified to a point. If .(θ, r) ∈ S
n−1 × [0,∞) are polar coordinates

in .R
n, then by using the Law of Cosines one can write a formula for the euclidean

distance on .R
n (the cone on .S

n−1). By using .(θ, r) ∈ L×[0,∞) as polar coordinates
the same formula defines a metric on the euclidean cone, .Cone(L). Similarly, for any
real number .κ and nonnegative real number r , define the .κ-cone of radius r on L, by

. Coneκ
r (L) := (L × [0, r])/ ∼, (2.3)

where the metric is defined using polar coordinates and the Law of Cosines in the
space of constant curvature .κ . (See [35, p. 59] for more details.) If .κ > 0, we
require the radius of the cone to be .< π/

√
κ .

Since the link of a face of any polytope in a constant curvature space is always
a spherical polytope in .S

n
1, we see that the link of any cell of a piecewise constant

curvature polyhedron is always a piecewise spherical polyhedron. Similarly, for any
point .x ∈ X, let .Lk(x,X) be the union of all unit tangent vectors which point into a
cell of X. (If x belongs to the relative interior of a k-cell .σ , then .Lk(x, σ ) = S

k−1.
When this is the case, it follows that .Lk(x,X) can be identified with .S

k−1∗Lk(σ,X),
the k-fold suspension of .Lk(σ,X).) Let .Nε(x,X) (resp. .∂Nε(x,X)) denote the ball
(resp. sphere) of radius .ε about x, i.e., .Nε(x,X) = {y ∈ X | d(x, y) ≤ ε} and
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.∂Nε(x,X) = {y ∈ X | d(x, y) = ε}. When X is locally finite or has finitely many
shapes of cells, one sees .∂Nε(x,X) can be identified with .Lk(x,X) and that

.Nε(x,X) ∼= Coneε(Lk(x,X)), (2.4)

where .Coneε(A) stands for the cone of radius .ε, that is, .A × [0, ε] with .A × 0
collapsed to a point.

Formula (2.4) implies that .Nε(x,X) is homeomorphic to the cone on .Lk(x,X);
in particular, .Lk(x,X) determines the local topology of X at x. For example, X is a
PL n-manifold if and only if .Lk(x,X) is piecewise linearly homeomorphic to .Sn−1

for each .x ∈ X.

2.1.1 The CAT(κ)-inequality

Using ideas of Alexandrov and Busemann, Gromov [136] defined what it means
for a geodesic metric space X to have curvature bounded above by a real number
.κ (as before, usually .κ will belong to .{−1, 0,+1}). First, a geodesic triangle in X

is said to satisfy the .CAT(κ)-inequality, if the distance between any two points
of the triangle is no greater than the distance between the corresponding points of a
comparison triangle in the simply connected 2-manifold of constant curvature .κ , i.e.,
in the hyperbolic plane, the euclidean plane, or the 2-sphere, as .κ = −1, 0 or .+1,
respectively. A geodesic space X is .CAT(κ) if each triangle satisfies the .CAT(κ)-
inequality. The .CAT(κ)-inequality implies the .CAT(κ ′)-inequality for .κ ′ > κ . In
particular, if a space is .CAT(κ) with .κ ≤ 0, then it is .CAT(0).

Remark 2.1 The terminology “.CAT(κ)-inequality” is due to Gromov [136, p.
106]. The acronym .CAT stands for “Comparison inequality of Alexandrov and
Toponogov,” although Gromov sometimes also has said that the “C” stands for
“Cartan.”

The uniqueness of the geodesic connecting two points in a .CAT(0) space X

follows immediately from the definitions. With a little work one can see that the
constant map .X → X which sends each point to a base point is homotopic to the
identity via geodesic contraction. This gives the following.

Theorem 2.2 If a complete geodesic space is .CAT(0), then it is contractible.

The space X has curvature .≤ κ if it satisfies the .CAT(κ)-inequality locally. We
say that X is nonpositively curved (abbreviated NPC) if this is true for .κ = 0. (See
[35].)

Theorem 2.3 (Globalization Theorem of Cartan–Hadamard, cf. [136, p. 119],
[35, p. 193], or [4]) Let X be a complete geodesic space of curvature .≤ κ

(i) Suppose .κ ≤ 0. Then X is .CAT(κ) if and only if it is simply connected.
(ii) (Gromov [136, p. 122]). Suppose .κ > 0. Then X is .CAT(κ) if and only if it has

no closed geodesics of length .< 2π/
√

κ .
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An immediate corollary to the first part of this theorem is the following.

Corollary 2.4 Suppose a complete geodesic space X has curvature .≤ κ with .κ ≤
0. Then its universal cover .X̃ is .CAT(κ).

The relevance of nonpositive curvature to geometric group theory is explained
by the next theorem, which combines Theorem 2.2 and Corollary 2.4.

Theorem 2.5 If a complete geodesic space is NPC, then it is aspherical.

Example 2.6 (Dimension One) Suppose X is a locally finite, connected graph.
Assign a fixed length to each edge, then X is a constant curvature polyhedron for
any curvature constant .κ . Since each link is 0-dimensional, it is locally .CAT(κ). If
each edge of X is assigned a length of 1, then X is an NPC cube complex. If X

is a tree with each edge having length 1, then, by Theorem 2.3 (i), X is a .CAT(0)

cube complex. We can also regard the metric on a graph X as giving it a piecewise
spherical structure. In this case, by part (ii) of Theorem 2.3, X is .CAT(1) if and only
if it has no circuit (.= closed geodesic) of length .< 2π . In particular, if each edge
has length .π/2, then X is .CAT(1) if and only if it has no circuits of length 3. i.e., if
its girth is at least 4.

The Link Condition We turn next to the question of when a piecewise constant
curvature polyhedron (with curvature constant .κ) has curvature .≤ κ . The answer
is provided by the “Link Condition,” defined in Definition 2.10 below. The proof
of the Link Condition is a combination of three facts: first, the link of any cell
in a piecewise constant curvature polyhedron X is naturally a piecewise spherical
polyhedron; second, an open ball centered at a point .x ∈ X is isometric to an open
neighborhood of the cone point in the “.κ-cone” on a piecewise spherical polyhedron
(essentially the link of x); and third, the .κ-cone on a piecewise spherical polyhedron
L is .CAT(κ) if and only if L is .CAT(1). Since graphs as in Example 2.6 occur as
links in 2-dimensional piecewise constant curvature polyhedra, we get, via the Link
Condition in Theorem 2.11 below, a condition for a 2-dimensional polyhedron to be
locally .CAT(κ).

The next lemma was pointed out earlier.

Lemma 2.7 Let X be a piecewise constant curvature polyhedron, let .τ be a cell of
X and let x be a point in X. Then .Lk(τ,X) and .Lk(x,X) are piecewise spherical
polyhedra.

The proof of the next lemma is straightforward.

Lemma 2.8 ([35, pp. 206–207]) .Coneκ
r (L) is .CAT(κ) if and only if L is .CAT(1).

Lemma 2.8 and Eq. (2.4) immediately imply the next lemma.
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Lemma 2.9 ([35, pp. 206–207]) If x is a point of a piecewise constant curvature
polyhedron X, then for small enough .ε the ball of radius .ε centered at x is isometric
to .Coneκ

ε (Lk(x,X)). Hence, X has curvature .≤ κ if and only if for all .x ∈ X, each
connected component of .Lk(x,X) is .CAT(1).

Definition 2.10 A piecewise constant curvature polyhedron X satisfies the Link
Condition if for each vertex v, each component of .Lk(v,X) is .CAT(1).

Theorem 2.11 (The Link Condition, cf. [35, Theorem 5.4, p. 206]) A polyhedron
X of piecewise constant curvature .κ has curvature .≤ κ if and only if it satisfies the
Link Condition.

Theorem 2.11 is almost the same as Lemma 2.9. The only difference is that in
Lemma 2.9 links are .CAT(1) at all points .x ∈ X, while in Theorem 2.11 this need
only be true at vertices.

Example 2.12 (The Link Condition for 2-dimensional Piecewise Euclidean
Polyhedra)

(a) Let X be a piecewise euclidean polyhedron of dimension 2. A circle is .CAT(1)

if and only if its length is .≥ 2π . If X is a surface, then the link of any vertex v

is a circle. Each edge of the link corresponds to a 2-cell containing v. With its
natural spherical structure, the length of the edge is equal to the interior angle
of the 2-cell at v. So, we get the following well-known folklore statement: the
surface X is NPC if and only if the sum of the angles at each vertex is .≥ 2π . If
X is a general 2-dimensional piecewise euclidean polyhedron, then the link of
each vertex is a graph and the Link Condition says that X is NPC if and only if
for each vertex v, .Lk(v,X) contains no circuit of length .< 2π (cf. Example 2.6).

(b) If X is a square complex, then since each interior angle in a square is .π/2, the
Link Condition says each link must be simple graph without 3-circuits. More
generally, if each cell of X is a regular euclidean m-gon, then each interior angle
is .(m− 2)π/m and hence, this is the length of each edge in .Lk(v,X). So, when
.m ≥ 6, we see that X is NPC whenever each link is a simple graph (i.e., has no
circuits of length 1 or 2.

Example 2.13 (Regular 2k-gon Complexes, cf. Examples 4.15 and 4.17 of
Sect. 4.2) Suppose .L1 is a simple graph and that k is an integer .≥ 2. In Sect. 4.2,
by using the theory of Coxeter groups, we shall see that there is a simply connected
2-complex .Xk so that each 2-cell is a regular euclidean 2k-gon and so that the link of
each vertex is .L1. Since the vertex angle of a regular euclidean 2k-gon is .π − π/k,
.L1 should be given a piecewise spherical structure with each edge having length
.π −π/k. When .k = 2, .L1 is .CAT(1) if and only if it has no circuits of length 3, and
when .k > 2, it is always .CAT(1). Thus, for .k > 2 the 2-complex .Xk is .CAT(0) for
any .L1, while for .k = 2 it is .CAT(0) provided .L1 has no circuits of length 3.
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To prove Theorem 2.11 we need Lemmas 2.14 and 2.15 below. Before stating
Lemma 2.14 we need the notion of a “spherical join.” For .i = 1, 2, suppose .σi

is a spherical polytope in .S
mi . The join of these two polytopes, denoted .σ1 ∗ σ2,

is naturally a spherical polytope in .S
m1+m2+1. The euclidean cones .Cone0(σi) are

polyhedral cones in .R
mi+1 and the product .Cone0(σ1)×Cone0(σ2) is the polyhedral

cone in .R
m1+m2+1 corresponding to the spherical polytope .σ = σ1 ∗ σ2. In other

words, the link of the cone point of .Cone0(σ1) × Cone0(σ2) is the spherical join
.σ = σ1 ∗σ2, where the spherical polytope .σ1 ∗σ2 has its natural spherical metric. If,
for .i = 1, 2, .Li is a piecewise spherical polyhedron, then the spherical join, .L1 ∗L2,
is defined by

.L1 ∗ L2 :=
⋃

(σ1,σ2)

σ1 ∗ σ2, (2.5)

(Here .(σ1, σ2) ∈ P(L1) × P(L2), where .P(Li) means the poset of cells in .Li ,
including the empty cell, and either .σ1 or .σ2 is nonempty.)

The proof of the next lemma is easy.

Lemma 2.14 Suppose .L1 and .L2 are piecewise spherical polyhedra. Then .L1 ∗L2
is .CAT(1) if and only if both .L1 and .L2 are .CAT(1).

Lemma 2.15 If X is a constant curvature polyhedron, then each of the following
conditions is equivalent to the Link Condition for X.

(1) For each .x ∈ X, .Lk(x,X) is .CAT(1).
(2) For each cell .τ of X, .Lk(τ,X) is .CAT(1).
(3) For each cell .τ of X, .Lk(τ,X) has no closed geodesic of length .≤ 2π .

Proof If x lies in the relative interior of a k-dimensional cell .τ of X, then .Lk(x,X)

is isometric to the spherical join .S
k−1 ∗ Lk(τ,X). By Lemma 2.14, either .Lk(x,X)

and .Lk(τ,X) are both .CAT(1) or neither is .CAT(1).

Proof of Theorem 2.11 Given a vertex .v ∈ X, put .L = Lk(v,X). If .τ is a cell of X

containing v, then there is a corresponding cell .τ ′ in L (with .dim τ ′ = dim τ−1) and
.Lk(τ,X) can be identified with .Lk(τ ′, L). If L is locally .CAT(1), then .Lk(τ ′, L) is
.CAT(1). Hence, if the link of each vertex of X is .CAT(1), then .Lk(τ,X) is .CAT(1)

for each cell .τ of X and therefore, by Lemma 2.15, .Lk(x.X) is .CAT(1) for all points
.x ∈ X. By Lemma 2.9, this is equivalent to X having curvature .≤ κ . Conversely,
suppose .Lk(v,X) is .CAT(1) at some vertex .v ∈ X. Then, by Lemmas 2.8 and 2.9,
a conical neighborhood of v is .CAT(κ).

2.1.2 Piecewise Hyperbolic Polyhedra

The material in this subsection will be used later in Sects. 4.2.4 and 4.2.3. (See
Examples 4.16, 4.17, Proposition 4.20 and Theorem 4.23.)
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We consider the possibility of deforming the metric on a piecewise euclidean
cell complex .Xe to a piecewise hyperbolic cell complex .Xh. If .Xe is NPC, then
when will .Xh be .CAT(−1)? The problem is that since the angles change when
we deform a euclidean polytope to one which is hyperbolic, the links in .Xe might
not remain .CAT(1) in .Xh. If .Pe is a small euclidean polytope, say with all edge
lengths .< ε, then a small deformation will be a hyperbolic polytope .Ph. The link
of a face in .Ph will be a small deformation of the link of the corresponding face
of .Pe. A precise formulation of this result can be found in [179]. However, after
even a small deformation, the link of the cell in .Xh may fail to be .CAT(1). The
reason is that if a closed geodesic in the link of a cell in a piecewise euclidean cell
complex has length .= 2π , then under a small deformation its length can become
.< 2π . For example, each angle of a regular convex 4-gon in .H

2 is .< π/2. So, if a
euclidean square complex has a vertex link containing a circuit with 4 edges, then
after deformation this circuit will become a closed geodesic in the link of length
.< 2π ; hence, the hyperbolic square complex will fail to be locally .CAT(−1). The
condition that the link has no such 4-circuits is the “no .�-condition” discussed
below. More generally, given a compact 2-dimensional piecewise euclidean cell
complex X, it can be deformed to a piecewise hyperbolic complex of curvature
.≤ −1 provided that for each vertex v of X, each circuit of .Lk(v,X) has length
.> 2π , cf. Example 2.12. (It may be necessary to first rescale the metric on X so that
all its edge lengths are small.)

Definition 2.16 A piecewise spherical complex L is large if it is .CAT(1). The cell
complex L is extra large if the length of the shortest closed geodesic in L is strictly
greater than .2π and if the same holds true for .Lk(σ, L) for any cell .σ in L.

Lemma 2.17 (Moussong [179, Lemma 5.11]) Suppose L is a piecewise spherical
cell complex with finitely many cells. If L is extra large, then any sufficiently small
deformation of it will be .CAT(1).

A corollary of this lemma is the following.

Proposition 2.18 (Moussong [179]) Suppose X is a NPC piecewise euclidean cell
complex with finitely many shapes of cells so that for each cell .σ of X, .Lk(σ,X)

is extra large. Then, after rescaling the metric, X can be deformed to a piecewise
hyperbolic cell complex with curvature .≤ −1.

2.1.3 Quasi-Isometries, Word Hyperbolic Groups

Definition 2.19 Given metric spaces X and Y , a quasi-isometric embedding from
X to Y is a (not necessarily continuous) map f : X → Y so that there are constants
λ ≥ 1 and C ≥ 0 such that

.
1

λ
dX(x, y) − C ≤ dY (f (x), f (y)) ≤ λdX(x, y) + C. (2.6)
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If, in addition, f is a quasi-surjection, i.e., if there is an ε > 0 so that each point of
Y lies within ε of f (X), then f is a quasi-isometry.

If G is a finitely generated group with finite set of generators S, then the Cayley
graph Cay(G, S) is a metric space where each edge has length 1. The restriction
of this metric to G (the vertex set of Cay(G, S)) is called the word metric on G

with respect to S. The quasi-isometry class of the word metric is independent of the
choice of generating set S. One of the principal goals of geometric group theory is
to understand group actions up to quasi-isometry.

Definition 2.20 A finitely generated subgroup H in a finitely generated group G is
quasiconvex (or word-quasiconvex) if there is a constant C so that any geodesic
segment in Cay(G, S) that connects two points of H is contained in the C-
neighborhood of H .

If H is a quasiconvex subgroup of G, then the inclusion H ↪→ G is a quasi-
isometric embedding. (N.B. in general, this notion depends on the choice of the
set of generators for H )

An important chapter in geometric group theory begins with Gromov’s work on
hyperbolic groups in [136]. He first defines what it means for a metric space to be
hyperbolic—his definition encapsulates the notion of having negative curvature in
the large. The definition is easiest to state for a geodesic metric space. A triangle
in a geodesic metric space X is δ-thin if the distance from any point x on one side
of the triangle to the union of the other two sides is ≤ δ. The geodesic space X is
hyperbolic if there is a constant δ > 0 so that every triangle in X is δ-thin. (See [35,
pp. 408–409], [136].) A finitely generated group G with a finite set of generators
S is word hyperbolic if its Cayley graph Cay(G, S) is a hyperbolic metric space.
Gromov [136] proves that the property of being hyperbolic is a quasi-isometry
invariant.

The action of a group on a metric space X by isometries is geometric if the
action is proper and cocompact. The Fundamental Lemma of Geometric Group
Theory states that if a group G acts geometrically on two connected metric spaces
X and X′, then they are quasi-isometric; in particular, any such X is quasi-isometric
to Cay(G, S). Since the hyperbolic plane H

2 is a hyperbolic metric space, any
CAT(−1)-space is a hyperbolic metric space; hence, any group which acts properly
on a CAT(−1)-space is word hyperbolic. The above discussion is summarized in
the next lemma.

Lemma 2.21 If a group G acts geometrically on a piecewise hyperbolic, CAT(−1)

cell complex X, then G is word hyperbolic.

If G is word hyperbolic, then a finitely generated subgroup H is word-
quasiconvex if and only if it is quasi-isometrically embedded in G. (This is because
if a geodesic space is hyperbolic, then the a quasi-geodesic segment between two
points lies within some bounded neighborhood of an actual geodesic.) Moreover,
when H is a word-quasiconvex subgroup, then H also is word hyperbolic.
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In a word hyperbolic group, normal quasiconvex subgroups are rare. For
example, the following theorem is proved in the 1989 seminar notes from MSRI
[6].

Theorem 2.22 (cf. [6]) Suppose 1 → H → G → Q → 1 is a short exact
sequence of finitely generated groups. If G is word hyperbolic and H is a word-
quasiconvex subgroup of G, then either H is finite or Q is finite.

This means, for example, that for a word hyperbolic G the kernel of a nontrivial
homomorphism G → Z can never be word-quasiconvex.

2.2 Flag Complexes and Gromov’s Lemma

A .Δ-complex L is a flag complex if it is a simplicial complex and if it satisfies the
following: any finite set of vertices that are pairwise connected by edges of L, spans
a simplex of L. In other words, any clique in the 1-skeleton .L1 spans a simplex of
L. (A clique in a simplicial graph .Γ is a finite set of vertices of .Γ such that the
induced subgraph is a complete graph.) Here is a slick version of this definition: a
simplicial complex L is a flag complex if and only if every non-simplex contains a
non-edge (a set of vertices is a “non-simplex” if it is not the vertex set of a simplex).

Remark 2.23 (Comments on Terminology) Combinatorialists use the term
“clique complex” instead of “flag complex.” The clique complex of a simplicial
graph .Γ is the simplicial complex whose simplices are the cliques in .Γ . So, a
simplicial complex L is a flag complex if and only if L is equal to the clique
complex determined by .L1. Instead of “flag complex” Gromov [136] says that L

satisfies “the no .Δ-condition” (pronounced “the no triangle condition”).

A simplicial graph is a circuit of length m if it is isomorphic to the boundary
complex of an m-gon. A circuit .Γ of length m is a flag complex if and only if
.m > 3. More generally, a simplicial graph is a flag complex if and only if it contains
no circuits of length 3. A natural way in which flag complexes arise is as order
complexes of partially ordered sets.

Example 2.24 (Barycentric Subdivisions) If X is a classical convex cell complex,
then the order complex of its poset of cells is a simplicial complex. The geometric
realization of the order complex is the barycentric subdivision of X. It follows that
the requirement of being a flag complex puts no restriction on the topological type
of X.

The next lemma is left as an exercise for the reader.

Lemma 2.25 (Some Properties of Flag Complexes)

(i) A full subcomplex of a flag complex is a flag complex.
(ii) The join of two flag complexes is a flag complex.

(iii) The link of a simplex in a flag complex is a flag complex.
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All Right Simplices and Simplicial Complexes The following terminology is due
to Moussong.

Definition 2.26 A spherical n-simplex is all right if it is isometric to the simplex
in .S

n spanned by the standard orthonormal basis for .R
n+1. Similarly, a piecewise

spherical simplicial complex is all right if each of its simplices is all right.

In other words, a spherical n-simplex is all right if it is isometric to the intersection
of .S

n with the standard orthant in .R
n+1 defined by .xi ≥ 0, for .1 ≤ i ≤ n + 1.

We note that the length of every edge in an all right simplex is .π/2 and that each
of its dihedral angles is also .π/2. The next lemma, which is a simple observation,
shows the connection between cube complexes and all right simplicial complexes.

Lemma 2.27 The link of any k-dimensional face in a regular euclidean cube .�n is
an all right .(n − k − 1)-simplex. Hence, in any piecewise euclidean cube complex
satisfying the classical conditions each of its links is all right.

One of the key lemmas in this book is the following.

Lemma 2.28 (Gromov’s Lemma, cf. [136, p. 122], [35, p. 211] or [82, Lemma
I.6.1]) Suppose L is a finite dimensional all right, piecewise spherical simplicial
complex (or .Δ-complex). Then L is .CAT(1) if and only if it is a flag complex.

Example 2.29 (An All Right Simplicial Complex that Is Not .CAT(1)) Start with
the triangulation of .S

2 as the boundary complex of an octahedron in which each 2-
simplex is all right. Let L be the complement of the interior of one of the 2-simplices
.Δ. Of course, L is not a flag complex since it has an empty triangle, namely .∂Δ.
Note that .∂Δ is a short closed geodesic in L (its length is .3π/2). (To see that .∂Δ is
a closed geodesic, it suffices to show that it is a local geodesic. This follows from
the fact that at each vertex of .∂Δ the link is a circular arc of length .3π/2.)

Combining Gromov’s Lemma with the observation in Example 2.24 about
barycentric subdivisions, we get the following well-known result of Berestovskii.

Corollary 2.30 (Berestovskii) Any finite dimensional polyhedron can be given a
piecewise spherical .CAT(1) metric.

The form in which Lemma 2.28 will most often be used is given in the following
corollary. This corollary will also be referred to as “Gromov’s Lemma.”

Corollary 2.31 (Gromov’s Lemma for Cube Complexes) A piecewise euclidean
cube complex is NPC if and only if the link of each vertex is a flag complex.

If .L′ is a simplicial complex with 1-skeleton a simplicial graph .Γ , then the flag
completion of .L′ is the clique complex of .Γ . (This clique complex is also said to
be the flag complex determined by .Γ .) Similarly, for cube complexes we have the
following definition which we shall need in Sect. 5.2.

Definition 2.32 A simple cube complex X is completable if its 2-skeleton is
isomorphic to a subcomplex of the 2-skeleton of an NPC cube complex. The
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completion of a completable cube complex X is the smallest NPC cube complex
whose 2-skeleton is the 2-skeleton of X.

(The link of a vertex in the completion of a cube complex is the flag complex
completion of the link in the cube complex.)

Proof of Gromov’s Lemma 2.28 If L has curvature .≤ 1 and is not a flag complex,
then an argument similar to that in Example 2.29 shows that L has a short closed
geodesic. It follows by induction on dimension that if L is not a flag complex, then
at least one of its links has a short closed geodesic of length .3π/2.

In an all right simplicial complex the closed star of a vertex v is the closed ball
.Bπ/2(v). An abbreviated version of Gromov’s argument goes as follows. Suppose
L is a flag complex and that .γ is a closed geodesic which intersects the interior of
.Bπ/2(v) in a geodesic arc .γ ′. We claim that .l(γ ′) = π . (This is proved by developing
the surface determined by v and .γ ′ onto the northern hemisphere of .S

2.) Hence, if
.l(γ ) < 2π , then it cannot intersect two disjoint open stars about vertices. So, if V

denotes the set of vertices v such that .γ intersects the interior of .Bπ/2(v), then any
two element of V are connected by an edge. Since L is a flag complex, V must span
a simplex of L. But an all right spherical simplex does not contain a closed geodesic.
So, .l(γ ) ≥ 2π .

The No .�-condition When is an all right flag complex L extra large as in
Definition 2.16? Since all edge lengths equal .π/2, all closed geodesic of length
.2π must correspond to an “empty 4-circuit” in L, i.e., a 4-circuit in L so that there
is no other edge of L connecting a pair of diagonally opposite edges in the 4-circuit.
So, the answer is simple: L cannot contain any empty 4-circuit. (In [136] this is
called the no .�-condition.) Proposition 2.18 then yields the following.

Lemma 2.33 A piecewise euclidean structure on a cube complex can be deformed
to a piecewise hyperbolic structure with curvature .≤ −1 if and only if the link of
each vertex is a flag complex satisfying the no .�-condition.

2.3 Group Actions on CAT(0) Spaces

The Bruhat–Tits Fixed Point Theorem. The following fixed point theorem is due
to Bruhat–Tits. Its proof goes back to Cartan.

Theorem 2.34 (Bruhat–Tits Fixed Point Theorem, cf. [1, p. 558]) Suppose G is
a group of isometries of a complete .CAT(0) spaceX and thatG has a bounded orbit
on X. (Note that this hypothesis holds whenever the group G is compact.) Then the
fixed set .XG is a nonempty convex subset of X.

The proof is based on the fact that in a complete .CAT(0) space any bounded
subset B has a unique circumcenter, that is, the center of a circumscribed sphere
containing B. If B is G-stable, then so is its circumcenter, i.e., the circumcenter
of any bounded orbit is a fixed point. Uniqueness of geodesics in a .CAT(0) space
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implies that any nonempty fixed point set is convex. A corollary to the Bruhat–Tits
Fixed Point Theorem is the following.

Corollary 2.35 Suppose a discrete group G acts properly and cocompactly on a
.CAT(0) space X. Then X is a model for the universal proper G-space, .EG (cf.
Definition 7.8).

The Flat Torus Theorem If g is an isometry of a .CAT(0) space, then its translation
length .τ(g) is the infimum of .{d(x, gx) | x ∈ X}. The isometry g is semisimple if
the infimum .τ(g) is realized at some point x. If g is semisimple, define its minset,
.Min(g), to be the set of x which realize the translation length. If g is semisimple
and .τ(g) = 0, then .Min(g) is the fixed point set of g and g is said to be elliptic.
If .τ(g) is positive and is realized at some point x, then g is hyperbolic (also called
loxodromic). If g is hyperbolic, then the union of geodesic segments of the form
.[gn−1x, gnx] is isometric to .R; this line is called an axis for g.

Theorem 2.36 (cf. [35, II.6, Thm. 6.8]) Let g be a hyperbolic isometry of a
.CAT(0) space.

(i) The axes of g are parallel to each other and their union is .Min(g).
(ii) .Min(g) is isometric to .Y × R for some convex subspace Y .

(iii) Every isometry h that commutes with g leaves .Y × R invariant and has the
form .(h′, h′′) where .h′ is an isometry of Y and .h′′ is a translation of .R.

For H a subgroup of semisimple isometries of a .CAT(0) space X put

. Min(H) =
⋂

g∈H

Min(g).

Theorem 2.37 (The Flat Torus Theorem, cf. [35, II.7, Thm. 7.1]) LetH be a free
abelian group of rank n acting by semisimple isometries on a .CAT(0) space X.

(i) The subspace .min(H) is nonempty and splits as a product .Y × E
n.

(ii) The quotient of the n-flat .{y} × E
nby H is an n-torus.

Note that if a group of isometries G acts properly and cocompactly on a .CAT(0)

space, then each .g ∈ G is semisimple.
Using the Flat Torus Theorem it is fairly straightforward to show the following.

Theorem 2.38 (Solvable Subgroup Theorem, cf. [35, II.7,Thm. 7.8]) Suppose G

acts cocompactly and properly on a .CAT(0) space X. Then any virtually solvable
subgroup .H < G is finitely generated and contains an abelian subgroup of finite
index.

In other words, every solvable subgroup of a .CAT(0) group is virtually free abelian.
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2.4 Examples of NPC Square Complexes and Polygon
Complexes

2.4.1 Trees

Any graph is a 1-dimensional NPC cube complex. Hence, any tree is a 1-
dimensional .CAT(0) cube complex (by Theorem 2.3 (i)).

Most of the examples in this book are higher dimensional analogs of group
actions on trees. In the next four paragraphs, (T1)–(T4), we elucidate some of the
aspects of group actions on trees that will be generalized in subsequent chapters.

(T1) (Graphs of groups). The theory of groups acting on trees is developed in the
classic book of Serre [207]. The basic result is that if G acts on a tree T (without
inversions), then we get a graph of groups decomposition of G over the orbit space
.T/G (which is a graph). For example, if .T/G is an interval, then G splits as an
amalgam .G ∼= H1∗KH2, where K is an edge stabilizer and .H1, .H2 are the stabilizers
of its end points. The theory of graphs of groups leads to the theory of complexes of
groups, which was developed in Bridson–Haefliger [35] and which we will explain
in Appendix A.

(T2) (Buildings). A tree is an example of a right-angled building (see Sects. 3.1.1
and 3.1.2). The associated Coxeter group is the infinite dihedral group; so, a tree is
also a euclidean building of rank 2 (cf. Example 4.132 in Sect. 4.4.8). This aspect
is developed in the second half of Serre’s book [207]. For example, the regular tree
.Tp+1 of degree .(p + 1) is associated to the algebraic group .SL2(K) where K is a
field with discrete valuation and residue field .Fp (for example, K could be .Qp or
.Fp((t)), the formal Laurent series over .Fp).

(T3) (Automorphism groups). The full group of automorphisms, .Aut(T ), of a
locally finite tree T is a locally compact topological group; hence, it has a Haar
measure. It is totally disconnected, generally not discrete. For example, suppose
that T is a regular tree of valence .n ≥ 3, that .v ∈ Vert(T ) and that .B(k) denotes
the ball of radius of radius k centered at v. Let .G = Aut(T ) and let .Gv be the
stabilizer of v in G. We note that .Gv is .∞-transitive in the sense of [44]. This means
that for each .k ≥ 0, .Gv acts transitively on the set of geodesics paths from v to a
point in .∂B(k). Indeed, .Gv is the inverse limit, .lim←− Autv(B(k)), where .Autv(B(k))

is the group of automorphisms of the rooted tree .B(k) which fix v and where the
bonding map .Autv(B(k + 1)) → Autv(B(k)) is induced by geodesic contraction
.B(k + 1) → B(k). The kernel of .Autv(B(k + 1)) → Autv(B(k)) is a product
of symmetric groups of order .n − 1. Hence, the inverse limit is infinite and so, is
not discrete whenever .n ≥ 3. (This inverse limit is a good example of a totally
disconnected group.) Similarly, automorphism groups of locally finite buildings are
usually totally disconnected, locally compact groups.

(T4) (Simplicity of automorphism groups). An old theorem of Tits [217] asserts
that in many cases the full automorphism group of a tree T is a simple group. This
is a predecessor of many of the simplicity results in Sect. 4.4 concerning automor-
phism groups of buildings, as well as the Burger–Mozes results in Sect. 2.4.4 on the
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simplicity of certain discrete groups acting freely on a product of trees. The fact1

that .Aut(T ) � T gives .Aut(T ) the structure of a graph of groups over the quotient
graph .Ω (except for the fact that .Aut(T ) might have elements which are inversions).
Let .Aut+(T ) denote the subgroup of .Aut(T ) generated by vertex stabilizers. In other
words, .Aut+(T ) is the direct limit of the vertex and edge stabilizers in the graph of
groups. It follows that .Aut(T )/ Aut+(T ) is the product of .π1(Ω) with cyclic groups
of order 2. Tits’ theorem is that the group .Aut+(T ) is either the trivial group or a
simple group. So, if .Ω is a tree and there are no inversions, then .Aut(T ) is simple.
That is to say, .Aut(T ) is a simple group unless it fails to be so for some obvious
reason.

The tree .Tp+1 is the euclidean building associated to .SL2(Qp), where .Qp

denotes the p-adic completion of the rationals; so, the topological group .PSL2(Qp)

is a subgroup of .Aut(Tp+1), cf. Example 4.132 in Sect. 4.4.8. This gives another
way to see that .Aut(Tp+1) is not discrete. Similarly, .Aut(Tp+1) contains .PSL2(K)

where K is the valuation field .Fp((t)), for .Fp the finite field of order p.

Definition 2.39 A lattice in a locally compact topological group is a discrete
subgroup of finite covolume (with respect to Haar measure). The lattice is uniform
if it is cocompact.

For example, if a group G acts properly, cocompactly and faithfully on a tree T ,
then G is a uniform lattice in .Aut(T ).

2.4.2 Products

A product of graphs is naturally an NPC cube complex. To see this, suppose .X =
Ω1 × · · · × Ωn is a product of graphs. The cubes in X correspond to collections
.{c1, . . . , cn}, where .ci is either an edge or a vertex of .Ωi . The corresponding cube
.�(c1, . . . , cn) is isometric to .c1 × · · · × cn. Its dimension is the number of .ci which
are edges. If .v = (v1, . . . , vn) is a vertex of X, then its link is the n-fold join:

. Lk(v,X) =
i=n

*i=1
Lk(vi,Ωi) (2.7)

Noting that the link of a vertex in a locally finite graph is a finite set, we see that the
simplicial complex .Lk(v,X), being a join of links of vertices in the graphs, is a join
of finite sets of the form,

. Lk(v,X) = Kk1,··· , kn := (k1 points) ∗ · · · ∗ (kn points), (2.8)

1 We write .G � X to mean that “G acts on X.”
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where .ki = Card(Lk(vi,Ωi)) (where, .Card(A) denotes the cardinality of a set
A). For example, in a product of two graphs each link is a complete bipartite
graph. (By analogy, the join defined in (2.7) should be called a complete n-partite
complex.) With the metric of a spherical join, each simplex of .Lk(v,X) is all right.
By Lemma 2.25 (ii), .Lk(v,X) is a flag complex. So, by Gromov’s Lemma 2.31, X

is an NPC cube complex. A similar argument gives the following result.

Proposition 2.40 The product of cube complexes is a cube complex. If .X = X1 ×
· · · × Xn is such a product and each .Xi is NPC, then X is NPC.

Remark 2.41 One can prove directly, without mentioning the link condition, that
a product of NPC spaces is NPC. (See [35, Exercise 1.9 (c), p. 163 and Examples
1.15 (3), p. 167].)

Example 2.42 (The Cube Complex .PL) Given a finite simplicial complex L with
vertex set I , we shall define in Sect. 3.1, a subcomplex of the cube .[−1, 1]I such
that the link at each vertex is L. It follows from Gromov’s Lemma 2.28 that if L is
a flag complex, then .PL is NPC.

Remark 2.43 The study of lattices in semisimple Lie groups is of central impor-
tance in number theory and differential geometry.

Suppose .G = G1 × · · · × Gn is a product of simple Lie groups where .Gk is the
group of isometries of a symmetric space .Xk . One way to get a lattice G in .G is to
take a product of lattices .G = G1 × · · · × Gn. Such a lattice is called reducible.
More generally, G is reducible if it has a subgroup of finite index that splits as a
product. The lattice G is irreducible if it is not reducible. This terminology also
makes sense for lattices in products of locally compact groups. For example one can
find an irreducible lattice in .SL2(Qp) × SL2(Qp′) acting on .Tp+1 × Tp′+1.

An important part of Margulis’ proof of his Super Rigidity Theorem for lattices
in semisimple Lie groups is his Normal Subgroup Theorem (cf. [175]). This asserts
that if G is any irreducible lattice in a semisimple Lie group of noncompact type
and rank .≥ 2, then any normal subgroup of G is either a finite group or a subgroup
of finite index. In particular, when G has no nontrivial finite normal subgroup, the
Normal Subgroup Theorem means that it is “just infinite,” as defined below.

Definition 2.44 An infinite group G is just infinite if any nontrivial normal
subgroup has finite index in G.

2.4.3 Higman Groups

Let H be the group defined by the presentation:

.H = 〈x1, x2, x3, x4 | xixi+1x
−1
i = x2

i+1; i ∈ Z/4〉.
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There are excellent expositions of the next result, e.g., [207, Prop. 6] and [50, Thm.
2.2]. More information also can be found in [35, II.12.17(6)] [176] and [149].

Proposition 2.45 (G. Higman [148])

(i) Each subgroup of finite index in H is equal to H (and hence, H has no
nontrivial finite quotient).

(ii) The group H is infinite.

It follows from (i) that H is not residually finite (see Definition 2.51 in the next
subsection).

The existence of a finitely generated infinite simple group was first proved as a
corollary to the above proposition. In fact, by taking the quotient of H by a maximal
normal subgroup we get the following.

Corollary 2.46 (G. Higman [148], also cf. [207, 1.4]) There exists an infinite
simple group generated by 4 elements.

The proof of Proposition 2.45 is based on the following.

Lemma 2.47 (cf. [148])

(i) The only positive integer n that divides .2n − 1 is .n = 1.
(ii) In a finite group F the only element .g ∈ F that is conjugate to its square by an

element of the same order as g is .g = 1.

Proof of Lemma 2.47 (following the argument in [50, Lemma 2.1])

(i) Suppose .n > 1 divides .2n −1 and let p be the smallest prime divisor of n. Then
p divides .2n − 1. So, p is odd and the order of 2 in the multiplicative group
.(Z/p)∗ is a divisor of n, as well as a divisor of .p − 1. Since p is the smallest
prime divisor of n, the integers n and .p−1 are relatively prime, a contradiction.

(ii) Suppose .x ∈ F is an element of the same order, n, as .g ∈ F and that x is such
that .xgx−1 = g2. Then .g = xngx−n = g2n

. So, .g2n−1 = 1. The conclusion
follows from (i).

Proof of Proposition 2.45 (i) Observe that H has an automorphism of order 4 that
cyclically permutes the generators. Hence, if H has a nontrivial finite quotient, then
it has a nontriivial finite quotient in which the image of each of the generators .xi has
the same order n. Let .H be such a quotient. Since .xi conjugates .xi+1 to its square,
Lemma 2.47 (ii) says that .n = 1; hence, .H is trivial.

(ii) Serre’s proof that H is infinite in [207, pp. 9–10] uses the fact that H has the
structure of a square of groups, that is, a polygon of groups where the underlying
polygon is a square. (See Definition A.5 in Appendix A.1.) The edges are indexed
by .Z/4. For .i ∈ Z/4, the edge stabilizer .Hi is the infinite cyclic group generated
by .xi . The vertex groups .H12, .H23, .H34, .H41 are generated by .xi and .xi+1 and each
is isomorphic to Baumslag–Solitar group .BS(1, 2) (see the definition following this
proof). For example, .H12 is generated by .x1 and .x2 with the relation: .x1x2x

−1
1 = x2

2 .
We consider the groups generated by the stars of opposite vertex groups .H12 and
.H34. By amalgamating .H12 and .H23 along .H2, we obtain .H123 = H12 ∗H2 H23 and
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similarly, .H341 = H34 ∗H4 H41. It can be shown that in .H123 the subgroup generated
by .H1 and .H3 is the free group on 2 generators, .G = H1 ∗ H3. Similarly, G is a
subgroup of .H341. Since H is the direct limit of the square of groups, we see that H

is the amalgam .H123 ∗G H341. This is clearly infinite since it contains the free group
on two generators .G2 ∗ G4.

The above proof shows that H has the structure of a square of groups. Each
edge group is infinite cyclic, each vertex group is a copy of .BS(1, 2) and the group
associated to the 2-cell is trivial. (Recall from the Introduction that the Baumslag–
Solitar group .BS(n,m) is the group defined by the following presentation with 2
generators and 1 relation: .BS(n,m) = 〈x, y | xnyx−ny−m〉. When .n = 1, the group
.BS(1,m) is said to be a solvable Baumslag–Solitar group.)

Generalized Higman Groups Suppose .α = (m1, n1), . . . (mk, nk) is a k-tuple
of pairs of nonzero integers with .k > 3. Following [149] define the generalized
Higman group .Higα by

. Higα := 〈a1, . . . ak | {aia
mi

i+1a
−1
i = a

ni

i+1}i∈Z/k〉.

As before, this gives a k-gon of groups for .k ≥ 4. (If .k = 3, .Higα might not be
infinite.) We note that if each .(mi, ni) = (1, 1), then .Higα is the .RAAG, .AL, with L

a k-cycle. It is proved in [35] that this polygon of groups for .Higα is NPC provided
.k ≥ 4 (see also Martin [176]). This amounts to showing that the link of each vertex
is a flag complex, hence, with its all right metric is .CAT(1). It follows that the
complex of groups is “developable” with fundamental group .Higα . Its universal
cover is a .CAT(0) square complex Y . The squares are obtained by subdividing the
cone on the polygon into k squares each with a vertex at the cone point. (Note that
the .Higα-action on Y is not proper since the isotropy groups are not finite.) For
further details and similar examples of such square complexes see Sect. 2.4.5 as
well as Example 2.60 in Sect. 2.4.5.

Remark 2.48 Since the universal cover Y of this polygon of groups is contractible,
it follows that the .K(π, 1)-Question has a positive answer. (See Theorem A.24 in
Appendix A.4.2.) Since the vertex groups and edge groups are type F, a corollary is
that for .k ≥ 4, the group .Higα is type F , i.e., .B Higα has a model which is a finite
2-complex.

Remark 2.49 Horbez-Huang [149, Thm. 1.1] prove that the generalized Higman
groups .Higα are superrigid for measure equivalence. More precisely, if, for all i,
.|mi | �= |ni | and if .k ≥ 5, then any countable group G that is measure equivalent to
.Higα is virtually isomorphic to it.

R. Thompson gave the first examples of finitely presented, infinite simple groups.
These were later extended to a family of such examples by G. Higman.
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2.4.4 The Burger–Mozes Examples

There is an excellent exposition of the following material in Caprace’s survey paper
[50].

Theorem 2.50 (Burger–Mozes [43, 45]) For every sufficiently large pair of even
integers, .(n,m), there is a finite NPC square complex .Yn.m whose universal cover is
a product of regular trees .Tn ×Tm and whose fundamental group .Gn.m is an infinite
simple group. Moreover, .Gn,m is an irreducible lattice in .Aut(Tn) × Aut(Tm).

Definition 2.51 A group G is residually finite if for every .g ∈ G − {1}, there is a
finite index subgroup .H < G so that .g ∈ G − H . (In other words, the elements
1 and g have distinct images in .G/H , or more geometrically, the vertices 1 and g

of the Cayley graph have distinct images in the quotient .Cay(G, S)/H .) Also, see
[153].

The condition that G is residually finite is equivalent to the condition that the
intersection of all normal finite index subgroups of G is trivial (or equivalently, that
the natural map from G to its profinite completion is injective). In particular, an
infinite simple group cannot be residually finite. Finitely generated linear groups
are residually finite. There is the following well-known question of Gromov:

Question 2.52 (Gromov) Is every word hyperbolic group residually finite?

Precursors to Theorem 2.50 can be found in the work of Wise [233] and M.
Bhattacherjee [24]. Paper [233] is essentially Wise’s PhD thesis [232], in which he
showed that there is a finite square complex X with no finite cover. In particular,
for such an X, .π1(X) is not residually finite. Somewhat earlier Bhattacherjee had
proved an algebraic version: there is a free amalgam .L ∗K H of finitely generated
free groups with no finite index subgroups.

Theorem 2.50 is proved by first constructing a square complex .X = Xn,m with
only one vertex so that the link of that vertex is the complete bipartite graph .Kn,m,
i.e., it is the join of n points with m points. it then follows that the universal cover
of X is the product, .Tn ×Tm. One shows that X can be chosen to have the following
two properties:

(1) The group .G = π1(X) is a cocompact lattice in .Aut(Tn) × Aut(Tm) satisfying
the following analog of Margulis’ Normal Subgroup Theorem: any nontrivial
normal subgroup of G has finite index.

(2) The group G is not residually finite.

Assuming (1) and (2), the proof of Theorem 2.50 goes as follows. Let .Gn,m denote
the intersection of all finite index normal subgroups in G. Since G is not residually
finite, .Gn,m is not trivial; so, by the Normal Subgroup Theorem any nontrivial
normal subgroup of .Gn,m has finite index and hence, is equal to .Gn,m. Thus, .Gn,m

is simple and .Yn,m = (Tn ×Tm)/Gn,m is the desired square complex. (Note that this
shows that .G = π1(Xn,m) is virtually simple). The proof of the Normal Subgroup
Theorem, (1), uses the following trick of Margulis: for a normal subgroup .N � G, a
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method for proving that .G/N is finite is to show that it, simultaneously, is amenable
and has Property (T).

The group .Gn,m is an irreducible lattice in .Aut(Tn) × Aut(Tm). This means that
the square complex .Xn,m is not finitely covered by a product of two graphs. There
is the following natural question, the answer to which is not known.

Question 2.53 (cf. [50, Problem 4.31]) Suppose .T1, . . . , Tn are locally finite trees
each with infinitely many ends and that .G < Aut(T1)×· · ·×Aut(Tn) is a cocompact
lattice. Can G be simple when .n ≥ 3?

Remark 2.54 There are arithmetic lattices in a product of groups of the form
.SL2(Qp) acting on a product of regular trees. By the Normal Subgroup Theorem
such groups are just infinite. However, the condition of being not residually finite
fails (since linear groups are residually finite).

By Caprace-Remy [52] there are simple groups acting as nonuniform lattices on
the product of a Kac –Moody building with itself. (See the discussion at the end of
Sect. 4.4.8.)

2.4.5 Nonpositively Curved Polygons of Groups

Suppose P is a polygon (i.e., a convex 2-cell) and .F(P ) is its poset of faces. A
polygon of groups is a simple complex of groups over .F(P ). This terminology is
explained in Appendix A.1. Roughly, it means that we are give a collection of groups
.{Gσ }σ∈F(P ) and monomorphisms .φτσ : Gσ → Gτ defined whenever .τ < σ . We
denote such a simple complex of groups by .GF(P ). The group .GP associated to
the 2-dimensional face P is often required to be the trivial group. Let G denote the
direct limit of this system of groups.

For each .x ∈ P , let .Gx denote the image of .Gσ in G where .σ is the face
such that x lies in its relative interior. The basic construction on .GF(P ) is the
polyhedron .D(G,P ) given by .D(G,P ) = (G × P)/ ∼, where the equivalence
relation .∼ is given by: .(g, x) ∼ (h, y) if and only if .x = y and .gGx = hGx .
The group G acts on .D(G,P ) with strict fundamental domain P . The isotropy
subgroup at a point .x ∈ P is .Gx . (For more details and the definition in greater
generality, see Appendix A.2 or the paragraph surrounding (3.9) in Sect. 3.1.1.) By
Theorem A.7 (vi).′ in Appendix A.2, .D(G,P ) is simply connected.

Suppose e, f are the edges containing a vertex v of P . Then .Gv acts on .Lkv

(the link of .[1, v] in .D(G,P )) with a 1-simplex as strict fundamental domain. (The
endpoints of the 1-simplex correspond to e and f .) If .Gv is generated by .Ge and .Gf ,
then the natural map .Ge ∗ Gf → Gv is surjective and .Lkv is a connected simplicial
graph. We suppose this to be true. Then fundamental group of .Lkv is .ker((Ge ∗
Gf ) → Gv). The girth of .Lkv , denoted .girth(Lkv), is the combinatorial length of
the shortest cycle in .Lkv . (The girth of .Lkv is sometimes called its “systole.”) If
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.girth(Lkv) ≥ 2, then .Lkv is a simplicial graph; if its girth is .≥ 4, then it is a flag
complex.

There is an important dichotomy here. If each vertex group .Gv is finite, then each
vertex link .Lkv is a finite graph, .D(G,P ) is a locally finite 2-complex and G acts
geometrically on it. On the other hand, if some .Gv is infinite, then the polyhedron
.D(G,P ) is not locally finite and the G-action is not proper. The reflection group
actions in Examples 2.58 and 2.59 below are of the first type, while Examples 2.60
and 2.62 are not locally finite.

The polygon of groups .GF(P ) is nonpositively curved if the following conditions
hold:

(a) P can be realized as a convex polygon in .E
2 or .H

2.
(b) If .αv(i) denotes the angle at .v(i), then .[αv(i)][girth(Lkv(i))] ≥ 2π . (This is the

Link Condition from Example 2.6 at the vertex .v(i).)

There are several important consequences of the nonpositive curvature of .GF(P ).
First, .GF(P ) is developable. This means that the natural map from each local group
.Gσ to the direct limit G is injective (see the Appendix or [35, III..C.2.11]). Second,
.D(G,P ) is .CAT(0). Third, the .K(π, 1)-Question for .GF(P ) has a positive answer.
This means that if we use the natural maps to glue together copies of the .BGσ ,
the result is homotopy equivalent to BG, the Eilenberg –MacLane complex for the
direct limit (see Theorem A.21 in Appendix A.4 or [138, Prop. 3.2.3]).

Lemma 2.55 Suppose that .GF(P ) is an m-gon of groups, .m ≥ 4 and that for each
vertex v of P , .girth(Lkv) ≥ 4. When .m = 4, .D(G,P ) can be given the structure of
a .CAT(0) square complex. When .m ≥ 5, it can be given the structure of a piecewise
hyperbolic .CAT(−1) polygonal complex.

Proof We can realize P as a convex right angled m-gon either in .E
2 when .m = 4

or in .H
2 when .m ≥ 5.

Since an all right triangle is isometric to a subset of .S
2, Lemma 2.55 does not

hold when .m = 3. In this case we must choose the angles of P more carefully. So,
suppose P is a triangle with vertices .v(i) for .i = 1, 2, 3. Let .αv(i) ∈ (0, π/2] be a
possible choice of angle at .v(i). The condition that the link at .v(i) be .CAT(1) is that
.[αv(i)][girth(Lkv(i))] ≥ 2π , i.e., .αv(i) ≥ 2π/ girth(Lkv(i)).

Lemma 2.56 Suppose P is a triangle with vertices .v(i), for .i = 1, 2, 3 and that
.girth(Lkv(i)) ≥ 4. Then a necessary and sufficient condition to realize .GF(P ) as an
NPC triangle of groups is that we can find numbers .αv(i) ∈ (0, π/2] so that

.π ≥
∑

αv(i) ≥ 2π
∑

1/ girth(Lkv(i)).

Proof The first inequality is the fact that the sum of the angles of a triangle in .E
2

or .H
2 is .≤ π . The second inequality follows from the condition that .Lkv(i) be large

(see Definition 2.16).
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Remark 2.57 The system of groups defined by an m-gon of groups is the same
as the one defined by the graph of groups corresponding to the boundary m-cycle.
However, the fundamental group of the graph of groups is not the direct limit. To
see this, delete the interior of each copy of P from .D(G,P ). The resulting graph is
a cover of the m-cycle of groups; however, it is not simply connected.

Example 2.58 (Polygon Reflection Groups, cf. [82, §6.5]) Suppose P is a convex
m-gon in .X

2 = S
2, .E2 or .H

2 so that the angle at .v(i) is .π/mi , where .mi is a natural
number .> 1. This is the data for a simple complex of groups over .F(P ): each
edge group is .C2 and the group associated to the vertex .v(i) is .Dmi

, the dihedral
group of order .2mi . (The group .Dmi

is generated by reflections across the two edges
meeting at .v(i).) The direct limit of this system of groups is the Coxeter group
.WP . Since each local group is finite, the .WP action on .D(WP , P ) is proper. It
turns out that .WP is isomorphic to the group of isometries of a space of constant
curvature .X

2 generated by reflections across the sides of P . More precisely, the
inclusion .P ↪→ X

2 induces a .WP -equivariant homeomorphism .D(WP , P ) → X
2

(see Lemma 3.7 (i) in the next section). This is a fundamental example to which we
will return many times in this book.

Example 2.59 (Triangle Groups) If P is a triangle with angles .π/mi , then the
Coxeter group .WP is called a triangle group. It will sometimes be denoted
.W(m1,m2,m3). (The definition of a “Coxeter group” is given by the presenta-
tion (4.5) in Sect. 4.1.2.) The triangle P can be realized as a triangle in .S

2, .E
2

or .H
2 as the sum of its angles is, respectively, .>, .=, or .< .π . In other words,

.W(m1,m2,m3) is spherical, euclidean or hyperbolic as the sum of reciprocals

.1/m1 + 1/m2 + 1/m3 is .>, .=, or .< 1, respectively.

Example 2.60 (The Higman Group and Its Generalizations) The proof of
Proposition 2.45 (i) shows that Higman’s group H is the direct limit of a square
of groups where each edge group is infinite cyclic and each vertex group is a
Baumslag–Solitar group, .BS(1, 2). If v is a vertex of the square P and e and f are
the adjacent edges, then .Lkv is the quotient of the Bass-Serre tree for .Ge ∗ Gf by
.ker((Ge ∗Gf ) → Gv). Martin proves in [176] that the girth of this simplicial graph
is at least 4. Hence, this square of groups is NPC and its development .D(H,P ) is a
.CAT(0) square complex.

Here are two more examples along the same line.

Example 2.61 (Graph Products over Cycles) We can define a complex of groups
over .F(Pm) as follows. For each edge e choose a group .Ge. To a vertex .v = e ∩ f

associate the group .Ge × Gf . To the 2-cell associate the trivial group. The natural
inclusions of the edge groups into vertex groups, then defines a polygon of groups.
The resulting direct limit G is called the graph product. The graph in question is the
m-cycle dual to .∂Pm. The link at the vertex .v = e ∩ f is the join of .Ge and .Gf . (To
avoid confusing this with the free product we do not denote the join by .Gr ∗ Gf .)
Since this join is a complete bipartite graph, its girth is 4; so, the Link Condition
holds. As before, if .m ≥ 4, this polygon of groups is nonpositively curved; it is
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called the graph product complex. (If .m = 3, then G is the direct product of the 3
edge groups and the graph product complex should be thought of as lying over the
3-cube rather than a triangle.) For more general graphs, the graph product complex
is explained in Sect. 3.1.2 of the next chapter. It is also explained there how, when
.m ≥ 4, the development .D(G,Pm) is an example of a right-angled building. A
chamber for .D(G,Pm) is the polygon .Pm.

Example 2.62 (Two-dimensional Artin Groups over Polygons) A dihedral Artin
group is an Artin group .Ak whose associated Coxeter group is the dihedral group
.Dk . In other words, .Ak has a presentation with two generators x and y and one
relation of the form .xy · · · = yx · · · where on both sides of this equation there is
an alternating word in x, y of length k. Now let P be an m-gon, .m ≥ 4 and let
.k : v(i) �→ k(i) be a function from .Vert P to .{2, 3, . . . } ∪ {∞}. Define a simple
complex of groups .GF(P ) over P by putting an infinite cyclic group on each edge
and a dihedral Artin group .Ak(i) on each vertex. The direct limit G is then an Artin
group. By [10, Lemma 6], the link for the dihedral Artin group .Ak has systole .≥ 2k,
i.e., .girth(Lkv(i)) ≥ 2ki ; so, .GF(P ) is a nonpositively curved polygon of groups.
Hence, .D(G,P ) is .CAT(0). If .WP denotes the Coxeter group associated to G, then
.D(G,P )/WP is its associated “Deligne complex” (see Sect. 4.3.1). The theory of
general Artin groups is the subject of Sect. 4.3. For general Artin groups, it is still
not known if the natural metric on the Deligne complex is nonpositively curved.
(See Conjecture 4.54 in Sect. 4.3.1.)



Chapter 3
Right-Angled Spaces and Groups

The notion of a “polyhedral product” of a collection of spaces (or pairs of spaces)
indexed by the vertex set I of a simplicial complex L is used to define some of the
main examples of cell complexes and groups that are discussed in this book. If L is a
flag complex and I indexes a collection of copies of .S1, then the polyhedral product
is the standard classifying space for the “right-angled Artin group” associated to
L. More generally, if I indexes a collection of classifying spaces .BGi , then the
polyhedral product is the classifying space for the “graph product” of the .Gi .
The universal cover of a polyhedral product is often a .CAT(0) cube complex and
isometry groups of these cube complexes are often graph products. For example,
if the spaces that are indexed by I are cones over discrete sets, then the universal
cover of the polyhedral product is a right-angled building (abbreviated as .RAB).
If each of the discrete sets is a group .Gi , then the relevant isometry group of the
.RAB is the graph product of the .Gi . When each of the factors is the cyclic group
of order 2, the graph product is the “right-angled Coxeter group” (abbreviated as
.RACG) associated to L; when each factor is infinite cyclic, then the graph product
is a right-angled Artin group (abbreviated as .RAAG). In these cases the right-angled
buildings are called, respectively, the “Davis–Moussong complex” of the .RACG or
the “Deligne complex” of the .RAAG. In Sect. 3.2 we take a fairly deep dive into
the theory of cocompact right-angled reflection groups on contractible manifolds.
Here the flag complex L is a simplicial sphere (or more generally, a generalized
homology sphere). The corresponding polyhedral product of intervals, .PL, is also
known as the “generalized moment angle manifold.” The contractible manifold is
its universal cover. The fundamental group of .PL is the commutator subgroup of
a .RACG. Further quotients lead to the notion of a “small cover” of a right-angled
Coxeter orbifold. Various related ideas, such as Haken manifolds and the Reflection
Group Trick, are also explained in Sect. 3.2. In Sect. 3.3 we discuss a similar class
of examples acting on .CAT(0) cube complexes formed by “blowing up Coxeter
zonotopes” and taking the universal covers. In general, the relevant groups are not
Coxeter groups, rather they are “mock reflection groups.”
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Given a flag complex L, NPC cube complexes .PL and .ZL are defined as
polyhedral products in Sect. 3.1.1. In both cases, there is a group G, which is a
direct sum of discrete groups, and an action of G on the polyhedral product with
strict fundamental domain the chamber .KL. The universal covers of .PL and .ZL are
.CAT(0) cube complexes. The group .Γ of all lifts of the G-action to the universal
cover is a graph product of discrete groups. In Sect. 3.1 we also define an NPC cube
complex .TL which is a polyhedral product of copies of .S1. This cube complex is
the classifying space for the right-angled Artin group associated to L. Similarly, a
polyhedral product of classifying spaces .BGi , .i ∈ Vert(L), is the classifying space
.BΓ for the graph product of the .Gi .

3.1 Polyhedral Products

Let L be a simplicial complex with vertex set I . The poset of simplices (including
the empty simplex) is denoted by .S(L). If .σ is a simplex of L, then .I (σ ) denotes
its vertex set. Suppose .A = {(Ai, Bi)}i∈I is a collection of pairs of spaces with
basepoints .∗i ∈ Bi .

Definition 3.1 The polyhedral product of .A with respect to L is the subset .AL of
the product .

∏

i∈I Ai consisting of the points .(xi)i∈I satisfying the following two
conditions:

(a) .xi = ∗i for all but finitely many i,
(b) .{i ∈ I | xi /∈ Bi} is a simplex of L.

(We could include condition (a) into the definition of .
∏

i∈I Ai and call it the weak
product.) For pairs .M < M ′ of subcomplexes of L, the basepoints determine natural
inclusions .AM ↪→ AM ′

. When L is finite, the polyhedral product inherits a topology
from the (weak) product .

∏

i∈I Ai . In general .AL acquires the topology of the direct
limit, .limAM , as M runs through the finite subcomplexes.

One can also view .AL as a union of products as follows. For each simplex .σ in .S(L)

put

.Aσ =
∏

i∈Vert σ

Ai ×
∏

i /∈Vert σ

Bi

So, if .σ is the empty simplex, then .Aσ = ∏

Bi . Also, note that if each .Bi = ∗i , then
.Aσ is just the product of the .Ai , where i ranges over .Vert σ . As a union of products
.AL is defined by

.AL =
⋃

σ∈S(L)

Aσ . (3.1)
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The topology on .AL also can be explained using (3.1). If .Δ denotes the full simplex
on I , then .AΔ is the subset of the product of the .Ai satisfying (a). So, .AΔ is the
union of all .Aσ over all finite subsets of .σ ≤ I . Give .AΔ the direct limit topology
and give .AL ≤ AΔ the induced topology.

The main examples of this book are when:

(1) each .Ai is the interval .[0, 1], .Bi = ∗i = 1,
(2) each .Ai is the interval .[−1, 1], .Bi = ∂[−1, 1] = {±1} and .∗i = 1,
(3) each .Bi is a discrete space .Ei , .Ai = Cone Ei and .∗i ∈ Ei ,
(4) each .Ai = S1 and .Bi = ∗i = 1.

In (3) .Cone Ei means the cone on .Ei , i.e., it is the quotient space .(Ei × [0, 1])/ ∼.
For example, if .Ei = {±1}, then .Cone Ei can be identified with .[−1, 1]. The cone
point of .Ei is the point .0i corresponding to .0 ∈ [0, 1] Choose an element .∗i ∈ Ei

to be the basepoint. Let .ConeE denote the I -tuple .(Cone Ei,Ei, ∗i )i∈I .
Denote the polyhedral products in (1), (2), (3), (4) by .KL, .PL, .ZL, and .T

L,
respectively, i.e.,

.KL = ([0, 1], 1)L, . (3.2)

PL = ([−1, 1], {±1})L, . (3.3)

ZL = (ConeE,E)L, . (3.4)

TL = (S1, 1)L. (3.5)

When the pairs .(Ai, Bi) are independent of i so that .(Ai, Bi) = (A,B), we write
simply .(A,B)L instead of using boldface (for example, this is the case in (3.2), (3.3)
and (3.5)).

3.1.1 The Cube Complexes KL , PL , ZL , and TL

Since polyhedral products are subspaces of products, .PL is a cubical subcomplex
of the cube .[−1, 1]I , while .TL is a subcomplex of the torus, .(S1)I . Regarding .S1

as a 1-cube complex with one edge and one vertex, the product .(S1)I becomes a
cube complex and .TL is a cubical subcomplex. The cone, .Cone Ei , is the union of
intervals, one for each point of .Ei , glued together at the cone point .0i . So, .Cone Ei

is a 1-cube complex. Hence, the (weak) product .
∏

i∈I Cone Ei is a cube complex.
Since the polyhedral product .ZL, defined by (3.4), is a subcomplex, it is also a
cube complex. Each of these cube complexes, .KL, .PL, .ZL and .TL has the same
dimension, namely, .1 + dim(L).

The Complex .PL Let .C2 = {±1} be the cyclic group of order 2 and denote by
.(C2)

I (or by .
∑

i∈I C2) the direct sum of I copies of .C2. Similarly, .[−1, 1]I is
the set of all .(ti) in the product satisfying condition (a) in Definition 3.1. We have
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.(C2)
I
� [−1, 1]I as a reflection group. (As in the footnote in Sect. 2.4.2, .G � X

means “the group G acts on a space X.”) Each element of I can be regarded as a
standard basis vector for the euclidean space .R

I . So, each .(k − 1)-face .σ of the full
simplex on I determines a k-dimensional subspace .R

σ spanned by the vertex set
.I (σ ) of .σ . The cube complex .PL is stable under the .(C2)

I -action on .[−1, 1]I . Any
k-dimensional face of .[−1, 1]I is parallel to some .R

σ . We denote such a face by .�σ .
Given .σ , the corresponding set of k-cubes parallel to .�σ forms a single .(C2)

I -orbit
which we denote by .orb(�σ ). In other words, .orb(�σ ) ∼= (C2)

I−I (σ ) ×[−1, 1]I (σ ).
Thus,

.PL =
⋃

σ∈S(L)

orb(�σ ). (3.6)

In particular, .orb(�∅) means the .(C2)
I -orbit of a vertex, i.e., .orb(�∅) = {±1}I .

Example 3.2 (Examples of .PL) See also [81], [84].

(i) If L consists of n vertices and no higher dimensional cells, then .PL is the 1-
skeleton of an n-cube.

(ii) If .L = ∂Δn is the boundary complex of an n-simplex, then .PL is the boundary
complex of an .(n + 1)-cube, i.e., .PL is homeomorphic to .Sn

(iii) Suppose L is an m-circuit (that is, a circle triangulated as the boundary of an
m-gon). The square complex .PL is a closed 2-manifold (since the link of each
vertex is .S1 and the link of each edge is .S0). It is easily seen to be connected
and orientable. Its Euler characteristic is .2m−m2m−1+m2m−2 = 2m(1−m/4).
This example appeared already in Coxeter’s 1938 paper [68, p. 57]. (My thanks
to Alex Suciu for pointing out this reference to me.) If .m = 4, .PL is a flat 2-
torus.

If the 1-skeleton .L1 of L is not a complete graph, then .PL is not simply
connected. In general, .π1(PL) depends only on .L1 (cf. [85, Lemma 2.9]).

The Complex .ZL The polyhedral product, .ZL := (ConeE)L, defined by (3.4), is
a generalization of the previous example .PL of a polyhedral product of intervals.

Example 3.3 Suppose .I = {1, 2} and that for .i ∈ I , .Ei is a finite set of .mi points.
If L is a 1-simplex .σ 1, then the polyhedral product .Zσ 1 = Cone E1 × Cone E2 is a
square complex. Each square has the form .Cone e1 ×Cone e2, where .ei ∈ Ei , which
is a cone on .(Cone e1 × e2) ∪ (e1 × Cone e2). The square complex .Zσ 1 also has the
structure of cone, namely, it is the cone on

.Z∂σ 1 = (Cone E1 × E2) ∪ (E1 × Cone E2).

The space .Z∂σ 1 can be identified with the join .E1 ∗E2 (this is the complete bipartite
graph .Km1,m2 ). More generally, suppose .σ is an .(n − 1)-simplex with vertex set
.I = {1, . . . , n} and that .Ei is a finite set of cardinality .mi . Then .Zσ is the product,
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.Cone E1×· · ·×Cone En, which is a cube complex. Moreover, .Z∂σ is homeomorphic
to the join, .E1 ∗ · · · ∗ En.

The Fundamental Chamber .KL Suppose each .Ei is a singleton, necessarily the
basepoint. The polyhedral product becomes

.KL := (Cone ∗i , ∗i )
L. (3.7)

Since .(Cone ∗i , ∗i ) ∼= ([0, 1], 1), .KL is naturally a cube complex. Since each cube
contains the basepoint .∗ = (∗i )i∈I , .KL is a cone—in fact it can be identified with
the cone on the barycentric subdivision of L. Note that .KL is a subcomplex of
.ZL. In particular, it is a subcomplex of .PL. We have that .PL is a subcomplex of
.[−1, 1]I and .KL can be identified with the intersection .PL ∩ [0, 1]I . So, it is a strict
fundamental domain, in the sense defined below, for the .(C2)

I -action on .PL. For
this reason, .KL will be called the fundamental chamber.

Definition 3.4 As before, given a simplicial complex L, its poset of simplices
(including the empty simplex) is denoted .S(L). For each integer .k ≥ −1, let .L(k)

denote the set of k-simplices in L.

To simplify notation, put .K = KL and for each vertex .i ∈ I , define the mirror .Ki

to be the intersection of K with the hyperplane .xi = 0. Similarly, for each simplex
.σ ∈ S(L), put

.Kσ =
⋂

i∈I (σ )

Ki = {x ∈ K | xi = 0 for all i ∈ I (σ )}. (3.8)

The Standard Classifying Space .TL for a .RAAG The cube complex .TL, defined
by (3.5), is a polyhedral product of circles. If .L = Δ is an .(n − 1)-simplex, then
.TΔ is the n-torus, while .T∂Δ is the .(n − 1)-skeleton of the n-torus. As we shall
see in Proposition 3.27, .π1(TL) is the right-angled Artin group .AL associated to
the 1-skeleton .L1 of L. If L is a flag complex, then .TL is the standard classifying
space of .AL. It is also called the Salvetti complex of .AL. Thus, .TL is a subcomplex
of .T

Δ where .Δ denotes the full simplex on I . In other words, .TL is the union of
subtori .Tσ , where .σ ∈ S(L), cf. (3.1). (There is a canonical homomorphism from
.AL to the right-angled Coxeter group .WL associated to .L1. We will sometimes use
the term Salvetti complex of .AL to mean the covering space of .TL corresponding to
.ker(AL → WL). The definition for general Artin groups is given in Sect. 4.3.3.)

The Basic Construction

Definition 3.5 Suppose G is a discrete group acting on a space X. A closed
subspace .Y < X is a strict fundamental domain if it intersects each G-orbit in
exactly one point.

The proof of the next lemma is left as an exercise for the reader.
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Lemma 3.6 Suppose .G � X with strict fundamental domain Y . Let .π : X →
X/G be projection to the orbit space and let .π = π |Y . Then .π : Y → X/G is a
homeomorphism.

One can reconstruct the G-action on X from the group G, the strict fundamental
domain Y , and the knowledge of the isotropy subgroups .Gy at each point .y ∈ Y

(where .Gy = {g ∈ G | gy = y}). Define an equivalence relation .∼ on .G × Y by

.(g, y) ∼ (g′, y′) ⇐⇒ y = y′ and g−1g′ ∈ Gy . (3.9)

The basic construction is the G-space .D(G, Y ) defined by .D(G, Y ) = (G×Y )/ ∼ ,
with the quotient topology. Let .[g, y] denote the equivalence class of .(g, y).

Lemma 3.7 (Properties of the Basic Construction)

(i) The natural map .y �→ [1, y] from Y into .D(G, Y ) is an embedding (which we
regard as an inclusion).

(ii) .G � D(G, Y ) and Y is a strict fundamental domain.
(iii) The map .D(G, Y ) → X defined by .[g, y] �→ gy is a G-equivariant

homeomorphism.
(iv) The map .r : D(G, Y ) → Y defined by .[g, y] �→ Y is a retraction. (The map r

is essentially the orbit projection.)
(v) The G-action on .D(G, Y ) is proper if and only if Y is Hausdorff and for each

.y ∈ Y , .Gy is a finite subgroup of G.

Links of Vertices in These Cube Complexes The most salient feature of .PL is
that the link of each vertex can be identified with L. We state this as the following
lemma.

Lemma 3.8 For each vertex v of .PL , .Lk(v, PL) = L .

Consider the 1-cube complex, .Cone Ei . Let .0i denote the cone point. There are
two types of vertices in .Cone Ei – the cone point .0i is a vertex, as is each element
.e ∈ Ei . As for links, .Lk(0i , Cone Ei) = Ei , while for each .e ∈ Ei , .Lk(e, Cone Ei)

is a point. Next consider the general case, .ZL := (ConeE)L. Any vertex v of .ZL

has the form .v = (vi)i∈I , where .vi is a vertex of .Cone Ei , i.e., either .vi ∈ Ei or
.vi = 0i . Put

.τ(v) = {i ∈| I |vi = 0i}. (3.10)

So, .τ(v) is a simplex of L (possibly the empty simplex). This proves the following
lemma which describes links in .ZL.
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Lemma 3.9 For a vertex v of .ZL let .τ(v) be defined by (3.10). The link of v in .ZL

is the join

. Lk(v, ZL) = Lk(τ (v), L) ∗ *i∈I (τ (v))Ei. (3.11)

In particular, if each .vi lies in some .Ei , then .Lk(v, ZL) = L .

Remark 3.10 If each .Ei consists of two points, then .ZL = PL. However, the
cubical structure on .PL is coarser than the one we get by identifying it with .ZL.
The reason is that if we identify .[−1, 1] with .Cone{±1}, then we should subdivide
.[−1, 1] into two intervals, .[−1, 0] and .[0, 1]. Thus, when thought of as .ZL, each
n-cube in .PL is subdivided into .2n cubes.

Definition 3.11 (Compare Definition 3.1 and Formula (3.1)) Suppose .{Xi}i∈I

is a collection of spaces indexed by the set I of vertices of a simplicial complex L.
For any simplex .σ of L, let .X(σ) denote the join .*i∈I (σ ) Xi . Analogously to the
definition of polyhedral product in (3.1), the polyhedral join over L of .{Xi}i∈I is
defined by

.*L Xi :=
⋃

σ∈S(L)

X(σ). (3.12)

Lemma 3.12 The link of each vertex v in .TL is a polyhedral join of 0-spheres,
.Lk(v,TL) = *L S0.

In the sequel this polyhedral join of 0-spheres will be called the octahedralization
of L. (cf. [12] or [105, §8]).

Lemma 3.13 Suppose L is a flag complex. Then the polyhedral join defined
by (3.12) of the .{Xi}i∈I over L is a flag complex if

– each .Xi is discrete or if
– each .Xi is a flag complex.

In particular, the octahedralization of a flag complex is a flag complex.

So, the next result follows from Gromov’s Lemma 2.31.

Theorem 3.14 The cube complexes .KL, .PL, .ZL and .TL are NPC if and only if L

is a flag complex.

Proof The issue is to show that links of vertices in .PL, .ZL and .TL are flag
complexes if and only if L is a flag complex. So, suppose L is a flag complex. Since
the link of each vertex in .PL is L (by Lemma 3.8), this is immediate for .PL. By
Lemma 3.9, the link of a vertex v of .ZL has the form .Lk(τ (v), L) ∗ *i∈I (τ (v))Ei .
By part (iii) of Lemma 2.25, .Lk(τ (v), L) is a flag complex and by part (ii), so is
.*i∈I (τ (v))Ei . Another application of part (ii) gives that the join, .Lk(τ (v), L) ∗
*i∈I (τ (v))Ei , is a flag. complex. The complex .KL is the special case of .ZL where
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each .Ei is a singleton. As for .TL, if L is a flag complex, then, by Lemma 3.13, so
is .*LS0; hence, by Lemma 3.12, the link of each vertex in .TL is a flag complex.

Here is another straightforward application of Gromov’s Lemma.

Lemma 3.15 For each .i ∈ I suppose .Ai is an NPC cube complex and its basepoint
.∗i ∈ Ai is a vertex of .Ai . Put .A = (Ai, ∗i ). Then .AL is naturally a cube complex.
Moreover, it is NPC if and only if L is a flag complex.

Universal Covers More important for us than the cube complexes .PL, .ZL and
.TL will be their universal covers, denoted by .P̃L, .Z̃L and .T̃L, respectively. If
L is a flag complex, then by the Cartan–Hadamard Theorem (Theorem 2.3 (i)),
these universal covers are .CAT(0) cube complexes. The complex .P̃L is the Davis–
Moussong complex for the right-angled Coxeter group associated to L, when each
.Ei has a least two points the complex .Z̃L is a right-angled building, and .T̃L is the
universal cover of the Salvetti complex for the right-angled Artin group associated
to L. In order to describe the groups which act on these complexes we need the
notion of a “graph product” of groups, developed in the next subsection.

Right-Angled Coxeter Groups The group .(C2)
I acts on .[−1, 1]I as a group

generated by .{ri}i∈I , where .ri is the reflection on .[−1, 1]I across the hyperplane
.{xi = 0}. Since the subspace .PL of .[−1, 1]I is stable under the .(C2)

I -action, .(C2)
I

is also a reflection group on .PL. Let .WL denote the group of all lifts of the .(C2)
I -

action to the universal cover .P̃L. (In other words, an element of .WL is a lift of an
element .g ∈ (C2)

I to .P̃L.) This gives an exact sequence

.1 → π1(PL) → WL → (C2)
I → 1. (3.13)

We claim that .WL is a Coxeter group. As in (3.7), let .K = KL be the fundamental
chamber for .(C2)

I -action on .PL and let .Ki = KL ∩ {xi = 0}. Choose a component
of the inverse image of K in .P̃L and identify it with K . (We can do this since
K is simply connected). Let .si be the lift of .ri to .P̃L which fixes .Ki . Then .si
is an involution. Moreover, .(sisj )

2 = 1, whenever .{i, j} ∈ Edge L1. Consider
the .WL-action on the cube complex for .P̃L Since .(C2)

I acts simply transitively
on .Vert([−1, 1]I ), the group .WL is simply transitive on .Vert(P̃L). Hence, the 1-
skeleton of .P̃L is a Cayley graph for .WL and its 2-skeleton is a Cayley 2-complex.
To see that this gives a presentation of the desired form, consider the vertex
.v = (1, 1, . . . , 1) ∈ PL and let .ṽ be a lift to .P̃L. The edges emanating from .ṽ have
the form .[ṽ, si ṽ]. This shows that .{si}i∈I is a set of generators for .WL. Moreover, for
each .{i, j} ∈ Edge L1, there is a square at .ṽ with boundary edges labeled .sisj sisj .
It follows that .WL is a right-angled Coxeter group with .{si}i∈I as a fundamental
set of generators and with relations as defined in the previous sentence. Such a
Coxeter group is said to be “right-angled.” In the next subsection we generalize this
construction to graph products of groups and to .RABs.
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3.1.2 Graph Products of Groups

Next we want to explain the close connection between five topics:

– graph products of groups,
– the fundamental group of a polyhedral product,
– polyhedral products of pairs of spaces of the form .(Cone Gi,Gi) where .Gi is a

discrete group,
– polyhedral products of classifying spaces .(BGi, ∗i ) and the classifying space of

the graph product,
– right-angled buildings (or .RABs) with chamber-transitive automorphism groups.

Suppose .{Gi}i∈I is a collection of groups indexed by the vertex set I of a
simplicial graph .L1.

Definition 3.16 The graph product, denoted .
∏

L1 Gi , is the quotient of the free
product of the .Gi by the normal subgroup generated by all commutators of the form
.[gi, gj ], with .{i, j} ∈ L(1), where .L(1) (.= Edge L1) is the set edges of .L1, .gi ∈ Gi

and .gj ∈ Gj . (Such groups were first studied by Droms [109].)

As examples, if .L(1) = ∅, the graph product is the free product, while if .L1 is
a complete graph, then the graph product is the direct sum: .

∏

L1 Gi = ∑

i∈I Gi .
(Here, the direct sum, .

∑

i∈I Gi , means the subset of the direct product where only
finitely many coordinates are not equal to the identity element of .Gi . Often we omit
the subscript on .

∑

and write simply .
∑

Gi .) There is a canonical epimorphism
.p : ∏

L1 Gi → ∑

Gi .
As in [207, p. 1], a system of groups simply means a family of groups .{Ga}a∈A

indexed by some set A together with a subset .Fab of .Hom(Ga,Gb) for each pair
.(a, b) ∈ A × A. Given a system of groups, one can then define the notion of its
direct limit G as in [207, p. 1]: it has the universal property that given any collection
of homomorphisms .{θa : Ga → H } to a group H that are compatible with the
bonding homomorphisms .Fab, there is unique homomorphism .G → H making the
obvious diagrams commute. (See Appendix A.1.)

For example, if .{Gi}i∈I is a collection of groups indexed by the vertex set I of a
simplicial graph .L1, then we get a system of groups

.Gi, i ∈ I, Gi × Gj, {i, j} ∈ L(1),

indexed by the cells of .L1, where the bonding homomorphisms are the natural
inclusions .Gi ↪→ Gi × Gj defined whenever .{i, j} ∈ L(1). The graph product
.
∏

L1 Gi then can be described as the direct limit of this system of groups. (N.B.:
This is not a graph of groups.)

Let L be the flag complex determined by .L1. There is a larger system of groups
indexed by the set .S(L) of simplices in L including the empty simplex. For any k,
let .L(k) denote the set of k-simplices in L. For .σ ∈ S(L), the group .Gσ is defined
to be the direct sum .Σi∈I (σ )Gi ; if .τ is a face of .σ , we have a natural inclusion
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.Gτ ↪→ Gσ . For .G = (Gi)i∈I , this defines a system of groups,

.GL(G) := {Gσ }σ∈S(L), {Gτ ↪→ Gσ }τ<σ (3.14)

called the graph product complex in Example 3.19 below. The direct limit of this
system is the same graph product as before. As explained in Appendix A, .GL(G)

is a nice example of a “simple complex of groups,” as defined in Appendix A.1.
(Later when using this simple complex of groups, we shall index the groups by the
opposite poset .S(L)op.) There are two cube complexes associated to this simple
complex of groups. First we have the polyhedral product .ZL = (ConeG,G)L

defined as a subset of the product .(ConeG,G)Δ as in (3.4) (with .E = G). The space
.ZL is a union of pieces of the form .(Cone Gi,Gi)

σ := ∏

i∈I (σ ) Cone Gi . Since it
is a product of cones over discrete sets, .(Cone Gi,Gi)

σ is a cubical complex of
dimension equal to .Card(I (σ )). There is one copy of .(Cone Gi,Gi)

σ for each coset
of .Gσ in .

∑

Gi . Each copy of .(Cone Gi,Gi)
σ contains one top-dimensional cube

for each element of .Gσ .
Thus, .ZL is a union of cubes, one for each element of .(ΣGi × S(L); the

dimension of the cube corresponding to .(g, σ ) is .dim σ +1. The group .
∑

Gi acts on
.ZL having as strict fundamental domain the chamber .KL that was defined by (3.2).
Hence,

.ZL = D(ΣGi,KL) = (ΣGi,KL)/ ∼ . (3.15)

Here, .ΣGi means the direct sum of the .Gi and the equivalence relation .∼ is defined
by (3.9). Consider the universal cover .Z̃L of .ZL. Let .Γ = ∏

L1 Gi denote the graph
product.

Example 3.17 (Right-Angled Coxeter Groups) If each .Gi is .C2, the cyclic group
of order two, then the graph product is the right-angled Coxeter group associated to
.L1.

Example 3.18 (Right-Angled Artin Groups) If each .Gi is the infinite cyclic
group, then .

∏

L1 Z is the right-angled Artin group associated to .L1. (For an
introduction to .RAAGs, see [54].)

The terms “right-angled Coxeter group” and “right-angled Artin group” will often
be abbreviated by .RACG and .RAAG, respectively.

Relative Graph Products Let .G = ∑

i∈I Gi denote the direct sum. Suppose each
.Gi acts on a set .Ei . Then .G � (Cone(E))Δ, where .Δ means the full simplex
on I so that .(Cone(E))Δ is the product of the .Ei . (A “simplex” of .Δ means
the span of a finite subset of I even when I is not assumed to be finite.) The
polyhedral product .ZL = (ConeE)L is a subspace of .(Cone(E))Δ that is stable
under the G-action. Choose basepoints .∗i ∈ Ei so that the I -tuple .∗ = (∗i )i∈I is a
basepoint for .ZL. Suppose we are given a .Gi-set .Ei for each .i ∈ I . Denote the I -
tuple .(Gi, Ei)i∈I by .(G,E) and put .(Cone(E),E) = (Cone(Ei), Ei, ∗i )i∈I , where
.∗i ∈ Ei is a basepoint. Let L be a simplicial complex with .L1 as its 1-skeleton. Then
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.G � (ConeE)Δ, where .Δ means the full simplex on I . The polyhedral product

.ZL = (ConeE)L is a subspace of .(ConeE)Δ that is stable under the G-action.
To simplify the discussion, suppose .Gi acts effectively on each orbit in .Ei with
.Bi the isotropy subgroup at .∗i . (This means that if .Gi/Bi is such an orbit, then
the subgroup .Bi is malnormal.) Then G acts effectively on the polyhedral product
.ZL := (Cone(E),E))L. Let .Z̃L denote the universal cover and let .ΓL denote the
group of all lifts of the G-action to .Z̃L. The group .ΓL is called the relative graph
product or “generalized graph product” of the .Ei . (N.B. .ΓL depends only on the
1-skeleton .L1.) We have a short exact sequence (cf. (3.13)):

.1 → π1(ZL) → ΓL → G → 1 . (3.16)

(If .Gi does not act effectively on .Ei but has kernel .Ni , then in (3.16) we should
replace G by .G/N where N is the product of the .Ni . The definition of .ΓL should
then be modified by an appropriate extension by N . See [85, §2.3] for details.)
We can also use the notation .

