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ANNALS OF MATHEMATICS
Vol. 37, No. 3, July, 1936

DIFFERENTIABLE MANIFOLDS! v

By HassLER ‘WHITNEY
(Received February 10, 1936)

INTRODUCTION

The main purpose of this paper is to provide tools of a purely analytic charac-
ter for a general study of the topology of differentiable manifolds, and maps of
them into other manifolds. A differentiable manifold is generally defined in
one of two ways; as a point set with neighborhoods homeomorphic with Euclid-
ean space E,, coordinates in overlapping neighborhoods being related by a
differentiable transformation,? or as a subset of E,, defined near each point by
expressing some of the codrdinates in terms of the others by differentiable
functions.?

The first fundamental theorem is that the first definition is no more general
than the second; any differentiable manifold may be imbedded in Euclidean
space. In fact, it may be made into an analytic manifold in some E,. As a
corollary, it may be given an analytic Riemannian metric. The second funda-
mental theorem (when combined with the first) deals with the smoothing out of
a manifold. Let f be a map of any character (continuous or differentiable,
without an inverse) of a differentiable manifold M of dimension m into another,
N, of dimension n. (Either manifold might be an open subset of Euclidean
space.) Then if n = 2m, we may alter f as little as we please, forming a regular
map F. (A map is regular if, near each point, it is differentiable and has a dif-
ferentiable inverse.) Moreover, if n = 2m + 1, F may be made (1-1). We
show in Theorem 6 that if n = 2m + 2, then any two regular maps fo, f; of M
into E, are equivalent, in the following sense. fo(M) may be deformed into
f1(M) by maps f(0 <t £ 1) so that the path crossed by the manifold is the
regular map of an (m + 1)-dimensional manifold. Moreover, if n = 2m + 3,
and fo(M) and f,(M) are non-singular, so is the (m 4 1)-manifold.

A fundamental unsolved problem is the following: Can any analytic manifold
be mapped in an analytic manner into Euclidean space?

! Presented to the Am. Math Soc. Sept. 1935. An outline of the paper will be found in
Proc. Nat. Ac. of Sci., vol. 21 (1935), pp. 462-463.

2 Differentiable manifolds have been studied for instance by O. Veblen and J. H. C.
Whitehead, The foundations of differential geometry, Cambridge Tracts, 1932. An example
of a differentiable (in fact, analytic) manifold is the manifold of k-planes through a point
- in m-space. See §24.

3 Manifolds in E, which are defined by the vanishing of a set of differentiable functions
are of a special character; see H. Whitney, The imbedding of manifolds --- , in the October
1936 issue of these Annals.

4 This seems quite probable. It is proved for some special analytic manifolds in §§23-24.
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646 HASSLER WHITNEY

Theorem 1 shows only that there is a differentiable map (with all derivatives),
such that the resulting point set forms an analytic manifold.

Many portions of the proofs are based on the Weierstrass approximation
theorem, if the manifolds are closed; if they are open, this theorem must be
replaced by a corresponding theorem on functions defined in open sets. This
and other theorems which will be useful may be found in a previous paper.’
In proving both fundamental theorems, the following method is used continually.
Let f be a differentiable map of M into E,, and let U be a small portion of M.
We consider a class S of maps f’ of U into E, which approximate to fin U; S
forms a part of a Euclidean space. The maps f’ we do not wish are character-
ized by subsets of S whose dimensions may be learned,—we use here the notion
of “k-extent’’ of a set similar to a definition of Carathéodory.! We find a
desirable map f’ in U, and do the same in other neighborhoods until we have
found ¥ in the whole manifold M.

The arrangement of the paper is indicated by the sentences introductory to
each part.

CONTENTS
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II. Thetheorems. . ...... ...t it 652
ITI. The imbedding theorem. ......... ... ... cciiiiiiiiiiiininn... 659
IV. The neighborhood of a manifoldin En..............ccoooo oo, 665
V. Analyticmanifolds. . .. ... ... . i 668
VI. Proof of Theorem 2. .............oiiiiiiiiiiii i ianainnnn 673

I. DEFINITIONS AND PRELIMINARY RESULTS

In this part we collect definitions and facts which will be used constantly in
what follows. In one section, §4, we assume a knowledge of the imbedding
theorem and of Lemma 23.

1. Manifolds of class C*. By an m-dimensional manifold M of class C”, or,
a C™-m~manifold (r finite or r = «),” we shall mean a system composed of a set
of points, which we shall also call M, and certain maps, as follows: Let Q = Q..
be the interior of the unit (m — 1)-sphere in Euclidean space E,..2 Let 6;,6,, - - -
be a finite or denumerable number of (1-1) maps of Q into M. Define the sets
of points , '

(1.1) Us=6:Q), U= Us=U:U;, Qi=6"(Us),

s H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans.
Am. Math. Soc., vol. 36 (1934), pp. 63-89. We refer to this paper as AE.

¢ C. Carathéodory, Uber das lineare Mass von Punkimengen, Gott. Nachr., 1914, p. 426.

7 We always suppose r is finite and > 0 unless otherwise stated. However, the results of
§§14 all hold forr = .

8 That is, the space of all ordered sets of n real numbers.
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and the (1-1) maps
(1.2) hi(z) = 67'(8:(2)) in Q;;.
We make four assumptions:
() The maps 6; cover M: For each p in M there is an 7 and an z in @ such
that 8:(x) = p. '
(8) The Q;; are open.
(v)? There are no 7, j, and sequence of points {z*} such that

z* is in Q;;, ¢ —>rin Q — Qi;, hij(z*) - 2’ in Q — Qj.

(8) hij(z) (if defined) is of class C (see §2), and if r > 0, it has a non-vanishing
Jacobian. '

If, further, the h;; are analytic, we say M is analytic. A 0-manifold consists
of a finite or denumerable number of isolated points. A k-manifold (¢ < 0)
contains no points.

We call the 8; the maps defining M, and the U, neighborhoods in M. Note
that M need not be connected.

We define limit points in M as follows: px, — p if and only if there are an 1,
an s, a point z of Q and a sequence {z*} of points of @ such that

(1.3) 0:(2%) = Posa, 0:(x) = p, ¢ — 7.

We prove two facts. If px — p and p s in Uj, then for some s, psyi ts in U;
and 67 (psrr) — 07'(p). For, say (1.3) holds. Then p is in U, and hence
z = 07'(p) is in Q;;. As Q;; is open and z* — z, there is an s such that z*+* is
in Q;;. Hence hij(z*t*) = 07" (psss) is in @y, and as hy; is continuous, 874 (pys) —
67'(p). If pr— p and pr — p’, then p = p’. For suppose p = p’, (1.3) holds,
and similar relations hold with 1, p, 2%, z replaced by j, p’, z’%, z’. (We may
evidently take s’ = s.) Then hj(z*¥) = z’*. - z is not in Q;;; for if it were, then
hii(x) = z’ as h;; is continuous, and ’

p’ = 0i(z") = 9i(hi(x)) = 6:i() = p.
Similarly z’ is not in Q5. But this contradicts (y).

These two facts show that the obvious criteria for p; not — p hold: If p is
in U; and there are no {z*}, z such that (1.3) hold, then p, does not — p; if
0:(z*) = pi, ¥ — z in @, and 6:(x) ¥ p, then pi does not — p. We can now
define open, closed, compact sets, etc. as usual. A manifold M is closed or open
according as the set of points M is compact or not.

Note that any manifold of class C” is of class C* for s < r; any open subset of
a manifold is a manifold (with suitably chosen maps); a finite or denumerable
number of manifolds together form a manifold. E, is a manifold with the obvious
maps.

Given two sets of maps in M, we say they define C™-equivalent manifolds if not
only each set separately, but also the two sets together, satisfy the above condi-

? (8) and (v) correspond to (C!) and (C?) in Veblen and Whitehead, loc. cit.



648 HASSLER WHITNEY

tions. We may speak of a point being the identical point on both manifolds,
of a function being identical on them, etc. Two manifolds are C-homeomorphic
if there is a (1-1) correspondence between their points such that, on identifying
corresponding points, the two sets of maps define C™-equivalent manifolds. In
other words there is a (proper) (1-1) regular C™-map of either one into the other
(see §2). It is often convenient not to distinguish between two C -equivalent
manifolds. We may then say for instance “choose maps defining M such that

.. The number r should then be definitely associated with the manifold;
for a C"-manifold may be C™-equivalent to a C*:manifold with s > r (see Theo-
rem 1). :

2. Functions defined in manifolds. We shall use the words “function”
and ‘“‘map’’ interchangeably. Let R be an open set in E,,, and let f be a real-
valued function defined in R. It is of class C* if it has continuous partial de-
rivatives through the 7t order. If R is any subset of E.,!° we say f is of class C*
in the subset R of En if its definition can be extended through an open set con-
taining R so that it is of class Cr there (see AE). It is sufficient that the exten-
sion be possible separately about each point of R. If the values of f are points of
E., we say it is of class C (or of class Cr in a subset) if each of its codrdinates is.

Suppose f is a function defined in a subset R of a C*-manifold M, with values
in a C*-manifold N. Let 8, x;; Us, V;; Qm, @a be the maps etc. defining M and
N respectively.!! Take any po in R, and say pois in U;, g0 = f(po) is in V;.
The function fi(z) = f(8:(z)) is defined in the set R; = 6;'(R-U;). Suppose
that, for some neighborhood U of ° = 67" (po) in Qm,  in R;- U implies f(x) in
V;set fii(z) = x7'(f«(z)), and suppose that fy;, defined in R;- U and with values
in Q,, is of class C* (t < r, s). If this is true of each p, and each corresponding
1, J, we say f is of class C* in R, or in the subset R of M, if R is not open. (If
the condition is satisfied at p, for one pair (Z, j), it is satisfied at p, for each such
pair (z, j), on account of (8).) If M and N are analytic, f may be analytic.

Suppose M is of class C", r = 1. Let x be a point of Q, and let Cy, ---, C,
be differentiable curves ending at z, whose tangents at  form a set of inde-
pendent vectors. If z is in Q,;, then parts of these curves, and the vectors,
transform under &;; into other such curves and vectors in Q; by (), the new
vectors are independent. The corresponding curves in M we shall say define a
set of independent directions at 6;(x). If fis a C'-map of M into N, these curves,
and hence “directions,” go into curves and directions in N. We define: fis a
regular’? map of M into N if it is of class C?, and any set of independent direc-
tions at a point in M goes into such a set in N. If f is defined in a subset of
M, we say it is regular if its definition can be extended through an open subset
of M so that it is regular there.

10 This case does not occur in the fundamental theorems. In this connection, see also H.
Whitney, Differentiable functions --- , Trans. Am. Math. Soc., vol. 40 (1936).

U1 We shall always use these symbols in this manner.

12 Tn Veblen and Whitehead, loc. cit., it is also required that the map be (1-1).
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The map f of M into N is completely regular if it is regular, and has the follow-
ing property: at most two points of M go into any single point of N; if f(p;) =
f(p2), p1 = P2, then a set of m independent directions at p, together with such a
set at ps go into a set of 2m independent directions at f(p;) in N. This is of
course only possible (if f is not (1-1)) if n = 2m.

Given the map f of M into N, we define the lsmit set Lf as follows: A point ¢
of N is in Lf if there exist sequences {pi} in M and {gi} in N such that ¢, — ¢,
f(px) = gqx, and the sequence {p;} has no limiting point in M. The map f is
proper if f(M) does not intersect its limit set: f(M).-Lf = 0. If M and N are
Cr-m- and C™-n-manifolds, and f is a (1-1) regular proper C™-map of M into N,
we shall say f C™-tmbeds M in N. f(M) is then a Cr-m-manifold in N (see §3).

3. Manifolds in manifolds. If fis a regular C™-map of M into N, we shall
call the combination (M, f) a local C™-manifold in N. Each point p of M is then
in a neighborhood U in which fis (1-1). In general, the nature of M is deter-
mined by the nature of the point set f(M); but this is not necessarily the case.
We shall commonly speak of f(M) as a local manifold in N, keeping in mind that
M and f must both be given. (But see below.) The limst set Lf(M) of f(M) is
the limit set Lf. The local manifold is proper if f is; has at most regular singu-
larities if f is completely regular; is non-singular if f is (1-1). (M, f), or the
resulting point set f(M), is a C™-manifold in N if it is non-singular and proper.
If f(M) is a local manifold in N, and f is of class C*, we shall say M is C™-homeo-
morphic with f(M).

