PART 2. EXPOSITORY LECTURES

signature theorea. A central objective was to show that the bilinear pairing
{1 T (500) @ 7,(500) — mDIfET (™) — Duynia

described above can be used to construct exotic spheres which can be detected by
a dilfeomorphism invanant

ATy — Q/Z
in many cases with m = n = 3 (mod). However, [ ran out of time, 5o that
the lectures didn’t actually get that far. For that reasom, [ have extended these
lectures, translated back into English, by adding a final section which completes
the arguiment.

Further Developments

The bilinecar pairing of Equation (1) and other similar pairings have been stud-
ied or applied by several authors. See for example P. Kauw [1965), A. Kosinskg
[1967], and T. Lawson [1973]. Perhaps the most important result which has been
obtainetl by such methods is the following statement which was proved by AN
TONELL!, BURGHELEA AND KAHN in [1972]:

Theorem. [fn > 7, then the group Difl*{S") of all orienta-
tion preserving diffeomorphisms of the sphere does not have the
homotopy type of a finite compler.

By way of contrast, it is known that the inclusion S0, 4y — Diff*(S")} is a howotopy
equivalence for n = 3. The case n = 1 is quite easy, and for i = 2 this was proved
by SMALE [1959b]. The proof for n = 3 by HaTcuER [1983) is much more difficult.

Remark. The statement that Dilf*{$?) has the homotopy type of MO... can
also be proved by using quasiconformal methods. The Beltrami differential of an
orientation preserving diffeoinorphism f of 2 Riemann surface is C**-smooth, being
given, in tenus of a local coordinale =, by the expression

aflozy dz . afjoz
(2) A@%\muv with

< 1.

dz affa:

This vanishes if and only if f is a conformal diffeomorphism. If our Ricmann
surface is the Riemann sphere CU oo, then there is a converse statement: Following
AHLFORS AKD BERS, any smooth Beltrami differential satisfying Equation (2) can
be integrated Lo yield o diffeomorphism f which is unique up to composition with
a Mobius automorphism. If we normalize by requiring that f must fix three points,
say 0, 1 and oo, then f is uniquely determined. Thus the subgroup of Diff* (CUco}
consisting of diffcomorphisms which fix these three points is homeomorphic to the
convex set consisting of all such Beltrami differentials, and hence is contractible.
But any element of Diff " (C U 0o} can be written uniquely as the composition of a
Mabius automorphism with an element of this contractible subgroup. This proves
that there is a deformation retraction from the group Diff* (C U co) onto the sub-
group PSL2(C) of Mabius automorphisms, which in turn deformation retracts onto
its maximal compact subgroup 8O,. O

144 COLLECTED PAPERS

Lectures on Differential Topology
Notes by James Munkres

Princeton University, Fall Term 1958

Differentizl topology may be defined as the study of those properties of differ-
entiable manifolds which are invariant under diffeoniorphism (differentiable hotne-
omorphisi). Typical problems falling under this heading are the following:

(1) Given two differentiable manifokls, under what conditions are they dif-
feomorphic?

{2) Given a differentiable manifold, is it the boundary of some differentialic
manifold with-boundary?

(3) Given a differentiable manifold, is it parallelizable?

All of these problems concern more than the tapelogy of the manifold, yet they
do not belong to differential geometry, which usually assumes additional structure
{c.g., a connection or o metric),

The most powerful toals in this subject have been derived from the methods
of algebraic topology. In particular, the theory of characteristic classes is crucial,
whereby one passes from the manifold Af to its tangent bundle, and thence to a
cobomology class in A which depends on this bundle.

These notes are intended ss an introduction to the subject; we will try to go
as far as possible without bringing in algebraic topology. Our two main goals are
Whitney's theorem that o differentiable r-marifold can be embedded as a closed
subset of the euclidean space R?*+! (see Corollary 1.32); and Thom’s theorem that
the non-orientable cobordism group A, is isomorpliic to a certain stable homotopy
group (sece Theorem 3.15). -

Chapter 1 is mainly concerned with approximation theorems. First the basic
definitions are given and the inverse function theorem is exploited (§1.1-1.12). Next
two local approximation theorems are praved, showing that a given map can be
appraximated by one of maximal rank (§1.13-1.21). Finally locally finite coverings
are used to derive the corresponding global theorems: namely Whitney's embedding
theorem and Thom’s transversality lemma (§1.26~1.36).

Chapter 2 is an introduction to the theary of vector space bundles, with em-
phasis on the tangent bundle of & manifold.

Chapter 3 makes use of the preceding material in order to study the cobordism
groups A,
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1. Embeddings and Immersions of Manifolds.