∏

L1(Gi, Ei) for .ΓL. The notion of a relative graph
product goes back to Januszkiewicz–Świa̧tkowski [158] and Haglund [140]. Further
information can be found in [85, 98].

Example 3.19 (The Graph Product Complex) Suppose .Gi is transitive on .Ei so
that .Ei = Gi/Bi , for .i ∈ I . Also suppose .Bi is malnormal in .Gi . For each .σ ∈ L,
let .I (σ ) denote the vertex set of .σ . Put .G := (Gi,Gi/Bi)i∈I . As in (3.14) we get
a simple complex of groups .GL(G) = {Gσ }σ∈S(L)} over the poset .S(L)op, where
.Gσ = ∑

i∈I Ji(σ ) is the direct sum of groups .Ji(σ ) with

.Ji(σ ) =
{

Gi, if i ∈ I (σ ),

Bi, if i /∈ I (σ ).

For .σ = ∅, we have .G∅ = ∑

Bi . Whenever .τ < σ , there is a natural inclusion
.Gτ → Gσ . the direct limit of system of groups .{Gσ }σ(L) coincides with the relative
graph product .ΓL, defined in Lemma 3.21 below. In fact, it is only necessary to use
the simplices .σ with .Card(I (σ )) ≤ 2 to get this direct limit. As we shall see below
in Sect. 4.4.3, if each .Bi is a proper subgroup of .Gi , then the universal cover .Z̃L is
a regular “right-angled building” (abbreviated .RAB).

Example 3.20 Here is a particular case of the previous example. Suppose .L1 is
a graph with vertex set .{1, 2} and with no edges. The simple complex of groups
.GL gives the data for an interval of groups. The vertex groups are .G1 × B2 and
.B1 × G2 while the edge group is .B1 × B2. The polyhedral product .ZL is the join
.G1/B1 ∗ G2/B2, which is a complete bipartite graph. (Note that this is a subset of
.Cone(G1/B1) × Cone(G2/B2).) It follows that the relative graph product .ΓL is an
extension of .G1 × G2 by a free group (the fundamental group of the join).
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Lemma 3.21 With notation as above, let .G = ∑

Gi be the direct sum and .ΓL be
relative the graph product defined above. Let .ZL = (ConeE,E)L be the polyhedral
product and let .Z̃L be its universal cover. For each .i ∈ I , suppose the .Gi-action on
.Ei is transitive. Then the relative graph product .ΓL is the group of all lifts of the
G-action to .Z̃L. Hence, there is a short exact sequence,

.1 → π1(ZL) → ΓL → G → 1 .

Remark 3.22 The ordinary graph product .
∏

L1 Gi fits within the context of
this lemma. Indeed, form the polyhedral product .ZL, where .(Ai, Bi, ∗i ) =
(Cone(Gi),Gi, ∗i ). The lemma asserts that the ordinary graph product is the group
of lifts of the G-action on .ZL to the universal cover .Z̃L.

Remark 3.23 It can be shown as in Example 3.20 that .π1(ZL1) is a free group
generated by missing edges .{i, j}. Moreover, since .π1(ZL) ∼= π1(ZL1), we see that
.π1(ZL) is a free group. So, Lemma 3.21means that the relative graph product is an
extension of G by a free group.

Proof of Lemma 3.21 Let H be the group of all lifts of the G-action to .Z̃L. We will
show that H is equal to the graph product, .ΓL. Let .ϕ : H → G be the canonical
projection. Let .ci be the cone point of .Cone Ei and let .c̃i be a lift of it to .Z̃L. The
subgroup .Hi consisting of all lifts which fix the point .c̃i projects isomorphically
onto .Gi . If .{i, j} ∈ L(1), then .Cone Ei × Cone Ej is a subcomplex of .ZL and each
component of the inverse image of this subcomplex in .Z̃L projects isomorphically
to it. One such component contains the basepoint .∗̃. This component contains the
square .[∗̃i , c̃i] × [∗̃j , c̃j ] as a subcomplex. The subgroup .Hi × Hj fixes the point
.c̃i × c̃j and projects isomorphically to .Gi × Gj . So, .Hi × Hj is the group of all
lifts of elements of .Gi × Gj that fix .c̃i × c̃j . So, whenever .{i, j} is an edge of .L1,
the subgroups .Hi and .Hj commute. If .{i, j} is not an edge of .L1, then .∂(Cone Ei ×
Cone Ej) = Ei ∗ Ej is a subcomplex of .ZL and by Example 3.20, a component of
its inverse image in .Z̃L has fundamental group

.(Gi × Bj ) ∗Bi×Bj
(Bi × Gj)

So, the isotropy subgroups corresponding to the edges .{i, j} of .L1 are local groups
of the simple complex of groups in Example 3.19. The relative graph product is the
direct limit of this simple complex of groups over .S(L1)op. It follows from this and
the universal property of direct limits (cf. Appendix A.1), that the natural inclusions,
.Gi

∼= Hi ↪→ H and extend to a homomorphism .φ : ΓL → H from the relative
graph product to the group of lifts. Since .Gi is transitive on .Ei , it follows that H is
transitive on the inverse image of .Ei in .ZL. A straightforward argument then implies
that .φ : ΓL → H is an isomorphism.
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Assume for the remainder of this section that, as in the lemma, .Gi = Ei . Then
.Γ acts on .Z̃L with strict fundamental domain K (.= KL). Hence, .Z̃L can be defined
by the basic construction. We state this as the following theorem.

Theorem 3.24 The space .Z̃L is given by the basic construction:

.Z̃L = D(ΓL,K) = (ΓL × K)/ ∼,

where the equivalence relation .∼ is defined by (3.9).

Right-Angled Buildings As is explained in Sects. 4.4.1 and 4.4.2, there are certain
combinatorial objects called “buildings.” Such buildings have geometric realizations
as polyhedra. The polyhedron .Z̃L is the “standard realization” of a right-angled
building (or “.RAB”). (By definition, in order for .Z̃L to be a building, each .Ei

must have at least two elements.) There is projection .p : Z̃L → KL. The space
.Z̃L decomposes into chambers each of which projects homeomorphically onto .KL.
The inverse image of the cone point .0 := (0i)i∈I is the set of “center points” of
the chambers. The relative graph product .ΓL acts simply transitively on the set of
centers; hence, .ΓL acts transitively on the set of chambers. A collection of center
points of chambers forms an “.{i}-residue” of .Z̃L if they are the set of extremal
vertices of a copy of .Cone Ei . (In other words, two chambers belong to the same
.{i}-residue, if they belong to the same coset in .ΓL/Gi .)

If for each i, .Card(Ei) = 2, then .Z̃L is the Davis–Moussong complex and the
associated graph product is the .RACG, .WL. If each .Gi is infinite cyclic, then the
graph product is the .RAAG, .AL, and the polyhedron .Z̃L is the standard realization
of the .RAB associated to this .RAAG.

Example 3.25 Let L be a finite dimensional flag complex with vertex set I . For
each .i ∈ I , suppose .Gi is a nontrivial finite group. Let .ZL = {(Cone Gi, ∗i )}L
be the polyhedral product and let .Z̃L be the associated .RAB. Let .Γ be the graph
product. Then .Γ acts properly and each finite subgroup of .Γ projects isomorphically
onto a finite subgroup of .G = ∑

i∈I Gi . It follows that .Z̃L is the universal proper
.Γ -space .EΓ . (See Definition 7.8.)

The Fundamental Group of a Polyhedral Product As in Definition 3.1, .A =
{(Ai, Bi, ∗i )}i∈I and .AL denotes the polyhedral product. Each .Ai is assumed path
connected. Put .Gi := π1(Ai, ∗i ) so that .Ei := π1(Ai, Bi, ∗i ) is a .Gi-set. Call
.(G,E) := (Gi, Ei)i∈I the fundamental group data for .A. The next result shows
that the fundamental group of a polyhedral product is equal to the relative graph
product of its fundamental group data.

Proposition 3.26 (cf. [85, Theorem 2.18, p. 248]) Let .ΓL = ∏

L1(Gi, Ei) denote
the relative graph product defined by (3.16). Then

.π1(AL) = ΓL .
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Sketch of Proof Let .Ãi be the universal cover of .Ai , let .B̃i be the inverse image of
.Bi in .Ãi and .(Ã, B̃) = (Ã, B̃)i∈I . The polyhedral product .ZL(Ã, B̃) is a covering
space of .ZL(A,B). Since .Ãi is simply connected and the set of components of
.B̃i is .Ei , the natural map .ZL(Ã, B̃) → ZL(ConeE,E) induces an isomorphism
on fundamental groups. Hence, the universal cover of .ZL(Ã, B̃) is induced from
the universal cover of .ZL(ConeE,E). Since .π1(AL) and .ΓL are both lifts of
appropriate G-actions to these universal covers, the proposition follows.

Polyhedral Products of Classifying Spaces Next consider a polyhedral product
with respect to L, where .(Ai, Bi) = (BGi, BHi), where .BGi denotes the
classifying space of a discrete group .Gi and .Hi is a proper subgroup of .Gi . In
Appendix A.4.2 we will prove the following.

Proposition 3.27 Suppose L is a flag complex and that .(BG,BH) =
{(BGi, BHi, ∗i )}i∈I . Then the polyhedral product .(BG,BH)L is the classifying
space for the relative graph product .ΓL = ∏

L1(Gi,Hi), i.e.,

.BΓL = (BG,BH)L .

In particular, if each .Hi is the trivial subgroup, then the classifying space of the
ordinary graph product is the polyhedral product of the .BGi .

Example 3.28 (Standard Classifying Spaces for .RAAGs, cf. Example 3.18) A
basic example to keep in mind for the above proposition is the case where each
.Gi = Z is infinite cyclic. The graph product .Γ is the .RAAG, .AL. Each .BGi =
S1. For each simplex .σ ∈ S(L), the polyhedral product .(S1, ∗i )

σ is a torus with
basis .Vert σ . The proposition identifies the classifying space .BΓ with the polyhedral
product .TL := (S1)L which is a subcomplex of the full torus on I (.= Vert L). An
alternative proof that .BAL = TL is provided by Theorem 3.14, which states that
.TL is NPC. So, .TL is aspherical and therefore, is equal to the classifying space of
its fundamental group.

Proof of Proposition 3.27 For simplicity of notation, we prove only the absolute
case where each .Hi is trivial. Let .pi : EGi → BGi be the universal cover. The
induced map of polyhedral products, .(EGi, p

−1(∗i ))
L → (BGi, ∗i )

L, is then a
covering projection. Since .EGi is contractible, .(EGi, p

−1
i (∗i )) and .(Cone Gi,Gi)

are homotopy equivalent pairs; so, the polyhedral products .ZL = (Cone Gi,Gi)
L

and .YL = (EGi, p
−1
i (∗i ))

L also are homotopy equivalent. Hence, their universal
covers .Z̃L and .ỸL are homotopy equivalent. Moreover, by Lemma 3.21, the group
of lifts of the .(

∑

i∈I Gi)-action on .YL to .ỸL is identified with the graph product
.Γ . So, the composition .ỸL → YL → (BGi, ∗i )

L is the universal cover and
.Γ is its group of deck transformations. Since L is a flag complex, it follows
from Theorem 3.14 that .ZL is NPC. By the Cartan–Hadamard Theorem, .Z̃L is
contractible. Alternatively, it is proved in [83] that .Z̃L is the standard realization of a
right-angled building and hence, is contractible (since the standard realization of any
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building is .CAT(0), cf. Theorem 4.101 or [77]). Since .ỸL is homotopy equivalent to
.Z̃L, it also is contractible. Hence, .BΓ ∼ {(BGi, ∗i )}L.

3.1.3 Wreath-Graph Products

Here we restrict to the case where each factor in the direct sum .
∑

i∈I Gi is the
same group G. Let J be a group of permutations of the index set I . Then J acts on
the direct sum .

∑

i∈I G by permuting the factors. The (unrestricted) wreath product
.G

∫

J means the semidirect product .
∑

G � J . The notion of “restricted” wreath
product (which we shall never use in this book) means that the direct sum is replaced
by the direct product. Suppose that .L1 is a simplicial graph on vertex set I , that J

is a group of automorphisms of .L1 and that .Γ = ∏

L1 G is the graph product. The
J -action on .L1 naturally induces a J -action on .Γ via group automorphisms. The
wreath-graph product of G and J is the semidirect product .Γ �J. (This terminology
was introduced in [167].) The group .Γ � J naturally acts on

(1) the universal cover .Z̃L of the polyhedral product .ZL := (ConeG,G)L, and on
(2) the universal cover .EΓ of .BΓ .

To understand the .(Γ � J )-action in case (1), first note that the ordinary wreath
product .

∑

G � J acts on .(ConeG,G)Δ, where .Δ means the simplex on I . The
subspace .(ConeG,G)L is stable under .

∑

G � J . As in Lemma 3.21, the group
of lifts of this action to .Z̃L is the wreath-graph product .Γ � J . (To see this, it
is sufficient to note that since J fixes the basepoint of .(ConeG,G)L, the group
of lifts of J at a lifted basepoint in .Z̃L projects isomorphically to J .) A case of
primary interest in (1) is when L is a finite flag complex and J is a finite group of
automorphisms of L. For example, when .G = Z, then .Γ is the .RAAG, .AL, and we
are dealing with the wreath-graph product .AL � J . Such wreath-graph products are
used by Leary–Nucinkis in their examples of finite extensions of Bestvina–Brady
groups with exotic finiteness properties. (See Theorem 7.19 and Corollary 7.20 in
Sect. 7.4.2.)

When both G and J are finite groups, (1) yields the following.

Proposition 3.29 Suppose G and J are both finite groups. Then .Z̃L is a model for
.E(Γ � J ), where .EH denotes the classifying space for proper actions of the group
H . If L is a finite flag complex, then .Γ � J acts cocompactly on .E(Γ � J ).

Proof Since G is finite, .
∑

G� J acts properly on .ZL; hence, .Γ � J acts properly
on .Z̃L. The point is that .Γ � J acts by isometries on the .CAT(0) cube complex
.Z̃L. So, the fixed point set of any finite subgroup of .Γ � J is .CAT(0) and hence, is
contractible.
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In case (2), by using the construction in the proof of Proposition 3.27, we see
that .Γ �J acts on .EΓ as follows: the covering space .(EG,p−1(∗))L → (BG, ∗)L

corresponds to the homomorphism .π1((BG, ∗)L) = Γ → ∑

G; the ordinary
wreath product .

∑

G� J acts on .(EG,p−1(∗))L; and .Γ � J is the group of lifts of
.
∑

G � J to the universal cover .EΓ . We are primarily interested in case (2) when
J is finite and BG is finite-dimensional (so that G is torsion-free).

Proposition 3.30 Suppose J is a finite group of automorphisms of L and that BG

is finite dimensional. Then the action of .Γ � J on the universal cover of .(BG, ∗)L

is a model for .E(Γ � J ). If BG is a finite complex, then the .(Γ � J )-action is
cocompact on .EΓ .

When .Γ = AL, Proposition 3.30 is a result of Crisp [69] (cf. Theorem 7.18 in
Sect. 7.4.2).

Proof By Proposition 3.27, .EΓ is the universal cover of .(BG, ∗)L. Since J is finite
and G is torsion-free, we have that .Γ � J is virtually torsion-free and its action on
.EΓ is proper. By Proposition 3.29, .Z̃L = E(Γ � J ) and there is a .(Γ � J )-
equivariant map .ϕ : EΓ → Z̃L that classifies the proper .(Γ � J )-action on .EΓ .
Since .EΓ and .Z̃L are both contractible, .ϕ is a homotopy equivalence. Hence, for
any finite subgroup .J ′ ≤ J , .ϕ restricts to a homotopy equivalence .(EΓ )J

′ →
(Z̃L)J

′
. So, .(EΓ )J

′
is also contractible and therefore, .EΓ with its .(Γ � J )-action

is a model for .E(Γ � J ).

Remark 3.31 We are also interested in wreath-graph products when the flag
complex .L̃ is a covering space of a finite flag complex L with J a (possibly infinite)
group of covering transformations. When .Γ = W

L̃
the wreath-graph product .Γ �J

is relevant to the “Reflection Group Trick” (discussed in Sect. 3.2.6 below).

Replacing the Fundamental Chamber by an Aspherical Complex Here we
develop an idea which will be used in connection with the Reflection Group Trick.
According to Theorem 3.24, .ZL = D(

∑

G,K), where .
∑

G denotes the weak
direct product of copies of G. Recall that .K = |S(L)| is the cone on the barycentric
subdivision of L and that K is stratified by the dual cones, .Kσ (.= |S(L)>σ |). Let
.∂K denote the union of the .Kσ , for .σ ∈ S(L)>∅, so that .∂K is homeomorphic
to the barycentric subdivision of L. The idea in this paragraph is to replace the
fundamental chamber K by an aspherical space X which contains .∂K as a subspace.
Instead of taking the basic construction .D(

∑

G,K) with fundamental chamber K ,
we replace each copy of K by a copy of X. In Theorem 3.32 below we will show
that if .D(

∑

G,K) is aspherical, then so is .D(
∑

G,X). (In our actual use of this
construction in Sect. 3.2.6, X will be a compact aspherical manifold with .∂X = ∂K

and the graph product .Γ will be a .RACG.)

Suppose we are given a map .f : ∂K → Bπ , where .Bπ is an aspherical CW
complex with fundamental group .π . Let X denote the mapping cylinder of f , i.e.,
X is .∂K × [0, 1] with .∂K × 1 glued to .Bπ via f . Then X is a stratified space;
its strata are indexed by .S(L)op as follows: a stratum that is contained in .∂K × 0
coincides with a stratum of X indexed by the same element .σ ∈ S(L)>∅, while
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the pure stratum corresponding to .∅ is the subset .((0, 1] × ∂K) ∪f Bπ of X. If
we replace the fundamental chamber K by X, then the space .Z̃L is replaced by
.D(Γ,X). By Lemma 3.7 (iv), the orbit projection .D(Γ,X) → X is a retraction.
Let .Γ ′ be the kernel of .Γ → ∑

G. If G is finite, then .Γ ′ is a torsion-free subgroup
of finite index in .Γ . In Theorem 3.32 below we use a variation of the wreath-graph
product construction to show that .D(

∑

G,X) (.= D(Γ,X)/Γ ′) is aspherical. Let
.p : X̃ → X be the projection map of the universal cover. Since .L = ∂K × 0,
we can regard it as a subspace of X. Put .L̃ = p−1(L). Then .p : L̃ → L is a
covering space (not necessarily connected). The simplicial structure on L lifts to
a simplicial structure on .L̃ and makes .L̃ into a flag complex. Let .Γ̃ = ∏

L̃1 G be
the corresponding graph product. The group .π acts on .X̃ via deck transformations;
hence, .π � L̃. So, .π acts on .Γ̃ by automorphisms and we can form the wreath-
graph product .Γ̃ �π . Let .Γ̃ ′ be the kernel of the natural epimorphism .Γ̃ → ∑

I G.
Still supposing G is finite, we see that .Γ̃ ′ is torsion-free subgroup of finite index in
.Γ̃ and that the same is true for the subgroup .Γ̃ ′

� π of the wreath-graph product
.Γ̃ � π . (In contrast to Proposition 3.30, note that the graph product .Γ̃ has infinitely
many factors and that the group .π of deck transformations of .L̃ is an infinite group
of permutations of the index set.)

Theorem 3.32 (cf. [82, p. 169]) Suppose G is finite. Then

(i) The space .D(
∑

G,X) is aspherical and it retracts onto X (.= Bπ ).
(ii) The wreath-graph product .Γ̃ �π (.= ∏

L̃1 G�π ) acts properly on the universal
cover .D̃ of .D(

∑

G,X). The fundamental group of .D(
∑

G,X) is .Γ̃ ′
�π , which

is a subgroup of finite index in the wreath-graph product. If .π is type F, then
so is .Γ̃ ′

� π . (Recall that .π is type F if .Bπ has the homotopy type of a finite
complex.)

Our principal interest in this theorem lies with the Reflection Group Trick which
will be discussed in Sect. 3.2.6 below. In this special case, G is .C2, X is a compact
manifold with boundary, and .D(

∑

G,X) can then be seen to be a closed aspherical
manifold.

Proof of Theorem 3.32 Since .X̃ is contractible, .D(Γ̃ , X̃) is homotopy equivalent
to the .RAB with fundamental chamber .Cone(L̃); hence, .D(Γ̃ , X̃) is contractible. It
is straightforward to check that there is a natural action of .Γ̃ � π on .D(Γ̃ , X̃) =
(Γ̃ × X̃)/ ∼ . (See [82, p. 169].) If .g = (γ, α) ∈ Γ̃ � π and .[γ ′, x] ∈ (Γ̃ ×
X)/ ∼ , then the action is defined by .g · [γ ′, x] = [γα(γ ′), γ ′x]. Similarly, it is
straightforward that the natural projection .(Γ̃ × X̃)/ ∼ −→ (

∑

G × X)/ ∼ is a
covering projection. Since .D(Γ̃ , X̃) is simply connected, it is the universal cover of
.D(

∑

G,X) and since it is contractible, .D(
∑

G,X) is aspherical.
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3.2 Right-Angled Reflection Groups on Manifolds

3.2.1 Some Basic Notions Concerning Manifolds

Spheres, PL-spheres, and Generalized Homology Spheres Let L be an .(n − 1)-
dimensional simplicial complex. Then L is a PL-sphere if it is PL-homeomorphic
to .Sn−1. Equivalently, L is a PL sphere if it has a subdivision isomorphic to some
subdivision of the boundary complex of an n-simplex. If L is a PL-sphere, then the
link of any simplex in L is also a PL-sphere. To say that L is a PL-sphere is nearly
the same as saying that for any k-simplex .σ ∈ S(L), .Lk(σ, L) is homeomorphic
to .Sn−k−2 (or even homotopy equivalent to .Sn−k−2). The only discrepancy is that
the PL version of the 4-dimensional Poincaré Conjecture is not known to be true;
it is possible that there exists a triangulation of .S4 which is not PL homeomorphic
to .S4. So, let us say that L is nearly a PL-sphere if the weaker condition holds that
.Lk(σ, L) be homeomorphic to .Sn−k−2 for each .σ ∈ S(L) (including .σ = ∅). A
simplicial complex M is a homology .(n− 1)-manifold, if the link of each k-simplex
.σ , with .k ≥ 0, has the same homology as does .Sn−k−2. The simplicial complex
.Ln−1 is a generalized homology sphere, or a .GHSn−1 for short, if it is a closed
homology .(n − 1)-manifold that has the same homology as .Sn−1.

Suppose a simplicial complex M is a homology manifold. Each simplex .σ in M

has a dual cone, .Dσ , defined as the cone on the barycentric subdivision of .Lk(σ,M).
Thus, each dual cone (to a nonempty simplex) is the cone on a generalized homology
sphere. If each such link is a nearly a PL-sphere (resp., a PL-sphere), then each dual
cone is a cell (resp., a PL-cell), called the dual cell.

A polyhedral homology manifold that is not a PL manifold can still be a
topological manifold. Examples are provided by the Double Suspension Theorem of
Cannon and Edwards. This states that the double suspension of a homology sphere
is a topological manifold. The definitive result is the following.

Theorem 3.33 (Edwards’ Polyhedral Homology Manifold Characterization
Theorem) A polyhedral homology manifold of dimension ≥ 3 is a topological
manifold if and only if the link of each vertex is simply connected.

This is due to Edwards [111] in dimensions ≥ 5. When the dimension is ≤ 3,
every polyhedral homology manifold is a PL-manifold. The link of any vertex in a
4-dimensional polyhedral homology manifold is a homology 3-sphere and if such
a link is required to be simply connected, then it must be PL-homeomorphic to
S3 (by the 3-dimensional Poincaré Conjecture). Hence, the theorem is also true in
dimension 4.

Resolutions In the following subsections in this chapter we shall have occasion to
regard the dual of a cone on a GHSn−1 as being analogous to a simple n-polytope.
First suppose that L is a triangulation of an (n − 1)-sphere. If L is a PL-sphere,
then for each simplex σ ∈ S(L), the dual cone Dσ is a PL-disk. (This is also true
when σ is the empty simplex.) Since the decomposition of D (= D∅) into dual cells
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resembles the stratification of a simple convex polytope by its faces, we shall call
D a simple PL-cell. Similarly, if L is nearly a PL-sphere, then D will be called a
simple n-cell (cf. [89, Prop. 2.2]). What happens if the simplicial complex L is only
required to be a GHSn−1? As we explain in Proposition 3.35 below, the answer is
that Cone(L) can be “resolved” to a simple homotopy n-cell C. This means that C

is a manifold with faces, where the face Cσ corresponding to a k-simplex σ is a
contractible (n − k − 1)-manifold with corners and that the poset of faces of C is
dual to the simplicial complex L (cf. [89, Prop. 2.3]). The manifold with faces C

is a “resolution” of the polyhedral homology manifold Cone(L). The proof of this
depends on the following.

Theorem 3.34 Let Σn−1 be a homology sphere (i.e., a closed topological manifold
with the same homology as Sn−1). Then Σn−1 bounds a compact contractible n-
manifold Cn. If n �= 4 and Σn−1 is a PL homology sphere, then we can take Cn to
be a contractible PL manifold.

Remarks on the Proof The fact that every homology 3-sphere bounds a topological
contractible 4-manifold is proved in [121, Thm. 1.4, p. 367]. When the dimension of
the homology sphere is ≥ 4, this is a consequence of surgery theory.

Proposition 3.35 ([73, Thm. 12.2] or [82, Thm. 10.8.3]) If L is a simplicial
complex and a GHSn−1, then Cone(L) can be resolved to a simple homotopy cell
Cn.

Sketch of Proof The complex Cone(L) can decomposed into dual cones Dσ , σ ∈
S(L), where if σ has codimension k in L, then ∂Dσ (= Lk(σ, L)) is a GHSk−1.
For k ≤ 3 every GHSk−1 is a standard sphere and consequently, Dσ is a disk
whenever codim(σ ) ≤ 3. For such a σ , put Cσ = Dσ . If codim(σ ) = 4, then
∂Dσ is a PL homology 3-sphere and by Theorem 3.34, it bounds a contractible
topological 4-manifold Cσ . Replace each Dσ in the dual 4-skeleton by Cσ and
continue. For codim σ = 5 we will already have constructed ∂Cσ . It is a topological
4-manifold with the same homology as S4 (moreover, this 4-manifold can be given
a PL-structure). It bounds a contractible 5-manifold Cσ (again by Theorem 3.34).
Continuing in this fashion, there results a simple homotopy n-cell C, whose poset
of faces is S(L)op, the dual poset to S(L).

Open Contractible Manifolds In dimension n ≥ 3, with n �= 4, an open
contractible manifold Un is PL homeomorphic to R

n if and only if it is simply
connected at infinity. (For n ≥ 5, this a theorem of Stallings, and for n = 3, it
follows from the Poincaré Conjecture.) In particular, for n �= 4, such a Un has a
unique smooth or PL structure. For n = 4, U4 is still homeomorphic to R

4 by work
of Freedman [121]. (On the other hand, Gompf showed that R4 has uncountably
many smooth or PL structures.)

If a contractible space X is simply connected at infinity, then its fundamental
group at infinity, π∞

1 (Y ), must be trivial. This group is defined as the inverse limit
of π1(Y − K) where K ranges over the compact subsets of Y .
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When is a CAT(0) polyhedral homology n-manifold Y simply connected at
infinity? It is instructive to consider the case when Y only has PL singularities at
its vertices. In other words, when the link of a vertex is allowed to be a nonsingular
homology (n − 1)-sphere, but the links of all positive dimensional simplices are
required to be standard PL spheres. Write Y as an increasing union of metric balls,
B1 < · · · < Bk < · · · , where ∂Bk contains no vertex of Y . Geodesic retraction
provides a deformation retraction (Y − Bk) → ∂Bk . Hence,

.π∞
1 (Y ) = lim←− π1(∂Bk). (3.17)

If there are m vertices in Bk with nonsimply connected links, L1, . . . , Lm, then ∂Bk

is homeomorphic the m-fold connected sum, ∂Bk = L1# · · · #Lm. Hence, π1(∂Bk)

is the m-fold free product, π1(L1) ∗ · · · ∗ π1(Lm). In particular, the inverse limit
in (3.17) is nontrivial. (For further details of this argument see [91, Prop. (3d.3)].)

For example, in [91, Theorem 5a.1] we hyperbolized the E8 homology 4-
manifold, X4(E8), to obtain an NPC polyhedral homology 4-manifold H(X4(E8))

with only one singular vertex whose link is Poincaré’s homology 3-sphere Σ3. (This
is explained in Theorem 6.7 of Sect. 6.2.2.) In the universal cover of H(X4(E8))

each metric sphere is a connected sum of copies of Σ3. So, the universal cover is
not simply connected at infinity.

3.2.2 Aspherical Manifolds Not Covered by Euclidean Space

In the next two subsections we will use .RACGs to construct examples of aspherical
manifolds that are not covered by euclidean space. In both cases we begin with
a .GHSn−1, L. In the first subsection, L is arbitrary – we resolve .Cone L to a
contractible manifold with boundary, C, and then apply the basic construction to
get .D((C2)

I , C). It is homotopy equivalent to .PL and its fundamental group at
infinity is isomorphic to that of .P̃ and hence, is often nontrivial. In Sect. 3.2.3 we do
not change .PL but we require that the generalized homology sphere L be simply
connected. It turns out that when this is the case the NPC homology manifold
.PL, although not a PL manifold, will still be a topological manifold by Edwards’
Theorem 3.33.

In formula (3.3) of Sect. 3.1, the cube complex .PL was defined as the polyhedral
product: .PL = ([−1, 1], {±1})L. The group .(C2)

I acts on .PL with fundamental
domain .KL; so, .PL = D((C2)

I ,KL). (Earlier we used the notation .
∑

C2 for
.(C2)

I .)
When is .PL a manifold? There is an obvious sufficient condition: if L is

homeomorphic to .Sn−1, then .PL is a topological n-manifold. The reason is that if
.L = Sn−1, then a neighborhood of any vertex of .PL is homeomorphic to an n-disk
(the cone on .Sn−1). In fact, it follows from Edwards’ Theorem 3.33 that a necessary
and sufficient condition for .PL to be a topological manifold is that L is a .GHSn−1

and that L is simply connected whenever .n ≥ 3. This gives the following theorem.
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Theorem 3.36 (cf. [82, Thm. 10.6.1 (ii)]) The cube complex .PL is a topological
n-manifold if and only if L is a .GHSn−1 that is simply connected whenever .n ≥ 3.

The dual cone to a cubical cell .�σ of .PL is a translate of a stratum of .KL,
i.e., it has the form .KI(σ), where .I (σ ) = Vert(σ ). For a simplex .σ of L the fixed
set of the subgroup .(C2)

I (σ ) is the result of applying the basic construction to the
subgroup .(C2)

I−I (σ ) with .KI(σ)) as fundamental chamber. In other words, it is
.D((C2)

I−I (σ ),KI (σ)).
The next two propositions address what happens when L is a PL sphere or even

nearly a PL sphere. (I would like to thank Frédéric Haglund and Daniel Wise for
suggesting that I include the second proposition which explains when the Davis–
Moussong complex is homeomorphic to euclidean space.)

Proposition 3.37 Suppose L is nearly a PL .(n− 1)-sphere. Then .PL is a manifold;
each dual cone is a cell; and for each simplex .σ of codimension k in .Cone(L), the
fixed set of .(C2)

I (σ ) is a locally flat, k-dimensional submanifold of .PL. If L is a
PL-sphere, then .PL as well as each of the fixed point sets is a PL manifold.

Proposition 3.38 (cf. Davis–Januszkiewicz [91] and Stone [211]) Suppose L is
nearly a PL .(n−1)-sphere. Let .P̃L be the universal cover of .PL.(Note that .P̃L is the
Davis–Moussong complex for the .RACG, .WL.) Then .P̃L is homeomorphic to .R

n.

Comments on Proof of Proposition 3.38 When L is actually a PL sphere, the result
is due to Stone [211] and in this case, it is stated and proved in [91, Thm. 3b.2]. The
proof in [91] uses the theory of cell-like maps and it only depends on the fact that L

is nearly a PL sphere, i.e., for each simplex .σ ∈ S(L), the link .Lk(σ, L) is required
to be homeomorphic to .Sn−2−dim σ , but not necessarily PL homeomorphic to a
sphere. A major point in this argument is that for any .v ∈ Lk(σ, L) and .r ∈ (0, π),
the open ball .Bv(r) in .Lk(σ, L) of radius r is homeomorphic to a euclidean ball of
the appropriate dimension. From this one gets that for any .x ∈ P̃L and .r ∈ (0,∞),
.Bx(r) is homeomorphic to a euclidean n-ball. Alternatively, a similar argument
shows that for each nonempty simplex .σ in L, the complement .L−σ is contractible.
By [101, Thm. 4.3] this implies that, for .n �= 2, the Davis–Moussong complex is
simply connected at infinity. As was pointed out in the previous subsection, this
implies that it is homeomorphic to .R

n.

If L is only required to be a .GHSn−1 (not necessarily simply connected), then the
cube complex .PL need not be a manifold. However, by replacing the fundamental
chamber .KL (the dual cone to the empty simplex) by its resolution by a simple
homotopy cell C, we do get a manifold:

.ML = D((C2)
I , C). (3.18)

The group .(C2)
I acts on .ML with fundamental chamber C. A strata-preserving

homotopy equivalence .C → KL induces a .(C2)
I -equivariant homotopy equivalence

.ML → PL. Since C is a manifold with corners, it can be regarded as an orbifold
whose local groups are subgroups of .(C2)

I (see [86]). It follows that .(C2)
I is a
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locally linear reflection group on .ML. This gives the following non-cubical version
of Proposition 3.37.

Proposition 3.39 Suppose L is a .GHSn−1. Then .PL is .(C2)
I -equivariantly homo-

topy equivalent to the manifold, .ML, defined by (3.18). Moreover, for each simplex .σ

of codimension k in .Cone(L), the fixed set of .(C2)
I (σ ) is a locally flat, k-dimensional

submanifold of .ML.

Next suppose L is a flag complex so that .PL is an NPC cube complex
and consequently, is aspherical. The homotopy equivalent manifold .ML is also
aspherical. Let .WL be the .RACG associated to L and let .ΓL be the kernel of the
natural epimorphism .WL → (C2)

I (so, .ΓL is the commutator subgroup of .WL).
Then .ΓL = π1(PL) = π1(ML). (In Sect. 3.2.5, we will see that .ML is a “generalized
Haken manifold” in the sense of [89] or [119].) Let .P̃L and .M̃L denote the universal
covers of .PL and .ML, respectively. The next theorem is the main result of [73].

Theorem 3.40 ([73] or [82, Thm. 10.5.1]) If .Ln−1 is a PL homology sphere which
is not simply connected and .n ≥ 4, then the open contractible n-manifold .M̃L is
not simply connected at infinity and so, is not homeomorphic to euclidean n-space.
Hence, in each dimension .n ≥ 4, there are closed aspherical n-manifolds that are
not covered by euclidean space.

Proof The strata-preserving homotopy equivalence .C → KL leads to a proper
homotopy equivalence .P̃L → M̃L. Since .M̃L and .P̃L are proper homotopy
equivalent, to show that .π∞

1 (M̃L) is not trivial, it suffices to show that .π∞
1 (P̃L)

is not trivial. Let B be a metric ball in .P̃L containing m copies of the cone point of
.KL in its interior and with no cone points on .∂B. Then .∂B is the m-fold connected
sum .∂B = L# · · · #L and .π1(∂B) is the m-fold free product .π1(L) ∗ · · · ∗ π1(L). It
follows that .π∞

1 (P̃L), the inverse limits of these free products, is not trivial.

3.2.3 NPC Manifolds Not Covered by Euclidean Space

If L is a simply connected .GHSn−1, then, by Theorem 3.36, the .CAT(0) cube
complex .P̃L is a topological manifold. Can we choose L so that .P̃L will not be
simply connected at infinity? For .n ≥ 5, if we choose L as in (3.19) below, then this
is indeed the case.

Let .An−1 be a compact acyclic smooth manifold with boundary such that

(a) .π1(∂An−1) → π1(A
n−1) is onto, and

(b) .A ∪∂A A, the double of A along .∂A, is not simply connected.
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As shown in [91, p. 383], it is easy to find examples of such A. Triangulate A as a
flag complex so that .∂A is a full subcomplex and let L be the .GHSn−1 defined by

.L := A ∪∂A Cone(∂A). (3.19)

By (a), L is simply connected.
Gromov asked if a topological manifold is .CAT(0) must it then be homeomorphic

to euclidean space? From the above discussion we get the following theorem that
answers Gromov’s question in the negative. A different proof of this theorem using
hyperbolization techniques together with methods from [7] will be given in the proof
of Theorem 6.10 of Sect. 6.2.3.

Theorem 3.41 ([91, Theorem 5b.1]) Suppose L is the flag complex defined
by (3.19). Then the NPC cube complex .PL is a topological manifold whose universal
cover .P̃L is not simply connected at infinity. Hence, in each dimension .n ≥ 5, there
is a .CAT(0) cube complex .P̃L which

(i) is a topological n-manifold and
(ii) is not homeomorphic to euclidean n-space.

So, there exist NPC polyhedra that are topological manifolds and are not covered
by euclidean space. (The improvement over Theorem 3.40 is that the manifold .ML

can be taken to be an NPC cube complex .PL.)

Proof Since L is simply connected it follows from Theorem 3.33 that .PL is a
topological manifold. There is a discrete set of edges .E in the cubical structure on
.P̃L so that .P̃L has PL singularities only along the edges in .E. This set of edges can
be described as follows. Let .v ∈ L be the vertex corresponding to the cone point
of .Cone(∂A). Let .sv ∈ S be fundamental reflection corresponding to v. There is
an edge .ev in .P̃L running from the cone point c of .KL (.= Cone(L)) to .svc. Then
.E is the set of all .WL translates of .ev . A regular neighborhood R of .ev in .P̃L is
the union of two copies of .Cone(L) glued together along .Cone(∂A). Thus, R is a
contractible manifold with boundary where its boundary is the double of A along
.∂A, i.e., .∂R = A ∪∂A A. By property (b), .∂R is not simply connected. The proof is
completed by using the argument in the proof of Theorem 3.40. Let B be a metric
ball in .P̃L chosen so that it contains m copies of R in its interior and .∂B intersects no
other copies of R. Then .∂B is the m-fold connected sum .∂R# · · · #∂R and .π1(∂B)

is the m-fold free product .π1(∂R)∗ · · · ∗π1(∂R). As before, this implies the inverse
limit, .π∞

1 (P̃L), is not trivial.

The manifold .PL is smoothable. (Since its fundamental domain is homeomorphic
to a contractible manifold with boundary, the stable topological tangent bundle of
.PL is trivial and hence, lifts to a vector bundle.) This gives the following corollary
to Theorem 3.41.

Corollary 3.42 In each dimension .≥ 5, there exists a smooth n-manifold with
an NPC polyhedral metric that does not admit a smooth Riemannian metric of
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nonpositive sectional curvature (because its universal cover is not homeomorphic
to euclidean space).

Remark 3.43 (Strict Negative Curvature) By using the strict hyperbolization
procedure of Sect. 6.5 we can even arrange for the n-manifold in this corollary to be
locally .CAT(−1).

Remark 3.44 (Dimension 4) Corollary 3.42 also holds in dimension 4 (cf. [90]).
The proof uses the Flat Torus Theorem 2.37 rather than the fundamental group at
infinity. In [90], by using a suitable right-angled reflection group, we get an NPC
cube complex containing a totally geodesic, 2-dimensional subcomplex which is
metrically a flat 2-torus and which is locally knotted. Moreover, this cube complex
is homeomorphic to a smooth 4-manifold .M4. The metric on the complement of this
2-torus is .CAT(−1) so that the .RACG is relatively hyperbolic (see Sect. 4.2.5). The
universal cover of .M4 has a 2-flat whose limit set is knotted in the visual boundary of
the universal cover. (The visual boundary is necessarily .S3.) With a little more care
(such as insuring the 2-flat is isolated) one sees that the Flat Torus Theorem implies
that this situation is impossible for a nonpositively curved Riemannian metric on
any smooth 4-manifold homotopy equivalent to .M4.

3.2.4 Real Toric Manifolds

The polyhedral product .PL is also known as a (real) generalized moment complex
(or generalized moment angle manifold when L is a simplicial polytope). It occurs in
nature in several different contexts, e.g., as the solution to a system of real quadratic
equations (cf. [132] or [27]) or in the theory of real toric manifolds (cf. [92]).

Davis–Januskiewicz Space Given a simplicial complex L with vertex set .I =
{1, . . . , m}, define the (real) Davis–Januskiewicz space, .BR(KL), to be the Borel
construction on .PL with respect to the action of the group .H := (C2)

I . Recalling
that the .RACG, .WL, is the group of all lifts of the H -action to the universal cover
.P̃L, we see that .BRKL is also the Borel construction on .P̃L with respect to the
.WL-action, i.e.,

.BRKL = PL ×H EH = P̃L ×WL
EWL. (3.20)

Remark 3.45 Omitting the adjective “real,” we get the notion of a generalized
moment angle manifold with respect to .C: it is a polyhedral product of the form
.(D2, S1)L. It admits a .T

I -action with orbit space .KL. The “real part” of this is
the polyhedral product .PL = ([−1, 1], {±1})L, which supports a .(C2)

I -action with
the same orbit space. Similarly, a toric manifold over .KL essentially is a smooth
2d-manifold .M2d with a .T

d -action and .M2d/T d = KL. Its real part is a smooth
d-manifold .Md so that .(C2)

d
� Md with strict fundamental domain .KL. (This is

the justification for the use of the words “real” and“toric.”)
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Definition 3.46 Suppose L is a simplicial complex with vertex set .{1, . . . , m}. Let
.F be a field and let .{v1, . . . vm} be the standard basis for .F

{1,...,m}. The Stanley–
Reisner face ring, .F[L], is the quotient of the polynomial ring .F[v1, . . . vm] by
the ideal I generated by all square free monomials of the form .vi1 · · · vik , where
.{vi1 , . . . , vik } does not span a positive dimensional simplex of L.

Theorem 3.47 (Properties of Real Davis–Januszkiewicz Complexes, cf. [92])
Let L be a simplicial complex.

(i) .π1(BRKL) = WL.
(ii) If L is a flag complex, then .BRKL = BWL.

(iii) Let .F2 denote the field with two elements and let .F2[L] denote the Stanley–
Reisner face ring of L over .F2. Then .H ∗(BR(KL);F2) = F2[L].

(iv) .H ∗(WL;F2) = F2[L].
Proof The space .P̃L × EWL is simply connected and .WL acts freely on it. So, .WL

is the fundamental group of the quotient. Hence, using (3.20) it is the fundamental
group of .π1(BRKL). This proves (i). If L is a flag complex, then .P̃L is contractible
and consequently, so is .P̃L ×EWL. This proves (ii). Statement (iii) is proved in [92,
Thm. 4.11]. Formula (iv) follows from (i), (ii) and (iii).

Definition 3.48 (Cohen–Macaulay Algebras) An .N-graded algebra R over a
field .F is Cohen–Macaulay if there exists a sequence .(λ1, . . . , λd) of algebraically
independent elements of degree one in R such that R is a free .F[λ1, . . . λd ]-module
( .(λ1, . . . , λd) is called a regular sequence.

Definition 3.49 (Cohen–Macaualy Complexes) A finite simplicial complex L

of dimension .d − 1 is Cohen–Macaulay over .F if for each i-simplex .σ ∈ S(L),
.Hi(Lk(σ, L);F) is nonzero only in degree .d − i − 2. (For .σ = ∅ this means that
.Hi(L;F) = 0 for .i < d − 1.)

For example, if L is a simplicial .(d − 1)-sphere (or even a .GHSd−1), then L

is a Cohen–Macaulay complex. Other examples include spherical buildings. The
connection between the two concepts in Definitions 3.48 and 3.49 for the face ring
.F[L] is provided by the following theorem of Reisner.

Theorem 3.50 (Reisner [193]) The following conditions are equivalent.

(i) The simplicial complex L is Cohen–Macaulay.
(ii) The face ring .F[L] is Cohen–Macaulay.

Let .HL(t) = ∑∞
i=0 Hkt

k be the Hilbert series of .F2[L], i.e., .Hk is the dimension
of the degree k part of .F2[L] as an .F2-vector space. By Theorem 3.47 (iii),
.HL(t) is equal to the Poincaré series of Davis–Januszkiewicz space, i.e., .Hk =
bk(BR(L);F2), the .kth Betti number of .BR(L) with coefficients in .F2.

When the .(d−1)-dimensional simplicial complex L is Cohen–Macaulay, the fact
that .F2[L] is a Cohen–Macaulay ring implies that the Hilbert series for .F2[L] is the
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product of the Hilbert series for .F2[λ1, . . . , λd ] with a polynomial .h(t) of degree d,
i.e.,

.
HL(t)

(1 − t)d
= h(t) = h0 + h1t + · · · + hdtd . (3.21)

When L is the boundary simplicial convex polytope, .h(t) is called its h-polynomial
(or the h-polynomial of the dual polytope .KL). It has been much studied by
combinatorialists in connection with the theory of the number of faces in such
polytopes, e.g. in [137, 210, 235]. There is a simple expression for the coefficients
.hi in terms of the numbers .fi of i-simplices of L,

.

i=d
∑

i=0

hit
m−i =

i=d
∑

i=0

fi−1(t − 1)m−i

Intersections of Quadric Hypersurfaces A d-dimensional polytope .KL can be
defined as the intersection of the standard simplex .Δm−1 defined by .

∑m
i=1 ri = 1,

with .ri ≥ 0, and a collection of k linear hyperplanes defined by

.

m
∑

i=1

Airi = 0,

where the .Ai are the column vectors of some .(k × m)-matrix. If these hyperplanes
intersect transversely, then .KL is a simple polytope of dimension .d := m − 1 − k

meaning that the boundary complex of its dual polytope L is a triangulation of .Sd−1.
Let .PL denote the intersection of the unit .(d − 1)-sphere defined by .

∑i=m
i=1 x2

i = 1
with the k quadric hypersurfaces surfaces defined by the equations:

.

m
∑

i=1

Aix
2
i = 0.

The group .(C2)
m acts on the intersection .PL, which can be identified with the poly-

hedral product (or generalized moment angle polytope) defined by equation (3.3)
or (3.6) in Sect. 3.1 (cf. [132], [172] or [27]). Similarly, the intersection of the
complex quadric hypersurfaces .

∑i=m
i=1 Ai |zi |2 = 0 in .Cm with the unit sphere,

.|z1|2 + · · · + |zm|2 = 1 in .Cm is the polyhedral product, .(D2, S1)L.

Small Covers (or Real Toric Manifolds) Recall that if .Ld−1 is the boundary
complex of a simplicial d-polytope, then its dual .KL is a simple convex polytope.
Similarly, if .Ld−1 is nearly a PL-sphere, then .KL is a “simple cell” (meaning that
each dual cone is a cell). In either case, .PL (.= D((C2)

I ,KL)) is a closed d-
manifold. For the remainder of this subsection we suppose this to be the case.
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Definition 3.51 (cf. [92]) Suppose L is nearly a PL sphere of dimension .(d−1) and
that .I = Vert(L). Let .F2 be the field with 2 elements. A characteristic function for
.PL is an I -tuple .(λi)i∈I of nonzero vectors in .F

d
2 so that for each .(d−1)-simplex .σ in

L, .{λi}i∈I (σ ) is a basis for .F
d
2 . (As usual .I (σ ) = {i ∈ I | i is a vertex of σ }.) We can

regard the .λi as defining a homomorphism, called the characteristic homomorphism,
.λ = (λ1, . . . , λm) : Fm

2 → F
d
2 , where .m = Card I and where .λ takes the standard

basis element of .F
m
2 corresponding to .i ∈ I to .λi .

If we identify .F2 = {0, 1} with the multiplicative group .C2 = {±1}, then we can
also regard .λ as a homomorphism .(C2)

m → (C2)
d . The vectors .λ1, . . . , λm are the

column vectors of the matrix .(a
j
i ), .1 ≤ j ≤ m, .1 ≤ i ≤ d that represents .λ. Each

.λi is a linear function on .F
m
2 , hence, a linear combination of .{v1, . . . , vm}. The row

vectors of .(a
j
i ) are denoted .λ1, . . . , λd .

When L is the boundary complex of a simplicial polytope, .KL is a simple
polytope. Similarly, when L is nearly a PL-sphere, .KL has the structure of a
manifold with corners so that each stratum is a disk. A codimension k-stratum of .KL

is dual to a .(k−1)-simplex of L. For example, a vertex of L is dual to a codimension-
one face (or facet of .KL). So each vertex .i ∈ I corresponds to a facet .Ki of .KL. A
collection of facets corresponding to a subset .σ of I has nonempty intersection .Kσ

if and only if .σ is a simplex of L. Thus, a characteristic function .λ can be regarded
as a function .Facet(KL) → F

d
2 , where .Facet(KL) (.∼= I ) is the set of facets of .KL

and .F
d
2 = (C2)

d .

Definition 3.52 Let .λ : Facet(KL) → F
d
2 be a characteristic function and .λ :

(C)m → (C2)
d the associated characteristic homomorphism. The associated small

cover of .KL is defined by

.M(λ) = PL / ker λ. (3.22)

We view .λ as a m-tuple of vectors .(λ1, . . . , λm), where .λi ∈ (C2)
d . The manifold

.M(λ) is also called a (real) toric manifold over .KL.

The toric manifold .M(λ) is d-dimensional; it comes equipped with a .(C2)
d -action

with strict fundamental domain .KL. The orbifold .KL is a simple d-cell.

Remark 3.53 There is a similar notion of a (complex) toric manifold .M2d(λ)

corresponding to a “characteristic function” .λ : ZI → Z
d . The manifold .M2d(λ)

admits an action of the d-dimensional torus .T
d ; the orbit space is again .KL. The

vector .λi ∈ Z
d specifies the codimension-one subtorus which fixes the .ith facet. We

call it a “(complex) toric manifold.” This notion is related to the concept in algebraic
geometry of a type of projective variety called a “nonsingular toric variety.” A toric
variety is a special case of a toric manifold; it is a compact complex manifold M

of real dimension 2d; .T
d
� M; and .M/Td is a simple convex polytope. However,

most characteristic functions .λ do not correspond to nonsingular toric varieties. (To
distinguish between these two notions Buchstaber–Panov [41] changed the name
from “toric manifold” to “quasitoric manifold;” however, we will stick with the
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original definition of toric manifold in [92].) The set of real points of a toric variety is
a “real toric variety;” so, a real toric variety is a special case of a real toric manifold.

Example 3.54 (Projective Spaces) Suppose L is the boundary complex of a d-
simplex .Δd and that .I = {0, 1, . . . , d} is its vertex set. Then .KL is the dual simplex
.Δ∗ and the polyhedral product .PL is the boundary complex of the .(d + 1)-cube
.[−1, 1]I , i.e., .PL = ∂([−1, 1]d+1) = Sd . The group .(C2)

d+1 is a reflection group
on .Sd and the fundamental chamber is .Δ∗. Up to an automorphism of .(C2)

d (i.e.,
up to an element of .GL2(F2)), there is only one possibility for the characteristic
function, .λ : {0, 1, . . . , d} → F

d
2 : it is defined by .i �→ ei , for .1 ≤ i ≤ d, and for

.i = 0 by .0 �→ e1 + · · · + ed , where .e1, . . . , ed is the standard basis for .F
d
2 . Then

.ker λ is the cyclic group of order 2 with nontrivial element .(−1, . . . ,−1). Hence,

.ker λ acts on .Sd via the antipodal map and

.Md(λ) = Sd/{±1} = RP d.

Example 3.55 (Dimension 2) We expand the discussion from Example 3.2 (iii).
Suppose L is an m-circuit so that .KL is an m-gon. Then .PL is an orientable surface
tiled by .2m m-gons with 4 meeting at each vertex. Its Euler characteristic is .2m(1 −
m/2 + m/4) = 2m(1 − m/4) (cf. [68, p. 57]). The facets of .KL are its edges.
Suppose m is even. Then we can define .λ : Facet(KL) → (F2)

2 by alternately
labeling the edges by one of the two standard basis elements .e1, e2 of .(F2)

2. One
sees that .M(λ) = PL/ ker λ is an orientable surface of genus .(m−2)/2 (cf. [92, Ex.
1.20]). Independent of whether m is even or odd, one can always find a characteristic
function .λ so that .M(λ) is the connected sum of .m − 2 copies of .RP 2, i.e., it is a
nonorientable surface of genus .m − 2. For example, if .m = 3, then .M(λ) must be
.RP 2.

Before continuing with more examples of toric manifolds, we explain the
beautiful connection between the cohomology of the toric manifold .M(λ) and the
cohomology of Davis–Januszkiewicz space .BR(L). By (3.20), .BR(L) is the Borel
construction on .PL: .BR(L) = PL ×H EH , where .H = (C2)

m, where .m = Card I .
Then .PL is the covering space of .M(λ) corresponding to the characteristic function
.λ : (C2)

m → (C2)
d (or .F

m
2 → F

d
2). Regarding the homomorphism .λ : Fm

2 → F
d
2

as a .(d × m)-matrix with column vectors .λ1, . . . , λm and row vectors .λ1, . . . λd ,
we see that it defines a homomorphism .H1(BR(L);F2) → H1((BC2)

d;F2) =
H1((RP ∞)d;F2) and hence, the homotopy class of a map

.λ : BR(L) → (BC2)
d , (3.23)

which we continue to denote by .λ. This map is the projection map of fiber
bundle with fiber .M(λ). In the following theorem all cohomology groups are with
coefficients in .F2.

Theorem 3.56 ([92, Theorems 5.9 and 5.12]) Suppose .M(λ) is a toric manifold
over .KL where L is a .GHSd−1.



3.2 Right-Angled Reflection Groups on Manifolds 69

(i) The sequence .(λ1, · · · , λd) is a regular sequence (see Definition 3.48) of
degree one elements in the face ring .F2[L] = H ∗(BR(L);F2).

(ii) The Serre spectral sequence for the fiber bundle (3.23) degenerates at .E2:

.E
p,q∞ = E

p,q

2 = Hp((BC2)
d) ⊗ Hq(M(λ)).

(iii) The Poincaré polynomial of .M(λ) is the h-polynomial, .h(t) of (3.21), i.e., .hk

is the .kth Betti number .bk(M(λ);F2).
(iv) The cohomology ring .H ∗(M(λ)) is the quotient .F2[v1, . . . , vm]/(I + J ) of

the polynomial ring by the ideal .I + J , where I is the Stanley–Reisner ideal
that defines the face ring (cf. Definition 3.46) and J is the ideal generated by
.λ1, . . . , λm (where the .λi are regarded as linear combinations of the .vj ).

Proof When .KL is a simple convex polytope one can prove (iii) as in [92, Thm. 3.1]
by finding a perfect Morse function on .M(λ) with the number of critical points of
index k equal to .hk . To do this, start with a generic height function f on the convex
polytope .KL (i.e., the level sets of f are never tangent to the edges of .KL). The
critical points of f are the vertices and the index of f at a vertex c is the number
of downward pointing edges at c (i.e., the number of edges incident to c on which
f is decreasing). One of the equivalent definitions of .hk is that it is equal to the
number of vertices of index k. If .p : M(λ) → KL is the orbit projection, then
fp is a Morse function with all its critical points at a vertices. The closure of a
descending k-cell is the fixed point set of a subgroup of .(C2)

d . This means that this
closure is a closed k-dimensional submanifold of .M(λ). This implies that the cell
structure defined by fp is perfect with respect to homology with coefficients in .F2
and therefore, proves (iii).

The .E2 page of the Serre spectral sequence is .H ∗((BC2)
d) ⊗ H ∗(M(λ)) which

has Hilbert series .h(t)/(1 − t)d . Since .F2[L] is Cohen–Macaulay, this is the
Hilbert series of .H ∗(BR(L)). It follows that .E2 = E∞, which proves (ii). We can
identify each row vector .λi with an element of .H 1(BR(L)). It follows from (ii) that
.H 1((BR(L)) is a free .F2[λ1, . . . , λd ]-module and hence, that .λ1, . . . λd is a regular
sequence. This proves (i) and (iv).

Here are some more examples of real toric manifolds.

Example 3.57 (Real Points of Toric Varieties) One way to understand a (com-
plex) toric variety is as the closure of a .(C∗)d -orbit on a complex d-manifold (where
.C

∗ = C − {0}) Similarly, a real toric variety can be understood as the closure of
a .(R∗)d -orbit. Regard .(R∗)d as the group of diagonal .(d + 1) × (d + 1) matrices
divided out by the subgroup of scalar matrices (.= {(t, . . . , t)}t∈R∗). A prototypical
example of a real toric variety comes from considering the .(R∗)d -action on .RP d ,
given by .(t0, t1, . . . , td ) · [x0, . . . xd ] = [t0x0, . . . , tdxd ]. The complement of the
union of coordinate hyperplanes in .RP d is a single .(R∗)d -orbit consisting of .2d

copies of an open d-simplex, i.e., .{±1}d × int(Δ∗).
Similarly, the group .(R∗)d acts on the real flag manifold .GLd+1(R)/B where B

is the group of upper triangular matrices whose entries along the diagonal are some
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constant multiple of the identity. (Here we are thinking of .(R∗)d as the group of
diagonal matrices of determinant 1.) Consider a generic .(R∗)d -orbit, i.e., the orbit
of a diagonal matrix with distinct entries. The closure of such an orbit is a real
toric variety .Md . It can be described as follows. The group .(C2)

d acts on it with
strict fundamental domain a permutohedron. This is the d-dimensional “Coxeter
zonotope” that can be described as the convex hull of a generic point in the reflection
representation of the symmetric group .Sd+1 on .R

d (cf. Examples 3.73 and 3.79 in
Sects. 3.3.1 and 3.3.2).

Example 3.58 (Tomei Manifolds) In [226] Tomei described another interesting
way that real toric manifolds occur in nature. Their description here is taken from
[76]. Let Y be the vector space of real .(d + 1) × (d + 1) symmetric tridiagonal
matrices. The coordinates of the diagonal entries and are denoted by .a0, . . . , ad . The
entries that lie on the diagonal one above the main diagonal (which are equal to the
entries on the diagonal one below the main diagonal) are denoted .b1, . . . , bd . Thus,
Y is the .(2d + 1)-dimensional vector space consisting of matrices of the following
form:

.

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a0 b1 0 . . . 0
b1 a1 b2 . . . 0
...

...
. . .

. . .
...

0 0 . . . . . . ad−1 bd

0 0 . . . bd ad

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Let .Υ be a set of .d + 1 real numbers and let .Md(Υ ) be the set of matrices in
Y with spectrum equal to .Υ . If the numbers in .Υ are distinct, then .Md(Υ ) is a
smooth, closed d-manifold. (Let .Yreg be the set of matrices in Y whose eigenvalues
are distinct. Then the map from .Yreg to the space of unordered distinct .(d + 1)-
tuples of real numbers is the projection of a smooth fiber bundle; the fiber over .Υ

is .Md(Υ ).) The manifold .Md(Υ ) is the Tomei manifold of isospectral tridiagonal
matrices. At this point, one might ask if .Md(Υ ) is diffeomorphic to some other
well-known manifold. It is not hard to see that .M1(Υ ) is a circle. We shall see
below .M2(Υ ) is an orientable surface of genus 2 while .M3(Υ ) is the double of a
certain finite-volume hyperbolic 3-manifold along its cusps (it has 6 cusps, each of
which is a torus). So, .Md(Υ ) is generally not a well-known manifold from classical
topology.

The orthogonal group .O(d + 1) acts by conjugation on the vector space of
symmetric .((d + 1) × (d + 1))-matrices, preserving their spectra. The kernel of
this action is .{± id}, where .id is the identity matrix. Let D be the set of diagonal
matrices in .O(d + 1). The diagonal entries of a matrix in D are numbers in .{±1}.
The subgroup D acts on Y as sign changes of the off-diagonal entries and it acts
trivially on the diagonal entries. Thus, .D/{± id} = (C2)

d acts on Y as a reflection
group and since it preserves spectra, it is also a reflection group on .Md(Υ ). The
fundamental chamber Q is the intersection of .Md(Υ ) with the subset of Y defined
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by the inequalities: .b1 ≥ 0, . . . , bd ≥ 0. Thus, Q is a smooth d-manifold with
corners that can be regarded as a “Coxeter orbifold.” It follows that .Md(Υ ) is
a real toric manifold over Q. It turns out that Q is combinatorially isomorphic
to a simple convex polytope. In fact, this polytope is the same permutohedron
that occurred in Example 3.57. In other words, .∂Q is the dual to the barycentric
subdivision of .∂Δd+1 (which is equal to Coxeter complex .L(Ad)). The proof that
Q is combinatorially equivalent to a convex polytope depends on the fact that there
is a natural .R-action on the interior of Q called the “Toda flow.” (A definition of this
flow can be found in [76, §11].) The Toda flow is part of a completely integrable
system, that is, it is part of a free action of .R

d on .int(Q). Since the faces of Q

are also .R
d -orbits, one can show that Q is a permutohedron. Thus, .Md(Υ ) is tiled

by .2d permutohedra. If .d = 1, .Q1 is an interval and hence, .M1(Υ ) is a circle. If
.d = 2, then .Q2 is a hexagon. If we double .Q2 along 3 nonadjacent edges we get
a pair of pants; doubling again along the 3 boundary components we get a surface
of genus 2. When .d = 3, .Q3 is a 3-dimensional permutohedron with 6 square
faces (corresponding to cusps) and 8 hexagonal faces. It follows from Andreev’s
Theorem (cf. [8, 9], or [104, Thm. 10.3.1]) that .Q3 can be realized as a right-
angled ideal polytope in hyperbolic 3-space with the squares corresponding to the 6
ideal vertices. (See also Sect. 4.2.4 and Remark 4.22.) There are two groups of four
hexagonal facets of .Q3, each group corresponds to a mirror of a .(C2)

2 reflection
group. Gluing together 4 copies of .Q3 using this action we get a finite volume
hyperbolic 3-manifold with 6 cusps. Doubling along the cusps we get .M3(Υ ). It
follows that in the associated generalized moment manifold .PL is the same as the
one for the real toric variety .Md of Example 3.57. However, .M3(Υ ) is not the set
of real points of a toric variety. Moreover, .Md and .Md(Υ ) are not diffeomorphic
(since .Md(Υ ) is stably parallelizable while .Md is not). As real toric manifolds they
correspond to completely different characteristic functions .λ : Facet(Q) → F

d
2 .

Remark 3.59 (Gaifullin’s Results on Steenrod Representability) An unex-
pected use for Tomei manifolds was discovered by Gaifullin [123], [124] in
connection with Steenrod’s representability problem. In the 1940s Steenrod asked
if, given an arbitrary space X and homology class .z ∈ Hd(X;Z), is it possible to
find a closed manifold .Nd and a map .f : Nd → X such that .f∗([Nd ]) = z? René
Thom found that although the answer to this question was negative in general, after
replacing z by a nonzero multiple the answer is “yes.” As a consequence of his
computation of the oriented bordism group .Ωd(X) ⊗Q, Thom showed in 1954 that
there is an integer k (.= k(d)) so that for any homology class .z ∈ Hd(X;Z), kz can
be represented by a manifold .f∗([Nd ]). Gaifullin showed that one always can take
.Nd to be a finite cover of the Tomei manifold .Md(Υ ). More precisely, there is a
finite cover .M̃ of .Md(Υ ) and a map .f : M̃ → X so that .f∗(M̃) = qz for some
nonzero integer q (depending on z).



72 3 Right-Angled Spaces and Groups

3.2.5 Haken Manifolds

The notion of “Haken manifolds” in dimensions greater than 3, was defined in
Foozwell’s PhD thesis [118], as well as in Foozwell-Rubinstein [119]. The theory
was developed further in [89]. The manifolds .PL, where L is a PL triangulation of a
sphere, are prototypical examples of such Haken manifolds. However, the theory of
Haken manifolds gives a more general method of cutting open a manifold along
hyperplanes, which covers many more examples than any method coming from
right-angled reflection groups.

A boundary pattern for an n-manifold with boundary is a decomposition of part
of its boundary into connected .(n − 1)-manifolds (with boundary) such that the
intersection of any k of them is either empty or a connected .(n − k)-manifold. An
element of the boundary pattern is a facet; a component of an intersection of facets
is a stratum. The boundary pattern is complete if the union of the facets is the entire
boundary of the n-manifold.

As in Sect. 3.2.1, a simple n-cell is a compact manifold with boundary pattern
such that each stratum is homeomorphic to .Dn−k and the stratification is dual to a
simplicial complex .Ln−1 that is nearly a PL .(n − 1)-sphere (cf. Sect. 3.2.1). Here
.k −1 is the dimension of the simplex dual to the stratum. A simple homotopy n-cell
is a compact n-manifold C with complete boundary pattern so that each stratum is
a compact contractible .(n − k)-manifold and so that the stratification is dual to a
.GHSn−1 (.= L). So, as in Sect. 3.2.1, C is a resolution of L.

Let .Mn be a manifold with boundary pattern. A hypersurface in M is a
codimension-one submanifold which meets each stratum transversely. Any hyper-
surface .F < M has a normal .S0-bundle; it is a trivial .S0-bundle if and only if F is 2-
sided in M . To “cut M open” along a hypersurface F we remove F from M and then
adjoin to .M −F the normal .S0-bundle of F to obtain a new manifold with boundary
pattern, denoted by .M � F . (So, .M � F) is diffeomorphic to the complement of
an open interval bundle around F .) A prehierarchy .(M0, F0), . . . , (Mm, Fm) for a
compact manifold M with complete boundary pattern is a sequence of manifolds
.Mk with complete boundary patterns together with hypersurfaces .Fk < Mk so that
.M0 = M , .Mk+1 = Mk �Fk and the prehierarchy terminates at .Mm+1 := Mm �Fm,
which is required to be a disjoint union of simple homotopy cells. The boundary
pattern is called useful if

(a) Each facet is simply connected.
(b) The intersection of any two facets is connected.
(c) If three facets have pairwise nonempty intersections, then the intersection of all

three is nonempty.

To define “Haken manifold” we need to say what it means for a hypersurface
to be “essential.” (When .dim M = 3, it means that F is an incompressible and
boundary incompressible surface.) In general, it means that the inclusion of each
hypersurface .Fk ↪→ Mk induces injections .π1(Fk) → π1(Mk) and .π1(Fk, ∂Fk ∩
G) → π1(Mk,G), for any facet G of .Mk .
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A Haken homotopy n-cell is defined inductively as a homotopy n-cell with a
complete useful boundary pattern so that each facet is itself a Haken homotopy
.(n − 1)-cell. In particular, a Haken homotopy n-cell is a simple homotopy cell. The
manifold is a Haken n-cell if each of its strata is actually a disk. In dimension two,
a p-gon is a Haken 2-cell if and only if .p ≥ 4. From this and properties (a), (b)
and (c) above, we get the following characterization of Haken homotopy n-cells.

Theorem 3.60 (cf. [89, Thm. 3.5]) A simple homotopy n-cell C is a Haken
homotopy cell if and only if its boundary complex is dual to a flag complex.

For example, a 3-dimensional simple convex polytope is a Haken 3-cell if it
satisfies (i) each facet is a polygon with at least 4 sides, and (ii) whenever three facets
intersect pairwise the triple intersection is nonempty and equal to a vertex (cf. (c),
above). (Note that these conditions are implied by Andreev’s Condition for right-
angled simple polytopes in .H

3; see Remark 4.22 and Theorem 4.23 in Sect. 4.2.4.)

Definition 3.61 A hierarchy on a manifold M with boundary pattern is a prehierar-
chy, .(M0, F0), . . . , (Mm, Fm), where each hypersurface .Fk < Mk is essential and
where .Mm+1 is a disjoint union of Haken homotopy n-cells.

Definition 3.62 (cf. [89]). A manifold with complete boundary pattern is a Haken
manifold (respectively, a generalized Haken manifold) if it admits a hierarchy
.(M0, F0), . . . , (Mm, Fm), where the end of the hierarchy, .Mm+1, is a disjoint union
of Haken n-cells (respectively, Haken homotopy n-cells).

Note that if .Fk < Mk is any hypersurface in the hierarchy, then .Fk is a Haken
.(n − 1)-manifold.

Theorem 3.63 (Foozwell [118], also cf. [119] and [89, Prop. 3.1]) Each con-
nected component of a Haken manifold is aspherical.

Sketch of Proof One shows by induction on dimension that each connected com-
ponent of a hypersurface is aspherical. Next, Whitehead’s Lemma asserts that the
result of gluing aspherical spaces together along .π1-injective aspherical subspaces is
again aspherical. (See Corollary A.23 in Appendix A.4 or [146, Thm. 1B.11].) Since
.Mk is constructed by gluing together .Mk+1 along .Fk+1, Theorem 3.63 follows.

Example 3.64 (Right-Angled ReflectionManifolds) Suppose L is a flag complex
with vertex set .I = {0, 1, . . . , m}. As before, we get .PL, a subcomplex of the cube
.[−1, 1]I . Cutting the cube open along the hyperplanes .{xi = 0}, .i ∈ I , we get a
decomposition of the cube into .2m components, each isomorphic to a subcube of the
form .[0, 1]I . This induces a decomposition of .PL into .2m pieces each isomorphic
to a chamber for the action of .(C2)

I as a reflection group on .PL. Now suppose L is
nearly a PL triangulation of .Sn−1 so that .M = PL is an n-manifold and each of the
hypersurfaces .F ′

i := PL ∩ {xi = 0} is a (not necessarily connected) codimension-
one submanifold. Then M has the structure of a Haken manifold. The hierarchy,
.(M0, F0), . . . (Mm, Fm) is defined explicitly by putting .M = M0, .F0 = F ′

0 and .Fi

to be the closure of cut open copies of .F ′
i (cut open along .Fi−1∩F ′

i ). So, the number
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of components of .F ′
i is doubled each time we cut along a 2-sided hypersurface, .Fj ,

with .Fj∩F ′
i �= ∅ and .j < i. Similarly, suppose L is only required to be a generalized

homology .(n − 1)-sphere (i.e., a .GHSn−1). Then, after resolving the fundamental
domain to a simple homotopy n-cell, we get a generalized Haken n-manifold. (See
Sect. 3.2.1 for the definition of a generalized homology sphere and its resolution.)
Another mild generalization of these examples is to the case where M is a NPC
cube complex, the link of each vertex is nearly a PL-sphere and each hyperplane is
embedded. (“Hyperplanes” are defined using midcubes as in Sect. 5.1.1.) Then the
resulting decomposition of M into Haken n-cells is just the tiling of M dual to its
tiling by cubes.

It is remarkable that Theorem 3.63 can be proved without resorting to nonpositive
curvature. The decomposition of M into Haken n-cells need not be dual to any
cubical structure. Indeed, it might not give a tiling of M . (In other words, the
intersection of two cells in the decomposition need not be a union of faces.) One
way to construct such examples is to begin with an example coming from a reflection
group as the first term in a hierarchy .(M0, F0) and then choose a homeomorphism
.f : F0 → F0 which does not preserve the cell structure on .F0. Then use f to
reglue .M1 = M0 � F0 to obtain a new manifold .M ′

0. The new manifold is still
Haken since the remaining terms in the hierarchy, .(M1, F1), . . . , (Mm, Fm), are
not changed. If .F0 is a manifold whose fundamental group has a fairly large outer
automorphism group, such as a torus or a product of surfaces, then we can choose
the homeomorphism f that is not isotopic to one that preserves any cell structure
on .F0; hence, we will not be able to find a hierarchy with initial hyperplane .F0 so
that the resulting decomposition into cells is a tiling. N.B.: Strictly speaking, this
means that the universal cover of M might not be a polyhedron in the classical
sense. Although it decomposes into Haken cells, two such cells need not intersect
in a common face.

Example 3.65 (Fiber Bundles) Suppose .π : M → B is the projection map of
a smooth fiber bundle with fiber .Σ . If the base and fiber are both generalized
Haken manifolds, then so is M . To see this suppose .F < B is an incompressible
hypersurface in B. Then .π−1(F ) is an incompressible hypersurface in M and
.M � π−1(F ) is naturally a fiber bundle over .B � F . Hence, the inverse image
of a hierarchy for B yields the beginning of a hierarchy for M which cuts M into
a disjoint union of manifolds of the form .Σ × c, where c is a homotopy Haken
cell (since c is contractible any bundle over it is trivial). A hierarchy for .Σ then
gives a hierarchy for M . Many such fiber bundles do not admit any NPC metric.
For example, if M is a .S1-bundle over B and its Euler class in .H 2(B;Z) is not
of finite order, then M does not admit any locally .CAT(0) metric (cf. [35, Thm.
II.6.12]). Another class of examples are solvmanifolds. Since any solvmanifold
can be constructed as an iterated sequence of torus bundles, starting from a torus,
solvmanifolds are Haken. However, if the fundamental group of a solvmanifold is
not virtually abelian then it does not admit an NPC metric by the Solvable Subgroup
Theorem (cf. [35, Thm. II.7.8]).
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Remark 3.66 The Euler Characteristic Conjecture states that if .M2n is a closed
aspherical manifold of even dimension, then its Euler characteristic satisfies:

.(−1)nχ(M2n) ≥ 0.

If C is a Haken homotopy cell, then its “orbifoldal Euler characteristic” is defined
by assigning each face of codimension k a weight of .1/2k and then taking the
weighted alternating sum of the number of cells. The Charney–Davis Conjecture
states that the sign of the orbifodal Euler characteristic of a 2n-dimensional Haken
homotopy cell is .(−1)n. It is shown in [58] that the Charney–Davis Conjecture is
equivalent to the Euler Characteristic Conjecture for 2n-manifolds with the structure
of a NPC cube complex. The main result of [89] is that the Euler characteristic
of a closed Haken manifold .M2n is equal to the sum of the orbifoldal Euler
characteristics of the homotopy cells at the end of the hierarchy. Hence, the Euler
Characteristic for Haken manifolds is equivalent to the Charney–Davis Conjecture
for Haken homotopy cells. By using .L2-homology it is proved in [104] that the
Charney–Davis Conjecture holds in dimension 4. Hence, not only is the Euler
Characteristic Conjecture true for closed 4-manifolds that are NPC cube complexes,
it is also true for all Haken manifolds of dimension 4.

3.2.6 The Reflection Group Trick

Given a generalized homology .(n− 1)-sphere L, we explained in Sect. 3.2.2 how to
replace the fundamental chamber .KL by a contractible manifold with corners C so
that the resulting manifold .D((C2)

I , C) is homotopy equivalent to .PL. (If L is a PL
homology sphere, then .∂C is homeomorphic to L). The idea behind the Reflection
Group Trick is that when L is a triangulation of a PL manifold, not necessarily a
sphere, then we can replace the fundamental chamber .KL (.= Cone L) by a manifold
X cobounding L. The result of the basic construction is the manifold,

.M := D((C2)
I , X) = ((C2)

I × X)/ ∼ , (3.24)

where .∼ was defined in (3.9). Since X is a strict fundamental domain for .(C2)
I

on M , it follows that X is a retract of M . The retraction .r : M → X is given
by .[g, x] �→ x (see Lemma 3.7 (iv)). We will see in Theorem 3.68 that if X is
aspherical, then so is M .

A group G is type F if its classifying space BG is homotopy equivalent to a
finite CW complex. (See Sect. 7.2 for a discussion of groups which are type F or
satisfy other finiteness properties.) So, given a group G of type F, the goal of this
subsection is to explain a method of [82, Chapter 11] for constructing a closed
aspherical manifold M together with a retraction .r : M → BG. The upshot
is that fundamental groups of aspherical manifolds cannot be expected to enjoy
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properties that are stronger than those enjoyed by general groups of type F. First
applications of this trick appear in [74] and in Mess [178]. More applications are
listed in Proposition 3.69 below.

First, realize BG as a finite CW complex and then find a thickening of it to .Xn,
a compact n-manifold with boundary. (To say X is a thickening of BG means only
that X is homotopy equivalent to BG.) Next, take a PL triangulation of .∂X as a
flag complex L. (The hypothesis that the triangulation is PL can be weakened: as
in Sect. 3.2.1 all that is needed is that the dual cones can be resolved to simple
homotopy cells.) Cellulate .∂X by the dual cells to the simplices of L. These dual
cells define a boundary pattern on X as in Sect. 3.2.5. Equivalently, the dual cells
give X the structure of an orbifold locally modeled on finite right-angled reflection
groups: the local group at a cell dual to a simplex .σ is .(C2)

Vert(σ ). Finally, apply the
basic construction of Sect. 3.1.1 where the group is .(C2)

I and the strict fundamental
domain is X. Let .Mn be the resulting closed manifold defined by (3.24).

Remark 3.67 A variation of the Reflection Group Trick shows that given any
Haken manifold X with complete boundary pattern, there is a closed Haken
manifold that retracts onto it. The point is that the boundary pattern gives X

the structure of a locally smooth orbifold with local groups of the form .(C2)
k ,

.1 ≤ k ≤ n. Using (3.24) we can then develop X to a closed manifold M on which

.(C2)
I acts as a reflection group. Since X is Haken, each component of the fixed

point set of any reflection on M will be an essential hypersurface in M . Cutting M

open along these hypersurfaces we get back X.

One can show that the manifold M resulting from the Reflection Group Trick is
aspherical by using the argument in the proof of Theorem 3.63. In other words, first
show that M is constructed from copies of X by gluings corresponding to a sequence
of amalgams and HNN extensions; then apply Whitehead’s Lemma (Corollary A.23
in Appendix A.4). A more careful proof of the asphericity of M using the wreath-
graph product construction will be given below. This gives us the following theorem
(cf. [73, Remark 15.9] or [82, Thm. 11.1.1]).

Theorem 3.68 (The Reflection Group Trick) Given a group G of type F, there is
a closed aspherical manifold M that retracts onto BG.

As a consequence we get a number of interesting examples of fundamental
groups of closed aspherical manifolds listed in the next proposition.

Proposition 3.69 The fundamental group of a closed aspherical manifold

(i) need not have solvable word problem (Weinberger [231, p. 106]).
(ii) need not be residually finite (Mess [178]).

(iii) need not coarsely contain expanders in its Cayley graph (Sapir [204, Cor. 1.3]).
(iv) can contain a torsion-free “Tarski monster,” i.e., a noncyclic finitely generated

group such that all its nontrivial proper subgroups are infinite cyclic (Sapir
[204, Cor. 1.3]).



3.3 Blowing Up Zonotopal Cell Complexes 77

As a first example that can be used to prove part (ii) of the proposition, take G to
be one of the Burger–Mozes examples from Sect. 2.4.4, i.e., an infinite simple group
that is the fundamental group of one of the square complexes from Theorem 2.50.
Thicken BG to a manifold X. Since G is simple, it is not residually finite; hence,
neither is any group which retracts onto it. This proves (ii). Similarly, for (i) there
is a group G of type F with unsolvable word problem and with .dim BG = 2. The
Reflection Group Trick then provides an aspherical M such that .π1(M) retracts onto
G. Hence, the word problem for .π1(M) is also not solvable. The reasoning for (iii)
and (iv) is similar. Part (iii) means that .π1(M) cannot coarsely embed in a Hilbert
space and hence, does not have finite asymptotic dimension.

Remark 3.70 In all the examples in Proposition 3.69 one can take BG to be a 2-
dimensional CW complex. Since any 2-dimensional CW complex can be thickened
to a 4-manifold X, M can be taken to be a closed 4-manifold.

Proof of Theorem 3.68 Let .X̃ be the universal cover of X and let .π = π1(X). Then
.∂X̃ → ∂X is a (not necessarily connected) covering space. Let .L̃ be the induced
covering of L; so, .L̃ is a triangulation of .∂X̃. Let .W̃ := W

L̃
be the .RACG associated

to the 1-skeleton of .L̃ and put

.M̃ = D(W̃, X̃).

Then .W̃ � M̃ with .X̃ as strict fundamental domain. Since each stratum of .X̃

is contractible, it follows from [82, Thm. 9.1.4] that .M̃ is contractible. We also
have that .π � L̃ via simplicial automorphisms. Since .Vert(L̃) corresponds to a
fundamental set of generators for .W̃ , this exhibits .π as a group of automorphisms
of .W̃ . Form the wreath-graph product, .W̃ � π. As in Sect. 3.1.3, .W̃ � π acts on
.M̃ with quotient space X (.= X̃/π ). Finally, we claim that .M̃ is a covering space
of the manifold M defined in (3.24). To see this, first note that .D(WL,X) → M

is a regular covering space with group of deck transformations .ΓL := ker(WL →
∑

C2). Taking the pull back with respect to .X̃ → X we see that .M̃ → M is a
covering space with group of deck transformations .Γ̃ � π where .Γ̃ is the kernel of
the obvious homomorphism .W̃ → ∑

C2. Since .M̃ is homotopy equivalent to the
Davis–Moussong complex for .W̃ , it is contractible. Hence, M is aspherical.

3.3 Blowing Up Zonotopal Cell Complexes

In this section we explain another method for constructing manifolds with the
structure of NPC cube complexes. Although there are a number of similarities,
this method is different from techniques using right-angled reflection groups. It
is the method of [136] and [94, 95] of blowing up zonotopal cell complexes in
order to produce NPC cube complexes. The simplest case of this technique, known
as Gromov’s “Möbius band hyperbolization procedure,” is described below and in



78 3 Right-Angled Spaces and Groups

[136, §3.4]. Manifolds that result from this process occur in nature, for example, as
real toric manifolds (cf. Example 3.57) or as compactifications of the moduli space
of points in .RP 1.

3.3.1 Zonotopes

Any affine map from .R
n → R

d has the form .x �→ V x + y0, where V is a linear
and .y0 ∈ R

d . Thus, V can be represented as a .(d × n)-matrix .V = [v1, . . . , vn]
consisting of n column vectors .vi ∈ R

d , .1 ≤ i ≤ n.

Definition 3.71 A zonotope in .R
d is the image of the n-cube .[−1, 1]n under an

affine map .R
n → R

d .

Most often we will assume that the translation vector .y0 is 0 so that the zonotope
is just the image of a cube under the linear map defined by V . In this case we will say
that the zonotope is centered (at the origin). Equivalently, a zonotope is a translate
of a Minkowski sum .[−v1, v1] + · · · + [−vn, vn] of line segments in .R

d , i.e., it is
the convex polytope consisting of all points y in .R

d of the form:

.y =
n

∑

i=1

xivi , with − 1 ≤ xi ≤ 1.

A third way is to define a zonotope as the dual to a central hyperplane
arrangement, .{Hi}1≤i≤n, in .(Rd)∗. Once we use the inner product to identify the dual
space .(Rd)∗ with .R

d , the hyperplane .Hi is defined by the equation .y ·vi = 0. If Z is
the zonotope dual to a hyperplane arrangement .A, then .∂Z is dual to the “spherical
fan,” .SFan(A), determined by chambers cut out by the hyperplane arrangement .A.
(See Sect. 4.2.1 below for the definition of a “spherical fan.”) If each chamber of
.A is a simplicial cone, then .A is said to be a simplicial arrangement and the dual
zonotope Z is a simple zonotope. (In particular, Z is a simple polytope since .∂Z is
dual to a simplicial triangulation of a sphere.) A central hyperplane arrangement is
reducible if it is combinatorially isomorphic to a nontrivial direct sum of hyperplane
arrangements; otherwise, it is irreducible. Similarly, a subspace of a hyperplane
arrangement is either irreducible or reducible if the normal hyperplane arrangement
to the subspace has the respective property. (A subspace of the arrangement is a
nonempty intersection of hyperplanes in .A.) Finally, a face of a zonotope is either
irreducible or reducible as the normal arrangement to the dual subspace has the
respective property.

A basic reference for the material in this subsection is Chapter 7 of Ziegler’s book
[235]. In the next proposition we list some of the basic properties of zonotopes.
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Proposition 3.72 (Some Properties of Zonotopes)

(i) Any zonotope is centrally symmetric. (When Z is centered, the central symme-
try is the antipodal map .a : y → −y.)