We shall show now that if (M, f) is a C™-manifold in N, then, using the point
set f(M) alone, we may determine a C-manifold M’, which is necessarily C’-
homeomorphic with M. This justifies calling the point set f(M) a manifold in
N. Also, setting N = E,, we justify our original definition of a manifold.
(See also Theorem 1.) Moreover, as M and f(M) are C™-homeomorphic, there
is in general no harm in identifying them. This justifies the phrase ‘“the mani-
fold Min N.”

LemMa 1. Let (M, f) be a Cr-m-manifold in the Cr-n-manifold N. Then the
subset f(M) of N has the following property. Any goin f(M) is in a neighborhood
U in f(M)® such that U is in some V;, and the points x7' (U) are given by

(31) yM":‘pk(yh"':y’n) k= 1,...,n —m)

(if y1, - - - , Ym are suitably chosen rectangular codrdinates in E,), where (y1, - - - , Ym)
runs through an open set in the (1, - - - , Ym)-plane. Moreover, if M’ is any subset
of N with the above property, then maps in M’ determined by (3.1) make M’ a
r-m-manifold; if, further, M' = f(M), then M is Cr-homeomorphic with M’
Given M, f and g, say g0 = f(po); we may take a neighborhood U* of po in M
such that U* is in some U; and U = f(U*) is in some V; (as f is continuous).

13 That is, go is in U which is in f(M), and U is open in f(M), i.e., no ¢ in U is the limit
(in N) of a sequence of points of f(M) —
14 Tt is easily seen that the lemma holds if f is completely xjegulat and proper.
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Let (zi, - - -, ) be rectangular coérdinates in E,.. fi; = x?’ f0; maps the open
subset 67! (U*) of Qn into Q.. As f is regular, the matrix || dy./dz: || of partial
derivatives of f;;is of rank m at 67 (po); we may suppose that the first deter-
minant is 5 0. Then, taking U* small enough, (3.1) holds. To show that U
is a neighborhood of go in f(M), take any ¢ in U, and suppose there is a sequence
{gr} In f(M) — U, qx — q. Say ¢ = f(p), ¢x = f(pr). Suppose there were a
subsequence {p,,} of {p:} such that p, — p’in M. Then f®,) = ¢, —f®",
hence f(p’) = ¢, and p’ = p, as fis (1-1). As p», — p in U*, there is an s such
that p,  isin U* (see §1). But then g, isin U, a contradiction. Therefore
{p+} has no limit in M. But then f is not proper, again a contradiction.

Next suppose that M’ is a subset of N defined by equations (3.1). In each
such equation, the domain of definition R = (y;, - - - , ym) is open; we may cover
R by spheres, and map Q.. into each sphere and hence into M’, defining maps in
M’. Using the fact that the h;in N are of class C” with non-vanishing Jacobian,
it is easily shown that the same is true for the maps in M’. Suppose further
that M’ = f(M). The equations y = f(z) previously considered, when solved
as before, give a further set of equations (3.1) and thus another set of maps
defining M’; but this set is clearly C™-equivalent to the other, and thus defines a

"-homeomorphism between M and M’.

LemMa 2. Let M be a C-m-manifold in N, and N, a Cr-n-manifold in the

-n'-manifold N'.  Then M is a C™-m-manifold in N'. We may replace “mani-
fold” by ““local manifold.”

Say f maps M into N and g maps N into N’; then f’ = gf maps M into N'.
As f and g are regular and of class C7, sois f’. If fand g are (1-1), so is f’; the
same is easily seen to be true with “(1-1)" replaced by “proper.”

4. Functions defined in submanifolds of a manifold. Let M be a sub-
manifold of N, and let f be defined in one of the manifolds; we propose to study
the relation of f to the other manifold. The values of f may be points of another
manifold. The results of this section will be used only occasionally.

Lemma 3. Let M be a local Cr-m-manifold in the C*-n-manifold N, let R be an
open subset of N, and let f be of class C* in R. Then f is of class C* in the subset
R-MofM.

By this we mean, if g is the map of M into N, that ' = fgis of class C* in that
open subset R’ of M for which g(R’)isin R. Take goin R- M, and say go = g(po),
poin U;, goin V;. The hypothesis is that f*(y) = fx;(y) is of class C7in a neigh-
borhood of ° = x7'(go) in Q.. As 6,, g, and x7* are of class C, so is

F'(6:®) = f*x7'984(2)

in a neighborhood of 2° = 67!(p,), as required.
A converse of this lemma is .
Lemma 4. Let M be a C™-m-manifold in the C-n-manifold N, let R’ be an

open subset of M, and let f be of class C* in R’'. Then its definition may be
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extended throughout an open subset R of N containing R’ so that it is of class
C" there.

As R'is a C™-m-manifold in N, we may suppose without loss of generality that
R’ = M. By Theorem 1, we may C™-imbed N in E, (v = 2n + 1); then, by
Lemma 2, M becomes a C’-m-manifold in E,. Define f in R(M) by setting
f(p) = f(H(p)) (Lemma 23). fis now of class C"in R(M). For, let U be a
neighborhood of a point po in M, and let S be the product of 87 (U) and E,_,.:
z=(z,9),zin 6;'(U),yinE,_my,zin 8. S may be considered as a subset of
E,. Setting f'(z) = f(6:(z)), f' is obviously of class C"in S. Let ¢ be a con-
gruent map of E,_,. into P(p,), and for any p in U, let T, = T, », be the map
of P(po) into P(p) of §19. Set

7 =9,y = To=0).

This is a C-map of Sinto E,. If 8’ = (z, y) for || y || < some a, and ¢(0) =
Do, ¥ maps S’ into part of R(M). Moreover,

z=60"H@), y=9¢"Taq ¢in¥(S);

hence ¢ has an inverse of class C"in ¥(S’). But in ¢(8’), by the definitions of S
and f’, f(g) = f'(¥(¢g)), which shows that f is of class C” in R(M). Set R =
R(M)-N; by Lemma 3, f is of class C"in R.

We remark that the lemmas hold if we replace everywhere “of class C™’ by
“analytic.” The lemmas show that if M and N are as given, and f is defined in
M, then “f is of class C"in M’ is the same as ““f is of class C* in the subset M of N.”

5. Admissible sets of maps in a manifold. Let M be a C™-m-manifold with
maps 6;. If (a) each 6; is of class C7in Q,4* and (b) any compact subset of M has
points in common with but a finite number of the U, we say the maps form an
admissible set. If, further, Q' is the sphere concentric with Q and of half the
radius, U = 0,(Q’), and the U’ cover M , we say the maps form a completely
" admissible set. Any manifold may be defined by a completely admissible set

of arbitrarily small maps: ’

Lemma 5. Let M be a C™-m~manifold, and let Ry, Rs, - - - be a set of open sets
covering M. Then M s CT-equivalent to a manifold with completely admissible
maps 8; such that each U, is in some R;.

Let 67 be the given maps in M. Let Q1, Q3 - - - be the spheres of rational
center and rational radius such that each Q; is in Q. @ may be mapped into
Q: by a linear transformation ¢:. Set 6x:(x) = 07 (¢x(z)); then the 6 are defined
in Q, and obviously define a manifold C-equivalent to M. Call these maps x;,
and the-corresponding neighborhoods, V;. .

Set W, =V, + ... + V,; then W] is compact and closed. Each point of
W is in some W;, and hence W; is in the sum of a finite number of the W;- and
is thus in some W;. Hence we may pick out a finite or infinite subsequence
Wi, W, --- of the W/ such that W;is in Wy, and the W cover M. Each

4a () = Q plus limit points.



652 HASSLER WHITNEY

point of W; — W;_,isin a V = x;(Q") such that V lies in some R; and has no
points in W,_,; a finite number of these V may be chosen such that they cover
W, — W;._,. Choose such neighborhoods for each 7; the corresponding maps,
arranged in a sequence 6,, 6, - - - , obviously have the required properties.

6. Approximations to functions defined in manifolds. Let M and N be
Cr-m- and C’-n-manifolds with admissible maps 6;, x;, and let f(p) be a C™-map
of M into N. Take any po in M, and say po is in U, f(po) is in V;. Then
fi(x) = x7Y6:(z) is a C™-map of part of Q. into Q., with derivatives

ak1+
k k
oryt - - - 9z,

where ox = ki1 + -+ + km. Each D;fi;(z) is a vector function defined in part
of Q.. Let n(p) be a positive continuous function in M, and let F(p) be another
Cr-map of M into N. We shall say F approximates to f tn M through the st
order with an error < n, or, F approximates (f, M, s, 1), if the following is true:
For any point p in any U; there is a j such that f(p) and F(p) are in V; and

| DxFii(p) — Difii(p) || < n(p) (ox = 5).
If M = E,.and N = E,, this reduces to the ordinary.definition. For s = 0,
this inequality is independent of the maps defining M.

LemMA 6. Given two sets of admissible maps 6;, 67 in M and two sets Xi» x:-' n
N, and given f(p) and n(p) as above, there is a positive continuous functwn ¢(p)
in M such that if F approximates (f, M, s, ¢) in terms of the 67 and x7, then F
approxzmates (f, M, s, m) in terms of the 6; and x;.

Let fij, 11 Fisy F* be the corresponding maps of @, into Q., and set ux(z) =
0%x71(6:(2)), va(y) = X3 l(x,(y)) where defined. Now given ¢, j, there are num-
bers k, I such that near a given point :

f‘ = X7 lfok = v,zx, fouTi = 'lfiju.i.llc;
hence the derivatives of f}; of order < s are polynomials in those of v, fi;, and
u;}, of order < s. It is sufficient to show that all such derivatives are bounded
in the neighborhood of any point poof M. p, is in a finite number of U; and U},
and f(po) is in a finite number of V; and V7. Each 6; etc. is defined in a bounded
closed set, and hence its derivatives are bounded; therefore the same is true of
the derivatives of the above functions.

We remark that ¢f f is regular, completely regular, proper, or (1-1) regular and
proper, then the same is true of any function which approximates to f through the
first order closely enough.

Dkf:'i(x) = f.,(l') (O'k = 7‘),

II. Tae THEOREMS

We collect here the principal results of the paper (apart from Lemma 23).
Using the first two theorems and the results of §9, the remaining theorems may
be proved with little difficulty; hence we give these proofs practically in full in
this part.
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7. Two types of properties of maps. The purpose of this section is to explain
(e) and (f) of Theorem 2. See also §9. Let M and N be C™-m~ and C*-n-mani-
folds, and let f be a fixed C™-map of M into N (r = 0). Let 7(p) be a positive
continuous function in M. We shall say a property @ of maps of M into N is
an (f, r, n)-property if the following is true:

(a) Qis defined for all maps f’ which approximate (f, M, r, 3).

(b) There is a compact open subset W’ of M such that whether any f’ has the
property © depends only on the values of f’ in W'.

(c) If f approximates (f, M, r, n) and has the property ©, then for some con-
tinuous 7'(p), 0 < 7'(p) < 7(p), any map f’’ which approximates (f’, M, r, o)
has the property Q.

(d) If f’ approximates (f, M, r, 1), then for an arbitrary continuous »’(p),
0 < 7'(p) < n(p), there is a map f’/ which approximates (f’, M, r, n") and has
the property Q.15

Before defining the second type of property, we shall consider certain func-
tionals. We suppose now that M and N are analytic manifolds in E, and E,
respectively.

Let A(p, ¢) be a continuous function of the pair of points p, ¢ of M such that
A(p, p) = 0and A(p, ¢) > Ofor p = q. Let {(p) be a positive continuous function
in M. To each C™-map f of M into E, such that

(7.1) | Def(q) — Dif(p) || = Ap, q) (ox S 1),

(see §6),' let there correspond a map 2f of M into E,. We shall say 2 is an
analytic linear (M, E,, r, A, {)-functional if 2f is analytic, and approximates
(f, M, r, ©), and, if f1, f2 and fi + f2 satisfy (7.1), then??

fr + f2) = N + Lfe.

The existence of such a functional is given by Lemma 27. Note that if { is an
analytic linear (M, E,, r, A’, {")-functional, then it is an analytic linear (M, E,,
r, A, {)-functional for A < A/, ¢ = ¢’.

We shall say a property Qis an [f, r, n, 4, g']-property if (a), (b) and (c) hold,
and also:

(d’) There is a compact open subset W of M containing W', and there are

"-maps Gy, --- , G» of M into E, such that Gi(p) = O for p in M — W, with
the following property. If € is any analytic linear (M, E,, r, A, {)-functional
and if f* approximates (f, M, r, ) and satisfies (7.1), then there is an arbitrarily

! (c) and (d) may be phrased as follows: If © is the space of maps of M into N which
approximate (f, M, r, n), using a very strong topology, then those maps which have the
property © form an everywhere dense open subset of &.

18 Dif(p) shall mean some D.f;(z), where p = 6;(z). If p and q are both in some U,
we shall use the same 7 in defining D+f(p) and D«f(q). .