Notation. If z is in the euclidean space R", the coordinates of  are denoted
by (£, ...,2"). Let ||z|| = max|z'[; let C({r) = C"(r) denote the sct of T such
that [jz]] < r; and C"(zp, r) the set of z such that ||z = xo||] < r. The closure of a
cube C is denoted by C. :

A real valued function f(z!, ... ,z") is differentiable if the partials of f of all or-
ders exist and are continyous (i.e. “differentiable” means C*°}. A map f: U — R?
{where U/ is an open set in R") is differentiable if each of the coordinate functions
(f, ..., FP) is differentinble. Df denotes the p x n Jacobian matrix (8 /82f) of
f; one verifies that the Jacobian of a composition of two differentioble functions is
given by the rule D(fg) = Dg- Df. The notation 8(f, ..., fF)/8(z", ..., z") I8
also used. If = p, det(Df) denotes the determinant.

Definition 1.1. A topological n-manifold Af™ is a Hausdorff space with o
countable basis which is locally homeomorphic to R™.

A differentiable structure D on a topological manifold A" is a collection of
real-valued functions, each defined on an open subset of Af, such that:

(1) For every point p of A there is a neighborhood U/ of p and a hotneomor-
phism /& of U onto an open subset of R such that a function f, defined
on the open subset W of U, is in D if and only if fh~! is differentiable.

(2) I U; are open sets contained in the domain of f with union U, then
Sl € D if and only if ]y, is in D, for each i.

A differentiable manifold M* is a manifold provided with a differentiable struc-
ture D; the elements of D are called the differentiable functions on Af. Any open
set 7 and homeomorphism £ which satisfy the requirements of (1) above are called
a coordinate system on M. Notatien. A coordinate system is sometimes denoted
by the coordinate functions: A(p} = (u!(p), ..., u(p)}.

Definition 1.2. {(Alternate). Let a collection (U, h;) be given, where k; is a
homeomorphism of the open subset U; of A" onto an open subset of R, such that

{a} the U, cover M

(b) hjh;"" is a differentinble map on the open set hy(U; 11 U,), for all i, j.

Define a coordinate system as an open set I and a homeomorphism h of I/ onto an
open subset of R* such that ;=" and kiy; ™! are differentiable on h(U/ 1 I} and
hi{l7 11U, respectively, for each i. Define the associated differentiable structure on
Af as the collection of all such coordinate systems. A function f, defined on the
open sct V', is differentiable if fii=! is differentiable on h(U 11/}, for all coordinate
systems (U, h).

One shows readily that these two definitions are entirely equivalent.

Definition 1.3. Let Af, My be differentiable manifolds. If &7 is an open
subset of My, f: U — M, is differentiable if for every differentiable function g on
an open set V C My, the composition gf is differentiable on f-1(V) C Af}.

A function f : My -~ My is a diffeomorphism if f and f~! are defined and
differentiable.

If A c M), a function f : A — My is differentiable if it can be extended to a
differentinble function defined on a neighborhood U of A.
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(A coordinate system (U, h) on A" can then be defined as an open set U in Af
and a diffeomorphism / of I/ onto an open set in R™.)

If A C M, we have just defined the notion of differentiable function for subsets
of A. Suppose that A is locally diffeomorphic to R*: this collection is easily shown
to be a differentiable structure on 4. In this case, A is said to be a differentiable
submanifold of M.

The following lemma is familiar from elementary calculus.

LEMMA 1.4. Let f: C*(r) — R satisfy the condition |0f'/0zi] < b,

for alli, j and all x € C™(r). Then ||f(z) — f(y}|| < bnullz — g, for all

T, E. € Q:?.v.

THEOREM 1.5. (Inverse Function Theorem). Let U be an apen

subset of R", let f : U — R™ be differentiable, and let D f be non-singular

at xg. Then f maps some nesghborhood of xy diffesmorphicolly onto some

neighborhood of f(xo).

Proof. We may assume zg = f(zo) = 0, aud that Df(zq) is the identity
matrix.

Let g{z} = f(z) — =, so that Dg(0) is the zero matrix. Choose r > 0 so that
= € U and D f(x) is non-singular and |dg*/8z;| < 2L, for all z with |Jz]| < r.

Assertion. If y € C(r/2), there is exactly one = € C(r) such that f(x) = p.
In fact, by the previous lemma,

(1) llg(=) = gfzoMll < Iz — =l
on .Q?u. Let us define a sequence xq,Ty,... by 2p = 0, Ty = y, Tn41 = ¥ — gl{a).
This sequence is defined, since T, — Tn_) = g{Ta—2) — §(Tn-1), 50 that

1 1
Wzn —zamill £ m__H_....u IH=I_=M uau_ __e__.

and thus ||z, || < 2||y]| for each n. Hence the sequence x, converges lo a point =
with ([<}| < 2||y||, sa that = € C{r). Then = = y — g(z), so that f(z) = y. This
proves the existence of x. To show uniqueness, note that if f(z) = f{x)) = y, then
g(z1) = g{z) = = — z,, contradicting (1).

Hence f=!: C{r/2) — C{r} exists. Note that

WF(E) = el 2 Iz -zl - llg(x) — glzadll > 2llz — 2]

go that |ly — gl = 1/2{1F - (¥) — £~ (w1)|]- Heace f~! is continuous; the image of
C(r/2) under f~! iz open because it equals C{r} N f~1{C(r/2)), the intersection of
two open sets.