(ii) Any face of a zonotope is itself a zonotope.
(iii) A polygon is combinatorially isomorphic to a zonotope if and only if it has an

even number of edges.
(iv) A convex polytope is a zonotope if and only if each of its 2-dimensional faces

is centrally symmetric. (See [235, p. 200] and the references given there.)

Example 3.73 (Coxeter Zonotopes) These will be discussed in more detail in
Sect. 4.2.2. Suppose .W � R

d as a finite linear reflection group. The collection
of hyperplanes which are fixed by some reflection in W is a reflection arrangement.
If W fixes only the origin, then the hyperplane arrangement is simplicial and the
associated zonotope is a Coxeter zonotope. Equivalently, a Coxeter zonotope is
the convex hull of the W -orbit of a point y which lies in the complement of the
hyperplane arrangement. For example, if W has diagram .A1 × · · · × Ad (i.e., if
.W = (CbC2)

d ), then the zonotope Z is the d-cube .�d . In this case the column
vectors of the linear map .V = [e1, . . . , ed ] form the standard basis of .R

d . As
another example, if the diagram is .Ad , then W is the symmetric group on .d + 1
letters and Z is the d-dimensional permutohedron. (See Fig. 4.1 in Sect. 4.2.2.)

Definition 3.74 A cell complex X is a zonotopal complex if each of its cells is
combinatorially isomorphic to a zonotope.

For example, a cube complex is a zonotopal complex.
Zonotopal complexes will play a big role in Chap. 4. Given a Coxeter system

.(W, S), its Davis–Moussong complex .Σ(W, S) as well as the Salvetti complex

.X(W, S) for the corresponding Artin group are zonotopal complexes.

3.3.2 Blowing Up Zonotopes to Cube Complexes

Next we describe a procedures of [91, 136] and [94] for converting a zonotopal
complex X into an cube complex .X#. In most cases of interest cases the cube
complex will be nonpositively curved. These blowup constructions are examples
of “hyperbolization procedures,” which will be discussed later in Chap. 6.

The data needed to define a blowup of a zonotope Z that is dual to a simplicial
hyperplane arrangement .A are encapsulated in the notion of a building set. This
means a certain collection .B of subspaces of the hyperplane arrangement in .(Rd)∗.
Equivalently, a building set for a zonotope is a certain collection (of parallel classes)
of faces of the zonotope Z. (The term “building set” comes from the paper [106]
of De Concini and Procesi.) There are two extreme examples of a building set:
the maximal building set consisting of all proper subspaces of .A and the minimal
building set consisting of all proper irreducible subspaces. The dual notion is that the
maximal building set for the zonotope Z is the collection of all positive dimensional
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faces, while the minimal building set is the collection of such faces which are
irreducible, i.e., which do not have a nontrivial splitting as a product. For any
building set .B, the blowup of Z will always be a cube complex .Z#B. When .B

is the maximal building set, .Z#Bwill be NPC. It will also be NPC in the case of the
minimal building set provided Z is irreducible.

Given a zonotopal complex X, the correspondence .X �→ X#B is functorial in the
following sense: if .f : X → Y is a cellular immersion from X to Y , then there is
an induced locally isometric immersion of cube complexes, .X#B → Y#B. (To say
that f is a “cellular immersion” we mean that it takes each cell of X isomorphically
onto a cell of Y . For example, if f is a combinatorial isomorphism, a covering
projection, an inclusion of a subcomplex, or a composition of such maps, then it is
a cellular immersion.) In case the building set is maximal (resp., minimal) we shall
write .H# max (resp., .H# min). To emphasize the functorial nature of the construction
we will use the notation .H#(X) for .X# even when the blowup set is not specified.
In the next proposition we list a few properties of this construction.

Proposition 3.75 (Properties of Blowups, cf. [94]) Suppose X is a zonotopal cell
complex and that .H#(X) is its blowup with respect to either the maximal or minimal
building set.

(i) There is a cube complex .H#(X) of the same dimension as X and with the same
vertex set as X.

(ii) If Z is a simple zonotope of dimension .d + 1, then .H#(Z) is .(d + 1)-manifold
with boundary

(iii) (Preservation of local structure). The link of any vertex of .H#(X) is a
subdivision of the link of the corresponding vertex of X. In particular, if X

is a d-manifold, then so is .H#(X).
(iv) The maximal blowup .H# max(X) is always an NPC cube complex.

The cube complex .H#(X) is defined by induction on the dimension of X.
For simplicity we will only deal with the maximal blowup, putting .H#(X) =
H# max(X). Basically, one defines .H#(Z) for a d-dimensional zonotope Z after
assuming that .H#(∂Z) has already been defined. (In the case of the minimal blowup,
when Z is reducible and has a nontrivial decomposition as .Z = Z1×Z2, one defines
.H# min(Z) to be .H# min(Z2) × H# min(Z2).) The induction starts with .dim X = 1,
in which case .H#(X) = X. The case where Z is a 2-dimensional zonotope is
considered in the next paragraph.

The Case When .dimZ = 2 By Proposition 3.72 (iii), Z is a polygon whose
number of sides is even, say 2m, and the central symmetry a acts cellularly on
it. So, .∂Z and .∂Z/a are cellulations of .S1 by 1-cubes and the natural projection
.p : ∂Z → ∂Z/a is the 2-fold covering. Define .H#(Z) to be the associated .[−1, 1]-
bundle. In other words, .H#(Z) is a Möbius band. (For this reason, this construction
is called the “Möbius band hyperbolization procedure” in [91].) The structure on
.∂Z/a as a 1-cube complex (i.e., an m-gon) induces the structure of a square complex
on .H#(Z): each edge in .∂Z/a gives rise to a twisted square connecting a pair of
opposite edges in .∂Z. So, if .∂Z is a 2m-gon, then .∂Z/a is an m-gon and .H#(Z) is a
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subdivision of the Möbius band into m squares. Notice that the boundary of .H#(Z)

is canonically identified with .∂Z. In general, if X is any 2-dimensional zonotopal
complex, then for each 2-face Z of X one glues .H(Z) onto .X1 via the characteristic
map .∂Z → X1.

The Case When .dimZ = d We continue the induction by replacing 2 by d and
repeating the previous paragraph. Suppose that .H#(X) has been functorially defined
for all zonotopal complexes of dimension .< d and that Z is a d-dimensional
zonotope. Then, by induction, .H#(∂Z) is defined and, by functorality, the central
symmetry a induces a free involution .H#(a) on .H#(∂Z) so that .H#(∂Z/a) =
H#(∂Z)/H#(a) and .H#(∂Z) → H#(∂Z/a) is a 2-fold cover. Define .H#(Z) to be
the associated .[−1, 1]-bundle. The cubical structure on .H#(∂Z/a) induces a cubical
structure on .H#(Z): by taking the product with .[−1, 1], each k-cube .H#(∂Z/a)

gives rise to a .(k + 1)-cube in .H#(Z). Finally, if .dim X = d, then, by induction,
.H#(X

d−1) is a well-defined cube complex and one glues each blown up d-face Z to
.H#(X

d−1) via the functor applied to the characteristic map .∂Z → Xd−1 to get the
gluing map .H#(∂Z) → H#(X

d−1), as before.

Remarks on the Proof of Proposition 3.75 By induction on dimension, we can
assume that the result of applying the construction to the .(d − 1)-skeleton,
.H#(X

d−1), is a .(d − 1)-dimensional cube complex. Since the restriction of the
.[−1, 1]-bundle to any cube in .H#(X

d−1) is a trivial interval bundle, we see that
.H#(X

d) inherits the structure of a d-dimensional cube complex. By similar easy
arguments using induction one sees that .X �→ H#(X) is functor with respect to cel-
lular immersions and that properties (i), (ii) and (iii) hold. Why is the cube complex
.H# max(X) nonpositively curved? The point is that if v is a vertex of X, then, by
induction, one proves that the link of v in .H# max(X) is the barycentric subdivision
of the corresponding link of v in X, i.e., .Lk(v,H# max(X)) = b Lk(v,X) (see [94,
§3.3 and Thm. 4.4.1]). Since the barycentric subdivision of any cell complex is a
simplicial flag complex, it follows from Gromov’s Lemma (i.e., Corollary 2.31) that
.H# max(X) is NPC. This proves (iv). (When X is a cube complex this result is stated
in [136, §3.4 and §4.3].)

Remark 3.76 If the zonotope Z is dual to a central hyperplane arrangement in
.(Rd)∗, the .(∂Z)/a is dual to a triangulation of .RP d−1. Since .(∂Z)/a is the 0-section
of the canonical .[−1, 1]-bundle, we see that .H#((∂Z)/a) is a codimension-one
submanifold of the cube complex .H#(Z). It is a “hyperplane” of the cube complex
in the sense Definition 5.1 in Chap. 5, i.e., it is a union of “midcubes.” For example,
if Z is a 2m-gon, then the Möbius band .H#(Z) is a union of m squares whose 0-
sections tessellate the core .RP 1 into m intervals. (In the case of a complex blowup
as in [106], .H#((∂Z)/a) corresponds to the “exceptional divisor.”) Thus, for each
face of a zonotopal complex X, there is unique exceptional divisor in the interior of
the blowup of that face.
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3.3.3 Mock Reflection Groups

The theme of [95] and Scott [206] is to develop some examples of cubical structures
on manifolds that are analogous to the examples given by right-angled reflection
groups in Sect. 3.2. These examples are constructed by blowing up hyperplane
arrangements associated to the action of a finite reflection group W on euclidean
space. A detailed description of finite Coxeter groups and their associated zonotopes
will be given in Sect. 4.2 of the next chapter. Although it might have been preferable
to postpone the discussion of these blowups to that section, because of the close
analogy with .RACGs and cube complexes, we will, instead, discuss them in this
subsection.

Suppose the zonotope .Zd+1 is a “Coxeter zonotope” dual to a hyperplane
arrangement corresponding to a finite Coxeter group W acting as a reflection group
on .(Rd+1)∗. Let S be a set of fundamental reflections and let .σd < S

d be the
corresponding fundamental spherical simplex (cf. Sect. 4.2.1). Then .H#(Z) (.= Z#)
is a .(d + 1)-manifold with boundary with the structure of a cube complex; its
boundary .Md is given by

.Md := H#(∂Z).

Since all vertices of Z lie in .∂Z, the vertices of the cube complex .H#(Z) all lie in
.Md . By functorality, W acts on the cube complex. Since W is simply transitively on
the vertex set of .∂Z, it is also simply transitive on the vertices of .Md . The simplex
.σ is a fundamental domain for W on .S

d and it turns out that a fundamental domain
for W on M is the manifold with corners .σ# obtained by truncating all the faces
of .σ that lie in the relevant building set. (N.B.: Although .σ is a strict fundamental
domain for W on .S

d , its truncation .σ# is generally not a strict fundamental domain
on .Md . In order to construct .M/W one needs to make some identifications on the
boundary of .σ#.) In the case of the maximal building set, we truncate all faces of
.σ so that the result .σ# max has a codimension-one face for each proper nonempty
subset .T < S. For example, when .σ is a 2-simplex, .σ# max is a hexagon; when
it is a d-simplex, .σ# max is a d-dimensional permutohedron. When the reflection
arrangement is irreducible and we are taking the the minimal building set, then .σ# min
an associahedron (if the Coxeter diagram of .(W, S) is a connected line segment) or
something similar. For example, when .d = 2, .σ# min is a pentagon. So, in the
maximal case, M is a manifold tiled by permutohedra while in the minimal case, at
least when .(W, S) is irreducible, the tiles are associahedra or their cousins. Further
details can be found in [95, §3.1, §3.2].

Hyperplanes in .Md Let .wS denote the element of longest length in W . It turns out
that .wS is an involution and that conjugation by .wS takes S to itself. (See [28, Ex.
22, p. 40] or [82]*§4.6 for the definition and properties of the element of longest
length in a finite Coxeter group.) Denote the resulting permutation by .jS : S → S.
Let .σ# denote the truncated simplex. To simplify the discussion suppose we are
dealing with the maximal building set so that .σ# is a permutohedron. Then .σ# has
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a codimension-one face .(σ#)T for each proper nonempty subset .T < S. This face
extends to a codimension-one submanifold .MT < M , called a “hyperplane” (cf.
Remark 3.76). This hyperplane is fixed by the antipodal map .aT in the normal
representation to the subspace corresponding to T in .(R(d+1)∗. The translates of
.σ# by elements of W give a tessellation of M by copies of .σ#. For each subset T ,
let .WT denote the subgroup generated by T and let .wT ∈ WT be its element of
longest length. The involution .wT acts on M stabilizing the face .(σ#)T , as well as,
the codimension-one manifold .MT . If .jT : T → T is the identity permutation, then
.WT fixes .MT pointwise and hence, acts locally as a reflection. Two hyperplanes .MT

and .MT ′ intersect if and only if the subsets T and .T ′ are nested, i.e., if .T ′ < T or
.T < T ′. (In the case of a minimal building set, .MT and .MT ′ also intersect if T and
.T ′ correspond to disjoint commuting subsets of the Coxeter diagram.) Moreover,
.{MT }T <S is a family of divisors with “normal crossings,” in that .MT and .MT ′ are
the only hyperplanes containing the codimension-two submanifold .MT ∩MT ′ (so it
looks like they intersect orthogonally). Thus, .{MT }T <S closely resembles the family
of reflecting hyperplanes .{xi = 0} in the .(C2)

I -action on the polyhedral product
.PL. The difference is that the family .{wT }T <S do not pairwise commute. In fact, if
.T ′ < T and .T ′′ = jT (T ′), we have the relation,

.wT wT ′wT = wT ′′ .

In [95], the .wT are said to act on M as mock reflections.

Lifting to the Universal Cover of .Md As we did with the .(C2)
I -action on .PL, we

can lift the W -action on M to the action of a group G on the universal cover .M̃ . Fix
a lift .σ̃# of the truncated simplex .σ# and let .αT be the lift of .wT which takes .σ̃# to the
adjacent truncated simplex across the face indexed by T . It can be is shown in [95]
that G is generated by the set of involutions .{αT }T <S and that it has a presentation
of the form:

.〈{αT }T <S | {(αT )2}T <S;αT αT ′αT αT ′′ , when T ′ < T and T ′′ = jT (T ")〉.
(3.25)

We give a proof that this is, in fact, a presentation for G in a subsequent paragraph.

Next we discuss the cube complex structures on M and .M̃ . There is a spherical
simplex .σ centered at each vertex of .∂Z. The group W acts simply transitively on
the vertex set of M (.= Vert(∂Z)). Hence, M (.= H#(∂Z)) is tiled by copies of .σ#
each of which is centered at a vertex (one for each element of W ). Fix the vertex
.v ∈ ∂Z at the center of the fundamental simplex .σ . Then v and another vertex
.wv ∈ M span an edge of the cube complex if and only if they span one of the
original edges in .∂Z (i.e., if .w ∈ S) or if v and wv are antipodal vertices across the
face corresponding to a subset .T < S (i.e., if .wv = wT v). Next consider .M̃ . We
have a short exact sequence,

.1 → π1(M) → G → W → 1
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(cf. (3.13) in Sect. 3.1.1). As was the case for M , .M̃ is tiled by copies of the truncated
simplex .σ#, one copy for each element of G. The cube complex structure on M lifts
to a cube complex structure on .M̃ and G acts simply transitively on .Vert(M̃). It
follows that the 1-skeleton of the cube complex for .M̃ is the Cayley graph of G and
that its 2-skeleton is the Cayley 2-complex. In detail, let .ṽ be a lift of v. There is
an edge emanating from .ṽ for the lift of each edge in M corresponding to a nested
pair .{T ′, T }. Let .αT be the lift of the involution .wT ∈ W that stabilizes this edge. It
follows that .{αT }T <S is a set of generators for G and that G has a presentation given
by (3.25). So, the situation is completely analogous to the discussion of .RACGs in
the last paragraph of Sect. 3.1.1—the only difference being that rather than having
commutation relations, .sisj sisj , of length 4 between fundamental generators we
now have relations of length 4 of the form .αT αT ′αT αT ′′ where T , .T ′, .T ′′ are as
in (3.25) (and where .T ′′ is not necessarily equal to .T ′).

Remark 3.77 The orbit space .M/G is usually not isomorphic to .σ#; so, .σ# is not a
strict fundamental domain and the complex of groups structure over .σ# is generally
not that of a simple complex of groups.

Theorem 3.78 (Maximal Blowups (Davis-Januszkiewicz-Scott [94, 95])) Sup-
pose that .(W, S) is a finite Coxeter system of rank .(d + 1), that Z is the
corresponding zonotope and that .Md = H# max(∂Z) is the maximal blowup. Then
.Md is tiled by permutohedra and the dual cubical structure is NPC. The mock
reflection group G defined by the presentation (3.25) acts simply transitively on
the vertices of the .CAT(0) cube complex .M̃d .

Example 3.79 (The Maximal Blowup of the Boundary of a Cube) Consider the
case where the zonotope Z is a .(d + 1)-cube, the Coxeter group is .(C2)

d+1, and
where we are using the maximal building set. Then .∂Z is an octahedron. The
truncated fundamental simplex .σ# is a permutohedron. The group .(C2)

d+1 acts on
.M = H#(∂Z). For each .T < S the permutation .jT is .IT , the identity permutation
of T and the involution .wT acts as the identity on the codimension-one submanifold
.MT . So, each mock reflection is an actual reflection and .(C2)

d+1 is a reflection
group on M with fundamental chamber the right-angled permutohedron, .σ#. It turns
out that M is the real toric variety that was described in Example 3.57.

Theorem 3.80 (Minimal Blowups, cf. Davis-Januszkiewicz-Scott [94, 95]) Sup-
pose that .(W, S) is a finite irreducible Coxeter system of rank .(d + 1), that Z is
the corresponding zonotope and that .Md = H# min(∂Z) is the minimal blowup. (In
other words, only the irreducible faces of .∂Z are blown up.) The cubical structure
on .Md is NPC. If the Coxeter diagram of .(W, S) is a connected line segment, then
.Md is tiled by copies of a d-dimensional associahedron (otherwise, it is tiled by
graph associahedra). There is a mock reflection group G defined by a presentation
similar to (3.25) but it uses only pairs .{T , T ′} which are nested with respect to the
minimal building set. The group G is simply transitive on the vertex set of .M̃d .

Example 3.81 (The Minimal Blowup of the Boundary of a Permutohedron)
Suppose .Zd+1 is the permutohedron associated to the Coxeter group with diagram
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.Ad+2 (i.e., W is the symmetric group on .d+2 letters). Consider the minimal blowup

.Md := H# min((∂Z)/a). It has as a (nonstrict) fundamental domain the truncated d-
simplex .σ# min, and it turns out that this is a d-dimensional associahedron. (See
[95, §8.1] for the definition of associahedron.) As is the case with all of these
blowups of zonotopes via building sets, the manifold M is naturally a cube complex.
Since we are taking a minimal blowup and the Coxeter system is irreducible, this
cube complex is NPC. Kapranov [165] proved that .Md has several other equivalent
descriptions. In particular, he showed that the following varieties are isomorphic
(also see [94, Thm. 0.3.1]):

(i) .H# min((∂Z)/a), the minimal blowup of the braid arrangement;
(ii) the Chow quotient .G(2, d + 3)//(R∗)d+3, where .G(2, d + 3) means the

Grassmann of 2-planes in .R
d+3;

(iii) the Chow quotient of .(d+3) points in the projective line, .(RP 1)d+3//GL(2,R);
(iv) The real points of the Grothendieck-Knudsen moduli space for stable .(d + 3)-

pointed curves of genus 0, .M0,d+3.

We note that descriptions (iii) and (iv) are both compactifications of .M0,d+3, the
moduli space of .(d + 3) distinct points in the projective line.

The associated mock reflection group G of Theorem 3.80 acting on the universal
cover .M̃ was been called the cactus group in [113], [129]. (I am not sure of
the reason for this terminology.) The kernel of the natural homomorphism to the
symmetric group is called the pure cactus group; it can be identified with .π1(M).
The main result of [113] is a calculation of the cohomology of the pure cactus group.
Recent papers by Genevois [128, genevoisnote] establishes properties of the cactus
group which are relevant in geometric group theory. In particular, he shows that
cactus groups are acylindrically hyperbolic and deduces consequences of this.
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Chapter 4
Coxeter Groups, Artin Groups, Buildings

The basic notion in this chapter is that of a “Coxeter system,” .(W, S). There are three
related types of groups that depend on this notion: Coxeter groups, Artin groups,
and chamber-transitive automorphism groups of buildings. In each case the group
acts on an associated polyhedron. In the case of a Coxeter system the polyhedron
is the “Davis–Moussong complex;” in case of an Artin group it is the “Deligne
complex;” in the case of a building it is the “standard realization” of the building.
The action of any one of these groups has a strict fundamental domain called the
“standard fundamental chamber.” The fundamental chamber depends only on the
Coxeter system. In each case we get a system of groups with the structure of a
complex of groups. The fact that the fundamental domain is strict means that in each
case we have a simple complex of groups. The Davis–Moussong complex and the
standard realization of a building are both .CAT(0), hence, contractible. For a general
Artin group, it is an open question if its Deligne complex is contractible. For an Artin
group, there is a related polyhedron called the “Salvetti complex.” The Artin group
is the fundamental group of the quotient of the Salvetti complex by the associated
Coxeter group. The conjecture that the Deligne complex is contractible is equivalent
to the conjecture that the quotient of the Salvetti complex is the classifying space
for the Artin group. (This is .K(π, 1)-Conjecture for the Artin group.)

4.1 Some Simple Complexes of Groups

In this Sect. 4.1.1, we summarize the theory of “simple complexes of groups” as
developed in Bridson-Haefliger in [35, II.12] or in Appendix A of this book. In
Sect. 4.1.2, we define the three basic types of examples discussed in this chapter:
Coxeter groups, Artin groups, and buildings. In Sect. 4.1.3 we discuss the .K(π, 1)-
Question for each type of example.
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4.1.1 Quick Summary

Roughly, a simple complex of groups .GQ is a poset of groups, i.e., it consists of a
poset .Q, a collection of groups .{Gσ }σ∈Q and monomorphisms .ϕτσ : Gσ ↪→ Gτ

defined whenever .σ > τ . (See Definition A.1 in Appendix A.) N.B. If .Q is the poset
of faces of a polyhedron, then the monomorphisms .Gσ ↪→ Gτ are in the opposite
directions from the inclusions .τ ↪→ σ . The precise definitions and the details of this
theory will be postponed until Appendix A. Here we shall be content with giving a
few explanatory comments.

Simple complexes of groups come from group actions on spaces which have a
strict fundamental domain (see Definition 3.5). The local groups .Gσ are the isotropy
subgroups at points in the fundamental domain. Two points in the fundamental
domain belong to the same (open) stratum if the isotropy subgroups at those points
are equal.

Since a simple complex of groups is a system of groups as in Sect. 3.1.2, it has a
“direct limit,” .lim GQ, which we will often denote simply by G. The simple complex
of groups .GQ is developable if it is induced from a group action with a strict
fundamental domain. Equivalently, it is developable if the natural homomorphism
from each local group .Gσ to the direct limit G is injective.

We shall use two forms of the basic construction of Sect. 3.1.1. First, there is the
poset .D(G,Q) defined as the disjoint union of cosets:

.D(G,Q) =
⊔

σ∈Q
G/Gσ , (4.1)

where .gGτ < hGσ if and only if .σ > τ and we have reverse inclusion of cosets
(i.e., .hGσ is a subset of .gGτ ).

Recall that the geometric realization of the poset .Q is the simplicial complex .|Q|
whose simplices are the finite chains in .Q. For each point x in .|Q|, let .σ(x) ∈ Q be
the maximum vertex of the simplex containing x in its relative interior. The stratum
of .|Q| indexed by .σ is defined by

.|Q|σ := {x ∈ |Q| | σ(x) ≤ σ }. (4.2)

In other words, .σ(x) indexes the smallest stratum such that .x ∈ |Q|σ .
The second incarnation of the basic construction is the polyhedron,

.D(G, |Q|) = (G × |Q|)/ ∼ ; (4.3)

defined as in Sect. 3.1.1, where given .x ∈ |Q|, an equivalence relation .∼ is then
defined the same way as in (3.9):

.(g, x) ∼ (g′, x′) ⇐⇒ x = x′ and g−1g′ ∈ Gσ(x) , (4.4)
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Hence, .(g, x) ∼ (g′, x′) if and only if .x = x′ and .gGσ(x) and .g′Gσ(x) are the
same coset. So, .D(G, |Q|) is just the geometric realization of the poset .D(G,Q).
The poset .D(G,Q) and the polyhedron .D(G, |Q|) are both called the development
of .GQ with respect to G.

4.1.2 The Basic Examples

We start with some relevant definitions from Sects. 4.2–4.4.
Suppose .L1 is a simplicial graph with edges labeled by integers .≥ 2. Put .S =

Vert(L1). The edge labeling is a function .m : Edge(L1) → {2, 3, . . . } written as
.{s, t} 
→ m(s, t). The labeled graph .(L1,m) is the defining graph of a Coxeter
system. For .s = t , put .m(s, s) = 1 and if distinct elements s and t do not span
an edge, put .m(s, t) = ∞. The symmetric .(S × S)-matrix .(m(s, t)) is called the
Coxeter matrix associated to .(L1,m). This data can be used to define presentations
for two groups, a Coxeter group W and an Artin group A. The set of generators S

for W coincides with the vertex set of .L1. The relations are:

.s2, for all s ∈ S, and (st)m(s,t), for all {s, t} ∈ Edge(L1). (4.5)

That is to say, each generator in S is an involution and each relation in the
presentation for W is a word involving only two letters that correspond to the
vertices of an edge of .L1. The group W is the Coxeter group and the pair .(W, S) is
the Coxeter system associated to the labeled graph .(L1,m). For any subset T of S,
the subgroup .WT generated by T is a special subgroup. It turns out that .(WT , T ) is
itself a Coxeter system (see [28, pp. 12–13] or [82, Thm.4.1.6]). If .WT is finite, then
the subset T and the subgroup .WT that it generates are said to be spherical. Let .S

(or .S(W, S)) denote the poset of spherical subsets of S. Let .Sop denote the opposite
poset to .S. The usual partial order on .S corresponding to inclusion of subsets is
denoted by .< so that .T < T ′ means that T is a proper subset of .T ′. In .Sop the
partial order .≺ is reverse inclusion.

To define the presentation for the associated Artin group A, introduce new
symbols .{as}s∈S for the generators. The relations are given by omitting the relations
corresponding to the .s2 in (4.5) and by rewriting the relations corresponding to
.(st)m(s,t) as

. asat · · ·
︸ ︷︷ ︸

m(s,t) terms

= atas · · ·
︸ ︷︷ ︸

m(s,t) terms

(4.6)

In other words, an alternating word of length .m(s, t) in .as and .at is equal to the
alternating word of the same length beginning with the other generator. The relation
in (4.6) is an Artin relation (or a braid relation when .m(s, t) = 3). Since each s
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has order two, it follows that in .(W, S) the Artin relation is simply a rewriting of
.(st)m(s,t). Hence, .as 
→ s defines an epimorphism .A → W .

A spherical coset in W is an element of .W/WT , where .WT is a spherical special
subgroup. Let

. Coset(W) :=
⊔

T ∈S
W/WT (4.7)

denote the set of spherical cosets. Then .Coset(W) has the structure of a poset,
where the order relation is reverse inclusion of one coset in another. Similarly, a
spherical coset in A is a left coset of .AT , where .T ∈ S and where .AT denotes the
special subgroup of A generated by .{as}s∈T . Let

. Coset(A) :=
⊔

T ∈S
A/AT (4.8)

denote the poset of spherical cosets in A. (The geometric realization of the order
complex of .Coset(W) is the barycentric subdivision of the Davis–Moussong com-
plex .Σ(W, S). This zonotopal cell complex will be described again in Sect. 4.2.3
below. Similarly, the geometric realization of the order complex of .Coset(A) is the
barycentric subdivision of the Deligne complex, .Λ(W, S), that will be described in
Sect. 4.3.1.)

Definition 4.1 There is an associated abstract simplicial complex .L(W, S) (or L

for short) called the nerve of .(W, S). Its vertex set is S and a nonempty subset of S

spans a simplex if and only if it is spherical. In other words, the poset of simplices
in L is .S>∅.

Note that a subset .{s, t} consisting of two distinct vertices is spherical if and only if it
is an edge in the defining graph. So, the 1-skeleton of L is equal to the defining graph
.L1. In the case .(W, S) is right-angled, L is the flag completion of the defining graph.
The general case is analogous: a complete subgraph of .L1 determines a simplex in
L if and only if its vertex set is spherical.

Example 4.2 (The Fundamental Chamber) The geometric realization of .Sop (or
of .S) is denoted by K and called the fundamental chamber for .(W, S). For any
.T ∈ Sop, the geometric realization of the poset .S

op
�T is denoted by .KT and called

the T -stratum. For any .s ∈ S, put .Ks := K{s}. If W is the Coxeter group generated
by reflections across the facets (.= “codimension-one faces”) of a simple convex
polytope P in .E

n or .H
n, then K is identified with P so that .Sop is isomorphic to the

poset of faces of P . In other words, a stratum of K is a face of P . The poset .S is the
face poset of the dual simplicial complex .L(W, S).

Example 4.3 (The Simple Complex of Groups Associated to a Coxeter Group)
There is a simple complex of groups .WSop = {WT }T ∈Sop over .Sop called the
complex of spherical subgroups of W . Its direct limit is equal to W . On the level
of posets, .D(W, Sop) is equal to the poset of spherical cosets, .Coset(W), defined in
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(4.7). As a polyhedron, the basic construction .D(W,K) is the geometric realization
of .Coset(W). Thus, .D(W,K) is a union of its set of chambers .{wK}w∈W .
Alternatively, it is dual to the zonotopal cell complex .Σ(W, S) of Sect. 4.2.3. (The
strata of .D(W,K) are dual cones to the cells in .Σ(W, S).) Two chambers wK and
.w′K of .D(W,K) are s-adjacent if and only if .w′ = ws for some .s ∈ S and if this
is the case, their intersection .wK ∩ wsK is isomorphic to the “mirror” .Ks .

Example 4.4 (The Simple Complex of Groups Associated to an Artin Group
A) This is the simple complex of groups .ASop over .Sop defined as .{AT }T ∈Sop . If
.T ′ ≺ T , then .AT is a subgroup of .AT ′ . We also have .lim ASop = A. On the level
of posets, the development .D(A,ASop) is equal to .Coset(A), the set of spherical
cosets defined in (4.8). On the level of spaces, the development .D(A,K) is the
Deligne complex, .Λ(W, S), defined in Sect. 4.3.1 below.

Example 4.5 (The Complex of Spherical Residues in a Building) As a combi-
natorial object a building consists of a set .C of “chambers” together with some
additional structure. Part of this structure is a Coxeter system .(W, S). A building
has a geometric realization .D(C,K) in which each .C ∈ C is isomorphic to the
fundamental chamber K of Example 4.2. As with the Davis–Moussong complex,
there is a notion of two chambers being “s-adjacent”; the difference from the Davis–
Moussong complex being that in a building two or more chambers can be s-adjacent
along a mirror of the form .Ks . Given a chamber .C ∈ C and a spherical subset
.T ∈ Sop, there is also the notion of the “T -residue” containing C: it consists of all
chambers .C′ such that .C ∩ C′ contains a stratum of type .KT . The poset for .C is
.R(C), the poset of spherical residues. An “apartment” in the building .D(C,K) is an
embedded copy of the Davis–Moussong complex .D(W,K).

The building .C has a chamber-transitive automorphism group if there is a group
G that acts transitively on .C and preserves the s-adjacency relations. If G acts
chamber transitively on .C, then there is an associated simple complex of groups
.GSop := {GT }T ∈Sop , where .GT is the stabilizer of the T -residue containing some
given chamber C. The direct limit of .GSop is G; the poset .D(G, Sop) is .R(C)op; and
.D(G,K) = D(C,K).

4.1.3 The K(π, 1)-Question for Simple Complexes of Groups

Here is a short summary of some material about the .K(π, 1)-Question
that is given in more detail in Sects. 4.2.3, 4.3.4, 4.4.2 (in particular, in
Theorems 4.12, 4.76, 4.107), and in Appendix A.4.

Suppose .GQ = {Gσ }σ∈Q is a simple complex of groups over the poset .Q.
Let .{BGσ }σ∈Q be the corresponding collection of classifying spaces. Since the
monomorphisms .ϕστ : Gτ → Gσ can be realized as inclusions of spaces
.ϕστ : BGτ → BGσ , we get a poset of aspherical spaces .{BGσ }σ∈Q. Using
iterated mapping cylinders we can glue together the spaces .BGσ to form a new
space .BGQ called the aspherical realization of the simple complex of groups. The
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CW complex .BGQ is equipped with a projection .p : BGQ → |Q| so that for
each vertex .σ ∈ Q, .p−1(σ ) is homotopy equivalent to .BGσ . The details of this
construction are given in Appendix A.4. When .|Q| is simply connected, it follows
from van Kampen’s Theorem that the fundamental group of .BGQ is the direct limit
G. By a theorem of Haefliger [138], the space .BGQ is well-defined up to homotopy
equivalence (cf. Theorem A.18). The .K(π, 1)-Question for the simple complex of
groups .{BGσ }σ∈Q is the following.

Question 4.6 Is the aspherical realization of a simple complex of groups aspherical?
In other words, is .BGQ a .K(π, 1)? (When .|Q| is simply connected, .π1(BGQ) = G.)

The next theorem provides an answer. A more detailed proof and discussion will be
given in Appendix A.4. Here we just sketch the proof.

Theorem 4.7 (cf. Theorem A.19 in Appendix A.4) Suppose .GQ is a developable
simple complex of groups and that .|Q| is simply connected. Then .BGQ is homotopy
equivalent to BG if and only if the development .D(G, |Q|) is contractible.
Sketch of Proof Consider the Borel construction

.D(G, |Q|) ×G EG.

There is a projection map .π : D(G, |Q|) ×G EG → |Q| induced by projection
onto the first factor, where .|Q| is identified with .D(G, |Q|)/G. The fiber over the
vertex .σ ∈ Q is identified with .EG/Gσ , which is homotopy equivalent to .BGσ .
So, .D(G, |Q|)×G EG is a model for .BGQ. Since .D(G, |Q|)×EG is G-homotopy
equivalent to EG if and only if .D(G, |Q|) is contractible, the result follows.

This theorem shows that if .D(G, |Q|) is .CAT(0), then the .K(π, 1)-Question for
.GQ has a positive answer. Indeed, this is a reason why we know the answer is
positive for .WSop and for a chamber-transitive building .C. It is also the reason we
conjecture that the answer is positive for the Artin complex .ASop.

Remark 4.8 Of course, the answer to the .K(π, 1)-Question depends on the choice
of simple complex of groups whose direct limit is G. Indeed, the development
.D(G, |Q|), as well as the aspherical realization .BGQ, both depend on .GQ. For
example, consider the simple complex of groups .GQ = WSop of Example 4.3 where
we assume that the Coxeter group W is finite. If .Card(S) = n, then the fundamental
chamber .|Q| = |Sop| is the cone on an .(n − 1)-simplex .Δ while the development
.D(W, Cone Δ) is the disk .Dn (cf. Sect. 4.2.2). If we replace the poset .Q by the poset
of proper spherical subsets .Q′ := Sop − {S}, then the direct limit W is unchanged,
the fundamental chamber .|Q′| is .Δn−1 and the development is .Sn−1. The aspherical
realization .EGQ is .Sn−1 ×W EW , which is a sphere bundle over BW , and hence, is
not homotopy equivalent to BW . it is not even aspherical if .n ≥ 3. So, the .K(π, 1)-
Question has a negative answer for .GQ′.
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4.2 Coxeter Groups

There are at least two methods for constructing a geometric object with an action of
a given Coxeter group. First there is the piecewise euclidean .CAT(0) cell complex
.Σ(W, S). Basic examples of Coxeter groups occur as a groups W generated by
reflections across the facets of a polytope in a space of constant curvature. The
second method for realizing .(W, S) as a complex .Σ generalizes such examples of
reflection groups. We will describe several different interrelated perspectives from
which to view geometric actions of Coxeter groups on polyhedra. We organize these
viewpoints into the areas (A), (B), (C), (D), (E) listed below. A basic reference for
this material is [28]. Much of the exposition in this section is taken from the fuller
account given in my book [82].

Outline of This Section

(A) The Davis Moussong complex, Σ(W, S) (Sect. 4.2.3)

(A.1) Spherical Coxeter groups and Coxeter zonotopes (Sects. 4.2.1
and 4.2.2).

(A.2) Moussong’s Theorem: Σ(W, S) is CAT(0) (Sect. 4.2.4).
(A.3) The K(π, 1)-Question for Coxeter groups (Sect. 4.2.4).

(B) Fundamental polytopes and convex cocompact actions on H
n (Sect. 4.2.8).

(C) Word hyperbolic and relatively hyperbolic Coxeter groups (Sects. 4.2.4, 4.2.5,
and 4.2.8).

(C.1) Moussong’s Conditions for word hyperbolicity (Lemma 4.21).
(C.2) Caprace’s conditions for relative hyperbolicity (Theorem 4.26).

(D) Linear and projective representations of Tits and Vinberg (Sects. 4.2.7 and
4.2.9).

(D.1) The fundamental chamber in the Tits representation is a simplicial cone.
(D.2) In Vinberg’s representations, the fundamental chambers are polyhedral

cones.

(E) Convex, cocompact actions on proper convex domains in RP N (Sect. 4.2.9).

The next three paragraphs contain comments on various parts of the above
outline.

(A) and (C). The cells of the Davis–Moussong complex are “Coxeter zonotopes.”
Associated to a spherical Coxeter subsystem (WT , T ) there is a Coxeter zonotope
Z(WT , T ). It is a convex cell in a euclidean space of dimension equal to Card(T )

(cf., Example 3.73 in Sect. 3.3.1). Copies of these cells are glued together to form
Σ(W, S). The main result is Moussong’s Theorem: the natural piecewise euclidean
metic on Σ(W, S) is CAT(0). The cells Z(WT , T ) can also be realized as convex
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cells in H
n; so we get a piecewise hyperbolic metric on Σ(W, S). This leads to

the question of when is this metric (with suitably scaled edge lengths) CAT(−1)?
Moussong also answered this: the piecewise hyperbolic metric on Σ(W, S) is
CAT(−1) if and only if (i) no special subgroup of W is a euclidean Coxeter group
of rank at least 3 and (ii) W has no special subgroups of the form WT1 ×WT2 , where
WT1 and WT2 are both infinite (see Lemma 4.21). Moreover, W is word hyperbolic if
and only if Σ(W, S) can be given a CAT(−1) structure. (See [81, 82, 84] for general
discussions of reflection groups and nonpositive curvature.)

(C). There is a closely related notion of a “relatively hyperbolic” Coxeter group.
The basic example is a group generated by reflections across the facets of a polytope
of finite volume in H

n. (Such a polytope is allowed to have “ideal vertices” lying on
the sphere at infinity. The stabilizer of such an ideal vertex is a euclidean Coxeter
group.) There is a general notion of what it means for a group to be relatively
hyperbolic (relative to a family of subgroups). In the case of Coxeter groups the
family of subgroups is the family of maximal free abelian subgroups. It turns out
that W is relatively hyperbolic if and only if Σ(W, S) does not have “isolated flats”
of dimension > 1. Caprace proved that this is equivalent to a condition on special
subgroups of the form WT = WT1 × WT2 . His condition is that any such WT is
virtually abelian. In other words, either both factors are euclidean reflection groups
or at least one factor is spherical. (See Theorem 4.26.)

(B), (D) and (E). A basic fact is that every Coxeter group W admits faithful
linear representations as reflection group on some vector space so that W acts
properly on some open convex subset. Given a Coxeter system (W, S) Tits defined
a representation of W on R

N , with N = Card(S), across the facets of a simplicial
cone C. (The facets of the simplex are indexed by S.) The Tits cone is the union
of all translates of C by elements of W . It is a convex cone and it is a proper
subset of R

N whenever W is not spherical. The group W acts properly on the
interior of the Tits cone and hence, on the image Ω of the interior of the Tits
cone in RP N−1. More generally, Vinberg [227] considered representations of W

on R
N as groups generated by reflections across the facets of a convex polyhedral

cone C. As before, a subset of facets of C corresponds to the set of generators S;
however, the dimension of the vector space can now be less than Card(S). The image
of C in RP N−1 is a convex polytope P (often called the “Poincaré polytope”).
The image of W in PGL(RN) is discrete if and only if each spherical dihedral
subgroup W{s,t} acts on R

N with strict fundamental domain the sector determined
by the corresponding facets Ps and Pt . When does such a representation give a
proper action of W on some open fundamental domain Ω of RP N−1 with compact
quotient, i.e., when is the W -action “convex cocompact”? This is answered in [71].
It turns out that the class of (W, S) which admit such cocompact representations
strictly contains the class of all word hyperbolic W and is contained in the class of
relatively hyperbolic W . (See Proposition 4.49 below.)
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4.2.1 Spherical Coxeter Groups

In this subsection we suppose that the Coxeter group W is finite. The Coxeter system
.(W, S) has a representation as an orthogonal linear reflection group on .R

n, with .n =
Card(S), so that each .s ∈ S corresponds to reflection across a supporting hyperplane
of a simplicial cone. When .(W, S) is irreducible this representation is unique up to
homothety (e.g., see [28, p. 70]). It is called the geometric representation or the
canonical representation. The set of all reflections R in W is precisely the set of
conjugates of elements of S. The linear hyperplane .Hr fixed by a reflection .r ∈ R is
called a wall. The set of all such hyperplanes, .A := {Hr}r∈R , is the associated
reflection arrangement. The arrangement .A cuts .R

n into simplicial cones; this
collection of cones together with their faces is called the fan, .Fan(A), associated
to .A. Each top-dimensional simplicial cone in .Fan(A) is a chamber. There are two
chambers (antipodal to each other) bounded by the walls indexed by S. Let C be
one of them. Then C is a strict fundamental domain for the W -action on .R

n. A
codimension-one face .Cs of C is the intersection of C with the wall .Hs fixed by s.
The intersection of .Fan(A) with .S

n−1 is the spherical fan, denoted .SFan(A). It is
a tessellation of .S

n−1 by spherical simplices. The underlying simplicial complex is
the Coxeter complex of .(W, S).

The intersection .C ∩ S
n−1 is denoted by .σ(W, S) (or by .σ ) and is called the

fundamental spherical simplex (or the fundamental chamber) for W on .S
n−1. The

codimension-one faces (or “facets”) of .σ (.= σ(W, S)) are the faces .σs := σ ∩ Hs .
For each proper subset .T < S we have a face .σT of .σ defined by .σT := ⋂

s∈T σs .
The isotropy subgroup at a point in the relative interior of .σT is a special subgroup
.WT . Since .W � S

n−1 with .σ(W, S) as a strict fundamental domain, the sphere
.S

n−1 can be identified with the basic construction .D(W, σ) defined in Lemma 3.7
using (3.9).

The angle between bounding lines of a fundamental sector for the dihedral group
.Dm on .R

2 is .π/m. For each .s ∈ S, let .us be the outward-pointing unit normal
vector to the face .Cs of C (or equivalently, the outward-pointing normal vector to
.σs in .S

n1 ). Since the angle between .us and .ut is the exterior dihedral angle along
.Cs ∩ Ct , this angle is .π − π/m(s, t). Hence, the matrix of inner products .(us · ut )

is equal to the cosine matrix .c(s, t) of .(W, S), that is, the .(S × S)-symmetric matrix
defined by

.c(s, t) = (us · ut ) = − cos(π/m(s, t)). (4.9)

When .s = t , .m(s, s) = 1 so that .c(s, s) = 1. (The formula in (4.9) for the
cosine matrix .c(s, t) makes sense for any Coxeter system .(W, S), provided that
when .m(s, t) = ∞, we interpret .− cos(π/∞) to be .− cos(0) (i.e., to be .= −1), cf.
Sect. 4.2.7.) When .(W, S) is spherical, .{us}s∈S is a basis for .R

n; hence, we see that
the cosine matrix is positive definite whenever W is finite. The converse is also true.
This gives the following well-known characterization of finite Coxeter groups.
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Lemma 4.9 (E.g., See [28, Ch.V §4.8] or [82, Theorem 6.12.9]) The Coxeter
group W is finite if and only its cosine matrix .(c(s, t)) defined by (4.9) is positive
definite.

The fundamental dual simplex .Δ(W, S) is the spherical simplex in .S
n−1 spanned

by the unit vectors .{us}s∈S . The simplex .Δ(W, S) is dual to .σ(W, S) in the sense
that it consists of all points .y ∈ S

n−1 of distance .≥ π/2 from .σ(W, S), i.e.,
.Δ(W, S) = {y ∈ S

n−1 | y · x ≤ 0 for all x ∈ σ(W, S)}. The length of the circular
arc connecting the vertices .us and .ut of .Δ(W, S) is .π(1 − 1

m(s.t)
).

The information in the labeled graph .(L1,m) is the same as that contained in
the Coxeter diagram. This is a graph with the same vertex set S but with edges
labeled by an integer .≥ 3 or .∞. If .m(s, t) = 2, the edge is omitted. Otherwise
the label is .m(s, t) unless .m(s, t) = 3 in which case the edge is not labeled. The
Coxeter diagrams of the irreducible spherical and euclidean Coxeter systems are
listed below in Table 4.1.

Table 4.1 Diagrams of
spherical and euclidean
Coxeter systems

An . . .
˜An

. . .

Bn
4 . . .

˜Bn
4 . . .

Dn . . .
˜Cn

4 . . . 4

I2(p)
p

˜Dn
. . .

H3
5

˜A

H4
5

˜B2
4 4

F4
4

˜G3
6

E6

˜F4
4

E7
˜E6

E8
˜E7

˜E8
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Fig. 4.1 The hexagon and
permutohedron

4.2.2 Coxeter Zonotopes

Associated to a spherical Coxeter system .(W, S) there is a Coxeter zonotope Z

(.= Z(W, S)) that is dual to the reflection arrangement .A (cf. Example 3.73 in
Sect. 3.3.1 or Example 5.9 in Sect. 5.1.2 below). More precisely, Z is the simple
convex polytope such that .∂Z is dual to the spherical fan .SFan(A) (a simplicial
complex). Here is an explicit description. Let C be a fundamental chamber bounded
by the walls indexed by S. Choose a base point .x0 in the interior of C and consider
its W -orbit, .Wx0. Then .Z(W, S) can be defined as the convex hull of .Wx0.

Lemma 4.10 (See, e.g., [57, Lemma 2.1.3]) Suppose that .(W, S) is a spherical
Coxeter system and that .Z(W, S) is the corresponding Coxeter zonotope. Then
the face poset of .Z(W, S) is isomorphic to the poset of spherical cosets .Coset(W)

defined in (4.7). The face corresponding to the coset .wWT has vertex set .(wWT )x0
and this face is isomorphic to the zonotope .Z(WT , T ). (In particular, the face
corresponding to .T = S is the entire zonotope .Z(W, S).)

As examples, if .(W, S) is the symmetric group on .n+1 letters (i.e., if its Coxeter
diagram is .An), then Z is a permutohedron. When .n = 2, a permutohedron is a
hexagon. (See Fig. 4.1). If .W = (C2)

n, then Z is an n-cube. N.B. The action of
W on the cell complex Z, “has inversions,” e.g., although the maximum cell Z is
stabilized by the entire group W , it is not fixed pointwise.

The link of the vertex .x0 in Z, .Lk(x0, Z), is naturally identified with the dual
spherical simplex .Δ(W, S). The edges meeting at the vertex .x0 are parallel to
the basis of unit normal vectors, .{us}s∈S . The metric on .Z(W, S) depends on the
position of .x0 in the interior of C. We can normalize this position by choosing .x0
to be the unique point of distance .= 1/2 from each wall .Hs , .s ∈ S. This will have
the effect of making the length of each edge of .Z(W, S) equal to 1. The face corre-
sponding to .wWT is said to be of type T ; it is a cell whose dimension is .Card(T ).

Coxeter zonotopes play the same role in constructing Davis–Moussong com-
plexes for general Coxeter groups as do cubes for .RACGs. They are also used in the
construction of the Salvetti complex for general Artin groups.
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4.2.3 The Davis–Moussong Complex

We return to the situation where the Coxeter system .(W, S) is arbitrary, where .S =
S(W, S) is its poset of spherical subsets, and where .WSop is its poset of spherical
cosets (cf. (4.7)). The purpose of this subsection is to describe a cell complex .Σ =
Σ(W, S) together with a proper action, .W � Σ . The poset of cells of .Σ(W, S) is
equal to .WS; the cell corresponding to the spherical coset .wWT is isomorphic to the
zonotope .Z(WT , T ) (cf. Lemma 4.10). It follows that the barycentric subdivision of
.Σ(W, S) is the geometric realization .|WS|.

The complex .Σ(W, S) plays a central role in my book [82] and is described in
detail there. Here we content ourselves with a fairly brief description of it. In the
case where W is right-angled, .Σ(W, S) is the cubical complex .P̃L explained at the
end of Sect. 3.1.1. Some properties of .Σ are listed in the next proposition.

Proposition 4.11 (cf. [179] or [82]) Let .Σ = Σ(W, S).

(1) The poset of cells in the cell complex .Σ is equal to .WS.
(2) Each cell of .Σ is a Coxeter zonotope. The cell corresponding to the spherical

coset .wWT is isomorphic to the Coxeter zonotope .Z(WT , T ); it is a convex
polytope of dimension equal to .Card T .

(3) The group W acts properly on .Σ . The stabilizer of the cell .wZ(WT , T ) is the
subgroup .wWT w−1.

(4) The W -action on .Σ has a strict fundamental domain homeomorphic to the
geometric realization .|S| of the poset .S. So, when S is finite, .Σ/W is compact.

(5) The natural piecewise euclidean metric on .Σ is .CAT(0). In particular, .Σ is
contractible by Theorem 2.2.

As we explained in Sect. 4.1.3, the fact that .Σ(W, S) is .CAT(0) implies that
the .K(π, 1)-Question for .WSop has a positive answer is the following corollary to
Proposition 4.11 (5).

Theorem 4.12 (The .K(π, 1)-Question for .WSop Has a Positive Answer) The
space .Σ(W, S) ×W EW is homotopy equivalent to BW .

In order to appreciate .Σ , we spell out its construction in more detail. Its 0-
skeleton, .Σ0, is identified with W (i.e., with the spherical cosets in .W/W∅). Its
1-skeleton is the Cayley graph .Cay(W, S); there is an edge connecting w to ws

whenever .{w,ws} is a coset of .W{s}. So, there is an orbit of edges for each generator
.s ∈ S. Next fill in the 2-cells. There is an orbit of 2-cells of the form .Z(W{s,t}, {s, t}),
whenever .Card{s, t} = 2 and .m(s, t) < ∞. Each such 2-cell is a 2-dimensional
Coxeter zonotope, that is, a polygon with .2m(s, t) saasides. The orbits of these 2-
cells correspond precisely to the relations in (4.5). So, .Σ2 is essentially the Cayley
2-complex of .(W, S). In particular, .Σ2 is simply connected. We continue by filling
in an orbit of 3-dimensional zonotopes of the form .Z(WT , T ) for each spherical
subset .T ∈ S with 3 elements. Miraculously, after filling in all such 3-cells, the
resulting 3-skeleton, .Σ3 is 2-connected. Continuing, the complex .Σ is formed by
filling in an orbit of Coxeter zonotopes for each spherical coset in .WSop. It turns out
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that .Σ is contractible. One way to show this is to prove statement (5) in the above
proposition, i.e., to show that .Σ is .CAT(0). This is a theorem of Moussong which
will be discussed in the next subsection. We note that when W is finite, .Σ(W, S) is
equal to the single Coxeter zonotope .Z(W, S) (cf. Lemma 4.10).

Recall from Sect. 4.1 that the nerve of .(W, S) is the simplicial complex .L(W, S)

whose simplices correspond to the nonempty spherical subsets of S. There is natural
piecewise spherical metric on .L(W, S) where the simplex corresponding to T is
identified with the fundamental dual spherical simplex .Δ(WT , T ) spanned by the
outward-pointing unit normal vectors to .σ(WT , T ), .{ut }t∈T , as in Sect. 4.2.1. In
particular, the edge .{s, t} that corresponds to the spherical subset .T = {s, t} has
length .π(1 − 1/m(s, t)).

A spherical simplex .Δ has size .≥ π/2 if the distance from any vertex to the
opposite face is .≥ π/2.

Definition 4.13 (Metric Flag Complexes) To define this concept suppose L is a
simplicial complex with a piecewise spherical metric so that whenever e is an edge
of L, its length, .l(e), lies in the interval .[π/2, π) (this is implied by the hypothesis
that each simplex of L has size .≥ π/2). Then L is a metric flag complex if whenever
.Γ is a subcomplex of L isometric to the 1-skeleton of a spherical k-simplex .τ , there
actually exists a k-simplex .τ in L with edge lengths specified by the .l(e), .e ∈ τ (1).

Note that in the case where the piecewise spherical metric is all right, L is a
metric flag complex if and only if it is a flag complex. (See Definition 2.26 for the
meaning of “all right”.)

The condition in Definition 4.13 also can be expressed as follows. Suppose T

is the set of vertices of a subcomplex isomorphic to a complete graph .Γ and that
for distinct vertices t , .t ′ of .Γ , the length .l(t, t ′) of the edge .{t, t ′} lies .[π/2, π).
Let .c(t, t ′) be the “cosine matrix” defined by (4.9). The condition that each edge
length lies in .[π/2, π) corresponds to the condition that each spherical simplex has
size .≥ π/2. Then L is a metric flag complex if and only if the .(T × T )-symmetric
matrix .c(t, t ′) is positive definite whenever T is the vertex set of a simplex of L. In
other words, the simplices of L are determined by the metric on .L1. By Lemma 4.9,
for each .T ∈ S, the corresponding cosine matrix is positive definite; so, .L(W, S),
with its natural piecewise spherical structure is a metric flag complex.

Example 4.14 (Metric Flag Complexes of Dimension 1) When is the graph .L1

equipped with its piecewise spherical metric .CAT(1)? The answer was alluded to
in Examples 2.12 and 2.13 as well as in Sect. 2.4.5: the length of each circuit in .L1

must be .≥ 2π . If all edge lengths lie in .[π/2, π ] and if .L1 is a simplicial graph, then
this condition is vacuous except for circuits with 3 edges, say .e1,.e2, .e3, in which case
it reads:

.l(e1) + l(e2) + l(e3) ≥ 2π (4.10)

(cf. Lemma 2.56). This is precisely the condition that the cosine matrix for the 3-
circuit fails to be positive definite. Thus, .L1 is a metric flag complex if and only
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if (4.10) holds for each 3-circuit in .L1 and this is equivalent to the condition that
.L1 be .CAT(1). Moussong’s Lemma, which is stated in the next subsection, is a
generalization of this to higher dimensions.

Example 4.15 (.Σ Is a 2-Dimensional .CAT(0) Cell Complex, cf. Example 2.13)
Suppose .(L1,m) is a labeled simplicial graph with labeling, .m : Edge(L1) →
{2, 3, . . . }. Let .(W, S) be the associated Coxeter system. As in the previous
example, suppose each spherical subset .T ∈ S has cardinality .≤ 2 so that
.L(W, S) = L1. Then .dim Σ = 2. The 2-dimensional zonotope corresponding to
an edge e of .L1 is a regular euclidean .2m(e)-gon. The interior angle at a vertex
of such a .2m(e)-gon is .π(1 − 1/m(e)). If .{e1, e2, e3} is a 3-circuit of .L1, then the
condition in (4.10) is equivalent to

.

3
∑

i=1

1

m(ei)
≤ 1. (4.11)

So, .dim Σ = 2 exactly when (4.11) holds for all 3-circuits in .L1. Thus, .Σ is a
2-dimensional .CAT(0) cell complex with an orbit of .2m(e)-gons for each .e ∈ L1.

Next, consider the question: when does .Σ admit a piecewise hyperbolic structure
that is .CAT(−1)? First, we need to discuss how to make the zonotopes hyperbolic.
If .WT is a spherical Coxeter group, then we can represent it as a finite reflection
group on .H

m, where .m = Card T . Let .Ch be a fundamental cone for the .WT -action
on .H

m and choose a point .x0 in the interior of .Ch of distance .
1
2ε from each wall. Let

.Zh
ε (WT , T ) (.= Zh

ε ) denote the convex hull of the orbit of .x0. Then .Zh
ε (WT , T ) is

the hyperbolic zonotope with all its edge lengths equal to .ε. As before, we can glue
together the .Zh

ε (WT , T ) to obtain a piecewise hyperbolic model .Σh(W, S) of the
Davis–Moussong complex. When .ε is small, the effect on .Lk(x0, Z

h
ε (WT , T )) will

be to make a small change in the dual spherical simplex .Δ(WT , T ). Hence, there
also will only be a small change in the metric on .Lk(v,Σh

ε ) (cf. [179, Lemma 5.11]
or [82, Lemma I.6.7]).

Example 4.16 (2-Dimensional .CAT(−1) Cell Complexes) Suppose .dim Σ = 2.
A small deformation of the metric on .L1 is then guaranteed to be .CAT(1) if and
only if the sum of the edge lengths in each circuit is strictly greater than .2π . As
in Example 4.15, we need only consider circuits with .≤ 4 edges. If the number
of edges is 3 we must modify (4.11) by requiring the inequality to be strict. If the
number of edges is 4, the only case which leads to a closed geodesic of length .2π is
when each edge has length exactly .π/2. We exclude this possibility by requiring that
for 4-circuits at least one edge has .m(e) �= 2. (This is a more general version of the
no .�-condition of Sect. 2.2.) From the discussion in Sect. 2.1.2 we see that a small
deformation of the piecewise euclidean structure on .Σ to a piecewise hyperbolic
structure .Σh

ε is .CAT(−1) if and only if the above two conditions hold for .L1, i.e.,
if .L1 is extra large in the sense of Definition 2.16. When this is the case, each of
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the deformed vertex links will be .CAT(1). Hence, for small enough .ε, .Σh
ε will be

.CAT(−1) if and only if .L1 is extra large.

Example 4.17 (Gromov Polyhedra) Suppose .L1 is a complete graph on p vertices
with edges labeled by a constant integer .m ≥ 3. Let .W(p,m) be the Coxeter group
associated to .(L1,m). Then there is a simply connected, 2-dimensional polyhedron
.Xp,2m so that each 2-cell is a 2m-gon and so that the link of each vertex is a complete
graph on p-vertices. To see this, apply the construction in the previous example to
the case where .L1 is a complete graph, each edge of which is labeled by the same
integer m, and .Xp,2m = Σ(W(p,m)) (or its 2-skeleton when .m = 2.) If .m ≥ 3,
then .Xp,2m is .CAT(0). When .m ≥ 4, it can be given a .CAT(−1) metric where each
polygon is hyperbolic.

4.2.4 Moussong’s Lemma

Lemma 4.18 (Moussong’s Lemma, cf. [179, Appendix I.7] or [82]) A piecewise
spherical simplicial complex L with all simplices of size ≥ π/2 is CAT(1) if and
only if it is a metric flag complex.

Moussong’s Theorem, stated below, is a corollary of the above lemma.

Theorem 4.19 (Moussong [179, Lemma I.7.4], also cf. [103] or [82]) The piece-
wise euclidean cell complex Σ(W, S) is CAT(0).

Comments on the Proof As explained in Sect. 4.2.2, the link of a vertex in the
zonotope Z(WT , T ) is isometric to the dual spherical simplex Δ(WT , T ). It follows
that the link of each vertex in Σ(W, S) is isometric to L(W, S). By Moussong’s
Lemma, this link is CAT(1); hence, Σ(W, S) is NPC. Since the 2-skeleton of Σ

is the Cayley 2-complex for (W, S), we see that Σ is simply connected; hence, by
Theorem 2.3, Σ is CAT(0).

When (W, S) is right-angled, its nerve L(W, S) is a flag complex and it has an
all right, piecewise spherical structure. By Lemma 2.33, L(W, S) is extra large if
and only if it satisfies the no �-condition. So, the cubical metric on Σ(W, S) can be
deformed to a piecewise hyperbolic metric that is CAT(−1) if and only if L(W, S)

satisfies the no �-condition. This establishes the following proposition. We will give
some details of its proof later in Theorem 4.23 below.

Proposition 4.20 Suppose (W, S) is a RACS . Then (W, S) is word hyperbolic if
and only if L(W, S) satisfies the no �-condition.

Moussong continued along the line he began in Lemma 4.18 by determining
when a piecewise spherical, metric flag complex L of size ≥ π/2 is extra large
(cf. Definition 2.16). As usual S = Vert L. For T < S, let LT denote the full
subcomplex spanned by T . Then LT is a totally geodesic subspace of L. Two types
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of subcomplexes LT obviously can lead to a closed geodesic of length 2π in L.
They are:

(i) The complex LT is isometric to the polar dual of a euclidean simplex, i.e.,
LT is isometric to the round sphere of dimension Card(T ) − 2 and LT is
combinatorially isomorphic to the boundary complex of a simplex of dimension
Card(T ) − 1. (The polar dual of a convex polytope is the piecewise spherical
complex spanned by the outward-pointing unit normals to its facets.)

(ii) The complex LT decomposes as a spherical join LT1 ∗ LT2 , where neither LT1

nor LT2 is a spherical simplex.

To see that (ii) yields a closed geodesic of length 2π , for i = 1, 2, choose points
xi, yi in LT1 of distance at least π/2. Then the join {x1, y1} ∗ {x2, y2} is a 4-circuit
where each edge has length π/2. In [179, Lemma 10.3] Moussong proved that
the metric flag complex L has no closed geodesics of length 2π if and only if it
contains no subcomplexes LT of type (i) or (ii). Applying this in the special case
L = L(W, S) we get the following.

Lemma 4.21 The piecewise spherical complex L(W, S) is extra large if for each
subset T of S neither of the following conditions hold for WT .

(i) The special subgroup WT is an irreducible euclidean reflection group (gener-
ated by the reflections across the faces of a euclidean simplex of dimension
≥ 2).

(ii) (WT , T ) decomposes as (WT1 × WT2 , T1 � T2), where both WT1 and WT2 are
infinite.

If conditions (i) and (ii) of this lemma both fail to hold, we say that (W, S) satisfies
Moussong’s Conditions.

Remark 4.22 (Andreev’s Conditions, [8]) When the simplicial complex L is
homeomorphic to S2, Moussong’s Conditions are equivalent to Andreev’s Condi-
tions (e.g., see [82, §6.10]). Andreev gave conditions are necessary and sufficient
for L to be the polar dual to the boundary complex of a compact simple convex
polytope in H

3 so that the dihedral angle along an edge dual to an edge e in L is
π/m(e). The Coxeter group W is then a cocompact reflection group on H

3.

Theorem 4.23 (Moussong’s Characterization of Word Hyperbolic Coxeter
Groups) The following conditions on a finitely generated Coxeter system (W, S)

are equivalent.

(a) The group W is word hyperbolic.
(b) The group W does not contain Z×Z (the product of two infinite cyclic groups).
(c) The Coxeter system (W, S) satisfies Moussong’s Conditions.
(d) The CAT(0) metric on Σ(W, S) can be deformed to a piecewise hyperbolic,

CAT(−1) metric.

Proof Since a word hyperbolic group cannot contain Z × Z, (a) �⇒ (b). If a
special subgroup WT is a euclidean reflection group, then its translation subgroup is
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free abelian of rank Card(T )− 1 and this rank is ≥ 2 whenever (b) holds. Similarly,
if WT = WT1 ×WT2 , where both factors are infinite, then Z×Z < WT . So, (b) �⇒
(c). By Lemma 4.21, Moussong’s Conditions imply that L(W, S) is extra large. As
in Example 4.16, Proposition 2.18 implies that Σ(W, S) can be given a piecewise
hyperbolic CAT(−1) metric. So, (c) �⇒ (d). By Lemma 2.21, (d) �⇒ (a).

Abelian Subgroups in Coxeter Groups An isometrically embedded copy of
euclidean n-space, En, in a CAT(0) space X is called an n-flat. If A is a free
abelian group of rank n acting properly on a CAT(0) space X, then by the Flat
Torus Theorem 2.37 of Sect. 2.3, its “minset” contains an n-flat.

By Moussong’s Theorem 4.19, Σ(W, S) is CAT(0). By the Bruhat–Tits Fixed
Point Theorem 2.34, every finite subgroup G of W is conjugate into a subgroup
of an isotropy subgroup of W on Σ , i.e., to a spherical special subgroup WT . In
other words, the fixed set of G coincides with the fixed set of a spherical parabolic
subgroup. (Recall that a subgroup of W is a parabolic subgroup if it is conjugate to
some special subgroup WT . Similarly, a parabolic subgroup of an Artin group is
a conjugate of a special subgroup AT .) As in the proof of Theorem 4.23, there are
two obvious ways in which a WT can contain a virtually free abelian subgroup G of
rank at least two:

(i) WT is a euclidean Coxeter group of rank ≥ 2, or
(ii) WT decomposes as WT1 × WT2 where both factors are infinite.

The algebraic rank (W, S) is the maximum integer n such that W contains a
free abelian subgroup of rank n. The geometric rank is the maximum n such that
Σ(W, S) contains an n-flat. By the Flat Torus Theorem 2.37, the geometric rank is
at least the algebraic rank. By Theorem 4.23, (W, S) has algebraic rank equal to 1
if and only if W is word hyperbolic and is not spherical.

Next, suppose that a special subgroup WT has an irreducible decomposition,

.WT = WT1 × · · · × WTk
, (4.12)

where each irreducible factor is infinite and either is a word hyperbolic or a
euclidean Coxeter group. (Only the infinite dihedral group is both word hyperbolic
and euclidean.) The algebraic rank of WT is then the number of hyperbolic factors
plus the sum of the ranks of the euclidean factors.

Theorem 4.24 (Caprace-Haglund [51]) The geometric rank of (W, S) equals its
algebraic rank. Moreover, the algebraic rank is the maximum of the algebraic ranks
of any special subgroup WT which has an irreducible decomposition of the form
given in (4.12).

In fact, any free abelian subgroup G of W is virtually a subgroup of a parabolic
subgroup that is conjugate to some WT in the form given in (4.12).
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4.2.5 Relatively Hyperbolic Coxeter Groups

The notion of a relatively hyperbolic group was introduced in [136]. Other versions
were given by Farb [114] and by Bowditch [31]. More recently, there have been
further generalizations (e.g., “acylindrically hyperbolic groups”), a description of
these generalizations can be found in [70]. When P is a subgroup of a finitely
generated group G, then the coned off Cayley graph .Ω(G,P ) is formed by attaching
to the Cayley graph .Cay(G) a cone on each coset of P in G. (Such a coset is
a subset of the vertex set of .Cay(G).) If .{P1, . . . , Pk} is a finite collection of
subgroups, define .Ω(G, {P1, . . . , Pk}) similarly. At first approximation, one says
that G is hyperbolic relative to .{P1, . . . , Pk} if .Ω(G, {P1, . . . , Pk}) is a hyperbolic
metric space. For the actual definition of a relatively hyperbolic group, Farb adds
the requirement the coned off Cayley graph has the “Bounded Coset Penetration
Property.” (See [114, §3.3].) Bowditch’s definition of relative hyperbolicity is along
a different line, which we shall not explain here. The prototypical example for a
relatively hyperbolic pair .(G, P ) is when G is the fundamental group of a hyperbolic
manifold or orbifold of finite volume and the subgroup P is the fundamental group
of a cusp (so that P is virtually abelian). For example, G could be the Coxeter group
generated by reflections across the facets of a hyperbolic polytope of finite volume
and .P1, . . . , Pk could be the stabilizers of its ideal vertices.

In the most important cases, the .Pi are maximal virtually free abelian subgroups
of rank .≥ 2. When G acts geometrically on a .CAT(0) space X, such .Pi can occur as
stabilizers of maximal flat subspaces of X. There is the following important result
of Hruska and Kleiner.

Theorem 4.25 (Hruska–Kleiner [150]) Suppose G acts properly and cocom-
pactly via isometries on a .CAT(0) space X. Let .F be the family of maximal free
abelian subgroups of G. Then G is relatively hyperbolic with respect to .F if and
only if X has isolated flats (i.e., the maximal flats of X are isolated).

In the case of a Coxeter group W acting on the Davis–Moussong complex
.Σ(W, S), Theorem 4.24 determines the virtually abelian subgroups of W of rank
.≥ 2. In [47] Caprace determined which of these subgroups correspond to isolated
flats. Using the Hruska-Kleiner Theorem he gets the following characterization of
when W is hyperbolic relative to its virtually abelian subgroups.

Theorem 4.26 (Isolated Flats in Coxeter Groups, cf. Caprace [47, Cor. D], [48])
The following conditions are equivalent.

(i) For any two disjoint nonspherical subsets .T1, T2 in S such that .T1 and .T2
commute, .WT1 × WT2 is virtually abelian.

(ii) The Coxeter group W is relatively hyperbolic with respect to the collection of
virtually abelian subgroups of rank at least 2.

(iii) The .CAT(0) space .Σ(W, S) has isolated flats.
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4.2.6 A Different Piecewise Euclidean Metric on the
Fundamental Chamber

Let .K = |Sop| (.= |S|) be the fundamental chamber defined in Example 4.2 and put
.KT = |Sop

�T |. In other words, .KT is the union of simplices in the order complex
of .Sop with maximum vertex T . Let .Σ = Σ(W, S). Since .W � Σ with strict
fundamental domain K (cf. Definition 3.5), we get a different description of .Σ in
terms of the basic construction of (4.4) (or (3.9)), .Σ = D(W,K) where .D(W,K) =
(W × K)/ ∼ and where .∼ is defined by:

.(u, x) ∼ (v, x′) ⇐⇒ x = x′ and uWS(x) = vWS(x).

Here .S(x) is the index of the smallest stratum containing x. This stratification is
dual to the cellulation of .Σ by Coxeter zonotopes described in Proposition 4.11.

The fundamental domain K defined in Example 4.2 is a cube complex. We
describe its cubical structure in more detail. For any .T ∈ S , the poset .S≤T

(.= S
op
�T ) is the power set of T . This means that the order complex of .S

op
�T can

be identified with a standard subdivision of a cube .�T of dimension .Card(T ). More
generally, for any subset .T ′ of T consider the interval .[T , T ′] in .Sop defined by
.[T , T ′] = {J ∈ S | T ′ ≤ J ≤ T }. The geometric realization of .[T , T ′] is a standard
subdivision of a cube .�T−T ′

We denote this subdivision of the cube by .�[T ,T ′].
Explicitly, .�[T ,T ′] is the subcomplex of the geometric realization of .Sop consisting
of all simplices in .|Sop| with minimum vertex T and maximum vertex .T ′. In other
words, the simplices in .|Sop| (.= K) can be amalgamated into cubes, giving K the
structure of a cube complex. By taking the union of all translates of such cubes
in .|WS| (i.e., in .Σ), we see that .Σ is also a cube complex. We state this as the
following.

Lemma 4.27 The fundamental chamber K has the structure of a combinatorial
cube complex:

.K =
⋃

T ∈Sop

�[T ,∅]

and similarly, for the zonotopal complex .Σ(W, S).

The subcomplexes .�[T ,T ′] are only combinatorially equivalent to cubes. What
is the relationship between these combinatorial cubes and the Coxeter zonotopes
in .Σ? Suppose .Z(WT , T ) is the Coxeter zonotope in .R

T corresponding to .WT .
Let .Fan(WT ) be the fan cut out by the reflecting hyperplanes. A top-dimensional
simplicial cone in .Fan(WT ) is called a sector.

Definition 4.28 The intersection .BT := Z(WT , T ) ∩ Fan(WT ) is called a Coxeter
block; it is combinatorially isomorphic to the cube .�[T ,∅].

However, .BT need not be isometric to a unit cube. (The link in the Coxeter block of
the vertex corresponding to .T ∈ S≤T (the cone point of .Fan(WT )) is isometric to the
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spherical simplex .σ(WT , T ) while the link at the opposite vertex corresponding to
.∅ ∈ S≤T is the dual spherical simplex .Δ(WT , T ) defined near the end of Sect. 4.2.1.)
The natural piecewise euclidean metric on .Σ is the path metric defined by giving
each zonotopal cell in .Σ its natural metric as a Coxeter zonotope (say, with each
edge of length .2). Similarly, the natural piecewise euclidean metric on K is the path
metric defined by giving each Coxeter block its natural metric as a convex subset
of the Coxeter zonotope. We just showed in Theorem 4.19, that, with its natural
piecewise euclidean metric, .Σ is .CAT(0). On the other hand, we could give K the
piecewise euclidean metric where each subcomplex .�[T ,T ′] is isometric to the unit
cube. Denote K with this cubical metric by .K�. Similarly, the induced cubical
metric on .Σ is denoted by .Σ�. The cube complexes .K� and .Σ� may fail to be
.CAT(0) since links need not be flag complexes. The condition that we need to insure
that all links are flag complexes is given in the following definition.

Definition 4.29 A Coxeter system .(W, S) is type FC if its nerve .L(W, S) is a flag
complex. Similarly, an Artin group is type FC if its associated Coxeter system is
FC.

The cubical structures on these polyhedra induce the piecewise euclidean cubical
metrics, denoted .K� and .Σ�, respectively. N.B. In general, .K� and .Σ� will not
be .CAT(0). On the other hand, by Theorem 4.19, .Σ is .CAT(0) when it is given the
metric induced from its zonotopal cells.

Proposition 4.30 The cube complex .Σ� is .CAT(0) if and only if the Coxeter
system .(W, S) is type FC.

Proof Of course, the proof of this should follow from the version of Gromov’s
Lemma stated as Corollary 2.31; however, it does not immediately follow from the
fact that .L(W, S) (.= L) is a flag complex. Although it is not true that the link of
any cube in .Σ is isomorphic to L or to a sublink of the form .Lk(σ, L), it is true
that the link of every 0-cube in .Σ is isomorphic to a join .SFan(WT , T )∗Lk(σT , L),
where .SFan(WT , T ) is the spherical Coxeter complex with its all right piecewise
spherical structure and .σT is the simplex corresponding to T . Since any spherical
Coxeter complex is a triangulation of a sphere as a flag complex (cf. [57, Lemma
4.3.2]), both factors of the join are flag complexes and hence, by Lemma 2.25 (ii),
so is the join.

This shows that when .(W, S) is type FC one can prove that .Σ(W, S) has a
.CAT(0) structure without using Moussong’s Lemma. In Sect. 4.3.3 essentially the
same observation will be used to show that if an Artin group is FC, then its Deligne
complex has a .CAT(0) cubical structure.

4.2.7 The Tits Representation

When W is infinite, it also has a representation on .R
N , with .N = Card S,

as a group generated by linear reflections (which need not be orthogonal linear
transformations). More generally, Vinberg [227] studied representations of W as
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reflections across the facets of a polyhedral cone in .R
N , where N can be less than

.Card(S).
Let .c(s, t) be the cosine matrix defined as in (4.9) with the proviso that .c(s, t) =

−1 when .m(s, t) = ∞. There is a symmetric bilinear form .B : RS × R
S → R

defined by .B(es, et ) = c(s, t). For each .s ∈ S, let .ρs be the linear reflection on .R
S

defined by

.ρs(x) := x − 2B(es, x)es . (4.13)

(The eigenvalue .−1 of .ρs has eigenvector .es .) The map .s 
→ ρs extends to a
homomorphism .ρ : W → GL(RS), called the canonical representation in [28].
More interesting to us is the dual of the canonical representation, .ρ∗ : W →
GL((RS)∗), which we call the geometric representation or the Tits representation
of W . The main fact about the geometric representation is that it defines a W -action
on a certain open convex set .Ω with a strict fundamental domain. This allows us
to conclude that the representation .ρ∗ is discrete and faithful. To see this, let C

be the simplicial cone in .(RS)∗ defined by the inequalities: .es(v) ≤ 0, for .s ∈ S.
(Each basis vector .es gives a linear form, .v 
→ es(v) on .(RS)∗.) For each subset
.T ≤ S, let .CT be the face of C defined by .es(v) = 0, for .s ∈ T . Let .Cf denote
the complement in C of the union of all faces .CT with .T /∈ S. That is to say,
.Cf = {x ∈ C | S(x) ∈ S}, where .S(x) = {s ∈ S | x ∈ Cs}. The Tits cone .Ω is
defined by

.Ω :=
⋃

w∈W

wC.

Let .Ω denote the interior of .Ω . Tits established the following facts (e.g., see [28,
Prop. 6, p. 102]).

(a) For any nontrivial .w ∈ W , .w(int C) ∩ (int C) = ∅.
(b) .Ω is a convex cone. So, its interior .Ω is an open W -stable subset in .R

S .
(c) .Ω = ⋃

w∈W wCf .

(d) The isotropy subgroup at a point .x ∈ Cf is .WT where .CT is the smallest face
such that .x ∈ CT .

It follows from (a) that .ρ∗ : W → GL((RS)∗) is injective and that its image is
a discrete subgroup of .GL((RS)∗). By (d) each isotropy subgroup is finite and the
orbit space .Cf is Hausdorff. Hence, W acts properly on .Ω . The next result implies
that .W � Ω as a reflection group.

Theorem 4.31 (Tits, cf. [28], [227]) The group W acts properly on the open set
.Ω with strict fundamental domain .Cf . Thus, .Ω is equivariantly homeomorphic to
the basic construction .D(W,Cf ) defined by formula (3.9) in Sect. 3.1. It follows
that there is a W -equivariant, piecewise linear embedding .Σ(W, S) ↪→ Ω so that
.Ω equivariantly deformation retracts on to .Σ(W, S). In other words, .Σ(W, S) is a
“spine” for .Ω .
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4.2.8 Groups of Isometries of Hn Versus Word Hyperbolic
Groups

We return to the line that we began in Theorem 4.23 at the end of Sect. 4.2.4.
Suppose P is a (not necessarily compact) polytope in .H

n and that .{Ps}s∈S is its
set of facets. The polytope P is a Poincaré polytope if for each pair of distinct
facets .Ps , .Pt either .Ps ∩ Pt is empty or is equal to a codimension-two face with
the dihedral angle along .Ps ∩ Pt of the form .π/m(s, t), where .m(s, t) is an integer
.≥ 2. Let s denote isometric reflection across .Ps and let S be the collection of all
such s. Poincaré showed that the group W generated by S is a discrete subgroup
of .Isom(Hn) acting properly on .H

n with strict fundamental domain P . (Since the
dihedral angle is an integral submultiple of .π , the sector bounded by the walls
corresponding to s and t is a strict fundamental domain for .W{s,t}, and this implies
that P is a strict fundamental domain for W .) Moreover, .(W, S) is a Coxeter system.
The subgroup .W < Isom(Hn) is called a hyperbolic reflection group. The polytope
P , does not have asymptotic faces if there is no pair of distinct faces F , .F ′ in P

such that F has codimension one, .F ′ has arbitrary codimension, .F ∩ F ′ = ∅, and
.d(F, F ′) = 0 (in other words, F , .F ′ are “asymptotic”). This is equivalent to the
condition that W does not contain a parabolic element in .Isom(Hn).

The classical picture of a reflection group on .H
n is where the Poincaré polytope

P is compact and W is generated by the reflections across its facets. Then .H
n/W ∼=

P . If .Γ < W is a torsion-free subgroup of finite index, then .H
n/Γ is a closed

hyperbolic manifold tiled by finitely many copies of P . If P is allowed to have
some ideal vertices but still is required to have finite volume, then the isotropy
subgroup at an ideal vertex is a euclidean reflection group. (This is a case where W

has asymptotic faces.) Moreover, .H
n/Γ is a hyperbolic manifold of finite volume.

Examples where P is compact occur primarily in dimensions 2 and 3. When .n = 2,
P is a convex polygon in .H

2; so, .L1 is a circle, .L(W, S) = L1 and any edge
labeling, .m : Edge(L1) → {2, 3, . . . }, can occur subject to the constraints given by
the Gauss-Bonnet Theorem. When .n = 3, .L = L(W, S) is a triangulation of .S2

and any edge labeling can occur subject only to the conditions that the vertices of
each 2-simplex define a spherical subgroup and that Moussong’s Conditions hold.
In dimension 3 these conditions are called Andreev’s Conditions (see Remark 4.22).
(Compare Vinberg [229]) Andreev [8] proved that such an edge labeling of the
1-skeleton of a triangulation of .S2 corresponds to a compact Poincaré polytope
.P 3 < H

3, with dihedral angles prescribed by the edge labels; moreover, .P 3 is
unique up to isometry. So, when K is a compact simple polytope of dimension
.n ≤ 3, the Coxeter group is word hyperbolic if and only if it can be represented as
a reflection group on .H

n. When .n = 4, there are exactly five examples where P is
a 4-simplex. (See [82, Table 6.2, p. 105].) There is also a well-known example of a
4-dimensional .RACG where P is a right-angled 120-cell (cf. [75], [82, Ex. 6.11.1]
or Example 4.34 below). In this case W is a subgroup of index .(120)2 in one of the
simplicial examples. There are further sporadic examples in dimensions .≤ 8.
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In contrast to the situation in dimensions 2 and 3, Vinberg [228] proved that
for .n > 28, there do not exist compact hyperbolic polytopes with dihedral angles
integral submultiples of .π . In fact, if the fundamental polytope is required to be
compact and to be right-angled, then such hyperbolic polytopes do not exist in
dimensions .> 4. (See [82, Cor. 6.11.7].) The proof only uses the fact that .(W, S)

satisfies Moussong’s Conditions (cf. Lemma 4.21) and that .(W, S) is type .HM as
in Definition 4.32 below. Moussong observed that this gives a generalization which
can be stated as Theorem 4.33 below.

In Sect. 3.2 we explained a completely combinatorial condition which is neces-
sary and sufficient (at least in the right-angled case) for a Coxeter group W to act
as a reflection group on an open contractible n-manifold with compact fundamental
chamber (see [82, Def. 10.6.2]). Roughly, this condition says that the fundamental
chamber K homologically resembles a compact convex simple polytope or dually,
that the nerve .L(W, S) homologically resembles a triangulation of an .(n−1)-sphere
(or, in other words, that .L(W, S) is a .GHSn−1 as in Sect. 3.2.1). When this holds we
say that .(W, S) is type .HMn. Here is the precise definition.

Definition 4.32 (Coxeter Groups of Type .HM) A Coxeter group is type .HMn if
.L(W, S) is a .GHSn−1 (i.e., a generalized homology sphere as defined in Sect. 3.2).

For example, if .L(W, S) is combinatorially isomorphic to the boundary complex of
a simplicial n-polytope, then the fundamental chamber K is isomorphic to the dual
simple polytope and .D(W,K) is diffeomorphic to .R

n. More generally, if .L(W, S) is
a .GHSn−1, then the fundamental chamber can be resolved to be a simple homotopy
n-cell .K ′ so that .D(W,K ′) is a contractible n-manifold (cf. Proposition 3.35).
Vinberg’s argument then yields the following.

Theorem 4.33 (cf. [228], [179], [159], [82, Section 6.11]) There do not exist word
hyperbolic Coxeter groups of type .HMn for .n ≥ 29. Moreover, there do not exist
word hyperbolic .RACGs of type .HMn for .n > 4.