17 We add points, etc., by considering them as vectors from the origin 0. If p = Za:p;
with Za; = 1, then p is independent of the choice of O.
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small @ = (ay, - -+, o) such that

Ju(p) = HUS (p) + 3 aiGi(p)]

has the property Q. (We suppose n and ¢ are so small that f, is in R(N) for
|ei| < some & > 0, and thus H is defined; see Lemma 23.)

Note that any [f, r, , A, {]-property is an [f, r, 1, A’, {’]-property for A’ = A,
§’ = ¢; also, for large enough 4, it is an (f, r, n)-property.

8. The fundamental theorems. We state here the two theorems on which
most of the other results of the paper are based.

THEOREM 1. Any C™-m-manifold (r 2 1 finite or infinite) is C™-homeomorphic
with an analytic manifold in Euclidean space Eqm,;.

See also Theorem 3 and footnote .

THEOREM 2. Let M and N be analytic m- and n-manifolds in Euclidean spaces
E, and E, respectively. Let f be a C™-map of M into N (r = O finite). Let g be a
posttive continuous function in M. Then there is a C*-map F of M into N with
the following properties:

(a) F approximates (f, M, r, x).

(b) If n = 2m, then F is completely regular.

(¢) If n 2 2m + 1, then F 4s (1-1).

(d) F is analytic.

(e) Let Q, Q, - - - be (f, r, n)-properties, let W1, W, - - - be the corresponding
subsets of M (§7, (b)), and suppose any compact subset of M has points in common
with at most a finite number of the W;. Then F has the properties Oy, Qg - .

(f) For some functwns A(P, 9): g‘(p) as in §77 let 9;7 Q;: - be [f) Ty A) g-]'
properties. Then F has these properties. .

In place of (d), (e) and (f) we may have if we choose (e’): (e) holds without the
Jiniteness restriction.

If we are satisfied with a function F of class C*, we would naturally use (e’)
in place of (d), (e) and (f). Note that if fis proper in M, then we can insure that
F be proper in M by taking 5 small enough; then, if n = 2m + 1, (b) and (c)
show that F is a homeomorphism, and thus F(M) is a C'- (or analytic) manifold
in N. We might generalize the theorem by making F = f at certain isolated
points of M, or, if ris replaced by «, letting F(p) approximate to f(p) together
with higher and higher partial derivatives as p approaches the limit set LM.
(Compare AE, Theorem III.) We could also consider manifolds of different
classes in different subsets; an example is given in Theorem 5.

9. Consequences of (¢) and (f) of Theorem 2. We may give the function F
various properties, either because these are of one of the two types, or because
they are the logical sums of a denumerable number of such properties. We give
some examples below; for the proofs that they are of the required nature, see
§§34-35.

(A) and (B) are (b) and (c) of the theorem.
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(C) If K is a subset of N which is the sum of at most a denumerable number
of sets of zero (n — m)-extent (see §17), then F(M) does not intersect K.

(D) If f(M) and N’ are local C-m- and C'-n’-manifolds in N, then if
m + n’ < n, the local manifold F(M) does not intersect N’, while if m + n’ = n,
N* = F(M)-N'is alocal (m + n’ — n)-manifold in N. At each point p of N*,
there are n independent directions in N, each being parallel to F(M) or to N'.
If /(M) and N’ are non-singular, or proper, so is N*.

10. A further imbedding theorem; Riemannian manifolds. We may replace
Esmi1 by Ezmin Theorem 1 as follows:

THEOREM 3. Any C-m-manifold M (r = 1 finite or infinite) s C'-homeo-
morphic with a proper analytic local manifold with at most regular singularities in
E,,.

To prove this, let M’ be a Cr-homeomorphic analytic manifold in Ezm1.
Let o(p)(p in M) be the smaller of (a) 1, (b) the reciprocal of the distance from
p to a fixed point of Eem41, (c) the distance from p to the limit set LM’ if LM’ = 0.
Let go be a fixed point distinct from the origin O in Ezm, and set f(p) = p(p)qo in
M’'. Thisis a continuous map of M’ into Es, such that f(p) # O, and either
Lf(M') is void or Lf(M’) = O; hence f is proper. Let F be the analytic com-
pletely regular proper map given by Theorem 2 with N = E,n.; F(M’) is the
required local manifold.

THEOREM 4. Any C™-manifold M (r = 1 finite or infinite) may be given an
analytic Riemannian metric, the coefficients of the fundamental quadratic form being
of class C™ in terms of the original maps defining M.

This follows from Theorem 1 or 3 on using the ds? of Ezmi1 0T Egm.

11. An extension theorem. Suppose a closed subset of a manifold M is
mapped into a manifold N; can the map be extended over the rest of M so as to
be differentiable? Or, M might be replaced by a manifold M with boundary B,
and the closed subset, by B. An answer is given by the following theorem.

THEOREM 5. Let A be a separable metric space, let B be a closed subset of A,
and let M = A — B be a C™-m-manifold (r = 1 finite or infinite).® Let N be a
C*-n-manifold (s = r), and let f be a continuous map of B into N. Suppose f can
be extended so as to be continuous throughout M. Then there is a map F of A
into N with the following properties:

(a) F iscontinuousin A and of class C*in M; F = fin B.

(b) If n = 2m, F is completely regular in M.

(¢) If n 22m + 1, F is (1-1) in M.

Suppose, in addition, that A is a C”"-m-manifold,® 1 < ' < r; f is of class Ctin
the subset B of A (see §2),1 <t < r’. Then we have also

18 We suppose that continuity in M agrees with continuity in 4.

19 This is always possible if N = E,. See for instance Kuratowski, Topologie I, p. 211,
or Alexandroff-Hopf, Topologie I, p. 76.

2 We suppose that the maps defining M are a subset of those defining 4.
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(d) Fisof class Ctin A.

(e) If n = 2m and f is regular [completely regular] in B, then F is regular
[completely regular] in A.

(f) If n z 2m + 1 and f s regular and (1-1) in B, then F is regular and (1-1)
i A.

We might also apply (e) and (f) of Theorem 2. If the extension of foverM is

proper in M [in A], we can make F proper in M [in A]. If N is analytic, we - -

may make f(M) analytic, etc., as in Theorem 2.

By Theorem 1, there are analytic manifolds M’ and N’ in E,and E,, C*- and -
C*-homeomorphic with M and N respectively. 2 gives a map f’ of M’ into N'.
-Choose 1(p) positive and continuous in M so that 5(p) — 0 as p — B. Applying
Theorem 2 with its r replaced by 0, we replace the extension f’ over M’ by a
function F’; the resulting map F of M into N is of class C and has the prop-
erties (a), (b) and (c) (setting F = fin B).

Now suppose that A is a C"-manifold, 1 < 7' < r. Let A} be a C”-homeomor-
phic analytic manifold in E,; then M is C"'-homeomorphic with the correspond-
ing subset M1 of A;. Let M" be an analytic manifold in E ",, Cr-homeomorphic
with M. The map g of M’ into M thus defined is of class C”. We may
choose 5(p) positive and continuous in M so that n(p) — 0 as p — B, and so that,
considering n(p) in M"’, if g’’ approximates (g, M'’, r’, 1), then g’/ is a home-
omorphism and g’ (M"’) does not intersect B’ = A; — M;. Let g"’ be such a
function which is analytic (Theorem 2); the resulting map g’ of M into g'(M)
is a C™-homeomorphism. Letting ¢, in B, be the map already given, ¢’ is
(1-1)in A. From Lemma 10 below it is seen that ¢’ is of class C” in A. It is
regular, and taking n(p) small enough insures that it is proper; hence g'isa
C'-homeomorphism in A and a Cr-homeomorphism in M. Let A’ = g’'(4),
M’ = g¢'(M). M’ (butnot A’)is analytic. Let N’ and f’ be as before.

J' is continuous in A4’; considering the values of f’ in B’ alone, it is of class C*
in the subset B’ of E, (Lemma 4). Suppose that we have proved Lemma 7;
then there is a function F”’ of class C*in R(4’) (see Lemma 23) which equals f’
together with derivatives of order < ¢in B’, and such that F”(M’) is in R(N").%
Then F"" = HF" (see Lemma 23) is of class C*in A’, and maps A’ into N'.
Define n(p) in M’ as before, and let F’ be the approximation to F”’ in M’ given
by Theorem 2. Set F/ = F”’ in B’; then F’ is of class C*in A’, as is easily seen
from Lemma 10. The resulting map F of A into N is of class Ct in 4 and of
class Cin M, and has the properties (a) through (d). The regularity condition
in (e) is satisfied automatically; we obtain complete regularity if f is completely
regular in B by applying the method of proof of (A) of §9 in using Theorem 2.
Suppose n = 2m + 1and fis (1-1)in B. Then F(B) is the sum of a denumerable
number of sets of zero (m -+ 1)-extent, by Lemmas 13, 14 and 15, and hence we
may make F (M) avoid F(B) by applying (C) of §9.

There remains to prove

20 J.e. the extension of f over M.
2 If N = E,, we could obviously avoid Lemma 7.
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LeMMA 7. Let A* be a subset of the open set R in E,, A*.-R = A*.R, and let
B* be a subset of A*, B*.A* = B*.A*. Let {(p) be a posilive continuous func-
tion in A*. Let f' be a continuous map of A* into E,, and let f’, considered
in B* alone, be of class Ct in B*. Then there is a C-map F of A* into E, which
equals ' in B*, together with partial derivatives of order < t, and approximates
(f’, A4* — B*’ 0’ g‘)

. We may suppose that E, = E,, the space of real numbers. By a direct
application of the method of proof of AE Lemma 3,2 we find a function f which
is continuous in R, is of class C* in a neighborhood R’ of B* (R’ in R), = f’ in
B* and approximates (f’, A* — B*, 0, {). Let R’ be a neighborhood of B*
such that S = R’’.A*isin R’. Set

A, =E, — R (—1ss<t—1),
A=A"=A,= Ao+ B* (s 2 t),
B, = A* — 8 O=ss<t—1),

B =B, = A* — B* (s 2 0).

The conditions of AE Theorem III are seen to be satisfied; the function F given
by the theorem (if e(z) is small enough) has the required properties.

12. A deformation theorem. We first introduce some definitions. Let M
and N be C™-m- and Cr-n-manifolds, let I be the closed interval (0, 1), and let I’
be an open interval containing I. Let M’ = M X I’ be the product of M and
I’; this is a C™-(m + 1)-manifold with easily defined maps. Let f be a regular
Cr-map of M’ into N. For each p in M and ¢ in I’, set ¢:(p) = f(p X ¥).
Each ¢, is a regular C™-map of M into N. Set M, = ¢o(M), M; = ¢:(M);
these are local C-manifolds in N. If, given M, and M,, there exist such M,
I’ and f, we shall say the set of maps ¢, ¢ in I, forms a regular C’-deformation
of Myinto M. A regular deformation such that M’ has at most regular singu-
larities, we shall call completely regular; one in which each ¢, is (1-1), we call
topological; one in which f is (1-1), we call completely topological. If there is such
a map f which is merely continuous, it defines a deformation of M,into M.

THEOREM 6. Let My and M, be C -homeomorphic local C™-m-manifolds in the
Cr-n-manifold N (r = 1 finite or infinite, n = 2m + 2). Suppose there exists a

22 Let f; be a continuous extension of f’ throughout R. Take a subdivision of R — B*
asin AE §8, and define an extension f, of class C* of f/, considered in B* alone, throughout R.
(In using AE §9, we take for z” a point of B* whose distance from y” is less than twice the
distance from y” to B*). Define the ¢ in R — B* asin AE. Given a neighborhood R* of
B*, R*in R, let ¢;, be those functions which are » 0 somewhere in B — R*, and set

f=f+ Z ¢|'k(fl — fa).

As Z«ﬁ.‘k =1in R — R* f = fiin R — R*; also f = f; in a neighborhood of B*. For R*
small enough, f evidently approximates to f’ as required.
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deformation of Mo into M, in N.2 Then there is a regular C'-deformation of M,
into Mi. If Mo and M, are completely regular, so is the deformation. If M, and
M, are non-singular, it is topological. If, further,n = 2m 4 3 and M, and M,
do not intersect, it is completely topological *
We shall not consider the question of proper maps, but merely note that any
map of a closed manifold is proper. The following lemma is necessary..
LrMMma 8. Let M be a local C™-m-manifold in the C™-n-manifold Nyn = 2m + 1.
Then there is a vector function v(p) of class C* in M such that for each p, v(p) is
independent of the directions in M at p.%
The lemma may be proved most simply by imbedding N in E, (Lemma 19),
.triangulating M, and defining v»(p) successively over the 0-cells, 1-cells, - - - of
M. It may also be proved easily by the methods in this paper.
Let v;(p) be a vector function in M; as in the lemma, 7 = 0, 1. Let us C"-
imbed N in some E, (Lemma 19); then u(p) becomes a vector v,(p) in E,
parallel to N but independent of M at p. Set

go(p X t) = p + tvo(P);

this gives a C™-map of M’ = M X I’ into E,. Fort < some {(p), go(p X t)
lies in R(N) (see Lemma 23); set go(p X t) = Hgo(p X {). Letf = g, in My;
go also defines the derivatives of f of order < r in the subset Moof M’. By the
choice of v, f is a regular map of the subset M, of M’ into N (see §2). Define
f similarly in M, .