Example 4.34 (The 120-Cell) The regular 120-cell can be realized as a compact
simple polytope P in .H

4 so that whenever two facets have nonempty intersection
they make a dihedral angle of .π/2. This gives a right-angled reflection group acting
cocompactly on .H

4. So, the dimension bound in the last sentence of Theorem 4.33
is the best possible. The symmetry group of the regular 120-cell is the spherical
Coxeter group of order .(120)2 whose diagram .H4 is a straight line with edges
labeled .(5, 3, 3). One of the four Coxeter groups with fundamental chamber a 4-
simplex has diagram .(5, 3, 3, 4). It follows that .W(P) is a subgroup of index .(120)2

in .(5, 3, 3, 4). If we double the 120-cell P along a facet, we obtain an index-two
subgroup of .W(P) whose fundamental chamber is a doubled 120-cell. Continuing
in this fashion we obtain infinitely many subgroups of finite index in .W(P) and with
fundamental chamber a right-angled polytope in .H

4. (Analogously, one can produce
infinitely many right-angled polygons in .H

2 by pasting together regular right-angled
hyperbolic pentagons in .H

2 along edges.)
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Example 4.35 (Word Hyperbolic .RACGs of Type .HM4) In [192] Przytycki and
Świątkowski prove that any 3-dimensional simplicial complex can be subdivided
into a flag complex satisfying the no-.� condition. The construction uses the 600-cell
(the simplicial sphere dual to the boundary complex of the 120). It follows that any
simplicial sphere of dimension .≤ 3 can be subdivided into a flag complex, L. As in
Sect. 3.2 the resulting NPC cube complex .PL is covered by a .CAT(−1) piecewise
hyperbolic 4-manifold .Σ(WL, S) that is diffeomorphic to .R

4 (and hence also to
.H

4). The word hyperbolic .RACG, .WL, is the group of lifts of the .(C2)
S-action. It

seems likely that some of these word hyperbolic .RACGs are not commensurable
with the .(5, 3, 3, 4) Coxeter group of the previous example; however, it is not clear
which can be realized as cocompact isometric reflection groups on .H

4. If, instead,
we start with a triangulation of a homology 3-sphere that is not simply connected
and apply the subdivision of [192], then .Σ(WL, S) is a homology manifold but not a
4-manifold. The word hyperbolic .RACG, .WL, is still type .HM4 (cf. Theorem 3.40).
Since .Σ(W, S) is not simply connected at infinity, it follows from Theorem 3.40
that .Σ(WL, S) does not have the same proper homotopy type as .R

4.

Example 4.36 (More Word Hyperbolic Coxeter Groups of Type .HM4) We
resurrect an old example from [74, pp. 219–220]. Suppose J is a flag triangulation
of .S2 with vertex set T . Suspend J to get a triangulation L of .S3. Call the suspension
vertices .s+ and .s− and let .S = T �{s+, s−}. Label the edges of J by 2 and the edges
connecting to a suspension vertex by 3. Then .K(L) is combinatorially equivalent to
a convex polytope, namely, the prism on the dual polytope .J ∗ to J . Thus, .J ∗ is a
3-dimensional simple polytope. If F , .F ′ are two facets of .J ∗ that intersect, then the
vertical facets .F × I and .F ′ × I of .J ∗ × I make a dihedral angle is .π/2. The top
and bottom facets of .J ∗ × I intersect each vertical facet at a dihedral angle of .π/3.
Let .(W ′, S′) be the spherical Coxeter system of rank 4 with Coxeter diagram .D4, as
in Table 4.1 of Sect. 4.2.1. (This diagram is a “Y”, with extreme nodes .{s0, s1, s2},
with central node .s3 and with each edge labeled 3.) It follows that each tetrahedron
in L has diagram .D4. So, L is a metric flag complex and the corresponding Coxeter
system is type .HM4. If J satisfies the no .�-condition (for example, if J is the
boundary complex of an icosahedron), then it follows from Andreev’s Theorem (cf.
Remark 4.22) that .J ∗ can be realized as a right-angled polytope in .H

3 and that the
reflection group corresponding to .J ∗ is hyperbolic. Since J has no empty 4-cycles,
L has no empty 4-cycles with each edge labeled 2. So, the corresponding Coxeter
system .(W, S) is word hyperbolic. (Is it ever possible to realize .K(L) as a convex
polytope in .H

4? The answer is probably no.)

Remark 4.37 (Word Hyperbolic .RACGs with Arbitrarily High .vcd) Theo-
rem 4.33 shows that there does not exist a word hyperbolic Coxeter group which
is virtually the fundamental group of a closed n-manifold for .n > 28. This fact
led Moussong [179] to ask if there is an upper bound on the virtual cohomo-
logical dimension of word hyperbolic Coxeter groups. In [159] Januszkiewicz–
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Świa̧tkowski showed that there is no such upper bound. In fact, for every .k ≥ 1,
they show that there is a k-dimensional, finite simplicial complex L which

(a) is a connected k-dimensional pseudomanifold,
(b) is a flag complex, and
(c) satisfies the no .�-condition of Sect. 2.2.

Let .(W, S) be the associated .RACS with .L(W, S) = L. Then .vcd Γ = k + 1.
To see this, observe that W has a finite index, torsion-free subgroup .Γ such that
.Σ/Γ is an orientable .(k+1)-dimensional pseudomanifold and hence, has a nonzero
fundamental homology class in dimension .k + 1.

Suppose W is a reflection group on .H
n with Poincar’e polytope P . When it is

compact, P can be identified with the fundamental chamber .K(W, S) of Sect. 4.2.6.
When it is not compact, P can be regarded as a thickening of .K(W, S). Similarly,
.Σ(W, S) (.= D(W,K)) equivariantly embeds as the cocompact core (or the “spine”)
of .D(W,P ). When P is not compact, the reflection subgroup .W(P) < Isom(Hn)

need not be word hyperbolic. The condition that is needed is that .W(P) is “convex
cocompact” as defined in the next paragraph.

Convex Cocompact Subgroups of .Isom(Hn) A discrete subgroup .Γ < Isom(Hn)

without parabolic elements is convex cocompact if the action on the convex hull of
its limit set is cocompact. Equivalently, .Γ is convex cocompact if it is cocompact
on some convex subset .C < H

n. A third equivalent condition is that the orbit map
.Γ → H

n, defined by .γ 
→ γ x0 for some .x0 ∈ H
n, is a quasi-isometric embedding.

It follows from the second condition that .Γ is quasi-isometric to the convex subset
.C < H

n. Since the metric on .H
n restricts to a .CAT(−1) metric on the convex set C,

it follows that .Γ is word hyperbolic (cf. Sect. 4.2.9).

Note that the reflection group .W(P) contains no parabolic elements if and only
if its Poincaré polytope contains no pair of “asymptotic faces.” (Two faces are
asymptotic if they have nonempty intersection with the sphere at infinity of .H

n.)
The following result is well-known.

Theorem 4.38 (Desgroseilliers–Haglund [108, Theorem 4.7]) Suppose .P < H
n

is a Poincaré polytope and .W(P) < Isom(Hn) is the hyperbolic reflection group
generated by the reflections across the facets of P . Then .W(P) is convex cocompact
on .H

n if and only if P contains no pair of asymptotic faces. Consequently, .W(P) is
word hyperbolic whenever this condition holds.

Definition 4.39 Suppose that .{Ps}s∈S is the set of facets of a hyperbolic convex
polytope .P < H

n and that .us ∈ R
n,1 is the outward-pointing unit normal to .Ps . The

Gram matrix of P is the .(S × S)-matrix .(us · ut )(s,t)∈S×S .

The Gram matrix of P is closely related to the cosine matrix of .W(P). Indeed, if
.Ps∩Pt �= ∅, then .us ·ut = − cos(π/m(s, t)); while if .Ps∩Pt = ∅, then .m(s, t) = ∞
and .us · ut ∈ (−∞,−1]. Moreover, .us · ut = −1 if and only if .Ps and .Pt are
asymptotic. So, when .S×S contains no pair .(s, t) with .m(s, t) = ∞, Theorem 4.38
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means that .W(P) is convex cocompact on .int(
⋃

wP) < H
n if and only if it contains

no special subgroup .WT that is an irreducible euclidean reflection group of rank
.≥ 3. If this is the case, then .W(P) is word hyperbolic since it acts cocompactly on a
convex domain in .H

n and hence, has a .CAT(−1) metric. Alternatively, the fact that
.W(P) is word hyperbolic can be proved directly from Moussong’s Theorem 4.23.
Indeed, since W is a discrete subgroup of .Isom(Hn) with no parabolic elements, it
satisfies Moussong’s Conditions, i.e., it does not have any obvious .Z×Z subgroups.
Conversely, as we shall see in Corollary 4.50 below, if W is word hyperbolic, then it
admits a projective representation .W < PGL(Rn+1) so that W acts cocompactly on
a convex subset of some strictly convex, open domain .Ω < RP n. So, when P does
not contain a pair of asymptotic faces, the group .W = W(P) is word hyperbolic.

Remark 4.40 In the Tits representation we require that .us · ut = −1 whenever
.m(s, t) = ∞. On the other hand, if .m(s, t) = ∞, then one can make a small change
in the cosine matrix so that .cst = cts < −1 and all other entries are unchanged. In
other words, if .(W, S) contains no euclidean special subgroups of rank .≥ 3, one can
deform the fundamental simplex in the Tits representation so that it contains no pair
of asymptotic facets.

2-Spherical Coxeter Groups In general, a representation of .(W, S) as a hyperbolic
reflection group need not be identical to its Tits representation; however, there is one
case when the two representations coincide—when .(W, S) is 2-spherical as defined
below.

Definition 4.41 (2-Spherical Coxeter Groups) A Coxeter system .(W, S) is 2-
spherical if .m(s, t) < ∞ for all .(s, t) ∈ S × S. Equivalently, .(W, S) is 2-spherical
if its defining graph .L1 is the complete graph on S. (A 2-spherical Coxeter system
is sometimes said to be “.∞ free,” for example, in [156].)

So, if .(W, S) is 2-spherical, then it has a representation as a hyperbolic reflection
group on .H

n with .n ≤ Card(S) − 1, if and only if its cosine matrix has signature
.(n, 1). One of the main results in Desgroseilliers–Haglund [108] is that when .(W, S)

is 2-spherical, the cosine matrix often has signature .(n, 1). For example, they prove
the following.

Lemma 4.42 ([108, Cor. 4.22]) Suppose .L1 is a complete graph on .n + 1 vertices
with .n > 1 and each edge is labeled by an integer .m(e) ≥ 4. Then .(W, S) has a
convex cocompact representation on .H

n.

Proof The point is that when each .m(e) ≥ 4, the signature of the cosine matrix is
.(n, 1). It also has signature .(n, 1) when each edge is labeled 3 and .n ≥ 3; however,
the representation is not convex cocompact in this case since each 3-cycle in .L1

gives a special subgroup which is a euclidean triangle group.

Example 4.43 (Gromov Polyhedra, Continued From Example 4.17) Suppose
.L1 is a complete graph with each edge labeled by a constant integer m. By a previous
lemma, if .m ≥ 4, then the Gromov polyhedron .Xn,2m embeds as the cocompact
core of .W(n + 1,m) on .H

n. If .m = 3 and .n ≥ 3, then the cosine matrix also has
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signature .(n, 1) and so, the Coxeter group .W(n+1, 3) again has a representation as
a hyperbolic reflection group (with parabolic elements).

Neighborly Polytopes and Their Duals We will use the notation .J (d + m, d) to
mean a d-dimensional simplicial polytope with .d + m vertices. Similarly, .J ∗(d +
m, d) will stand for a d-dimensional simple polytope with .d+m facets. The polytope
.J (d + m, d) is k-neighborly if its k-skeleton is equal to the k-skeleton of .Δd+m−1.
(In other words, a simplicial polytope is k-neighborly if and only if any collection
of .(k + 1) vertices spans a k-simplex.) For example, .Δd has type .J (d + 1, d) and is
.(d + 1)-neighborly. For .m > 1, 1-neighborly polytopes of type .J (d + m, d) exist
if and only if .d ≥ 4. If .J (d + 2, d) is the dual of the product of p-simplex and
a .(d − p)-simplex, then its boundary complex is the join .∂Δp ∗ ∂Δd−p, which is
k-neighborly for .k = min{p, d − p} − 1. (Note that the boundary complex of a
simplicial d-polytope is a triangulation of .Sd−1.) So, for each .d > 3, there exists
a compact, d-dimensional, simplicial polytope whose 1-skeleton is the complete
graph on .d + m vertices with m an arbitrary integer .≥ 1. An example of such a
simplicial polytope is the cyclic polytope .C(d + m, d), defined below.

Definition 4.44 The d-dimensional cyclic polytope with .d + m vertices is the
simplicial polytope .C(d + m, d) defined as the convex hull in .R

d of the image
of .d + m points on the moment curve .t 
→ (t, t2, . . . td ). Its dual .C∗(d + m, d) is a
dual cyclic polytope.

The cyclic polytope .C(d + m, d) is .�d/2�-neighborly. In particular, if .d ≥ 4, its
1-skeleton is the complete graph on its vertex set.

The Four Color Theorem asserts that when .d = 3, four colors suffice to color the
vertices of any 3-dimensional simplicial polytope. The existence of cyclic polytopes
shows that the situation for .d > 3 stands in stark contrast to the situation for .d ≤ 3.
For .d > 3, the number of colors needed to color the vertices of .C(d + m, d) is
.d +m and this can be arbitrarily large. If the 1-skeleton .L1 of the nerve .L(W, S) of
a Coxeter system is a complete graph, then, by definition, .(W, S) is 2-spherical.
So, if .L(W, S) is the boundary complex of a 2-neighborly simplicial polytope
.J (d + m, d), then .(W, S) is type .HMd . If, in addition, .(W, S) satisfies Moussong’s
Conditions, then .(W, S) is word hyperbolic. The fundamental chamber .K(W, S) is
combinatorially isomorphic to the simple convex polytope .J ∗(d+m, d) that is dual
to .J (d +m, d). If .J ∗(d +m, d) cannot be realized as a convex polytope in .H

d with
prescribed Gram matrix (.= the cosine matrix), then .(W, S) cannot be a cocompact
reflection group on .H

d . What’s more, if the cosine matrix does not have signature
.(d + m − 1, 1), then no thickening of .J ∗(d + m, d) can be a Poincaré polytope for
W on .H

d+m; so, W cannot be realized as a convex cocompact hyperbolic reflection
group on any hyperbolic space. This raises the question of finding a word hyperbolic
Coxeter systems .(W, S) with .L(W, S) = ∂J (d + m, d), where .J (d + m, d) is a
2-neighborly simplicial d-polytope and the cosine matrix does not have signature
.(d + m − 1, 1).

Remark 4.45 (The Fundamental Chamber Is a Simplex) When .m = 1, the
simple polytope .J ∗(d + 1, d) must be a d-simplex .σd . Every irreducible Coxeter
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group with fundamental chamber a simplex is a reflection group of either euclidean
or hyperbolic type. There are complete lists of the diagrams of such Coxeter groups
(e.g., see Table 4.1 in Sect. 4.2.1 or [82, Table 6.1, p.104] for the euclidean case
and [82, Table 6.2, p.105] for the hyperbolic case). The list where .J ∗(d + 1, d) is
a hyperbolic simplex can be summarized as follows. For .d = 2, there are infinitely
many hyperbolic triangle groups; for .d = 3 there are 9 examples with fundamental
polytope a hyperbolic tetrahedron; for .d = 4, there are 5 examples with fundamental
polytope a hyperbolic 4-simplex; and in higher dimensions there are no further
hyperbolic examples.

Consider a product of simplices .σ1 × · · · × σp. If each .σi is of dimension .≥ 2,
then the product is the dual of a 1-neighborly polytope .J (d + p, d), where .∂J (d +
p, d) is the join .∂Δ1 ∗ · · · ∗ ∂Δp. Here d is the dimension of the product and
.Δi denotes the simplex dual to .σi (i.e., .σi = Δ∗

i ). In other words, if .W(σi) is
a euclidean or hyperbolic Coxeter group with fundamental chamber .σi and nerve
.∂Δi , then the product .W = W(σ1) × · · · × W(σp) has fundamental chamber .σ1 ×
· · · × σp. When .p > 1, the product is never word hyperbolic, since it contains
the product of two or more infinite special subgroups. Note that if each .σi is a
hyperbolic simplex (say of dimension .di), then the cosine matrix has an orthogonal
decomposition into blocks of signature .(di, 1); hence, the Tits representation of the
product has signature .(d, p), with .d = ∑

di .

Moussong’s Examples Consider the product of two hyperbolic triangle group
.W(σ1) × W(σ2). Its Coxeter diagram has two components, each with 3 vertices.
The cosine matrix has signature .(4, 2). Its fundamental domain K is .σ1 × σ2 which
is combinatorially equivalent to the dual cyclic polytope .C∗(6, 4). If we introduce
a new edge labeled 3 connecting the components, then the resulting Coxeter system
.(W, S) will be word hyperbolic. If we are careful where we put this edge, then the
resulting nerve .L(W, S) often still will be isomorphic to the join .∂Δ1 ∗ ∂Δ2, i.e.,
.(W, S) will be type .HM4 and the fundamental chamber again will be .C∗(6, 4).
Moussong considered such examples in [179, p. 47]. We list these diagrams in
Table 4.2. The signature of the cosine matrix of .W(σ1) × W(σ2) is .(4, 2). The
cosine matrix of a diagram in Table 4.2 is almost the same as the cosine matrix of
.W(σ1) × W(σ2), the only difference being that the pair of entries corresponding to
the edge connecting the two components has been changed from 0 to -1/2. A direct
computation shows that the signature remains .(4, 2). Hence, the Coxeter group
corresponding to the diagram on the left in Table 4.2 does not have representations

Table 4.2 Diagrams with
4-dimensional dual cyclic
polytopes as fundamental
chambers 4 4

5

5

5

5

5

5

5
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Table 4.3 Diagrams with
5-dimensional dual cyclic
polytopes as fundamental
chambers

4
k

4

5

4
5

�

5

Table 4.4 Diagram with
7-dimensional dual cyclic
polytope as fundamental
chamber

4
5

as convex cocompact reflection groups on .H
n. Similar remarks apply to the Coxeter

groups with diagrams in Tables 4.3 and 4.4.

Proposition 4.46 (Moussong [179, p. 47], [180, pp. 542–544]) The diagrams in
Tables 4.2, 4.3, 4.4 give examples of word hyperbolic, 2-spherical Coxeter groups of
type .HM. In each case the fundamental chamber is combinatorially isomorphic to a
dual cyclic polytope. However, none of these can be realized as a convex cocompact
reflection group on .H

n.

4.2.9 Convex Cocompact Projective Representations

As was mentioned previously, Vinberg [227] extended the work of Tits that
was described in Sect. 4.2.7 to study representations of a Coxeter group W into
.GL(Rn+1) as a discrete group generated by reflections across the facets of a
polyhedral cone C. In [227] the reflections are not required to preserve a symmetric
bilinear form. However, groups generated by reflections across the facets of the
cone on a hyperbolic polytope do fit into Vinberg’s framework. For example, if
the hyperbolic polytope is not a simplex, then Vinberg’s reflection group does not
come from a Tits representation. In [227] this gives a representation of W into
.PGL(Rn+1) = GL(Rn+1)/R∗ which often defines an action of W as a reflection
group on some open convex set .Ω < RP n. When this is the case, the quotient
orbifold .Ω/W will have a projective structure. The projective representation is
convex cocompact if there is a smaller convex subset .Ω ′ < Ω on which the action
is cocompact. (In [71] this is called “naively convex cocompact.”) It is proved
in [71] that any word hyperbolic W admits a convex cocompact representation
on some .Ω < RP n. (See Proposition 4.49 below.) Certain relatively hyperbolic
Coxeter groups which are not word hyperbolic can still admit convex cocompact
projective representations. The point is that certain euclidean special subgroups of
rank .≥ 3 are allowed to occur, namely, euclidean special subgroups of type .Ãn with
.n ≥ 3. Relatively hyperbolic Coxeter systems for which this property holds are said
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to satisfy the “weak version of Moussong’s Conditions.”) Proposition 4.49 below
states that these are precisely the Coxeter groups which admit convex cocompact
projective representations.

A subset .Ω in .RP n is convex if it is a convex subset in some affine chart; it
is properly convex if it is a bounded subset; it is strictly convex if .∂Ω contains no
nontrivial line segment. Any properly convex domain .Ω has a “Hilbert metric,”
defined as follows. Suppose A, B are distinct points in .Ω and that the line they
determine intersects .∂Ω in points X, Y , where the order of the points is .X,A,B, Y .
In the Hilbert metric the distance from A to B is defined using cross ratios as in [71]
by:

.d(A,B) := log
|Y − A| |X − B|
|Y − B| |X − A| . (4.14)

It is a Finsler metric. If .Ω is isomorphic to the round disk (or the interior of an
ellipsoid), then the Hilbert metric is the hyperbolic metric on the Klein model of
.H

n. So, it makes sense to ask if the Hilbert metric is Gromov hyperbolic. Benoist
[16] showed that the Hilbert metric is Gromov hyperbolic if and only if .Ω is strictly
convex. A discrete subgroup .Γ < PGL(Rn+1) that is cocompact on an open convex
domain .Ω is said to be divisible. If .Γ is divisible, then .Ω/Γ is a compact orbifold
with a projective structure. When .Γ is divisible, the orbit map, .Γ → Ω , is a quasi-
isometry. Hence, if .Ω is Gromov hyperbolic, then so is .Γ , that is to say, .Γ is word
hyperbolic.

A reflection on .R
n+1 (or on .RP n) is a linear involution .r : R

n+1 → R
n+1

such that the eigenvalue .(−1) has multiplicity 1. Thus, r is determined by a .(−1)-
eigenvector .e ∈ R

n+1 and a linear form .α ∈ (Rn+1)∗ such that .ker(α) is the
(+1)-eignenspace. If we normalize by requiring .α(e) = 2, then the corresponding
reflection is the linear transformation, .v 
→ v − α(v)e. (In the presence of a
nonsingular symmetric bilinear form, .〈 , 〉 : R

n+1 × R
n+1 → R, given by

.(v, v′) 
→ 〈v, v′〉 ∈ R, by using the natural identification of .R
n+1 and its dual space,

we see that the reflection is defined by .v 
→ v − 〈v, e〉e, when e is normalized so
that .〈e, e〉 = 2.)

Following [227], suppose W is a discrete subgroup in .GL(Rn+1) generated by
reflections across the facets of a polyhedral cone C so that the set of reflections
across these facets form a fundamental set of generators, .S < W . (We do not require
that each facet be assigned a reflection.) The image of C in .RP n is the Poincaré
polytope. Since a reflection .s ∈ S is determined, as above, by a pair .(αs, es) ∈
(Rn+1)∗ × R

n+1, we get an .(S × S)-matrix .(A(s, t)) called the Cartan matrix of
.(W, S) defined by .A(s, t) = αs(et ). Each diagonal element of .A(s, t) is equal to 2,
while the off-diagonal elements lie in .(−∞, 0] and satisfy

.A(s, t)A(t, s)

{

= 4 cos2(π/m(s, t)), if m(s, t) �= ∞, and

≥ 4, if m(s, t) = ∞.
(4.15)
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The matrix .(A(s, t)) is not necessarily symmetric. If it is symmetric, then for
.m(s, t) �= ∞, .A(s, t) is twice the corresponding entry .c(s, t) of the cosine matrix
defined in (4.9). The matrix is said to be symmetrizable if, after a change of basis,
it is equivalent to an .(n + 1) × (n + 1) symmetric matrix. If this is the case, then
there a W -invariant symmetric bilinear on .R

n+1 such that .(A(s, t)) is essentially
the Gram matrix defined by the outward-pointing unit normals to the facets of C. A
result of [227, Prop. 20] asserts that .(A(s, t)) is always symmetrizable if and only if
the Coxeter diagram of .(W, S) does not contain a circuit. (Such a circuit could have
some edges labeled .∞.)

Example 4.47 (Triangle Groups of Kac–Vinberg [230]) In 1967 Kac and Vin-
berg [230] showed that if W is isomorphic to a hyperbolic triangle group whose
diagram is a 3-cycle, then W admits a representation as a divisible subgroup of
.PGL(R3) which cannot be deformed to a hyperbolic representation (i.e., into
.PO(2, 1)). Suppose L is a triangle and m is a labeling of its edge set with each
.m(e) ≥ 3. Define the Cartan matrix .Aij for .W(L) with .A11 = A22 = A33 = 2,
.A12 = A21 = − cos(π/m(1, 2)), .A23 = A32 = − cos(π/m(2, 3)) and .A13 �= A31
(but with .A13A31 = cos2(π/m(1, 3)) so that (4.15) still holds). Then .Aij is not
symmetrizable and the representation of .W(L) in .GL(R3) is not conjugate to a
hyperbolic triangle group in .O(2, 1).

Example 4.48 (Type .Ãn) Suppose .(W, S) is an irreducible euclidean Coxeter
system of rank .n + 1, with symmetric Cartan matrix and with .n + 1 ≥ 3. Then its
cosine matrix is positive semidefinite. It has open convex domain in .RP n defined
by (4.17) below that is isomorphic to an affine chart .R

n (and hence, is not properly
convex). The Coxeter diagrams of irreducible euclidean Coxeter systems are trees
except for those of type .Ãn, the diagram of which is a cycle of length .n + 1, with
.n ≥ 2. Hence, if the diagram of a euclidean Coxeter group is not type .Ãn, its Cartan
matrix is symmetrizable. On the other hand, for type .Ãn, the Cartan matrix can be
nonsymmetrizable (cf. (4.16) below). Similarly, if W is a Coxeter group of type
.Ãn then, as in Example 4.47, W can have a projective representation as a divisible
subgroup of .PGL(Rn+1); the domain .Ω is the interior of an affine n-simplex. For
example, for .Ã2 we have:

.(A(s, t)) =
⎛

⎝

2 −1 − 1
a

−1 2 −1
−a −1 2

⎞

⎠ , with a > 1. (4.16)

This Cartan matrix can be used to define a representation of the Coxeter group
of type .Ã2 (that is, the .(3, 3, 3) triangle group) into .PGL(R3). The domain .Ω ,
defined by (4.17) below, is bounded and is isomorphic to the interior of a triangle
in the affine plane. Hence, .Ω is properly convex but not strictly convex. There
are similar Cartan matrices and projective representations for .Ãn. Thus, although
a special subgroup of type .Ãn obstructs the word hyperbolicity of W , it does not
obstruct the existence of a convex cocompact projective representation.
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Let P denote the image of the polyhedral cone C in .RP n and, as in Sect. 4.2.7,
let .P f denote the complement in P of the nonspherical faces. Put

.Ω =
⋃

w∈W

wP f . (4.17)

Vinberg [227] establishes that properties (a), (b), (c), (d) of Sect. 4.2.7 hold in this
generality, as does Theorem 4.31.

We say that .(W, S) satisfies the weak version of Moussong’s Conditions if for
each .T < S, neither of the following conditions holds for any special subgroup .WT

(cf. conditions (i) and (ii) in Lemma 4.21):

(i) .WT is an irreducible euclidean reflection group of rank .≥ 3 whose diagram is
different from .Ãn.

(ii) .WT decomposes as .(WT1 ×WT2 , T1 �T2), where both .WT1 and .WT2 are infinite.

In other words, in contrast with the strong version, the weak version of Moussong’s
Conditions allows the possibility of special subgroups of type .Ãn.

Proposition 4.49 (Danciger-Guéritaud-Kassel-Lee-Marquis [71, Thm. 1.3]) A
Coxeter system .(W, S) satisfies the weak version of Moussong’s Conditions if
and only if it has a representation as a projective reflection group acting convex
cocompactly on a properly convex domain .Ω < RP n.

The strong version of Moussong’s Conditions together with the above proposition
implies that when W is word hyperbolic (cf. Moussong’s Theorem 4.23) the
following holds.

Corollary 4.50 ([71, Cor. 1.11]) An infinite Coxeter group W is word hyperbolic
if and only if it has a representation as a projective reflection group acting convex
cocompactly on a strictly convex domain .Ω < RP n. When this is the case the
Hilbert metric on .Ω is Gromov hyperbolic.

So, when W is word hyperbolic, it admits a convex cocompact projective represen-
tation, independent of any consideration of the signature of Tits representation.

Example 4.51 (cf. Lemma 4.42) Suppose .L1 is the complete graph on n+1
vertices, with .n ≥ 2. and with each edge labeled by an integer .m(e) ≥ 3. Then
.(W, S) admits a convex cocompact representation on a properly convex subset of
.RP n.

Example 4.52 The following example was explained to me by Ryan Greene.
Suppose the Coxeter diagram of .(W, S) consists of m triangles arranged along the
integer points in line segment .[0, 2m] so that there is an edge connecting the .ith

triangle to the .(i + 1)th as in Table 4.5. Each edge is labeled 3 (meaning that it
is not labeled). Then .L1 is a complete graph on 3m vertices and the fundamental
chamber K is combinatorially equivalent to product of m triangles. So, .(W, S)

is a Coxeter system of type .HM2m; moreover, it satisfies the weak version of
Moussong’s Conditions. Although it is not word hyperbolic (since it has special
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Table 4.5 A diagram with
fundamental chamber a
product of 2-simplices · · ·

subgroups of type .Ã2), it does admit a convex cocompact representation on .RP 3m−1

by Proposition 4.49.

Example 4.47 raises the possibility that there are word hyperbolic Coxeter groups
of type .HMn that, although they cannot be represented as subgroups of .Isom(Hn),
have divisible projective representations. Some possible candidates are provided
in Tables 4.2, 4.3, 4.4 where it might be possible that fundamental polytope is
an n-dimensional dual cyclic polytope in .RP n. Benoist [16] showed that among
Moussong’s examples there was one family that had such a projective representation
with this property.

Proposition 4.53 (Benoist [16, Prop. 3.1]) Let .(W, S) be the Coxeter system
whose diagram is the one on the left in Table 4.2. Then W is 2-spherical, type .HM4

and word hyperbolic. Although it does not act as a reflection group on .H
n for any n,

there is a representation .W ↪→ PGL(R5) so that W is a reflection group on a open
convex setD in .RP 4), with compact fundamental polytope P that is combinatorially
isomorphic to a product of two 2-simplices.

The remarkable aspect of this proposition is that the polytope P is compact; hence,
that D is quasi-isometric to W .

Since Davis–Moussong complexes of word hyperbolic Coxeter groups all have
piecewise hyperbolic .CAT(−1) metrics, the examples in this section of fundamental
chambers of word hyperbolic Coxeter groups of type .HM all have the structure
of compact orbifolds with NPC polyhedral metrics. Benoist’s example from the
previous proposition has a negatively curved Finsler metric. The leads to the
question if there is such an example which is not actually a compact polytope in
hyperbolic space, yet which admits a smooth riemannian metric (as an orbifold)
with negative sectional curvature. The answer is probably no.

4.3 Artin Groups

There are two different cell complexes associated to an Artin group .AW . First,
there is the Deligne complex, .Λ(W, S) defined as a development .D(AW, |Sop|) of
the simple complex of groups .ASop. The corresponding poset .D((AW , Sop) can be
identified with the poset of spherical Artin cosets defined in (4.8). A major drawback
of .Λ(W, S) is that it is not locally finite. The second cell complex is the pure Salvetti
complex, .X(W, S) (also called the “oriented Davis complex”). It is homotopy
equivalent to the complement of the union of the reflection hyperplanes in a certain
open convex subset of the complexification of the Tits cone. The fundamental group
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of this hyperplane arrangement complement is the pure Artin group, .PAW . The
group .AW is the fundamental group of the quotient of this complement by the free
W -action. The .K(π, 1)-Conjecture for Artin groups states that the Salvetti complex
.X(W, S)/W is the classifying space for .AW . Of course, the .K(π, 1)-Conjecture
is implied by the conjecture that the universal cover of .X(W, S) is contractible.
In Sect. 4.3.4 we show that this conjecture is equivalent to the conjecture that the
Deligne complex .Λ(W, S) is contractible. When .(W, S) is right-angled, .AW is
a .RAAG. In this case, the Salvetti complex is the standard toral complex .TL of
Sect. 3.1.1 (see also Sect. 3.1.2).

When W is spherical, there is third simplicial complex .B(W, S), called “Bestv-
ina’s normal form complex,” which will be explained in Sect. 4.3.5. The group G

that acts on .B(W, S) is .AW/〈Δ2〉, where .Δ2 is an element of infinite order in the
center of the spherical Artin group .AW . The complex .B(W, S) is locally finite and
the G-action is cocompact. Moreover, it has a “distance function” which has much
in common with distance in a .CAT(0) metric. In particular, .B(W, S) is contractible.
The proof of this is closely related to the proof by Deligne [107] that .Λ(W, S) is
contractible.

Outline of This Section

(A) The Deligne complex Λ(W, S) (Sect. 4.3.1).

(A.1) The spherical Deligne complex Λ′(W, S) of a spherical Artin group.
(A.2) Apartments in a Deligne complex.
(A.3) Conjecture 4.54: Λ(W, S) is CAT(0).

(B) The Salvetti complex (Sect. 4.3.3).

(B.1) Reflection arrangement complements (Sect. 4.3.2).
(B.2) Deligne’s Theorem on asphericity of arrangement complements (Theo-

rem 4.62).

(C) The K(π, 1)-Conjecture for Artin groups (Sect. 4.3.4).
(D) Bestvina’s normal form complex for spherical Artin groups (Sect. 4.3.5).

4.3.1 The Deligne Complex

The material in this section is taken from [107] and [56].
Given an Artin group A (.= AW ), let .G = ASop be the complex of spherical

Artin subgroups defined in Example 4.4 of Sect. 4.1. The basic construction of
Theorem A.6 in Appendix A.2 defines a poset .D(A, Sop), as well as, a space
.D(A,K), with fundamental chamber .K = |Sop| (cf. (4.3)). The poset .D(A, Sop)

is equal to .Coset(A), the poset of spherical cosets in A from (4.8). The space



Outline of This Section 123

.D(A,K) is called the Deligne complex for A. It will be denoted by .Λ (.= Λ(W, S)).
So, .Λ(W, S) is the analog of the Davis–Moussong complex .Σ(W, S) of Sect. 4.2.3
defined using the basic construction and fundamental chamber K .

If A is a .RAAG, then it is a graph product over .L1 of infinite cyclic groups;
.D(A, Sop) is the associated right-angled building described in Sect. 3.1.2 and in
Sect. 4.4.3 below. Moreover, .D(A,K) is the standard realization of this building.

As in Definition 4.28 of Sect. 4.2.6, each copy of the fundamental chamber K

is cellulated by Coxeter blocks, where each block is the intersection of a Coxeter
zonotope and a sector in a fan for a reflection arrangement. This induces a piecewise
euclidean metric on .Λ(W, S) that is analogous to the natural piecewise euclidean
metric on the zonotopal complex .Σ(W, S). In view of Proposition 4.11 (5), this
leads to the following conjecture.

Conjecture 4.54 (cf. [56, Conjecture 4.4.4, p. 622]) With its natural piecewise
euclidean metric, .Λ(W, S) is .CAT(0).

By Theorem 2.2 this conjecture implies that .Λ(W, S) is contractible. The issue is to
show that the link of each cell of .Λ satisfies the Link Condition of Definition 2.10.

When .(W, S) is spherical, define its spherical Deligne complex .Λ′(W, S) by
using .|S<S | as fundamental chamber instead of .|S|. Instead of a Coxeter block,
the fundamental chamber for .A � Λ′(W, S) then becomes the fundamental
spherical simplex .σ(W, S) for the W -action on the unit sphere .S

n−1 in the reflection
representation, .W � R

n. This induces the natural piecewise spherical metric on
.Λ′(W, S). As we will explain at the end of this subsection when .(W, S) is spherical,
.Λ′(W, S) is a union of subcomplexes, called apartments, each of which is isometric
to the round sphere .S

n−1. When .(W, S) is spherical, Deligne [107] proved that
.Λ′(W, S) has the homotopy type of a wedge of .(n− 1)-spheres. For example, when
.(W, S) has diagram .A2 so that .AW is the braid group on three strands, then .Λ′(W, S)

is a graph of infinite valence at each vertex; each apartment is a 6-cycle and the girth
of .Λ′(W, S) is 6 (cf. Proposition 4.56 below). When .(W, S) is spherical, Deligne
[107] also define a complex .Λ′′(W, S) obtained by filling in each apartment of .Λ′
with a round ball and he proved that .Λ is contractible.

To prove Conjecture 4.54 there are three types of links of cells in .Λ which must
be shown to be .CAT(1).

(a) The link of a Coxeter block .BT . Such a link corresponds to the order complex
of .S>T , i.e., it is the link of a simplex corresponding to T in .L(W, S).

(b) A link isomorphic to .Λ′(WT , T ). (This is the link of the cone point of .BT in the
subcomplex .Λ(WT , T ).)

(c) A join of a link of type (a) with one of type (b).

Links of type (a) are metric flag complexes; hence, they are .CAT(1) by Moussong’s
Lemma 4.18. The spherical join of two .CAT(1) piecewise spherical complexes is
.CAT(1) (see [35, Prop. 5.15, p. 64] or [55, Appendix, Theorem A9]). So, it suffices
to consider links of type (b). This leads to the following conjecture of [57].
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Conjecture 4.55 (cf. [57, Conjecture 3, p. 6]) If .(W, S) is spherical, then the natural
piecewise spherical metric on the spherical Deligne complex .Λ′(W, S) is .CAT(1).

So, Conjecture 4.55 is equivalent to Conjecture 4.54. (When proving the natural
metric on .Σ is .CAT(0), the links of type (b) are replaced by Coxeter complexes of
the form .D(WT , σ (WT , T )) which is a round sphere and hence, is .CAT(1). So, to
prove Moussong’s Theorem that .Σ is .CAT(0), it was not necessary to consider links
of type (b).)

Proposition 4.56 (cf. [56, Proposition 4.4.5]) Suppose .(W, S) is spherical with
.Card(S) = 2 so that W is a finite dihedral group. Then the spherical Deligne
complex .Λ′(W, S) is .CAT(1).

It is observed in [56] that Proposition 4.56 follows from a lemma of Appel-Schupp
[10, Lemma 6] which asserts that, for .S = {s, t}, the shortest loop in .Λ′(W, S) has
length .2m(s, t) (corresponding to the Artin relation for .{as, at }). This proposition
has the following corollary.

Corollary 4.57 Suppose .dim Λ ≤ 2. Then .Λ is .CAT(0) and hence, is contractible.

So, 2-dimensional Deligne complexes provide examples of .CAT(0) polygonal
complexes that are not locally finite. The 2-cells are Coxeter blocks with their
natural euclidean metrics.

The cubical structure on K defined in Sect. 4.2.6 gives .Λ the structure of a
combinatorial cube complex. When equipped with the piecewise euclidean metric in
which each cell is a regular euclidean cube, this complex is denoted by .Λ�. When
is this cube complex .CAT(0)? The answer is essentially the same as the answer
provided for .Σ� in Proposition 4.30. In the following proposition it is shown that
.Λ� is .CAT(0) if and only if .(W, S) is type FC (see Definition 4.29). Once one
knows that links of type (b) are flag complexes (a fact proved in [56, Lemma 4.3.4]),
the proof of Proposition 4.30 shows .Λ� is .CAT(0) if and only if .L(W, S) is a flag
complex. This gives the following analog of Proposition 4.30.

Proposition 4.58 (cf. [56, Theorem 4.3.5]) Let .Λ� denote the Deligne complex
with its cubical metric. This metric is .CAT(0) if and only if .(W, S) is type FC.

This yields another case where we know that the Deligne complex .Λ(W, S) is
contractible.

Corollary 4.59 (cf. [56, Theorem A]) If .(W, S) is type FC, then .Λ(W, S) is
contractible.

Definition 4.60 Let .p : AW → W be the natural epimorphism. The kernel of p is
the pure Artin group denoted by .PAW .

Apartments in .Λ(W, S) If .s1 . . . sk is a reduced decomposition of an element .w ∈
W , then .aw = as1 . . . ask is a well-defined element of A that depends only on w and
not on the choice of reduced decomposition. (This follows from the solution to the
word problem for Coxeter groups by Tits; see [82, §3.4].) Hence, .q : w 
→ aw is
a section of the canonical epimorphism .p : A → W . (N.B. The function q is only
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a map of sets; it is not a homomorphism.) The epimorphism .A → W induces a
projection .Λ → bΣ and q induces a section .q : bΣ → bΛ, where .bΣ means the
barycentric subdivision of the zonotopal cell complex .Σ and .bΛ is the analogous
subdivision of .Λ. Moreover, for any .a ∈ A, after composing with translation by
a, we get another section .aq : bΣ → Λ. The image any such section is called
an apartment of .Λ (cf. [107]). As is the case with buildings, .Λ retracts onto any
one of its apartments. However, .Λ is usually not a building. (It is a building only in
the right-angled case; this comes down to the fact that for each edge .σ ∈ L(1), the
corresponding group .Aσ is .Z× Z, which is abelian.)

We have that .PAW � Λ, the orbit space is .Σ , and the quotient map is .p : Λ →
Σ ; moreover, .q(Σ) is a strict fundamental domain for the .PAW -action. This implies
that .Λ(W, S) is the development of a simple complex of groups whose direct limit
is .PAW . Its underlying poset is .Coset(W)op, the poset of spherical cosets in W , cf.
(4.7). There is an associated simple complex of groups:

.G := {PAwσ }wσ∈Coset(W)op , (4.18)

where .σ ∈ S, where .wσ means the coset .wWσ ∈ (W/Wσ ), and where .PAwσ =
(aw)Aσ (aw)−1. The fact that .Σ(W, S) (.= |Coset(W)op|) is a strict fundamental
domain for .PAW on .Λ(W, S) gives the following.

Proposition 4.61 (cf. Appendix A.2) The system .G is a simple complex of groups
over .Coset(W)op, its direct limit is .PAW , and its development is the Deligne
complex, .Λ(W, S).

4.3.2 The Complement of a Reflection Arrangement

First suppose that .(W, S) is a spherical Coxeter system so that W acts orthogonally
on .R

n (.= R
S) via the geometric representation of Sect. 4.2.7. Let .A be the

corresponding reflection arrangement of hyperplanes in .R
n. Complexification gives

.W � C
n and we get an arrangement .A⊗C of complexified hyperplanes in .C

n. The
complement of this arrangement is denoted by

.M(A⊗ C) := C
n −

⋃

H∈A⊗C

H . (4.19)

It is well-known that .π1(M(A ⊗ C)) = PAW (cf. Definition 4.60). The group W

acts freely on M (.= M(A ⊗ C)). So, .π1(M/W) is the Artin group A (.= AW ).
For example, if W is the symmetric group .Sn+1 acting on .R

n+1 by permuting the
coordinates, then M is identified with the configuration space of .n + 1 distinct
ordered points in .C and .M/Sn+1 is the unordered configuration space. Define .Bn+1
to be .π1(M/Sn+1) and call it the braid group on .n+ 1 strands. Define .PBn+1 to be
.π1(M), the pure braid group. Braid groups were introduced in 1947 by Emil Artin
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[11]. He showed that the fundamental group of the unordered configuration space
.M/Sn+1 has a presentation in the form of (4.6). In other words, its presentation is
the one associated to the Coxeter diagram .An. Thus, Artin groups are “generalized
braid groups.” The main result of [107] is the following.

Theorem 4.62 (Deligne’s Theorem in [107]) Suppose .(W, S) is spherical. Then
the arrangement complement, .M = M(A⊗C), is aspherical. Hence, M is a model
for .BPAW and .M/W is a model for .BAW . In other words, the .K(π, 1)-Conjecture
holds for spherical Artin groups.

In fact, Deligne proved that whenever .A is a real simplicial arrangement in .R
n, the

complement .M(A⊗ C) of the complexified arrangement is aspherical.

Remark 4.63 Spherical Artin groups have faithful linear representations (see [64])
and hence, are residually finite.

Almost all cases of Theorem 4.62 had been proved slightly earlier by Brieskorn
[36] and Brieskorn-Saito [37, 38]. In 2015 this result was extended to finite groups
generated by complex reflections in Bessis [20].

Remark 4.64 To prove Theorem 4.62 Deligne considered the complex .Λ′′(W, S)

obtained by filling in each apartment of the spherical Deligne complex, .Λ′(W, S),
with a round ball. He identified .Λ′′(W, S) with the nerve of a certain open cover
of the universal cover of the arrangement complement .M(A ⊗ C). He then proved
that .Λ′′(W, S) was contractible (cf. Sect. 4.3.5) and hence, that .Λ′(W, S) has the
homotopy type of a wedge of spheres. Using the Nerve Lemma (see Lemma 4.67
below) he concluded that the universal cover of .M(A⊗ C) was also contractible.

Even when W is not required to be finite, it can still be realized as a group
generated by reflections on a open convex subset .Ω < R

n by using the geometric
representation .ρ∗ : W → GL(Rn) of Sect. 4.2.7. (Here .Ω denotes the interior of
the Tits cone.) The group W acts properly on the open subset .R

n + iΩ of .C
n and

the action is free on the arrangement complement, M (.= M(A⊗ C)), defined by

.M = (Rn + iΩ) −
⋃

H∈A⊗C

H , (4.20)

where .A⊗ C is the collection of all reflecting hyperplanes in .C
n.

The following conjecture, due independently to Arnold, Pham, and Thom, asserts
that a generalization of Theorem 4.62 holds for all Artin group. It is the most
important open question about Artin groups. The conjecture is explained in detail in
[56, 57] and [171].

Conjecture 4.65 (The .K(π, 1)-Conjecture for Artin Groups) The space .M/W is a
model for .BAW .
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4.3.3 The Salvetti Complex and Its Universal Cover

Given an arrangement .A consisting of finitely many affine hyperplanes in .R
n,

Salvetti [203] constructed a finite cell complex .X(A) that is homotopy equivalent
to the complement in .C

n of the union of the complexified hyperplanes of the
arrangement. If the arrangement is essential, then .dim X(A) = n. The cells of
.X(A) are zonotopes—each zonotope is the dual of a central arrangement normal to
a subspace that is given as an intersection of hyperplanes in .A. When W is infinite
and .A is the arrangement associated to the W -action on .Ω , it is shown in [57] that
the definition of X (.= X(W, S)) still makes sense and that it is homotopy equivalent
to the complement M as defined in (4.20). The definition of .X(W, S) depends only
on .(W, S); there is a partial order on .W × S and the barycentric subdivision of X is
the order complex of .W × S.

The partial order on .W ×S is closely related to the partial order on .Coset(W). Its
definition is that .(u, T ) < (v, T ′) if and only if the following two conditions hold:

(1) .uWT < vWT ′ as in (4.7), i.e., .v−1uWT < WT ′ ,
(2) .v−1u is the shortest element in the coset .v−1uWT .

The projection .p : W × S → WS defined by .(w, T ) 
→ wWT is clearly order-
preserving. With regard to item (2), an element u of W is said to be .(∅, T )-reduced
if it is the shortest element in the left coset .uWT . (This is equivalent to the condition
that .l(ut) > l(u) for all .t ∈ T , see [82, Section 4.3].) Moreover, each .w ∈ W has a
unique decomposition as .w = uw0, where u is .(∅, T )-reduced and .w0 ∈ WT .

Theorem 4.66 (cf. Salvetti [203] and Charney-Davis [57]) Given a Coxeter
system .(W, S), the arrangement complement M of (4.20) is homotopy equivalent
to .|W × S|, the geometric realization of the order complex of .W × S.

We note that .(W × S)≤(w,T )
∼= WS≤wWT

∼= WT (S≤T ). So, .(W × S)≤(w,T ) is
isomorphic to the poset of faces of the Coxeter zonotope .Z(WT , T ). Hence, there is
a cell structure on .|W ×S| defined by identifying the union of all in simplices in the
order complex that have maximum vertex .(w, T ) with the zonotope .wZ(WT , T ).

The pure Salvetti complex .X(W, S) is a CW complex whose poset of cells is .W×
S.1 The cell corresponding to .(w, T ) is the Coxeter zonotope .wZ(WT , T ) defined in
Sect. 4.2.2. So, the barycentric subdivision of .X(W, S) is the geometric realization,
.|W × S|. (N.B. The cell complex .X(W, S) does not satisfy the classical conditions
of Sect. 2.1—distinct faces of a zonotope can be identified with one another.)

The proof of Theorem 4.66 is based on the following basic result, called the
“Nerve Lemma” by combinatorialists.

1 More often, the term “Salvetti complex” has been used for the CW complex formed as the
quotient space of the free W -action on .X(W, S). The space .X(W, S)/W is often a model for
the classifying space .BAW .
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Lemma 4.67 (The Nerve Lemma) Suppose .U is a locally finite, open cover of
a paracompact space Y such that each .U ∈ U, as well as each finite, nonempty
intersection of such U , is contractible. Then Y is homotopy equivalent to the nerve
of the open cover, .Nerve(U).

Theorem 4.66 is proved by applying the Nerve Lemma to a certain open cover
.U of M , the nerve of which is the order complex of .W × S. Although M is defined
as a subset of .R

n + iΩ , we can replace it by the homotopy equivalent space .M ∩
(bΣ × bΣ), where the barycentric subdivision .bΣ of .Σ is identified with the order
complex of .Coset(W). For each .(w, T ) ∈ W × S, define .Star(w, T ) to be the open
star of the vertex corresponding to .wWT in .bΣ ; let .Sec(w, T ) be the open “sector”
in .Σ that is bounded by the walls that are indexed by .wT w−1 and that contains the
open chamber .Star(w,∅). Put

.U(w, T ) := Star(w, T ) × Sec(w, T ).

It is clear that both .Star(w, T ) and .Sec(w, T ) are contractible; hence, so is .U(w, T )

If .x ∈ Star(w, T ) lies in a wall, then that wall is indexed by a reflection in .wWT w−1.
Since the open sector .Sec(w, T ) intersects no such wall, we see that .U(w, T ) < M

and hence, that .U = {U(w, T ))}(w,T )∈W×S is an open cover of M . It is proved
in [57, Lemma 1.5.2 (ii)] that .U(w0, T0) ∩ · · · ∩ U(wk, Tk) is nonempty precisely
when .{(w0, T0), . . . , (wk, Tk)} is a chain in .W × S. Thus, .Nerve(U) = |W × S|.
Theorem 4.66 follows.

Combining Salvetti’s Theorem 4.66 with Deligne’s Theorem 4.62, we see that
when W is spherical, the finite CW complex .X = |W × S| is a model for .BPAW

(and hence, that .X/W is a model for .BAW ). A corollary is that any spherical Artin
group has a finite CW complex as its classifying space. In other words, spherical
Artin groups are type F. (Recall that a group is type F if it has a classifying space
that is a finite CW complex.) Using Theorem 4.66, we get the following analog of
Proposition 4.11 which was about .Σ(W, S).

Proposition 4.68 (cf. [203], [57]) Let .X(W, S) be the pure Salvetti complex
defined above.

(1) The poset of cells in .X(W, S) is equal to .W × S. The cell corresponding to
.(w, T ) is the Coxeter zonotope .wZ(WT , T ); its dimension is equal to .Card T .

(2) The fundamental group of .X(W, S) is the pure Artin group .PAW .
(3) There is a free action .W � X(W, S). The quotient space .X(W, S)/W is a

finite CW complex (provided S is finite).

Remark 4.69 Here is another way to understand the cell structure on X (.=
X(W, S)). Each cell of X can be represented as a pair .(v, F ), where F is a zonotopal
cell in .Σ (.= Σ(W, S)) and .v ∈ Vert F . The partial order on the set of such .(v, F ) is
defined by .(v, F ) < (v′, F ′) if and only if .F < F ′ and the shortest edge path from
.v′ to F terminates at v. The geometric realization of the projection .p : W×S → WS

is also denoted .p : X → Σ . If F is a cell of .Σ of type .(WT , T ), then the set of
connected components of .p−1(int F) is naturally bijective with .Vert F . The closure
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of such a component is isomorphic to F . To understand the W -action on X it is
better to consider an equivalence relation .∼ on the set of all pairs .(v, F ), where v is
a vertex of .Σ and F is a cell in .Σ and .∼ is defined by

.(v, F ) ∼ (v′, F ′) ⇐⇒ F = F ′ and ProjF (v) = ProjF (v′),

where .ProjF (v) is the terminal point of the shortest edge path from v to F . Each
equivalence class .[v′, F ] then has a unique representative of the form .(v, F ) where
.v ∈ Vert(F ). When described in this fashion the cell complex X is sometimes called
the “oriented Davis complex” (see [156, §3.4]) instead of the Salvetti complex. (This
is done so that term “Salvetti complex” can be reserved for the quotient .X/W .)

Just as we did for .Σ(W, S) in Sect. 4.2.3, in the following proposition we spell
out the cell structure on .X(W, S) in more detail.

Proposition 4.70 (Some Properties of .X(W, S))

(a) A vertex of X has the form .(v, v) where .v ∈ Vert Σ . Hence, the 0-skeleton of X
is naturally isomorphic to the 0-skeleton of .Σ . Both correspond bijectively to
W .

(b) If E is an edge of .Σ with end points u and v, then there are two edges in X

lying above it: .(u,E) and .(v, E). The edge .(u,E) is directed so that its initial
vertex is .(u, u) and its terminal vertex is .(v, v). If E is labeled by the element
s, then label the two directed edges lying above it by the Artin generator .as .
Thus, each edge of .Σ is doubled to get a circuit labeled .(as)

2 consisting of two
directed edges in X.

(c) Similarly, if F is a 2m-gon in .Σ corresponding to an edge .{s, t} ∈ L(1) with
.m(s, t) = m, then .p−1(F ) consists of 2m copies of F . The face .(v, F ) is glued
to the 1-skeleton as follows. The two edge paths from v to the antipodal vertex
.−v in F are labeled by alternating words of lengthm, namely, .st · · · and .ts · · · .
If we direct these edge paths as traveling from v to .−v, then corresponding to
an edge labeled by s (or t) there is a directed doubled edge labeled by .as (or
.at ). Then .(v, F ) is glued onto .X1 so that the two edge paths of F correspond to
the positively oriented edge paths .asat · · · and .atas · · · in .X1.

(d) The projection .π : W × S → Coset(W) has a section .f : Coset(W) → W × S

defined by .wWT 
→ (u, T ) where u is the shortest element in the coset .wWT .
This induces a continuous map .f : Σ → X that is a section of .π : X → Σ .

The 1-skeleton of X is similar to the Cayley graph of .(W, S) except that each edge
is doubled and each of the new edges is then assigned a direction. Each doubled
edge corresponds to a conjugate of the square of an Artin generator by an element
of .AW and these conjugates give a set of generators for .PAW . By property (c) of the
above proposition, the 2-cells in X correspond to conjugates of the Artin relations
in (4.5). It follows that .π1(X

2) = PAW . (This also follows from the fact that X is
homotopy equivalent to the arrangement complement, .M(A ⊗ C).) Let .X̃ denote
the universal cover of X. Some additional properties of X and .X̃ are listed in the
following proposition.
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Proposition 4.71 (More Properties of .X(W, S))

(e) The group W acts freely on X and .π1(X/W) = AW (cf. Theorem 4.66).
(f) There is an equivalence relation .∼ on .Σ so that .X/W = Σ/ ∼. (By (d) there

is a injection .f : Σ ↪→ X so that the composition .Σ → X → X/W induces
the equivalence relation on .Σ .)

(g) The space .Y = X/W is a finite CW complex (provided S is finite) with one
vertex and with one cell of dimension k for each spherical subset .T ∈ S with
.Card T = k.

(h) The projection .X → |Sop| descends to a projection .Y → |Sop|. This gives Y the
structure of a complex of spaces over .|Sop| (.= K). This means that Y can be
written as a union of subcomplexes

.Y =
⋃

T ∈S
YT ,

where .YT = X(WT , T )/WT denotes the quotient of the Salvetti complex for
.WT by .WT .

(i) Let .X̃ denote the universal cover of .X/W . The 1-skeleton .X̃1 is the Cayley
graph of .AW with respect to the standard generating set .{as}s∈S . Similarly, .X̃2

is the Cayley 2-complex of .AW .
(j) The cell complex .X̃ satisfies the classical condition for a convex cell complex

in Sect. 2.1: the intersection of two cells is either empty or is a common face of
both.

For example, if W is the cyclic 2-group .C2, then X is a circle cellulated by two
1-cells and two 0-cells, and Y is a circle with a single edge and a single vertex.
Similarly, when .W = (C2)

S , with .Card(S) = n, then X is an n-torus cellulated by
.2n i-cells for each i with .0 ≤ i ≤ n, while Y is the n-torus with single i-cell for
each i. In the general situation, each i-cell of Y is a Coxeter zonotope .Z(WT , T ),
.Card(T ) = i (cf. Sect. 4.2.2) with some identifications on its boundary. If .(W, S)

has diagram .A2 (i.e., if W is the symmetric group on 3 letters), then .Σ(W, S) is a
hexagon while the pure Salvetti complex .X(W, S) is a 2-complex with 6 vertices, 12
edges, and 6 hexagons. The Salvetti complex .Y = X/W is the presentation complex
for the braid group on 3 strands. It has one 0-cell, two 1-cells, and one 2-cell.

The following result of Goodelle and Paris states that the Salvetti complex for
a parabolic subgroup .AT of an Artin group A is a retract of .X(W, S). (Also see
[189].)

Proposition 4.72 (Goodelle-Paris [133, Theorem 2.2]) Let T be a subset of S.
Then .X(WT , T ) is a retract of .X(W, S).

The .K(π, 1)-Conjecture can be rewritten as follows.

Conjecture 4.73 (The .K(π, 1)-Conjecture for Artin Groups, Second Version) The
finite CW complex .X/W is a model for .BAW .
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A corollary to Proposition 4.72 is the following.

Corollary 4.74 ([133, Corollary 2.4]) If the .K(π, 1)-Conjecture is true for an
Artin group .AW , then it is also true for any parabolic subgroup .AT , for .T < S.

The universal cover of .X(W, S) has a natural piecewise euclidean structure
where each cell is a Coxeter zonotope. In analogy with the Davis–Moussong
complex .Σ(W, S), one might be tempted to speculate that the universal cover
of .X(W, S) is .CAT(0). Of course, when .AW is a .RAAG, then, as we showed
in Sect. 3.1, the Salvetti complex .X/W is .TL and its universal cover is .CAT(0);
however, this is definitely not the case when .AW is not a .RAAG. For example, as
was pointed out in [57, Remark 2.3.2], when W is the symmetric group on 3 letters
(so that .AW is the braid group on 3 strands), then the hexagonal complex .X(W, S)

cannot be given any reasonable NPC structure.
Nevertheless, many people have speculated on the possibility of finding nonpos-

itively curved classifying spaces for Artin groups. When .AW is spherical a likely
candidate for an NPC classifying space has been proposed by T. Brady and J.
McCammond. Brady used the “dual Garside structure” to define a .BAW , as a finite
piecewise euclidean cell complex with an NPC metric whenever W is spherical of
rank .≤ 4. The definition of .BAW works for any W ; however, proving that the Link
Condition holds becomes increasingly difficult as the rank increases. When W is
irreducible and spherical, let .GW denote the quotient of .AW by its center (which
is isomorphic to .Z). Bestvina [22] described a model for .BGW which has many
features of an NPC space. We will explain Bestvina’s complex in Sect. 4.3.5 below.

Remark 4.75 Another approach to Conjecture 4.73 using nonpositive curvature
has been proposed by Allcock [5]. Consider the finite arrangement of hyperplanes
.A ⊗ C in .C

d associated to a finite Coxeter group W . The arrangement gives .C
d

the structure of an orbihedron; the strata are intersections of subspaces and the
local groups are the isotropy subgroups in W . Put the standard flat metric on .C

d

and form the “universal branched cover” .Ĉ
d of .C

d . This means that we take the
metric completion of the universal cover of the hyperplane complement .M(A⊗C).
The conjecture is that .Ĉ

d is .CAT(0). Since removing the cone on a contractible
subspace does not change a space’s homotopy type, this conjecture implies that the
universal cover of .M(A⊗ C) is contractible by induction on dimension. Given this
conjecture on can deduce that the universal branched cover of .Σ×Σ along the union
of the diagonal walls is also .CAT(0) where .Σ is the Davis–Moussong complex of an
arbitrary Coxeter system. So, by taking complements we would get Conjecture 4.73
in full generality. In other words, the statement that .Ĉ

d is .CAT(0) for all spherical
reflection groups implies Conjecture 4.73 for all Artin groups.
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4.3.4 The K(π, 1)-Conjecture for Artin Groups

The development of .ASop is the Deligne complex .D(A,K) (also denoted by
.Λ(W, S) in Sect. 4.3.1). The Salvetti complex .X/W is the aspherical realization
of .ASop. So, as we explained in Theorem 4.7 of Sect. 4.1.3, the .K(π, 1)-Question
for .ASop has a positive answer if and only if the Deligne complex is contractible.

Theorem 4.76 (cf. Charney-Davis [56, Thm. 1.5.1] and Appendix A.4) The
universal cover .X̃ of the pure Salvetti complex is contractible if and only if the
Deligne complex .Λ(W, S) is contractible. So, .Λ(W, S)×AX̃ is homotopy equivalent
to BA.

In other words, if .Λ(W, S) is contractible, then the .K(π, 1)-Question for .ASop has
a positive answer.

Remark 4.77 By [56], .Λ(W, S) is contractible whenever (a) .AW is 2-dimensional
(cf. [147]). or (b) .(W, S) has type FC (cf. Corollaries 4.57 and 4.59)). Hence,
.K(π, 1)-Question for .ASop has a positive answer in both of these cases. Huang–
Osajda [157] proved that Artin groups of type FC were “Helly groups” meaning
that their Salvetti complexes had certain NPC type properties

Remark 4.78 As explained in the remark following Lemma 4.3.7 in [56], when
.(W, S) is type FC, one can prove that .Λ�(W, S) is contractible by a simple
inductive argument on the number of vertices. First, observe that it holds when
.(W, S) is spherical. Second, if .L(W, S) is a flag complex, then there are vertices
s and t which are not connected by an edge so that .AS is an amalgam of .AS−{s} and
.AS−{t} along .AS−{s,t}. By induction, Deligne complexes of the three smaller groups
are contractible, so the same is true for .Λ(W, S). This same argument was used
by Godelle–Paris [133] and by Ellis–Sköldberg [112] to show that the .K(π, 1)-
Question has a positive answer whenever there is a family of special subgroups
.{WT , T }, closed under passing to smaller special subgroups and containing the
spherical subgroups, such that the Deligne complex is contractible for each of the
.(WT , T ) in the family.

A positive answer to the .K(π, 1)-Question for .ASop implies that the classifying
space of an Artin group A is a finite complex i.e., it is type F. (See Sect. 7.2 for
the definition a discussion of “type F.”) The conjecture that this be true is slightly
weaker than having a positive answer to the .K(π, 1)-Question. It is often called
the “.K(π, 1)-Conjecture for Artin groups.” It is the most important open question
in the area. For example without it, we do not even known how to prove that A is
torsion-free. (For a survey of the results on this question as of 2014 see [190].)

Fairly recently there has been a good deal of work greatly extending the class of
Artin groups for which the .K(π, 1)-Conjecture was known, notably:

– Paolini–Salvetti [188] have proved it for .AW whenever .(W, S) is a euclidean
Coxeter system.
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– By using the Goodelle–Paris method, Huang [156] has proved the conjecture for
a large class of .AW including all those whose Dynkin diagram is a tree. Huang’s
results hold promise that the general conjecture will be proved soon.

Other recent results include Goldman [134] and several papers by Haettel, e.g.,
[139].

4.3.5 Bestvina’s Normal Form Complex

Let A be the Artin group associated to a Coxeter system .(W, S) and let .A+ be
the positive monoid consisting of those .a ∈ A that are represented by words in
positive powers of the Artin generators .as . Let .p : A → W denote the canonical
epimorphism. Recall from the paragraph on apartments in the Deligne complex at
the end of Sect. 4.3.1, the epimorphism p has a set theoretic section .W → A+
denoted by .w 
→ aw and defined as follows: if w has reduced decomposition .w =
s1 · · · sk , then

.aw = as1 · · · ask .

The element .aw is independent of the choice of a reduced word .s1 · · · sk for w; .aw

is called an atom. It is characterized by the fact that the word length of .aw in .A+ is
equal to .l(w), the word length of w in W .

The Left Greedy Normal Form For the remainder of this subsection W is a finite
Coxeter group and A (.= AW ) is the associated spherical Artin group. There is a
unique element .w0 ∈ W such that .l(w0) ≥ l(w) for all .w ∈ W . It is called the
element of longest length. Here are some of its properties (cf. [82, §4.6]):

– .w0 is an involution.
– In the geometric representation of W on .R

S , .w0 takes the fundamental chamber
C whose walls are labeled by S to the antipodal chamber .−C (whose walls are
also labeled by S).

– .w0 lies in the center of W if and only if it acts on .R
n as multiplication by .−1.

Define a partial order on .A+ by .x ≤ y if there is .z ∈ A+ such that .y = xz. The
homomorphism p induces a bijection between the set of atoms in .A+ and W . The
atom corresponding to .w0 is denoted by .Δ. Inner automorphism by .Δ takes an atom
a to another atom .a. Since inner automorphism by .Δ is an involution, the element
.Δ2 is in the center of A (in fact, .Δ is central whenever .w0 is the antipodal map on
.R

S). This partial order gives .A+ the structure of a lattice. This means that any two
elements .x, y ∈ A+ have a greatest lower bound .x ∧ y, as well as a least upper
bound .x ∨ y. A key fact is that for every .x ∈ A, there is an integer .k ≥ 0 such that
.Δkx ∈ A+.
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The normal form in which we are interested is essentially due to Deligne [107].
It is based on earlier work of Garside on a normal form for the braid group. Its
definition is based on the following proposition.

Proposition 4.79 (cf. [22, Prop. 1.2] and [107]) For any .g ∈ A+ there is a unique
atom .α(g) such that

(1) .α(g) ≤ g,
(2) if .a ∈ A+ is any atom with .a ≤ g, then .a ≤ α(g).

In other words, .α(g) is the longest atom with which g can begin. In [61] .α(g) is
called the left front of g. It follows that any .g ∈ A+ − {1} can be written as a
nontrivial product of atoms: .g = a1 · · · ak such that .ai = α(ai · · · ak). This is called
the left greedy normal form for g. Note that if .a1 · · · ak is such a normal form, then
all .Δ s occur at the beginning.

In [22] Bestvina works with the group .G = A/〈Δ2〉. Note that the homomor-
phism .A → G × Z, which in the first coordinate is the natural projection and in
the second coordinate sends each Artin generator to .1 ∈ Z, is an injection onto a
subgroup of finite index.

Bestvina’s Complex Following [22] one can define a simplicial flag complex
.X(G) with G-action. Its vertex set V is the set of cosets .A/〈Δ〉. Each vertex has
a representative .g〈Δ〉 with .g ∈ A+. (If x is an arbitrary representative for a vertex
.x〈Δ〉, then we can multiply x by a high power of .Δ2 to obtain a representative
.g = (Δ2)kx ∈ A+.) Let .g = Δm · a1 · a2 · · · ak be a representative with each
.ai an atom and with no .ai = Δ. We can shift all the .Δ s to the end to obtain a
special representative in the same coset as g that does not contain any .Δ s. (If m

is even, this special representative is .a1 · · · ak , while if m is odd, it is .a1 · · · ak .)
The atomnorm of a vertex v, denoted .|v|, is the number of atoms in this special
representative. After some work (cf. Lemma 2.1 and Proposition 2.2 in [22]) one
can show that the atomnorm extends to a distance function .dat : V × V → Z+,
with .dat (∗, v) = dat (v, ∗) = |v|, where .∗ denotes the base vertex corresponding to
.1 ∈ A+.

Define a simplicial graph .X1(G) which has vertex set V and which has an edge
between vertices .v0 and .v1 if and only if .dat (v0, v1) = 1. Let .X(G) be the flag
complex determined by this graph. The group G is not torsion-free. Indeed it has
a subgroup .〈Δ〉/〈Δ2〉 which is isomorphic to .Z/2. The dimension of .X(G) is the
word length of .Δ, i.e., it is .l(w0), where .w0 ∈ W is the element of longest length
and .l(w0) denotes its word length in W .

Remark 4.80 The picture of .X(G) is not what one might expect after studying
the Deligne and Salvetti complexes. For example, if A is the braid group on three
strands, then G is virtually a free group and the complex .X(G) is a union of
2-simplices so that the intersection of any two 2-simplices is either empty or a
common vertex. In other words, .X(G) looks like a regular trivalent tree where each
vertex has been expanded to a 2-simplex and each edge has been shrunk to a 0-
simplex. (See [21, Figure 1, p. 280].)
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Define a metric on .X(G) in the usual fashion by declaring each edge to have
length 1 and then taking the induced path metric. Using the normal form, there is a
canonical edge path from .∗ to any other vertex v in .X(G). Translating by an element
of G we obtain a canonical edge path between any two vertices. Such an edge path
is a geodesic.

Bestvina defines the wordnorm .‖v‖ of a vertex v to be the word length (with
respect to the standard set of Artin generators) of a special representative for v. This
extends to a left invariant function .dwd : V × V → Z

+ with .dwd(∗, v) = ‖v‖.
(N.B. While similar to a metric, the function .dwd is not symmetric. For example,
if b is an atom, then .dwd(∗, b) is the word length of b, while .dwd(b, ∗) is the word
length of the complementary atom c defined by .cb = Δ. The wordnorm is used
in establishing various nonpositive curvature properties for .X(G) which resemble
those in a .CAT(0) space.

Let .d + 1 (.= Card(S)) be the dimension of the geometric representation of W .

Theorem 4.81 (Bestvina [22, Theorem 3.6]) The group G acts properly and
cocompactly on .X(G). Moreover, .X(G) is contractible. It is properly homotopy
equivalent to a d-dimensional cell complex which is .(d − 2)-connected at infinity.

The universal cover of the Salvetti complex, denoted .X̃(W, S), is a .(d + 1)-
dimensional contractible cell complex on which the group A acts freely and
cocompactly. Since A and .G × Z are commensurable, .X̃(W, S) serves many of the
same purposes as does .X(G). Thus, Theorem 4.81 gives another proof of Deligne’s
Theorem 4.62. The disadvantage of .X̃(W, S) is that it is not .CAT(0) and so, does
not enjoy the same properties of nonpositive curvature as does .X(G). On the other
hand, the Deligne complex .Λ(W, S) is conjectured to be .CAT(0). Its disadvantages
are that it is not locally finite and that the A-action is not proper.

Two other features of nonpositive curvature which were discussed in Sect. 2.3
persist to .X(G): one can define a circumcenter of any bounded subset of .X(G)

and the minset .Min(g) for any .g ∈ G of infinite order. In both cases something
close to the standard definition works. Although circumcenters are not necessarily
unique, the set of circumcenters spans a simplex of .X(G). It follows that the Bruhat–
Tits Fixed Point Theorem holds for .X(G). As in Sect. 2.3 this gives the following
theorem (cf. Corollary 2.35).

Theorem 4.82 (cf. [22]) For any finite subgroup .F < G, the fixed point set,
.X(G)F , is a nonempty convex subset of .X(G). Hence, .X(G) is a cocompact model
for .EG.

Also recall from Sect. 2.3 the translation length .τ(g) of an element .g ∈ G is
defined by:

.τ(g) := lim
n→∞

‖gn(∗)‖
n

.
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Lemma 4.83 (Bestvina [22, Thm. 4.1]) Let .δ be the length of .w0, the element of
longest length in W . Then the set of translation lengths of infinite order elements in
G is bounded below by .

1
2δ
.

By using minsets and translation lengths, Bestvina then establishes an algebraic
version of the Flat Torus Theorem and some of its consequences (cf. Theorems 2.37
and 2.38 in Sect. 2.3).

Theorem 4.84 (Bestvina [22, Corollaries 4.2, 4.3, 4.4])

(i) Every abelian subgroup of G (or of A) is finitely generated.
(ii) The group G does not contain any infinitely divisible elements of infinite order.

(iii) Every solvable subgroup of G (or of A) is virtually free abelian.

Remark 4.85 It was proved by Bigelow and Krammer that spherical Artin groups
have faithful linear representations. It follows that they satisfy the Tits Alternative:
every finitely generated subgroup of A is either free abelian or contains a nonabelian
free subgroup.

4.4 Buildings

In the 1950s and 1960s, J. Tits [216, 218] (and see [219]) developed the theory
of buildings in connection with his work on representing algebraic groups as
automorphism groups of incidence geometries. Buildings provide examples of
highly symmetric polyhedra. Each building has an associated Coxeter system
.(W, S). For buildings that arise from algebraic groups, only spherical and euclidean
Coxeter groups play a role. Nevertheless, Tits was careful to develop the theory for
arbitrary Coxeter systems; in fact, his motivation for introducing the notion of a
Coxeter system was to use it in developing the theory of buildings. A remarkable
aspect of Tits’ work is that the group of symmetries of a building is not involved
its definition. So, a building need not be defined as the development of a simple
complex of groups.

In Sect. 4.4.1 we explain the combinatorial approach to buildings. This is similar
to the description of a simple complex of groups as a poset of groups given in
Appendix A.1. In the next subsection, Sect. 4.4.2, we discuss various geometric
realizations of a building based on a choice of “model chamber.” The standard
choice of model chamber is the fundamental chamber .K(W, S) of the associated
Coxeter system and this leads to the “standard realization” of the building. Another
possible choice for model chamber is a simplex .Δ with its codimension one faces
indexed by S. We call this choice is the “classical realization” of a building. It is the
appropriate choice for spherical buildings and for irreducible euclidean buildings.
In the spherical case, .Δ is a spherical simplex and the classical realization has
a piecewise spherical, .CAT(1) metric. In the (irreducible) euclidean case, .Δ is
a euclidean simplex and the classical realization is given a piecewise euclidean,
.CAT(0) metric.
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The most celebrated result in the theory of buildings is Tits’ classification of
spherical buildings of rank .≥ 3 in [216]. “Spherical” means that the associated
Coxeter group is spherical. Roughly speaking, Tits’ theorem states that a thick,
irreducible spherical building of rank .≥ 3 is the building of an algebraic group over
a field .F. (See [1, Chapter 9] and [198, Chapter 6, 8] for discussions of this result.)
The reason that this is only a “rough” statement of the Classification Theorem is
that there are classical groups which are not algebraic groups but yet still give rise
to spherical buildings (for example, the field can be replaced by a noncommutative
division ring). The theorem also holds for rank two spherical buildings (also known
as “generalized polygons”) provided we add the requirement that the building
has the “Moufang Property.” This property always hold for irreducible spherical
building of rank at least 3. The classification of such Moufang polygons was
accomplished by Tits–Weiss in [225]. We shall not define the Moufang Property
in this book. Suffice it to say that it implies a strong transitivity property for the
group generated by the “root groups” and it implies that the automorphism groups
of such spherical buildings are associated to “BN pairs” (also not defined in this
book). Tits also succeeded in classifying thick, irreducible euclidean buildings of
rank .≥ 4 in [222] (cf. [1, §11.9]). The result extends to euclidean buildings of
rank 3 if the spherical building at infinity is assumed to be Moufang. The result
is that such euclidean buildings are in one-to-one correspondence with absolutely
simple algebraic groups or classical groups or mixed groups defined over a field
that is complete with respect to a discrete valuation. Finally, there are similar results
relating certain “twin-buildings” whose Coxeter systems are 2-spherical and Kac–
Moody groups over finite fields.

In Sect. 4.4.5 we explain how to “pullback” a combinatorial building .C′ over
a Coxeter system .(W ′, S′) via a homomorphism of Coxeter systems .(W, S) →
(W ′, S′). This gives us a method of constructing new examples in Sect. 4.4.6 by
starting from classical examples. The main source of examples are the Bruhat–Tits
buildings of spherical type. Section 4.4.8 contains a discussion of classical examples
of spherical buildings, euclidean buildings and Kac–Moody buildings.

Lattices in automorphism groups of buildings give a beautiful class of examples
for geometric group theory. Frequently, such lattices turn out to be infinite simple
groups. For example, a product of two trees is a building and the Burger–Mozes
examples of Sect. 2.4.4 are cocompact lattices in the automorphism group of the
product of two regular trees.

Outline of This Section

(A) The combinatorial theory of buildings (Sect. 4.4.1).

(A.1) Chamber systems, galleries, residues, Weyl distance function
(Sect. 4.4.1).

(A.2) Apartments (Definition 4.90).
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(A.3) Rank two buildings (Example 4.93).
(A.4) Projective spaces (Example 4.99).

(B) Geometric realizations.

(B.1) The standard geometric realization is CAT(0) (Theorem 4.101).
(B.2) The K(π, 1)-Question for chamber-transitive buildings (Theo-

rem 4.107).

(C) Regular right-angled buildings (Sect. 4.4.3).
(D) A local approach to buildings

References for the material in this section include [1], [198], [142], [122], [216, 218,
220–222], [77, 83], [82, Ch. 18], as well as the survey article [115].

4.4.1 The Combinatorial Theory of Buildings

A chamber system is a set .C (of “chambers”) together with a family of equivalence
relations on .C indexed by another set S. For .s ∈ S, distinct s-equivalent chambers
.C,D ∈ C are said to be s-adjacent; they are adjacent if s is not specified. A gallery
in .C is a finite sequence of chambers .(C0, . . . , Ck) such that .Cj−1 is adjacent to .Cj ,
for .1 ≤ j ≤ k. The type of this gallery is the word .s = (s1, . . . , sk) where .Cj−1 is
.sj -adjacent to .Cj . If each .sj belongs to a given subset T of S, then .(C0, . . . , Ck) is
a T -gallery. Two chambers are in the same T -connected component if they can be
connected by a T -gallery. The T -connected components of a chamber system .C are
its residues of type T . An s-equivalence class is the same thing as a residue of type
.{s}. If .C ∈ C and .T ≤ S, then .ResT (C) denotes the residue of type T that contains
C. If for some chamber C, .ResS(C) = C, then .C is gallery connected.

Example 4.86 (The Chamber System Associated to a Family of Subgroups)
Suppose that G is group, B is a subgroup of G, and .(Gs)s∈S a family of subgroups
of G such that each .Gs contains B. Define a chamber system .C = C(G,B, (Gs)s∈S)

as follows: .C = G/B; chambers gB and .g′B are s-adjacent if they have the
same image in .G/Gs . For each subset T of S, let .GT be the subgroup generated
by .{Gs}s∈T . The chamber system is connected if .G = GS . A T -residue in
.C(G,B, (Gs)s∈S) is a coset in .G/GT . Put .G∅ = B. As we shall see in Appendix A,
if .P denotes the power set of S (or the poset of its proper subsets or spherical
subsets), then .{GT }T ∈Pop is a simple complex of groups over the opposite poset
to .P. The examples from Sect. 4.1 where G is a Coxeter group or Artin group and
B is the trivial group are examples of such chamber systems.

In the following, a “building” is defined as a chamber system equipped with the
extra structure that depends on a Coxeter system .(W, S) and a “Weyl distance” as
defined below.
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Definition 4.87 (cf. [1, Section 4.1]) Suppose .(W, S) is a Coxeter system. A
building of type .(W, S) is a pair .(C, δ) consisting of a nonempty set .C (the elements
of which are called chambers), and a function .δ : C × C → W (called the Weyl
distance) so that the following three conditions hold for all .C,D ∈ C.

(WD1) .δ(C,D) = 1 if and only if .C = D.
(WD2) If .δ(C,D) = w and .C′ ∈ C satisfies .δ(C′, C) = s ∈ S, then .δ(C′,D) is

either sw or w. If, in addition, .l(sw) = l(w) + 1, then .δ(C′,D) = sw.
(WD3) If .δ(C,D) = w, then for any .s ∈ S there is a chamber .C′ ∈ C such that

.δ(C′, C) = s and .δ(C′,D) = sw.

Given a word .s = (s1, . . . , sk) in the set S of fundamental generators for W , its
value is the corresponding group element .w(s) = s1 · · · sk . The word .s is a reduced
decomposition for .w(s) if .l(w(s)) = k.

The Weyl distance can be used to give .C the structure of a chamber system over
S: given .s ∈ S, chambers C and D are defined to be s-adjacent if and only if
.δ(C,D) = s. There is a close connection between galleries in .C, words in S and
the Weyl distance: if .(C0, C1, . . . Ck) is a gallery in .C of type .s = (s1, . . . , sk), it
follows from the axioms that there is the following relationship between the Weyl
distance and galleries.

(G) Suppose .s is a reduced decomposition and that C, D are chambers of .C. Then
there is a gallery of type .s from C to D if and only if .δ(C,D) = w(s) (see [1,
Section 5.2]).

It follows from (G) that the Weyl distance is a skew symmetric, i.e., .δ(D,C) =
δ(C,D)−1. (See [1, Cor. 5.17 (2)].)

By (WD3) every s-equivalence class has at least two elements. A building .C is
thick if each s-equivalence class contains at least 3 elements.

Example 4.88 The Coxeter group W itself has the structure of a building: the Weyl
distance .δ : W × W → W is defined by .δ(v,w) = v−1w. When considered as a
building, the Coxeter group is the thin building of type .(W, S).

A building is spherical if its type is a spherical Coxeter system (see Sect. 4.2.1).
The building is a right-angled building (abbreviated as .RAB) if its type is a right-
angled Coxeter system (see Sect. 3.1.1). In practice the set of chambers .C in a
building will usually be associated to a family of subgroups .C(G,B, (Gs)s∈S) as
in Example 4.86. When this is the case, .C = G/B and a residue of type T is the
image of a left coset .gGT in .G/B.

A residue of type T in a building is itself a building; its type is .(WT , T ). Let
.RT (C) denote the set of residues in .C of type .(WT , T ). Let .R all(C) denote the
disjoint union of all .RT (C) with .T ≤ S. We have subsets .R prop(C) (resp., .R(C))
of .R all(C) defined as the union of all .RT (C), where T is a proper subset of S (resp.,
a spherical subset of S). There is a partial order on .R all(C): .ResT (C) < ResT ′(C′)
if .T < T ′ and the first residue is a subset of the second. The subposet .R(C) is the
poset of spherical residues.
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Remark 4.89 Let X be a topological space equipped with a collection of closed
subspaces .{Xs}s∈S indexed by S. The .Xs are the mirrors Of X. We can use X

to serve as a “model chamber” for a building of type .(W, S). We shall show in
the next subsection how to define a geometric realization of the building .C by
pasting together models chambers, one for each element of .C. When the model
chamber is a simplex of dimension .Card(S) − 1, this realization is called the
classical realization of .C; its barycentric subdivision can be identified with the
order complex of .R prop(C). When the model chamber is the fundamental domain
.K(W, S) (.= |Sop|) for the Davis–Moussong complex, the corresponding realization
is denoted .|C| and called the standard realization of .C; its barycentric subdivision
can be identified with the order complex of .R(C) (which, of course, is the same as
the order complex of .R(C)op).

Definition 4.90 An apartment in .C is a subset which is W -isometric to the thin
building W . In other words, if .ρC : C → W is the function .D 
→ δ(C,D) for a
fixed chamber C, then a subset .A of .C is an apartment if .ρC |A : A → W is an
isomorphism. The function .C → A, defined as the composition of .ρC with the
inverse of .ρC |A, is called the retraction onto .A centered at C.

In the standard realization the barycentric subdivision of each apartment is isomor-
phic to .bΣ(W, S), the barycentric subdivision of the Davis–Moussong complex
from Sect. 4.2.3.

Definition 4.91 Given a chamber C, for each .s ∈ S, let .qs(C) be the number of
chambers s-adjacent to C (i.e., .qs(C) is one less than the number of elements in
the .{s}-residue containing C). The building is regular if .qs(C) is independent of
the choice of chamber C (for example, this is the case whenever the automorphism
group of .C is chamber-transitive). For a locally finite, regular building .C of type
.(W, S), .(qs)s∈S is called the S-tuple of parameters of .C.

There is a simple criterion on the Coxeter diagram for determining if elements
.s, t ∈ S are conjugate to one another: they are if and only if there is a sequence
.s1, . . . , sk of elements of S with .s1 = s, .sk = t and .m(sj , sj + 1) is an odd integer
for .1 ≤ j < k (see [28, Prop. 3, p. 5]). If s is conjugate to t in W , then .qs = qt .
If the parameters of a spherical building are all finite, then the building is finite.
Hence, when all parameters of .C are finite, its geometric realization .|C| is a locally
finite complex (since each spherical residue is a finite set). If .C is the building for
an algebraic group over a finite field .Fq of order q, then it is often the case each
.{s}-residue can be identified with the projective line over .Fq and hence, has .q + 1
elements and so, .qs = q.

The rank of a building of type .(W, S) is .Card(S).

Example 4.92 (Rank One Buildings) The only Coxeter diagram with one vertex
is .A1, i.e., the only Coxeter system of rank one is .(〈s〉, {s}), where .〈s〉 means the
cyclic group of order two. So, a rank one building is any set with at least two
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elements (the “chambers”); the Weyl distance .δ : C× C → 〈s〉 is defined by

.δ(C,D) =
{

1, if C = D,

s, if C �= D.

Example 4.93 (Rank Two Buildings) If .(W, {s, t}) is a Coxeter system of rank
two and .m = m(s, t), then W is a dihedral group .Dm of order 2m when .m < ∞,
and is .D∞, the infinite dihedral group when .m = ∞. Either the classical realization
or the standard realization of a building of type .(D∞, {s, t}) is the same thing as
a tree without terminal vertices, that is to say, .C is the set of edges in such a tree.
An apartment in such a building is a subtree isomorphic to the real line, that is, it is
isomorphic to the Coxeter complex of .(D∞, {s, t}). When .m < ∞, a building .C of
type .(Dm, {s, t}) is a generalized m-gon. The classical realization of a generalized
m-gon .C is a bipartite graph of girth 2m and diameter m: the edges of the graph are
the chambers of .C. Each vertex of an edge determines a residue of type .{s} or type
.{t}. An apartment in .C is a subgraph that is a circuit of length 2m. The classical
realization of a generalized 2-gon is the same thing as a complete bipartite graph. A
generalized 3-gon is called a projective plane. A generalized 4-gon is a generalized
quadrangle. A theorem of Feit–Higman [117] asserts that there are generalized m-
gons that are finite and thick only for .m ∈ {2, 3, 4, 6, 8} (cf. Theorem 4.130).

Example 4.94 (Products) For .i = 1, 2, suppose .(Ci , δi) is a building of type
.(Wi, Si). Then .(W, S) = (W1 × W2, S1 � S2) is Coxeter system and .(C, δ) =
(C1 × C2, δ1 × δ2) is a building of type .(W, S). For example, if each .(Ci , δi)

is the building corresponding to a tree .Ti , then .(C1 × C2, δ1 × δ2) is a building
corresponding to .T1×T2; the associated Coxeter group is .D∞×D∞. Each apartment
in .T1 × T2 is isomorphic to the euclidean plane with its square tiling.

It is proved in [1, Prop. 5.23] that the conditions (WD1), (WD2), (WD3) in
Definition 4.87 are equivalent to the following two conditions on a chamber system
.C, equipped with a function .δ : C× C → W .

– Each s-equivalence class has at least two elements.
– Given a reduced expression .s for an element .w ∈ W , there is a gallery of type .s

from C to D if and only if .δ(C,D) = w.

(This is the definition of a building that is given in [198].)
An automorphism of the building is a self-bijection of .C which preserves s-

equivalence classes for each .s ∈ S. Equivalently, it is a self-bijection which
preserves Weyl distance.

Definition 4.95 A subgroup G of .Aut(C) is chamber-transitive if it is transitive on
.C. It is strongly transitive if it is transitive on the set of pairs .(A, C), where .A is an
apartment in .C and .C ∈ A (cf. [1, §6.1.1]). (In fact, it is not necessary to use all
apartments in the definition of strongly transitive; .A need only belong to a certain
“system of apartments” satisfying the classical axioms for a building, cf. [1, §6.1].)
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Suppose G is a chamber-transitive group of automorphism of the building .C.
Choose a chamber C in .C. For each .T ∈ S, let .GT denote the stabilizer of .RT (C),
the spherical residue containing C. In particular, .G∅ := B is the stabilizer of C,
and for each .s ∈ S, .Gs is the stabilizer of the .{s}-residue containing C. As in
Example 4.86, .C ∼= C(G,B, (Gs)s∈S), the chamber system associated to this family
of subgroups. As promised earlier we get the following theorem.

Theorem 4.96 With notation as above, suppose G is a chamber-transitive group
of automorphisms of a building .C. Then .{GT }T ∈Sop is a simple complex of groups
over .Sop. Its development .D(G, Sop) can be identified with the poset of spherical
residues .R(C)op. Moreover, G is the direct limit of the .{GT }T ∈Sop .

Proof The point is that since G is chamber-transitive, it acts on the poset .R(C)op

with strict fundamental domain .Sop. So, .{GT }T ∈S is a developable simple complex
of groups. Since .|Sop| is simply connected, it follows that the geometric realization
of .R(C) is simply connected and that the canonical homomorphism from the direct
limit to G is an isomorphism (see Theorem A.7 (vi).′ in Appendix A.2).

Remark 4.97 In Theorem 4.96 we get the same direct limit G if we only use the
smaller collection of those .GT where T ranges over the spherical subsets with
.Card(T ) ≤ 2.

Remark 4.98 It turns out that if G is strongly transitive on a thick building, then it
inherits the structure of a BN pair (also called a “Tits system”, cf. [1, Thm. 6.56]).
This concept will not be defined in this book.

Given .C ∈ C, the combinatorial ball of radius n about C is the set .BC(n) :=
{D ∈ C | l(δ(C,D)) < n}. Here .l : W → N denotes word length. There is a natural
topology on the group .Aut(C) of automorphisms of .C: an open neighborhood of
.1 ∈ Aut(C) is the set of automorphisms which fix each element of .BC(n) for some
.n ∈ N and .C ∈ C. Since .BC(1) = {C} we see that the stabilizer of C in .Aut(C) is
an open subgroup of .Aut(C). When .C is locally finite, .Aut(C) is a locally compact,
totally disconnected, topological group. As such, it has a Haar measure. A closed
subgroup .G ⊂ Aut(C) inherits a topology and a Haar measure. A subgroup .Γ ⊂ G

is a lattice if it is discrete and if .G/Γ has finite measure. It is a uniform lattice if
.G/Γ is compact. A discrete subgroup .Γ ⊂ Aut(C) is a uniform lattice if and only
if .C/Γ is finite.

Example 4.99 (Projective Spaces) To an .(n + 1)-dimensional vector space V

over a field .F we associate a building .C(V ) as follows. A chamber C in .C(V ) is
a maximal chain .V1 < V2 < · · · < Vn of proper nonzero subspaces. As we shall
explain in the next subsection, the chambers are the top-dimensional simplices in
an .(n − 1)-dimensional simplicial complex .Δ (called the spherical realization of
.C(V )). A k-simplex of .Δ is a chain of subspaces .V1 < · · · < Vk+1 of length
.k + 1. Inclusion of one chain into another corresponds to inclusion of one simplex
as a face of the other. A codimension one face (i.e., a facet) of a chamber C is
obtained by omitting one of the subspaces in the chain. Let us say that the facet
is type i if it is obtained by omitting the i-dimensional subspace .Vi . The Coxeter
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system .(W, S) associated to .C(V ) has Coxeter group W the symmetric group on
.n + 1 letters and .S = {s1, . . . , sn}, where .si is the transposition .(i, i + 1). In other
words, the diagram for .(W, S) is .An. Two chambers are .si-equivalent if they share
a common codimension-one face of type i. So, two distinct chambers belong to the
same .{si}-residue if and only if the intersection of the corresponding maximal chains
is the chain obtained by omitting the .ith element of each. More generally, a subset
.T < S determines a face of codimension .Card(T ) in the simplex corresponding to
C, namely, this face is the intersection of the codimension one faces indexed by the
.si that lie in T . The building .C(V ) is called the projective space of V . There is an
obvious action of the group .PGL(V ) on .C(V ). An apartment in .C(V ) corresponds
to a choice of basis .{e1, e2, . . . , en+1} (actually by the set of lines determined
by the basis elements). Such a basis gives us a maximal chain C of subspaces
.〈e1〉 < · · · < 〈e1, . . . , en〉, where .〈e1, . . . , ek〉 means the subspace spanned by the
first k basis vectors. The symmetric group W acts by permuting the basis vectors and
the union of the chambers wC, .w ∈ W , is a copy of the spherical Coxeter complex
for .(W, S) called an “apartment” of .C (cf. Sect. 4.2.1). With its natural piecewise
spherical metric, each apartment is isometric to the round sphere .S

n−1, triangulated
as the barycentric subdivision of the boundary of an n-simplex (or rather its image
under radial projection onto .S

n−1). In the classical realization of this building the
number of chambers in each rank one residue is .q + 1, where .q = CardF (where
.q+1 is the cardinality of the projective line over .F). Thus, .C(V ) is a finite simplicial
complex if and only if .F is a finite field.

When .dim V = 3 and .F is the field .F2 with 2-elements, the classical realization
of .C(V ) is the Fano plane pictured in Fig. 4.2 below.

4.4.2 Geometric Realizations of Buildings

Given a Coxeter system .(W, S), let .K = |Sop| be its fundamental chamber. Even
though .C need not admit a chamber-transitive group action, the definition of the

Fig. 4.2 Figure of incidence
graph of Fano plane
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basic construction can be modified to work for .C. The definition of .D(C,K) is
similar to that of the Davis–Moussong complex .Σ(W, S) in Sect. 4.2.3 or to the
Deligne complex .Λ(W, S) in Sect. 4.3.3. To wit, .D(C,K) = (C × K)/ ∼, where
the equivalence relation .∼ is given by

.(C, x) ∼ (C′, x′) ⇐⇒ x = x′, and C,C′ belong to the same S(x)-residue.
(4.21)

(As before, .S(x) = {s ∈ S|x ∈ Ks}.) The polyhedron .D(C,K) is the standard
realization of .C. Since K is the geometric realization of .Sop, .D(C,K) can be
identified with .|R(C)op|, the geometric realization of the poset of spherical residues.
Similarly, if X is a model chamber for .(W, S) as in Remark 4.89, then one can define
the X-realization of .C by essentially the same formula: .D(C, X) = (C× X)/ ∼ .

As in Sect. 4.2.6, K is partitioned into Coxeter blocks .BT , with .T ∈ S, where .BT

means the union of all simplices in the order complex of the interval .[T ,∅] of .Sop

(i.e., .[T ,∅] = {T ′ ∈ S | T ≥ T ′ ≥ ∅}). Furthermore, each block .BT is identified
with a convex polytope in some euclidean space. (Recall that .BT is isomorphic
to the intersection of a Coxeter zonotope with a .WT -sector.) This gives a natural
piecewise euclidean metric on K , as well as, the natural piecewise euclidean metric
on .D(C,K). Moreover, each apartment in .D(C,K) is isometric to .D(W,K) =
Σ(W, S), with its natural .CAT(0) metric.

Remark 4.100 The calculation in [87] of the compactly supported cohomology of
the standard realization, .D(C,K), uses several different realizations of .C.

Theorem 4.101 (cf. [77]) The natural piecewise euclidean metric on the standard
realization of any building is .CAT(0).

The proof of this theorem basically follows from the fact that each apartment is a
Davis–Moussong complex .Σ(W, S), which is .CAT(0). The details of the proof will
occupy the rest of this subsection.

First, we need to understand links in .Σ(W, S). Suppose .(WT , T ) is a spherical
Coxeter system. Then .WT acts on the unit sphere .S

m−1 in the geometric repre-
sentation on .R

m, .m = Card(T ). A fundamental domain for the action on .S
m−1

is the fundamental spherical simplex .σ(T ) defined in Sect. 4.2.1. Thus, .S
m−1 =

D(WT , σ (T )). The set of “mirrors” of .σ(T ) is the set its facets .{σ(T )t }t∈T . Suppose
.C(T ) is a spherical building of type .(WT , T ). The classical realization of .C(T ) is
the basic construction applied to .C(T ) with fundamental domain .σ(T ):

.D(C(T ), σ (T )) = (C(T ) × σ(T ))/ ∼ , (4.22)

with its natural piecewise spherical metric induced from .σ(T ) where the gluing
relation .∼ is defined as in (4.21). We shall write .σ(C(T )) for .D(C(T ), σ (T )).
In this classical realization, each apartment of a spherical building is isometric to
the round sphere .D(WT , σ (T )) = S

m−1. More precisely, if .A is an apartment in
.C(T ), then the map induced by .ρC |A (from Definition 4.90) induces an isometry
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from the classical realization of .A to .S
m−1. N.B. The classical realization of .C(T )

is not the same as the standard realization; the standard realization of .C(T ) uses
for fundamental domain the Coxeter block .BT so that each apartment becomes
isometric to the Coxeter zonotope .Z(WT , T ) while in the classical realization it
is the image of a radial projection of .∂Z(WT , T ) onto a sphere. So, for spherical
buildings the standard realization is the cone on the classical realization.

Example 4.102 As in Example 4.93, suppose .C is a generalized m-gon with its
natural piecewise spherical structure. Then .σ(C) is a graph, each edge has length
.π/m and each apartment is isometric to a circle of length .2π . Moreover, .Σ(C) is
.CAT(1) (since its girth is 2m) and its diameter is .π (since its combinatorial diameter
is m).

Example 4.103 As in Example 4.99, suppose .C is a projective plane over the finite
field .Fq of order q. The classical realization .σ(C) is a graph; each apartment is the
boundary of a hexagon; and since the link of each vertex is a projective line over
.Fq , exactly .q + 1 edges meet at each vertex. (See Fig. 4.2 following Example 4.99
for the case .q = 2.) If .C is projective n-space, then each apartment is isomorphic to
.S

n−1 triangulated as the barycentric subdivision of the boundary of an n-simplex.

The standard cellulation of .Σ(W, S) by Coxeter zonotopes has a subdivision into
Coxeter blocks (see Definition 4.28). Let .vT be a vertex corresponding to the center
of a Coxeter zonotope .Z(WT , T ). Then the link of .vT in .Σ = Σ(W, S) decomposes
as a spherical join:

. Lk(vT ,Σ) = S
m−1 ∗ Lk(T , |S|). (4.23)

Here .S
m−1 is the link of .vT in the zonotope and .Lk(T , |S|) = |S>T | = Lk(vT ,KT )

is the link of .vT in the stratum of a chamber corresponding to T . (.Lk(T , S) also
means the link of the simplex corresponding to T in .L(W, S).) Since .|S>T | is a
link in the metric flag complex .L(W, S), it is also a metric flag complex (see [82,
Lemma I.7.3]); so, by Moussong’s Lemma 4.18, it is .CAT(1). A similar analysis
holds for the link of a vertex .vT in the geometric realization .|C| = D(C,K) except
that in (4.23), the round sphere .S

m−1 must be replaced by the classical realization
of a building .ResT (C). The formula in (4.23) then should be replaced by

. Lk(vT , |C|) = σ(C(T )) ∗ Lk(T , |S|), (4.24)

where .σ(C(T )) = D(ResT (C)op, σ (T )). In other words, the link of a vertex in the
standard realization of a building is the spherical join of the classical realization
of a spherical building with a metric flag complex. So, to show that .Lk(vT , |C|) is
.CAT(1) it suffices to prove the following lemma.

Lemma 4.104 (cf. [77]) If .C(T ) is a spherical building of type .(WT , T ), then its
classical realization .σ(C(T )) is .CAT(1). Its diameter is .π .
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In fact, this lemma is a corollary of Theorem 4.101. Indeed, a neighborhood
of the vertex .vT in .|C(T )| is isometric to a neighborhood of the cone point in
.Cone(σ (C(T )). By Lemma 2.8, .vT has a .CAT(0) neighborhood if and only if
.σ(C(T )) is .CAT(1).

Remark 4.105 On the other hand, if Lemma 4.104 holds for all spherical residues
in .C, then, by the Link Condition (from Definition 2.10), .|C| is NPC. Since it also
is not hard to see that .|C| is simply connected, it might seem that the way to prove
Theorem 4.101 is to first prove Lemma 4.104 by an independent argument. (One
needs to show that the spherical realizations of such links have no short geodesic
loops. This should follow from the fact that each spherical apartment is a round
sphere.) However, the proof Theorem 4.101 from [77] which is outlined below, is
via a direct argument that is independent of the Link Condition.

In [60] Charney and Lytchak gave the following metric characterization of thick
spherical buildings.

Proposition 4.106 (Charney-Lytchak, [60]) A connected, piecewise spherical
complex .σ of dimension .n ≥ 2 is the classical realization of a thick spherical
building if and only if

– .σ is .CAT(1),
– each .(n − 1)-cell is contained in at least three n-cells,
– the link of every k-cell with .k ≤ n − 2, is connected, and
– the link of each .(n − 2)-cell has diameter .π .

Sketch of Proof of Theorem 4.101 The proof in [77] follows a standard argument
given in [40, Ch. VI §3] in the case of euclidean buildings. An important conse-
quence of Definition 4.87 is one of the classical axioms for a building: any two
chambers are contained in a common apartment. For the standard realization, this
implies that any two points x and y in .|C| are contained in the realization of
some apartment .A. For C a chamber in an apartment .A, we have the function
.ρC,A : C → A, the retraction onto .A centered at C from Definition 4.90. Its
geometric realization is denoted .ρC,A : |C| → |A| (or simply by .ρ). If x, y are two
points in .|A|, then .ρ takes a geodesic segment connecting them in .|C| to a geodesic
segment in .|A|. Using the fact that .|A| is .CAT(0) one argues that the geodesic
segment in .|C| from x to y is equal to the geodesic segment in .|A|. Moreover, .ρ is
distance decreasing.

If .x, y, z are vertices of a triangle in .E
2 and .pt = tx + (1 − t)y is a point on the

segment from x to y, then it is an easy exercise to see that

.d2(z, pt ) = (1 − t)d2(z, x) + td2(z, y) − t (1 − t)d2(x, y),



Outline of This Section 147

where .d2(x, y) denotes the square of the euclidean distance. It follows that for
a triangle in a geodesic space with vertices .x, y, z, the .CAT(0) inequality of
Sect. 2.1.1 is equivalent to the above formula with the equality replaced by the
inequality:

.d2(z, pt ) ≤ (1 − t)d2(z, x) + td2(z, y) − t (1 − t)d2(x, y) (4.25)

Now choose an apartment .A with .x, y ∈ |A| and a chamber C so that .pt ∈ |C|. Let
.ρ : |C| → |A| be the geometric realization of .ρC,A. Then

.d2(z, pt ) = d2(ρ(z), pt )

≤ (1 − t)d2(ρ(z), x) + td2(ρ(z), y) − t (1 − t)d2(x, y)

≤ (1 − t)d2(z, x) + td2(z, y) − t (1 − t)d2(x, y) .

So, the .CAT(0)-inequality holds for the triangle .[x, y, z].
As we showed in Theorem 4.7 of Sect. 4.1.3, the fact that .Σ(W, S) is .CAT(0)

implies that the .K(π, 1)-Question for .WSop has a positive answer. Similarly, if .C is
any building with a chamber-transitive automorphism group G, then Theorem 4.101
shows that the .K(π, 1)-Question for the simple complex of groups associated to G

has a positive answer. We state this as the following.

Theorem 4.107 (The .K(π, 1)-Question for Chamber-Transitive Buildings)
Suppose .C is a building with a chamber-transitive automorphism group G. Let
.GSop be the associated simple complex of groups. Then the .K(π, 1)-Question for
.GSop has a positive answer. In particular, the aspherical realization of this simple
complex of groups is .D(G, |Sop|) ×G EG, which is homotopy equivalent to BG.

One also can use the argument in the proof of Theorem 4.101 to decide when the
standard realization of a building has a piecewise hyperbolic, .CAT(−1) metric. By
Moussong’s Theorem 4.23. .Σ(W, S) has a .CAT(−1) structure if and only if W is
word hyperbolic. Analogously, we get the following.

Theorem 4.108 (cf. [77, Remark 11.8]) Suppose .C is a building of type .(W, S),
with W word hyperbolic. Then its standard realization .|C| (.= D(C,K)) can be
given a piecewise hyperbolic metric that is .CAT(−1).

For example, if W is a reflection group on .H
2 generated by reflections across the

faces of a hyperbolic polygon, then .C is called a Fuchsian building. In the right-
angled case these Fuchsian buildings were constructed and studied by Bourdon [29,
30], as well as Remy [194–196], Gaboriau–Paulin [122] and Haglund–Paulin [142].
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4.4.3 Regular Right-Angled Buildings

Here we expand on some of the material in Sect. 3.1.2.
Suppose .{Es}s∈S is a family of discrete, usually finite, spaces indexed by S.

In Sect. 3.1.1, given a simplicial complex L with vertex set S, we defined a cube
complex .ZL as the polyhedral product:

.ZL =
∏L

ConeE

(cf. (3.15)), where .ConeE means the S-tuple .((Cone Es,Es, ∗s))s∈S . When L is a
flag complex, .ZL is NPC by Theorem 3.14; so, its universal cover .Z̃L is .CAT(0).
At the end of Sect. 3.1.1 we promised to show that .Z̃L was the standard realization
of a regular .RAB. We do so now.

As was shown earlier, if each .Es is .{±1}, then .Z̃L is the Davis–Moussong
complex .Σ(W, S) where .(W, S) is the .RACS associated to the graph .L1.

We assume each .Es has at least two elements. By Example 4.92, .Es is a rank 1
building associated to the Coxeter system .(C2, {s}), where .C2 = 〈s〉 is the group of
order 2 generated by s. As in Example 4.94, .

∏

s∈S Es is a product building of type
.((C2)

S, S). Its standard realization is the cube complex,

.ZΔ(S) =
∏

s∈S

Cone(Es) =
∏Δ(S)

ConeE,

which has fundamental chamber .�S (.:= ∏

s∈S[0, 1]). The polyhedral product .ZL

is a cubical subcomplex of .ZΔ(S). If .C′ = ∏

s∈S Es denotes the set of chambers in
the product building, then .ZL is tessellated by copies of the fundamental chamber
K (.= KL), and, as in formula (3.15) of Sect. 3.1.2,

.ZL = D(C′,K) = (C′ × K)/ ∼

is the K-realization of the product building .C′.
For any chamber .D ∈ C′, put .K(D) equal to the image of .D×K in .(C′×K)/ ∼;

and call it a chamber of .ZL. In other words, .ZL is the realization of the product
building using as model chamber the chamber K for the .RACS .(W, S) associated
to L. Let .v∅ denote the vertex of K corresponding to .∅. The point .cD = D × v∅ is
called the center of the chamber .K(D). Let .K◦ := K − ∂K = {x ∈ K | S(x) = ∅}
be the interior of K and let .K◦(D) = D × K◦

Next we describe the set of chambers .C for the putative building structure on the
universal cover .Z̃L. Note that .ZL is not simply connected (since the 2-skeleton of
L is not equal to the 2-skeleton of .Δ(S)). Put .π = π1(ZL). (If each .Es is given the
structure of a group .Gs and .Γ = ∏

L1 Gs is the graph product, then, as explained
in Sect. 3.1.2, .π is the kernel of the natural epimorphism .Γ → ∑

Gs .) Let .p :
Z̃L → ZL be the projection map of the universal cover. Since .K◦ is the open cone
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on .∂K , it is simply connected; hence, .p−1(K◦(D)) is a disjoint union of copies of
.K◦, each projecting homeomorphically onto .K◦(D). The closure of such a copy is
called a chamber of .Z̃L. The set of chambers of .Z̃L is denoted by .C. As before,
.Z̃L

∼= (C × K)/ ∼. Identifying .C′ with the set of centers of chambers in .ZL and .C

with the set of centers of chambers in .Z̃L, we see that .C = p−1(C′). Chambers C,
D in .C are s-adjacent if they project to s-adjacent chambers in .C′. This gives .C the
structure of a chamber system over S.

Definition 4.109 A right-angled building .C of type .(W, S) is regular if for each
.s ∈ S, any two .{s}-residues in .C have the same cardinality, .qs .

More generally, a building .C whose type is an arbitrary Coxeter system .(W, S) is
regular if for each spherical subset .T ∈ S, any two T -residues in .C are isomorphic.

Theorem 4.110 (cf. [77, Thm. 5.1] and [83, Thm. 2.5]) The chamber system .C

defined above is a regular right-angled building of type .(W, S), where .(W, S) is the
.RACS associated to .L1.

Sketch of Proof To show that .C is a building we must define a Weyl distance
.δ : C × C → W satisfying the axioms in Definition 4.87. The definition of .δ is
the obvious one. Suppose .(C,C′) ∈ C × C. Choose a gallery of minimal length
.C0, C1, . . . , Ck from .C = C0 to .C′ = Ck . Let .s = (s1, . . . , sk) be its type and let
.w(s) = s1 · · · sk be the corresponding element of W . The Weyl distance .δ is defined
by .δ(C,C′) = w(s). We must show that element .w(s) ∈ W is independent of the
choice of gallery (so that .w(s) is well-defined) and that .δ satisfies Axioms (WD1),
(WD2) and (WD3) in Definition 4.87. The verification of these axioms in [83, Thm.
5.1] uses the fact that if .C′ is the product building and .p : C → C′ is induced
by the covering projection, then for each spherical subset .T ∈ S(W, S), p takes a
spherical residue of type T in .C isomorphically onto a corresponding T -residue in
.C. By combining this with Tits’ solution to the Word Problem for Coxeter groups
[82, §3.4], the theorem follows.

So, the proof of Theorem 4.110 came down to the fact that the geometric
realization of the chamber system .C is simply connected and that .C has T -residues
which are spherical buildings for any .T ∈ S(W, S) with .Card(T ) ≤ 3. In fact,
this argument gives a general principle which is stated as a result of Tits in the
next subsection as Theorem 4.114. This result will be used again in the following
subsections.

We continue our discussion of the regular .RABs constructed in Theorem 4.110.
Suppose each .Es is finite with .Card(Es) = qs+1. The .RAB, .C, from Theorem 4.110
then has parameters .(qs)s∈S . (In fact, the .qs can be arbitrary nonzero cardinal
numbers .≥ 1.) According to the next result each regular .RAB is determined by
its S-tuple of parameters.

Proposition 4.111 (Haglund–Paulin [142, Prop. 1.2]) Suppose .C1 and .C2 are two
regular .RABs of the same type and with the same parameters .(qs)s∈S . Then .C1 is
isomorphic to .C2.
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Remark 4.112 The regular .RAB of Theorem 4.110 can be seen to admit a
chamber-transitive automorphism group (cf. [49]). In fact, let .Gs denote the
symmetric group on .Es and let .Bs be the isotropy subgroup in .Gs at the base point
.∗s . Put .B = ∑

Bs and for each subset T of S, put .GT = ∑

s∈T Js(T ), where

.Js(T ) =
{

Gs , if s ∈ T ;
Bs , if s /∈ T .

(cf. Example 3.19. In other words, .GT := ∑

s∈T Js(T ) (where .G∅ = B). Note that
.Js(T )/B = Gs/Bs . If .(W, S) is the .RACS associated to .L1 and .Sop is the dual
poset of spherical subsets, then .{GT }T ∈Sop is a simple complex of groups over .Sop

(cf. Example 3.19). In Sect. 3.1.2a generalized graph product (or “relative graph
product”) .Γ was defined as the direct limit of this simple complex of groups. The
group .Γ is chamber-transitive on .C. (In fact, the same is true if we replace .Gs by
any group which is transitive on .Es and .Bs by the isotropy subgroup at .∗s .) For
more about automorphisms of RABs, see [49].

Trees of Buildings In contradistinction to Proposition 4.111, in certain cases when
.(W, S) is not right-angled, in [142] Haglund and Paulin have found examples
where there are uncountably many isomorphism classes of regular buildings of type
.(W, S), each with the same S-tuple of parameters and with isomorphic spherical
residues. The construction uses the notion of a tree of buildings, developed in [142].
Suppose that .(W, S) splits as an amalgamated product:

.W = W+ ∗W0 W− , S = S+ ∪ S− , S0 = S+ ∩ S− , (4.26)

giving Coxeter systems .(W+, S+), .(W−, S−) and .(W0, S0). Assume .W0 infinite. Let
.K+, .K− and .K0 be the corresponding fundamental chambers. Let .C be a chamber-
transitive building of type .(W, S). Then .C can be given the structure of a tree of
buildings as follows. Define a bipartite tree T with vertices the .S± residues colored
by .{+,−}. The edges are the .S0-residues. The edge corresponding to .ResS0(C) is
incident to .ResS+(C) and to .ResS−(C). For a given .C ∈ C, let .C0, .C+ and .C− be
the corresponding residues. Then .C is formed by gluing together copies of .C± for
each vertex of T along a copy of .C0. If, up to isomorphism, there is more than one
way to do the gluing, then for each edge one can try to reglue the vertex buildings
along the edge buildings. To this end consider the set .F of pairs .(f+, f−) where
.f+ : C0 → C+ and .f− : C0 → C− are injections of buildings of type .(W, S0).
Let .G± and .G0 denote .Aut(C±) and .Aut(C0). The group .G+ × G− × G0 acts on
.F in an obvious fashion and if there is more than one .(G+ × G− × G0)-orbit on
.F, then for each edge there is more than one way to accomplish the gluing. So,
when there are at least two .(G+ × G− × G0)-orbits, there are uncountably many
isomorphism classes of such trees of buildings over T (since there are uncountably
many functions from .Edge(T ) to a set with at least two elements). Haglund–Paulin
[142] prove that when .(W, S) is a group generated by reflections across the faces of
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a certain 3-dimensional hyperbolic polytope K , then under certain conditions there
is more than one .(G+ × G− × G0)-orbit on .F. In the Haglund–Paulin examples
each vertex building is type .A3 (in particular, the Coxeter system .(W, S) for .C is not
right-angled).

Proposition 4.113 (Haglund–Paulin [142, Cor. 4.11]) There are uncountably
many isomorphism classes of buildings of type .(W, S), where .(W, S) is a certain
3-dimensional hyperbolic reflection system. Each of these examples is a tree of
buildings over the Bass-Serre tree T for a splitting of .(W, S) as in (4.26). So, in these
examples all of the buildings have isomorphic chambers, S-tuple of parameters, and
spherical residues, yet only one of them admits a chamber-transitive automorphism
group.

Similarly, in [122] Gaboriau and Paulin show that there are uncountably many
Fuchsian buildings with L a 2k-gon with its edges labeled 3.

4.4.4 A Local Approach to Buildings

Suppose .C is a gallery-connected chamber system over S. Let .(W, S) correspond to
the Coxeter matrix. Suppose .(W, S) is a Coxeter system with Coxeter matrix .M =
(m(s, t))(s,t)∈S×S . We say that .C is type .(W, S) if for each unordered pair .{s, t} ∈ S,
each .{s, t}-residue of .C is a generalized .m(s, t)-gon. (More usual terminology is
that the chamber system has type M .) A chamber system of type .(W, S) need not
be a building since its standard realization need not be simply connected and hence,
need not satisfy the conclusion of Theorem 4.101. For example, if .C is a building
of type .(W, S) and .Γ is a nontrivial torsion-free group of automorphisms of .C, then
the chamber system .C/Γ will not be a building. However, the following theorem of
Tits says that this is essentially the only obstruction.

Theorem 4.114 (cf. Tits [220, 221] or [198, Cor. 4.10]) A chamber system .C of
type .(W, S) is a building if and only if

(i) each spherical residue is a building, and
(ii) the geometric realization of its poset of spherical residues, .|R(C)op|, is simply

connected.

Remark 4.115 As stated, Theorem 4.114 is vacuous for a chamber system .C whose
type is a spherical Coxeter system. Indeed, since the entire chamber system is a
spherical residue of type S, item (i) already requires it to be a building. So, suppose
.C is a chamber system of type .(W, S) where .(W, S) is a spherical Coxeter system
of rank .≥ 3. Recall that the classical realization .σ(C) is homeomorphic to the order
complex of the poset .R prop(C) of all spherical residues of form .ResT (C) where C is
a chamber and T is a proper subset of S. One might speculate that, when the rank is
greater than 3, a version of Theorem 4.114 should hold for the classical realization
if one uses .R prop(C) rather .R(C). To wit, if (i) for each proper spherical subset T ,
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each T -residue is a building and (ii) .|R prop(C)| is simply connected, then .C should
be a building. (Note that when .C is a spherical building of rank .≥ 3, .σ(C) is simply
connected since each apartment is a sphere of dimension .≥ 2.) However, this is false
for rank 3: there are examples of simply connected chamber systems of type .C3
which are not buildings (type .C3 is a refinement of saying that the Coxeter diagram
is type .B3). In other words, .|R prop(C)| is simply connected but .C is not a building.
(See [198, Example 2, pp. 50–51].) The point is that .|R prop(C)| is a 2-dimensional
simplicial complex tessellated by .(2, 3, 4) spherical triangles so that the link of each
vertex is a generalized polygon and even though .|R prop(C)| is simply connected, it
is not a building.

Definition 4.116 Suppose .C and .C′ are chamber systems of type .(W, S) and .ϕ :
C → C′ is an adjacency-preserving map of chamber systems. Then .ϕ is a covering
if its restriction to each proper spherical residue is an isomorphism. (This implies
that the standard realization of .ϕ is a covering projection.)

Theorem 4.117 (cf. Ronan [198, Cor. 4.10]) Suppose .(W, S) is a spherical
Coxeter system of rank .≥ 3 and that .C is a chamber system of type .(W, S). When
.Card(S) = 3 and .C is the type of the root system .C3, assume further that the
classical realization of .C is covered by a building. Then .C is a building if and only
if

(i) for each proper subset .T < S, each T -residue .ResT (C) is a spherical building,
and

(ii) .|R prop(C)| is simply connected.
By definition, in a chamber system of type .(W, S), any rank two spherical residue
is a building. When .Card(S) = 3, if we assume as in Theorem 4.117 that .C is
covered by a building then item (ii) implies that it is a building. hence, condition
(ii) means that all spherical residues of rank .≤ 3 are buildings. Moreover, instead of
requiring that these T -residues are buildings, one can get away with the condition
that there are no type .C3 residues and that the classical realization .σ(ResT (C)) is
simply connected for each spherical residue of rank 3. Indeed, this follows from
a version of Theorem 4.114 for the poset .R prop(C) of proper spherical residues
whenever .(W, S) is a spherical Coxeter system. In [220] there is a replacement for
Theorem 4.114 with the hypothesis that every rank three spherical residue of type
.C3 is covered by a building and the conclusion is that “the universal 2-cover of .C

is a building,” where “universal 2-cover” means a chamber system .C̃ that .|R(C̃)|
is simply connected as is the classical realization of each spherical residue of rank
.≥ 3.

Buildings as Simple Complexes of Groups In Theorem 4.96 we demonstrated
that every building with chamber-transitive automorphism group yields a simple
complex of groups. In this paragraph we show the converse.

Suppose .GSop = (GT )T ∈Sop is a simple complex of groups over .Sop. Put .B =
G∅ and suppose that for each .T ∈ Sop, .GT is a chamber-transitive automorphism
group of a building .CT (where .CT := GT /B of type (WT , T )).
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Let .GSop be the simple complex of groups .(GT )T ∈Sop and let G be its direct
limit. By Lemma 4.104 the classical realization, .σ(CT ), of the spherical building
.CT is .CAT(1). This means that the simple complex of groups .GSop is nonpositively
curved in the sense of [35]; hence, it is developable [35, Thm. 4.17, p. 562]. Since
the fundamental chamber .|Sop| (.= K(W, S)) is contractible, it follows that the
basic construction .D(G,K) is simply connected, hence, is .CAT (0) and so, is
contractible. The set of chambers .C := G/B obviously has the structure of a
chamber system of type .(W, S). Since each spherical residue is a spherical building
and since .D(G,K) is simply connected, we can use Theorem 4.114 to deduce the
following result of [122]. It is a converse to Theorem 4.96

Theorem 4.118 (Tits [221], Gaboriau-Paulin [122, Thm. 0.1]) Suppose .C is
chamber system of type .(W, S) defined by the simple complex of groups .GSop =
(GT )T ∈Sop as above. Then .C is a building. Moreover, the direct limitG is a chamber-
transitive group of automorphisms.

Roughly, this theorem means that we can construct a building by specifying it
locally. In other words, a family of spherical buildings over .Sop can be glued together
to get a building of type .(W, S). However, one must be more careful: each of the
local buildings must be equipped with a chamber-transitive group action and these
local groups must fit together to give a complex of groups. This begs the question
of how do we find such a complex of groups .(GT )T ∈Sop , in particular, what group
B should correspond to .T = ∅. A good way to produce such a complex of groups is
to use the method of pullbacks described in the next subsection. That is, start with
a building .C′ of type .(W ′, S′) and a simplicial map .f : L(W, S)) → L(W ′, S′)
and then use f to get a non-standard realization of .C′ over .K(W, S). Then take the
universal cover to get a building .C of type .(W, S). Equivalently, we can use f to pull
back a complex of groups .G′ over .S(W ′, S′)op to get a complex of groups .f ∗(G′)
over .S(W, S))op. For example, if f is an inclusion, then .f ∗(G′) has the same local
groups as .G′; however, since some edges of .L′ are not in the image of f , the direct
limit of .f ∗(G′) will be larger than the direct limit for .G′.

4.4.5 Pullbacks

In Sects. 3.1 and 4.4.3 we explained a technique for constructing .RACSs and .RABs.
This technique involves first taking a polyhedral product (of rank one buildings)
and then passing to the universal cover. In this subsection we will explain a
generalization of this technique which was developed in [83]. It works for arbitrary
Coxeter systems, not just the right-angled ones. Given a building of type .(W ′, S′)
and a function .f : S → S′ satisfying certain properties, first we define a new
Coxeter system .(W, S); secondly, by using the fundamental chamber for .(W, S)

rather than the one for .(W ′, S′), we define a nonstandard, non-simply connected,
realization of .C′; and thirdly, by taking the universal cover of this nonstandard
realization of .C′ we get a new building .C of type .(W, S). In the right-angled case,
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the first step is analogous to passing from the product .(C2)
S of cyclic groups of

order 2 to a .RACG; the second step is analogous to forming the polyhedral product
.ZL = ∏L ConeE as in Sect. 3.1.1; the third step corresponds to taking the universal
cover of .ZL.

Suppose that .(W ′, S′) is a Coxeter system with nerve .L′, that L is another simpli-
cial complex with vertex set S, and that .f : S → S′ defines a simplicial map .L →
L′ whose restriction to each simplex is injective. Let .(m′(s′, t ′))(s′,t ′)∈S′×S′ denote
the Coxeter matrix of .(W ′, S′). Define a new Coxeter matrix .(m(s, t))(s,t)∈S×S by

.m(s, t) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if s = t,

m′(f (s), f (t)) if {s, t} ∈ Edge(L),

∞ otherwise,

(4.27)

and let .(W, S) be the resulting Coxeter system. In other words, if .m′ : Edge(L′) →
{2.3, . . . } is the edge labeling defining .(W ′, S′), then .(W, S) is defined by the edge
labeling m given by composing .m′ with .f |Edge(L), i.e., .m = m′f : Edge(L) →
{2, 3, . . . }. The map of generating sets .S → S′ extends to a homomorphism
.ϕf : W → W ′. Note that the homomorphism .ϕf is surjective if and only if f

is surjective.
First we consider the construction in the case of the Coxeter system .(W, S). Let

.K(L′) denote the fundamental chamber for .(W ′, S′), i.e., .K(L′) is the geometric
realization of the order complex of .S(L′)op. Similarly, if .S(L) denotes the poset
of simplices in the simplicial complex L, then let .K(L) = |S(L)op| be the dual
chamber (i.e., .K(L) is the fundamental chamber for a W -action on .D(W,K(L))).
The piecewise spherical metric on .L′ induces one on L: the length of the edge
.{s, t} is .π − π/m(s, t). The space .D(W,K(L)) need not be the Davis–Moussong
complex: a necessary and sufficient condition for this to be true is that .L = L(W, S),
i.e., that L is a metric flag complex (cf. Definition 4.13). From now on, we assume
this to be the case. The map f can be used to define a new stratification of .K(L)

indexed by .S(L′):

.K(L)s′ :=
⊔

s∈f−1(s′)
K(L)s, and for each T ′ ∈ S(L′),

K(L)T ′ :=
⊔

T ∈f−1(T ′)
K(L)T . (4.28)

Let .D(W ′,K(L)) be the result of applying the basic construction to this new
stratification of .K(L). If .f |L1 is an embedding onto the full subgraph of the 1-
skeleton of .L′ spanned by .f (S), then W is isomorphic to the special subgroup
.W ′

f (S) of .W ′ and .D(W,K(L)) is a contractible subcomplex of .D(W ′,K(L)). If this
is not the case, then .W �= W ′ and .D(W ′,K(L)) is not simply connected. (Indeed,
a necessary condition for .D(W ′,K(L)) to be simply connected is that .K(L)s′ be
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connected for each .s′ ∈ S′ and that .K(L){s′,t ′} �= ∅ whenever .m′(s′, t ′) �= ∞,
see [82, Prop. 8.2.11]). ) When .f (S) = S′, the natural .ϕf -equivariant map,
.D(W,K(L)) → D(W ′,K(L)), is the projection map of the universal covering.
Similarly, for .A′ the Artin group associated to .(W ′, S′), the complex .D(A′,K(L))

is a quotient of the Deligne complex .D(A,K(L)) (.= Λ(W, S)).
More interesting is the case of buildings. If .C′ is a building of type .(W ′, S′)

and .K(L) has stratification defined by (4.28), then .D(C′,K(L)) is a nonstandard
realization .C′. Let .D̃ be the universal cover of .D(C′,K(L)). The inverse image
of a chamber of .D(C′,K(L)) in .D̃ is a disjoint union of copies of .K(L) (the
inverse image is isomorphic to the product of .K(L) with the fundamental group
of .D(C′,K(L))). Such a copy of .K(L) in .D̃ is called a chamber and the set of
such chambers is denoted .C. Note that .C has an obvious structure of a chamber
system over S. The main result of [83], which was previously used in the proof of
Theorem 4.110, is the following.

Theorem 4.119 (cf. [83, Thm. 2.5] As Well As Theorem 4.110) The universal
cover .D̃ of .D(C′,K(L)) is the standard realization of a building .C of type .(W, S).

The building .C = f ∗(C′) is called the pullback of .C′ via f .

Remark 4.120 When .C′ admits a chamber-transitive automorphism group .G′, the
pullback .f ∗C′ could also be defined by using the method of simple complexes
of groups explained at the end of the previous subsection. Let .B ′ < G′ be the
stabilizer of a given chamber .C′ ∈ C′. For .R ≤ S′, let .G′

R be the stabilizer of
the R-residue containing .C′. By Theorem 4.96, .G′ = (G′

R)R∈S(W ′,S′)op is a simple
complex of groups over .S(W ′, S′)op. We can pull this back to get a simple complex
of groups .GSop = (GT )T ∈Sop , defined by .GT = G′

f (T ). Let G denote the direct
limit of .GSop. There is an obvious simple morphism .ψ ′ from this simple complex
of groups to .G′. The development of .(GT )T ∈Sop with respect to .ψ ′ is the complex
.D(C′,K(L)) discussed above and this leads to a homomorphism .G → G′ with
kernel .π1(D(C′,K(L)). (See Appendices A.1 and A.2 for definitions of terms in
the previous two sentences.)

For example, the simplicial map .f : L → L′ required in the definition of
pullback could be one of the following:

(a) a coloring (defined below), where .L′ = Δ(S′) is a simplex,
(b) a covering projection,
(c) the inclusion of a subcomplex, or
(d) a covering space of a subcomplex.

Definition 4.121 A coloring of a simplicial complex L is a simplicial map .f :
L → Δ(S′) whose restriction to each simplex is injective. The elements of .S′ are
the colors. (The map f gives a coloring of the vertices of L by elements of .S′.)

Coxeter Systems and Buildings of Type FC Suppose .(W ′, S′) is a spherical
Coxeter system so that .L′ = Δ(S′) is the simplex on .S′. Also suppose L is a
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flag complex with vertex set S and that .f : L → Δ(S′) is a coloring. The
resulting Coxeter system .(W, S) is type FC (see Definition 4.29). When .W ′ =
(C2)

S′
the complex .D(W ′,K(L)) plays the role of the polyhedral product .PL

(.= ([−1, 1], {±1})L) of (3.3). The natural map .D(W,K(L)) → D(W ′,K(L))

is the universal cover. Since .W → W ′ is injective on spherical special subgroups,
.π1(D(W ′,K(L))) = ker(W → W ′) is a torsion-free subgroup of finite index in W .
Since .D(W,K(L)) (.= Σ(W, S)) is .CAT(0), the polyhedron .D(W ′,K(L)) is NPC.

If .C′ is a spherical building of type .(W ′, S′) and .f : L → Δ(S′) is a coloring,
then .C = f ∗C′ is a regular building of type .(W, S). While it is not true that every
spherical Coxeter system .(W ′, S′) can occur as the type of a thick, locally finite
spherical building, many of them can occur. For example, the irreducible Coxeter
systems with diagrams .An, .Bn, .Dn, .G2, .F4, .E6, .E7, and .E8 all can occur. For
spherical buildings of rank two whose Coxeter group is a dihedral group of order
2m (i.e., for generalized m-gons), a theorem of Feit–Higman [117] asserts that
thick, finite generalized m-gons exist only for .m ∈ {2, 3, 4, 6, 8} (cf. Example 4.93
and Theorem 4.130 below). The classical examples of spherical buildings will be
discussed in more detail in Sect. 4.4.8. In the next subsection such thick spherical
buildings will be used as inputs for the pullback construction to get many new
examples of buildings.

4.4.6 Using Pullbacks to Construct Examples

Here are two questions with which we will be concerned in this subsection. To
simplify the discussion, suppose all buildings are locally finite and thick.

Question 4.122 Which Coxeter systems .(W, S) occur as the type of a thick, locally
finite building?

In other words, given a finite simplicial graph .L1, for which labeling .m :
Edge(L1) → {2, 3, 4, 6, 8} does there exist a thick, locally finite building .C with
Coxeter system defined by m? For example, one can ask this question when .L1 is a
k-circuit.

Question 4.123 If .C is a thick, regular building of type .(W, S), then which S-tuples
.(qs)s∈S can occur as parameters?

If .C is a regular building of rank one, then, by Example 4.92, its parameter can
be an arbitrary integer .q ≥ 1. If .C has rank two, then it is a thick, generalized m-gon
as in Example 4.93 and, by the Feit–Higman Theorem [117], .m ∈ {2, 3, 4, 6, 8}.
If .m = 2, then .C is a product of rank one buildings and there are no restrictions
on the parameters. If .m = 3, then .qs = qt . When .m = 4, 6 or 8 there are severe
restrictions on the parameters .(qs, qt ) (see [198, Thm. 3.4, p. 39]). Suppose .C is a
locally finite, thick, irreducible spherical building of rank .≥ 3. By Tits’ classification
of finite spherical buildings of rank .≥ 3, which was discussed in the beginning of
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Sect. 4.4, .C is essentially the building of an algebraic group over a finite field .Fq .
The Coxeter matrix of such an irreducible spherical Coxeter system of rank .≥ 3
must satisfy the crystallographic condition that no .m(s, t) can be equal to 5; in other
words, all edges of the defining graph must be labeled 2, 3 or 4; so, .H3 and .H4 do
not occur as subdiagrams of the Coxeter diagram. If the diagram is connected and
the label 4 does not occur, then all generators .s ∈ S are conjugate and the .qs are
all equal, their common value q is the order of .Fq (a prime power). If the label 4
occurs, then it only occurs once, the diagram is .Cn or .F4 and there are two conjugacy
classes of Coxeter generators in S; hence, there are two parameters .qs and .qt . (The
root system .Cn has the same Coxeter diagram as .Bn.) For .Cn the possibilities for
.(qs, qt ) are .(q, q), .(q, q2), .(q2, q) or .(q2, q3). For .F4 the possibilities for .(qs, qt )

are .(q, q) or .(q, q2). (See [198, Appendix 6] or [53].) So, for a finite, irreducible
spherical building, the parameters are determined by the finite field .Fq ; in particular,
both parameters are a power of the characteristic of .Fq . On the other hand, when .C

is reducible, then .(W, S) = (W1 × · · · ×Wk,
⊔

Si) with .k > 1, .C = C1 × · · · × Ck

and the parameters for .Ci and .Cj , with .i �= j are independent of one another: for
example, they can be associated to different primes. (When the parameters of .C

are associated to different primes we say that .C is of “mixed type.”) One of the
main conclusions to be drawn from this subsection is that many buildings of mixed
type exist, even when the building is not a product as we will see in the following
example.

Example 4.124 (.dim L = 1, So .C Could Be a Fuchsian Building) Suppose .C′ is
a generalized m-gon, i.e., .(W ′, S′) = (Dm, {s′, t ′}) and .L′ is the 1-simplex .Δ(S′).
If L is any bipartite simplicial graph, then it admits a coloring .f : L → Δ(S′).
For example, L could be a 2k-gon or a finite tree. So, for any bipartite graph L,
there is a labeling of .Edge(L) where each edge is labeled by the same integer m. If
.m ∈ {2, 3, 4, 6, 8}, we can choose .C′ to be a thick generalized m-gon. Hence, if L is
any bipartite graph, there is a building .C such that each rank two spherical residue
is isomorphic is the generalized m-gon .C′. In other words, the link of each vertex
of .K(L) is isomorphic to the 1-dimensional piecewise spherical complex .σ(C′). (A
vertex of .K(L) corresponds to the midpoint of an edge of L.) Suppose L is a 2k-gon.
When .2k = 4, we require .m ≥ 3. Then .K(L) can be realized as a convex 2k-gon
in .H

2; so, .C is a Fuchsian building. Such buildings need not be associated to any
algebraic group or Kac–Moody group. For example, there are “non-Desarguesian”
projective planes, i.e., generalized 3-gons that satisfy the axioms for a projective
plane but are not isomorphic to a projective plane over any finite field or skew field
and such generalized 3-gons can occur as links of vertices.

Example 4.125 (More Examples with .dim L = 1) We can get many more
examples with .dim L = 1 by starting with .(W ′, S′) a Coxeter system of rank
.> 2. The Coxeter system .(W ′, S′) could be spherical (in which case .L′ = Δ(S′))
or possibly a euclidean Coxeter system (in which case .L′ = ∂Δ(S′)). To further
simplify the discussion let us suppose L is a circuit of length n so that .K(L) is an
n-gon. A simplicial map .f : L → Δ(S′) is the same thing as a closed edge path,
possibly with backtracking. If the diagram of .(W ′, S′) is .˜An−1, then .∂Δ(S′) contains
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an n-circuit with each edge labeled 3. Let .f : L → ∂Δ(S′) be an embedding whose
image is this n-circuit. If .C′ is a building of type .(W ′, S′), then over each edge of
.f (L) we have a rank two spherical residue with diagram .A2, i.e., a projective plane.
In particular, L can be an n-gon for n odd with each edge labeled 3. The resulting
building .C over .K(L) will be Fuchsian provided .n > 3. In this fashion we can find
examples of buildings with L an n-gon whose edges are labeled fairly randomly
by elements of .{2, 3, 4}. We note that when .C′ is an irreducible spherical building
corresponding to an algebraic group over a finite field .Fq or when it is an irreducible
euclidean building corresponding to a discrete valuation ring with residue field .Fq ,
then .C′ and the resulting pullback .C = f ∗C′ will have thickness depending on the
field .Fq .

If .(W ′, S′) is not irreducible, then different factors can be algebraic groups over
finite fields of different characteristics. For example, the numbers .qs + 1 could be
the cardinalities of projective lines over completely different fields. So, the .S′-tuple,
.(qs)s∈S′ , need not be a constant function of s. For example, suppose .(W ′, S′) =
(
∑

Wi,
⊔

Si) is a direct sum of dihedral groups .Wi , .i ∈ {1, . . . , k}, where .Wi =
Dmi

is finite dihedral group of order .2mi generated by .Si = {si, ti}. Its nerve .L′ =
L(W ′, S′) is a join of 1-simplices, .σ1∗· · ·∗σk . Each edge of .L′ is labeled either by an
.mi or by 2. Suppose .C′ = C1×· · ·×Ck , where .C′

i is a generalized .mi-gon. For .i �= j

the thickness parameters .qsi and .qsj are independent of each other (in fact if .mi �= 3,
then .qsi and .qti also need not be equal). Hence, the .S′-tuple .(qs)s′∈S′ for .C′ need not
be constant. Given a flag complex L and a simplicial map .f : L → L′, the labeling
of .Edge L′ pulls back to a labeling of .Edge L and we get a building .C. In this way,
when L is a graph we can produce any labeling of .Edge L by .{2, 3, 4, 6, 8} provided
that whenever .{e, f } is a pair of adjacent edges if .m(e) ≥ 3, then .m(f ) = 2. For
example, if L is a 2k-circuit we can produce a labeling where every other edge is
labeled by 2 and where the thicknesses at any two vertices, which are connected by
an edge that is not labeled by 2, are different.

Example 4.126 (.dim L = 2 and .K(L) Is a Simple 3-Polytope) Suppose L is a
flag triangulation of .S2 and that .f : Vert L = S → Δ(S′) is a 3-coloring where
.S′ = {s0, s1, s2} is the vertex set of the 2-simplex .Δ(S′). One way to obtain such
an L together with a coloring f is to let L be the barycentric subdivision of the
boundary complex of any 3-dimensional polytope and define .f : S → {s0, s1, s2}
to be the coloring which assigns to the barycenter of a k-face, the color .sk .
Another possibility is to take L to be the boundary complex of an octahedron. The
edges of .Δ(S′) are .{s0, s1}, .{s0, s2} and .{s1, s2}. The coloring induces a function
.Edge L → Edge(Δ(S′)). Suppose .(W ′, S′) is a spherical Coxeter system of rank
three corresponding to some edge labeling .m′ : Edge(Δ(S′)) → {2, 3, 4}. (In other
words, the possible off-diagonal entries of the Coxeter matrix for .(W ′, S′) are 2, 3 or
4.) Composing this with the edge labeling induced by the coloring, we get a labeling
.m : Edge L → Edge(Δ(S′)) and a corresponding Coxeter system .(W, S) with
fundamental chamber .K(L). The natural stratification on .K(L) is combinatorially
equivalent to a 3-dimensional simple convex polytope. If .C′ is a thick spherical
building of type .(W ′, S′), then the resulting pullback .C will be a building over
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.K(L) such that each spherical residue of rank three is isomorphic to .C′. Since L is a
barycentric subdivision, all empty 4-circuits are made of edges mapping to .{s0, s2}.
Hence, if .m′(s0, s2) �= 2, then .L1 contains no 4-circuit with each of its edges labeled
by 2. It then follows from Andreev’s Theorem (see Remark 4.22) that .K(L) can be
realized as a convex polytope in .H

3 so that the dihedral angle along the edge dual
to .e ∈ Edge L is .π/m(e). When .m′(s0, s2) �= 2, W will be a cocompact reflection
group on .H

3. So, if .C′ is a spherical building of type .(W ′, S′), then the resulting
building .C (.= f ∗C′) is of type .(W, S) and has a piecewise hyperbolic, .CAT(−1)

metric on its standard realization so that each apartment is isometric to .H
3 (see

Theorem 4.108). So, 3-colorable flag triangulations of .S2 yield many examples of
hyperbolic buildings.

The Four Color Theorem enters the discussion here. Indeed, any triangulation of
.S2 admits a 4-coloring .f : L → ∂Δ3(S′), where .S′ = {0, 1, 2, 3} and by choosing
.(W ′, S′) to be either a spherical or affine Coxeter group, one gets many examples
of buildings .C of type .(W, S). Most of these also will be hyperbolic buildings
(provided the triangulation contains no empty 4-circuit with each edge labeled by
2, cf. Example 4.16). Similar examples of hyperbolic buildings with fundamental
chamber a hyperbolic polytope are explored by Haglund and Paulin in [141, 142].

Example 4.127 (.dim L = 3 and .K(L) Is a Simple 4-Polytope) This is a
continuation of Example 4.36 in Sect. 4.2.8. Suppose J is a flag triangulation of .S2

with vertex set T . Suspend J to get a triangulation L of .S3. Call the suspension
vertices .s+ and .s− and let .S = T ∪ {s+, s−}. Then .K(L) is combinatorially
equivalent to a convex polytope, namely, the prism on the simple polytope .J ∗ dual
to J . Let .(W ′, S′) be the spherical Coxeter system of rank 4 with Coxeter diagram
.D4. Label each edge of J by 2 and each edge of .L − J by 3. If J has no empty
4-cycles (for example J could be the boundary complex of an icosahedron), then L

has no empty 4-cycles with each edge labeled 2. As in Example 4.36, if this is the
case, the corresponding Coxeter system .(W, S) is word hyperbolic. Suppose we can
find a function .g : Vert(J ) → {s0, s1, s2} which is a 3-coloring of J . Extend this
to a 4-coloring of L, call it .f : S → S′, by sending the suspension vertices .s+ and
.s− to the central vertex .s3 of .D4. Define the Coxeter group W to be the pullback
of .W ′ via f . Finally, let .C′ be a spherical building of type .D4 and let .C = f ∗C′ be
the pulled back building over .K(L). Although it may not be possible to 3-color J

while simultaneously requiring it to have no empty 4-cycles, by using the method
of simple complexes of groups discussed below, we can find a hyperbolic building
isomorphic to .C in which each of its spherical residues has type corresponding to a
subdiagram of .D4.

Example 4.128 (Branched Covers) We describe some further examples of type
(a) in the list preceding Definition 4.121. Suppose .L′ is the nerve of a Coxeter
system .(W ′, S′) and that .f : L → L′ is a covering space. The simplicial structure
on .L′ lifts to a simplicial structure on L: a simplex of L is a component of the
inverse image of a simplex of .L′. We can pull back the labeling on .Edge(L′) to get
a labeling on .Edge(L) and hence, a Coxeter system .(W, S) where .S = f−1(S′).
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By construction, .L ≤ L(W, S); an easy argument shows that .L(W, S) ≤ L

and hence, .L(W, S) = L (this uses the fact that each triangle in L projects to a
triangle in .L′). Since .K(L′) = Cone L′ and .K(L) = Cone L, the natural projection
.K(L) → K(L′) is a branched cover (branched at the cone point). The stratification
of .K(L′) indexed by .S(W ′, S′) lifts to one on .K(L) with the same index set.
Furthermore, .K(L) also has a natural stratification indexed by .S(W, S). As in the
previous examples, .D(W,K(L)) and .D(W ′,K(L′)) are identified with the Davis–
Moussong complexes .Σ(W, S) and .Σ(W ′, S′); the natural map .D(W,K(L)) →
D(W ′,K(L)) is the universal cover and .D(W,K(L)) → D(W ′,K(L′)) is a
branched cover. Suppose .C′ is a building of type .(W ′, S′) with standard realization
.D(W ′,K(L′)). By Theorem 4.119, the universal cover of .D(C′,K(L)) is the
standard realization of a building .C of type .(W, S).

Lattices in Automorphism Groups We suppose .C′ is a building of type .(W ′, S′)
and that .C is the building of type .(W, S) constructed in Theorem 4.119 via
the pullback construction. If .G′ is an automorphism group of .C′, then .G′

�

D(C′,K(L))), where .K(L) is stratified as in (4.28). Let G be the group of all lifts
of elements of .G′ to .D(C,K(L)). Then G is a group of automorphisms of .C and we
have a short exact sequence:

.1 → π → G → G′ → 1,

where .π = π1(D(C′,K(L)). (All this should be reminiscent of the construction in
Sect. 3.1.2 of graph products using .RABs.) If .G′ is chamber-transitive on .C′, then G

is obviously chamber-transitive on .C. More generally, the sets of orbits .C′/G′ and
.C/G are naturally bijective with one another. If .C′ is locally finite and .G′ ≤ Aut(C′)
is a lattice, then .G ≤ Aut(C) is also a lattice.

The full automorphism group of a building constructed via a pullback is a locally
compact group, usually not discrete and usually uncountable. By using ideas of Tits
[217], it is proved in [141] that the full automorphism group is often a virtually
simple group (as an abstract group).

Lemma 4.129 (cf. [83, Cor. 2.12]) Suppose, as in the last two paragraphs of
Sect. 4.4.5, that .(W ′, S) is a spherical Coxeter system, that .f : L(W, S) → Δ(S)

is inclusion of a subcomplex, that .C′ is a finite spherical building of type .(W ′, S)

and that .C = f ∗C′. Then .π = π1(D(C,K(L))) is a torsion-free uniform lattice in
.Aut(C).

Proof Since .C′ is finite, the trivial subgroup is a lattice in .Aut(C′); hence, its lift is a
lattice in .Aut(C). Since .C is .CAT(0), any finite subgroup of .Aut(C) fixes a spherical
residue and hence, projects isomorphically to a finite subgroup of .Aut(C′). Hence,
.π is torsion-free.
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4.4.7 Generalized Polygons

If .(W, {s, t}) is a Coxeter system of rank two, then W is isomorphic to a dihedral
group .Dm (whose diagram is .I2(m)) where m is the order of st . This subsection
continues Example 4.93. A spherical building of rank two whose type is .Dm is a
called generalized m-gon. An equivalent definition is that a bipartite graph .Ω is the
geometric realization of a generalized m-gon if and only if its girth is 2m and its
diameter is m. We assume .Ω is regular so that its parameters .(qs, qt )s,t∈S depend
only on the types s and t of the vertices. If .m = 2, then .Ω is a complete bipartite
graph. The valence of such a vertex is either .qs + 1 or .qt + 1. For example, if .m = 2
and .(qs, qt ) = (2, 2), then .Ω is the utilities graph .K3,3. If the order m of st is odd,
then .qs = qt . The “free construction” of Tits shows that thick generalized m-gons
exist for any .m ≥ 2. (See [198, Exercise 21, p. 37].) However, if we want .Ω to be
finite, then the following theorem imposes severe restrictions on m.

Theorem 4.130 (Feit–Higman [117]) Suppose a finite generalized m-gon .C is
finite and thick. Then .m ∈ {2, 3, 4, 6, 8}.
If .m = 2, then .C is a .RAB; so, the parameters .qs and .qt can be arbitrary positive
integers (e.g., see Sect. 4.4.3). When m is odd, s and t are conjugate in the dihedral
groups and we must have .qs = qt . For .m > 2 there are additional heavy restrictions
on .qs and .qt . For example there is the following result of Feit–Higman (cf. [82,
Thm. 18.3] or [198, Thm. 3.4]).

Theorem 4.131 (Feit–Higman [117]) Suppose .C is a finite, thick, generalized
m-gon, with .m ∈ {3, 4, 6, 8}. Then there are the following restrictions on the
parameters .qs and .qt :

.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

for m = 4,
qsqt (qsqt+1)

qs+qt
∈ Z,

for m = 6, qsqt is a perfect square,

for m = 8, 2qsqt is a perfect square.

Moreover, for .m = 4 or 8, .qs ≤ q2
t and .qt ≤ q2

s , while for .m = 6, .qs ≤ q3
t and

.qt ≤ q3
s .

The finite, thick generalized m-gons which correspond to spherical buildings
over finite fields are precisely the “Mouffang polygons.” (See[225].)

4.4.8 The Basic Algebraic Examples

In this subsection we consider the main examples of buildings associated to
algebraic groups and Kac–Moody groups. Surveys of this material can be found
in [115], [196], [142]. These examples can be used as inputs for the pullback
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construction in the previous subsections. In each case the building will have a
chamber-transitive automorphism group.

Irreducible Spherical Buildings of Rank .≥ 3 In the beginning of Sect. 4.4, we
discussed the result of Tits [218] on the classification of thick spherical buildings.
Roughly, this says that if .C is an irreducible spherical building of rank at least 3, then
.C is isomorphic to the building associated to an algebraic group over a field .F. Here
we are mainly interested in the case where .F = Fq is a finite field of order q. (This
implies that the classical realization of the building is a finite simplicial complex.)
The Coxeter diagrams .An, .Cn, .Dn correspond to classical groups .GLn(q), .On(q),
.Sp2n(q), where the q means the field is .Fq . There also are twisted versions of such
groups which go by symbols such as .

2An(q) (.= U2n(q) or .U2n(q)) and .
2Dn+1(q)

(.= O−
2n+2). The quotient of such a group by its center turns out to be a simple

group. These “simple groups of Lie type” play a dominant role in the theory of
finite simple groups (see Carter [53]). There are also versions of such algebraic
groups corresponding to remaining irreducible spherical Coxeter diagrams of rank
.≥ 3 other than .H3 and .H4. The construction of algebraic groups over .Fq for the
diagrams, .G2, .F4, .E6, .E7, .E8 does not follow automatically from the theory of
simple complex Lie algebras. Rather it depends on a result of Serre which states
that the structure constants for these Lie algebras can be taken to be integers. It
follows that the Lie algebras can be defined over .Fq . Descriptions of the spherical
buildings over finite fields can be found in Ronan’s book [198, Ch. 8] and lists in
[198, appendix 6] or [122, Table1]. (See Fig. 4.2 for a picture of the projective plane
corresponding to .GL3(Fq).)

As we shall see below, Serre’s result leads to Kac–Moody Lie algebras, as well as
to Kac–Moody groups over .Fq (the analogs of the Chevalley groups) and eventually
to Kac–Moody buildings.

Affine Buildings To say that .C is an affine building means that its type is a
euclidean Coxeter system. If .(W, S) is an irreducible euclidean Coxeter system,
then .S(W, S)op can be identified with the face poset of the boundary complex of
a simplex. Hence, the fundamental chamber K is a simplex. It follows that when
the euclidean Coxeter system is irreducible, the standard realization of a building of
that type is a simplicial complex. For example, any tree without terminal vertices
is the realization of an affine building of type .(D∞, {s, t}) (i.e., its type is .Ã1).
Affine buildings are often associated to a field with valuation, such as .Qp (the p-
adic completion of the rationals) or .Fq((t)) (Laurent series over .Fq ). If the residue
field is finite, then the building will be locally finite. Next, we describe the classical
example of an affine building.

Example 4.132 (The Building .Ãn(F, v) (cf. [198, §9.2])) Suppose .F is a field with
a discrete valuation .v : F∗ → Z, that .A = {x ∈ F | v(x) ≥ 0} is the ring of
integers, that .π = {x ∈ F | v(x) ≥ 1} is the maximal ideal of A and that .k = A/π

is the residue field. Let V be an .(n + 1)-dimensional .F-vector space. A v-lattice
.Λ < V is a free A-submodule which generates V as a vector space. Two lattices
are equivalent if one is a multiple of the other by a power of .π . The equivalence
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class of .Λ is denoted .[Λ]. The standard realization of the building .Ãn(F, v) will be
an n-dimensional simplicial flag complex. Its vertices are the equivalence class of
lattices. Equivalence classes .[Λ] and .[Λ′] are connected by an edge if for some
.Λ ∈ [Λ] and .Λ′ ∈ [Λ′] we have .πΛ < Λ′ < Λ. The standard realization
of .Ãn(F, v) is the order complex of this poset. (Hence, it is a flag complex.) A
chamber C is a top-dimensional simplex, that is, .C = {[Λ0], . . . , [Λn]}, where
we can choose representatives so that .πΛn < Λ0 < · · · < Λn. This yields a
building of type .Ãn. The group .SL(V ) (.∼= SLn+1(F)) acts on it and the action
is chamber-transitive. The case of .SL2, when the building is a tree, is one of the
principal topics of Serre’s book [207]. Suppose .C = {[Λ0], . . . , [Λn]} is a chamber
in .Ãn(F, v) where .πΛn < Λ0 < · · · < Λn. Then .V = Λn/πΛn is an .(n + 1)-
dimensional vector space over k and each .Λi/πΛn is a vector subspace. Moreover,
.Λ0/πΛn < · · · < Λn/πΛn is a chamber in the spherical building for .SL(V ),
i.e., in the projective space discussed in Example 4.99. One can then choose a basis
.e1, . . . , en for V so that .Λn = 〈e0, . . . , en〉A, .Λn−1 = 〈πe0, e1 . . . , en〉A, .Λ0 =
〈πe0, . . . , πen−1, en〉A. Any codimension-one face of .{[Λ0], . . . , [Λn]} is obtained
by omitting one of the .[Λi]. The link of such a codimension one face is a projective
line over k. So, if .k = Fq , then each parameter of .Ãn(F, v) is q. In general, the
link of an .(n − i)-simplex is the classical realization of a spherical residue of
rank i. It follows that the local isomorphism type of .Ãn(F, v) is determined by
the residue field k. For example, .Qp and .Fp((t)) have the same residue field, .Fp,
and hence, are locally isomorphic. Using the fact that the fundamental chamber
is a simplex, one can then show that the buildings .Ãn(Qp) and .Ãn(Fp((t))) are
isomorphic. For example, .Ã1(Qp) and .Ã1(Fp((t))) are both regular trees of degree
.p+ 1. However, their natural chamber-transitive automorphism groups .SLn+1(Qp)

and .SLn+1(Fp((t))) are completely different.

Kac–Moody Buildings In order to construct a Kac–Moody group or a Kac–Moody
building from a Coxeter matrix .(m(s, t)) and a finite field .Fq , one first needs a
“generalized Cartan matrix” .(Ast ). This means an .(S×S)-matrix with integer entries
such that .Ass = 2 and .Ast ≤ 0 for .s �= t . Furthermore, for .m(s, t) = ∞, .Ast ≤
−2, while for .m(s, t) �= ∞, .AstAts = 4 cos2 π

m(s,t)
(cf. (4.15) in Sect. 4.2.9). The

integrality condition then forces:

.m(s, t) ∈ {2, 3, 4, 6,∞}, for s �= t. (4.29)

Kac [161] and Moody then use a generalized Cartan matrix together with Serre’s
result first to define a root system and then an infinite dimensional Lie algebra
over .Z (called a “Kac–Moody algebra”). Finally, in analogy with the construction
of Chevalley groups, the difficult construction of Kac–Moody groups and their
buildings was accomplished by Tits [223, 224] in the 1980’s. The condition in
(4.29) rules out certain Coxeter systems from occurring as the type of a Kac–Moody
building, since in the labeled graph .(L1,m) no edge can be labeled by 5 or by an
integer .≥ 7. Nevertheless, whenever the Coxeter matrix .(m(s, t)) satisfies (4.29),
one can find a corresponding generalized Cartan matrix .(Ast ). Thus, Kac–Moody
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buildings provide a method for constructing locally finite building whose type can
be a fairly arbitrary Coxeter systems .(W, S). Other references include [194–196].

Suppose .C is a Kac–Moody building over a finite field and that G is the
corresponding Kac–Moody group. Some affine buildings are Kac–Moody buildings.
In particular, if .C is an affine building defined by an algebraic group over the field
.Fq((t)) with discrete valuation, then the algebraic group as well as the building
are Kac–Moody. With its natural topology, the automorphism group G of a Kac–
Moody building usually will not be discrete. In fact, if .C is not affine, then there is
no uniform lattice in G. On the other hand, the theory of twin buildings provides
us with an embedding .G ↪→ G × G and an action .G � C × C so that the image
of G is an irreducible (non-uniform) lattice in .G × G. A high point in this area
is the theorem of Caprace and Rémy in [52] that when the Kac–Moody building
is irreducible and not affine, then there is a finite index subgroup of G which,
when divided by its center, is simple (as an abstract group). So, there is a close
analogy with the theory of finite Chevalley groups: irreducible spherical buildings
lead to finite simple groups while irreducible, non-affine, Kac–Moody buildings
yield infinite simple groups. The structure of the proof in [52] is similar to that
of the main theorem in Burger–Mozes [43, 45] which states that simple groups
occur as irreducible lattices in automorphism groups of the product of two trees
(cf. Sect. 2.4.4).

Remark 4.133 It is observed in [52] that some of these Kac–Moody groups G have
Kazhdan’s Property (T). Hence, there exist infinite simple groups with Property (T).



Part IV
More on NPC Cube Complexes



Chapter 5
General Theory of Cube Complexes

Two important concepts are explained in this chapter. First, there is Sageev’s defi-
nition [202] of a “pocset” or “abstract half-space system” and his result explaining
how one can construct a .CAT(0) cube complex from such a half-space system. (See
also [181, 182, 197].) This construction was first used by Sageev [200] to prove that
given a group G and a collection of “sufficiently deep codimension-one subgroups”
one can construct a .CAT(0) cube complex with G-action. The hyperplanes in this
.CAT(0) cube complex correspond to cosets of the codimension-one subgroups.
The quotient of the .CAT(0) cube complex by G is an NPC cube complex. This
method undergirds many of the constructions of NPC cube complexes. The second
important concept is the notion of Haglund–Wise [143] of what it means for an
NPC cube complex to be “special.” This definition rules out the occurrence of
certain configurations of hyperplanes; for example, hyperplanes are not allowed to
have self-intersections. Classifying spaces of .RAAGs (or commutator subgroups
of .RACGs) have a universal property for special cube complexes: if B is an NPC
special cube complex, then there is a locally isometric immersion of B into the
classifying space of some .RAAG, .AL, so, that .π1(B) becomes a subgroup of .AL.
(Here .L1 is the incidence graph of the set of hyperplanes in B.) The importance
of this result is that .RAAGs have strong separability properties which descend to
subgroups. For example, any .RAAG is residually finite and any word-quasiconvex
subgroup of a .RAAG is a virtual retract. The relevance of this to hyperbolic 3-
manifold groups comes from work of Kahn–Marković (cf. Theorem 5.20), which
shows that any such group contains many nice codimension-one subgroups (i.e.,
surface subgroups). After using Sageev’s construction, it follows that any hyperbolic
3-manifold group is “virtually special,” i.e., has a finite index subgroup which is the
fundamental group of a compact special cube complex (cf. Theorem 5.21). These
facts allowed Agol [3] to prove two of Thurston’s conjectures about hyperbolic 3-
manifolds: the Virtual Haken Conjecture and the Virtual Fibering Conjecture. These
conjectures are discussed in Sect. 5.3.5.

© Springer Nature Switzerland AG 2024
M. W. Davis, Infinite Group Actions on Polyhedra, Ergebnisse der Mathematik
und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 77,
https://doi.org/10.1007/978-3-031-48443-8_5

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-48443-8protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-3-031-48443-8_5
https://doi.org/10.1007/978-3-031-48443-8_5
https://doi.org/10.1007/978-3-031-48443-8_5
https://doi.org/10.1007/978-3-031-48443-8_5
https://doi.org/10.1007/978-3-031-48443-8_5
https://doi.org/10.1007/978-3-031-48443-8_5
https://doi.org/10.1007/978-3-031-48443-8_5
https://doi.org/10.1007/978-3-031-48443-8_5
https://doi.org/10.1007/978-3-031-48443-8_5
https://doi.org/10.1007/978-3-031-48443-8_5
https://doi.org/10.1007/978-3-031-48443-8_5


168 5 General Theory of Cube Complexes

Here is some more background. The fundamental groups of many closed
hyperbolic n-manfolds can act freely and cocompactly on .CAT(0) cube complexes.
For .n = 3, after passing to a subgroup of finite index, this was proved for all
hyperbolic 3-manifold groups by Bergeron–Wise by using the Kahn–Marković
result. (See Theorem 5.21.) For .n > 3, it holds for certain arithmetic holds n-
manifolds by a result of Bergeron-Haglund-Wise (cf. Theorem 5.24). In Sect. 5.3
we prove Haglund’s result that word-quasiconvex subgroups of .RACGs are virtual
retracts.

We use the words “half-space” and “hyperplane” in several different ways in
this chapter. First these are geometric notions that make sense in any .CAT(0) cube
complex. In this case we often confuse an open half-space with the set of vertices
that lie in it. Secondly, there is the abstract notion of a “half-space system” or “wall
set” (or “wall space”). The most abstract version is just a certain type of poset with
an involution called “complementation.” The poset with this additional structure
is a “pocset.” In these abstract versions a “hyperplane” is just a pair consisting of
a half-space and its complement. In Sect. 5.1 we define the geometric notions of
“hyperplanes” and “half-spaces” in .CAT(0) cube complexes.

5.1 Abstract CAT(0) Cube Complexes: Half-Space Systems

In Sect. 5.1.1 we define geometric hyperplanes and half-spaces in a .CAT(0) cube
complex. In Sect. 5.1.2 we give abstract versions of these notions in terms of a
“half-space systems” or “pocsets.” Then we show how to recover a .CAT(0) cube
complex from a half-space system. In Sect. 5.1.3 we give conditions to insure that a
group action on a .CAT(0) cube complex will be proper and have compact quotient
space. In Sect. 5.1.4 we discuss results of Bergeron and Wise for cubulating certain
hyperbolic n-manifolds.

5.1.1 Hyperplanes in Cube Complexes

A midcube in .[−1, 1]n is its intersection with a coordinate hyperplane .xi = 0 for
some i with .1 ≤ i ≤ n. The midcube .{xi = 0} intersects all edges of .[−1, 1]n that
are parallel to the basis vector .ei ∈ R

n.
Throughout this section X denotes a cube complex; it is not assumed to be NPC.

Two parallel edges of a square face in the cube complex X are said to be square
equivalent. We extend this to an equivalence relation on all of .Edge X.

Definition 5.1 A hyperplane in X dual to an equivalence class of edges is the union
of all midcubes in X that intersect only the edges in the given equivalence class.

A more abstract definition simply would be to say that a hyperplane is an
equivalence class of edges.
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A hyperplane is embedded if it intersects each cube in at most one midcube. In
other words, the hyperplane is embedded if it does not intersect any square in two
adjacent edges. A hyperplane might have self-intersections. If so, this can remedied
by “resolving” the hyperplane H to a cube complex .Ĥ , where .Ĥ is formed from
the disjoint union of all midcubes in H by gluing together two such whenever they
share a common face. The natural map .Ĥ → H is then an immersion.

Each midcube in a cube has a normal bundle which is a trivial line bundle. These
normal bundles glue together to give a normal bundle for each resolved hyperplane
in the cube complex X. The hyperplane is two-sided if its normal bundle is trivial;
otherwise, it is one-sided. Each hyperplane has an open tubular neighborhood in X

which can be identified with the image an open interval bundle over .Ĥ .
In the next theorem we list some properties of (geometric) hyperplanes that are

easy to verify in the case of a .CAT(0) cube complex.

Theorem 5.2 (See Sageev [202] or Niblo–Reeves [182]) Suppose Y is a .CAT(0)

cube complex. Then

(i) Each hyperplane is an embedded convex subset.
(ii) Each hyperplane has the structure of a .CAT(0) cube complex.

(iii) Each hyperplane separates Y into two components.

A (geometric) half-space in a .CAT(0) cube complex Y bounded by a hyperplane H

is one of the two components of .Y − H .

Example 5.3 (Hyperplanes in .TL and .PL) . Consider the cube complexes of
Sect. 3.1.1. Let L be a simplicial complex with vertex set I . Regard .S1 as the interval
.[0, 1] with end points identified, i.e., .S1 is a 1-dimensional cube complex. We see
that .(S1)I is a cube complex whose opposite face poset is bijective with the power
set of I . A hyperplane of .(S1)I is a subtorus of the form .{xi = 1/2}. Suppose .TL

is the polyhedral product of copies of .S1 defined by (3.5) (i.e., if .TL is the standard
classifying space of the .RAAG, .AL, then its hyperplane corresponding to .i ∈ I

is defined by .TL ∩ {xi = 1/2}. Note that this hyperplane does not separate .TL.
However, a lift of such a hyperplane does separate the universal cover .T̃L. (In fact,
such hyperplanes separate in the .2I -fold cover of .TL corresponding to the natural
homomorphism .π1(TL) → (Z/2)I . When L is a flag complex, this .(Z/2)I -fold
cover is the “pure Salvetti complex” of the .RAAG, .AL.)

Let .PL be the subcomplex of .[−1, 1]I defined in (3.3). Let .ri ∈ (C2)
I be the

reflection across the midcube .{xi = 0} of .[−1, 1]I . Basically, the set of edges
of .[−1, 1]I that are orthogonal to .{xi = 0} form a single parallel class, namely,
the edge parallel to .ei ; however, these edges might lie in several different square
equivalence classes. In other words, although the intersection .{xi = 0} ∩ PL

is a union of midcubes of .PL, this intersection might not be connected. In this
context we call .{xi = 0} ∩ PL a “multiple hyperplane” of .PL. Each component
of .{xi = 0} ∩ PL is an actual hyperplane of .PL. Of course, such a hyperplane is
embedded. For example, if L has no edges, then .PL is equal to the 1-skeleton of the
n-cube .[−1, 1]I and .{xi = 0} ∩ PL consists of .2n−1 midpoints of edges. Since .{0}
separates .[−1, 1], each hyperplane .{xi = 0} separates the cube .[−1, 1]I and hence,



170 5 General Theory of Cube Complexes

each multiple hyperplane separates .PL. Similarly, each hyperplane of the universal
cover .P̃L separates. So, properties (i) and (iii) of Theorem 5.2 hold for .P̃L. If L is a
flag complex, then .P̃L is .CAT(0) and (ii) also holds.

Suppose Y is a .CAT(0) cube complex with vertex set V . Each hyperplane of
Y partitions V into two subsets h and .hc called half-spaces. Any vertex .v ∈ V is
the intersection of all half-spaces h that contain it; moreover, for each vertex v and
each partition .{h, hc} of V into two half-spaces, v lies in exactly one of the two half-
spaces. This suggests that the information in a .CAT(0) cube complex can be encoded
by a “system of half-spaces,” as in the next subsection. This is explained by Niblo–
Reeves in [183] based on earlier work of Roller [197] and Sageev [200, 202]. When
Y is a tree, this theory was described earlier by Dunwoody [110]. There is also an
equivalent formulation in terms of “walls” and “wall sets” due to Haglund–Paulin
in [141]. These abstract notions are described in the next subsection.

5.1.2 Half-Space Systems and Sageev’s Construction

Suppose Y is a .CAT(0) cube complex with vertex set V . Each hyperplane of Y

partitions V into two subsets h and .hc called half-spaces. Any vertex .v ∈ V is
the intersection of all half-spaces h that contain it; moreover, for each vertex v and
each partition .{h, hc} of V into two half-spaces, v lies in exactly one of the two half-
spaces. This suggests that the information in a .CAT(0) cube complex can be encoded
by a “system of half-spaces.” This is explained by Niblo–Reeves in [182, 183] based
on earlier work of Roller [197] and Sageev [200, 202]. When Y is a tree, this theory
was described earlier by Dunwoody[110]. There is also an equivalent formulation
in terms of “walls” and “wall sets” due to Haglund–Paulin in [141].

Here is the definition from [182]. The data for a system of abstract half-spaces
consist of a triple .(H,<, ι) where .(H,<) is a poset and .ι is an order reversing
involution of .H denoted by .h �→ hc. The triple must also satisfy the following two
conditions:

(1) For any two elements .h1, .h2 ∈ H, there are only finitely many k such that
.h1 < k < h2.

(2) For any two distinct elements h, k of .H at most one of the following holds:

.h < k, h < kc, hc < k, hc < kc.

A triple .(H,<, ι) satisfying (1) and (2) is a half-space system. (Following Roller
[197], Sageev [202] calls such a triple .(H,<, ι) a “pocset,” which stands for a
“partialy ordered set with complementation”). Two half-spaces are nested if one
of the four conditions in (2) holds and they are transverse if none of the conditions
hold. (We are thinking of .{h, hc} as the vertex sets of a complementary pair of
geometric open half-spaces in a .CAT(0) cube complex separated by a common
bounding hyperplane .h. It makes sense to identify .h with the pair .{h, hc}.) In other
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words, .h can be identified with the orbit of a half-space h under the involution .ι. Let
.H denote the set of such orbits and let .∂ : H → H be the projection .h �→ h.

A more concrete version of a half-space system is given in [141] by using the
equivalent notion of a “wall set.” (See also [62, 151, 202, 234].) The definition is
basically the same except that each half-space in .H is required to be a subset of an
underlying set .Ω . A wall is then a partition of .Ω into two subsets. A wall set is
a pair .(Ω,W) where .W is a collection of walls. Two points of .Ω are required to
separated by finite, nonzero number of walls. One recovers the pocset .(H,<, ι) by
defining the half-space determined by a wall to be one of the two elements h of the
partition; the partial order is inclusion and the order-reversing involution is defined
by .hc = Ω − h.