By hypothesis, there is a continuous map f’ of M’ into N which agrees with f
in M, and in M;. We now apply Theorem 5 with A, B, t replaced by M’,
M, + M,, r. This gives a regular C™-map of M’ into N, and hence a regular
Cr-deformation of M, into M,;. The other statements in the theorem follow at
once from Theorem 5, except for the statement on topological deformations; we
leave the proof of this to §36.

13. Spheres bounding differentiable cells. ILet S be the unit m-sphere in
E,..1, let Q" be the interior of S, and let @ be the interior of a larger concentric
m-sphere. Let f be a regular C”-map of S into N; we shall call S, = f(S) a local
Cr-m-sphere in N; we leave out “local” if fis (1-1). If f may be extended
throughout @ so as to be regular and of class C7, we say S, C"-bounds regularly the
(m + 1)-cell f(Q"). If fis completely regular, or (1-1), we call the bounding
completely regular, or topological. If there exists an f which is merely continuous,
we say S bounds a cellin N. _

TaEOREM 7. Any local CT-m-sphere S in the C'-n-manifold N (r =2 1,n =
2m + 2) which bounds a cell in N, C'-bounds regularly a cell tn N. If S has at

23 This is of course always the caseif N = E,.

24 If N is an analytic manifold in E,, we may make the map of M’ analytic except over
M, and M, (see Theorem 2). We shall strengthen the theorem in §36.

2 The lemma holdsif N = E, and n = 2m, as will be shown in a paper on ‘‘sphere-spaces.’’
‘‘Vector function’’ means here ‘‘direction function.”
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most regular singularities, the bounding is completely regular; if n = 2m + 3 and
S is non-singular, the bounding s topological 28
The proof runs almost exactly like that of Theorem 6.

14. Examples (A) Let M be the interval (— o, 4 ). Let ay ay, --- be a
sequence of points dense in E,, n = 2. For each integer 7 = 0, set f(2) = a,,
and let f map the interval (i, ¢ 4 1) into the segment a;a:11. Set f(—t) = f(¢).
This is a continuous map of M into a subset of E.. Set 5(f) = 1/(1 + |t]).
Theorem 2 then gives, if » = 2, an analytic curve everywhere dense in the
plane, and if » = 3, a non-singular analytic curve dense in E,. On applying
(C) of §9, we may (say in E;) make the curve avoid all rational lines; we may
also replace the curve by a denumerable number of such curves which are non-
intersecting.

(B) Let B be the unit circle in the plane, with interior M, andset 4 = B + M.
Map B into the whole of the sphere S, of dimension n = 4. Any continuous
map of B into S, may be extended continuously over M ; hence, by Theorem 2,
there is an analytic regular map F of M into S taking on the given boundary
values; if n = 5, F(M) is non-singular. As in (A), we may make F(M) avoid
sets of (n — m)-extent zero, may find a denumerable number of non-intersect-
ing surfaces of this sort if n = 5, etc.

III. Tue IMBEDDING THEOREM

In this part we shall prove Lemma 19; this is Theorem 1, except for the
analyticity condition. The proof of Theorem 1 will be completed in Part V.
The present proof falls into two parts. We first show, in Lemma 12, practically,
that Theorem 2 with the conclusions (a) and (e’) alone holds; we then show that
(B) and part of (A), §9, hold. This, with the lemma, gives the imbedding
theorem. We first give some lemmas of a general nature.

15. Some general lemmas. The lemmas which follow are mostly simple
extensions of results from AE.

LemMma 9.7 Let f(p) be a C™-map (r = 0) of the open set R in E., into E,, and
let n(p) be positive and continuous in B. Then there is an analytic map F(p)
in R which approximates (f, R, r, 7).

If n = 1, this follows at once from AE Lemma 6. We define open sets
Ry, R,, --- as in that lemma, and let ¢ be the lower bound of 7(p) for p in
R;;1. For the general case, we apply the lemma separately for each codrdinate
in E,.

LemMa 10. Let A be a closed subset of the C™-manifold M, let n(p) be positive
and continuous in M — A, let n(p) — 0 as p approaches any point of A, and let

26 Compare footnote?.
27 See also Lemmas 22 and 26. We may make F(p) appraximate to f(p) to higher and
higher orders as p approaches the boundary of R; see AE Lemma 6.
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J(p) be a C™-map of M into the C*-manifold N. If F approximates (f, M — A s Ty M)
and F = fin A, then F is of class CTin M.

Suppose first M = E,., N = E,; the theorem then follows from AE Lemma 1
(see AE, end of §11). The general case is an immediate consequence of this.

Lemma 11.% Let A be a subset of the open set R in E,., with A-R = A.R,
and let f(p) be of class C* (r Z 0) in the subset A of R. Then the definition of f
may be extended throughout R so it is of class C there. The values of f(p) may
be points of E,,.

If R = E. and f is real-valued, the proof is given by AE Lemma 2. If
R 5 E,, the proof needs only a slight alteration; or we may use AE Theorem
III. If the values of f are points of E,, we apply the lemma to each coordinate
separately.

16. Maps of a manifold with given properties. The first of the three
lemmas giving the imbedding theorem is the following.

LeMMa 12.  Let f be a C™-map of the C*-m-manifold M into the C*-n-manifold N ,
let n(p) be positive and continuous in M, and let @, Qs, - - - be (f, r, n)-properties.
Then there s a C™-map F of M into N which approximates (f, M, r, 1) and has
these properties.

It is clear that there is a sequence of positive continuous functions 7; (D)
such that if fo = f and f; approximates (fii, M, r, 7;), then F = lim f; exists
and approximates (f, M, r, 7). We shall choose functions m;(j = 1), fi,
72i(J 2 2), fs, - - - in that order so that if 5:(p) for each p is the smallest of

_mi(®), -+ , ni(p), n:(p), then f; approximates (fi_s, M, r, 7.), and f;(j = i) and
F have the property :(i = 1,2, ... ). Suppose we have found these functions
through f. 1. For each pin M, let n;(p) be the smallest of the numbers 7’(p)
of (c), §7, for the properties @, - - . , _,; then if f’ approximates (f;y, M, r, 1),
J' will have the properties @, ..., ;. Choose 7;(p)(j = i) so that if
Ji-1 = foaand f] approximates (fj—1, M, r, 74)(j Z 5), then F’ = lim f/ ap-
proximates (fi_1, M, , n.). Define 75, and let fi(p) approximate (fi, M, r, 5;)
and have the property Q;, by (d), §7. We thus find all the above functions, and
the function F has the required properties.

17. The k-extent of a set. Let A be a subset of E,. We shall say the
k-extent of A is finite if there is a number G such that if 0 < ¢ < 1, then there
are sets 4y, --. , A, of diameter < e which cover 4, and vt < G. If Mis a
C'-m-manifold with admissible maps 6; etc., and A is a subset of M, we say
the k-extent of A s finite if A is compact (and hence is in a finite number of the
U.), and each 67'(4-U;) is of finite k-extent in E,.. The subset A of E,, is of
k-extent zero if for any ¢’ > 0 there is a & > 0 such that if 0 < e < 3, then
there are sets A,, --- , A, of diameter < e covering 4, and ve* < ¢’. Similarly

*% This lemma is not needed in the proof of the fundamental theorems, though it is useful
in Lemma 17. When we have proved the imbedding theorem, we may show easily that the
lemma holds with E, and E, replaced by a C-manifolds (see §4).
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if Ais a subset of M. A set of zero k-extent (k < 0) or of finite l-extent (I < 0)
is vacuous. These definitions (in M) are independent of the admissible set of
maps defining M (see Lemma 15). The sum of a finite number of sets of finite
[zero] k-extent is of finite [zero] k-extent.

LeMMma 13. A bounded subset A of Ey has finite k-extent if A contains inner
points, then it has not zero k-extent.

This is obvious on cutting up E into equal cubes of any desired size. Equally
obvious is

Lemma 14.  If A has finite k-extent, it has zero (k + 1)-extent.

LemMa 15. If M and N are C'-m- and C*-n-manifolds, f is a C'-map of M into
N, and A is a subset of M? of finite [zero] k-extent, then f(A) is of finite [zero]
k-extent.

Consider first the case of finite k-extent. A isin a finite number of the U ;, and
f(4) is in a finite number of the V;; hence we can put 4 = 4, 4 ... 4+ 4,,
A, in Uiy, f(4,) in Vii. Set B, = 0,(,)(11.); then B, is of finite k-extent in
E.. It is sufficient to show that if g, = x7(,)f6iw), then g,(B,) is of finite
k-extent in E,. g, is of class (" in the compact set B,; hence, for some number
u, any subset B’ of B,is mapped by g, into a set g,(B’) whose diameter is at
most u times that of B’. Set G* = u*G. (G corresponds to B,.) Given
6,0 < e < 1,set ¢ = ¢/u*, and divide B, into sets By, --- , B,, of diameter
< &, so that ve§ < G. Then g(B.,), - - - g(Bs) cover g(B,), these sets are of
diameter < ¢, and ve* < G*, as required.

Consider now the case of zero k-extent. Define the B, etc. as before. Given
e > 0,set ¢; = ¢’/u*, and choose 6 > 0 so that if 0 < ¢ < §, then there are
sets By, - - - , Ba, of diameter < ¢ covering B,, and ve¥ < ¢;. Now take any
6,0 < ¢ <34, and set ¢ = ¢/u. Define the sets B,; then ¢g(B,), ---, g(Bs)
have the required properties.

18. Transformations of one set away from another. Let R and R’ be
open subsets of E,, and E,, and for each @ = (ay, -+, ) in R’ let T, be a
Cr-map of R into E,. Let 2’ = T.(x) be of class C* in terms of the n + h vari-
ables (z, a)(x in R). If for each z in R and « in R’ the vectors

az'/day, - -+, 0z’ /das

are independent, we shall say the T, form an h-parameter family of C™-maps.
We may also define such families of maps of one manifold into another in an
obvious manner; Lemma 16 holds for such families also.

LeMMA 16.  Let T.(x) be an h-parameter family of C'-maps of R into E.,, and let
A and B be closed setsin R and E,, of finite k-extent and zero (h — k)-extent respec-
tively. Then for some ain R', T,(A) does not intersect B.?®

We may suppose that 0 < k < h. For some o’ in R’ and n > 0, all points a

29 Note that M may be replaced by any open subset R of M which contains 4. It is
evidently sufficient that the map satisfy a Lipschitz condition.
29 We may evidently interchange “finite’’ and “zero’’.
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within 7 of o® are in R’. Take £ = 1 so that if A* in A4, is of diameter < €,
then Tw(A*) is of diameter < £e. The condition that the dz’/da; are inde-
pendent for z in A and @ = o is equivalent to the condition that for some
8 > 0, any directional derivative for zin 4 and a = o is a vector of length = 8.
Hence we may take {, 0 < ¢ < 7, such that for any ¢ > 0, if A* and B* are
subsets of A and B of" dlameter < ¢ a and o’ are points of R’ within ¢ of af,
and the distance from a to o’ is > 4te/B, then either T,(4*).B* = 0 or
To(A*)-B* = 0.

Let G be the number corresponding to 4, and take ¢’ < (81)"/[2:(4£)*G].
Find 6 < 1 corresponding to B and ¢’. Choose an ¢,0 < ¢ < 5. Then we
may set .

A=A+ ...+ A4, B=B+ ...+ B,

so that the 4 ; cover A, the B; cover B, the diameter of each A4; and each B;
is < ¢, and so that

vek < @, ot < ¢,

Let Z;; be the set of all points a within ¢ of a® such that T, (4:)-B; = 0; then,
by the choice of ¢, the diameter of Z,; is < 4£¢/B8, and hence its ordmary h-vol-
ume is < (4¢¢/B)". Therefore the ordinary h-volume of all the Z;; is less than

vo(de/B)* = (4D (vet)(ae*) /8" < (48)"Ge'/B* < (/2"

Hence there is an a within ¢ of a® which is in no Z;; for this a, T.(A) does not
intersect B.