A vertex v of half-space system .(H,<, ι) is a section of .∂ , i.e., a function .v :
H → H such that .∂ ◦ v = I and such that the following additional condition is
satisfied: for distinct hyperplanes .h and .k, .v(h) �< v(k). The vertex v lies in a half-
space h, written as .v ∈ h, if .v(h) = h. Sageev [202] uses the term of “ultrafilter”
rather than “vertex.” (Thus, an ultrafilter .ω is a collection of half-spaces so that (a)
if .h = {h, hc} is a hyperplane, then exactly one of h, .hc is in .ω and (b) if .h ∈ ω

and .h < h′, then .h′ ∈ ω. So, given a wall set .(Ω,W), an ultrafilter .ω on .W
is a collection of half-spaces so that (a) and (b) hold (cf. [21, p. 58]). Each point
.C ∈ Ω determines a principal ultrafilter .ωC defined by the condition that .h ∈ ωC

if and only if C lies in h. An ultrafilter .ω is a DCC ultrafilter (or a DCC vertex) if
it satisfies the descending chain condition. For example, consider the cubulation of
the real line .R by intervals of the form .[n, n + 1]. The hyperplanes are midpoints of
edges of the form .n + 1

2 . A half-space corresponding to such a midpoint .n + 1
2 is a

component of the complement, .R−{n+ 1
2 }, i.e., either .(−∞, n+ 1

2 ) (pointing to the
left) or .(n+ 1

2 ,+∞) (pointing to the right). The principal ultrafilter corresponding to
a midpoint consists of all the half-spaces which contain it. There also are ultrafilters
which are not DCC, say the ultrafilter consisting of all half-spaces pointing to the
left or all half-spaces pointing to the right. These non-DCC ultrafilters should be
thought of as boundary points (namely, .±∞) of the corresponding cubical structure
on .R.

Example 5.4 (Half-Spaces in Coxeter Systems) Suppose .(W, S) is a Coxeter
system as defined in the beginning of Chap. 4. (This means, in particular, that S

is a set of involutions which generate W .) Let

.R = {r ∈ W | r = wsw−1, for some w ∈ W and s ∈ S}. (5.1)

An element of R is a reflection. One definition of a Coxeter system is that for each
.r ∈ R the fix set of r separates .Cay(W, S) (see [82, Chapter 3]). In other words,
each reflection r defines a partition of W into two subsets .hr+ and .hr− where

.hr+ = {w ∈ W | l(w) < l(rw)} and hr− = {w ∈ W | l(w) > l(rw)}. (5.2)
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So, we get a wall set .(Ω,W) where .Ω = W and .W = R as in (5.1). The principal
ultrafilters correspond to the vertices of .Cay(W, S), i.e., to W . The principal
ultrafilter corresponding to the element .1 ∈ W is defined by .ω1 = hr+. Not every
vertex corresponds to a principal ultrafilter. A vertex which corresponds to a non-
principal ultrafilter is a phantom vertex. For example, if .W = D3, the dihedral group
of order 6, then there are 3 reflections and hence, 8 (.= 23) vertices. Six vertices
correspond to elements of W and the other two are phantom vertices.

Next we indicate how to recover a .CAT(0) cube complex X from a half-space
system. Heuristically, for each wall (i.e., hyperplane) .h, a vertex of a .CAT(0) cube
complex determines a choice of half-space bounded by .h, namely, the half-space
that contains the vertex. For any two vertices v, w, the set .H(v,w) of hyperplanes
which separate them is defined by .H(v,w) = {h | v(h) �= w(h)}. The vertices
v, w are adjacent if .Card(H(v,w)) = 1 in which case they are connected by an
edge. This defines a graph .Γ . Although this .Γ might not be connected, it turns out
that each of its connected components is the 1-skeleton of a .CAT(0) cube complex.
If v lies in h, then one can define a new section u of .∂ by putting .u(h) = hc

and not changing its value on any other hyperplane. If v also lies in k and .k <

h, then .u(k) = k < h = u(h)c; hence, u is not a vertex. On the other hand, if
h is minimal among all half-spaces containing v, then the section u obtained by
switching h with .hc is a vertex. If .h1, .h2 are a pair of minimal half-spaces both
containing v, then we can switch them both simultaneously if and only if they are
transverse. In this way we obtain a 4-circuit in .Γ which we can then fill in with
a square. More generally, if.h1, h2, . . . , hn is a family of mutually transverse half-
spaces each of which is minimal among the half-spaces containing v, then switching
gives us an embedded copy of the 1-skeleton of an n-cube in .Γ . Filling in all the
n-cubes obtained in this way, we get a cube complex X.

Theorem 5.5 (Sageev [200, 201]) Each component of the cube complex described
above is .CAT(0).

So, vertices corresponding to DCC ultrafilters determine a path connected, .CAT(0)

cube complex X. The other ultrafilters, which are not DCC, lie in a different path
components; they should be thought of as boundary points of X.

In terms of the wall set .(Ω,W) there is an n-cube in X for each collection
.{h1, . . . , hn} of n mutually transverse walls in .W .

The hyperplanes of a .CAT(0) cube complex Y give partitions of its vertex set V

into half-spaces. This defines a wall set .(V ,W) (where .W is the set of hyperplanes),
as well as a half-space system .(H,<, ι). The resulting .CAT(0) cube complex X

(.= X(H,<, ι)) is naturally identified with Y . There are no phantom vertices.

Example 5.6 (Codimension-One Submanifolds) We describe a classical situa-
tion where the cube complex is a tree. Suppose that .Mn+1 is an aspherical manifold
and that .Nn < Mn+1 is a .π1-injective submanifold of codimension one. Let .M̃ be
the universal cover of M and .Ñ a component of the preimage of N in .M̃ . A translate
of .Ñ by an element of G (.= π1(M)) is called a wall. Each wall separates .M̃ , i.e.,
the complement of a wall consists of two open “half-spaces.” Since the walls do
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Fig. 5.1 Separating curve in a surface, its universal cover and the dual tree

not intersect, half-spaces cannot be transverse and we get a half-space system. The
complement of the union of walls is a disjoint union of connected open regions,
each of which is an intersection of half-spaces. The resulting cube complex X is 1-
dimensional. The vertices of X correspond to the regions and each edge corresponds
to the intersection of two regions, i.e., to a copy of .Ñ . The fact that .M̃ is contractible
implies that X is a tree. (See Fig. 5.1, which is copied from [21, Figure 6, p. 57].)

We can also get a half-space system by starting with an immersed codimension-
one submanifold .f : Nn � Mn+1. Assume that f is a .π1-injective immersion and
that the self-intersections are in general position. Also assume that the lift of f to
the universal cover, .Ñ → M̃ , is an embedded submanifold (since .M̃ is simply con-
nected, .Ñ necessarily separates .M̃ into two “half-spaces.” By considering all such
lifts we get a family of codimension-one submanifolds intersecting transversely, a
half-space system and then, a .CAT(0) cube complex X. A group theoretic version
of this will be is explained following Definition 5.7 below. An example of this is the
important theorem of Kahn–Marković which says that every compact hyperbolic
3-manifold has (many) such .π1-injective immersed surfaces. (See Theorem 5.20 in
Sect. 5.1.4 below.)

It follows from the work of Kahn–Marković [162] that the fundamental group .π

of any compact hyperbolic 3-manifold can act on a .CAT(0) cube complex. Further
arguments show that there are enough surface subgroups to find a .π -action that is
proper and cocompact. We will say more about this in Theorem 5.21 of Sect. 5.1.3,
below.

Definition 5.7 A codimension-one subgroup of a finitely generated group G is a
subgroup .H < G so that the quotient of the Cayley graph of G by H has at least
two ends.

For example, if N is an immersed codimension-one submanifold of M as in
Example 5.6, then .H = π1(N) is a codimension-one subgroup of .G = π1(M).
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Example 5.8 (Codimension-One Subgroups) The construction in Example 5.6 of
a .CAT(0) cube complex associated to an immersed codimension-one submanifold
can be extended to the construction of a .CAT(0) cube complex for any codimension-
one subgroup H of a group G (or more generally, a collection of codimension-
one subgroups). In terms of the Cayley graph, to say that H is a codimension-one
subgroup of G means that H separates .Cay(G, S) into two “deep components,”
i.e., there is a number R such that the complement of an R-neighborhood of H

in G has two components. Choose one of these components h and let .hc be its
complement in G. (This is possible provided .Cay(G, S) has extendible geodesic
rays.) The translate of the partition .{h, hc} by an element .g ∈ G is another partition
of G corresponding to a complement of a neighborhood of .gHg−1. This gives G

the structure of a wall set .(Ω,W), where .Ω = G and the set of walls .W consists
of all partitions .{gh, ghc}, where g ranges over a set of coset representatives for
.G/H . The resulting .CAT(0) cube complex is denoted .X(G;H) (or more generally,
.X(G;H1, . . . , Hk) when H is replaced by a finite collection of codimension-one
subgroups .{H1, . . . , Hk}.
Example 5.9 (Hyperplane Arrangements, Fans, Zonotopes, cf. Sects. 3.3.1, 4.2.2
or [235, Chapter 7]) Suppose .A = {H1, . . . , Hn} is an arrangement of finitely
many linear hyperplanes in .R

d . These hyperplanes decompose .R
d into a collection

of polyhedral cones with cone points at the origin. This decomposition is the fan
associated to .A, denoted .Fan(A). A top-dimensional face in .Fan(A) is a chamber.
Each hyperplane .H ∈ A separates .R

d into two linear half-spaces h and .hc. Identify
each hyperplane with the corresponding unordered pair of half-spaces .H = {h, hc}.
In this way, .A defines a half-space system .(H(A),<, ι) in the above sense or
equivalently, a wall set .(Ω,W) with .W = A and .Ω the set of chambers in
.Fan(A). A choice of chamber .C ∈ Ω gives a principal ultrafilter .ωC on .A defined
as follows: if .H ∈ A corresponds to a pair of half-spaces .H = {h, hc}, then
.h ∈ ωC ⇐⇒ C < h. One says that h is a positive half-space with respect to C and
that C is on the positive side of H . So, we can think of .ωC as a function .A → {±1}
defined by

.ωC(Hi) =
{

+1, if C is on the positive side of Hi;
−1, if C is on the other side of Hi.

Any subset of .A gives a collection of pairwise transverse hyperplanes; hence,
any function .A → {±1} (i.e., any element of .{±1}n) defines a vertex in the
corresponding .CAT(0) cube complex X. It follows that X is the standard n-cube
.[−1, 1]n. (My thanks to Katherine Goldman for explaining this result to me.) The
poset of cones in .Fan(A) is dual to the poset of faces of a convex polytope .Z(A)

(.= Z) called the zonotope associated to .A. (See Sect. 3.3.1.) This polytope lies in
the dual vector space .(Rd)∗. If .A is essential, then .dim Z = d. (The arrangement is
essential if the intersection of all the .Hi is a single point, namely, the origin.) Here
are two equivalent definitions of the zonotope Z (cf. [235, Definition 7.13]).
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(a) A zonotope is the image of a cube .[−1, 1]n under a linear map .Φ : R
n →

(Rd)∗. (This is Definition 3.71 in Sect. 3.3.1.)
(b) A zonotope is a Minkowski sum of intervals .[ϕ1,−ϕ1], . . . [ϕn,−ϕn] where

.ϕi ∈ (Rd)∗ − {0}. In other words,

.Z = {x ∈ (Rd)∗ | x =
n

∑

i=1

xiϕi, where − 1 ≤ xi ≤ 1}. (5.3)

To go from (b) to (a), let .Φ be the .(d × n)-matrix with column vectors .ϕ1, . . . , ϕn.
Then (5.3) is the same as putting .Z = Φ([−1, 1]n). To go from the arrangement
.A to the zonotope .Z(A), first choose a chamber .C ∈ Fan(A). Each hyperplane
.Hi ∈ A is the kernel of a linear form .ϕi ∈ (Rd)∗. Let .ϕi be such that it is positive
on the positive side of .Hi . The vertices of Z are dual to the chambers in .Fan(A).
Each chamber .D ∈ Fan(A) determines a sign in .{+,−} for each .ϕi and hence,
a principal ultrafilter .ωD : A → {±1}. Such principal ultrafilters give the vertex
set of Z. Whenever the number of chambers is less than .2n, there are phantom
vertices corresponding to the vertices of .[−1, 1]n which project to interior points
in Z. It follows that whenever Z is not isomorphic to .[−1, 1]n, it has phantom
vertices. When .A is a reflection arrangement associated to a finite Coxeter group
we get a Coxeter zonotope which was discussed in more detail in Sect. 4.2.2. As
a specific example of such a hyperplane arrangement, consider the case of p lines
through the origin of .R

2 defined by linear forms .ϕ1, . . . , ϕp in .(R2)∗ in cyclic order.
Then Z is a 2p-gon with vertices, .ϕ1, . . . , ϕp,−ϕ1, . . . ,−ϕp. This shows that the
2-dimensional zonotopes are precisely the centrally symmetric polygons (cf. [235,
Example 7.14]).

Example 5.10 (The Cube Complex .P̃L and .RACGs, cf. Example 5.3) Let L be
a simplicial complex (not necessarily a flag complex) and let .PL be the associated
cube complex defined in Sect. 3.1.1 and let .P̃L be its universal cover. Then .WL �

P̃L, where .WL is the .RACG associated to .L1. As in Example 5.3, the hyperplanes
.{xi = 0} ∩ PL lift to hyperplanes on .P̃L and an associated half-space system .(H,<

, ι). If L is a flag complex, then .P̃L is .CAT(0) and Sageev’s realization of .(H,<, ι)

is equal to .P̃L. On the other hand, if L is not flag, then Sageev’s realization is .P̃
L̂

where .L̂ means the flag complex determined by .L1, i.e., .L̂ is the “flag completion”
of L.

Example 5.11 (Reflection Groups) Half-space systems arise naturally in the the-
ory of groups generated by reflections. To fix ideas let us suppose we are in the
situation that was described in Sects. 3.2 and 4.2: W is a group generated by locally
linear reflections on a manifold M . The fixed set of a reflection r is a codimension-
one submanifold .Mr called a wall. The complement .M − Mr has two components
(called open half-spaces) that are interchanged by r . Let R denote the set of all
reflections in W . Each component of .M − ⋃

r∈R Mr is an “open chamber.” A
chamber is the closure of an open chamber. Choose a fundamental chamber K for
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W on M . Let S be the set of reflections r whose walls intersect K in a codimension-
one face. As in Sects. 3.2 and 4.2, R is the set of all conjugates of a elements of S

by an elements of W , K is a strict fundamental domain for W on M and .(W, S) is
a Coxeter system. We get a wall set .(Ω,W) where .Ω is the set of chambers and
.W = {Mr}r∈R . This gives the same half-space system for .(W, S) as in Example 5.4.
Each chamber gives a principal ultrafilter on .W . The Davis–Moussong complex
.Σ(W, S) of Sect. 4.2.3 is a nice geometric realization of .(W, S). It is a .CAT(0)

cell complex where the cells correspond to the spherical special subgroups of W .
Each such cell is a zonotope for the reflection arrangement corresponding to the
given spherical subgroup as in Example 5.9. For each reflection .r ∈ R, its fixed
set .Σr separates .Σ into two half-spaces. As before, the closure of a component of
.Σ − ⋃

r∈R Σr is called a chamber. We get the same half-space system for .(W, S)

as before. Let .X(W, S) be the corresponding .CAT(0) cube complex.

The facts in the next proposition are established in Niblo–Reeves [183].

Proposition 5.12 (Niblo–Reeves [183]) Let .X(W, S) denote the .CAT(0) cube
complex associated to the Coxeter system .(W, S)

(a) The cube complex .X(W, S) is finite dimensional (cf. [183, Corollary 2]).
(b) The complex .X(W, S) is locally finite (cf. [183, Theorem 3]).
(c) The W -action on .X(W, S) is proper (cf. [183, Lemma 5]).

The dimension of the cell of .Σ(W, S) corresponding to the spherical subset .T ≤ S

is .Card(T ). Hence, the dimension of .Σ(W, S) is the maximum of .Card(T ), .T ∈
S(W, S). For such a spherical subset T , let .mT denotes the number of hyperplanes
in the reflection arrangement corresponding to .WT . By Example 5.9 the dimension
of the corresponding cube in .X(W, S) is .mT . So, .dim X(W, S) ≤ n(W, S), where

.n(W, S) = max{mT | T ≤ S is a spherical subset}. (5.4)

Of course, when .(W, S) is right-angled, .dim X(W, S) = n(W, S) = dim Σ(W, S).
In general, the W -action on .X(W, S) is not cocompact. For example, if W is the

.(3, 3, 3) triangle group (a euclidean reflection group on .R
2), then one can show

that .X(W, S) is the standard tiling of .R
3 by 3-cubes. Each 3-cube corresponds

to a collection of 3 pairwise intersecting lines and two such collections lie in the
same W -orbit if and only if they enclose equilateral triangles of the same area.
Since there are arbitrarily large equilateral triangles in the .(3, 3, 3) tiling of .R

2,
there are infinitely many W -orbits on 3-cubes. So, the W -action on .X(W, S) is
not cocompact. More generally, suppose .(W, S) is an irreducible euclidean Coxeter
group of rank .d + 1. It can be shown that .X(W, S) is the standard cubical tiling of
.R

n(W,S), where .n(W, S) is defined by (5.4).
Recall from Definition 4.41 that a Coxeter system .(W, S) is 2-spherical if

no entry of the Coxeter matrix .(m(s, t))(s,t)∈S×S is equal to .∞. When .(W, S)

is 2-spherical the following result of [46] shows that these irreducible euclidean
reflection groups are the only obstruction to the W -action on .X(W, S) being
cocompact.
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Theorem 5.13 (Caprace [46]) Suppose .(W, S) is 2-spherical. Then the W -action
on .X(W, S) is cocompact if and only if there is no special subgroup .(WT , T ) which
is an irreducible euclidean reflection group of rank .≥ 3.

Caprace also shows that the condition in this theorem is equivalent to the condition
that W has no subgroup isomorphic to a euclidean triangle group.

5.1.3 Geometric Actions on the Associated CAT(0) Cube
Complexes

Definition 5.14 An isometric action of a group on a metric space is geometric if it
is proper and cocompact.

Starting from a collection of codimension-one subgroups {H1, . . . , Hk} in a
group G, Sageev [202] gives us a wall set (Ω,W) and a CAT(0) cube complex
denoted by X(Ω,W) or by X(G,H1, . . . , Hk) so that G � X(Ω,W). Our goal in
this section is to understand when the G-action on Sageev’s CAT(0) cube complex
is geometric.

First we deal with the question of when is X(Ω,W) finite dimensional. A
subgroup H ≤ G satisfies the bounded packing property if for each positive
real number D, there is a positive integer N = N(D) bounding the cardinality
of collections {g1H, . . . , gnH } of D-close cosets, cf. [234, Definition 7.2]. (Two
cosets g1H and g2H are D-close if there are elements x ∈ g1H , y ∈ g2H ,
with D(x, y) < D.) One can define the bounded packing property for a finite
collection {H1, . . . Hk} of subgroups of G in a similar fashion. Since a collection
of transverse walls corresponds to a collection of D-close cosets, we see that
the bounded packing property implies that each cube in X(Ω,W) has dimension
≤ N(D) for an appropriate choice of D. So, the next result is just a translation of
the bounded packing property.

Lemma 5.15 (cf. Hruska–Wise [151, Corollary 3.31]) Suppose a finitely
generated group G has the bounded packing property with respect to finitely
generated subgroups H1, . . . , Hk . Then the associated CAT(0) cube complex
X(G,H1, . . . , Hk) is finite dimensional.

Remark 5.16 If the codimension-one subgroup H < G corresponds to an embed-
ded codimension-one submanifold N ↪→ M as in Example 5.6, then X(G,H) is
a tree; hence, one-dimensional. However, when M3 is a certain graph manifold,
Rubinstein and Wang have shown in [199] that there exists a π1-injective immersed
surface N � M3 such that any two translates of Ñ in M̃3 have nonempty
intersection. Hence, the associated cube complex is infinite dimensional.

We turn next to the question of properness. Suppose p, q are two points in a wall
set Ω . (For example, if Y is a CAT(0) space and W a locally finite collection of
convex hyperplanes which separate Y , then we could take Ω to be the complement
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in Y of
⋃

H∈W H .) Given any two points p, q ∈ Ω , Let #(p, q) denote the number
of hyperplanes in W which separate p from q. Note that if v, w are vertices of the
CAT(0) cube complex X(Ω,W), then #(v,w) is the distance from v to w in the
1-skeleton of X(Ω,W) (i.e., in the �1-metric). Since this metric is quasi-isometric
to the usual CAT(0) metric on X(Ω,W) we get the following lemma.

Lemma 5.17 (cf. [234, Lemma 7.13]) The finitely generated group of isometries
G acts (metrically) properly on X(G,H1, . . . Hk) if and only if for any vertex v,
#(v, gv) → ∞ as l(g) → ∞.

Suppose Y is a CAT(0) space with a set of hyperplanes W . One way to show that
#(p, gp) → ∞ is to verify the following linear separation property. This states that
there are constants k1, k2 > 0 so that #(p, q) ≥ k1dY (p, q) − k2 for all p, q ∈ Y .
The meaning of the linear separation property is that there is some sort of coarse
fundamental domain for the G-action on Y which is bounded by a finite number of
walls in W . In the case of a word hyperbolic group, Bergeron and Wise use these
notions to get the following criterion for a group to act properly on a CAT(0) cube
complex.

Theorem 5.18 (Bergeron–Wise [18, Theorem 1.4]) Let G be a word hyperbolic
group. Suppose that for each pair of distinct points a, b in ∂G, there exists a
quasiconvex codimension-one subgroup H so that ∂H separates a from b. Then
there are a finitely many quasiconvex, codimension-one subgroups H1, . . . , Hk so
that the G-action on the associated CAT(0) cube complex X(G,H1, . . . , Hk) is
proper.

For example, in the case of the reflection group action of W on the Davis–
Moussong complex Σ(W, S) (cf. Examples 5.11 and 5.4), there is a compact
fundamental domain K which is bounded by the walls corresponding to the
reflections of S. Suppose γ is a geodesic segment between points p, q ∈ Σ . Assume
that p, q are “generic” in the sense that γ crosses no wall of codimension > 1. Each
time γ crosses a wall it passes from a chamber wK to an adjacent chamber wsK

for some s ∈ S; so, γ gives a sequence of adjacent chambers K1, . . . Kn, i.e., an
edge path of length n in the Cayley graph, Cay(W, S). So, when q = gp, #(p, gp)

is the word length of g. Since the word distance in Cay(W, S) is quasi-isometric to
the CAT(0) distance in Σ (cf. Sect. 4.2.3, as well as [82]) one sees that the linear
separation property holds for Σ(W, S).

On the other hand, consider the case of Example 5.6 of a connected π1-injective
embedded submanifold N ↪→ M . To simplify the discussion suppose N1 is an
embedded curve in an orientable surface M2. The walls are then the translates of Ñ

in M̃ . (See Fig. 5.1.) The corresponding cube complex Y is a tree and the quotient
space Y/π1(M) is either an edge or a single loop depending on whether or not N

separates M . These walls divide M̃ into regions and each such region is a lift of a
component of M̂ (which stands for M cut open along N so that M̂ has either one
or two components). In either case, the genus of a component M ′ of M̂ is less than
the genus of M , the induced homomorphism π1(M

′) → π1(M) is an injection onto
an infinite subgroup of π1(M), and the corresponding region in M̃ is unbounded.
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This region corresponds to a vertex of the tree and π1(M
′) is the isotropy subgroup

at this vertex. Since this isotropy group is infinite, the π1(M)-action on the tree Y is
not proper.

Cocompactness The notion of a word hyperbolic group and a quasiconvex sub-
group were defined in Sect. 2.1.3. A following result of [131], shows that in the
presence of hyperbolicity, cocompactness is essentially automatic.

Lemma 5.19 (See [131] or [202, Theorem 2.1]) Suppose {H1, . . . , Hk} is a
collection of quasiconvex codimension-one subgroups in a word hyperbolic group
G. Let Y = X(G,H1, . . . , Hk) be the resulting CAT(0) cube complex. Then Y/G

is compact.

5.1.4 Cubulating Hyperbolic Manifolds

How prevalent are examples of .CAT(0) cube complexes with geometric group
actions? The answer is not so clear. The tricky issue is to find enough codimension-
one subgroups so that the group action on the corresponding cube complex is proper.
As we saw in Sect. 3.1.1, one way to produce such examples is by using reflection
groups. If .(W, S) is a .RACS with nerve L, then .P̃L is a .CAT(0) cube complex and
the W -action is proper and cocompact. So, if .Γ < W is a torsion-free subgroup of
finite index, then .Γ acts freely and .P̃L/Γ is a compact NPC cube complex. To be
even more specific, if .Γ is the kernel of the natural epimorphism .W → (C2)

S , then
.P̃L/Γ = PL, the polyhedral product defined by (3.6). One way to check that .P̃L

satisfies the linear separation property is to notice that any geodesic passing through
the fundamental chamber .KL must intersect one of its walls and these are indexed
by the finite set S. In the case of a (not necessarily right-angled) Coxeter group W ,
its action on the Davis–Moussong complex .Σ(W, S) (a space with convex walls)
also has the linear separation property, since there is again a compact fundamental
chamber. Hence, W acts properly on the associated .CAT(0) cube complex .X(W, S).
(However, as in Example 5.11, the W -action on .X(W, S) will not be cocompact
unless Caprace’s condition from Theorem 5.13 holds.)

In the remainder of this subsection we describe work on the question of when a
closed hyperbolic n-manifold .Mn (.= H

n/Γ ) is homotopy equivalent to a compact
NPC cube complex. The method will be to find totally geodesic or nearly totally
geodesic immersed codimension-one submanifolds which give codimension-one
quasiconvex subgroups of .Γ = π1(M

n). Sageev’s construction then yields a
.CAT(0) cube complex Y . To insure properness of the .π1(M

n)-action on Y we need
to be able to find sufficiently many codimension-one subgroups of .π1(M

n). (To
start, we need at least one.) In dimension 3 these subgroups are provided by the
theorem of Kahn–Marković [162]. In dimension .n > 3 there are results due to
Bergeron-Haglund-Wise [17] that work for hyperbolic n-manifolds with arithmetic
fundamental groups. Here the arithmeticity hypothesis is needed in order to get a
large number of codimension-one subgroups.
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The universal cover of .Mn is identified with hyperbolic space .H
n and .Γ =

π1(M
n) acts on it via isometries as well as on its sphere at infinity, .∂Hn ∼= Sn−1.

The limit set of a hyperplane in .H
n is a round .(n− 2)-sphere in .Sn−1. A hyperplane

.H < H
n is a .Γ -hyperplane if .StabΓ (H) acts cocompactly on it. This implies that

H projects to a totally geodesic immersed codimension-one submanifold .Nn−1 �
Mn, where .Nn−1 = H/ StabΓ (H).

Dimension 3 Kahn–Marković [162] proved that the fundamental group of any
closed hyperbolic 3-manifold .M3 contains a surface subgroup. In other words,
.M3 contains a .π1-injective immersed closed surface of genus .> 0. A .π1-injective
immersed surface .N2 � M3 is quasifuchsian if the limit set of .Ñ2 is a topologically
embedded circle in .S2 and .π1(N

2) is then called a quasifuchsian subgroup of .Γ . It
is known that every quasifuchsian subgroup of .Γ is quasiconvex. (Indeed, a surface
subgroup is either quasiconvex or normal, but the limit set of any infinite normal
subgroup maps onto the whole sphere at infinity.) Here is the strong version of the
Kahn–Marković result which shows that .Γ has sufficiently many surface subgroups.

Theorem 5.20 (Kahn–Marković [162, Theorem 1.1]) Let .Γ be the fundamental
group of a closed hyperbolic 3-manifold. For each round circle C in .S2 = ∂H3 there
is a sequence of immersions .fi : Ni � M3 so that .(fi)∗(π1(Ni)) is a quasifuchsian
subgroup such that the limit sets .∂f̃i(Ñi) converge pointwise to C.

This gives enough codimension-one subgroups .H1, . . . , Hk of the word hyperbolic
group .Γ so that Theorem 5.18 of Bergeron-Wise can be applied to get a geometric
action on the resulting cube complex Y . (Since .Γ = π1(M

3) is torsion-free, any
proper .Γ -action is necessarily free.) This gives the following basic result.

Theorem 5.21 ([18, Theorem 1.5]) The fundamental group of any hyperbolic 3-
manifold has a subgroup of finite index that acts freely and cocompactly on a
.CAT(0) cube complex. (In other words any hyperbolic 3-manifold has a finite cover
that is homotopy equivalent to a compact NPC cube complex.)

Arithmetic Hyperbolic Manifolds Borel [26] explains a method for using number
theory to construct compact locally symmetric manifolds (equivalently, torsion-free
uniform lattices in semisimple Lie groups). It follows from this construction that
closed hyperbolic n-manifolds exist in each dimension n.

Example 5.22 (cf. [59, §6]) Let .F = Q(
√

d) be a totally real quadratic extension
of the rationals and let A be the ring of integers in F . Choose an element .ε ∈ A so
that .ε is positive and its Galois conjugate .ε is negative. Define a symmetric bilinear
form .ϕ on .An+1 by

.ϕ(ei, ej ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

δij , if 1 ≤ i, j ≤ n,

−ε, if (i, j) = (n + 1, n + 1),

0, otherwise,

(5.5)
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where .{e1, . . . , en+1} denotes the standard basis. Let .ϕF and .ϕR denote the induced
bilinear forms on .Fn+1 and .R

n+1 and let .O(ϕ), .O(ϕF ) and .O(ϕR) be the respective
isometry groups. This gives an algebraic group .G, with .G(R) = O(ϕR) = O(n, 1),
.G(Q) = O(ϕQ), and with .O(ϕ) a uniform lattice in .bG(R). (That the lattice
is uniform follows from the fact that if .ϕ denotes the form obtained from .ϕ by
replacing .ε by its Galois conjugate .ε, then .ϕR is positive definite). Since .ϕR is
type .(n, 1), .O(ϕR) ∼= O(n, 1), the isometry group of .H

n. (Use the quadratic form
model of .H

n as one sheet of the hyperboloid .ϕR(x, x) = −ε in .R
n+1, where

.x = (x1, . . . , xn+1) ∈ R
n+1). There are many reflections in .O(ϕ), for example, the

reflections across the hyperplanes, .(ei)
⊥, with .i ≤ n, or .(ei − ej )

⊥, with .i, j ≤ n,
as well as any conjugate of one of these reflections by an element .g ∈ O(ϕ). The
subgroup W generated by these reflections is a Coxeter group acting properly on .H

n.
Usually W will not be of finite index in .O(ϕ) and hence, will not have a bounded
fundamental chamber on .H

n. However, in low dimensions, for certain fields F , W

will have finite index in .O(ϕ). When this is the case, .O(ϕ) will act geometrically
on the associated .CAT(0) cube complex for W . Let .Γ be a torsion-free subgroup of
finite index in .O(ϕ). For example, .Γ could be a congruence subgroup defined with
respect to a suitable prime ideal in A. We are interested in hyperbolic manifolds of
the form .Mn = H

n/Γ . (Call such .Mn a standard arithmetic hyperbolic manifolds.)
So, when W has finite index in .O(ϕ), .Mn will be homotopy equivalent to a NPC
cube complex. However, when W is not of finite index, the hyperplanes of reflection
will not partition .H

n into bounded fundamental domains and we cannot immediately
invoke the linear separation property of the previous subsection to conclude that .Γ

acts properly on a .CAT(0) cube complex. Nevertheless, as we shall see below, it
does.

In [17, Prop. 3.4] Bergeron, Haglund and Wise prove the surprising result that
every standard arithmetic hyperbolic closed n-manifold .Mn is homotopy equivalent
to a compact NPC cube complex. The context of [17] is slightly different from
Example 5.22 in that hyperplanes of reflection do not appear explicitly. As before, F
is a totally real number field, A is its ring of integers and .ϕF is the symmetric bilinear
form on .Fn+1. Let .G be the .Q-algebraic group obtained from .O(ϕF ) by restriction
of scalars from F to .Q. Then .G(R) = O(ϕR) ∼= O(n, 1), .G(Q) = O(ϕF ), and
.O(ϕ) is a uniform lattice in .G(R). Let .Γ be a sufficiently deep congruence subgroup
so that .Γ is torsion-free. The resulting closed manifold .Mn = H

n/Γ is a standard
arithmetic hyperbolic n-manifold. For any hyperplane H in .H

n, let .ΓH denote its
stabilizer in .Γ . One says that H is a .Γ -hyperplane if .H/ΓH is compact. Any totally
positive, one-dimensional subpace of .(F n+1, ϕF ) yields a .Γ -hyperplane H . For
such an H , the projection map .H

n → Mn descends to a totally geodesic immersion
.H/ΓH � Mn. Define a set of hyperplanes .H(H) in .H

n by

.H(H) := {gH | g ∈ Γ },
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i.e., .H(H) is a .Γ -orbit of hyperplanes. For any finite subset .S < G(Q), put

.HS(H) = {gH | g ∈ sΓ < G(Q) for some s ∈ S},

so that .HS(H) is a finite set of .Γ -orbits of hyperplanes in .H
n. For .g ∈ G(Q),

.gH/ΓgH is a closed hyperbolic .(n−1)-manifold called a Hecke translate of .H/ΓH .
It maps to an immersed submanifold in .Mn/Γ .

Proposition 5.23 (Bergeron-Haglund-Wise [17, Prop. 2.1]) There is a finite
subset S of .G(Q) so that .HS(H) defines a linearly separated wall space structure
on .H

n. Hence, .Γ acts properly on the associated .CAT(0) cube complex.

More precisely, it is proved in [17] that there is a compact hyperbolic polytope P

bounded by finitely many hyperplanes .g1H, . . . , gkH in .H(H) so that P contains
a fundamental domain for .Γ (cf. the paragraph following Lemma 5.17).

Sketch of Proof Suppose .H ′
1, . . . , H

′
k are hyperplanes in .H

n bounding a simple
polytope .P ′ that contains a fundamental domain for .Γ . The point is, that since .G(Q)

is dense in .G(R), the .G(Q)-orbit of H is dense in the set of all hyperplanes in .H
n.

Hence, we can find a finite set .S = {g1, . . . , gk} < G(Q) so that .{g1H, . . . , gkH } is
the set of hyperplanes spanned by the codimension-one faces of the desired polytope
P .

Combining Proposition 5.23 with the result of Bergeron–Wise, Theorem 5.18,
we get the following.

Theorem 5.24 (Bergeron-Haglund-Wise [17, Prop. 3.4] and also [145, §10])
Suppose, as above, that a standard arithmetic hyperbolic group .Γ is a torsion-free
uniform lattice. Then .Γ acts properly and cocompactly on a .CAT(0) cube complex.

This theorem only asserts that the hyperbolic manifold .Mn (.= H
n/Γ ) is

homotopy equivalent to an NPC cube complex and not that it is homeomorphic to
one. In fact, this seems likely to be impossible in dimensions .> 4. The reason is that,
by Lemma 2.33, if the cubes of a cube complex Y are regular cubes in hyperbolic
space of curvature .−κ for small positive .κ , then the link of each vertex must be a
flag complex satisfying the no .�-condition and by [82, Prop. I.6.6 of Appendix I]
for .n > 4, there is no such triangulation of .Sn−1. So, it is unlikely that an NPC cube
complex with word hyperbolic fundamental group could be a closed n-manifold for
.n > 4.

5.2 Special Cube Complexes

The theory of special cube complexes is due to Haglund and Wise [143–145].
A cube complex B is said to be special if the hyperplanes in B avoid certain
pathological configurations (see Sect. 5.2.2 below). For example, each hyperplane
must be embedded (i.e., self-intersections are not allowed). The main result of [143]
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is that the standard cube complexes for .RAAGs have a universal property for NPC
special cube complexes: if B is a NPC special cube complex, then there is a locally
isometric immersion .f : B � TL, where .TL is the standard classifying space
for a certain .RAAG, .AL, defined by (3.5) in Sect. 3.1. It follows that f induces
an injection .π1(B) ↪→ AL and that on the level of universal covers it lifts to an
isometric embedding .B̃ ↪→ T̃L. This is important because .RAAGs and .RACGs have
very strong separability properties. First of all, Coxeter groups have faithful linear
representations. In fact, by using the Tits representation, one sees that any .RACG is
a subgroup of .SL(n,Z) for some integer n. Since any .RAAG is commensurable to
some .RACG (cf. [93] or Sect. 5.3.1 below), the same holds for any .RAAG. It follows
that .RAAGs are residually finite. Moreover, any word quasiconvex subgroup of a
.RACG or .RAAG is separable. (The term “word quasiconvex subgroup” is defined
in Definition 2.20; in the case of a subgroup of a .RACG or .RAAG it is always
assumed to be with respect to the standard set of generators.) Hence, this property
holds for .π1(B), that is to say, for the fundamental group of an arbitrary NPC special
cube complex. The definition of the immersion f is the obvious one. Let .HB be the
set of hyperplanes in B. Each .H ∈ HB is dual to a square equivalence class of
parallel edges. If H is two-sided, then we can choose an orientation for each edge
in this equivalence class. The Artin group is defined by a graph .L1. The vertex set
of .L1 is .H and vertices H , .H ′ span an edge if and only if the hyperplanes H and
.H ′ intersect. The map .f : B1 → TL is defined by sending each vertex of B to the
single vertex of .TL and each edge e in the equivalence class for H to the circle .S1

H

corresponding to .H ∈ Vert L. The corresponding Artin generator is denoted .aH .
For f to be well defined on .B1 we need each hyperplane to be 2-sided. The map f

extends to the 2-skeleton of B: a square in .B2 with adjacent edges e, .e′ gives a pair
of intersecting hyperplanes H and .H ′ spanning a 2-torus, .S1

H × S1
H ′ , onto which

the square .e × e′ maps. (The map fails to be an immersion precisely at the corner
of each square that corresponds to a self-intersecting hyperplane.) Continuing with
higher dimensional cubes, we get the map .B → TL.

Similarly, if B satisfies a slightly different version of specialness, one can find an
isometric embedding .B̃ → Σ where .Σ is the Davis–Moussong complex associated
to some .RACG, .WL, defined by a simplicial graph .L1 (cf. Sects. 4.2.3 and 3.1.1).
On the level of quotient spaces the definition of the locally isometric immersion is
not quite as direct as in the case of the .RAAG, .AL. In order to define it we need
a certain intermediate square complex .COX(L1), which we will define in the next
subsection.

5.2.1 The Square Complexes COX(Γ ) and ART(Γ )

Suppose .Γ is a simplicial graph. Recall that the .RACG, .WΓ , associated to .Γ has
a generator .si for each .i ∈ Vert(Γ ) and relations .(si)

2, for each .i ∈ Vert(Γ ) and a
relation .[si, sj ] for each .{i, j} ∈ Edge Γ . Similarly, the .RAAG, .AΓ , has a generator
.ai for each .i ∈ Vert(Γ ) and a relation .[ai, aj ] for each .{i, j} ∈ Edge Γ .The complex
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.ART(Γ ) is the same as the 2-skeleton of the polyhedral product .TL from Sect. 3.1.1.
(Here, as in the paragraph preceding Definition 2.32, L the flag completion of .Γ =
L1.)

Next we give the definition of a square complex .COX(Γ ) from [143]. The
universal cover .UCOX(Γ ) of .COX(Γ ) is closely related to the universal cover of
the Davis–Moussong complex .Σ for .WΓ defined in Sects. 3.1.1 and 4.2.3. The 1-
skeleton of .Σ is the Cayley graph of .WΓ and this is also equal to the 1-skeleton
of the universal cover, .UCOX(Γ ). Each edge of .Σ is labeled by some generator
.si , with .i ∈ Vert(Γ ). Each 2-cell in .Σ is a square with consecutive edges labeled
.sisj sisj with .{i, j} ∈ Edge(Γ ). The complex .UCOX(Γ ) is constructed by replacing
each such square by its double. (If .�ij is such a square, then its double, .D�ij , is
the square pillow formed by doubling .�ij along its boundary.) There is a natural
projection .f : UCOX(Γ ) → COX(Γ ) which projects each pillow .D�ij to .�ij .
The group .W = WΓ acts on its Cayley graph which is equal to the 1-skeleton,
.UCOX1(Γ ). This extends to a free action on the 2-skeleton as follows: a conjugate
of .sisj acts on its doubled square .D�ij by rotating the square .�ij by .π and then
exchanging the two copies. Let .W+ be the subgroup of W consisting of the elements
of even length. Put

. COX(Γ ) = UCOX(Γ )/W+, (5.6)

so that .π1(COX(Γ )) = W+. The complex .COX(Γ ) can be described independently
of (5.6). Since there are two .W+-orbits of vertices on .UCOX(Γ ), the quotient
square complex has two vertices .v+ and .v−. For each .i ∈ Vert(Γ ) there is an edge
.ei labeled .si connecting .v− to .v+. Then, for each .{i, j} ∈ Edge Γ , glue in a square
.� along the edge path .eiej eiej . This defines the 2-skeleton of .COX(Γ ). (N.B. The
attaching map for the square is a degree two map from .∂� onto the circle .ei ∪ ej .
Hence, the image of .�ij in .COX(Γ ) is a copy of .RP 2.)

5.2.2 Definitions of Specialness

We recall the definitions from [143, §3]. First, Haglund–Wise list the following five
“pathologies” that can occur for a hyperplane H (or a pair of hyperplanes) in a cube
complex B.

List of Pathologies

(1) H has self-intersections,
(2) H is one-sided,
(3) H is directly self-osculating,
(4) H is indirectly self-osculating,
(5) two hyperplanes are inter-osculating if they intersect and osculate.
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Pictures of these pathologies can be found in [143, p. 1561, Figure 1], [234, §4.1]
or in [21]. Self-intersection and the property of being one-sided were discussed in
the beginning of Sect. 5.1.1. Hyperplanes .H1 and .H2 osculate if there are adjacent
edges .e1, .e2 so that .e1, .e2 are not the edges of any square and so that .ei is dual to
.Hi . (Hence, the midcubes corresponding to .e1 and .e2 lie inside cubes which share
the vertex .e1 ∩ e2). If H is two-sided, then an orientation of its normal bundle
determines an orientation for each dual edge. After choosing an orientation for the
normal bundle of H , we see there are two ways in which it can self-osculate at
.v = e1 ∩ e2: it directly self-osculates at v if the orientation can be chosen so that
v is the terminal vertex of both .e1 and .e2, and it indirectly self-osculates if v is the
terminal vertex of one of the .ei and the initial vertex of the other. Finally .H1 and .H2
inter-osculate if they both intersect and osculate.

Definition 5.25 A simple cube complex B is A-special if the pathologies of type
(1), (2), (3), (5) do not occur. It is C-special if pathologies (1), (5) do not occur,
if its 1-skeleton .B1 a bipartite graph and if no hyperplane self-osculates. The cube
complex B is special if pathologies of type (1), (3), (5) do not occur.

For example, the cube complex .TL from 3.1.1 (the Salvettti complex for .AL) is
special.

Let B be a square complex and let .ΓB be the graph with a vertex for each
hyperplane of B and with an edge between vertices whenever the corresponding
hyperplanes intersect. We call .ΓB the incidence graph of B.

Definition 5.26 (A-Typing and C-Typing, cf. Haglund–Wise [143, Def. 3.14])
The hyperplanes in a square complex B are two-sided if and only if there is a
combinatorial map .B1 → ART(ΓB) sending each of the oriented edges in the
equivalence class corresponding to an oriented hyperplane H to the corresponding
loop in .ART(ΓB). Since .dim B ≤ 2, this map extends to a combinatorial map
on 2-skeletons .τA : B → ART(ΓB) provided each hyperplane is embedded.
The map .τA is an A-typing of B. Similarly, .B1 is a bipartite graph if and only if
there is a map .B1 → COX(ΓB) sending equivalent edges corresponding to some
hyperplane to the corresponding edge of .ΓB . This extends to a combinatorial map
.τC : B → COX(ΓB) called a C-typing of B.

In [143] typing maps are used to show that the fundamental group of a special
cube complex B embeds into a .RAAG (when B is A-special) or into a .RACG (when
it is C-special). The main result of [143] is the following.

Theorem 5.27 (Haglund–Wise [143, Theorem 4.2]) Suppose B is a cube com-
plex. As above, let .Γ = ΓB be the incidence graph determined by the hyperplanes
of B.

(i) If B is A-special, then there is a locally isometric immersion .B2 � ART(Γ ).
On the level of universal covers this is covered by an isometric embedding and
on the level of fundamental groups it gives an embedding .π1(B) ↪→ AΓ .

(ii) If B is C-special, then on the 2-skeleta there is a locally isometric immersion
.τC : B2 � COX(Γ ). This gives an embedding .π1(B) ↪→ WΓ and for the
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universal cover of B an isometric embedding .B̃ → ΣΓ , where .ΣΓ is the
Davis–Moussong complex for .WΓ . (In other words, if L is the flag completion
of .Γ , then then .ΣΓ = P̃L where .P̃L is as in Sect. 3.1.1.)

Let .τA : B2 → ART2(Γ ) and .τC : B2 → COX(Γ ) be the typing maps and
let .τ : B2 → X2 stand for either one of them. Here is a sketch of the proof of the
above theorem in [143]. One first shows that .τA is a “locally isometric immersion”
on the level of 2-skeleta. For each vertex .v ∈ B0, .τ restricts to a combinatorial
map .τv : Lk(v, B2) → Lk(v,X2) of simple graphs. To say that .τ is an immersion
means that (a) each .τv is an embedding (i.e., a homeomorphism onto its image).
To say that .τ is an isometric immersion means that (b) each .τv is an isomorphism
onto a full subgraph. Condition (a) follows from the fact that no two hyperplanes
osculate. To verify (b) we need to show that if .e1 and .e2 are adjacent edges at v

(corresponding to vertices of .Lk(v, B2)) and if .τ(e1), .τ(e2) are adjacent edges of a
square at .τ(v), then .e1 and .e2 are adjacent edges of a square in .X2. So, (b) follows
from the fact that the hyperplanes in .B2 dual to .e1 and .e2 do not inter-osculate. It
follows that .τ gives an isometric embedding .τ̃ : B̃2 → Ỹ 2, as well as an injection
on fundamental groups. In the case of statement (ii) we compose .τ̃ with the natural
projection .UCOX(Γ ) → Σ2

Γ to get a .WΓ -equivariant embedding .B̃2 → Σ2
Γ . Since

.B2 is special, it follows from [144, Lemma 3.13] that .B2 is completable to an NPC
cube complex (see Definition 2.32). So, we can assume that B is NPC and that its
universal cover .B̃ is .CAT(0). Finally, the equivariant embeddings of 2-complexes
then extend to give equivariant embeddings from .B̃ to .ΣΓ or from .B̃ to the universal
cover of .ART(Γ ) (cf. [144, Lemma 3.13]).

Example 5.28 (The Polyhedral Product .PL Again, cf. Example 5.3) Let .L1 be a
simplicial graph with vertex set .I = {1, . . . , n} and let L be its flag completion.
Associated to .L1 we have the .RACG, W (.= WL1 ) with nerve L. We return to
the NPC cube complex .PL from Sect. 3.1.1 and the study of its hyperplanes in
Example 5.3. The cube complex .PL is a subcomplex of the n-cube, .[−1, 1]n. The
universal cover of .PL is equal to the Davis–Moussong complex .ΣL of Sect. 4.2.3
and W is the group of all lifts of the .(C2)

n-action on .PL. It follows that .π1(PL) =
[W,W ], the commutator subgroup of W . The 1-skeleton of .[−1, 1]n is a bipartite
graph (the coloring is defined using the parity of the distance from a vertex to a base
vertex) and since .[−1, 1]n and .PL have the same 1-skeleton, .(PL)1 is also bipartite.
Similarly, since .[−1, 1]n is C-special, so is .PL (cf. Definition 5.26). We use .Γ to
denote the incidence graph of .PL. It is tempting to think that .Γ is equal to .L1. This
would be true if each multiple hyperplane of .PL were connected (see Example 5.3
for the definition of “multiple hyperplane”); however, since hyperplanes are required
to be connected, the vertex set of .Γ is not equal to I . For each .i ∈ I , let .c(i) be
the set of components of .{xi = 0} ∩ PL and let .Î = ⊔

i c(i). The edges of .L1

lift to edges in .Γ . More precisely, for each .{i, j} ∈ Edge L1 and each unordered
pair .{c, c′}, with .c ∈ c(i) and .c′ ∈ c(j), we have that .{c, c′} ∈ Edge Γ . In other
words, .Γ is the polyhedral join of .{c(i)}i∈I with respect to .L1 (see Definition 3.11).
By Theorem 5.27 (ii), the C-typing map from the 2-skeleton of .PL (.= PL1 ) to
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.COX(Γ ) induces an injection .π1(PL) → WΓ and on the level of universal covers,
an isometric embedding .P̃L1 = ΣL1 ↪→ ΣΓ . Let .p : Î → I be the natural
map which takes .c(i) to i. Then p extends to a map of graphs .Γ → L1 and
then to an epimorphism .p : WΓ → W . Once we choose a base vertex in .PL1

(or dually a fundamental chamber), we get a section .ι of .p : Î → I , defined
by .i �→ î where .î is the hyperplane in .c(i) dual to an edge containing the base
vertex. This leads to a section .ι : L1 → Γ and then to a section (also denoted
.ι) of .p : WΓ → WL. (Exercise: show that .WΓ is the semidirect product of .WL

and a free group.) Moreover, there is a p-equivariant projection .ΣΓ → ΣL1 which
restricts to the identity map on .ΣL1 . So, after some work we see that the Haglund–
Wise construction ends up exhibiting .π1(PL) as the commutator subgroup of .WL,
as expected.

5.2.3 Virtual Specialness

A group G is special if it is the fundamental group of a special cube complex; it
is compact special if the special cube complex is compact. It is virtually special if
there is a subgroup of finite index .H ≤ G which is the fundamental group of a
special cube complex.

Proposition 5.29 ([144, Theorem 8.1]) Let W be a finitely generated Coxeter
group and let X be its Niblo–Reeves .CAT(0) cube complex. Then there is a finite
index torsion-free subgroup .H < W so that .X/H is a special cube complex.

So, Coxeter groups are virtually special.

Proposition 5.30 ([143, Prop. 3.10]) Suppose B is a compact special cube com-
plex. Then B has a finite cover which is both C-special and A-special.

This is proved by showing that if B is a special cube complex, then it has a two-fold
cover such that

(1) every closed path in .B1 has even combinatorial length (and hence, that .B1 is
bipartite),

(2) if .H1, . . . , Hk are hyperplanes in B, then there is a .2k-fold cover so that any
closed edge path intersects each .Hi an even number of times (and hence, each
.Hi is two-sided), and

(3) no hyperplane indirectly self-osculates.

A corollary to Proposition 5.30 and Theorem 5.27 is that .RAAGs and .RACGs
both have a universal property for fundamental groups of special cube complexes,
as stated in following theorem.

Theorem 5.31 ([143]) Suppose B is a compact special cube complex. Then there is
a finite cover .B ′ → B and a locally isometric immersion .B ′ � X where X is either
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the standard classifying space for a .RAAG or the quotient of the Davis–Moussong
complex for a .RACG by a suitable torsion-free subgroup.

Remark 5.32 Behrstock-Hagen-Sisto [14] introduced the notion of a “hierarchi-
cally hyperbolic space” as a common framework for studying mapping class groups
and cubical groups. They proved the universal cover of any compact special
cube complex is hierarchically hyperbolic. Hence, any .RACG is a hierarchically
hyperbolic group (cf. [72, Section 3.4])

In [3], Agol proved the following important theorem. Earlier this had been
a conjecture of Wise. The proof is an ingenious and complicated argument for
constructing an appropriate finite-sheeted cover of an NPC cube complex with word
hyperbolic fundamental group. A sketch of Agol’s proof can be found in Bestvina’s
survey article [21, §8].

Theorem 5.33 (Agol [3], also see [202, Thm. 4.3]) If a word hyperbolic group
G acts properly and cocompactly on a .CAT(0) cube complex, then G is virtually
special.

5.3 Separability

In [140, p. 168] Haglund calls a subgroup .H < G word-quasiconvex if there is a
constant C so that any geodesic path in the Cayley graph of G joining two points of
H has all its vertices of distance .≤ C from H . Thus, .H < G is word-quasiconvex
if the geodesic in .Cay(G) between any two points of H lies in some Hausdorff
neighborhood of H in .Cay(G). The group H is a quasiconvex subgroup if it is
word-quasiconvex with respect to some set of generators of G. i.e., if .H ↪→ G is a
quasi-isometric embedding. (For the meaning of “quasi-isometric embedding”, see
Definition 2.19. It follows from a basic lemma about quasi-geodesics in a Gromov
hyperbolic space, that, in a word hyperbolic group G that if .H < G is a quasi-
isometrically embedded subgroup, then it is word-quasiconvex. The main result in
this section is Haglund’s Theorem 5.45 which states that a subgroup of a .RACG is
word-quasiconvex with respect to the standard set of generators, then it is a virtual
retract (meaning that it is a retract of a subgroup of finite index in the .RACG). In the
next subsection we begin with a result of Davis–Januszkiewicz [93] that says that
every .RACG is commensurable with some .RAAG.

5.3.1 RAAGs Are Commensurable with RACGs

Suppose .Γ is a finite simplicial graph with vertex set I . As usual, let .AΓ and .WΓ

be the .RAAG and .RACG associated to .Γ . The generating sets of .AΓ and .WΓ

are denoted by .{ai}i∈I and .{si}i∈I , respectively. Also, define .CΓ to be .[WΓ ,WΓ ],
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the commutator subgroup of .WΓ . Define new graphs .OΓ and .ΔΓ with respective
vertex sets .I ×{−1, 1} and .I ×{0, 1}. In .OΓ we have two copies of .Γ , one at level
.−1 and the other at level 1; vertices .(i,−1) and .(j, 1) are connected by an edge if
and only if .{i, j} ∈ Edge(Γ ). In .ΔΓ the vertices at level 1 are also connected by
edges to give a copy of .Γ ; all vertices at level 0 are connected to give the complete
graph on .I × 0; finally, edges at different levels, .(i, 0) and .(j, 1), are connected
whenever .i �= j .

Consider the .RACGs, .WOΓ and .WΔΓ . The subset of generators for these groups
corresponding to the vertices in .I × 1 is again denoted by .S = {si}i∈I . The set of
generators of .WOΓ corresponding to vertices at level .−1 are denoted by .T = {ti}i∈I

while the set of generators for .WΔΓ corresponding to vertices at level 0 is denoted
by .R = {ri}i∈I . Thus, .S � T is the set of generators for .WOΓ and .S � R is the set
of generators for .WΔΓ . Regard .(C2)

I as the subgroup .〈R〉 of .WΔΓ and define four
homomorphisms:

.ϕ : WΔΓ → (C2)
I θ : WΔΓ → (C2)

I α : WOΓ → WΔΓ β : AΓ → WΔΓ

si �→ 1 si �→ ri si �→ si ai �→ siri

ri �→ ri ri �→ ri ti �→ risiri

Theorem 5.34 (Davis–Januszkiewicz [93, p. 230] and cf. [173, Prop. 5]) The
maps .α : WOΓ → ker(ϕ) and .β : AΓ → ker(θ) are isomorphisms. After
identifying .WOΓ and .AΓ with their images, we see that .WOΓ and .AΓ are both
normal subgroups of .WΔΓ of index .2n, where .n = Card(I ). Moreover, .CΔΓ =
WOΓ ∩ AΓ = COΓ is a normal subgroup in both .WOΓ and .AΓ and it has index .2n

in both. So, the groups .CΔΓ , .WOΓ , .AΓ and .WΔΓ are all commensurable with each
other.

.

Theorem 5.34 means that .WΔΓ can be written as a semidirect product in two
different ways: as .WΔΓ = WOΓ � (C2)

I and as .WΔΓ = AΓ � (C2)
I .

Remark 5.35 One consequence of this theorem is that there is no substantial
difference between the two different definitions of special in Sect. 5.2.2. In either
case we can prove Theorem 5.27. If B is an A-special cube complex, then
some finite cover .B ′ isometrically immerses in a compact quotient of the Davis–
Moussong complex of some .RACG and if B is C-special then it has a finite cover
that isometrically immerses in the standard classifying space for some .RAAG.
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Remark 5.36 Let L, OL, .ΔL be the flag complexes determined by .Γ , .OΓ , .ΔΓ ,
respectively. The complex OL is the polyhedral join over L of copies of .S0. In
[105] it is called the octahedralization of L. Sometimes we replace .Γ by L and
instead write our groups as .WL, .AL, .WOL and .WΔL. Thus, .WOΓ (.= WOL) is the
graph product .

∏

Γ D∞ over .Γ of copies of the infinite dihedral group. Since .Z is
a subgroup of index 2 in .D∞, there is a natural inclusion .AΓ ↪→ WOΓ . However,
in general, this inclusion will take .AΓ to a subgroup of infinite index in .WOΓ so it
does not induce the commensurability in Theorem 5.34.

Proof of Theorem 5.34 The proof of Theorem 5.34 is geometric. In the case of
an .(n − 1)-simplex .Δ and its octahedralization .OΔ is the boundary complex of
an n-octahedron and .KOΔ can be identified with the n-cube .[−1, 1]. It follows
that fundamental chamber .KOL for the Davis–Moussong complex .ΣOL of .WOL

can be identified with a cubical subcomplex of .[−1, 1]I . If we identify opposite
faces .KOL ∩ {xi = −1} and .KOL ∩ {xi = 1} we obtain .TL, the standard
model for the classifying space .BAL. Thus, .KOL also is a (non-strict) fundamental
domain for the .AL-action on the universal cover of .TL. (The standard .CAT(0)

cube complexes for .WOL and for .AL have the same underlying space but the
cubical structures are slightly different. In the complex for .WOL a cube is a face
of .[−1, 1]I , while in the complex for .AL a cube is a face of .[0, 2]I .) Subdivide
.[−1, 1]I into .2n n-dimensional cubes. The intersection .KOL ∩ [0, 1]I is not quite
the standard fundamental chamber for .WΔL but it is strata-preserving homotopy
equivalent to it. So, it does no harm to assume that .KΔL = KOL ∩ [0, 1]I and
that the Davis–Moussong complex for .WΔL is a cubical subdivision of the Davis–
Moussong complex for .WOL. Since .〈R〉KΔL = KOL is the fundamental chamber
for the .WOL-action, it follows that .α is injective, hence, an isomorphism. Similarly,
since .KΔL is a fundamental domain for the action of .(C2)

I (.= 〈R〉) on .TL, .β is an
isomorphism.

Corollary 5.37 The .RAAG, .AΓ , is linear; in fact, it is a subgroup of .GL(N,Z)

for some integer N .

Proof The .RACG, .WΔΓ , is a subgroup of .GL(2n,Z), where .n = Card(I ), and .AΓ

is a subgroup of index .2n in .WΔΓ .

More Properties of .RAAGs Besides being linear, the .RAAG, .AΓ , has many other
nice properties, for example:

– Any .RAAG is biorderable and hence, locally indicable, cf. [63]. (A group G

is locally indicable if every finitely generated subgroup admits an epimorphism
onto .Z.)

– .AΓ is residually torsion-free nilpotent.
– The strong Atiyah Conjecture holds for .AΓ , cf. [173]. (This is a conjecture about

the integrality of .L2-Betti numbers of spaces with fundamental group .AΓ . It
implies the Zero Divisor Conjecture for .C[AΓ ].)

– Any word-quasiconvex subgroup of .AΓ (with respect to the standard generating
set) is a virtual retract. (See Corollary 5.46 in the next subsection.)
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5.3.2 Convex Subsets of Coxeter Groups and Cube Complexes

Suppose .(W, S) is a .RACS and that .Σ(W, S) = D(W,K) is its Davis–Moussong
complex thought of as being defined by the basic construction (3.9) of Sect. 3.1.1
rather than as a zonotopal cell complex (see Sect. 4.2.3). So, .D(W,K) is a union of
chambers .D(W,K) = ⋃

w∈W wK . For each reflection .r ∈ R, let .Σr denote the
fixed set of r on .Σ (.= Σ(W, S)), i.e., .Σr is the wall associated to r . A half-space
bounded by .Σr is the closure of one of the two components of .Σ − Σr . So, a half-
space is a union of chambers in .D(W,K). If .(W, S) is a .RACS, then .Σ is a .CAT(0)

cube complex and .Σr is a hyperplane in the sense of Sect. 5.1.1.

Definition 5.38 Given a subset .C < D(W,K) let .H(C) denote the set of half-
spaces which contain it. The subset .C < D(W,K) is convex if .C = ⋂

H∈H(C) H.
The convex subset C is a convex union of chambers if .H(C) does not contain any
pair of opposite half-spaces. A bounding hyperplane .Σr of a half-space containing
C is a called supporting hyperplane of a convex union of chambers if it intersects
some chamber of the closure .C in a codimension-one face of that chamber.

Each element of .w ∈ W can be identified with the center point of the corresponding
chamber wK .

Suppose W is a .RACG. The center points of chambers are then the vertices of
the corresponding cube complex. A subset .Y ≤ W is convex if it is the set of centers
of a convex union of chambers. An equivalent definition is to say that a subset Y

of vertices of the cube complex is convex if it is a convex subset of the 1-skeleton
of the cube complex. This means that if .y0, y1 ∈ Y , then any intermediate vertex
on any geodesic edge path from .y0 to .y1 also belongs to Y . Given a subset of .U <

D(W,K), its convex hull, .Conv(U), is the intersection of all closed half-spaces that
contain U . If .U < W is a subset of vertices, then we shall also say that the convex
hull of U is the set of vertices which are contained in .Conv(U).

Suppose H is a finitely generated subgroup of W . Then .H � Conv(H). The
subgroup H is convex cocompact if the H -action on .Conv(H) is cocompact. This
is equivalent to the definition of word-quasiconvex subgroup given in the beginning
of this section.

Remark 5.39 The term “convex cocompact” had a different meaning in Sect. 4.2.9;
there it referred to a projective representation of a Coxeter group so that the action
was cocompact on a convex subset of projective space.

5.3.3 Convex Cocompact Subgroups of RACGs

Suppose that .(W, S) is a .RACS and C is some convex union of chambers in
the Davis–Moussong complex .D(W,K) (.= Σ(W, S)). Let .H be the subset of
.H(C) consisting of those half-spaces whose bounding hyperplanes intersect C in
a codimension-one subset. Such a half-space is called a supporting half-space of
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the corresponding supporting hyperplane. In other words, .H is a minimal subset of
.H(C) such that .C = ⋂

h∈H h. Let .S(C) denote the set of reflections across the
supporting hyperplanes for the half-spaces of .H(C). Let .W(C) = 〈S(C)〉 be the
subgroup of W generated by .S(C). Taking intersections with walls corresponding
to .S(C) we get a mirror structure on C. The mechanism driving the results of
this subsection is the observation that .W(C) is a right-angled reflection group on
.D(W,K) with strict fundamental domain C. More precisely, there is the following
basic lemma.

Lemma 5.40 The pair .(W(C), S(C)) is a .RACS. The inclusion .C ↪→ D(W,K)

induces a .W(C)-equivariant homeomorphism .D(W(C), C) → D(W,K).

Haglund proves a cubical version of this lemma in [140, Prop. 3.21] for the cube
complexes .Σ(W, S) and .Σ(W(C), S(C)).

Remark 5.41 A version of Lemma 5.40 holds for general Coxeter groups; how-
ever, one needs to add a hypothesis. The hypothesis is that if distinct elements
.s, t ∈ S(C) satisfy .m(s, t) �= ∞ and .hs and .ht are the corresponding half-spaces,
then .hs ∩ ht is a fundamental domain for the dihedral group .〈{s, t}〉. In other
words, the corresponding walls make a “dihedral angle” of .2π/m(s, t) rather than
.2π/km(s, t) for some k, with .1 < k < m. (This is called the angle condition.)
This condition is automatic when W is right angled for then the only possibility for
.m(s, t) is 2. If the angle condition does not hold, then the translate of a supporting
wall of C by an element of .W(C) may intersect the interior of C so that C will not
be a fundamental chamber. Then the lemma then states that C is a strict fundamental
domain for .W(C) on .D(W,K) if and only if C satisfies the angle condition.

Before stating the main result of this subsection, Theorem 5.45 below, we will
warm up by proving the residual finiteness of any .RACG. (Recall Definition 2.51 of
Sect. 2.4.4: a group G is residually finite if for any .g ∈ G−{1}, there is a finite index
subgroup .H < G so that .g ∈ G − H . In other words, the elements 1 and g have
distinct images in .G/H , or more geometrically, the vertices 1 and g of the Cayley
graph have distinct images in the quotient .Cay(G, S)/H . (N.B. After replacing H

by the intersection of all subgroups conjugate to it, we many assume that H is a
normal subgroup of finite index in G.)

Proposition 5.42 (cf. [205, Lemma 3.4] and [140]) Any .RACG is residually finite.

Proof Let W be a .RACG and .w ∈ W − {1}. Then we can find a convex union
of chambers C so that the set .Chamb(C) of chambers that are contained in C is
finite and so that the chambers corresponding to 1 and w are both in .Chamb(C).
Since .Chamb(C) is finite, the subgroup .W(C) has finite index in W . Since C is the
orbit space of .W(C) on .D(W,K), it follows that 1 and w have distinct images in
.W/W(C).

Remark 5.43 Since W has a faithful linear representation, Proposition 5.42 also
follows from the standard result that finitely generated linear groups are residually
finite.
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Definition 5.44 A subgroup H of a group G is a virtual retract of G if there is a
subgroup of finite index .G′ ≤ G that contains H and a retraction .r : G′ → H . (The
corresponding notion for an immersed subspace .f : A � X of X is that there is a
finite-sheeted covering space .X′ of X, a lift of f to an embedding .f ′ : A → X′ and
a retraction .r : X′ → f ′(A).)

The following theorem of Haglund is the main result in this subsection.

Theorem 5.45 (cf. Haglund [140, Theorem A]) Suppose W is a .RACG and H is
a convex cocompact subgroup (i.e., H is a word-quasiconvex subgroup of W with
respect to the standard set of generators). Then H is a virtual retract of W .

Sketch of Proof Put .C = Conv(H). The group H acts on C. In particular, it
permutes the supporting hyperplanes of C. Hence, it acts on .S(C). Since intersec-
tions of supporting hyperplanes are preserved, it acts on the nerve .L(W(C), S(C)).
Hence, H acts on .(W(C), S(C)) by diagram automorphisms. We claim that the
subgroup .HW(C) < W is a semidirect product. To see this, first note that taking
the orbit space gives a retraction .D(W,K) = D(W(C), C) → C. Identifying
.w ∈ W with the center point of the chamber wK , this retraction induces a map
.r : W → Chamb(C) = W/W(C). Identify H with a subset of .Chamb(C) and put
.W ′ = r−1(H). Then .W ′ is a subgroup (in fact, .W ′ = HW(C)) and we have a short
exact sequence:

.1 → W(C)−→W ′ r−→ H → 1.

So, .W ′ is the semidirect product, .W ′ = H � W(C). Since .Chamb(C)/H is finite,
.W ′ has finite index in W , i.e., H is a virtual retract.

As we explained in Sect. 5.3.1, given a flag complex L, the .RAAG, .AL, and the
.RACGs, .WOL and .WΔL, all act on the same .CAT(0) space X. All three groups
are commensurable; however, they give three different structures on X as a .CAT(0)

cube complex. (When L is a point, X is isomorphic to .R (the universal cover of
the circle) and .AL = Z acting with fundamental domain .[0, 2]; the groups .WOL

and .WΔL are both infinite dihedral with fundamental chambers .[−1, 1] and .[0, 1],
respectively.) In general, the group .AL is a subgroup of index .2n in .WΔL. Hence,
Theorem 5.45 has the following corollary.

Corollary 5.46 Suppose A is a .RAAG and H is a word-quasiconvex subgroup of
A (with respect to the standard generating set), cf. [152]. Then H is a virtual retract
of A.

Proof Suppose .A = AL. For a base point take the cone point .0 ∈ KOL ∩ [0, 1]I =
KΔL. Consider .H(0), the H -orbit of 0. Let .C = Conv(H) be the convex hull of
.H(0) in .D(WΔL,KΔL). As before, .H � C and we get a subgroup .W ′ of finite
index in .WΔL and a semidirect product decomposition, .W ′ = H � W(C), where
.W(C) is a reflection subgroup of .WΔL. Put .A′ = W ′ ∩ AL. It is easy to see that
.A′ is index .2n in .W ′ and that we have a semidirect product decomposition .A′ =
H � A(C), where .A(C) is the kernel of the retraction of .A′ onto H .
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Corollary 5.47 Suppose B is a compact special cube complex B, then .π1(B) is
residually finite. In particular, virtually special groups are residually finite.

More or less the same method proves the following.

Theorem 5.48 (cf. Haglund–Wise [143] or [21, Theorem 4.2]) Suppose B and Z

are compact special NPC cube complexes and .f : B � Z is a locally isometric
immersion. Then there is a finite cover .Z′ ofZ and a lift of f to .Z′ so that .Z′ retracts
onto the image of the lift of f . So, .π1(B) is a virtual retract of .π1(Z).

Sketch of Proof The special case .Z = TL, where .TL denotes the standard
classifying space of a .RAAG associated to an A-typing of B, was handled in
Corollary 5.46 above. In the general case first use Theorem 5.27 (i) to immerse Z

in the classifying space .X = TL of a .RAAG (possibly after replacing Z by a finite
cover) to get a finite cover .X′ → X and a lift to .X′ of the composition .B → Z → X

so that .X′ retracts onto the image of B. Pull back .X′ to a cover .Z′ of Z. Then f lifts
to .Z′ and .Z′ retracts onto the image of the lift of f .

5.3.4 Separability of Word-Quasiconvex Subgroups

Definition 5.49 A subgroup H of a group G is separable inG if for each g ∈ G−H

there is a subgroup of finite index G′ < G such that H < G′ and g /∈ G′.

For example, G is residually finite if and only if the trivial subgroup is separable in
G.

Lemma 5.50 ([140, Lemma 3.26]) Assume H and G′ are subgroups of a group G

with G′ of finite index and H < G′. If H is separable in G′, then it is separable in
G.

Proof We must separate g ∈ G − H from H by a finite-index subgroup G′′ < G.
If g /∈ G′, take G′′ = G′. If g ∈ G′, then let G′′ < G′ be a finite-index normal
subgroup which separates g from H .

Lemma 5.51 ([140, Lemma 3.27]) Assume G is residually finite and that r : G →
H is a retraction onto a subgroup H . Then H is separable in G.

Proof Let N = ker(r) so that G is the semidirect product H � N . Let g ∈ G − H .
Then we can write g = hn with r(n) = 1 so that h = r(g). Since g /∈ H , n �= 1.
Since G is residually finite, there is a finite index normal subgroup G′ < G such
that n /∈ G′. Put N ′ = N ∩ G′. Then the subgroup generated by H and N ′ is the
semidirect product H � N ′ with g /∈ G′. Moreover, [G : G′] = [N : N ′] < ∞.

Combining these two lemmas we get the following.

Proposition 5.52 ([140, Proposition 3.28]) If H is a virtual retract of a residually
finite group G, then H is separable in G.
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The next theorem results from combining Propositions 5.42 and 5.52 with Theo-
rem 5.45.

Theorem 5.53 (Haglund [140, Theorem A]) Any word-quasiconvex subgroup of
a RACG is separable.

Remark 5.54 Haglund proves the generalization of Theorem 5.45 for any graph
product of finite groups: any word-quasiconvex subgroup of such a graph product is
separable (cf. [140, Theorem B]).

Similarly, by using Corollary 5.46 we see that any word-quasiconvex subgroup
of a RAAG is separable.

Corollary 5.55 Suppose B is a compact A-special NPC cube complex. Then π1(B)

is a separable subgroup of some RAAG. If B is C-special, then an index 2 subgroup
of π1(B) is a separable subgroup of some RACG.

Proof After replacing B by a finite cover, we can find a locally isometric immersion
B � TL where X is the classifying space of a RAAG AL. Passing to universal
covers we get an isometric embedding B̃ ↪→ T̃L and hence, an embedding of π1(B)

as a subgroup of finite index in AL (or equivalently, as a subgroup of the RACG,
WΔL). Thus, π1(B) is a convex cocompact subgroup of WΔL. So, π1(B) is a word-
quasiconvex subgroup and hence, by Theorem 5.53, a separable subgroup.

Since any quasi-isometrically embedded subgroup of a word hyperbolic group is
quasiconvex, one can use Lemma 5.50 and the method for proving Theorem 5.48 to
get the following.

Theorem 5.56 (Haglund–Wise [143, Theorem 7.3] or [21, Prop. 4.3]) Suppose
a word hyperbolic group G is the fundamental group of a compact cube complex.
Then any quasiconvex subgroup of G is separable.

Conversely, if B is a compact NPC cube complex such that π1(B) is word
hyperbolic and separable on quasiconvex subgroups, then B is virtually special (cf.
[143]).

The hypothesis that G is word hyperbolic is definitely necessary in Theo-
rem 5.56. Indeed, the Burger-Mozes examples in Sect. 2.4.4 are NPC square
complexes whose fundamental groups are not residually finite.

Remark 5.57 One of the main uses of subgroup separability is for converting
π1-injective immersions into embeddings. Indeed, suppose G is the fundamental
group of an n-manifold Mn and that H is the image of the fundamental group of a
codimension-one submanifold Nn−1 under a π1-injective immersion f : N � M

in general position and with only double points. Let P < M be a component of
the set of double points and let α be a loop in Im(f ) which starts at a basepoint
x0 ∈ Im(f ), travels along one sheet of the immersion to a point in P and then
returns to x0 along the other sheet. Suppose H is separable. Then there is a subgroup
G′ of finite index in G so that H < G′ and α /∈ G′. Let M ′ be the finite-sheeted
cover of M corresponding to G′. Then f lifts to an immersion f ′ : N → M ′ with no
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double points lying above P . Continuing to eliminate double points in this fashion,
we eventually reach an embedding N ↪→ M . (See [21, Figure 2] for a picture of this
argument when n = 1.)

5.3.5 Applications to 3-Manifolds

In the late1970 s Thurston proposed a new vision of 3-manifolds: his Geometrization
Conjecture (see [214]). This was analogous to the classical Uniformization Theorem
for Riemann surfaces, which asserts that any such surface is conformally equivalent
to one with a metric of constant curvature. The main part of the Geometrization
Conjecture concerned hyperbolic 3-manifolds. It asserted that a closed 3-manifold
.M3 has a hyperbolic structure if and only if it is aspherical and atoroidal (i.e.,
its fundamental group does not contain a copy of .Z × Z). (There is a similar
version of this conjecture when .M3 is the interior of a compact manifold with
tori as its boundary components.) Thurston proved this conjecture for Haken 3-
manifolds. He also proved it in the case where .M3 is a fiber bundle over .S1

with “pseudo-Anosov” holonomy. Of course, the conjecture would also follow if
virtual versions of either of these results could be proved, that is, after replacing
M by a finite sheeted cover .M ′. This led Thurston to ask in [215, Questions 16
and 18] if every aspherical, atoroidal 3-manifold is virtually Haken and similarly,
did it virtually fiber over .S1? Positive answer to these questions became known
as the Virtual Haken Conjecture and the Virtual Fibering Conjecture. Although
Thurston presented these conjectures as methods for proving geometrization, neither
conjecture was known to hold even when the 3-manifold was hyperbolic. In 2002
and 2003 Perelman wrote three preprints in which he proved the full Geometrization
Conjecture (including the Poincaré Conjecture!) by using the Ricci flow. This
obviated the original motivation for proving the Virtual Haken Conjecture and the
Virtual Fibering Conjecture and reduced these questions to the case of hyperbolic
3-manifolds. The culmination of the techniques developed in this chapter is Agol’s
proof in [3] of these two conjectures. These basically follow from his proof of Wise’s
Conjecture, Theorem 5.33. This is all explained in Bestvina’s survey article [21].

The argument goes roughly as follows. First one uses Sageev’s construction
from Sect. 5.1.2 together with the Kahn–Marković Theorem 5.20 to show that the
fundamental group G of a closed hyperbolic 3-manifold .M3 is the fundamental
group of a finite NPC cube complex. By Theorem 5.33 there is a subgroup of finite
index .G′ < G so that the corresponding cover is special. So, quasiconvex subgroups
of G are separable. Hence, as explained in Remark 5.57, each of surface subgroup of
.π1(M

3), which exists by the Kahn–Marković Theorem, lifts to an incompressible
embedded surface in some finite sheeted cover .M ′ of M . Hence, M is virtually
Haken.

As for the Virtual Fibering Theorem, Agol defines the property of a group being
RFRS and he showed that if the fundamental group of a hyperbolic 3-manifold is
RFRS, then the 3-manifold virtually fibers over .S1; moreover, .RAAGs have the
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RFRS property. Using Theorem 5.33 again, he concluded M has a finite-sheeted
cover that fibers over .S1.

Remark 5.58 The definition of a Haken 3-manifold involves the existence of
an incompressible surface .Σ2 in .M3 (in fact, only one incompressible surface
is needed). This means that we have a .π1-injective embedding .Σ2 ↪→ M3. In
particular, .π1(Σ

2) is a subgroup of .π1(M
3). Conversely, the inclusion .π1(Σ

2) into
.π1(M

3) is induced by a map .Σ2 → M3 and any such map is homotopic to an
immersion .Σ2 � M3. Proving .M3 to be Haken involves two steps: (1) showing
.π1(M

3) has at least one surface subgroup and (2) changing the resulting immersed
surface into an embedded surface. So, a crucial problem in 3-manifold theory is
being able to solve (2).



Chapter 6
Hyperbolization

“Hyperbolization” refers to various functorial constructions of Gromov [136] for
converting a cell complex J into an NPC polyhedron .H(J ). Several such procedures
are discussed in this chapter. The result is usually an NPC cube complex. In
Sect. 6.1.1 we discuss some properties which a hyperbolization procedure might
satisfy. In Sect. 6.3 the product with interval procedure is explained, while in
Sect. 6.4 Gromov’s construction is explained. A procedure for constructing locally
.CAT(−1) spaces, called “strict hyperbolization,” is explained in Sect. 6.5. Relative
hyperbolization procedures are explained in Sects. 6.1.2 and 6.3.1. In Sect. 6.2 we
give applications of hyperbolization and relative hyperbolization to constructions of
NPC manifolds.

6.1 Properties of Hyperbolization

Hyperbolization constructions are defined by induction on dimension, roughly, as
follows. Assuming the hyperbolization of the .(n − 1)-skeleton .Jn−1 has been
defined, the hyperbolization of an n-cell .σ of J is defined to be some NPC n-
manifold boundary, whose boundary is the hyperbolization of .∂σ . Finally, the
hyperbolization of .Jn is defined to be the result of using functoriality to glue
on hyperbolized n-cells to the hyperbolization of .Jn−1 in the same combinatorial
pattern as the cells of .Jn are glued onto .Jn−1. Basic references for this material are
[59, 91, 136].

In the original hyperbolization procedures of [136] and [91], the result was a
locally .CAT(0), piecewise euclidean polyhedron. The term “hyperbolization” is
actually a misnomer for such a procedure. In Gromov’s original vision, the output of
hyperbolization should have been piecewise hyperbolic and locally .CAT(−1) space.
Such a procedure will be called a strict hyperbolization. Even without requiring the
construction to be locally .CAT(−1), the output of a true hyperbolization procedure
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still should be an NPC space with word hyperbolic fundamental group. However,
as is explained in [59, Corollaries 4.3 and 4.4], for .n ≥ 4, Gromov’s original
hyperbolization procedures in [136], as well as the procedures of [91], do not have
such fundametal groups. In other words, the initial versions of hyperbolization were
not strict.

Gromov said that his purpose in defining a hyperbolization procedure was
simply to show that there was a simple method for constructing a large number
of nonpositively curved (or negatively curved) spaces, e.g., given a polyhedron J ,
one can find an NPC polyhedron .H(J ) whose homology maps onto that of J .
One motivation for finding such a construction was the Kan–Thurston Theorem of
[163] which asserts that for any J one can find an aspherical polyhedron .A(J )

and a map .c : A(J ) → J inducing an isomorphism on homology. In a Kan–
Thurston construction one can take .A(J ) to be a finite complex whenever J is a
finite complex.

6.1.1 Axioms for Hyperbolization

Let .Cn be a category of cell complexes of dimension .≤ n. A morphism in .Cn

from .J1 to .J2 is a cellular immersion .i : J1 → J2 such that i takes each cell
of .J1 isomorphically onto a cell of .J2. For example, i could be an embedding of a
subcomplex or a covering map. Let .PEn be the category of NPC piecewise euclidean
polyhedra. A morphism in .PEn is a locally isometric immersion. A hyperbolization
.H is, first of all, a functor from a subcategory of .Cn to .PEn. In the initial cases
that we discuss, .H(J ) is an NPC cube complex; however, its fundamental group
will usually not be word hyperbolic group; often it will contain copies of .Z × Z.
A strict hyperbolization procedure should take values in the category .PHn of n-
dimensional, piecewise hyperbolic, locally .CAT(−1) spaces so that the fundamental
group of a result of a strict hyperbolization procedure will be a word hyperbolic
group. Eventually, a method of [59] for constructing strict hyperbolizations will be
explained in Sect. 6.5.

In what follows, except in Sect. 6.3.1 and in Sect. 6.5, .H(J ) will have the
structure of an NPC cube complex. A consequence of functoriality is that if .J1
is a subcomplex of .J2, then .H(J1) is a totally geodesic subspace of .H(J2); hence,
.π1(H(J1)) → π1(H(J2)) is injective. Another consequence is that if .G � J , then
there is an induced G-action on .H(J ).

There are several properties (or “axioms”) which we might want to require the
functor .H to satisfy.

(H0) (Preservation of local structure). For each n-cell .σn, its hyperbolization
.H(σn) is an NPC n-manifold with totally geodesic boundary .H(∂σn). Moreover,
if .Lk(σ, J ) denotes the link of .σ in J (so that there is a neighborhood of .σ in J

of the form .σ × Cone(Lk(σ, J ))), then there is a neighborhood of .H(σ ) in .H(J )

of the form .H(σ ) × Cone(L′) where .L′ is PL homeomorphic to .Lk(σ, J ).
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(H1) There is a map .c : H(J ) → J so that for each cell .σ of J , c takes .H(σ )

to .σ .
(H2) The hyperbolization of a point is a point.
(H3) For each cell .σ of J , the manifold with boundary, .H(σ ), is orientable.

The map, .c : H(J ) → J in (H1) is determined up to homotopy by functorality
and by Axiom (H0). First, for any 0-cell .σ 0, .H(σ 0) → σ 0 is the constant map. We
can assume by induction on n that, for any n-cell .σ , there is a map .c : H(∂σ ) → ∂σ

unique up to homotopy. Since .σ is contractible, this map extends to .c : H(σ ) → σ .
Axiom (H2) implies that .c : H(σ ) → σ has degree 1 modulo 2. If, in addition,
(H3) holds, then .c : H(σ ) → σ is a degree one map. By (H0), (H2), (H3) that the
map .c : (H(σn),H(∂σn)) → (σn, ∂σn) is a degree one map between connected,
orientable manifolds with boundary. It follows easily from this that .c : H(J ) → J

induces an epimorphism on homology. (Even when .H(σn) is not orientable c is
still an epimorphisn on homology with coefficients in .Z/2.) In particular, if J is an
orientable manifold, then so is .H(J ) and .c : H(J ) → J is a degree one map. In
view of the Kan–Thurston Theorem [163] one might speculate about the possibility
of requiring .c : H(J ) → J to induce a homology isomorphism in each degree.
However, Axiom (H0), which requires that hyperbolization takes n-manifolds to
n-manifolds, precludes this possibility. Indeed, since there is no aspherical surface
with the same homology as .S2, it is impossible to define .H(S2) to be simultaneously
NPC and a homology 2-sphere.

Here are three more possibilities for axioms.

(H4) If J is a smooth cellulation of a smooth manifold, then .H(J ) also is a
smooth manifold.

(H5) For any cell .σ , the tangent bundle of .H(σ ) is trivial.
(H6) Suppose J is a smooth or PL manifold, then .c : H(J ) → J pulls back

the stable tangent bundle of J to the stable tangent bundle of .H(J ). (This often
follows from (H5).)

Möbius Band Hyperbolization In Sect. 3.3.2 we described Gromov’s procedure
.X �→ H(X) for converting a cubical complex X (or more generally a zonotopal
complex) into an NPC cube complex, .H(X), called the Möbius band hyperboliza-
tion. It satisfies Axioms (H0) (H1) (H2) and (H4). Axiom (H3) fails completely:
the Möbius band hyperbolization of d-cube is not orientable for .d > 1.

Before describing in Sect. 6.4 a nonstrict hyperbolization procedure of Gromov
[136] which satisfies all the axioms, we give some consequences of the existence of
such a procedure.

Relative Hyperbolization Gromov [136, §3.4.C] proposed the idea of finding a
relative version of a hyperbolization procedure .H. As explained in [91] and [96],
the existence of a suitable relative version is a consequence of the previous axioms.
Given a pair of cell complexes, .(J, B), a relative hyperbolization procedure should
functorially associate a space .H(J, B) such that B is a subspace of .H(J, B).
Although it is not required that B be nonpositively curved, if it is, then .H(J, B)
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should also be NPC. We list some axioms for relative hyperbolization below. As
for the relative version of Axiom (H0), one might want to require that a regular
neighborhood B in .H(J, B) be homeomorphic to a regular neighborhood of B in
J . However, let us stick to axioms that are easier to satisfy.

(RH0) If J is a manifold with boundary and B is a union of its boundary
components, then .H(J, B) is a manifold with boundary and B a union of
boundary components of .H(J, B).

(RH1) (Asphericity). If each component of B is aspherical, then .H(J, B) is
aspherical.

As we explain in the next subsection, a consequence of the existence of a
hyperbolization procedure satisfying (H0), (H1) is the existence of a relative version
of it. For the next axiom see [15].

(RH2) (Relatively hyperbolic groups), cf. [15]. If .H(J, B) is induced from a strict
hyperbolization procedure .H, then .π1(H(J, B)) is a relatively hyperbolic group
(in the sense of Bowditch [31] or Farb [114]) where the peripheral subgroups are
the conjugates of the fundamental groups of the components of B.

Finally, if B has the structure of an NPC piecewise euclidean polyhedron and B is
a subcomplex of a cell complex J (no metric on J is assumed), then we show in
Sect. 6.3 how to construct an NPC polyhedron .H(J, B) satisfying the following.

(RH3) Suppose B is an NPC polyhedron and that it is a subcomplex of J .Then
the piecewise euclidean polyhedron .H(J, B) is NPC and B is a totally geodesic
subspace of it.

6.1.2 A Relative Version of Hyperbolization

In this subsection we show how the existence of a suitable hyperbolization proce-
dure implies the existence of a relative hyperbolization version satisfying Axioms
(RH0), (RH1), (RH2). The discussion follows [96].

Suppose .H is a hyperbolization procedure satisfying (H0), (H1). For the purpose
of simplifying notation, suppose it also satisfies (H2). We suppose that if .H(σ ) is
defined for a cell .σ , then it is also defined for .Cone(σ ). (We call such a cell .σ

allowable.) Note that this assumption precludes the possibility of using the Möbius
band hyperbolization procedure or indeed, any procedure that is only defined for
the subcategory of cube complexes. The point is that for any allowable cell .σ we
will need to be able to define .H(Cone(σ )). There is no problem if .σ is a simplex;
however, the cone on a d-cube is not a .(d + 1)-cube. Also suppose that for each cell
complex J , .H(J ) is an NPC cube complex.

Let B be a subcomplex of a cell complex J and let .{Bα} be its set of path
components. Let CB denote the disjoint union of the .Cone(Bα) and let .J ∪ CB

denote complex formed by attaching each .Cone(Bα) to J along .Bα . Hyperbolize
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to get .H(J ∪ CB). By Axiom (H2), there is a unique point .bα ∈ H(J ∪ CB)

corresponding to the cone point of .Cone(Bα). By (H0), each .bα has a small
neighborhood in .H(J ∪CB) homeomorphic to the open cone on .Bα . Remove these
neighborhoods to get a space .H(J, B) called the relative hyperbolization of J with
respect to B. Removing these neighborhoods destroys the nonpositive curvature
of .H(J ∪ CB). So, .H(J, B) will not be endowed with any nonpositively curved
metric. (On the other hand, a different relative hyperbolization procedure described
in Sect. 6.3.1 will yield an NPC complex.) Note that .Bα , the base of .Cone(Bα), is a
subspace of .H(J, B) homeomorphic to the link of .bα in .H(J ∪ CB).

Let .H(J ∪CB) denote the universal cover of .H(J ∪CB) and let .H(J, B) denote
the inverse image of .H(J, B) in .H(J∪CB). The key fact is that the inclusion .Bα ↪→
H(J, B) induces an injection on fundamental groups (cf. Corollary 6.2 below). Let
.bα denote a lift of the cone point .bα to .H(J ∪ CB).

Lemma 6.1 (cf. [96, Lemma 2.2]) Let .Lα (.= Bα) be the link of a lifted cone point
.bα in .H(J ∪ CB). Then .H(J, B) retracts onto .Lα . Hence, .π1(Lα) → π1(H(J ∪
CB)) is injective.

Proof Since .H(J ∪ CB) is .CAT(0), geodesic contraction provides a deformation
retraction of .H(J ∪ CB) − bα onto .Lα . This deformation retraction restricts to a
retraction .H(J, B) → Lα .

Since .π1(Lα) → π1(H(J ∪ CB)) is injective and since .H(J, B) is a covering
space of .H(J, B), we get the following corollary to Lemma 6.1.

Corollary 6.2 For each component .Bα of B, the homomorphism .π1(Bα) →
π1(H(J, B)) is injective.

Theorem 6.3 (cf. [96, Theorem 2.5]) The relative hyperbolization .H(J, B) is
aspherical if and only if each component of B is aspherical.

The proof of Theorem 6.3 uses the notion of “the universal branched cover”
defined below.

Definition 6.4 Suppose X is a geodesic metric space and .{Xi}i∈I is a locally finite
collection of locally convex subspaces indexed by some set I . (The .Xi are called
the “strata” of X.) The universal branched cover of X along the .Xi is the space .X̃

formed by taking the metric completion of the universal cover of .X − ⋃

Xi .

For example, if the geodesic metric space X is a surface and the subset B is a
singleton, then .X − B is a punctured surface and its universal cover corresponds to
the usual picture of the hyperbolic plane with the inverse image of B as cusps on
the circle at infinity. The universal branched cover .X̃ is obtained by filling in the
cusps. However, the metric on the interior of .X̃ is not that of the hyperbolic plane
since geodesics need not extend to infinity: the distance from a point in the universal
cover to a cusp point is finite.

We continue our discussion of .H(J, B) and its properties. Let .H̃(J ∪CB) denote
the universal branched cover of .H(J ∪ CB) branched along the cone points .bα . (It
is also the universal branched cover of .H(J ∪CB) branched along the cone points.)
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The cubical structure on .H(J ∪ CB) induces one on .H̃(J ∪ CB). The link .Lα of
.bα in .H(J ∪ CB) is a subdivision of the link of the corresponding point in J . If .b̃α

is a point in .H̃(J ∪ CB) lying above .bα , then its link .L̃α is a covering space of .Lα .
Since .H(J ∪CB) is NPC, .Lα is a simplicial flag complex. It follows that .L̃α also is
a flag complex and hence, that .H̃(J ∪CB) is a .CAT(0) cube complex. Let .H̃(J, B)

denote the inverse image of .H(J, B) in .H̃(J ∪ CB). The space .H̃(J ∪ CB) can be
reconstructed from .H̃(J, B) by gluing back a copy of .Cone(L̃α) for each cone point
in the inverse image of .bα .

Proof of Theorem 6.3 The “only if” part follows immediately from Lemma 6.1. If
.Bα is aspherical, then its universal cover .L̃α is contractible. Since .H̃(J ∪ CB) is
.CAT(0), it is contractible. Since this contractible space is formed by attaching cones
on contractible spaces to .H̃(J, B), we see .H̃(J, B) also is contractible.

6.2 Applications to Aspherical Manifolds

An important use of hyperbolization and relative hyperbolization is to convert
examples of manifolds with certain properties into aspherical manifolds with similar
properties. Before giving the details of any specific hyperbolization procedure, we
first indicate how the axioms in the previous section can be used to find such
examples of aspherical manifolds. References include [80, 82, 91, 96].

6.2.1 Bordisms of Aspherical Manifolds

Suppose .H satisfies axioms (H0)–(H6). Axiom (H6) implies that when J is a
manifold, the map .c : H(J ) → J pulls back the Pontrjagin classes and Stiefel-
Whitney classes of J to those of .H(J ). In particular, if c has degree 1 mod 2, then
the Stiefel-Whitney numbers of .H(J ) are the same as those of J and if c has degree
one, then so are its Pontrjagin numbers. This means that when .H(J ) is a smooth
orientable manifold, its bordism class is the same as that of J . A direct proof of
this fact is provided in part (i) of the next theorem. Both parts of this theorem were
suggested by Gromov [136, pp. 117–118].

Theorem 6.5 (cf. [91, Example 1g.1] and [96, Theorem 1.1])

(i) Suppose M is a triangulable, closed n-manifold. Then M is bordant to an
aspherical manifold .M ′ (which can be taken to be an NPC cube complex).

(ii) Suppose B is a disjoint union of closed aspherical n-manifolds and that B is the
boundary of a triangulable .(n + 1)-manifold J . Then B bounds an aspherical
manifold.
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Proof

(i) Start with .M × [0, 1] and attach .Cone(M) onto .M × 1. Apply relative
hyperbolization to get .H(M × [0, 1],M × 1). It follows from (H0) that
.H(M×[0, 1],M×1) is a manifold with boundary. By (H2), it has two boundary
components. One is the NPC cube complex .H(M × 0) and the other is .M × 1.

(ii) The manifold B is the boundary of the relative hyperbolization, .H(J, B).

Remark 6.6 Theorem 6.5 applies to any bordism theory: unoriented, oriented, or
even complex (co)bordism, as well as bordism of topological manifolds. In fact,
Axiom (H6 ) implies that .c : H(M) → M is a normal map in the sense of surgery
theory. Moreover, .H(M×[0, 1],M×1) → (M×[0, 1],M×1) is a normal bordism
between c and the identity map on M .

6.2.2 Nontriangulable Aspherical Manifolds

In this subsection and the next we expand the examples of Sects. 3.2.1 and 3.2.3 in
Sect. 3.2. We will use notions that were discussed Sect. 3.2.1 such as: PL manifold,
polyhedral homology manifold, and generalized homology sphere.

Given a topological manifold .Mn, in [166] Kirby–Siebenmann defined a coho-
mology class .Δ(Mn) ∈ H 4(Mn;Z/2), which is an obstruction for .Mn to have a PL
structure. For .n ≥ 5, it is the only obstruction.

Let .Q4(E8) be the smooth 4-manifold with boundary formed by plumbing
together 8 copies of the tangent disk-bundle to .S2 according to the .E8 diagram. Its
boundary .Σ3 is Poincaré’s homology 3-sphere. The intersection form of .Q4(E8) is
the symmetric bilinear form associated to .E8, i.e., it is an even form with signature
8. Triangulate .Q4(E8) and put .X4(E8) = Q4(E8) ∪ Cone Σ3. It is a polyhedral
homology manifold with one non-manifold point. In [121, p. 367] Freedman proved
that any homology 3-sphere bounds a contractible topological manifold. It follows
that .X4(E8) can be resolved to a homotopy equivalent topological 4-manifold
.M4(E8) (the .E8-manifold) by the simple procedure of removing .Cone Σ3 and
replacing it with a contractible manifold .W 4 cobounding .Σ3. By Rohlin’s Theorem
.M4(E8) is not homotopy equivalent to a smooth or PL manifold. (In general,
when .M4 is obtained by resolving the PL singularities of a polyhedral homology
4-manifold by this procedure, its Kirby–Siebenmann obstruction .Δ(M4) can be
identified with the sum of the Rohlin invariants of the homology 3-spheres which
occur as links of singular points.) By the 3-dimensional Poincaré Conjecture (that
is, by Perelman’s Theorem), every triangulation of a 4-manifold is a PL manifold;
in particular, .M4(E8) cannot be triangulated. (This was proved earlier by Akbulut–
McCarthy using Casson’s invariant.) We apply hyperbolization to .X4(E8) to get the
following result of [91].
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Theorem 6.7 (Davis–Januszkiewicz [91, Theorem 5a.1])

(i) There are closed aspherical 4-manifolds that cannot be triangulated.
(ii) In each dimension .≥ 4 there are closed aspherical manifolds that admit no PL

structure.

Proof

(i) Hyperbolize .X4(E8) to get a polyhedral homology manifold .H(X4(E8)) with
only one non-manifold point (this uses (H0)). Resolve it to get a topological
manifold .N4. Since .N4 is homotopy equivalent to .H(X4(E8)), it is aspherical.
Its Kirby–Siebenmann invariant, .Δ(N4), is not zero; so, .N4 cannot be triangu-
lated.

(ii) For any .k ≥ 0 the Kirby–Siebenmann obstruction of .N4 × T k is nonzero.

Although there exist topological manifolds n every dimension .≥ 4 with no PL
structure, until fairly recently it seemed possible that every manifold of dimension
.≥ 5 might be triangulable. Galewski–Stern [126] and Matumoto [177] analyzed the
obstructions to triangulability. Their analysis showed that the obstruction depends
on properties of homology 3-spheres. Let .θH

3 be the abelian group of homology
cobordism classes of integral homology 3-spheres. Rohlin’s .μ-invariant defines a
homomorphism, .μ : θH

3 → Z2. The obstruction to triangulating a manifold .Mn

is a cohomology class in .H 5(Mn; ker μ), namely, it is the image of the Kirby–
Siebenmann obstruction .Δ(Mn) under the Bockstein homomorphism associated to
the coefficient sequence,

.0−→ ker μ−→ θH
3

μ−→Z2−→0.

If every homology 3-sphere with nonzero .μ-invariant had order 2 in .θH
3 , this

Bockstein homomorphism would be the zero map. So, Galewski–Stern showed that
in dimensions .≥ 5 triangulability came down to a question about homology 3-
spheres: Is there a homology 3-sphere .Σ3 with .μ(Σ3) 	= 0 which represents an
element of order 2 in .θH

3 . Such a .Σ3 exists if and only if in dimensions .≥ 5 every
manifold is triangulable. In [174] Manolescu proved that no such .Σ3 exists and
hence, that the manifolds constructed by Galewski–Stern [127] are not triangulable.
In [90] hyperbolization and relative hyperbolization are used to prove the following.

Theorem 6.8 (Davis–Fowler–Lafont [90]) In each dimension .n ≥ 6 there are
closed aspherical n-manifolds that cannot be triangulated.

Proof In dimensions .n ≥ 5 the Galewski–Stern manifold has the form .P1 ∪ U ∪
P2 where .P1 is a polyhedral homology manifold with boundary and .P2 is a PL
manifold with boundary. Also, .Δ(P1) 	= 0 and .Δ(∂P1) = 0. For .n ≥ 6 one can
use Edwards’ Theorem 3.33 (cf. [126, Theorem 1.5]) to show that .P1 can be chosen
to be a topological manifold with boundary. The manifold U is then the mapping
cylinder of a homeomorphism .∂P1 → ∂P2. If .n = 5, the polyhedral homology 4-
manifold .∂P1 might not be a topological 4-manifold and a different procedure must
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be used to choose U . For this reason our hyperbolization techniques do not work
in dimension 5. In any case, when .n ≥ 6, the aspherical version of the Galewski–
Stern manifold in [90] is again the union of 3 pieces, .P ′

1 ∪ U ∪ P ′
2, where .P ′

1 =
H(P1). Since .Δ(∂P ′

1) = 0, .∂P ′
1 is a PL manifold; so, it also bounds a PL manifold

.P2. The manifold .P ′
2 is then defined to be the relative hyperbolization .H(P2, ∂P ′

1).
As before, U is the mapping cylinder of a homeomorphism from .∂P ′

1 to .∂P ′
2, the

manifold .P ′
1 ∪ U ∪ P ′

2 is aspherical and we see that the Bockstein of the Kirby–
Siebenmann obstruction is nonzero. Details of this argument can be found in [90].

Remark 6.9 Since a hyperbolization functor is a procedure that applies to cell
complexes, usually simplicial complexes, one cannot directly apply hyperbolization
to a nontriangulable manifold. In the previous argument, we got around this problem
as follows: the polyhedral homology manifold .∂P ′

1 is a topological manifold with a
non PL triangulation; moreover, .∂P ′

1 admits a different structure as a PL manifold
(giving two inequivalent triangulations of .∂P ′

1). One then combines .P ′
1, the relative

hyperbolization .P ′
2 and the mapping cyliner U of a homeomorphism .∂P ′

1 → ∂P ′
1

between these inequivalent triangulations.

6.2.3 More on NPC Manifolds not Covered by Euclidean Space

This subsection expands on the examples of Sect. 3.2.3 of aspherical polyhedral
homology manifolds that are obtained by hyperbolization and that happen to be
topological manifolds.

When is the universal cover of an NPC polyhedral homology manifold simply
connected at infinity? Consider, for example, the polyhedral homology manifold
.H(X4(E8)) constructed in the proof of Theorem 6.7. It has one non-manifold
point whose link is Poincaré’s homology 3-sphere .Σ3. The universal cover .H̃ of
.H(X4(E8)) is not simply connected at infinity because its fundamental group at
infinity is isomorphic to an inverse limit of free products, .π1(Σ

3) ∗ · · · ∗ π1(Σ
3).

To understand this, consider a ball of radius r in .H̃. It follows that .∂Br is
homeomorphic to the connected sum .Σ3# · · · #Σ3 where there is one summand for
each PL singular point in .Br . Hence, .π∞

1 (H̃) is the inverse limit of free products as
claimed, cf. the final paragraph of Sect. 3.2.1. (See [82, Example 9.2.7] for details
of this argument.) Although the polyhedral homology manifold .H(X4(E8)) is not a
topological 4-manifold, it is homotopy equivalent to the 4-manifold .N4 in the proof
of Theorem 6.7. The universal cover .Ñ4 of .N4 is proper homotopy equivalent to .H̃

and hence, also is not simply connected at infinity.
Next suppose we have a polyhedral homology manifold .P n, .n ≥ 5, whose PL

singular set consists of a single edge e, meaning that the link of e is a homology
.(n − 2)-sphere that is not simply connected. Further suppose that the link of each
endpoint of e is simply connected. By Edwards’ Theorem 3.33, .P n is a topological
manifold. In particular, a regular neighborhood R of e is a contractible manifold.
So, .∂R is a homology .(n − 1)-sphere. Its fundamental group may or may not be
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trivial. Examples where it is nontrivial can be found in [7] or [91, Remark 5.b.2] or
in the proof of Theorem 3.4.1, where .∂R is the double of an acyclic manifold A (cf.
Sect. 3.2.3). In fact, .∂R can be an arbitrary integral homology sphere.

Let .H be any hyperbolization procedure satisfying (H0). Choose .P n as above
with a singular edge e so that the boundary of a regular neighborhood of e is a
non-simply connected homology sphere. Hyperbolize .P n to get .H(P n). Since .P n

is a topological manifold, so is .H(P n). Let .H̃(P n) be its universal cover. The ball
of radius r in .H̃(P n) contains many copies of e and hence, many copies of R.
Arguing as in the case of the universal cover of .H(X4(E8)) in the final paragraph
of Sect. 3.2.1, we see that .∂Br is homeomorphic to a connected sum of copies of
.∂R. So, .H̃(P n) is not simply connected at infinity and hence, not homeomorphic to
.R

n. This gives the following theorem, which was stated earlier as Theorem 3.41 in
Sect. 3.2.3.

Theorem 6.10 ([91, Theorem 5b.1]) In each dimension .n ≥ 5, there exists a
closed topological n-manifold .Mn with the structure of an NPC cube complex so
that its universal cover .M̃n is not homeomorphic to .R

n. In particular, the manifold
.M̃n is a .CAT(0) cube complex not homeomorphic euclidean space. By using a strict
hyperbolization procedure for .H, as in Theorem 6.33 from Sect. 6.5, we get examples
where .M̃n is .CAT(−1).

We can easily arrange for .P n to be smoothable (for example, .P n can be chosen
to be homeomorphic to a sphere). Then .Mn = H(P n) is also smoothable. (This is
just the question of lifting the stable topological tangent bundle to a vector bundle;
if the procedure .H satisfies (H6), then a lift of the stable tangent bundle for .P n pulls
back to a lift of the stable tangent bundle for .H(P n).)

6.3 The Product with Interval Hyperbolization Procedure

The hyperbolization procedure that is easiest to define is the “product with interval
procedure.” This construction, denoted by .J �→ I(J ), was first described in [91,
§4b] and in [59, §2]. The definition of the construction is by induction on the
skeleta of the cell complex J . Assuming .I(J n−1) has been defined for all .(n − 1)-
dimensional complexes .Jn−1, given an n-cell .σ , one defines .I(σ ) to be the product
.I(∂σ )×[−1, 1]. One then glues this to .I(J n−1) along the subcomplex .I(∂σ )×{±1}.
In the first version of this construction in [91] we started the induction with the 1-
skeleton and, as with the Möbius band hyperbolization, defined .I(J 1) = J 1. A few
years later Lowell Jones observed that there is a cleaner version of this construction
if one started with the 0-skeleton, setting .I(J 0) = J 0, and then defined it inductively
for the n-skeleton, .n ≥ 1 as above. This cleaner version is discussed in [80, §17] and
in [82, §12.8]. After giving the definition we will see that .I(J ) is essentially the same
as the polyhedral product construction .PL of (3.3) of Sect. 3.1, where L is the first
derived neighborhood of a vertex in J . Moreover, this procedure can be relativized
to give a procedure .I(J, B), where J is a thickening of some nonpositively curved
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complex B. This is a relative hyperbolization procedure satisfying Axiom .(RH3).
As we shall see in Sect. 6.3.1 it gives a version of the Reflection Group Trick with
nonpositive curvature.

The product with interval procedure is a sequence of functors .I0, . . . , In, . . . ,
where .In(J ) an n-dimensional cube complex defined for cell complexes J of
dimension .≤ n. If .dim J = 0, put .I0(J ) = J . Assume by induction that .In−1
has been defined and let J be a complex of dimension .≤ n. Put .In(J

n−1) =
In−1(J

n−1) × {±1}. For each .σ ∈ J (n), put .In(σ ) = In−1(∂σ ) × [−1, 1]. Finally,
let .In(J ) be the result of gluing the .In(σ ) to .In(Jn−1) along the common subspace
.In−1(∂σn) × {±1}. It follows by induction that .In(J ) is a n-dimensional cubical
complex. (Indeed, since .In(σ ) = In−1(∂σ ) × [−1, 1], we see that if .In−1(∂σ )

is an .(n − 1)-dimensional cube complex, then .In(σ ) is an n-dimensional cube
complex.) It follows from this definition that distinct vertices .v1, v2 of J correspond
to distinct components of .In(J ). Moreover, the topology of such a component of
.In(J ) depends only on a regular neighborhood (i.e., the first derived neighborhood)
of the vertex in J .

For example, if v is a vertex of a simple graph .J 1, then the component of .I1(J
1)

which contains .v ×{±1} is formed by gluing on an edge .v ×[−1, 1] to .v ×{±1} for
each edge of .J 1 which contains v. In other words, this component is the suspension
of .Lk(v, J 1). As another example, if v is the vertex of a 2-cell .σ , then .Lk(v, ∂σ ) =
S0; so, the component of .I1(∂σ ) which contains .v × {±1} is homeomorphic to
.S1(where .S1 is cellulated as a digon). Hence, .I2(σ ) ∼= S1 × [−1, 1]. For any vertex
.v ∈ J (0), we have that .In(v) = v × {±1}n ⊂ In(J ). So, for .n > 0, .In never
satisfies (H2). If v is a vertex of an n-cell .σ of J , then there is a unique component
of .I(J ) containing .v × {±1}n. Henceforth, assume that .dim(J ) = n and that v is
not an isolated vertex. Denote by .I(J, v) the component of .In(J ) which contains
.v × {±1}n.

Next we analyze and describe the cubical cell structure on .I(J, v) in order to
show that it satisfies the Link Condition of Definition 2.10 and hence, that it is
NPC. The complex .I(J, v) depends only on the poset .P of cells which contain v.
So, we may further assume that .J = Cone(Lkv), the cone on another simplicial
complex, .Lkv with v the cone point. Each i-cell in J that contains v is a join .v ∗ σ

for some .(i−1)-cell .σ ∈ Lk(i−1)
v . Let L be the order complex of .P (= the barycentric

subdivision of .Lkv). A simplex in L is a flag in .P, i.e., a totally ordered finite subset
.f = {σ0, . . . , σk} of .P. For each .f ∈ L and each integer i with .1 ≤ i ≤ n, there
is at most one .σ ∈ f with .dim σ = i − 1. Denote this cell by .fi . If there is no
such cell, put .fi = ∗i , where .∗i is just a symbol for a point that is disjoint from
everything else. Let .A(f ) = {i | 1 ≤ i ≤ n, fi 	= ∗i}.

The cells in .I(J, v) are determined by the poset .S(L) of simplices f of L as
follows. Let .t = (t1, . . . , tn) ∈ [−1, 1]n. Let .f ∈ L be a flag in .Lkv and let .k =
Card(A(f )) (so that f corresponds to a .(k − 1)-simplex of L). Let .�(f ) be the
union of k-dimensional faces of .[−1, 1]n defined by the condition,

.ti ∈ {±1}, if i /∈ A(f ).
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The conclusion is that the link of a copy of v in .I(J, v) is identified with L, the
barycentric subdivision of .Lkv . Since any barycentric subdivision is a flag complex,
we conclude from Gromov’s Lemma 2.28 that .I(J, v) is an NPC cube complex. It
is trivial to verify that .J �→ I(J, v) satisfies all the axioms for a hyperbolization
procedure except (H2) (since .In(v) consists of .2n points instead of a single point).

Proposition 6.11 For a given vertex v of a cell complex J , the correspondence
.J �→ I(J, v) is a hyperbolization procedure satisfying all the axioms except (H2).

The failure of Axiom (H2) for the product with interval procedure means that it
cannot be used for the applications to manifolds given in Sects. 6.2.1 and 6.2.2.

Next we want to show that the product with interval procedure essentially coin-
cides with our previous construction of right-angled reflection groups in Sects. 3.1
and 3.2. Let .C2 = {±1}. There is a natural action of .(C2)

n on .[−1, 1]n. Let .�(f ) be
a .(C2)

n-orbit of a k-dimensional face. In other words, .�(f ) is the disjoint union of
.2n−k copies of a k-cube. These orbits of cubes can be glued together to form .I(J, v).
In other words,

.I(J, v) = (
⊔

f ∈S(L)

f × �(f )
) / ∼ , (6.1)

where the gluing relation .∼ is defined as follows. If .f ≤ f ′, then .f × �(f ) is
naturally a subcomplex of .f ′ × �(f ′). Then, given flags .f ′ and .f ′′, the orbits of
cubes .f ′×�(f ′) and .f ′′×�(f ′′) are glued together along the common subcomplex
.(f ′ ∩ f ′′) ×�(f ′ ∩ f ′′). The .(C2)

n-action on .[−1, 1]n induces .(C2)
n
� I(J, v) as

a reflection group. There is a strict fundamental domain K defined by the equations:
.ti ≥ 0, for .1 ≤ i ≤ n. So, as in (6.1), .K = (⊔

f × �(f )
)/ ∼ . All this is

reminiscent of the construction of the commutator cover of a .RACG defined as a
polyhedral product in Sect. 3.1.1. In fact, let .S = Vert(L) be the vertex set of
L. Since L is a barycentric subdivision it is a flag complex, and there is a .RACS
.(W, S) with nerve equal to L. Each element .s ∈ S corresponds to a cell .σ(s) in .Lkv

so there is a function .ϕ : S → {1, . . . , n} defined by .ϕ(s) = dim σ(s) + 1 and a
corresponding homomorphism .φ : (C2)

S → (C2)
n induced from .ϕ and defined by

.φ(s) = rϕ(s), where .r1, . . . , rn are the standard reflections on .[−1, 1]n. (Here .(C2)
S

means the direct product (or sum) of S copies of .C2.) The map .ϕ is a coloring as in
Definition 4.121.

As in Sect. 3.1.1, .PL = ([−1, 1], {±1})L denotes the polyhedral product. We
have .(C2)

S
� PL and the lifts of this action give an action of a .RACG, W , on

the universal cover of .PL. This universal cover is the Davis–Moussong complex
.Σ(W, S). The fundamental group of .PL is the commutator subgroup .[W,W ], i.e.,
.π1(PL) is the kernel of the natural epimorphism .W → (C2)

S . Let .I = I(J, v) be
the product with interval hyperbolization. The group .(C2)

S acts on .PL and .I can
be identified with the quotient space .PL/H , for .H = ker[φ : (C2)

S → (C2)
n].

So, .PL → I is the projection map of a normal covering space with group of
deck transformations H . In the language of Sect. 3.2.4 or [92], .I is a “small cover”
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associated to the .RACG, W . Since .Σ(W, S) is the universal cover of .PL, it is also
the universal cover of .I(Cone(Lkv), v).

Theorem 6.12 Suppose .J = Cone(Lkv) for some .(n−1)-dimensional cell complex
.Lkv . Let L denote the barycentric subdivision of .Lkv and let .(W, S) be the .RACS
with nerve L. Then

(i) .I(J, v) is an NPC cube complex of dimension n. (ii) The universal cover of
.I(J, v) can be identified with .Σ(W, S) and its fundamental group with the kernel of
.φ : W → (C2)

n. (So, .π1(I(J, v)) is a torsion-free subgroup of W of index .2n.)

In other words, .I(J, v) is essentially the same construction as .PL when the flag
complex L is given as the barycentric subdivision of another cell complex .Lkv .
More precisely, .I(J, v) = PL/H .

6.3.1 The Reflection Group Trick with Nonpositive Curvature

There is relative version of the product with interval construction that is compatible
with nonpositive curvature. This allows us to define a relative hyperbolization
satisfying Axiom (RH3). This version is explained here and elsewhere (in [82,
§12.8] and [80, §17]).

Suppose that B is a connected, NPC cell complex and that B is a subcomplex
of another cell complex J . No metric on J is assumed. For example, B could
be an NPC cube complex and J could be any other cube complex containing B.
Alternatively, after subdividing, we could assume that B is a simplicial complex
with a piecewise euclidean NPC metric and that J is another simplicial complex
containing B. We need to assume the following:

.For any cell σ of J, σ ∩ B is either empty or a single cell of B. (6.2)

Let .P(J, B) denote the poset of cells of J which have nonempty intersection with
B and which are not contained in B. Define .dim(J, B) to be the largest dimension
of any .σ ∈ P(J, B). For .dim(J, B) ≤ n we will define an NPC polyhedron .I(J, B)

(.= In(J, B)) with the following properties:

(1) .I(J, B) contains .2n disjoint copies of B, each of which is embedded as a totally
geodesic subcomplex.

(2) .I(J, B) depends only .P(J, B), i.e., it depends only on the first derived
neighborhood of B in J .

(3) If .σ is a k-cell in .P(J, B), then .I(σ, σ ∩ B) is an NPC piecewise linear k-
manifold with boundary.

(4) .(C2)
n
� I(J, B) as a reflection group. A fundamental chamber .K(J,B) is

identified with the first derived neighborhood of B in J .
(5) .I(J, B) retracts onto .K(J,B) and from there onto B.
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In the next few paragraphs we define a sequence of functors .In(J, B), essentially
by repeating the definition of .I(J, v) after replacing the vertex v by the subcomplex
B. The definition is by induction on .dim(J, B) Put .I0(J, B) = B. Assuming by
induction that .In−1 has been defined, put .In(J

n−1 ∪ B,B) = In−1(J
n−1 ∪ B,B) ×

{±1} and for each n-cell .σ ∈ P(J, B), put .In(σ, σ ∩ B) = In−1(∂σ, ∂σ ∩ B) ×
[−1, 1]. For an arbitrary pair .(J, B) with .dim(J, B) = n, .In(J, B) is defined as
the result of gluing a copy of .In(σ

n, σn ∩ B) onto .In(J
n−1 ∪ B,B) via the natural

embedding .In−1(∂σn, ∂σn∩B)×{±1} ↪→ In−1(∂σn∩B)×[−1, 1]. If .dim(J, B) ≤
n, then put .I(J, B) = In(J, B).

The cell structure on .I(J, B) is a generalization of the one defined previously
in the case where B was a single point v. Let .F(J, B) denote the order complex
of .P(J, B). For each .f ∈ F(J, B), the minimum element of f has nonempty
intersection with a face .τ(f ) of B. For each .f ∈ F(J, B) and integer i, with .1 ≤
i ≤ n, there is at most one cell .σ ∈ f with .dim σ = i. As before, denote this cell by
.fi . If there is no such cell, put .fi = ∗i and let .A(f ) = {i | 1 ≤ i ≤ n, fi 	= ∗i}.

Let .�(f ) to be the .(C2)
n-orbit of the face of .[−1, 1]n defined by the equations,

.ti = ±1, where .i /∈ A(f ). So, .�(f ) is a disjoint union of k-cubes, where

.k = Card(A(f )). Since .τ(f ) is a cell in B, it is a euclidean polytope; hence, each
component of .τ(f ) × �(f ) is also a euclidean polytope (with the product metric)
of dimension .dim τ(f ) + k. As in (6.1) put

.I(J, B) =
⎛

⎝

⊔

f ∈F(J,B)

f × τ(f ) × �(f )

⎞

⎠ / ∼ , (6.3)

where f is regarded as a point.

Proposition 6.13 Suppose .dim(J, B) = n and .I(J, B) denotes the result of the
relative product with interval hyperbolization. Then .I(J, B) is an NPC piecewise
euclidean polyhedron. Moreover, it has properties (1) to (5) listed above.

Proof Since each cell of .I(J, B) is the product of a euclidean polytope and a cube,
.I(J, B) is a polyhedron with a piecewise euclidean metric. To show the metric on
.Mn = I(J, B) is NPC one uses the inductive definition and Reshetnyak’s Gluing
Lemma (see [35, p. 350], [42, p. 316] or [136, p. 124]). This lemma asserts that
when we glue together two NPC spaces via an isometry of two totally geodesic
subspaces (or a self- isometry of a single totally geodesic subspace), the result is
NPC. In the case at hand, we can assume by induction that .In−1(J

n−1∪B,B)×{±1}
is NPC as is .In(σ, σ ∩ B) = In−1(∂σ, ∂σ ∩ B) × [−1, 1] (with the product metric).
So, the result follows from Reshetnyak’s Lemma. Note that each .(l + k)-cell of
.I(J, B) is isometric to .τ l × [−1, 1]k for some l-cell .τ in B. (Alternatively, when
B is an NPC cube complex, one could use Gromov’s Lemma and the fact that the
geometric realization of .F(J, B) is a flag complex to prove that the cube complex
.I(J, B) is NPC.)
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As before, .(C2)
n
� I(J, B). A strict fundamental domain .K(J,B) is defined by

the inequalities .ti ≥ 0, for .1 ≤ i ≤ n. The space .K(J,B) is a regular neighborhood
of B in J . There are some further .RACGs in the background. Let .S = P(J, B).
There is a .RACS .(W, S). Its nerve .L(W, S) is equal to the flag complex .F(J, B).
The set S indexes a mirror structure on .K(J,B). As in formulas (3.9) or (4.4) of
Sect. 3.1.1 or 4.1.1, the basic construction yields

.I(J, B) = W × K(J,B)) / ∼,

and this can be identified with a covering space of .I(J, B). (In fact, in [82, §12.8],
this description of .I(J, B) used in the first definition of relative hyperbolization.)

Let .K̃(J, B) be the universal cover of .K(J,B). Let .S̃ denote the inverse image of
S in .K̃(J, B) and let .(W̃ , S̃) be the corresponding (infinitely generated) .RACS. The
space .Ĩ(J, B) = W̃×K̃(J, B)) / ∼ is the universal cover of .I(J, B), hence, also the
universal cover of .I(J, B). Put .π = π1(K(J, B)) = π1(B). Since .π � K̃(J, B) by
deck transformations, it acts on .(W̃ , S̃) by diagram automorphisms. The semidirect
product (or wreath-graphproduct) .W̃ � π is the group of all lifts of the W -action
on .I(J, B); hence, it is also the group of all lifts of the .(C2)

n-action on .I(J, B). It
follows that the fundamental group of .I(J, B) is given by

.π1(I(J, B)) = Γ � π,

where .Γ is the kernel of the natural epimorphism .W̃ → (C2)
n. (See [82, pp. 168–

170] for more details.) Taking .M = I(J, B), the next theorem is a corollary to
Proposition 6.13.

Theorem 6.14 (A Nonpositively Curved Version of the Reflection Group Trick)
Suppose B is a compact NPC polyhedron that can be embedded in some PL n-
manifold. Let J be a regular neighborhood of B in the manifold and suppose .(J, B)

satisfies (6.2). Then there is a closed manifold .Mn (.= I(J, B)) with a nonpositively
curved polyhedral metric so that B is totally geodesic in .Mn and so that .Mn retracts
onto B. If B is an NPC cube complex, then .I(J, B) also can be taken to be an NPC
cube complex.

There are two types of applications for this theorem. First, as with the reflection
group trick, if the fundamental group of B has a property which is inherited by any
group that retracts onto it, then the theorem implies that we can produce a closed
NPC manifold with the same property. Secondly, one can show that certain results
which are known to hold for NPC manifolds (such as the Farrell–Jones Conjecture)
descend to results for a compact NPC polyhedron B. An example of the first type of
application is the following.

Corollary 6.15 For each .n ≥ 4, there is a closed n-manifold with an NPC cubical
structure, that retracts onto any one of the Burger-Mozes examples from Sect. 2.4.4.
In particular, the fundamental group of such a manifold retracts onto an infinite
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simple group and hence, is not residually finite (since residual finiteness is preserved
under retractions).

Alternatively, one could start from one of Higman’s groups from Sect. 2.4.3 to get
NPC closed manifolds whose fundamental groups are not residually finite.

For any group .π , there is an assembly map .A : Hn(Bπ;L) → Ln(π), where
.Ln(π) is Wall’s surgery obstruction group for .π and where .L means the .Ω-spectrum
associated to .Z × G/T OP . The Novikov Conjecture for a torsion-free group .π

asserts that A is injective. The Borel Conjecture asserts that A is an isomorphism.
As an illustration of the second type of application, we have the following.

Corollary 6.16 Let .π be the fundamental group of a compact NPC polyhedronB.

(i) (Hu [154]).The Whitehead group, .Wh(π), is trivial.
(ii) (Hu [155]). The Novikov Conjecture holds for .π .

(iii) (Bartels-Lück [13]). The Borel Conjecture holds for .π .

Proof Farrell and Jones proved that .Wh(π) = 0 for .π the fundamental group
of a closed Riemannian manifold of nonpositive sectional curvature. They also
proved the Assembly Map Conjecture in this context (cf. [116]). Hu [154] showed
that the Farrell–Jones argument for the Whitehead group worked for an NPC
polyhedral metric on a manifold M and hence, the relative hyperbolization of
Theorem 6.14 gives (i). It seems likely that the Farrell–Jones proof of the Assembly
Map Conjecture also holds for polyhedral manifolds, in which case Theorem 6.14
also gives (iii). The point is that since .π is a retract of .π1(M) the abelian groups
.Wh(π), .Hn(Bπ;L) and .Ln(π) are direct summands of the corresponding groups
for .π1(M). This is enough to conclude (ii), e.g., see [80]. In [13] Bartels and Lück
give a different argument that does not use relative hyperbolization.

6.4 Gromov’s Hyperbolization Procedure

6.4.1 A General Technique for Hyperbolization

We begin with some general remarks following [91, Section 1].
Let .Δn denote the simplex with vertex set .{0, 1, . . . , n}. Given a simplicial

complex J of dimension .≤ n, a nondegenerate simplicial map .p : J → Δn means
the same as a “coloring” .Vert(J ) → {0, 1 . . . , n} from Definition 4.121.

Definition 6.17 (cf. [91, Def. (1a.1)]) A simplicial complex over .Δn is a pair .(J, p)

where J is a simplicial complex and .p : J → Δn is a nondegenerate simplicial
map. If .(J1, p1) and .(J2, p2) are simplicial complexes over .Δn, then a simplicial
map .f : J1 → J2 is a map over .Δn if .p1 = p2f .

Similarly, one can define a cube complex over .�n: it is a pair .(H, p) where H is
a cube complex and .p : H → �n is a cellular map whose restriction to each cube
is a combinatorial isomorphism onto its image (cf. [56, Def. 7.2]).
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For example, if X is any convex cell complex of dimension .≤ n, then its
barycentric subdivision bX is a simplicial complex over .Δn. The map .p : bX → Δn

sends the barycenter of an i-cell to the integer i in .Vert(Δn). A space over .Δn is a
pair .(X, π), where .π : X → Δn is a continuous surjection. If E is a subcomplex
of .Δn, then put .XE = π−1(E). Eventually we want to use a manifold with corners
over .Δn. This means that X is a smooth n-manifold with corners, that for each face
.τ of .Δn of codimension k, .Xτ is a codimension k stratum of X, and that the normal
bundle of .Xτ in X is mapped fiberwise isomorphically to the normal bundle of .τ in
.Δn.

Definition 6.18 Suppose .(J, p) is a simplicial complex over .Δn and .(X, π) is a
space over .Δn. Define .J ˜ΔX to be the fiber product:

. (6.4)

In other words,

.J ˜ΔX = {(x, y) ∈ J × X | p(x) = π(y)}. (6.5)

In all that follows we shall only be concerned with the case where the simpicial
complex is the barycentric subdivision bJ of an n-dimensional simplicial complex
J and .p : bJ → Δn is the natural coloring. In [91] we defined the Williams functor
on J and .(X, π) to be the space:

.JΔX := (bJ ) ˜ΔX = {(x, y) ∈ bJ × X | p(x) = π(y)}.

Let .c : JΔX → bJ denote projection onto the first factor.
The method of [91] for constructing a hyperbolization goes as follows. For

each .n > 0, suppose we are given a “hyperbolized n-simplex,” .(Hn(Δ
n), π). It

should satisfy the usual list of properties in Sect. 6.1.1, e.g., .Hn(Δ
n)) is a smooth

n-manifold with corners, .Hn(Δ
n) is isometric to a NPC cube complex, and for each

subcomplex P of .Δn, the space .π−1(P ) is a totally geodesic subspace of .Hn(Δ
n).

If J is an n-dimensional simplicial complex, one then defines its hyperbolization
.Hn(J ) by

.Hn(J ) = JΔHn(Δ
n). (6.6)

In other words, .Hn(J ) is .JΔX for .X = Hn(Δ
n). (The reason for including the

subscript n in our notation for hyperbolization .Hn is that in practice .Hn(Δ
n) will be

defined by induction, and we will first need to define .Hn−1(∂Δn).) In order to show
that .Hn(J ) satisfies the axioms in Sect. 6.1.1, we will need to show that if .(X, π)

is a space over .Δn satisfying appropriate conditions, then .JΔX satisfies versions of
the axioms. Assume the following:
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(1) X is a smooth n-manifold with corners. If .τ is a codimension-k face of .Δn, then
.Xτ is a codimension-k stratum of X.

(2) X is a piecewise euclidean polyhedron and for each subcomplex P of .Δn, .XP

(.= π−1(P )) is a totally geodesic subpolyhedron of X.
(3) If J is a smooth triangulation of a smooth n-manifold, then the inclusion

.JΔX → bJ × X is a smooth embedding with trivial normal bundle. (This
is automatic if we choose an appropriate smooth version of the map .p : bJ →
Δn.)

Definition 6.19 Suppose .(X, π) satisfies (6.4.1). Then .(X, π) is degree one if
.π : (X, ∂X) → (Δn, ∂Δn) induces an isomorphism on .Hn and furthermore, if
for any codimension-k face .τ of .Δn, the map .(Xτ , ∂Xτ ) → (τ, ∂τ ) induces an
isomorphism on .Hn−k . One says that .(X, π) is tangentially trivial if the tangent
bundle of X is trivial. The polyhedron .(X, π) is nonpositively curved if X is NPC.
(It then follows from (2) that the totally geodesic subspace .XP is NPC for each
subcomplex P of .Δn.)

The proof of the next lemma is left for the reader. Details can be found in [91, §1].

Lemma 6.20 Suppose J is an n-dimensional simplicial complex and .(X, π) is as
in statement (1) of (6.4.1).

(i) If .(X, π) is degree one, then .c∗ : H∗(JΔX) → H∗(J ) is a surjection.
(ii) If .(X, π) is nonpositively curved, then .JΔX is an NPC polyhedron.

(iii) Suppose X is a smooth n-manifold with corners and that J is a smooth
triangulation of a smooth n-manifold so that .JΔX also is a smooth n-
manifold. If X is tangentially trivial, then the stable tangent bundle of J pulls
back to the stable tangent bundle of .JΔX. In particular, the Stiefel-Whitney
classes and the Pontrjagin classes of J pull back to the corresponding classes
of .JΔX.

6.4.2 The Space Ω(A, ∂A)

Suppose .(A, ∂A) is a manifold with boundary. Let .D(A, ∂A) denote the double of
A along .∂A and let r be the reflection of .D(A, ∂A) that switches the two copies of
A and fixes .∂A. The subspace A is a fundamental half-space. The proof of the next
lemma is easy.

Lemma 6.21 (cf. [91, Lemma 4c.1]). The following statements are equivalent.

(i) The stable tangent bundle of .D(A, ∂A) is trivial.
(ii) The stable tangent bundle of A is trivial.

(iii) The stable tangent bundle of .D(A, ∂A) is .Z2-equivariantly trivial. (The .Z2-
action is defined by the reflection r .)
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Remark 6.22 This lemma is only true for the stable tangent bundle. For example,
if A is the 2-disk, then it has trivial tangent bundle. Since .D(A, ∂A) = S2 which
has nonzero Euler characteristic, its tangent bundle cannot be trivial.

Following Gromov [136, p. 116], we define a manifold with boundary .Ω(A, ∂A),
its boundary being .D(A, ∂A). Start with .D(A, ∂A) × [−1, 1] and then glue
.r(A)×{−1} to .r(A)×{+1} using the identity map on .r(A). The result is .Ω(A, ∂A).
Another way to think of .Ω(A, ∂A) is to start with .D(A, ∂A) × S1 and then slit it
open along the fundamental half-space .A × 1. (In [91] .Ω(A, ∂A) is called “the
cylinder construction.”)

Lemma 6.23 (cf. [91, Prop. 4c.2]) Write D for .D(A, ∂A) and .Ω for .Ω(A, ∂A).
(i) Let .τ(A) and .τ(Ω) denote the stable tangent bundles ofA and .Ω , respectively.

Suppose the bundle .τ(A) is trivial and .ψ : τ(A) → A×R
N is a trivialization. Then

.ψ extends to a trivialization .τ(Ω) → Ω × R
N . In particular, .τ(Ω) is trivial.

(ii) If D is an NPC cube complex, then so is .Ω .

Proof Statement (i) follows from Lemma 6.21. As for (ii), if D is an NPC cube
complex, then so is .D × S1 and hence, so is .Ω (since it is the result of sliting
.D × S1 open along .A × 1).

If r is a locally linear reflection on a closed manifold M , then .M = D(A, ∂A)

where .∂A is the fixed set of r and A is a choice of fundamental half-space. We will
write .Ω(M, r) instead of .Ω(D(A, ∂A)).

6.4.3 Gromov’s Construction

Given a simplicial complex J of dimension .≤ n, Gromov’s hyperbolization .Hn(J )

is defined by induction on n. For .n = 1 put .H1(J ) = J . On the n-simplex .Δn

let .r : Δn → Δn be a linear reflection given by transposition of two vertices. The
homeomorphism r is not a simplicial map; however, it is a simplicial isomorphism if
we pass to the barycentric subdivision .bΔn. Suppose by induction that .Hn−1(J ) has
been defined for any J of dimension .≤ (n − 1), so that .Hn−1(b∂Δn) is defined. By
functorality, there is an involution .Hn−1(r) : Hn−1(b∂Δn) → Hn−1(b∂Δn). Since
the fixed set of r separates .b∂Δn into two half-spaces, the fixed set of .Hn−1(r)

on .Hn−1(b∂Δn) has the same property, i.e., .H(r) is a locally linear reflection. The
hyperbolization .Hn(Δ

n) is defined by:

.Hn(Δ
n) := Ω(Hn−1(b∂Δn),Hn−1(r)). (6.7)

As before, the hyperbolization .Hn(J ) of an n-dimensional complex J is defined as
the fiber product (6.6). We simplify notation by writing .H(J ) instead of .Hn(J ).

Example 6.24 We have that .H(Δ2) is .b∂Δ2 × S1 slit open along half of .b∂Δ2. In
other words, .H(Δ2) is a 2-torus with the interior of a 2-disk removed and .∂H(Δ2) is
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identified with .b∂Δ2. The barycentric subdivision .b∂Δ3 is a union of twenty four 2-
simplices. The surface .H(∂Δ3) is formed by replacing each 2-simplex by the torus
with hole, .H(Δ2). Thus, .H(∂Δ3) will be a closed surface of genus 24.

Remark 6.25 The problem with the definition in (6.7) is that the reflection
.r : ∂Δn → ∂Δn is not canonical, as it requires a choice of two vertices in
.Δn. Furthermore, to get r to be a simplicial automorphism we need to pass to
the barycentric subdivision. Hence, there are many barycentric subdivisions of
simplices hidden in the definition in (6.7). For example, to define .H2(Δ

2) and the
reflection .H2(r) on it, we must barycentrically subdivide .Δ2 in order to define r

and then replace each 2-simplex in .bΔ2 by a torus with hole. However, in order to
make the attaching map of this torus with hole well-defined we need to choose a
reflection on each 2-simplex .bΔ2 and to make this reflection simplicial we need to
pass to the second barycentric subdivision.

Theorem 6.26 (cf. [91]) Suppose J is an n-dimensional simpicial complex. Then
the result of Gromov’s hyperbolization procedure, .H(J ), is a NPC cube complex.
Moreover, the functor .J → H(J ) satisfies Axioms (H0) through (H6) in Sect. 6.1.1.

Proof We can assume by induction that .H(b∂Δn) is a .(n − 1)-dimensional NPC
cube complex and that .Hn−1(r) is a locally linear reflection on it. Applying
Lemma 6.23 with .D = D(H(b∂Δn),H(r)), we see that .Ω = H(Δn) is an
n-dimensional NPC cube complex. Since we also have by induction that the
hyperbolization of the .(n − 1) skeleton of J is an NPC cube complex, it follows
from Reshetnyak’s Gluing Lemma that .H(J ) is an NPC cube complex. This proves
the first sentence of the theorem.

Since the definition of .H(J ) uses induction on dimension, the verification of the
axioms also uses induction. Verifications of (H0) through (H3) are routine and are
left to the reader. By induction, .H(b∂Δn) is a smooth manifold with stably trivial
tangent bundle (Since .∂Δn is a sphere its stable tangent bundle is trivial. Since
.H(Δn) is defined by (6.7), it is a smooth manifold with corners with trivial tangent
bundle.) If J is a smooth triangulation of a smooth manifold, then, using (6.5), (6.6)
and the Implicit Function Theorem, we see that .H(J ) is a smooth submanifold of
.bJ × H(Δn) with trivial normal bundle (cf. [91, Prop. 1f.5]). It follows that the
stable tangent bundle of J is the pullback of the stable tangent bundle of J . Axioms
(H4), (H4), (H6) follow.

6.5 Strict Hyperbolization

There is a construction of [59] for converting a finite dimensional cube complex J

into a piecewise hyperbolic space .JX. The idea is to first construct, for each positive
integer n, a hyperbolic n-manifold with corners .X = Xn such that the strata of X

can be organized to give it the structure of a manifold with faces so that
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(a) Each face of X is a totally geodesic submanifold. (A k-dimensional “face” is a
union of k-dimensional strata of the manifold with corners X. N.B. A face need
not be connected.) If two or more faces have nonempty intersection, then the
intersection is orthogonal.

(b) The poset of faces of X is isomorphic to the poset of faces of the n-cube .�n.
Moreover, the group of symmetries of .�n (i.e., the Coxeter group .W(Bn)) acts
by isometries on .Xn.

One can then glue together copies of X and its faces in the same combinatorial
pattern as the faces of .�n are glued together in forming J to form a new space .JX.
We also get a strata-preserving map .f : JX → J unique up to a homotopy through
strata-preserving maps (cf. Axiom (H1)). If X satisfies a couple of other additional
properties (that its faces are orientable and that its set of 0-dimensional faces is
isomorphic to .{±1}n) , then .f : JX → J is degree one (cf. Sect. 6.1.1). Moreover,
if the cube complex J has flag complexes as its links, then the new space .JX will be
locally .CAT(−1). Finally, we can precompose this with one of the hyperbolization
procedures of Sect. 6.3 or 6.4, which takes values in cube complexes to get a strict
hyperbolization procedure .J �→ H(J ) �→ H(J )X.

The Hyperbolic Manifold with Faces X In the next theorem we use Example 5.22
to describe some properties of certain arithmetic hyperbolic n-manifolds.

Theorem 6.27 ([59]) For each .n > 0 there is a closed, connected, hyperbolic man-
ifold .Mn, a system .{M1, . . . ,Mn} of closed, connected submanifolds of codimension
one in .Mn, and an isometric action of .W(Bn) (the symmetry group of .�n) on .Mn

preserving the system of submanifolds such that:

(1) .Mi is a component of the fixed point set of a reflection .ri ∈ W(Bn), where
.〈r1, . . . , rn〉 is a standard subgroup isomorphic to .Cn

2 .
(2) Each .Mi is totally geodesic in .Mn.
(3) The .Mi s intersect orthogonally.
(4) .M1 ∩ · · · ∩ Mn is a single point x.
(5) .W(Bn) fixes x and its representation on .TxM

n is equivalent to its standard
representation as a finite reflection group.

(6) .Mn, as well as each .Mi , is orientable.

Sketch of Proof Here is a sketch of the proof in [59]. Consider the quadratic form
.ϕ on .R

n+1 given by

.ϕ(x0, x1, . . . , xn) = −√
2 (x0)

2 + (x1)
2 + · · · (xn)

2.

Let A be the ring of integers in the number field .Q(
√

2). Let .O(ϕ,A) be the
automorphism group of .ϕ on .An+1. On .R

n+1, .ϕ is equivalent to the standard
indefinite form of signature .(n, 1); so, .O(ϕ,R) is isomorphic to the Lie group
.O(n, 1) of isometries of .H

n (thought of as one sheet of the hyperboloid .{ϕ(x) =
−1} in .R

n,1). The manifold .Mn will be .H
n/Γ where .Γ is an appropriately chosen

normal, torsion-free subgroup of finite index in .O(ϕ,A). The codimension-one
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submanifold .Mi will be the image of the hyperplane .{xi = 0} in .Mn. Reflection
across the hyperplane .{xi = 0} descends to a reflection .ri : M → M so that
.Mi is a component of the fixed set of .ri on M . (N.B. Although the fixed set
of .ri separates M , the component .Mi of this fixed set need not.) Let .O0(n, 1)

be the subgroup of .O(n, 1) that preserves the two sheets of the hyperboloid, let
.SO(n, 1) = O(n, 1) ∩ SL(n + 1,R) and .SO0(n, 1) = O0(n, 1) ∩ SO(n, 1). We
need to show that we can choose .Γ so that the properties in the theorem hold. Only
two of these properties are tricky, (4) and (6). Property (4) holds whenever .Γ is
a congruence subgroup, .Γ (I) := {γ ∈ O(ϕ,A) | γ ∼= 1 (mod I }, defined for
some nonzero ideal .I in A. Property (6) holds whenever .Γ < SO0(n, 1). So, we
need to show that we can find a congruence subgroup .Γ (I) which is simultaneously
a subgroup of .SO0(n, 1). This is possible by a lemma of Millson-Raganuthan. Its
proof depends on the fact that we can choose .I so that any .γ ∈ Γ (I) has trivial
“spinor norm” in .R

∗/(R∗)2 (cf. [59, Lemma 6.7]). (Here .R
∗ = R − {0}.)

For each subset .I < {1, . . . , n}, put .MI = ⋂

i∈I Mi . The n-manifold with
faces X is constructed by “cutting open” the manifold .Mn along the system of
codimension-one submanifolds .{M1, . . . ,Mn}. In general, a system of codimension-
one submanifolds .{F1, . . . , Fn} is as described in [59, §5]. It means, in particular,
that the submanifolds .Fi intersect transversely. This process is essentially the same
as the one described in Sect. 3.2.5 for cutting open a manifold along a hierarchy. If
.F1 is a hypersurface in M , then .M � F1 denotes the result of adding to .M − F1 the
normal .S0-bundle to .F1. If .F1 is two-sided, then .M�F1 is a manifold with boundary,
with two boundary components for each component of .F1. If M is connected
and .F1 is non-separating, then .M � F1 is connected. The manifold with corners
.M � {F1, . . . , Fn} is defined by iterating this procedure. If each .Fi is two-sided
and non-separating, then .M �{F1, . . . , Fn} is connected. There is a natural obvious
gluing map .M � {F1, . . . , Fn} → M and a codimension-k face of the manifold
with corners is the inverse image of a component of a k-fold intersection. For each
component of such an intersection there are .2k codimension-k faces.

Example 6.28 (Cutting Open an n-Torus to Get an n-Cube) Suppose .Mn = T n

and .{F1, . . . , Fn} is the standard system of coordinate subtori passing through a
given point. Then .M � {F1, . . . , Fn} is the n-cube .�n.

Let M be the closed hyperbolic n-manifold and .{M1, . . . ,Mn} the system of
submanifolds described in Theorem 6.27. Put

.X := M � {M1 . . . , Mn}. (6.8)

Here is a corollary to Theorem 6.27.

Corollary 6.29 (cf. [59, Cor. 6.2]) There is a compact, connected, orientable
hyperbolic n-manifold with faces X together with an action of .W(Bn) (the group
of symmetries of .�n) with the following properties.
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(i) The poset of faces ofX is .W(Bn)-equivariantly isomorphic to the poset of faces
of .�n.

(ii) Each component of each face of X is totally geodesic in X. (N.B. A face of X

need not be connected.)
(iii) If a collection of faces has nonempty intersection, then the intersection is

orthogonal.
(iv) Each 0-dimensional face is a single point (i.e., X has precisely .2n vertices).
(v) There is natural map .q : X → �n taking each face of X to the corresponding

face of .�n. The map q, as well as its restriction to each face, has degree one.

Proof Since each .Mi is non-separating, it follows that X is connected. Since M is
orientable so is X (cf. [59, Lemma 5.8]). Properties (ii) and (iii) follow immediately
from corresponding facts about .{M1, . . . ,Mn}. Property (iv) follows from property
(4) of Theorem 6.27. The proof of (i) uses item (4) as well as [59, Lemma 6]. For
the proof of (v), see [59, Lemmas 5.3 and 5.9].

The Piecewise Hyperbolic Space .JX

Theorem 6.30 (cf. [59, Proposition 7.1]). Suppose J is a cube complex of dimen-
sion .≤ n and X is the hyperbolic n-manifold with faces defined by (6.8). Then there
is a piecewise hyperbolic space .JX and a map .f : JX → J with the following
properties.

(1) For each k-cell .�k in J , .f −1(�k) is a k-dimensional face of X. Furthermore,
if .J ′ is any subcomplex of J , then .f −1(J ′) is isometric to .J ′

X.
(2) The directions in .JX that are orthogonal to .f −1(�k) form a piecewise spherical

polyhedron .Lk(f −1(�k), JX) that is isometric to .Lk(�k, J ).
(3) The construction .J �→ JX is a functor from the category of cube complexes

and cellular immersions to the category of piecewise hyperbolic spaces and
isometric immersions.

(4) The map f induces a surjection on homology.
(5) If J is a manifold, then so is .JX. If J has a smooth or PL structure, then the

same is true for .JX.
(6) If J is NPC, then .JX is locally .CAT(−1).

Comments on the Proof A straightforward proof of this theorem can be found in
[59, pp. 347–348]. The space .JX is constructed by gluing together faces of X in the
same combinatorial fashion as the cubes of J are glued together. One comment
that needs to be made is that this process is independent of the combinatorial
equivalence of a k-cell in J with the standard k-cube. This is guaranteed by item (i)
in Corollary 6.29: every combinatorial symmetry of .�k corresponds to an isometry
of the corresponding face of X. Since each face of X is orientable and since each
0-dimensional face is a point, we get property (4), that f induces a surjection
on homology. As for property (6), suppose a point .z ∈ JX lies in the relative
interior of some face of X corresponding to some k-dimensional cube .�k of J .
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A neighborhood of z in .JX is isometric to a neighborhood of the cone point in
the hyperbolic cone, .Cone−1

ε (Lk(z, JX)), defined by formula (2.3) in Sect. 2.1. By
Lemma 2.8 this cone is .CAT(−1) if and only if .Lk(z, JX) is .CAT(1). By item (2)
above, this link is isometric to .Lk(f (z), J ) ≡ S

k−1 ∗ Lk(�k, J ). By Gromov’s
Lemma 2.28, J is NPC if and only if .Lk(�k, J ) is a flag complex for each cell .�k

and by (2) this means that .Lk(f −1(�k), JX) is also a flag complex and hence, that
.Cone−1

ε (Lk(z, JX)) is .CAT(−1).

To establish properties of the stable tangent bundle of .JX we need to know
something about the tangent bundle of X and we would like a description of .JX

similar to the fiber product construction in Definition 6.18.

Definition 6.31 Suppose J is a cube complex. A projection from J to .�n is a
cellular map .p : J → �n such that the restriction of p to any cell is a combinatorial
isomorphism onto a face of .�n. (Compare this to the definition of a “coloring” of a
simplicial complex given in Definition 4.121.)

If J admits a projection .p : J → �n, then, as in Definition 6.18, .JX is a fiber
product:

. (6.9)

That is to say, .JX = {x, y) ∈ X×J | q(x) = p(y)}. This means that if J is a smooth
or PL manifold, then .JX is a smooth or PL submanifold of .X × J emdedded with
trivial normal bundle. Hence, if we can find an example of a hyperbolic manifold
with faces X that has trivial tangent bundle, then the tangent bundle of .JX will be
stably equivalent to the pullback of the tangent bundle of J via f .

In order to get the tangent bundle of X to be trivial, the question arises: can we
choose the manifold .Mn (.= H

n/Γ (I)) to have stably trivial tangent bundle? The
answer is yes. First observe that the stable tangent bundle .T M ⊕ R is flat, where
the associated holonomy .Γ → O(n, 1) is the representation that defines .Mn. It is
then a result of Deligne and Sullivan that the flat bundle .T M ⊕ R becomes trivial
after passing to a finite cover .M ′ → M corresponding to some subgroup .Γ ′ of finite
index in .Γ . To obtain M as in Theorem 6.27 we need .Γ to be a congruence subgroup
for some ideal .I. Passing to a smaller ideal .I′ we can assume that there is a deeper
congruence subgroup .Γ (I′) such that .Γ (I′) ≤ Γ ′. Since the tangent bundle of .M ′
is stably trivial so is its pullback to the finite cover .M ′′ = H

n/Γ (I). So, by taking
.M = M ′′ we get the desired stably parallelizable hyperbolic manifold. Cutting it
open as before we obtain the hyperbolic manifold with faces X with trivial tangent
bundle. So, we have proved the following.

Lemma 6.32 Suppose J is a cube complex projecting to .�n and that J is a smooth
or PL manifold. Choose a hyperbolic manifold with faces X as above so that its
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tangent bundle is trivial. Let .f : JX → J be the map defined in (6.9). Then the
tangent bundle of .JX is stably isomorphic to .f ∗(T J ).

This lemma means in particular that the Stiefel-Whitney classes and Pontrjagin
classes of .T (JX) are the pullbacks of the corresponding characteristic classes of
T J . (Note, however, that the same is not true for Euler classes since .χ(X) 	= 1.)

Converting Hyperbolizations to Strict Hyperbolizations Suppose J is an n-
dimensional simplicial complex. As we have seen in Sect. 6.3, the product with
interval construction .In(J, v) is an NPC cube complex and as in Sect. 6.4.3, the
same is true for Gromov’s hyperbolization construction .Hn(J ). Let .G(J ) stand for
either one of these constructions. Given a hyperbolic n-manifoold with faces X we
can then compose the functor .J �→ G(J ) with the functor .G(J ) �→ G(J )X to get the
desired strict hyperbolization functor .J �→ G(J )X satisfying Axioms (H0), (H1),
(H3) and (H4) and in the case of .H(J )X, satisfying Axiom (H2) as well.

In order to verify that Axioms (H5) and (H6) hold we need to show (a) that
there is a projection map .p : Gn(J ) → �n and (b) that X can be chosen so that
the tangent bundle of X is trivial. Condition (a) is easily proved by induction on n.
Condition (b) is Lemma 6.32 above. So, as promised earlier, we have the following
theorem (which we state only in the case of Gromov’s hyperbolization so that it is
not necessary to exclude (H2)).

Theorem 6.33 There is a strict hyperbolization procedure, .J �→ H(J )X, defined
on any n-dimensional simplical complex J , that satisfies Axioms (H0)–(H6).

Remark 6.34 In [186, 187] Ontaneda makes good use of strict hyperbolization to
produce many new examples of smooth, negatively curved riemannian manifolds
that satisfy a variety of interesting properties.



Chapter 7
Morse Theory and Bestvina–Brady
Groups

Section 7.1 develops “Morse theory” for real-valued functions on convex cell
complexes. There are two purposes: (1) to study finiteness properties of groups that
are defined as the kernel of a homomorphism from a group to the infinite cyclic
group, and (2) for groups of type F to study their fundamental groups at infinity and
their cohomology groups with group ring coefficients. In Sect. 7.3 the Bestvina–
Brady group .BBL is defined as the kernel of a surjection .AL → Z, where .AL is
the .RAAG associated to a flag complex L. Bestvina and Brady proved that if L is
acyclic but not simply connected then .BBL is a group that is type FP but not type F.
There are various applications. In Sect. 7.4.1 examples are given of .PDn groups that
are not the fundamental group of any closed aspherical manifold. In Sect. 7.4.2 we
describe the examples of Leary–Nucinkis of virtually torsion-free groups G whose
torsion-free subgroup is type F, yet G is not type .VF. In Sect. 7.4.3 variations of
Bestvina–Brady groups are used to get Leary’s construction of uncountably many
groups of type FP.

The origin of these ideas lies in work of Stallings [208]. Let .F2 denote the free
group on two generators. Stallings showed that the kernel of a natural surjection
.F2 ×F2 ×F2 → Z is a finitely presented group which is not type .F3 (i.e., it does not
have a classifying space with finite 3-skeleton). In [25] this was generalized to the
kernel of .(F2)

m → Z. Such a group was type .Fm−1 but not type .Fm. (N.B. .(F2)
m

is a .RAAG.) The proof that the kernel G is not type .Fm is that .Hm(G;Z) is not
finitely generated (and hence, BG cannot have a finite m-skeleton). These examples
are usually called the Bieri–Stallings groups. So, the Bieri–Stallings groups are
examples of Bestvina–Brady groups.
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7.1 Morse Theory on Convex Cell Complexes

Suppose that .ϕ : Y → R is a real-valued function on a convex cell complex Y . This
section deals with such functions in the case where the homotopy type of the level
sets only change as .ϕ−1(t) crosses a vertex.

7.1.1 Functions that Restrict to an Affine Map on Each Cell

We are primarily interested in the case where the restriction of .ϕ to each cell C is
an affine map which is not constant whenever .dim C > 0. Further assume that .ϕ

takes the 0-skeleton .Y 0 to a discrete subset of .R. As in [23] such a .ϕ will be called
a Morse function on Y . For each cell C of Y , .ϕ|C is an affine map with a unique
minimum and maximum (which necessarily occur at vertices of C). For any vertex
v of C, recall that .Lk(v, C) is the set of inward-pointing unit tangent vectors to C

at v. As in (2.1) from Sect. 2.1, the link at v in Y is the set of all such directions at
v so that .Lk(v, Y ) := ⋃

Lk(v, C), where the union is over all cells C containing
v. The descending link at v, denoted .Lk↓(v), is the union of the .Lk(v, C), over all
cells C containing v, such that .ϕ|C has a maximum at v. Similarly, the ascending
link, .Lk↑(v) is the corresponding union where .ϕ|C has a minimum at v. The idea
behind Morse theory on cell complexes is contained in the following lemma.

Lemma 7.1 ([23, Lemma 2.5]) Suppose .J < J ′ ≤ R are nonempty closed
intervals such that .J ′ − J contains only one number r that is equal to .ϕ(0-cell).
If .inf J = inf J ′, then .ϕ−1(J ′) is homotopy equivalent to .ϕ−1(J ) with the copies of
.Lk↓(v), .v ∈ ϕ−1(r), coned off.

(This lemma can also be used whenever the vertices in .ϕ−1(r) have disjoint open
stars.) A similar lemma holds when .sup J = sup J ′ if .Lk↓(v) is replaced by .Lk↑(v).

7.1.2 Distance Functions

The discussion in this subsection follows Brady–McCammond–Meiers [33]. Sup-
pose that Y is a .CAT(0) polyhedron, that v is a choice of base vertex, and that the
function .Dv : Y → [0,∞) is defined by .Dv(y) = d(v, y). The level set .D−1

v (r) is
then .Sv(r), the metric sphere of radius r . The topology of the level set can change
whenever .Sv(r) first touches a cell. When Y is a cube complex or when Y is a Davis–
Moussong complex, such critical points occur only at vertices. (As is explained in
[33] if critical points occur at interior points of cells, then we can subdivide Y so
that all critical points occur at vertices. Henceforth, we assume that this is the case.)

Define the ascending link, .Lk↑(w), for .Dv at a vertex .w ∈ Sv(r) as follows: it is
the link of w in the induced subcomplex of Y spanned by those vertices .w′ such that
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.Dv(w
′) > Dv(w). (If .w = v, then .Lk↑(w) = Lk(v).) As r decreases as we cross

a vertex w, the effect on the level set .Sv(r) is to attach a copy of .Cone(Lk↑(w))

to .Sv(r + ε). So, the ascending links can be used to understand the homology (or
cohomology) of Y at infinity. For example, we find the following lemma in [33].

Lemma 7.2 ([33, Lemma 3.5]) Suppose Y is a locally finite, .CAT(0) complex and
that for each vertex .w ∈ Vert(Y ), the ascending link, .Lk↑(w), is m-acyclic. Then Y

is m-acyclic at infinity. (The notion of “m-acyclic at infinity” is defined in the next
subsection.)

If p is a point in .Lk(w), then the punctured link, .P Lk(w, p), is the complement
of the open ball centered at p of radius .π/2 (with respect to the piecewise spherical
metric on .Lk(v)).

Lemma 7.3 ([33, Lemma 3.6]) Let .Lk↑(w) denote the ascending link for .Dv at a
vertex .w ∈ Y , If .w 	= v, then .Lk↑(w) is a deformation retract of .P Lk(w, p) where
p is the point of .Lk(v) determined by the geodesic from w to v.

If .σ is a simplex of .Lk(v), then .Lk(v) − σ denotes the subcomplex of .Lk(v)

spanned by the vertices of .Lk(v) other than those that are vertices of .σ . In the case
of a .CAT(0) cube complex (and in many other cases), .Lk↑(w) = Lk(w)−σ , where
.σ is the simplex of .Lk(w) which contains p in its relative interior. (In [87, 102] all
subcomplexes of the form .Lk(v) − σ are called “punctured links”.)

Remark 7.4 These lemmas provide a different argument for the contractibility
of the Davis–Moussong complex. Similarly, these lemmas show that the positive
cone in the universal cover of the Salvetti complex (consisting of the chambers
corresponding to the positive Artin monoid) is contractible.

7.1.3 Topology at Infinity

We recall some definitions from [130] or [82, Appendix G.2]. Suppose Y is a locally
finite CW complex. Then .C

lf
i (Y ), the group of locally finite cellular i-chains on

Y , is defined to be the group of all integer-valued functions on the set of i-cells
of Y , The group of ordinary cellular i-chains, .Ci(Y ), defined as the free abelian
group on the set of i-cells. The group of i-chains at infinity of Y is defined by
.C∞

i (Y ) := C
lf

i+1(Y )/Ci+1(Y ). The homology at infinity of Y is the homology of
the chain complex .C∞∗ (Y ). The space Y is m-acyclic at infinity if .H∞

i (Y ) = 0 for
.i ≤ m. Similarly, .Ci

c(Y ), the compactly supported cochains, means the group of
finitely supported cochains, .Ci∞(Y ) := Ci(Y )/Ci

c(Y ), and .Hi∞(Y ) = Hi(C∗∞(Y )).
Suppose a discrete group G acts freely and cellularly on a contractible complex

Y with quotient space a finite CW complex BG. In [39, Prop. 7.5] we find the
following formula:

.H ∗(G;ZG) = H ∗
c (Y ). (7.1)
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More generally, if G acts properly on Y with only finitely many orbits of cells,
then (7.1) continues to hold (see [39, Exercise 4, p. 209]). So, (7.1) holds whenever
G acts on .EG with only finitely many orbits of cells. Applying the method of
Lemma 7.3 allows us to compute the cohomology with group ring coefficients of
Coxeter groups, as well as, of cocompact lattices in automorphism groups of locally
finite buildings.

First consider Coxeter groups. As in Sect. 4.2, suppose .(W, S) is a Coxeter
system, that .L(W, S) is its nerve and that .Σ = Σ(W, S) is its Davis–Moussong
complex. Let .K = K(W, S) be the fundamental chamber. The link of any vertex of
.Σ is .L(W, S); moreover, the barycentric subdivision of .L(W, S) can be identified
with .KS (the boundary of K). For any subset J of S, let .KJ denote the union
of the mirrors .Ks indexed by .{s | s ∈ J }. If .σ is a simplex of .L(W, S), then
let T be its vertex set (so, T is a spherical subset of S). One sees that .KS−T is
homeomorphic to .L(W, S) − σ when both are regarded as subcomplexes of the
barycentric subdivision. In other words,

.KS−T ∼ L(W, S) − σ. (7.2)

Theorem 7.5 ([78, Thm. A] or [82, Thm. 8.5.1]) Suppose .(W, S) is a Coxeter
system and K is the associated chamber. Then .H ∗(W ;ZW) is a direct sum of terms
of the form .H ∗(K,KS−T ), where T is a spherical subset of S. To be more precise,
for each .w ∈ W , let .T (w) be the spherical subset defined by .T (w) := {s ∈ S |
�(sw) < �(w)}. Then

.H ∗(W ;ZW) = H ∗
c (Σ) =

⊕

w∈W

H ∗(K,KS−T (w)).

Note that .H ∗(K,KS−T ) is isomorphic to the reduced cohomology of the
punctured link .L(W, S) − σ(T ) where .σ(T ) is the spherical simplex with vertex
set T .

As stated in the following theorem a similar formula holds for any .RAB of finite
thickness (cf. [88]) or more generally for any building of finite thickness (cf. [87]).
However, the proof uses more than just the Morse theoretic method of Lemma 7.3.

Theorem 7.6 ([88] or [87, Main Theorem]) Let .C be a building of type .(W, S)

and of finite thickness. Let .D(C,K) be its standard realization (as in Sect. 4.4.2).
Then

.H ∗
c (D(C,K)) =

⊕

T ∈S
H ∗(K,KS−T ) ⊗ ÂT ,

where .ÂT is a certain free abelian group of functions on the T -residues of .C.

A corollary gives a generalization of Theorem 7.5 to an arbitrary graph product of
finite groups. It gives a calculation of the cohomology with group ring coefficients
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of the graph product .Γ of a family of finite groups .(Gs∈S) (over the 1-skeleton of a
flag complex L), to wit:

Corollary 7.7 ([87, 88, Cor. 9.4], or [97, Prop. 9.7]) Let .Γ be a graph product of
finite groups with associated .RACS, .(W, S). Then

.H ∗(Γ ;ZΓ ) =
⊕

T ∈S(W,S)

H ∗(K,KS−T ) ⊗ ÂT ,

where .ÂT is a certain free abelian group.

7.2 Finiteness Properties of Groups

A discrete group G is type F if BG is modeled by a finite complex CW complex.
A homological version of this is that G is type FP. This means that the .ZG-module
.Z (with trivial G-action) admits a resolution of finite length by finitely generated
projective .ZG-modules. Intermediate between types F and FP are types FH and FL.
Type FL means that .Z admits a resolution of finite length by finitely generated free
.ZG-modules. (If G is torsion-free, then, conjecturally, .K̃(ZG) = 0. This conjecture
implies that type FP and type FL are the same class of groups.) Type FH means that
G acts freely and cellularly on an acyclic complex Y . The cellular chains on Y then
provide a free resolution of .Z. Obviously,

.F 
⇒ FH 
⇒ FL 
⇒ FP.

For .m ∈ N properties F.m, FH.m, FL.m, FP.m are defined analogously. For example,
type F.m means that BG has a model with a finite m-skeleton. Type F.1 and type
FP.1 are both equivalent to the group being finitely generated. Type F.2 implies that
G is finitely presented; however, as we shall see below, type FP.2 is strictly weaker
than being finitely presented. By a theorem of Wall, if G is type FL and is finitely
presented, then it is type F. So, the difference between type F and FL lies entirely
within finite presentability.

7.2.1 Finiteness Properties for Proper Actions

If G has nontrivial torsion, then BG cannot be finite dimensional. (The proof is due
to P.A. Smith: if H is a finite cyclic subgroup of G, then .BH → BG is a covering
space. If H is nontrivial, BH has cohomology in arbitrarily high degrees. So, BH

and, a fortiori, BG must be an infinite dimensional.)
A group G is virtually torsion-free if it has a torsion-free subgroup .Γ of

finite index. The virtual cohomological dimension of G, denoted by .vcd G, is the
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cohomological dimension of such a .Γ . The group G is type VF if there is a finite
index subgroup .Γ of type F . The notions of type VFP, VFL, VF.m, etc, are defined
similarly. (These notions are independent of the choice of .Γ , cf. [39, Ch. VIII].)

When a group G has nontrivial torsion, there is a notion of a “universal space for
proper actions,” which is sometimes more useful than the universal space EG.

Definition 7.8 For a discrete group G, its universal proper G-space is a CW
complex .EG together with a proper cellular action, .G � EG, so that for any
finite subgroup .H < G, the point set of H , .(EG)H , is a contractible subcomplex.
(In particular, if every finite subgroup of G is trivial, then .EG = EG.) The quotient
complex .EG/G is denoted by .BG. (The complex .BG is an “orbihedron.”)

For example, if .G � Y , with Y a .CAT(0) polyhedron, then .Y = EG.
The universal property of .EG is that for any CW complex Y with a cellular,

proper G-action (i.e., with finite isotropy groups), there is an equivariant map .Y →
EG, unique up to an equivariant homotopy.

One says that G is type .VF if there is a model for .EG with only finitely many
G-orbits of cells, i.e., if .BG is a finite complex. So, if G acts cocompactly on
a .CAT(0) polyhedron Y , then G is type .VF. Types .VFH, .VFP, .VF.m, etc., are
defined analogously using an appropriate version of projective modules. (See [100,
Appendix].)

The notion of type .VF is closely related being type VF, although a group of type
.VF need not be virtually torsion-free. If a group G of type .VF is virtually torsion-
free, then it is obviously type VF. In Theorem 7.19 below, we shall give examples
of Leary–Nucinkis of groups that are VF but not .VF.

Note that if G is .VF , then for any finite subgroup .P < G, its normalizer, .N(P ),
is type .F∞. (Proof: .(EG)P is contractible and .N(P ) acts cocompactly on it with
finite stabilizers.) This gives a necessary condition for G to be .VF . When G is
type V F the condition is close to being sufficient: it implies that .EG is finitely
dominated.

7.3 Level Sets and Bestvina–Brady Groups

Let .AL be the .RAAG associated to a flag complex L, .TL its standard classifying
space and .YL = EAL be the universal cover of .TL. As explained in Theorem 3.14
of Sect. 3.1.1, .YL has the structure of a .CAT(0) cube complex. We recall why the
link of each vertex is a flag complex. The link of a vertex .v ∈ YL is a polyhedral
join of 0-spheres. We denote this polyhedral join by OL,

.OL := ∗LS0 = Lk(v, YL), (7.3)

and call it the octahedralization of L. Thus, OL is formed by replacing each vertex
of L by a copy of .S0 and each k-simplex by the boundary complex of a .(k + 1)-
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dimensional octahedron (.= “cross polytope”). it is easy to see that if L is a flag
complex, then so is OL.

Let .φ : AL → Z be the homomorphism that sends each Artin generator .ai

to the generator of the infinite cyclic group. Then .BBL := ker φ is the Bestvina–
Brady group associated to L. Extend .φ to a map .ϕ : YL → R which is affine
and nonconstant on each positive dimensional cube. The restriction of .ϕ to the 0-
skeleton can be identified with .φ : AL → Z. The group .BBL acts cocompactly on
each level set .ϕ−1(t). By Lemma 7.1 the homotopy type of .ϕ−1(t) does not change
as t moves within any interval disjoint from .Z.

Example 7.9 If L is a 1-simplex, then .AL = Z × Z and .YL = E
2 tiled by squares.

One should think of the squares as being placed diagonally in .E
2 so that each edge

is parallel to one of the vectors .±(e1 + e2) or .±(e1 − e2). The “height function”
.ϕ : E2 → R can then be regarded as projection onto the y-axis.

For each vertex v of .YL, its ascending link .Lk↑(v) is the set of all directions at
v corresponding to edges with bottom vertex v. Hence, the vertex set of .Lk↑(v) is
.Vert(L) and .Lk↑(v) can be identified with L. Similarly, .Lk↓(v) = L. One can then
use Lemma 7.1 to analyze how .ϕ−1(t) changes as t crosses an integer point. The
main theorem in [23] is the following.

Theorem 7.10 (Bestvina–Brady [23, Main Theorem])

(i) .BBL is type F if and only if L is contractible.
(ii) .BBL is type FH (or FP or FL) if and only if L is acyclic.

Moreover, if L is not simply connected, then .BBL is not finitely presentable.

The proof of Theorem 7.10 uses Morse theory on convex cell complexes
developed in Sect. 7.1.1, i.e., in Lemma 7.1. In particular, statement (ii) follows from
Lemma 7.1. To prove statements about the fundamental groups of the level sets, the
following stronger version of this lemma is proved in the context of .RAAGs when
.Y = EAL.

Theorem 7.11 (Bestvina–Brady [23, Theorem 8.6]) The level set .Yt is homotopy
equivalent to a wedge of copies of L, one for each vertex not in .Yt .

This is all that is needed to prove the results of [23]. Here are some further
corollaries to it.

Corollary 7.12 ([23])

(i) .BBL is finitely generated if and only if L is connected.
(ii) .BBL is finitely presented if and only if L is simply connected.

More generally we have the following.

Corollary 7.13 ([23])

(i) .BBL is type F.m if and only if L is .(m − 1)-connected.
(ii) .BBL is type FH.m if and only if L is .(m − 1)-acyclic.
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Remark 7.14 For any commutative ring R one can define corresponding finiteness
properties .FH(R), .FL(R), and .FP(R) as well as .FHm(R). The appropriate
generalizations of Theorem 7.10 and its corollaries are proved in this context in
[23]. An application of this generalization is given in Theorem 7.17 below.