19. The transformation T, . Let P, be a fixed k-plane through a fixed
point po in E,. Corresponding to any k-plane P not perpendicular to P, and
any point p of P we may let correspond a non-homogeneous orthogonal trans-
formation of space T, » which carries po and Pointo p and P, and is analytic in
p and P (see §24), for instance as follows. Let P, and P’ be the parallel
planes through the origin. Let vy, - - - , v, be mutually orthogonal unit vectors
such that vy, - -, v; are in P;. The following rules determine Tv;, The Ty;
are mutually orthogonal unit vectors If 1 <4 £ k and P; is the plane in P’
determined by the projections vy, - - . , v, of vy, - - - , v;into P’ then Tvl, «oe, Ty
are in P; and determine the same onentatlon in P asvy, ---,0;; for each
jG=k+1,...,n0),if P is the plane determined by P’ and vy, - - -, v;,
then Tvg,y, -, Tv, are pa.rallel to this plane, and T, - - - , Tv; determine the
same orientation in it as Tvy, - -+ , Tk, V41, -+, 0. Tpp is the unique linear
transformation carrying po into p and v; into Tv;.

20. (1-1) maps and properties. We can now prove

Lemuma 17. If f is a regular C*-map (r = 1) of the C*-m-manifold M into E,,
n 2 2m + 1, and 7 is a sufficiently small positive continuous function in M, then
the property of maps f’ which approzimate (f, M, r, 1) of being (1-1) and avoiding
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a fized point by is the logical sum of a denumerable number of (f, r, n)-prop-
erties.®®

Let 6y, 65, - - - be a completely admissible set of maps defining M; we choose
them so that 1f U; and U; have common points, then f is (1-1) in U; + U;.
(This is simple; see §5.) Cons1der all sets U; + Uj such that U;-U; = 0; we
arrange these in a sequence Wi, Wy, ... . Take 5(p) so small that any map f’
which approximates (f, M, r, n) is regular and (1-1) in all U; 4+ U, for which
U;-U; # 0. Take any k, and say Wi = U; + Uj; let @, hold for the map f’ if
400 -£/(T}) = 0 and by is not in f(T;). Asthe U; cover M, the property of
f" being (1-1) and avoiding b, is the sum of the properties @, Qq, - - - .

It remains to show that Q is an (f, r, n)-property. (a) of §7 holds; (b) holds
with W’ replaced by W, = U; + U;. Asf(U;) and f/(T}) + bo are bounded
closed subsets of E,, (c) is obvious; it remains to prove (d). Let f’ approximate
(f, M, r, 7). Let \'(z) be a function of class C* in E,, which = 1in Q. and
=0in E, — Q.. (Such a function is given by Lemma 11, replacing 4 by
Q. + (Em — Qum); or the function may be constructed directly without great
difficulty.) Then A(p) = M (67'(p)) in U; and = 0in M — Uj, is of class C"in
M, and = 1in U;. For any vector v in E.,, set

f(p, v) = f'(®) + NMp).
Given an arbitrary ’(p), we may choose 8 > 0 so that if! || v then f(p, v)
approximates (f', M, r, '). By Lemmas 13, 14 and 15, f'(U;-) + by is of zero
(m + 1)-extent and f’(U;) is of finite m-extent. The transformations T,q =
q + v with | v || < B form an n-parameter family in E,; by Lemma 16, there is
a vo such that T,,f"(T;) does not intersect f'(T;) + bo. f” = f(p, w) with this
vp is then the required approximation; for f” = f’ + » in U;and = f'in U;.

21. Regular maps and properties. The final lemma is ‘
Lemma 18. If fis a C~-map (r = 1) of the C™-m-manifold M into E,, n = 2m,
and 7 is a positive continuous function in M, then the property of maps f' which
approzimate (f, M, r, n) of being regular is the logical sum of a denumerable number

of (f, v, n)-properties.

Let 64, 05, - - - be completely admissible maps defining M, and let Q; hold for f’
if 77 is regular in U ; then if Q;, @, - - - hold, f’ is regular in M. Each Q;satis-
fies the conditions (a), (b) and (c) of §7; to show that it is an (f, r, n)-property,
we must show that it satisfies (d). Set g(z) = f'(6:(z)) in @.; this is a C"-map
of Q. into E,. As in the last §, it is sufficient to show that for an arbitrary
¢ > 0 there is a map g¢’(z) of Q. into E, which approximates (g, Qm, r, ) and
is regular in Q.. We then set

") = F'®) + \@)g'67®) — £ @i Us,
and f(p) = f'(p) in M — Us; as f(p) = ¢'(67%(p)) in U}, it is regular in ;.

% In §34 we shall express the property as a sum of [f, 7, 9, A, {]-properties.
31 || p || is the length of ».
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If r = 1, let go(x) be a function of class C? which approximates (g, Qm, 7, )
(Lemma 9); otherwise, set go(x) = g(x). We shall find functions g:(z), -- -,
gn(z) = g'(z) such that g;(x) approximates (gi_1, @m, 7, {’), and so that the
vectors dg;/dxy, - - - , 9gs/dz: are independent in Q.; if ¢’ is small enough, g’ is
the required function.

Suppose we have found g;_;. For any vector v in E,, set

gi(z, v) = gia(zx) + xi0;
then

3g:(z,v) _ 8gialz) 3gi(z, v) _ dgia(z)
ox; o0x; ’ 0z; ox;

(7 #9).

As the 8g;_y(x)/dz;,j = 1, --- , % — 1, are independent in Q,,, we need merely
show that there is an arbitrarily small v, such that 8g;(z, v0)/0z; is independent of
these vectors at each point of Q,,; we then set g:(z) = g:(z, v)). By Lemma 13,
it is sufficient to show that the vectors v, ||v || < 1, which do not have the re-
quired property, form a set of zero-n-extent in E,. Given the point z° of §,,,
it is sufficient to show that the vectors not having the required property in a
closed neighborhood S of z° are of zero n-extent; for a finite number of such sets
S cover Q,,.

Let P(x) be the (: — 1)-plane through the origin O in E, determined by
8gia(x)/0xy, - -+ , 8gia(x)/0%i, and set Py = P(2°). (If £ = 1, P(z) = 0.)
Choose S so that P(z) is not perpendicular to Pofor zin S. Let y;, ---, y. be
rectangular coérdinates (with origin O) in E, such that Py is the (yy, - - - , yi-1)-
plane. Let E = E,..;—; be the space with coordinates (zy, - - - , Tmy Y1, - - - , Yi1)-
Set

o(z) = ?g_;;@ K = max ||o(z) || (zin 8).
Let D be the subset of Ewithzin S, || 7|| < K 4 1, where g = (y1, - - - , ¥im1)-
Let T. = To,r(zy be the transformation of §19 leaving O fixed and carrying P,
into P(z). Giveng,sety = (y1, -+, %i-1, 0, - -+, 0) and '

w(z, §) = T(y) — v(2).

as ¢ is of class C?, this is a C'-map of D into E,. By Lemma 15, w(D) is of
finite (m 4+ ¢ — 1)-extent, and hence of zero n-extent. Now let » be any vector,
[lv]] £ 1, such that for some z in S, v(z) + v is in P(z); we shall show that v is
in w(D). As P(x) = T.(Py), there is a 7 such that

v(@) +v="Tu(y), v=w7i);

as |v(@x) +v]| S K+ 1, ||yl £ K+ 1, and visin w(D). Hence there is an
arbitrarily small » such that no »(z) + w is in P(2); v(z) + v = 8gi(z, w)/dz:
is independent of 8g;—1/0z;, - - - , 8gi—1/0z:—1 in S, and the lemma is proved.



DIFFERENTIABLE MANIFOLDS 665

22. Proof of the imbedding theorem. The last three lemmas lead at once to

Lemma 19. Any Cr-m-manifold M may be C-imbedded in Eppyr

Let #(p) be a positive continuous function in M such that if D1, P2, +-- 1S a
sequence of points of M with no limit in M, then lim 5(p;) = 0.3 Let f map M
into the origin O in Ejnyy; fis of class C”. Applying Lemma 12 with the proper-
ties of Lemma 18 gives a regular C*-map f’ approximating (f, M ,7y1n). Wenow
apply Lemma 12 again, this time with the properties of Lemma 17, setting
bo = O. (The new n may have to be smaller than the last.) The resulting
function F is (1-1) regular and of class C* in M, and F(p) # Oin M. By the
choice of 5, the limit set LF(M) either is void or equals O; hence F is proper.
Therefore F(M) is a Cr-manifold in Ezmy Cr-homeomorphic with M, and the
proof is complete.

IV. Tae NEIGHBORHOOD OF A MaNIFOLD IN E,

Suppose M is a C™-m-manifold in E,, r 2 2, n > m. To each point p of M
there is a normal plane P’(p); this family of planes fills out a neighborhood of M
in E.in a (1-1) way. If r = 1, this may not hold; for the P’ (p) depend on the
first derivatives of functions defining M. Our object in this part is to find an
approximating family of planes P(p) of class Cr. §24is necessary in this proof,
and also directly in the next part.

23. Projective spaces in Euclidean spaces. The following lemma will be
needed in the next §.

LemMA 20.  Projective n-space E, may be imbedded analytically in Euclidean
space Egnin.

The points of E are the sets of numbers (1, -+, Zapr) # (0, ---, 0), pro-
portional sets being the same point. Let S, be the unit n-sphere Zz? = 1
in E.i1. To each pair of “opposite” points p, — p of S, corresponds a point
¥(p) = v(—p) of EX. S,is an analytic manifold with obvious neighborhoods;
mapping these neighborhoods into E} under v defines E* as an analytic mani-
fold. By Lemma 19, E¥ is C'-homeomorphic with a manifold M’ in Ejnys.
Let ¢ denote this homeomorphism. Then ¢(p) = ¢(v(p)) is a (2-1) regular map
of S” into Eg,q,l. .

For any map g of S, into E,,,, set*

Ag(p) = lg(p) + 9(—p)1/2; then Ay(p) = ¥(p).

It is easily seen that if g approximates (¥, Sa, 1, 5), then the same is true of Ag.
As Ag(p) = Ag(—p), we may let correspond to g a map f of E into Esn.q; this

32 Note that we may let F(M) have no (finite) limit set in E;m+1, by applying a transforma-
tion with reciprocal radii at the end of the proof.

3 Let 6; be a set of admissible maps in M. Let »’(z) be continuous in E,, > 0in Qu,
and = 0 in E, — Qm. Set 7:(p) = 2'(6;*(p)) in U;and =0in M — U;. Ifay, 0, +-- are
small enough, we may set #(p) = Za.n:(p).

3 Compare footnote!?, -
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might be written f(¢) = Ag(v'(¢)). Take ¢ > 0 such that any map approx-
imating (¢, E%, 1, €) is (1-1) regular. Choose 5 > 0 so that if g approximates
(¥, S., 1, 8), then the corresponding f approximates (¢, Ex, 1, ¢). Extend ¢
through a neighborhood R of S, in E..i, say by letting it be constant on any
half ray from the origin; it is then of class C* in R. By Lemma 9 (or the
Weierstrass approximation theorem) there is an analytic map g approximating
W, R, 1, 8); considering g on S, alone, the corresponding function f has then the
required properties.

24. k-planes in n-space. Let € be the space whose points are the k-planes
in n-space through the origin. We shall express this space as an analytic mani-
fold M(n, k) in a Euclidean space E(n, k). Given the plane P, let vy, --- , v
be a set of independent vectors in P; their coérdinates form a matrix, with
k-rowed determinants D;,...,(P). These determinants, arranged in a sequence

(P, -, D3 . (P), Yur = (k)’ form the homogeneous coordinates-of a point

D*(P) in projective space E5,,_;. D*(P) is independent of the vectors v, - - - , vz,
and D*(P) = D*(P’) if P = P’; thus we have a (1-1) map of & into a subset
©’ of E¥,1. By Lemma 20, we may imbed E7,,_; analytically in Euclidean
space E(n, k); this carries €’ into a subset M(n, k) of E(n, k).

We may show.that &’ and hence M (n, k) is an analytic manifold by taking any
Py, choosing a determinant, say D;...x(Ps), which is £ 0, and expressing each
D;,...; in terms of the determinants Dj,....,1,e41,....1: by Vahlen’s relations,
which are analytic; this determines maps of the required nature in €’. An
analytically equivalent set of maps may be given as follows: Given Py, let
P}, --- , Py be points of Py which form linearly independent vectors from the
origin, and let Ly, ..., Ly be (n — k)-planes (or analytic (» — k)-manifolds)
through p3, - - -, pi orthogonal to P,. 'If P (through the origin) is near P, it
intersects each L, in a point p;; the positions of the p; determine a map of part
of Einety = En—i X -+ X En_ (k factors) into part of M(n, k).

Another important space is the space &* of all k-planes in E,; this also forms
an analytic manifold. M(n, k) is closed ; the present manifold is open. We may
map &* into M(n, k) by letting any plane correspond to the parallel plane
through the origin. We shall use the symbol P for points of either space; it will
always be clear which space is meant.

By an analytic function of k-planes we shall mean a functlon which, when
considered in M(n, k), is analytic.

We shall say two planes of any dimensions (in either space) are orthogonal if
any vector in (or perhaps better, parallel to) one is orthogonal to any vector in
the other; independent if they have no common vector » 0; perpendicular if some
vector # 0 in one is orthogonal to each vector of the other. If P, P’ are points
of &, we may let || P’ — P || be the distance between the corresponding points
of M(n, k).
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25. The neighborhood of a manifold in space. Two more lemmas lead up
to the mainrresult of this part, Lemma 23.

LemMa 21. Let M be a C™-m~manifold in E,. (r = 1 finite or infinite), and let
P(p) be a function of class C” in M satisfying (a) of Lemma 23. Then there is a
SJunction £(p) in M satisfying the remaining conditions.

Take any poin M. A neighborhood U of py may be determined by functions
(3.1) of class C7. Define the transformation T, » in terms of po and P(po) as in
§19. Set wi(p) = Ty pr(v:); then the points of P(p) for p in U are given by

n—m

(25.1) q=7+ ZI a;wi(p).
Using (3.1), we may express p in terms of yy, -+, Ym: D = ¥, -+, Ym)-
Putting in (25.1) gives ¢ as a functionof y1, - -+ , Ym, @1, - - , A’
©.2) g=vWy -, Ym) + Zaiwi@yy, - 5 Ym))
= g(yl’ ety Ymy gy cee, an—m)-

g is of class Cr. Consider the vectors dg/dy:, 0g/0a; at ¢ = poin U. The ag/ady;
are independent vectors in the tangent plane T to M at po, as the a; vanish there,
and the dg/da; = w;j(po) are independent vectors in P(po) ; as P(po) is independent
of T, the whole set of vectors is independent. In other words, the Jacobian of
(25.2) is #= 0 at po, and hence in a neighborhood R’ of p,. Solving foryy, - - - , ym
gives pin terms of ¢in R’: p = H(q). H is of class C".

We may cover M by such neighborhoods R’ so that any bounded closed subset
of M has points in but a finite number of the R’. It is easy to construct a pos-
itive function £(p) in M such that if R(p) is that part of P(p) within £(p) of p,
then R(p) lies in some R’. (c) and hence (b) of Lemma 23 now hold.

LemMa 22. Lemma 9 holds with R and E, replaced by analytic manifolds M and
N in E, and E, respectively.’®

Let P(p) be the normal plane to pin M. Then P(p) is analytic, and hence we
may define H(p) by the last lemma. H is analytic. Similarly we define P’ and
H’for N. Setf(q) = f(H(q)) in R(M); this is a C™-map of R(M) into the subset
N of E, (see Lemma 4). If the analytic function F’ approximates to f closely
enough and R’(M) is a small enough neighborhood of M in R(M), then F’ maps
R’'(M) into R(N), and F = HF’is an analytic map of R’(M) into N. F, con-
sidered on M alone, is analytic (see Lemma 3).

LemMma 23. Let M be a C™-m-manifold in E.(r = 1 finite or infinite). Then
there is a positive continuous function £(p) and a function P(p) of class C™ in M,
such that: (a) P(p) is an (n — m)-plane through p independent of the tangent plane
to M at p. (b) If R(p) s that part of P(p) within £(p) of p, then the R(p) fill out
a neighborhood R(M) of M in a (1-1) way. (c) If H(g) = p for q in R(p), then
H 4s of class C™ in R(M). Moreover, if M 1is analytic, so are P(p) and H(p).

3 See also Lemma 27.
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We have just considered the analytic case. If » = m, the lemma is trivial
(then H is the identity); suppose n > m. Let P'(p) be the normal plane to M
at p; there is a corresponding point D’(p) in M(n, n — m). D’is of class C™!
and is thus continuous in M. Extended D’ so as to be continuous throughout a
neighborhood R of M in E,. (Almost any method in use will do this; or we may
use Lemma 11.) If R is small enough, D'(R) is in R(M(n, n — m)); then
D" = H’'D’ is a continuous map of R into M(n, n — m), and D'’ = D’ in M.
(H' is defined in R(M (n, n — m)) as in the last lemma.) By Lemma 22 we may
approximate D'’ in R by an analytic function D so closely that if P(p) is the
plane through p in M parallel to the plane defined by D(p), then P(p) is inde-
pendent of the tangent plane to M at p. P(p), considered in M alone, is of
class C”, by Lemma 3. The lemma now follows from Lemma 21.

V. ANaLyTIC MANIFOLDS

26. The lemma and method of proof. Our object in this part is to prove

LEmMa 24. Let M be a C™-m-manifold in E, (r = 1 finite or infinite). Then
there is a C™-homeomorphic analytic manifold M* in E..

This, together with Lemma 19, completes the proof of Theorem I. Actually,
M*, as constructed, will approximate to M to any desired degree, but it is easier
to find an approximating analytic manifold after a homeomorphic analytic one
is found. (See Lemma 22.) We may suppose that n > m;if n = m, then M is
analytic. )

To prove the lemma, we first construct an analytic (» — 1)-manifold S *“‘sur-
rounding” M, and then find in an analytic fashion a ‘“center” M* of S. The
proof is most easily visualized for n = 3, m = 1. The construction of S is
straightforward. We determine a function positive and analytic near M and
vanishing in M, subtract a very small positive analytic function, and let S be
the set of points where the resulting function vanishes. The inside of S is filled
up by (n — m)-planes P(p) approximately normal to M (se¢ Lemma 23). The
resulting function D(P) with values in M(n, n — m) (see §24) is of class C” inside
of S. We approximate this function by an analytic function, and thus deter-
mine an analytic family of planes P*(p). (These planes, unlike the P(p), inter-
sect each other inside S.) A point p inside S is in M* if and only if p is at the
center of mass of that connected part of P*(p) inside S which contains p.

The following lemma is necessary.3¢

LeMMA 25. Given an open set R in E,, a positive continuous function n(p) in R,
and r = 0, there is an analytic function w(p) in R such that

(26.1) " w() >0, |Dra(p)| < n(p)in R (ox = 1).

Let Cy, C, - - - be a denumerable set of overlapping cubes covering R, and let

3¢ This lemma, except for analyticity, is practically equivalent to a theorem of Ostrowski,
Bull. des Sciences Math., 1934, pp. 64-72. See also our lemma 10. The theorem was
known to the author in 1933. Note that we may make r = « in a manner similar to that in
AE Lemma 6.
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¢i(z) be a function of class C* in R which is > 0 within C; and = 0in R — C;
(see for instance AE, §9). If the a; are small enough and positive, then
¢(z) = Za;¢i(x) is a positive function of class C* in R satisfying the inequality
(26.1). If w(p) is an analytic function approximating (¢, R, r, {) for small
enough {(p) > 0 (see Lemma 9), then (26.1) holds.

27. The manifold S and spheres S*(p, P). In this section we shall find S,
and shall show that certain (n — m)-planes P through points p near M intersect
Sin (n — m — 1)-spheres S*(p, P), which are analytic and vary analytically
with p and P. In the next section we shall find the analytic manifold M*.

Define the planes P(p) and the projection H(p) in the neighborhood R(m) as
in Lemma 23. We extend the definitions of P(p) and £(p) through R(M) by
setting

P(p) = P(H(p)), £(p) = £(H(p)).
Define the function ®(p) in R(M) by
(27.1) . () = p—H®I.

As H(p) is of class C"in R(M), ®(p) is of class C"in R(M) — M. By Lemmas 9
and 10 there is a function ®’(p) continuous in R(M) and analytic in R(M) — M
such that ' = 0in M, and it and its gradient satisfy

(27.2) |@'(p) — 2(p) | < 3&(p), || V2'(p) — VE(p) || < }

in R(M) — M. By Lemma 25, there is a positive analytic function w(p) in
R(M) such that

(27.3) lo(p) | < 3&@), Vo)l <3
Set
(27.4) *(p) = ¥'(p) — w(p);

then ®*(p) is continuous in R(M) and is analytic in R(M) — M, and &* < 0
in M. Sis determined by the vanishing of ®*.

To prove the existence of and properties of S, we shall introduce some auxiliary
functions. Let po be any point of M. Some neighborhood U of py in M is
defined by equations (3.1). Given any subset K of M, let R(K) be the set of all
points p of R(M) such that H(p) isin K. P(p) is independent of T (see Lemma
23); hence there is a neighborhood U’ of pyin M, U’in U, and a 5 > 0, such that
if Pis an (n — m)-plane through a point p of R(U’) and

(27.5) | P — P(p) Il <3,
then P is independent of 7 and hence intersects 7 in a unique point H*(P).
(T is the tangent plane to M at p,.) H*is analytic. Set

(27.6) H'(p) = HP(), ulp) = %r v o) = B I
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We may choose U’ and & so small that for any p in R(U’) and any P through p
satisfying (27.5),

(27.7) ®*(H*(P)) <0, |[H'(p) — H®) || < &p)/6,
and
(27.8) if ®*(p) 20, then |[u'(p) — u(p)|| <3}

For any P satisfying (27.5), let T be the transformation Tgee),r of §19,
using the fixed point po and plane P(p,), and let S(P) be the unit (n— m —1)-
sphere in P about H*(P). Given any point § of Sy = S(P(p,)), there is a corre-
sponding point
(27.9) ¢’ = Te(@) = u(P, ) in S(P);

u is analytic. To each P satisfying (27.5), each § in Sy, and any « > 0, let
correspond points p’, ¢’, ¢ by
(27.10) g =p' + alg’ — p') = H*(P) + ofu(P, §) — H*(P)].

For such values of @ > 0 which make q lie in R(U) — U we define the analytic
function

(27.11) a(P, g, @) = ®*(g).

We shall show next that for some v, 0 < v < §, if P is a plane through a point
pof R(U"), || P — P(p) || <, and g is in Sy, then there is unique number

(27.12) . ' a=p/P,§ >0

which, put in (27.10) and (27.11), makes ¢ vanish (with ¢ in R(U)); moreover,
pis analytic. Set

(27 13) ) 0'(1’, q, a) = U(P(p)) 4, a)r

it is sufficient to show that, using P(p), there is a unique point g of the hne seg-
ment p’q’ in R(U’) such that ®*(g) = 0, and d0’/da > 0 at this point.

By definition of R(M), R(U’) contains all points of P(p) within £(p) of H(p).
Asp’ = H'(p) for P = P(p), (27.7) gives

(27.14) Ilp" — Hp) || < &@)/6.

Hence, if ¢'’ is the point ¢ for which & = 5&(p)/6 (keeping § fixed), all of p’q”
lies in R(U’). Moreover, as H(g'') = H(p), (27.1) through (27.4) with (27.14)
give

(27.15) ®*(g"") > #(¢"") — } &(p) > 0.

By (27.7), #*(p") < 0; hence there is a point of p’q”’ for which &* = 0.
Now take any g on p’q” such that ®*(q) = 0, keeping P = P(p). As

lg" = p'll=1, p' =H'@),
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and u’(¢’) = u’(g), differentiating (27.13) and using (27.10) gives
’

(27.16) %:.z = |[Ve@*(q)-(¢' — D) lempry = VE*(q)-u'(g).
The projection of V& into any plane P equals the gradient of & as a function
defined in P; hence, by (27.1) and (27.6),

Proj r»y VER(q) = u(9),
and if u’ is any vector parallel to P(p), then

Ve(g)-u' = u(g)-w'.
Hence, by (27.2) through (27.4) and (27.8),
da’

5 | = | [Ve*(q) — V&(9)]-u'(q) + u(g)-[u'(q) — u(g)] + 1|

(27.17)
>—-3%-%34+1=0.

This shows that * vanishes at a unique point ¢ of ~1;—’41—"’, and the existence and
analyticity of p is proved.

Take any P satisfying (27.5) with § replaced by v; putting (27.12) in (27.10)
gives ¢ as a function of §g. As § ranges over S,, ¢ ranges over an analytic
(n — m — 1)-sphere S*(P); this sphere varies analytically with P. It isthe inter-
section of P and S. A finite or denumerable number of neighborhoods U’ cover
M; for each there is a corresponding v > 0. Let v(p) be a positive continuous
function in R(M) such that v(p) = v(H(p)), and if p is in any U’, then v(p) is
less than the corresponding v. Now if p is any point of R(M), P contains p, and

(27.18) | P — P || <~(p),

then R(p) intersects S in an analytic sphere S*(p, P) which varies analytically
with p and P.