Remark 7.15 (Subgroups of Hyperbolic Groups that Are Not Hyperbolic) I
believe that the ideas for the Bestvina–Brady paper [23] originated in work of N.
Brady [32]. He wanted to find examples of a finitely presented group H which was
the kernel of an epimorphism from a word hyperbolic group G to .Z so that H was
not word hyperbolic. According to Theorem 2.22, H cannot be word hyperbolic
by virtue of being a quasiconvex subgroup since such kernels in word hyperbolic
groups are never quasiconvex. If G is the fundamental group of a hyperbolic 3-
manifold .M3 and the homomorphism to .Z comes from a fiber bundle projection
.M3 → S1, then the kernel H is word hyperbolic since it is a surface group (the
fundamental group of the fiber). As we saw in Sect. 5.3.5 all hyperbolic 3-manifolds
virtually admit such bundle projections onto a circle. In [136, pp. 125-126] Gromov
considered a similar situation in higher dimensions. For any odd n, he shows that
there are branched covers .Mn of .T n which fiber over .S1 and that fundamental
group H of the fiber can never be word hyperbolic for .n > 3. Furthermore, he
gave a convincing (although incorrect) condition for when .G = π1(M

n) is word
hyperbolic. The example of Brady [32] was of a similar nature in dimension 3.
In Brady’s example, G is not a 3-manifold group; rather it is a word hyperbolic
fundamental group of a cube complex obtained as the branched cover of the product
of 3 copies of a finite graph and .G → Z was a standard map. Using the ideas from
this chapter Brady proved that the kernel H is finitely presented but not type FP.3,
hence, not word hyperbolic (since torsion-free word hyperbolic groups are type F).

7.4 Some Applications

7.4.1 Poincaré Duality Groups that Are Not Finitely
Presentable

A group G is a Poincaré duality group of dimension n over a commutative ring R if
G is type .FP(R) and

.Hi(G;RG) =
{

0, for i 	= n,

R, for i = n.

When .R = Z, G is called simply a “Poincaré duality group of dimension n,”
abbreviated as .PDn-group.

The fundamental group of a closed aspherical n-manifold is a .PDn-group.
However, since any closed manifold is homotopy equivalent to a finite CW complex,
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any such fundamental group is type F , while a .PDn-group need not be. In fact, one
can use the Reflection Group Trick together with the Bestvina–Brady construction to
find examples of such G that are not finitely presentable. It is still an open question if
every finitely presented .PDn-group is the fundamental group of a closed aspherical
manifold.

Theorem 7.16 ([78, Ex. 6.7] or [79, Thm. 7.1.5]) For each integer .n ≥ 4, there is
a .PDn-group G that is not finitely presentable (so, BG is not homotopy equivalent
to a closed manifold).

Proof Let L be a 2-dimensional, acyclic flag complex that is not simply connected.
By Corollary 7.12 (ii), the Bestvina–Brady kernel, .BBL, is not finitely presentable.
The level set .ϕ−1(t) is a 2-dimensional acyclic CW complex and its quotient
.B = ϕ−1(t)/BBL is a compact 2-dimensional CW complex. The complex B can be
thickened to a compact n-manifold with boundary X for any .n ≥ 4. (Any compact
d-dimensional complex is homotopy equivalent to a 2d-manifold; this can be seen
by attaching handles instead of cells.) Triangulate .∂X as a flag complex and then
give X the structure of a manifold with corners with strata the dual cells of the
triangulation. Apply the Reflection Group Trick of Sect. 3.2.6. However, instead of
the universal cover of X, use the covering space .˜X corresponding to .BBL and use
the .RACG, . ˜W , corresponding to the triangulation of .∂˜X. The result is an acyclic n-
manifold . ˜M together with a cocompact action of the semidirect product . ˜W � BBL.
Since . ˜M is an n-manifold, it satisfies Poincaré duality and for .G = ˜W � BBL we
see that:

.Hi(G;ZG) = Hi
c (

˜M) = Hn−i ( ˜M),

which vanishes for .i 	= n since . ˜M is acyclic. Passing to an appropriate torsion-free,
finite-index subgroup .Γ of . ˜W we obtain the desired .PDn-group .Γ � BBL (in fact,
it is of type FH ). Since .Γ � BBL retracts onto .BBL, it is not finitely presentable.
(Further details of this argument can be found in [78, Example 6.7].)

For a given commutative ring R it is natural to ask if every finitely presented
.PDn(R)-group is the fundamental group of a closed, aspherical R-homology
manifold. In [120] Fowler observes that a variation of the above argument gives
a negative answer for any R such that tensoring with R kills some nontrivial finite
cyclic group in an integral homology group.

Theorem 7.17 (Fowler [120, Theorem 2.1]) There is a torsion-free, finitely pre-
sented .PDn(Q)-group that is not the fundamental group of any closed, aspherical
rational homology manifold.

Proof Let L be a simply connected, .Q-acyclic flag complex that is not .Z-acyclic.
(For example, L could be the suspension of .RP 2.) Then .BBL is finitely presented
and type .FH(Q); however, if .Hm(L;Z) 	= 0, then .BBL is not type F.m+1. As in
the proof of Theorem 7.16, we get a finite CW complex .B = ϕ−1(t)/BBL, with
.π1(B) = BBL and with .Q-acyclic universal cover. Since .BBL is not F.m+1, B is
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not homotopy equivalent to a finite aspherical complex. Thickening B to a manifold
with boundary X and using the Reflection Group Trick as in the previous proof, we
obtain a .PDn(Q)-group .Γ �BBL that is not type F.m+1 (since it retracts onto .BBL).

7.4.2 Symmetries of RAAGs and Bestvina–Brady Groups

In [170] Leary and Nucinkis use the Bestvina–Brady construction to find groups of
type V F that are not .VF . These groups have the form .BBL � Q, where Q is a
finite group of simplicial automorphisms of L acting without inversions. (A group
action on a simplicial complex is without inversions if the pointwise stabilizer of
any simplex is equal to its setwise stabilizer.) Since .BBL is torsion-free, .BBL � Q

is virtually torsion-free. By Theorem 7.10 (i), .BBL �Q is type V F if and only L is
contractible. The Leary–Nucinkis result (Theorem 7.19 below) is that .BBL � Q is
.VF if and only if for each subgroup .P ≤ Q, .LP is contractible. Before continuing
to discuss this result, we make a few general comments about the wreath-graph
product of a .RAAG and a finite group.

Suppose Q is a group of automorphisms of a finite flag complex L. Since Q acts
on the 1-skeleton, .L1, it defines a group of diagram automorphisms of the associated
.RACS, .(WL, S), and hence, a group of automorphisms of the associated .RAAG, .AL.
Form the semidirect product, .AL�Q. It acts by isometries on the associated .CAT(0)

cube complex .YL. Since .YL is .CAT(0), it is equal to .E(AL � Q).
Suppose the Q-action on L is without inversions and that .M = LQ is its fixed

set. Then

– The fixed set of Q on the cube complex .YL is the subcomplex .YM .
– The .RAAG .AM centralizes Q. The normalizer .N(Q) of Q in .AL � Q is equal

to .AM × Q.

The above two facts are consequences of the following.

Theorem 7.18 (Crisp [69], Leary–Nucinkis [170, Theorem 3]) Suppose a finite
group Q acts admissibly on a flag complex L and that .M = LQ is the subcomplex
fixed by Q.

(i) The fixed set of Q on .YL is the .CAT(0) cube complex .YM associated to the
.RAAG, .AM .

(ii) The subgroup of .AL fixed by Q is .AM .

Let .P be the set of finite subgroups of .BBL � Q that map isomorphically onto Q.
For each .P ∈ P, let .N(P ) denote its normalizer in .BBL � Q.

(iii) If .M = ∅, then .P contains infinitely many conjugacy classes of subgroups of
.BBL � Q. For each .P ∈ P, .N(P ) = P .

(iv) If .M 	= ∅, then all elements of .P are conjugate in .BBL � Q and .N(Q) =
AM × Q.
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Proof Statements (i) and (ii) are proved by Crisp [69]. (More generally, Crisp
describes the subgroup fixed by Q even when Q-action is allowed to have
inversions.)

Any .P ∈ P is the isotropy subgroup of some vertex .yP ∈ YL. If .yP = gyQ,
for some .g ∈ AL, then .P = gQg−1. Since .AL acts transitively on the vertices
of .YL, this shows that any two elements of .P are conjugate in .AL � Q. Since the
fixed set of Q on .YL is contractible, when .M = ∅, .(YL)Q must consist of a single
vertex .yQ. Similarly, .(YL)P must be a single vertex .yP . Since the .(BBL�Q)-action
preserves the level sets of .ϕ, we see that when .M = ∅, .ϕ must take .yP and .yQ to
the same element of .Z. Hence, when .M = ∅ there are infinitely many conjugacy
classes parameterized by .ϕ(yP ) ∈ Z. This proves (iii). On the other hand, if .M 	= ∅,
then Q must fix a vertex i of L and therefore, centralize the corresponding Artin
generator .a = ai . Since a suitable power of a takes .yP to .yQ, this means that P and
Q are conjugate in .BBL � Q. Hence, (iv).

The subgroup .BBL � Q of .AL � Q acts cocompactly on each level set .ϕ−1(t).

Theorem 7.19 (Leary–Nucinkis [170, Theorem 5]) The following are equiva-
lent.

(i) The group .BBL � Q is .VF .
(ii) For each subgroup .P ≤ Q, .LP is contractible.

(iii) For each .t ∈ R, .ϕ−1(t) is a model for .E(BBL � Q).

Proof If (ii) holds, then .(ϕ−1(t))P is .N(P )-equivariantly homotopy equivalent to
.(YL)P , which is contractible (since .YL = E(AL � Q)). Conversely, suppose (ii)
fails. Then, for some subgroup .P ≤ Q and some natural number m, .LP is .(m − 1)-
connected but not m-connected. By Theorem 7.10 (i).′, for .M = LP , .BBM is type
.Fm but not .Fm+1. Therefore, .N(P ) = AM × P is not type .Fm+1; so, .BBL � Q

cannot be .VF .

A classical topic in transformation groups is to produce examples of finite group
actions on finite contractible complexes (e.g., disks) such that the fixed point sets are
not contractible. For example, for any sufficiently complicated finite group Q there
is Q-action on a contractible L with .LQ = ∅ (see [184]). One can combine such
examples with Theorems 7.18 and 7.19 to produce examples of groups .BBL � Q

with exotic finiteness properties.

Corollary 7.20 (Leary–Nucinkis [170, Section 5]) There are examples of groups
G of type V F with either of the following properties.

(i) G contains infinitely many conjugacy classes of finite subgroups.
(ii) G is .VFH , but not .VF

Proof If L is contractible, then .BBL �Q is V F . For (i), take a Q-action on L with
empty fixed set. For (ii), take a Q-action on L so that the fixed set of each subgroup
of Q is acyclic, but for at least one .P ≤ Q, .LP is not simply connected.
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7.4.3 Uncountably Many Groups of Type FP

Although there are uncountably many isomorphism classes of finitely generated
groups, only countably many are finitely presentable. Higman showed that a finitely
generated group can be embedded in a finitely presented group if and only if it
has a recursive presentation. To study such questions for groups of type FP , Ian
Leary [169] develops the following interesting variation of the Bestvina–Brady
construction.

As usual, L is a connected, finite flag complex. In our application L will be
acyclic but not simply connected and, in addition, L will be aspherical. Given a
subset .S ≤ Z, let .Y

(S)
L → YL be the universal branched cover, where the branch set

is the set of 0-cells v such that .ϕ(v) ∈ Z− S (i.e., the branch set is .ϕ−1(Z− S)). In
other words, .Y (S)

L is the metric completion of the universal cover of .YL−ϕ−1(Z−S).

The cubical structure of .YL lifts to .Y
(S)
L to give it the structure of a .CAT(0) cube

complex. The link of a 0-cell in .ϕ−1(S) is, as before, equal to OL while the link
of a 0-cell in .ϕ−1(Z − S) is .OL̃, where .L̃ means the universal cover of L. The
composition .Y

(S)
L → YL → YL/BBL is also a regular branched cover. Leary [169]

defines .GL(S) to be the group of deck transformations of .Y
(S)
L → YL/BBL. The

group .GL(Z) is obviously equal to .BBL and it turns out that .GL(∅) ∼= BB
L̃
�π1(L).

Theorem 7.21 (Leary [169, Theorem A] also compare [168]) Suppose L is a
given connected flag complex that is not simply connected.

(i) There are uncountably many (in fact, .2ℵ0 ) isomorphism types of groups .GL(S).
(ii) .GL(S) is finitely presentable if and only if S is finite.

(iii) .GL(S) is isomorphic to a subgroup of a finitely presented group if and only if
S is recursively enumerable.

Let .ϕ : Y
(S)
L → R be the Morse function obtained by precomposing .ϕ : YL → R

with the projection .Y
(S)
L → YL. For each .v ∈ ϕ−1(S) the descending and ascending

links, .Lk↓(v, Y
(S)
L ) and .Lk↑(v, Y

(S)
L ), are isomorphic to L, while for .v ∈ ϕ−1(Z−S)

they become isomorphic to .L̃, the universal cover of L. Suppose that

(a) L is acyclic but not simply connected.
(b) .L̃ is contractible (i.e., L is aspherical).
(c) L has no local cut points.

Condition (c) is needed to insure that .GL(S) is isomorphic to .π1(YL/BBL −V (S)),
where .V (S) = {v ∈ Vert(YL/BBL) | ϕ(v) /∈ S} (cf. [169, Prop. 31]). As before,
one can study the level sets .ϕ−1(t), for .t ∈ R − Z. The hypotheses imply that each
ascending or descending link, being isomorphic to either L or its universal cover .L̃,
is acyclic. Hence, the proof of Theorem 7.10 in Sect. 7.3, gives the following result
(the point being that under conditions (a) and (b) all ascending and descending links
are acyclic).
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Theorem 7.22 (Leary [169, Theorem B]) With hypotheses as above, for any .S ≤
Z, .GL(S) is type FH . When S is infinite, .GL(S) is not finitely presentable, hence,
not type F .

The conclusion on finite presentability follows from an analog of Theo-
rem 7.10—since when S is infinite, there are infinitely many vertices with links
of type L.

It can happen that .GL(S) and .GL(S′) are isomorphic when .S 	= S′. (Indeed, this
is the case whenever S and .S′ differ by an affine automorphism .λ of .R such that
.λ(Z) ≤ Z.) The heart of [169] lies in the proof of statement (i) of Theorem 7.21—
when .π1(L) 	= 1, the groups .GL(S) run through uncountably many isomorphism
types as S varies. To prove this, an invariant is needed. For a countable group G

and finite sequence .g = (g1, . . . , gl) in G, Leary [169, §15] introduces an invariant
.R(G, g) which takes values in subsets of .Z. (In fact, .R(G, g) = {n ∈ Z | gn

1 · · · gn
l =

1}.) He proves that for any fixed isomorphism type of G, .R(G, g) can take on only
countably many values. When .G = GL(S), with .0 ∈ S, and .a = (a1, . . . , al) is a
sequence corresponding to a homotopically nontrivial edge loop in L, it is proved
[169, Lemma 48] that .R(GL(S), a) = S. Since after a translation of .Z, one can
assume .0 ∈ Z, the uncountability of the set of isomorphism types follows.



Appendix A
Complexes of Groups

The theory of complexes of groups is developed in [35, 65, 138]. Most of the time we
will only use the easier notion of a “simple complex of groups.” This notion is also
developed in [35], as well as in other papers such as [56]. The idea of a complex of
groups arises from the action of a discrete group G acting on a polyhedron. Another
word for a complex of groups is “orbihedron,” which conveys the idea of the orbit
space of such a group action together with some data about isomorphism types of
isotropy subgroups. We get a simple complex of groups when the G-action has
a “strict” fundamental domain (see Definition 3.5). The most basic examples of
complexes of groups are graphs of groups. When the underlying graph is a tree, we
get a “tree of groups,” the basic example of a simple complex of groups. When the
underlying graph contains a loop we are forced to consider general complexes of
groups. Given a simple complex of groups, the group action on a simply connected
polyhedron can be recovered by a simple gluing procedure. This procedure is the
“basic construction,” described in Sect. 3.1.1 and in Sect. A.2 below. For a general
complex of groups the process of recovering the simply connected polyhedron
involves covering space theory as well as this pasting procedure. This is explained
in Sect. A.3. In Sect. A.4 we discuss the notion of an “aspherical realization” of a
complex of groups and we explain the .K(π, 1)-Question for a simple complex of
groups.

Suppose G acts on a space X. A strict fundamental domain for G on X is a
closed subspace .C ≤ X such that C intersects each orbit in exactly one point. It
follows that the restriction of the orbit projection .p : X → X/G to the subspace C

is a homeomorphism. Hence, C provides a section .s : X/G → X of p defined by
.s = (p|C)−1. Usually we require X to be a cell complex and furthermore, that the
G-action permutes the cells, in which case one can require C to be a subcomplex of
X. Two points of C belong to the same pure stratum if their isotropy subgroups are
equal. More precisely, a pure stratum is a connected component of an equivalence
class in C defined by equality of isotropy subgroups. A stratum of C is the closure
of a pure stratum. So, C is a stratified space as in [35, II.12.1]. The set of strata of
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C is naturally a poset .Q ordered by inclusion. Similarly, if G acts on a poset .P by
order-preserving automorphisms, then a strict fundamental domain for G on .P is a
subposet .Q which intersects each G-orbit in exactly one element.

A.1 Simple Complexes of Groups: Definitions

The basic reference for the material in this appendix is [35]. Other references include
[56, 99, 115, 191] and [82, Appendix E].

Definition A.1 (cf. Bridson-Haefliger [35, II.12.11, p. 375]) A simple complex of
groups .GQ over a poset .Q is a collection of groups .{Gσ }σ∈Q and monomorphisms
.φτσ : Gσ → Gτ defined whenever .τ < σ . The .Gσ are the local groups.
Furthermore, .GQ must be a cofunctor from .Q to the category of groups and
monomorphisms in the sense that .φμτφτσ = φμσ whenever .μ < τ < σ . (The
term cofunctor means a contravariant functor, i.e., a functor on the dual poset, .Qop,
where the order relation is reversed.)

Often .Q will be the set of cells in a cell complex, partially ordered by inclusion.
Suppose G acts on a cell complex X with strict fundamental domain C. The set of

strata of C is a poset .Q and the isotropy subgroups of the pure strata define a simple
complex of groups .GQ = {Gσ }σ∈Q. Here the monomorphisms .ϕτσ : Gσ → Gτ for
.τ < σ are given by the natural inclusion of the isotropy subgroup at a large stratum
into the isotropy subgroup at a smaller stratum. A simple complex of groups .GQ

is said to be developable if it arises in this way from an action, .G � X, and the
G-space X is called a development of .GQ. Similarly, if .G � P, where .P is a poset
with a poset .Q as a strict fundamental domain, then we again get a simple complex
of groups, .GQ = {Gσ }. The G-poset .P is a development. N.B. Not every simple
complex of groups is developable. We shall give a necessary and sufficient condition
below for .GQ to be developable.

A simple morphism .ψ = (ψσ ) from a simple complex of groups .GQ to a group
H is a function which assigns to each .σ ∈ Q a homomorphism .ψσ : Gσ → H

such that .ψσ = ψτφτσ whenever .τ < σ . The simple morphism .ψ is injective on
local groups if each .ψσ is injective. If .H � P with strict fundamental domain
.Q and .GQ is the corresponding simple complex of groups, then by taking isotropy
subgroups we get a simple morphism .ψ : GQ → H that is injective on local groups.
Conversely, we shall see below in Theorem A.6 that if there is a simple morphism
.ψ : GQ → H that is injective on local groups, then .GQ is developable. (In fact, we
can take H to being the direct limit of the system of groups .GQ, as defined below.)



A Complexes of Groups 241

Definition A.2 (This Definition Is Also Given in Sect. 3.1.2) The direct limit of
.GQ is a group G (also denoted by .lim GQ) together with a simple morphism .ψ :
GQ → G (called the canonical simple morphism) with the following universal
property: if .ψ ′ : GQ → H is any simple morphism, then there exists a unique
homomorphism .θ : G → H so that .ψ ′ factors through G, that is to say, .θψσ =
ψ ′

σ : Gσ → H for all .σ ∈ Q. It follows that the direct limit is unique up to
canonical isomorphism. To establish its existence we note that the direct limit can
be constructed in a standard fashion by taking the free product of the .Gτ and then
quotienting by relations to insure that .Gσ is identified with its image under .φτσ in
.Gτ and that .φμτφτσ (g) = φμσ (g) whenever .μ < τ < σ , for all .g ∈ Gσ (cf. [207,
p. 1]).

Example A.3 (Graphs of Groups) Suppose Y is a connected graph without loops.
This means that each edge of Y has two distinct end points. In other words, Y is a
1-dimensional regular CW complex. (To say that CW complex is regular means
that each cell is embedded.) Its vertex set and edge set are denoted .Vert Y and
.Edge Y , respectively. Let .Q = Vert Y

⊔

Edge Y be its set of cells, partially ordered
by inclusion. A graph of groups on Y is a simple complex of groups over .Q defined
by specifying a vertex group .Gτ for each .τ ∈ Vert Ω , an edge group .Gσ for each
.σ ∈ Edge Ω , and a monomorphism .Gσ ↪→ Gτ whenever .τ < σ . If Y is a tree, then
.GQ is a tree of groups. The direct limit G should be thought of as an amalgam. For
example, if .Ω is an interval, then G is the amalgam, .G1 ∗H G2 where .G1, .G2 are
the vertex stabilizers and H is the edge stabilizer. The standard definition of a graph
of groups in [207, Section 4.4] allows the possibility of loops: one must use directed
edges and for each edge .σ one must give monomorphisms from .Gσ to the local
groups at its initial and terminal vertices. When Y has loops, instead of considering
the poset of cells in Y one should let .Q be the “scwol” (.= a small category without
loops) where if an edge .σ has only one vertex .τ , then there are two arrows from .σ

to .τ (while in a poset there is only one such arrow). For the corresponding notion of
a graph of groups .GQ over .Q there should be two injections .Gσ → Gτ between the
local groups. (For the definition of “scwol” see Sect. A.3.1 below.)

Example A.4 (Cell Complexes of Groups) Suppose C is a regular CW complex
and let .Q be its poset of cells. A simple complex of groups .GQ := {Gσ }σ∈Q is
then called a cell complex of groups. For example, if C is a simplex we get a
simplex of groups generalizing the notion of an interval of groups in the previous
example. More generally, if C is a polyhedral cell complex, where the cells are not
necessarily embedded, then instead of the poset of cells of C it is better to consider
an appropriately defined scwol.

Definition A.5 (Polytopes of Groups) Suppose P is a simple convex polytope and
that .F(P ) denotes its poset of faces. Put .Q = F(P ). A simple complex of groups
.GQ over .Q is a polytope of groups. If .dim P = 2, then .GQ is a polygon of groups.
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A.2 The Basic Construction for a Simple Complex of Groups

Suppose .GQ is a simple complex of groups over a poset .Q and that .ψ ′ = (ψ ′
σ ) is a

simple morphism from .GQ to a group H that is injective on local groups. Define a
poset of cosets by

.D(ψ ′,Q) :=
⊔

σ∈Q
H/Gσ . (A.1)

The partial order is the natural one, defined by .(hGτ , τ ) < (gGσ , σ ) ⇐⇒ τ < σ

and .h−1g ∈ Gτ . There is a natural inclusion .Q ↪→ D(ψ ′,Q); moreover, .H �

D(ψ ′,Q) with quotient poset .Q. The poset .D(ψ ′,Q) is the development of .GQ

with respect to .ψ . Examples of (A.1) are given by the poset of spherical cosets in a
Coxeter group (4.7) or an Artin group (4.8) discusssed in Sect. 4.1.2.

Next suppose as in [35, pp. 368–370] that C is a stratified space with strata
indexed by the poset .Q. We take this simply to mean that .{Cσ }σ∈Q is a collection
of closed subspaces of C whose union is C so that .Cσ < Cτ whenever .σ < τ . (We
might want to add the hypothesis that C is a CW complex and that each .Cσ is a
subcomplex.) Put .∂Cσ := ⋃

τ<σ (Cσ − Cτ ) and define the pure stratum indexed by
.σ to be .C◦

σ := Cσ − ∂Cσ . For each .x ∈ C, let .σ(x) ∈ Q be the index of the pure
stratum which contains x. The basic construction, .D(ψ ′, C), is defined by

.D(ψ ′, C) := (H × C)/ ∼, (A.2)

where, as in (3.9), the equivalence relation .∼ is defined by .(g, x) ∼ (g′, x′) ⇐⇒
x = x′and gGσ(x) = g′Gσ(x). Then H acts on .D(ψ ′, C) with strict fundamental
domain C (cf. Definition 3.5, Lemmas 3.6 and 3.7).

Our principal example of a stratified space is .|Q|, the geometric realization of the
order complex of the poset .Q. Its strata are defined by

.|Q|σ := |Q≤σ |, (A.3)

where, as usual, .Q≤σ = {τ ∈ Q | τ ≤ σ }.
Theorem A.6 (Some Properties of the Basic Construction, cf. [35, pp 381–387],
[82, §5.1] or [227]) Suppose .GQ is a simple complex of groups over a poset .Q and
that .ψ ′ = (ψ ′

σ ) is a simple morphism from .GQ to a group H that is injective on
local groups. Let .G = lim GQ and let .ϕ : G → H be the homomorphism defined by
the universal property of a direct limit. Let C be a stratified space over .Q as above.

(i) There is an H -action on the poset .D(ψ ′,Q) defined by (A.1) with .Q as a strict
fundamental poset.

(ii) There is anH -action on the space .D(ψ ′, C)with strict fundamental domainC.
(iii) (Compare [227].) The H -action on .D(ψ ′, C) has the following universal

property: suppose .H � Z and .f : C → Z is a map such that for all .σ ∈ Q,
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.f (Cσ ) is contained in .Fix(Gσ ,Z), (the fixed point set of .Gσ on Z). Then there
is a unique extension of f to a H -equivariant map .f̃ : D(ψ ′,Q) → Z.

(iv) The orbit space of .D(ψ ′, C) is C. The orbit projection .p : D(ψ ′, C) → C is
a retraction.

(v) If .D(ψ ′, C) is path connected, then so is C; moreover, the collection of sub-
groups .{Gσ }σ∈Q generatesH . (This implies that the canonical homomorphism
.ϕ : G → H is onto).

(vi) If .D(ψ ′, C) is simply connected, then so is C. Moreover, this implies that the
canonical homomorphism .ϕ : G → H is an isomorphism.

Proof Since .ψ ′ is injective on local groups, we may identify each local group
.Gσ with its image .ψ ′

σ (Gσ ) in H . Statements (i) and (ii) are immediate from the
definitions in Eqs. (A.1) and (A.2).

(iii) Denote by .[g, x] the image of .(g, x) ∈ H × C in .(H × C)/ ∼ . Then
.f̃ : D(ψ ′, C) → Z is defined by .f̃ ([g, x]) = gf (x).

(iv) Part (iv) is precisely what is meant by saying that C is a strict fundamental
domain.

(v) Since .p : D(ψ ′, C) → C is a retraction, it induces a surjection on .π0 (in fact,
on all homotopy groups .πi). So, if .D(ψ ′, C) is path connected, then so is C.

(vi) Suppose .D(ψ ′, C) is simply connected. Since p is a retraction, C is also
simply connected. The universal property of the direct limit gives a homomorphism
.ϕ : G → H . Put .D = D(ψ,C) and .D′ = D(ψ ′, C), where .ψ = (ψσ ) is the
canonical simple morphism from .GQ to G. Since C is path connected and the direct
limit G is generated by local groups, it follows that D is path connected and that .ϕ is
onto. Let .N = ker(ϕ : G → H). By (iii) there is a .ϕ-equivariant map .π : D → D′
which is a covering projection with fiber N . Since .D′ is simply connected, N is the
trivial subgroup of G. ��

In the next theorem we prove converses to parts (v) and (vi) of the previous
theorem.

Theorem A.7 ([35]) Suppose .GQ is a simple complex of groups over a poset .Q and
that .ψ ′ = (ψ ′

σ ) is a simple morphism from .GQ to a group H that is injective on
local groups. Let .G = lim GQ and let .ϕ : G → H be the homomorphsim defined by
the universal property of a direct limit. Then H acts on the poset .D(ψ ′,Q) defined
by (A.1). Let C be a stratified space over .Q. Let .H ′ be the subgroup of H generated
by .{ϕ(Gσ )}σ∈Q. The simple morphism .ψ ′ from .GQ to H factors through a simple
morphism .ψ ′′ : GQ → H ′. The following converses to statements (v) and (vi) of
Theorem A.6 hold.

(v).′ If C is path connected and .ϕ : G → H is onto, then .D(ψ ′, C) is path
connected. This shows that if C is path connected, then so is .D(ψ ′′, C).

(vi).′ If C is simply connected and .ϕ : G → H is an isomorphism, then .D(ψ ′, C)

is simply connected.
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Proof of Theorem A.7
(v).′ The simple morphism .ψ ′′ gives an .H ′-equivariant embedding .D(ψ ′′, C) ↪→

D(ψ ′, C). Moreover, .D(ψ ′′, C) is both open and closed in .D(ψ ′, C). (This uses
the fact that if U is a open neighborhood of x in C, then .(Gσ × U)/ ∼ , the basic
construction on U , is an open neighborhood of .[1, x] in .D(ψ ′, C).) So, if C is
connected, then .D(ψ ′′, C) is connected and .D(ψ ′, C) is a disjoint union of copies of
.D(ψ ′′, C), one for each coset of .H ′ in H . Hence, .H ′ = H if and only if .D(ψ ′, |Q|)
is connected.

(vi).′ Suppose C is simply connected and .H = G. Put .D = D(ψ,C). To show D

is simply connected, we must show that D admits only the trivial covering space. Let
.E → D be a connected covering space. Since C is simply connected, the inclusion
.C ↪→ D lifts to E so that the image of C is a fundamental domain for the group .G̃

of all lifts to E of the G-action on D (this is the key point). Each local group .Gσ

lifts isomorphically to the isotropy subgroup of .G̃ at a point of C. So, the .G̃-action
defines the same simple complex of groups .GQ. By part (iii) of Theorem A.6, the lift
of the fundamental domain extends to a section .D → E of the covering projection
.E → D. Therefore, .E → D is a homeomorphism. ��

When .H = G and .ψ ′ is the canonical simple morphism .ψ : GQ → G we will
write .D(G,C) instead of .D(ψ,C).

Suppose .GQ is developable and .|Q| is simply connected. Let .G = lim GQ.
By Theorem A.7 (vi), .D(G, |Q|) is simply connected. Hence, .D(G, |Q|) is the
universal cover of the simple complex of groups .GQ in the sense of Sect. A.3 below.
Moreover, G is the “fundamental group” of .GQ. (We shall also say that the poset
.D(G,Q) is the “universal cover” of .GQ.) We will see in Sect. A.2.1 below how to
describe the universal cover, in the case when .|Q| is not simply connected.

A.2.1 The Universal Cover When |Q| Is Not Simply Connected

The purpose of this subsection is to describe the universal cover of a simple complex
of groups when the order complex of the underlying poset .Q is not simply connected.
The construction uses the semidirect product construction.

So, suppose .Q is a poset whose order complex .|Q| is connected but not
necessarily simply connected. The elements of .Q are identified with .Vert |Q| and
the edges of .|Q| define the order relation. Let X denote the universal cover of the .Δ-
complex .|Q|. The simplicial structure on .|Q| lifts to a simplicial structure on X. Let .Q̃
be the poset with underlying set .Vert X and with the partial order defined by .Edge X.
There is an induced simple complex of groups .GQ̃ over .Q̃ defined by .Gσ̃ := Gσ ,
where .σ̃ is a vertex lying .σ . Similarly, if .{τ̃ , σ̃ } is an edge of X with .τ̃ < σ̃ , then
put .φσ̃ τ̃ := φστ . Let .G̃ = lim GQ̃. Form the basic construction .D(G̃, |Q̃|). Since
.|Q̃| is simply connected, it follows from Theorem A.7 (vi).′ that .D(G̃, |Q̃|) is simply
connected.
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Put .π = π1(|Q|). Then .π � |Q̃| by deck transformations. It also acts on the
poset .Q̃, as well as, on the cofunctor .GQ̃ as a group of natural transformations. The
action of .π on .GQ̃ defines a (nonsimple) complex of groups .GQ̃ � π . Similarly,
since .π acts on the direct limit .G̃ as a group of automorphisms, we can form the
semidirect product .G̃ � π . An action of this semidirect product on .D(G̃, |Q̃|) is
defined by the formula:

.(h, a) · [g, x] = [ha(g), ax] (A.4)

Here .(h, a) ∈ G̃ � π , .[g, x] ∈ D(G̃, |Q̃|) (.= G̃ × C)/ ∼), and .a(g) means the
automorphism corresponding to .a ∈ π applied to element .g ∈ G̃. It is a simple
exercise to check that formula (A.4) gives a well-defined action on .D(G̃, |Q̃|)
(cf. [82, p. 169]). By Theorem A.7 (vi), .D(G̃, |Q̃|) is simply-connected. Hence,
.D(G̃, |Q̃|) is the universal cover of .GQ and .π1(GQ) = G̃ � π . In other words, for
any developable simple complex of groups, .GQ, with .|Q| connected, its universal
cover and fundamental group come from the semidirect product construction. In
summary, this gives the following.

Proposition A.8 (The Universal Cover of a Simple Complex of Groups) Sup-
pose .GQ is a developable simple complex of groups over a poset .Q whose order
complex has fundamental group .π1(|Q|) = π and universal cover . ˜|Q|. Let .Q̃ be the
poset of lifted simplices in . ˜|Q| and .GQ̃ the induced simple complex of groups. Let
.G̃ = lim GQ̃. Then the fundamental group of .GQ is the semidirect product, .G̃ � π ,
and its universal cover is .D(G̃, |Q̃|).
Example A.9 (The HNN Construction, cf. [207, Prop. 5, p. 8]) Here we are
considering the case of a graph of groups where the graph consists of a single 0-
cell and a single 1-cell (i.e., a loop of groups). A loop of groups is an example
of a complex of groups which is not a simple complex of groups. Suppose A is a
subgroup of a group G and that .θ : A → G is an injective homomorphism. For each
.n ∈ Z, put .An = A, .Gn = G and let .ι : A → G denote the inclusion.The injections
.θ : An → Gn and .ι : An → Gn+1 define a tree of groups. Let H be the associated
direct limit described by the diagram:

.

Let .un : Gn → Gn+1 be the canonical isomorphism. Then .un extends to a
automorphism u of H . Use u to form the semidirect product .G′ = H � Z, where a
generator of .Z is denoted t . Identify G with .G0; so, if .a ∈ A the element .u(a) ∈ G1
is identified with .θ(a) ∈ G0. The group .G′ is denoted by .∗AG and is called the
HNN construction on G, A and .θ . So, the graph gives a scwol rather than a poset. It
is not useful to form the direct limit over the scwol; however, H is the direct limit of
the tree of groups (it is the group .G̃ from the previous paragraph) and the semidirect
product construction agrees with (A.4). Thus, the universal cover of the loop of
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groups is given by the basic construction on the tree of groups. The fundamental
group of the loop of groups is the HNN construction .∗AG.

A.3 General Complexes of Groups

A.3.1 Overview

In the first part of this appendix we define the notions of a scwol and of a complex
of groups over a scwol.

Scwols A small category .C defines a directed graph whose vertex set is the set of
objects in .C and whose edge set is the set of morphisms that are not equal to the
identity morphism from an object to itself. Morphisms are also called “arrows.” If a

is a morphism, then the initial vertex .i(α) is the source of a and its terminal vertex
.t (α) is its target. We also regard an object .σ ∈ Ob(C) as being the identity morphism
in .Hom(σ, σ ).

A poset is a small category in which there is a single morphism from .σ to .τ

whenever .σ ≤ τ . A small category without loops (abbreviated scwol) is similarly
defined except that there can be more than one morphism from .σ to .τ . In particular,
there is a poset structure on the objects of a scwol: write .σ < τ whenever .σ 
= τ

and .Hom(σ, τ ) is nonempty. The geometric realization of a poset is a simplicial
complex (the order complex), while the geometric realization of a scwol is an
ordered simplicial cell complex. For example, if X is a polyhedral cell complex
as classically defined (i.e., the intersection of two distinct cells is a common face),
then the geometric realization of its face poset is the barycentric subdivision of X.
On the other hand, if X is a more general polyhedral cell complex (for example
a .Δ-complex), then its set of cells is the set of objects in a scwol, the geometric
realization of which is, as before, the barycentric subdivision of X .

Suppose .R is a small category without loops. The geometric realization of .R is
the ordered simplicial cell complex .|R| defined as follows. Its vertex set, .Vert(R), is
the set of objects of .R. Its edge set, .Edge(R), is the set of non-identity morphisms
between two vertices. If .a ∈ Hom(σ, τ ) is an edge, we have its initial vertex,
.i(a) = σ , as well as, its terminal vertex, .t (a) = σ . A k-simplex of .|R| is a k-
tuple .(a1, . . . , ak) of composable edges, i.e., .t (aj ) = i(aj+1). (N.B. .|R| is not
necessarily a simplicial complex, rather, as on the first page of Sect. 2.1, it is a “.Δ-
complex,” cf. [146].) In particular, a poset .Q is a scwol; its geometric realization .|Q|
is an ordinary simplicial complex (the order complex). A k-simplex in .|Q| is a chain
.{σ0 < · · · < σk}.
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What is the scwol associated to a graph .Ω? We have .VertR = Vert Ω
⊔

Edge Ω .
For each vertex .τ ∈ Ω which is an endpoint of an edge of .σ ∈ Ω , there is an edge of
.R running from .σ ∈ VertR to .τ ∈ VertR. So, the geometric realization of the scwol
is the barycentric subdivision of the graph. For example, if .Ω is a loop consisting
of a single vertex .τ and a single 1-cell .σ , then there are two edges in .|R| connecting
the vertices corresponding to .σ and .τ . The general theory of scwols is developed in
[35, III..C.1].

There is a natural generalization of the notion of a simple complex of groups
.GQ to a “complex of groups.” There are two aspects to this generalization. First,
we can replace the poset .Q by a scwol .R and consider a cofunctor .GR from .R to
the category of groups and monomorphisms. A loop of groups as in Example A.9
gives a complex of groups of this type. A second aspect of this generalization is to
relax the requirement that .GR be a cofunctor. To wit, if a and b are composable
morphisms in .R, then one only requires the homomorphisms .φab and .φaφb from
.Gt(a) to .Gi(b) agree up to conjugation by an element .ga,b in the target group .Gi(b),
i.e.,

. Ad(ga,b)φab = φbφa. (A.5)

Moreover, these elements .ga,b are required to satisfy an appropriate cocycle
condition for each triple of composable morphisms .(a, b, c). (See [35, III..C.2.1,
p.535].) A complex of groups over a scwol .R is then a “lax cofunctor,” as defined
above, from .R to the category of groups and monomorphisms.

There are layers of complications built into the definitions of a complex of
groups, its fundamental group and its universal cover. These complications are
spelled out in detail in the book of Bridson-Haefliger [35]. We will only indicate
these complications by giving definitions that are sometimes incomplete and then
referring to [35] for the full details. Here is the official definition of a “complex of
groups.”

Definition A.10 (Bridson-Haefliger [35, III..C.2, p. 535]) A complex of groups
.GR = {Gσ ,ψa, ga,b} over a scwol .R consists of the following data:

(i) for each .σ ∈ Vert(R), a group .Gσ , called the local group at .σ ,
(ii) for each .a ∈ Edge(R) an injective homomorphism .ψa : Gt(a) → Gi(a),

(iii) for each pair of composable edges .(a, b) ∈ Edge(R) × Edge(R), a twisting
element .ga,b ∈ Gi(b) so that

. Ad(ga,b)ψab = ψbψa . (A.6)

Moreover, the .{ga,b} must satisfy a certain cocycle condition [35, p. 535].

The complex of groups is simple if each .ga,b is equal to the trivial element of .Gi(b).

Remark A.11 For a simple complex of groups over a poset the same functoriality
condition is used in [35] as in Sect. A.1: it is a contravariant functor to the category
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of groups and monomorphisms. In Definition A.10 we maintain the condition of
being contravariant. For example, given a loop of groups as in Example A.9, there
are two injections from the edge stabilizer to the vertex stabilizer. However, in
Bridson-Haefliger [35] a complex of groups over a scwol becomes covariant. At
some point we to need return to the covariance of [35, III..C.2] by replacing the
scwol .R by the dual scwol .Rop and we shall do so when we define the category
.CGR below.

There is a natural notion of a morphism from a complex of groups .GR to a group
G. (The reader can either supply her own definition or else look at [35, III..C.2.4, p.
536].)

Definition A.12 Suppose .GR is a complex of groups over a scwol .R and .ψ :
GR → G is a morphism to a group G, which is injective on local groups. A
development of .GR with respect to .ψ is a scwol .D(ψ,R) together with an action of
G on it so that the quotient scwol is .R and so that the associated complex of groups
is .GR.

There is the following generalization of Theorem A.6.

Theorem A.13 (Bridson-Haefliger [35, III..C.2, Thm. 2.13]) For any morphism
.ψ : GR → G, there is a development .D(ψ,R). If .ψ is injective on local groups,
then .GR is the complex of groups associated to the G-action on .D(ψ,R).

The construction of the development .D(ψ,R) is similar to the case of a simple
complex of groups over a poset .Q, which was done in Eq. (A.1). To wit, the objects
of the scwol .D(ψ,R) are cosets,

. Vert(D(ψ,R)) :=
⊔

σ∈Vert(R)

G/ψσ (Gσ ), (A.7)

and the edges (.= morphisms) of .D(ψ,R) are given by

. Edge(D(ψ,R)) := {(gGi(a), a) | a ∈ Edge(R) and gGi(a) ∈ G/Gi(a)}, (A.8)

where to simplify notation we have written .gGi(a) instead of .gψi(a)(Gi(a)).

A.3.2 The Category CGR

In a scwol such as .R, each object .σ corresponds to a unique morphism .Iσ (the
identity) from .σ to itself; hence, .Vert(R) is identified as a subset of the set of all
morphisms. So, we can think of .R as the set of morphisms (i.e., the set of arrows).

The information contained in a complex of groups .GR yields a small category
.CGR which we will now define. The discussion follows [35, III..C.2.8]. The set of
objects of .CGR is .Vert(R) (.= Vert(Rop), where .Rop means the dual scwol). As we
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indicated in Remark A.11, it is now time to reverse the directions of the arrows. The
elements of .CGR are pairs .(g, a) where .a ∈ Rop and .g ∈ Gt(a . If .i(a) = t (b), then
the composition .(g, a)(h, b) is defined by

.(g, a)(h, b) = (gψa(h)ga,b, ab).

Note that the map .CGR �→ Rop is a functor.
Associated to any category C there is a CW complex BC called its nerve (or

its classifying space). In the case C is a poset or a scwol .R, BC is its geometric
realizattion. When C is a group G, then .BC = BG, the usual .K(G, 1)-complex.
The functor .CGR → Rop induces a map .BCGR → BRop = |Rop| = |R|. As
we shall see in Sect. A.4, this exhibits .BCGR as an “aspherical realization” of the
complex of groups .GR.

A.3.3 The Fundamental Group and Universal Cover of a
Complex of Groups

There are at least two general methods for defining the fundamental group of a
complex of groups .GR. The first uses the category .CGR defined in the previous
subsection. The procedure is to first take the nerve .BCGR of the category and then
to take the ordinary fundamental group of this topological space:

.π1(GR) := π1(BCGR). (A.9)

There is a second method, developed in [35, III..C.3], which is more concrete and
easier to use. It is based on the construction of Bass-Serre in [207]. One defines
the fundamental group by using a combination of the local groups and homotopy
classes of edge paths in the geometric realization of the underlying scwol (cf.
[35, III..C.3.3]). First one defines the universal group .F(GR). The generators are
the elements of .Gσ , .σ ∈ Vert(R), and the set of signed edges, .E±(R) where
.E±(R) means that we take two copies .a+ and .a− for each edge .a ∈ Edge(R).
By introducing the obvious relations (cf. [35, p. 546]) we get a group .F(GR) which
is much larger than the fundamental group we wish to define. There is a natural
morphism .ι = (ισ , ιa) : GR → F(GR), where .ισ : Gσ → F(GR) is the natural
homomorphism and where .ι(a) = a+. A .GR-path issuing from .σ0 ∈ Vert(R)

is a sequence .c = (g0, e1, g1, . . . , ek, gk), where .(e1, . . . , ek) is an edge path in
the geometric realization of .R, .g0 ∈ Gσ0 and .gi belongs to the local group at the
appropriate end point of .ei . Associated to a .GR path .c = (g0, e1, g1, . . . , ek, gk),
there is an element .π(c) ∈ F(GR) represented by the word .g0e1g1 · · · ekgk . Two
.GR-paths c and .c′ are homotopic if .π(c) = π(c′). Given .σ0 ∈ Vert(R), let
.π1(GR, σ0) denote the set of homotopy classes of .GR-loops based at .σ0. It has
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a group structure induced by concatenation of paths (cf. [35, III..C.3.3]). The group
.π1(GR, σ0) is the second definition of the fundamental group of .GR.

The complex of groups .GR is developable if for each .σ ∈ Vert(R) the natural
homomorphism .Gσ → π1(GR, σ0) induced by .ισ : Gσ → F(GR) is injective.
The universal cover. Suppose .GR is a developable complex of groups over a
connected scwol .R. The universal cover .GR is the development .D(ψ,R) (cf.
Definition A.12), where .ψ : GR → π1(GR, T ) is the canonical morphism. We
shall often confuse the scwol .D(ψ,R) with its geometric realization. Also, we shall
write .π for .π1(GR, T ) and use the notation .D(π,R) for .D(ψ,R). Finally, we will
sometimes denote the universal cover by

.UGR := D(π,R). (A.10)

A.4 Aspherical Realizations and the K(π, 1)-Question

A.4.1 Complexes of Spaces and van Kampen’s Theorem

There is a natural notion of a “complex of spaces” over a poset or scwol .R. (See
Definition A.14 below.) It consists of a collection of path connected subspaces
.{Xσ }σ∈R of some given space X, together with some other data. Each complex of
spaces has an associated complex of groups .GR = {Gσ }σ∈R, where .Gσ = π1(Xσ ).
Van Kampen’s Theorem tells us that, for .X = ⋃

Xσ , the fundamental group
of X can be computed from the complex of groups as: .π1(X) = π1(GR). (See
Theorem A.15 below.) The theory is easier to understand when .R is a poset and .GR

is a simple complex of groups. This is the case of primary interest to us.
It is necessary to introduce more complications in order to define the local

structure of the geometric realization of a general scwol .R as opposed to the case
when .R is a poset .R. For example, if .σ ∈ Vert(R) and .R is a poset, then its upper
star is simply the cone, .|R≥σ |. The corresponding notion for a scwol .R is the dual
cone .Dσ , the precise definition of which can be found in [138, 1.3]. For example,
suppose .R is the scwol associated to a loop with a single 1-cell .τ and a single 0-cell
.σ . There are two edges in .|R| emanating from the vertex .τ . These two edges have
distinct end points in .Dσ . In other words, .Dσ is the cone on the upper link, .Lk(σ ),
which in this example is isomorphic to .S0.

Definition A.14 (Haefliger [138, Def. 3.3.2]) Suppose .R is a scwol. A complex
of spaces over a scwol .R is a space X together with a projection map .p : X →
|R| satisfying the following additional properties. We are given a collection of path
connected spaces .{Xσ }σ∈Vert(R) and for each .a ∈ Edge(R) a .π1-injective map .fa :
Xt(a) → Xi(a). For each vertex .σ ∈ Vert(R), .p−1(σ ) = Xσ and so that .p−1(Dσ )

deformation retracts onto .p−1(σ ) relative to .p−1(σ ). For each .a ∈ Edge(R) with
.t (a) = σ and .i(a) = τ , we are given an inclusion .σ ↪→ Dσ and a projection
.Dσ → τ . These are covered by a homotopy equivalence .p−1(σ ) ↪→ p−1(Dσ )
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and a projection .p−1(Dσ ) → p−1(τ ). Their composition gives a map .fa : Xσ →
Xτ , which is required to be .π1-injective. The complex of groups associated to X is
defined by setting .Gσ = π1(Xσ ) for each .σ ∈ Vert(R). For each .a ∈ Edge(R), the
monomorphism .ψa : Gt(a) → Gi(a) is defined by .ψa = (fa)∗ : π1(X(t (a)) →
π1(X(i(a)). A complex of spaces is a complex of CW complexes if each .Xσ is a CW
complex and each .fa is a cellular map.

Suppose .GR = {Gσ } is a complex of groups and that .X = ⋃

σ∈VertR Xσ is
a complex of CW complexes over .R, with .p : X → |R| so that the associated
complex of groups is .GR. Then X is called a (cellular) realization of .GR.

Of course, the choice of base points is important in the previous definition and
must be made explicit. This is conveniently done by choosing a section of .p : X →
|R| defined over the 1-skeleton of .R. In other words, for each .σ ∈ Vert(R) we
have a base point .s(σ ) ∈ Xσ and for each .a ∈ Edge(R), a lift of the segment in .|R|1
corresponding to a to a path .s(a) from .s(i(a)) to .s(t (a)). According to the definition
of a complex of groups (cf. Definition A.10), the correspondence is required to be
functorial only up to conjugation by certain elements .ga,b ∈ Gi(b) (cf. (A.5)). Note
that the path .s(a)s(b)s(ab) is a closed loop in .Xi(a) based at .s(i(a)). Hence, it
defines an element .ga,b ∈ Gi(a) and we have .ψab = Ad(ga,b)ψaψb. It follows that
.GR is a complex of groups where the twisting element .ga,b is the homotopy class
of .s(a)s(b)s(ab) in .π1(Xi(a), s(i(a))). The theory of complexes of groups gives the
following generalization of van Kampen’s Theorem.

Theorem A.15 (cf. Haefliger [138, Prop. 3.3.3]) Suppose .p : X → |R| is a
complex of CW complexes and that .GR is given as above. Then .GR is a complex
of groups over .R. Moreover, .π1(X) = π1(GR, s), where s is a section defined over
the 1-skeleton of .|R|.
Example A.16 (Graphs of Spaces) Suppose Y is a graph without loops and that .Q
denotes its poset of cells. The elements of .Q are 0-cells and 1-cells. A 1-cell gives
a vertex .σ of .Q, namely, the midpoint of the 1-cell. If .τ is a 0-cell, then .Dτ is the
star of .τ in the barycentric subdivision of Y . A graph of spaces is then a space X

and a map .p : X → Y giving X a decomposition into vertex spaces .p−1(D(τ))

and edge spaces .Xσ . The edge space .Xσ is the intersection of the two vertex spaces
corresponding to the endpoints of .σ . The statement that .π1(X) is the fundamental
group of the graph of groups is a well-known version of van Kampen’s Theorem.

A.4.2 Aspherical Realizations

Definition A.17 Suppose p : X → |R| is a cellular realization of a complex of
groups GR. Then p : X → |R| is called an aspherical realization of GR if for each
σ ∈ Vert(R), the cell complex Xσ := p−1(σ ) is aspherical. In other words, if for
each σ ∈ Vert(R), Xσ is homotopy equivalent to BGσ .
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The nerve of the category CGR from Sect. A.3.2 is easily seen to be an aspherical
realization of GR. The projection map p : BCGR → |R| is the map induced by
the functor CGR → Rop.

An aspherical realization p : X → |R| has the following universal property:
if p′ : X′ → |R| is another complex of CW complexes over R associated to the
same complex of groups GR, then there is a cellular map f : X′ → X covering the
identity on |R| so that the following diagram commutes:

. (A.11)

Of course, part of the data for an aspherical realization should include a section s :
|R|1 → X over the 1-skeleton and the map f should take the section s′ for X′ to the
section s. When this is the case, for σ ∈ VertR, the induced map π1(X

′, s′(σ )) →
π1(X, s(σ )) should be the identity, i.e., f should induce the identity homomorphism
on the Gσ . In what follows we will usually suppress all mention of these sections
and choices of base points.

By a standard argument, it follows from the universal property of an aspherical
realization that if X and X′ are both aspherical realizations of a complex of groups
GR, then there is a homotopy equivalence f : X′ → X covering the identity on
|R| and restricting to a homotopy equivalence X′

σ → Xσ for each σ ∈ Vert(R).
When we are not choosing the specific model BCGR, we will denote an aspherical
realization of GR by BGR.

Theorem A.18 (Haefliger [138, §3.4]) Any complex of groups GR has an aspher-
ical realization p : BGR → |R|. Moreover, BGR is unique up to homotopy
equivalence.

Discussion of proof The existence of an aspherical realization can be established
without invoking the category CGR. The details of the proof can be found [138,
§3.4]. To simplify the discussion first suppose GQ is a simple complex of groups
over a poset Q, that is, suppose we are given a collection of groups {Gσ }σ∈Q and
monomorphisms φτσ : Gτ → Gσ whenever σ < τ . The idea is to glue together the
collection of classifying spaces {BGσ }σ∈Q by using the maps fτσ : BGτ → BGσ

corresponding to the φτσ . To further simplify the discussion suppose GQ is a graph
of groups where Q is the poset of cells in the underlying graph. Let eτ be an edge and
vσ one of its endpoints. Then τ and σ are vertices of |Q|, the barycentric subdivision
of the underlying graph; τ is the midpoint of the edge eτ ; the 1-simplex [τ, σ ] is one
half of the edge eτ . Moreover, [τ, σ ] is contained in Dσ (the upper star of σ in |Q|).
The mapping cylinder of fτσ lies above [τ, σ ] and gives a gluing of p−1(τ ) ∼ BGτ

to p−1([τ, σ ]) ⊂ p−1Dσ ∼ BGσ . In the case where the order complex |Q| has
dimension > 1, to construct the preimage of a simplex [τ0 < · · · < τk] in |R| we
use iterated mapping cylinders of the maps fτσ , where τ and σ are vertices of the
simplex. The uniqueness of aspherical realizations follows immediately from their
universal property. ��
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Theorem A.19 Suppose that GR is a developable complex of groups, that π =
π1(GR) and that UGR is its universal cover. Then BGR is homotopy equivalent to
the Borel construction on UGR:

.BGR = UGR ×π Eπ.

Proof Projection on the first factor induces the projection map p : UGR×π Eπ →
UGR/π = |R|, fulfilling one of the requirements in the definition of an aspherical
realization. The fiber over σ is π/Gσ ×π Eπ which is homotopy equivalent to
Eπ/Gσ = BGσ . The theorem follows. ��
The K(π, 1)-Question A primary reason for introducing the notion of a complex
of groups was to address the following.

Question A.20 (The K(π, 1)-Question) Suppose GR is a complex of groups. Is
BGR a K(π, 1)-complex? In other words, is the aspherical realization of a complex
of groups an aspherical complex?

In symbols, is BGR = Bπ for π = π1(GR)?
The following is a corollary of Theorem A.19.

Theorem A.21 (Haefliger [138, Prop. 3.2.3]) The K(π, 1)-Question for a devel-
opable complex of groups GR has a positive answer if and only if the universal
cover UGR of GR is contractible. In other words, the aspherical realization BGR

is homotopy equivalent to Bπ if and only if UGR is contractible.

Proof Put U = UGR. By Theorem A.19, BGR is homotopy equivalent to U ×π

Eπ . The universal cover of U ×π Eπ is U × Eπ which is homotopy equivalent to
U (since Eπ is contractible). The proposition follows. ��

Here are some corollaries to Theorem A.21.

Corollary A.22 Let GR be a graph of groups. Then the K(π, 1)-Question for GR

has an affirmative answer, i.e., BGR is aspherical.

Proof For a graph of groups, its universal cover UGR is a tree. ��
A special case of this corollary is the following.

Corollary A.23 (Whitehead’s Lemma)

(i) Suppose GQ is a segment of groups, with vertex groups G1 and G2 and with
edge group A. Then the result of gluing BG1 to BG2 along BA is homotopy
equivalent to the classifying space of the amalgamated product G1 ∗A G2.

(ii) Suppose the data for a loop of groups (or HNN construction) is given by as in
Example A.9. Then the result of gluing BA × [0, 1] to BG via the inclusion on
BA × 0 and the map induced by θ on BA × 1 is the classifying space for the
HNN construction ∗AG.

A direct proof of Whitehead’s Lemma can be found in [146, Thm. 1B.11].
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Another criterion which allows us to apply Theorem A.21 is the nonpositive
curvature property. A central result in the book of Bridson-Haefliger [35] is the
following.

Theorem A.24 (Bridson-Haefliger [35, Def. 4.16 and Thm. 4.17 in III.C.4])
Suppose GR is a nonpositively curved complex of groups. (This means that each
local development is CAT(0).) Then GR is developable and its universal cover
UGR is CAT(0). Hence, the K(π, 1)-Question for GR has a positive answer.

This theorem is the method we used in Chap. 4 to answer the K(π, 1)-Question
for the Coxeter complexes WSop (see Theorem 4.12) and for Artin complexes ASop

when A is type FC (see Theorem 4.76 in Sect. 4.3.4). It also shows that the answer is
positive for simple complexes of groups associated to a building (see Theorem 4.107
in Sect. 4.4.2). In the case of right-angled buildings we recover the result that the
answer is positive for the graph product complex (cf. Proposition 3.27). In other
words, that if Γ = ∏

L1(Gi,Hi) is a graph product (or relative graph product),
then BΓ is {(BGi, BHi)}L, the polyhedral product of the classifying spaces of the
factors.

Of course, the K(π, 1)-Question is a question about a complex of groups and
not just a question about its fundamental group. For example, it can easily happen
that we have a simple complex of groups GQ a simple subcomplex of groups GQ′
with Q′ a subcomplex of Q so that π1(GQ) = π1(GQ′) and UGQ is contractible but
UGQ′ is not.

Example A.25 (Some Triangles of Groups, cf. Example 2.59 in Sect. 2.4.5) A
reflection group with fundamental chamber a triangle defines a triangle of groups.
The local group of each 2-cell is trivial, each edge stabilizer is cyclic of order 2 and
the vertex stabilizers are dihedral groups I2(p), I2(q) and I2(r). The direct limit is a
Coxeter group denoted by W(p, q, r). It can be represented as a reflection group on
S

2, E2, or H2 as the sum of the reciprocals 1/p + 1/q + 1/r is, respectively, >, =,
or < 1. So, the universal cover of the triangle of groups is contractible if and only if
the sum of reciprocals is ≤ 1. (Geometrically, this means that the sum of the angles
in the triangle is ≤ π .)
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125. Ś. R. Gal, Euler characteristic of the configuration space of a complex, Colloq. Math. 89
(2001), no. 1, 61–67, https://doi.org/10.4064/cm89-1-4. MR1853415

https://doi.org/10.4171/GGD/164
https://doi.org/10.4171/GGD/164
https://doi.org/10.4171/GGD/164
https://doi.org/10.4171/GGD/164
https://doi.org/10.4171/GGD/164
https://doi.org/10.4171/GGD/164
https://doi.org/10.4171/GGD/164
https://doi.org/10.1007/BF01589496
https://doi.org/10.1007/BF01589496
https://doi.org/10.1007/BF01589496
https://doi.org/10.1007/BF01589496
https://doi.org/10.1007/BF01589496
https://doi.org/10.1007/BF01589496
https://doi.org/10.2140/gt.2013.17.2431
https://doi.org/10.2140/gt.2013.17.2431
https://doi.org/10.2140/gt.2013.17.2431
https://doi.org/10.2140/gt.2013.17.2431
https://doi.org/10.2140/gt.2013.17.2431
https://doi.org/10.2140/gt.2013.17.2431
https://doi.org/10.2140/gt.2013.17.2431
https://doi.org/10.2140/gt.2013.17.2431
https://doi.org/10.2140/gt.2013.17.2431
https://doi.org/10.1007/BF01388581
https://doi.org/10.1007/BF01388581
https://doi.org/10.1007/BF01388581
https://doi.org/10.1007/BF01388581
https://doi.org/10.1007/BF01388581
https://doi.org/10.1007/BF01388581
https://doi.org/10.4171/CMH/200
https://doi.org/10.4171/CMH/200
https://doi.org/10.4171/CMH/200
https://doi.org/10.4171/CMH/200
https://doi.org/10.4171/CMH/200
https://doi.org/10.4171/CMH/200
https://doi.org/10.4171/CMH/200
https://doi.org/10.4007/annals.2010.171.731
https://doi.org/10.4007/annals.2010.171.731
https://doi.org/10.4007/annals.2010.171.731
https://doi.org/10.4007/annals.2010.171.731
https://doi.org/10.4007/annals.2010.171.731
https://doi.org/10.4007/annals.2010.171.731
https://doi.org/10.4007/annals.2010.171.731
https://doi.org/10.4007/annals.2010.171.731
https://doi.org/10.4007/annals.2010.171.731
https://doi.org/10.1007/s000390050075
https://doi.org/10.1007/s000390050075
https://doi.org/10.1007/s000390050075
https://doi.org/10.1007/s000390050075
https://doi.org/10.1007/s000390050075
https://doi.org/10.1007/s000390050075
https://doi.org/10.7208/chicago/9780226237909.001.0001
https://doi.org/10.7208/chicago/9780226237909.001.0001
https://doi.org/10.7208/chicago/9780226237909.001.0001
https://doi.org/10.7208/chicago/9780226237909.001.0001
https://doi.org/10.7208/chicago/9780226237909.001.0001
https://doi.org/10.7208/chicago/9780226237909.001.0001
https://doi.org/10.7208/chicago/9780226237909.001.0001
https://doi.org/10.7208/chicago/9780226237909.001.0001
https://doi.org/10.7208/chicago/9780226237909.001.0001
https://doi.org/10.1090/pspum/054.3/1216623
https://doi.org/10.1090/pspum/054.3/1216623
https://doi.org/10.1090/pspum/054.3/1216623
https://doi.org/10.1090/pspum/054.3/1216623
https://doi.org/10.1090/pspum/054.3/1216623
https://doi.org/10.1090/pspum/054.3/1216623
https://doi.org/10.1090/pspum/054.3/1216623
https://doi.org/10.1090/pspum/054.3/1216623
https://doi.org/10.1090/pspum/054.3/1216623
https://doi.org/10.1016/0021-8693(64)90028-6
https://doi.org/10.1016/0021-8693(64)90028-6
https://doi.org/10.1016/0021-8693(64)90028-6
https://doi.org/10.1016/0021-8693(64)90028-6
https://doi.org/10.1016/0021-8693(64)90028-6
https://doi.org/10.1016/0021-8693(64)90028-6
https://doi.org/10.1016/0021-8693(64)90028-6
https://doi.org/10.1016/0021-8693(64)90028-6
https://doi.org/10.1090/conm/560/11092
https://doi.org/10.1090/conm/560/11092
https://doi.org/10.1090/conm/560/11092
https://doi.org/10.1090/conm/560/11092
https://doi.org/10.1090/conm/560/11092
https://doi.org/10.1090/conm/560/11092
https://doi.org/10.1090/conm/560/11092
https://doi.org/10.1090/conm/560/11092
https://doi.org/10.1134/S0081543808040044
https://doi.org/10.1134/S0081543808040044
https://doi.org/10.1134/S0081543808040044
https://doi.org/10.1134/S0081543808040044
https://doi.org/10.1134/S0081543808040044
https://doi.org/10.1134/S0081543808040044
https://doi.org/10.2140/gt.2013.17.1745
https://doi.org/10.2140/gt.2013.17.1745
https://doi.org/10.2140/gt.2013.17.1745
https://doi.org/10.2140/gt.2013.17.1745
https://doi.org/10.2140/gt.2013.17.1745
https://doi.org/10.2140/gt.2013.17.1745
https://doi.org/10.2140/gt.2013.17.1745
https://doi.org/10.2140/gt.2013.17.1745
https://doi.org/10.2140/gt.2013.17.1745
https://doi.org/10.4064/cm89-1-4
https://doi.org/10.4064/cm89-1-4
https://doi.org/10.4064/cm89-1-4
https://doi.org/10.4064/cm89-1-4
https://doi.org/10.4064/cm89-1-4
https://doi.org/10.4064/cm89-1-4
https://doi.org/10.4064/cm89-1-4
https://doi.org/10.4064/cm89-1-4


References 261

126. D. E. Galewski and R. J. Stern, Classification of simplicial triangulations of topological
manifolds, Ann. of Math. (2) 111 (1980), no. 1, 1–34, https://doi.org/10.2307/1971215.
MR558395

127. D. Galewski and R. Stern, A universal 5-manifold with respect to simplicial triangulations,
Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), Academic Press,
New York-London, 1979, pp. 345–350. MR537740

128. A. Genevois, Quasi-isometrically rigid subgroups in right-angled Coxeter groups,
Algebr. Geom. Topol. 22 (2022), no. 2, 657–708, https://doi.org/10.2140/agt.2022.22.657.
MR4464462

129. ——, Cactus groups from the viewpoint of geometric group theory. arXiv:2212.03494v1.
130. R. Geoghegan, Topological methods in group theory, Graduate Texts in Mathematics, vol.

243, Springer, New York, 2008. MR2365352
131. R. Gitik, M. Mitra, E. Rips, and M. Sageev, Widths of subgroups, Trans. Amer. Math. Soc.

350 (1998), no. 1, 321–329, https://doi.org/10.1090/S0002-9947-98-01792-9. MR1389776
132. S. Gitler and S. López de Medrano, Intersections of quadrics, moment-angle manifolds and

connected sums, Geom. Topol. 17 (2013), no. 3, 1497–1534, https://doi.org/10.2140/gt.2013.
17.1497. MR3073929

133. E. Godelle and L. Paris, K(π,1) and word problems for infinite type Artin-Tits groups, and
applications to virtual braid groups, Math. Z. 272 (2012), no. 3-4, 1339–1364, https://doi.
org/10.1007/s00209-012-0989-9. MR2995171

134. K. Goldman, The K(π,1) Conjecture and acylindrical hyperbolicity for relatively extra-large
Artin groups, Algbr. Geom. Topol.

135. M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ.
Math. 53 (1981), 53–73. MR623534

136. M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8,
Springer, New York, 1987, pp. 75–263. MR919829

137. B. Grünbaum, Convex polytopes, 2nd ed., Graduate Texts in Mathematics, vol. 221, Springer-
Verlag, New York, 2003. Prepared and with a preface by Volker Kaibel, Victor Klee and
Günter M. Ziegler. MR1976856

138. A. Haefliger, Extension of complexes of groups, Ann. Inst. Fourier (Grenoble) 42 (1992), no.
1-2, 275–311 (English, with French summary). MR1162563

139. T. Haettel, Virtually cocompactly cubulated Artin-Tits groups, Int. Math. Res. Not. IMRN 4
(2021), 2919–2961, https://doi.org/10.1093/imrn/rnaa013. MR4218342

140. F. Haglund, Finite index subgroups of graph products, Geom. Dedicata 135 (2008), 167–209.
MR2413337

141. F. Haglund and F. Paulin, Simplicité de groupes d’automorphismes d’espaces à courbure
négative, The Epstein birthday schrift, Geom. Topol. Monogr., vol. 1, Geom. Topol. Publ.,
Coventry, 1998, pp. 181–248, https://doi.org/10.2140/gtm.1998.1.181 (French, with English
and French summaries). MR1668359

142. ——, Constructions arborescentes d’immeubles, Math. Ann. 325 (2003), no. 1, 137–164,
https://doi.org/10.1007/s00208-002-0373-x (French, with English summary). MR1957268

143. F. Haglund and D. T. Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008), no. 5,
1551–1620, https://doi.org/10.1007/s00039-007-0629-4. MR2377497

144. F. Haglund and D. T. Wise, Coxeter groups are virtually special, Adv. Math. 224 (2010), no.
5, 1890–1903, https://doi.org/10.1016/j.aim.2010.01.011. MR2646113

145. ——, A combination theorem for special cube complexes, Ann. of Math. (2) 176 (2012), no.
3, 1427–1482, https://doi.org/10.4007/annals.2012.176.3.2. MR2979855

146. A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR1867354
147. H. Hendriks, Hyperplane complements of large type, Invent. Math. 79 (1985), no. 2, 375–381,

https://doi.org/10.1007/BF01388979. MR778133
148. G. Higman, A finitely generated infinite simple group, J. London Math. Soc. 26 (1951), 61–64,

https://doi.org/10.1112/jlms/s1-26.1.61. MR38348
149. C. Horbez and J. Huang, Measure equivalence rigidity among Higman groups.

arXiv:2206.00884v1.

https://doi.org/10.2307/1971215
https://doi.org/10.2307/1971215
https://doi.org/10.2307/1971215
https://doi.org/10.2307/1971215
https://doi.org/10.2307/1971215
https://doi.org/10.2307/1971215
https://doi.org/10.2140/agt.2022.22.657
https://doi.org/10.2140/agt.2022.22.657
https://doi.org/10.2140/agt.2022.22.657
https://doi.org/10.2140/agt.2022.22.657
https://doi.org/10.2140/agt.2022.22.657
https://doi.org/10.2140/agt.2022.22.657
https://doi.org/10.2140/agt.2022.22.657
https://doi.org/10.2140/agt.2022.22.657
https://doi.org/10.2140/agt.2022.22.657
https://doi.org/10.1090/S0002-9947-98-01792-9
https://doi.org/10.1090/S0002-9947-98-01792-9
https://doi.org/10.1090/S0002-9947-98-01792-9
https://doi.org/10.1090/S0002-9947-98-01792-9
https://doi.org/10.1090/S0002-9947-98-01792-9
https://doi.org/10.1090/S0002-9947-98-01792-9
https://doi.org/10.1090/S0002-9947-98-01792-9
https://doi.org/10.1090/S0002-9947-98-01792-9
https://doi.org/10.1090/S0002-9947-98-01792-9
https://doi.org/10.1090/S0002-9947-98-01792-9
https://doi.org/10.2140/gt.2013.17.1497
https://doi.org/10.2140/gt.2013.17.1497
https://doi.org/10.2140/gt.2013.17.1497
https://doi.org/10.2140/gt.2013.17.1497
https://doi.org/10.2140/gt.2013.17.1497
https://doi.org/10.2140/gt.2013.17.1497
https://doi.org/10.2140/gt.2013.17.1497
https://doi.org/10.2140/gt.2013.17.1497
https://doi.org/10.2140/gt.2013.17.1497
https://doi.org/10.1007/s00209-012-0989-9
https://doi.org/10.1007/s00209-012-0989-9
https://doi.org/10.1007/s00209-012-0989-9
https://doi.org/10.1007/s00209-012-0989-9
https://doi.org/10.1007/s00209-012-0989-9
https://doi.org/10.1007/s00209-012-0989-9
https://doi.org/10.1007/s00209-012-0989-9
https://doi.org/10.1007/s00209-012-0989-9
https://doi.org/10.1007/s00209-012-0989-9
https://doi.org/10.1093/imrn/rnaa013
https://doi.org/10.1093/imrn/rnaa013
https://doi.org/10.1093/imrn/rnaa013
https://doi.org/10.1093/imrn/rnaa013
https://doi.org/10.1093/imrn/rnaa013
https://doi.org/10.1093/imrn/rnaa013
https://doi.org/10.1093/imrn/rnaa013
https://doi.org/10.2140/gtm.1998.1.181
https://doi.org/10.2140/gtm.1998.1.181
https://doi.org/10.2140/gtm.1998.1.181
https://doi.org/10.2140/gtm.1998.1.181
https://doi.org/10.2140/gtm.1998.1.181
https://doi.org/10.2140/gtm.1998.1.181
https://doi.org/10.2140/gtm.1998.1.181
https://doi.org/10.2140/gtm.1998.1.181
https://doi.org/10.2140/gtm.1998.1.181
https://doi.org/10.1007/s00208-002-0373-x
https://doi.org/10.1007/s00208-002-0373-x
https://doi.org/10.1007/s00208-002-0373-x
https://doi.org/10.1007/s00208-002-0373-x
https://doi.org/10.1007/s00208-002-0373-x
https://doi.org/10.1007/s00208-002-0373-x
https://doi.org/10.1007/s00208-002-0373-x
https://doi.org/10.1007/s00208-002-0373-x
https://doi.org/10.1007/s00208-002-0373-x
https://doi.org/10.1007/s00039- 007-0629-4
https://doi.org/10.1007/s00039- 007-0629-4
https://doi.org/10.1007/s00039- 007-0629-4
https://doi.org/10.1007/s00039- 007-0629-4
https://doi.org/10.1007/s00039- 007-0629-4
https://doi.org/10.1007/s00039- 007-0629-4
https://doi.org/10.1007/s00039- 007-0629-4
https://doi.org/10.1007/s00039- 007-0629-4
https://doi.org/10.1007/s00039- 007-0629-4
https://doi.org/10.1016/j.aim.2010.01.011
https://doi.org/10.1016/j.aim.2010.01.011
https://doi.org/10.1016/j.aim.2010.01.011
https://doi.org/10.1016/j.aim.2010.01.011
https://doi.org/10.1016/j.aim.2010.01.011
https://doi.org/10.1016/j.aim.2010.01.011
https://doi.org/10.1016/j.aim.2010.01.011
https://doi.org/10.1016/j.aim.2010.01.011
https://doi.org/10.1016/j.aim.2010.01.011
https://doi.org/10.1016/j.aim.2010.01.011
https://doi.org/10.4007/annals.2012.176.3.2
https://doi.org/10.4007/annals.2012.176.3.2
https://doi.org/10.4007/annals.2012.176.3.2
https://doi.org/10.4007/annals.2012.176.3.2
https://doi.org/10.4007/annals.2012.176.3.2
https://doi.org/10.4007/annals.2012.176.3.2
https://doi.org/10.4007/annals.2012.176.3.2
https://doi.org/10.4007/annals.2012.176.3.2
https://doi.org/10.4007/annals.2012.176.3.2
https://doi.org/10.4007/annals.2012.176.3.2
https://doi.org/10.1007/BF01388979
https://doi.org/10.1007/BF01388979
https://doi.org/10.1007/BF01388979
https://doi.org/10.1007/BF01388979
https://doi.org/10.1007/BF01388979
https://doi.org/10.1007/BF01388979
https://doi.org/10.1112/jlms/s1-26.1.61
https://doi.org/10.1112/jlms/s1-26.1.61
https://doi.org/10.1112/jlms/s1-26.1.61
https://doi.org/10.1112/jlms/s1-26.1.61
https://doi.org/10.1112/jlms/s1-26.1.61
https://doi.org/10.1112/jlms/s1-26.1.61
https://doi.org/10.1112/jlms/s1-26.1.61
https://doi.org/10.1112/jlms/s1-26.1.61
https://doi.org/10.1112/jlms/s1-26.1.61
https://doi.org/10.1112/jlms/s1-26.1.61


262 References

150. G. C. Hruska and B. Kleiner, Hadamard spaces with isolated flats, Geom. Topol. 9 (2005),
1501–1538, https://doi.org/10.2140/gt.2005.9.1501. With an appendix by the authors and
Mohamad Hindawi. MR2175151

151. G. C. Hruska and D. T. Wise, Finiteness properties of cubulated groups, Compos. Math. 150
(2014), no. 3, 453–506, https://doi.org/10.1112/S0010437X13007112. MR3187627

152. T. Hsu and D. T. Wise, On linear and residual properties of graph products, Michigan Math.
J. 46 (1999), no. 2, 251–259.

153. T. Hsu and D. Wise, A non-residually finite square of finite groups, Groups St. Andrews 1997
in Bath, I, London Math. Soc. Lecture Note Ser., vol. 260, Cambridge Univ. Press, Cambridge,
1999, pp. 368–378. MR1676633

154. B. Z. Hu, Whitehead groups of finite polyhedra with nonpositive curvature, J. Differential
Geom. 38 (1993), no. 3, 501–517. MR1243784

155. ——, Retractions of closed manifolds with nonpositive curvature, Geometric group theory
(Columbus, OH, 1992), Ohio State Univ. Math. Res. Inst. Publ., vol. 3, de Gruyter, Berlin,
1995, pp. 135–147. MR1355108

156. J. Huang, Labeled four cycles and the K(π,1) problem for Artin groups. arxiv:2305.16847v1.
157. J. Huang and D. Osajda, Helly meets Garside and Artin, Invent. Math. 225 (2021), no. 2,

395–426, https://doi.org/10.1007/s00222-021-01030-8. MR4285138
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regular, 140, 149
spherical, 137
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Cactus group, 85
Canonical representation, 97
Canonical representation of a Coxeter group,

109
Cartan–Hadamard Theorem, 20, 48
Cartan matrix, 119, 163
Cell complex, 17
Cell complex of groups, 241
Chamber, 175

in a hyperplane arrangement, 174
fundamental, 92
of a reflection group, 176

Chamber system, 138
of type (W, S), 151

Chamber-transitive automorphism group, 141
Characteristic function, 67
Characteristic homomorphism, 67
Charney–Davis Conjecture, 75
Classical conditions for a cell complex, 18
Classical realization

of a spherical building, 145
Classifying space, 5

for proper actions, 135
Codimension-one subgroup, 173
Cohen–Macaulay

algebra, 65
complex, 65

Coloring, 155, 210
of barycentric subdivision, 215

Commutator cover, 210
Completable cube complex, 27
Complete bipartite graph, 32
Complete n partite complex, 32
Complex of groups, 5, 247
Complex of spaces, 250
Cone, 19, 20
Constant curvature polyhedron, 19
Convex cocompact, 113

projective representation, 118
subgroup of a RACG, 193

Convex domain
Hilbert metric, 118
in projective space, 118
properly, 118
strictly, 118

Convex hull, 191
Convex union of chambers, 191
Cosine matrix, 97, 101
Coxeter block, 107

Coxeter complex, 97
Coxeter diagram, 98
Coxeter group, 38, 92

type HM, 111
Coxeter matrix, 91
Coxeter system, 92, 171

nerve of, 92
2-spherical, 114, 176
type FC, 108
type HM, 111

Coxeter zonotope, 79, 99, 175
Cube complex, 17
Cyclic polytope, 115

D
Davis–Moussong complex, 7, 48, 53, 100, 176,

210
Deligne complex, 122

spherical, 123
Deligne’s Theorem, 122, 126
Delta complex, 17
Developable, 37, 240
Development, 91, 240, 242, 248
Direct limit

of a simple complex of groups, 241
of a system of groups, 49, 241

Direct sum, 49
Divisible lattice in PGL(Rn1), 118
Double Suspension Theorem, 58

E
Edwards’ Theorem, 58
Element of longest length, 82, 133
Euler Characteristic Conjecture, 75
Extra large link, 24, 103

F
Face ring, 65
Facet, 67, 72, 110
Fan, 97, 174

spherical, 97
Feit–Higman Theorem, 141, 156, 161
Finiteness properties, 229
Flag, 209
Flag completion, 27
Flat, 105
Flat Torus Theorem, 105
Fundamental chamber, 45, 91, 97, 107
Fundamental dual simplex, 98
Fundamental group at infinity, 59
Fundamental Lemma of GGT, 25
Fundamental simplex, 97
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G
Gallery, 138
Generalized homology sphere

GHSn−1, 58, 74, 111
Generalized m-gon, 141, 161
Generalized moment angle complex, 64
Generalized quadrangle, 141
Geodesic space, 19
Geometric action, 25, 177
Geometric representation of a Coxeter group,

109
Gram matrix, 113
Graph of groups, 30, 38, 241
Graph product, 39, 49

complex, 39, 50, 51
generalized, 51, 150
relative, 51

Gromov polyhedra, 114
Gromov’s Lemma, 27

H
Haken manifold, 72

generalized, 62, 73
higher dimensional, 62

Half-space
in a Coxeter system, 191
system, 170

Hecke translate, 182
Hierarchy, 73
Higman group, 32

generalized, 34
Hilbert metric, 118
HNN construction, 245, 253
Homology manifold, 58
Hyperbolic metric space, 25
Hyperbolization, 199, 215

product with interval, 215
relative, 201, 203, 211
strict, 199, 218, 223

Hyperplane arrangement, 78
Hyperplane in a cube complex, 168

I
Infinite simple group, 35
Irreducible lattice, 32
Isotropy subgroup, 46

J
Just infinite group, 32

K
Kac–Moody

algebra, 163
building, 163
group, 163

L
Large link, 24, 37
Lattice, 31
Lattice in a building’s automorphism group,

160
Left greedy normal form, 134
Linear separation property, 178
Link, 18

ascending, 226
descending, 226

Locally indicable, 190
Loop of groups, 245

M
Möbius band hyperbolization, 80
Manifold with faces, 219
Metric flag complex, 101, 154
Midcube, 168
Minset, Min(g), 29
Mirror, 45, 93
Mouffang property, 161
Moussong’s Conditions, 104

weak version, 120
Moussong’s Lemma, 103
Moussong’s Theorem, 103

N
Nerve Lemma, 127
Nerve of a Coxeter system, 92, 101
No Δ-condition, 26
No �-condition, 28, 102, 103
Normal Subgroup Theorem, 32

O
Octahedralization, 47, 190
Opposite poset, 91
Orbit space, 46
Order complex, 246

P
Parabolic subgroup

of an Artin group, 105
of a Coxeter group, 105
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Permutohedron, 79, 82
Piecewise euclidean, 19
Piecewise hyperbolic, 19
Piecewise hyperbolic polyhedron, 23
Piecewise spherical, 19
Pocset, 170
Poincaré duality group, 232
Poincaré polytope, 110, 118
Polygon group, 36, 38, 241
Polyhedral homology manifold

resolution, 59
Polyhedral join, 47, 186
Polyhedral product, 42, 210
Positive side of a hyperplane, 174
Projective plane, 141
Pullback of a building, 155
Punctured link, 227
Pure Artin group, 124
Pure stratum, 242

Q
Quasiconvex subgroup, 25, 183, 188
Quasifuchsian, 180
Quasi-isometric embedding, 24
Quasi-isometry, 24

R
Rank

algebraic, 105
geometric, 105

Real toric manifold, 67
Reduced decomposition, 139
Reflection arrangement, 79, 97, 99
Reflection group

hyperbolic, 110
Reflection Group Trick, 75, 211
Regular sequence, 65, 69
Relative graph product, 51
Relatively hyperbolic group, 106
Residually finite, 35, 192
Residue, 138

spherical, 139
Right-angled Artin group (RAAG), 7, 48, 50
Right-angled building, 39, 48, 53, 139

regular, 149
Right-angled Coxeter group (RACG), 7, 48, 50

Davis–Moussong complex for, 48
Right-angled Coxeter system (RACS), 103

S
Salvetti complex, 48, 127, 128

of a RAAG, 45

Scwol, 246
geometric realization of a, 246

Sector, 107
Semidirect product construction, 213, 245
Separable subgroup, 194
Simple

cell complex, 18
polytope, 18
zonotope, 78

Simple complex of groups, 5, 90, 240
developable, 240

Simple homotopy n-cell, 72
Simple morphism, 240
Simple n-cell, 59, 72
Simplex of groups, 241
Simplicial arrangement, 78
Simplicial complex, 17
Simplicial complex over Δn, 214
Simply connected at infinity, 59
Small cover, 67, 211
Space of directions, 21
Special group, 187
Special subgroup, 92
Spherical coset, 92
Spherical join, 23
Spherical special subgroup, 92
Spherical subset, 92
Square equivalent edges, 168
Standard realization of a building, 144
Stratified space, 242
Stratum, 72
Strict fundamental domain, 45, 239
Supporting hyperplane, 192
System of groups, 49

direct limit of a, 49

T
The no �-condition, 28, 113
Thick building, 139
Thickening, 76
Thin triangle, 25
Tits alternative, 136
Tits’ classification of spherical buildings, 137
Tits cone, 96
Tits representation of a Coxeter group, 96, 109
Tomei manifold, 70
Torsion-free group, 188
Totally disconnected locally compact group, 30
Translation length, 29, 135
Tree of groups, 241
Triangle group, 38
Type

VF, 230



Index 271

F, 75, 128, 229
FP, 229
Fm, 229

Type F, 57
Type FC, 108

U
Ultrafilter, 171

DCC, 171
principal, 171

Universal
cover of a scwol, 250

Universal branched cover, 203
Universal cover

of a simple complex of groups, 244
Universal group of a complex of groups, 249
Universal space for proper G-actions, 55, 230

V
Valuation field, 162
Virtual Fibering Conjecture, 196

Virtual Haken Conjecture, 196
Virtual retract, 193

of a RAAG or RACG, 193

W
Wall, 172, 175

of a finite reflection group, 97
set, 171

Weyl distance, 139
Whitehead’s Lemma, 253
Word hyperbolic group, 25, 118
Word-quasiconvex, 25
Word-quasiconvex subgroup, 188, 193
Wreath-graph product, 55
Wreath product, 55

Z
Zonotopal cell complex, 79
Zonotope, 78, 99, 130, 174, 175

centered, 78
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