28. The analytic manifold M*. For any p in R(M) and any plane P
through p satisfying (27.18), let @*(p, P) be that part of P inside S*(p, P). Let
g(p, P) be the center of mass of @*(p, P). We shall show that if P*(p) is any
analytic function in R(M) approximating to P(p) closely enough in R(M), then
the set M* of points in R(M) satisfying

(28.1) g(p, P*(p)) = p

is an analytic manifold in R(M), C"-homeomorphic with M.

We shall first show that g(p, P) is analytic. Consider a point po of M and a
neighborhood U of po in M etc. as before. If V(p, P) is the (n — m)-volume of
Q*(p, P) and | dp | denotes the volume element, then for p in R(U’) and any P
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through p within v(p) of P(p),”

1
(28.2) , P) = ——— dg |.
o(p 7@, P) Jorip 114
We shall express this integral in a different form. The points of Q*(p, P) are
given by the pairs

(@ @); @inSy, 0=a=pPQ.

Letting Wobe the (n — m — 1)-volume of S, and noting that T preserves volume,
(28.2) may be written :

pn—-m

(28.3) g(p,P) = ﬁl,—o ﬁ ’ [ﬁ_-_’_” ﬂ " (p +alg’ — ) da] ldg |,

where p = p(P, ). This expression is easily seen to be analytic.

Let M’ be the set of points in R(M) satisfying g(p, P(p)) = p. Each-
Q*(p, P(p)) has exactly one point in M’, namely, its center of mass. Taking
Po etc. again, set

284)  r(p, P) = T:'(») — T='(g(p, P)),  v(p) = =(p, P(p)).

7(p, P) is a point (or vector) of E,—m = P(ps). 7(p) = 0if and only if p isin
M’'. We shall show that if P*(p) is an analytic function approximating P(p)
closely enough in R(U’) through the first order, and

(28.5) ™(p) = 7(p, P*(p)),
then the vanishing of 7*(p) determines an analytic manifold through p,. To
this end, let 71(p), - - - , Ta—m(P) and 71(p), - - - , Tn—m(p) be the components of

r(p) and 7*(p) in the directions of fixed mutually orthogonal vectors in P(pq);
then r(p) = 0 if and only if the 7;(p) = 0, and similarly for 7*(p). The 7:(p)
vanish at a unique point of each @*(p1, P(p1)), and the Vr;(p) are independent
as functions in P(py); hence the same is true of the ;(p) and the Vr;(p), if the
approximation of P*(p) is close enough. Therefore 7*(p) = 0 defines an
analytic manifold M in R(U’), which cuts each @*(p, P(p)) in a unique point
p1, and such that the tangent plane to M} at p; is independent of P(p:).

If P*(p) approximates to P(p) closely enough in R(M), then the above will
hold near each point of M, and the vanishing of 7*(p) will determine an analytic
manifold M* cutting each Q*(p, P(p)) as noted. As is seen from (28.4) and
(28.5), the points of M* satisfy (28.1). The map p’ = H(p) of M* into M is
(1-1) and of class C*. As the tangent plane to M* at p is independent of P(p),
the inverse is also of class Cr (see Lemma 21); hence the map is a C™-homeomor-
phism and the proof is complete.

37 Compare footnote!?.
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VI. ProoF oF THEOREM 2

We shall first prove the existence of analytic linear functionals as defined in
§7; we will then be able to prove Theorem 2 and the properties in §9. Finally,
we shall prove the unproved statement in Theorem 6.

29. Real-valued analytic linear functionals. We shall generalize AE
Lemma 7 as follows:

LEMmMa 26. Let R be an open set in E, let A(p, q) and ¢(p) be as in §7 in R,
and let r and s be finite, s < r. Then there i3 an analytic linear (R, Ey, r, A, §)-
Sfunctional ; moreover, ® is defined for any polynomial P of degree < s, and
{P = P.

Let Ry, Rs, - - - be bounded open subsets of R such that B, is in R:.: and
Ri + R: + --- = R, and let ¢; be the minimum of ¢(z) for z in R;y,. Let
A (p) be the maximum of A(z, z’) for points z and z’ of R; whose distance apart
is p; these functions are easily seen to satisfy the requirements in AE Lemma 7.
Let a be a fixed point of R. Given any function f of class C” in R, set

(29.1) ¥ () - > Dif (@) (z — a)%;

2, k!

This is the polynomial of degree < s approximating to f most closely at a. (See
AE for the notation.) £* is a linear functional, and for any polynomial P of
degree < s, @¥P = P. As seen in AE, footnote on p. 78, for each ¢ there is a
number K ; such that if f satisfies (7.1) and hence

(29.2) | Dif(z") — Dif(@) | = A{(llz' —z|)inB:  (ox S 8),
then
(29.3) | Dif(a) | < K 0 <or £9).
Let A’ (p) be the maximum in B; of
| DyP(z") — DiP(x)| for ||z’ — z]| = p, or S 1,

for polynomials P(z) of degree < s whose derivatives at a are £ K, and set
Adp) = Ai(p) + A7(p). Now if fis any function of class C* in R satisfying
(29.2), then f — *f satisfies the same equation with A; replaced by A;.

Let £’ be the linear functional given by AE Lemma 7 with M = 0, and set

(29.4) o = (- &) + &Y.
¢ is defined for all f = f’ + P, where f’ satisfies (7.1) and hence (29.2), and P
is a polynomial of degree < s; for

f = =1 -2f,
and this function satisfies (29.2) with A;, and is 0 at a. As both £* and 2’ are
linear, € is linear. As ¥’ is analytic and 2% is a polynomial, € is analytic.
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Obviously 8P = P for polynomials P of degree < s. Finally, & approximates
(f, R, r, ¢), and the proof is complete.

30. Analytic linear functionals. We replace R and E; in the last lemma by
M and E,, as follows.

Lemuma 27.  Let M be an analytic m-manifold in E,, let A(p, q) and £(p) be as
wn §7, and let r be finite. Then there is an analytic linear (M, E,, r, A, )-
SJunctional ®® _

It is sufficient to prove this for real-valued functions; the general case then
follows on applying it to each coordinate separately. Given any f in M, define
f"in R(M) by f'(p) = f(H(p)). We shall show that the functional of the last
lemma, which we now call £, may be applied to f’; then &f is 2/’ considered in
M alone.

Suppose f is of class C"in M; then if f'(p’) = f(H(p")), f'is of class C* in R(M)
(see the proof of Lemma 4); we let P(p) be the normal plane to M at p. Differ-
entiating f'(p") = f'(H(p')) shows that D.f’(p’) is a polynomial of degree < o
in the derivatives of order < o1 of f’ at p = H(p’) and of H(p’) at p’. Say
p = 0i(z). Then D.f'(p) is determined by the D,fi(z) = D,f(6:(z)) and the
D.6:(z). (The latter determine P(p).) Hence

(30.1) : Dif'(p') = @D.fi(z), Dibi(x), DuH(p")] (04, 01, 0w < o),

for ox = r. (k, s, t and u have respectively », m, m and » components.) As
the 6; are admissible, there are but a finite number of such expressions for
Dif'(p"). Let a be a fixed point of M. Given any fin M or R(M), set f(p) =
f(®) — f(a). For any compact subset A of M there is a number K such that if
[ satisfies (7.1) in M, then

(30.2) - | Dij(p) | < Kin 4 (o = 7),

(see AE, footnote on p. 78). Hence, by (30.1), for any two points p’ and ¢’
of R(M) there is a number A such that for any such f, ()’ = j’ and hence f’
satisfies
(30.3) | Dif'(¢") — Dif'(p") | < A (ox = 7).
Let A*(p’, ¢’) be the minimum of such numbers A. There are several (but a
finite number of) choices for D,f(p) in (7.1); we take A*(p’, ¢’) large enough for
all these.

We show now that if p, — p, and ¢, — Do, then A*(p,,, q,) — 0. Suppose

not. Then there are ak (¢, < r),sequences {p,} and {q,} approaching Do, and
functions f; in M satisfying (7.1), such that

(30.4) | Difi@r) — Difa(®i)| > @ > 0.

We may suppose that p, = H(po), », = H(p,), and g, = H(g,) are in some U,
(30.1) then applies. Replace f,, f; by f,,  as before. Then the D,J,.(z,) are

3 If M = R, we may have P = P as in the last lemma; Pis a polynomxal with values
in E, if each of its coordinates is.
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bounded (x; = 67'(p,)), and we may suppose D, f,;(z,) — D,,. Asy, = 67%(g,) —
lim z;, (7.1) shows that D, f,;(y,) — D,, also. Therefore all the variablesin (30.1)
approach the same limit when p is replaced by p, as when it is replaced by g,.
As & is continuous, D,f; (p,) and D,f; (g;) approach the same limit; but this con-
tradicts (30.4). It is now easy to construct a continuous function A’(p’, ¢’) for
p’, ¢’ in R(M) of the required nature, such that A’(p’, ¢') = A*(p’, ¢/).® Now
if fis any function of class C7 in M satisfying (7.1), and f'(p) = f'(H(p)) in
R(M), then f’ satisfies

(30.5) | Def'(q) — Def'(p) | = A'(p, @) (or = 7).

Applying Lemma 26 to f/ with s = 0 gives an analytic function 2’f’ approx-
imating (f’, R(M), r, ¢’); then 2f = &f’ in M approximates (f, M, r, {), if ¢’
is sufficiently small.

31. Proof of Theorem 2 with (b) and (c) omitted. The proof of Theorem 2
with just (a) and (e’) is given by Lemma 12. We shall prove it with (a), (d),
(e) and (f) ; the proof will be complete when we have proved (A) and (B) of §9.

We first apply Lemma 12 to find a function F’ of class C* which approximates
(f, M, r, 1) and has the (f, r, n)-properties @, Qz, ---. If n = 2m, we include in
these properties those of §21, to make F’ regular. This is permissible, as the
finiteness condition of (e) of the theorem is satisfied for these properties. Only a
slight change in the proof of Lemma 18 is necessary because of E, being replaced
by N. Let W7 and 5T be the neighborhoods and functions of §7(b) and (c)
corresponding to Q; and F’. Because of the finiteness condition, there is a pos-
itive continuous function ¢ in M such that if F approximates (F’, M, r, ¢), then
it approximates (f, M, r, 1), and for each ¢, it approximates (F’, W¥, r, n}); F
then has the properties @i, Qs --.. It remains to show that the analytic
function F may be chosen so as to approximate (F’, M, r, {) and have the
properties Q;, Q3, - .- 4%

Replace the A(p, ¢q) of the theorem if necessary by a larger A so that (7.1) is
satisfied with f’ and A replaced by F’ and 3A. Let f be the analytic linear
(M, E,, r, A, }¢)-functional given by Lemma 27; we suppose { is so small that
if F'' approximates (F', M, r, {), then F'’(M) is in R(N). For some {’,if F'’
satisfies (7.1) and approximates (F’, M, r, {’), then  F’’ approximates (F’', M, r, ).
We must now choose F’’ so that it approximates (F’', M, r, {’) and satisfies
(7.1), and so that F = {F'’ has the properties Q;, Q, - - -

# Let p(p) be the smaller of 1 and half the distance from p to E, — R(M), and let o(p, q)
be the smaller of o(p), p(q), | g — »||. Take p and g in R(M), let 5.(p, q) be the upper
bound of A*(p’, ¢') for | p' — p| S & | ¢’ — g || = a, and set

1 r(p, @

"(p,q) = - —_— 3.(p, q) da.
A'(p,q) = |l q P||+p(p’q) | (p, 9)

©Jfn = 2m + 1 and f is proper, we may find an F which is analytic, regular, (1-1) and
proper, and has the properties Q;, @, ---, by including in these properties those of §§20
and 21, and then applying Lemma 22 with its n(p) sufficiently small. (See the end of §6.)
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Let Wi, W, G: be the open sets and functions corresponding to @, (i = 1,
2, --- ). We shall choose sets of numbers o' so that if

fo=F, f,-=f¢_1+za'}G§, F"” = lim f;,
H

then F'’ is the required function. As the W are bounded, if f’ is a function
satisfying an inequality of the nature of (7.1), and « is small enough, then
+ Z «}G} approximates to f’ as closely as we please and satisfies (7.1) with

1,2

a new A as near the old as we wish. Hence we may choose numbers &!, a2, - - -
such that if !, o?, - - - is any sequence with |a} | < &, then F”, using these o,
satisfies (7.1) and approximates (F’, M, r, ¢{’). The proof now runs exactly
like that of Lemma 12, except that H2f; (j = 7) and HRF"’ will have the property
Q;. Phe existence of o at each step such that HRf; has the property Q; is given
by (d’) of §7.

32. Certain maps of M into NN like translations near a point. Let f be a
Cr-map of M into N(r = 0), take po in M, and set go = f(po). Given any & > 0,
we shall find neighborhoods W', W of p, in M such that W’ is in W and W is
within 6 of po (measuring in E,), and we shall find C™-maps G4, --- , G, of M
into E, such that Gi(p) = O for pin M — W, and such that

(82.1)  fulp) = HYS(P) + 2. «uGi(p)] = HIRS(p) + 2 asGi(p)]

for| a; | £ 1is an n-parameter family of C-mapsin W’. Qisany (M, E,, r, A, ¢)-
functional for A large enough and { small enough near p,.

Let 6 be a C"-map of Q.. into a neighborhood W of pe; we will determine the
size of W later. Set W’ = 6(Q,). Let A(p) be of class C*in M, = 1 in W,
and = 0in M — W (see §20). Let P be the tangent plane to N at qo, let
¥y, - -+, ¥, be rectangular axes in E, such that P is the (y;, - - - , y.)-plane, and
let v; be the unit vector in the direction of y;. Set

(32.2) Gip) = Mp)viin M G=1.---,n).

In using Lemma 23, let P(g) be the normal plane to ¢in N. Then obviously

(32-3) 2%@=vi(j=ly"'yn))and=o (j=n+1y"':”)-
i

Putting (32.2) in (32.1) and differentiating gives therefore
(324) Yoo _ 3 196pLe; = Proj 6im)
=

where Proj v is the projection of a vector v in E, into P. If we leave out € in
(32.4), we may choose W so that the resulting vectors 8f./da; are independent
in W’. We then choose A and { so that € is defined for the terms in (32.1)
with | ;| < 1, and so that the vectors 8f./da; are independent in W’; then f.(p)
18 an n-parameter family in W'.
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33. Certain maps of M into N like rotations plus translations near a point.
Let f be a C™-map (r = 1) of M into N. Take pq, go, etc. as before; we shall
choose W, W', and C*-maps G;;. Let E = E(mi1. be a Euclidean space with
coordinates

Zij (i=ly"'ym+1;j=l)"'yn)-
The subscripts ¢, j will, in this section, always range over the values shown, unless
otherwise stated. Let #; be the unit vector in the direction of z;. Let 6 map

Q~ into W. We may consider (zi, - - , Tm) (in Q.) as coordinates in W, and
write

z for p = 6(z),

39(p) 4 99(6@)) in W
3.’)7.- ax;' 3-0"( p) :

Corresponding to any C"-map g of W into E,, define the C ”“l-map g of W into
E by

(331) Z 39,(2)) v + Z gr(P)vaz ’

ji;iSm

g; is the jh component of ¢ in E,. (Note that j runs to n only.) Define
(33.2) Gii(p) = Mp)z:v; 0 = m), G,y (D) = AD)y;.
For these G, (33.1) gives in W’

(33.3) G.’ ,'(P) Ui + Ti0pr,; (¢ = m), G.:H.l.i(P) = Upir,i -

These vectors are obviously independent for p in W’.
The family of maps fz(p) will be defined by

(33.4) Iu(p) = HElf@) + 2 8:GL(p)l.
As before, we find

35:: fB(Po) = Proj QG”(PO)

. As Proj G i{P) = G| i(p), the vectors Proj £G (D) are linearly independent for
small enough ¢. It is easily seen that the operations of passing from g to § and
of differentiating are permutable; hence, as before, we may take W and W', A
and { so that the vectors 8fs(p)/ap;; are linearly independent in W’. Hence s
is an (m + 1)n-parameter family of C*'-maps of W' into E.

34. Proof of (B) and (C), §9. In the hypothesis of (B), n = 2m + 1. As
regularity is taken care of by (e) of the theorem, we may first replace the given
map by a regular C"-map; let the new map be f. As fis locally (1-1), we may
find a positive continuous function 4(p) in M such that f(p) is (1-1) for p within
8(po) of po, for any po. For each po in M there is a neighborhood W as in §32;
moreover, these may be taken arbitrarily small. Hence we may choose such
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neighborhoods W, W, - - - such that Wi 4+ W, + -- . covers M, any compact
subset of M has points in common with but a finite number of the W,, and if p
isin W, + W,, W,.W, = 0, then W + W, lies within 8(p) of p. Next define
the maps Gi, --- , G, (s = 1,2, ... ) as in §32. We may suppose that the
n of the theorem is so small that any f’ approximating (f, M, 1, 5) is (1-1) in
all W, + W, with W,.-W, = 0.

Arrange the pairs of numbers (s, t) for which W,- W, = 0 in a sequence. For
any k, let (s, t) be the k* member of the sequence, and let Q, be the property
of maps f’ which holds if f'(W,) does not intersect f'(W;). The property of f*
of being (1-1) is the sum of these properties. We shall show that Q: is an
[f, r, », 4, {]-property. (a), (b) and (c) of §7 hold; we shall prove (d’), with
W, W', G; replaced by W, + W,, W, + W, , G:. Given f’and g, set

(34.1) o) = BE 1)+ 3 i) |

Applymg §32, we now see that f.. is an n-parameter famlly of C™-maps (r = 1)
inW.. Asf ’(W,) is of zero (m + 1)-extent in N, W, is of finite m-extent in
M, (m + 1) + m < n, and f.. = f’ in W,, there is an arbitrarily small o* such
that f(W.)-foe (W ) = 0 (Lemma 16), and (d’) is proved.

To prove (C), §9 we proceed as above. Let K = K; + K; + --- be the
subset of N, each K, being of zero (n — m)-extent. Arrange the pairs (s, ) in
a sequence, and let ©, hold if f'(W,) does not intersect K,. The proof runs now
exactly as above.

35. Proof of (A) and (D), §9. As before, we may suppose that the given
map is regular. If r = 0 or 1, we may at the beginning replace the map f by a
C*-map (Lemma 22). Hence we suppose that » = 2. Define §(p) and the W,,
W. exactly as in §34, and define the G, ; as in §33. Again, let &k corre-
spond to (s, t), and let ©; be the property of maps f’ which holds if f’ has at
most regular singularities in W, + W, ; complete regularity is the sum of these
properties. We must prove (d’) for Q.

Before proceeding, consider (D). Let Vi, V,, --- be admissible neighbor-
hoods in N’, and let @} hold if W, intersects ¥, only in the proscribed manner.
If n’ = m, this is the same as stating that f/(W.) + V. has at most regular
singularities. If we show how to transform W, with reference to V,, the same
process transforms W, with reference to W, ; hence we need merely prove (d’)
for (D).

Given f and g, set

(35.1) ﬁ@=mﬁ@+2m&%@
To each f/ corresponds an (m + l)n-parameter family of maps f; g+ Of W! into

E, by §33. We shall show that if f5.(W,) avoids a certain set S, then f ﬂ.(W )
intersects V,in the proper manner. S will be the sum of a denumerable num-
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ber of sets of finite (m + 1)(n — 1)-extent. As the number of parameters in
f;. is (m 4+ 1)n and the dimension of W, is m, we may apply Lemma 16 and
make W, avoid any of these. Applying the process in the proof of Lemma 12,
we may make W, avoid S, and thus complete the proof.

We shall leave out the indices s, ¢ in what follows. The vector 3'f ,; (p)/ozx;
in P (see §32) with components afs,(p)/dz; (j = 1, --- , n), by definition, (see
§33) is the projection of the vector af,’, (p)/oz;in E, into P. As f,; is regular
(for small B;;), the latter vectors (i = 1, ..., m) are independent. As the
W, may be taken arbitrarily small, we may suppose that the a'f; (p)/oz; are
independent in W’. As N’ may be cut into arbitrarily small pieces, we may sup-
pose that ¥ projects in a (1-1) regular manner into P (if ¥ intersects f5(W’) for
any 8). As fz(W’) and.V are both in N, and the projection of N into P is
regular near qo, they intersect in an allowable manner in N if and only if their
projections do in P. Let PV, Pq etc. denote the projections of ¥, q, ete. into P.

Let p be a point of W', and ¢, a point of 7; we shall consider under what
conditions Pf,', (p) = Pg, the intersection being of an unallowable character.
This is so if the vectors 8'f;(p)/dz; determine a plane P, in P which has a
plane P of dimension h > k = m + n’ — n in common with the plane P,
tangent to PV at ¢’ = Pg. Hence the set S in E which 7;(W’) must avoid is
the set of points z with the following property. For some ¢ in V, some > k
and plane P, in the tangent plane P,  to PV at ¢’ = Pq, and some plane P,,
which contains ¢’ and has exactly P in common with P,., the last n coordi-
nates of z determine (in P) the point ¢’ and the first mn coérdinates determine
the direction of P. Let 2o be that point of S we have just described; we shall
consider that part of Si near 2z, S, being those points of S with this correspond-
ing h. . :

A point z of S, is determined by the set

1!

(¢ Ps, Pm,v), where v=(t, - -,00), o= a—":;i),
q, P3, P, v being chosen in the order given. (The last n coérdinates of z are
then determined.) ¢ runs over a set of dimension n’. Now keep ¢ fixed, and
vary Pi. Plies in P, and contains ¢’; the dimension of such a set of planes is
h(n’ — h). Next vary P,.. It is determined by naming a plane P,._, through
¢’ in the plane P,_, through ¢’ orthogonal to P;; hence the set of planes P, is
of dimension (m — h)(n — m). Finally, vary the vectors »;. Each one may
vary freely as long as it remains in P,,; hence the dimension of this set of posi-
tions of the set of vectors is m2. Consequently, if we set b = &k + &’ and note
that n' — h = n — m — h’, the above set runs over a part of a Euclidean
space of dimension

dy=n"4+ h(n' — h) + (m — h)(n — m) + m?
=n' —hh' 4+ (h+m— h)(n — m) + m?
=mn+n —hh Emn4+n —h=mn+n—-—m-—1.
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The map of this set into the corresponding part of S; is of class C?, and hence
the (m + 1)(n — 1)-extent of the latter is finite, as required.

36. Completion of the proof of Theorem 6. Let 6,6, - - - be a completely
admissible set of maps in that part M* of M’ for which 0 < ¢t < 1. We take
them so that if U;-U; # 0, then fis (1-1) in U; + U;. In applying Theorem
2 in the proof of Theorem 6, let us introduce (f, r, n)-properties as follows.
Arrange the pairs of numbers (, j) in a sequence. Let the kt* member be (7, ).
Then @, holds for f(p X t) = ¢:.(p) if the following is true. If 0 < ¢t < 1,
p X tisin U/, and ¢ X tis in U}, then f(p X t) = f(g X t). We shall show
that each property is an (f, r, #)-property (for small enough ). It will follow
that each ¢,(0 < t < 1) may be made (1-1), irrespective of Mo and M,. The new
map of M’ into N is of class C7, by Lemma 10.

We may suppose the U, are so small that if U;-U; # 0, then U; + U; is in
some V; in N, and so that vectors vy, - - -, v,_» may be chosen in E, with the
following property. Set f,(p X t) = x5 f(p X t), and let U;(t) be the set of
points p X ¢ of U:- whose second coordinate is ¢&. If P and P’ are the m- and
(n — m)-planes through the origin in E,, the first being orthogonal to and the
second parallel t0 vy, - - - , ¥n_m, then any f;(U;(t)) projects into a subset of P
8o that both the projection and its inverse are of class C*. The points

n—m

g=p+ Z‘, av,, pin f,(T:0),

fill out an open set R; in E,, and if solving this (see §3) gives

pP= H(q’ t)’ ag = ‘b'(qj t);

then H and the &, are of class C'. To any C™-map g of U, into Q. let § be the
map of U; into E,_. whose st component is

g:(p X t) = &(g(p X 1), t)
Define the family of maps

gs(p X t) = fr(p X ) + 21 B.w, in Us;
then the §s have the property that
a
ﬁﬂﬂ(?x ) =u,.

Hence the §s form an (n — m)-parameter family in E,_n.. As U, is of dimen-
sion m 4+ 1 < n — m, there is an arbitrarily small 8 such that gs(p X t) # 0
in U, (see Lemmas 14-16). For this 8, no gs(U;(t)) intersects any f; (U (t))
(same t), for no ®,(gs(p X t),t) = 0. Consequently, using A(p) etc. as in §20,
we prove (d) of §7. The other properties are obvious, and the statement is
proved.

HaRVARD UNIVERSITY.
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