To show that f-! is differentiable, note that

[z) = f(m) + Df(x)-(z—z1) + h{z,n),
where (z — ) is written as a column matrix and the dot stands for matrix multi-
plication. Here h(x,z))/|lx—=zi|| =0 os z — x;. Let A be the inverse matrix of
DF(z,). Then

A-(f@) - f@m) =(z—m}+A-Mz,n), or

A-(y—p)+A-hfym) =171 - 1 (),
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where hy (g i) = =h(f =Yy}, /(11 }). Now
#_.AQ..SV - }AH...H; =H|H_=
Hr=wnll " M=zl ly—wll’
Since [{z — z.{1/lly ~ 11l < 2, h{p, y)/lly — i)l — 0 a5 y — 1. Henee
D)y = A= (DO
This weans that D{f~") is obtained as the compaosition of the following maps:

cr/z) L o 2L gum) e gL

where GL{n} denotes the set of non-singular nxn matrices, considered as a subspace
of n?-dimensional euclidean space. Since f! is continuous and Df and matrix
inversion are C=-functions, D(f~') is continuous, i.e., f~! is C1. In genera, if
£ is C*, then by this argument D(f~") is also, i.e., f~! is of class C*+!. This
completes the proof. 0
LEMMA 1.06. Let U be an open subset of R™, let f: U — RP (n<p),
J(0) =0, end let Df(0} have rank n. Then there ezists o diffeomorphism
g of one neighborhood of the origin in R” onto another so that g(0) = 0
and gf(z!, ... ,2") = (z',...,27,0,...,0), in some neighborhood of the
origin.
Proof. Since 8(f*, ..., fP)/d(z", ..., =) has rank 1, we may assume that
aft ... e, ... T
is the submatrix which is non-singular. Define ' : I x RP~® — RP by the equation
F(z',...,af) = f(=', ... ,.a") +(0,...,0, 2", ..., 2P} |

F is an extension of f, since F{z!,...,z",0,...,0) = f(z',...,z"). The matrix
DF is non-gingular at the origin, since its determinant is equal to
p_ms?..c_.....HJ\EH_.:..H:: , |
which is non-zero. Heace F' has a local inverse g. Thus g maps one neighborhood I
of the origin in R? onto another with

gF(z},...,2P) = (g%, ..., 2"), b

and hence

gflz}, ... 2" = gF(2Y, ..., 2"0,...,0) = (2, ..., 2", 0,...,0). O

COROLLARY 1.7, Let A = A% be a differenticble submanifold of AI".

Given x € A, there is e coordinale system (U, h) on M about z, such that

WU N A)=k{U) O R* (where R* is considered us the subspace R* x 0 of

R* x R*"* = R").

Proof. Let (Uj,hy) be o coorlinate system on M about x; by hypothesis,
there is a differentiable map f of a neighborhood V of £ in Af into R* such that
Jflvna = fi is a diffeomorphism whose range is an open set 11 in R, We may !
assmme Uy =V, and hy(z) = f{z) = 0. i

Now fhilhif7! is the identity on W, so that its Jacobian, which equals i
UQ..:lJ - D(hy 7)Y is non-singular.  Hence UQ:.‘._LV has rank k, so that by
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the previous lemma, there is a diffeomorphism g of some neighborhood V; C
hy(U1) of the origin onto another such that g(0) = 0 and g, ..., %) =
(z',...,25,0,...,0). Then U = A7} (V;) and h = gh, will satisfy the require-
ments of the lemma. 0O

LEMMA 1.8. Let U be an open subset of R", et f: I — R, f(0) =0,

(n = p), and let Df{0) have rank p. Then there is a diffeomorphism h of

some neighborhood of the origin in R" onlo another such that k(0} = 0

and fh(z!, ... ,z") = (£!,...,z").

Proof. We may assume 3(f1,..., /}/&(z},...,2P) is non-singulor at 0, since
Df{0) has rank p. Define F: I — R” by the equation

F@', ...,z = {f (=), ..., Sz, 27, L 2
Then DF(0) is non-singular; let & be the local inverse of £. Lot ¢ project R® onto
the subspace R?; f = gF. Then
fh(!, ..., 2" = gFhi(z!, ... a) =gzt ... 2" = (=',...,2"°). m]

Exercise 1.9. Let U be an open subset of R®, f : I — R?, f{0) = 0; and let
Df(z) have rank & for all & in /. Thes there are local diffeomorphisms A and g of
R" and RP respectively such that

afhiz', ... 2"} = z',...,z*, a,...,0)
throughout some neighborhood of the origin.

Definition 1.10. If £ : Aly — Mg, the rank of f at x is the rank of D(iz fh7!)
at hy(z), where (Uy,4} and (U3, ha) are coordinate systems about r and f(z),
respectively. The differentiable map f : M™ — AP is an immersion if rank f = n
everywhere {n < p). It is an embedding if it is also a homesmorphism into.

Iff : M™ — AP, then y € MP is n regular value of f if rank f = p on the entire
set f~1{y). Otherwise, y i a critical value. {If y & f(AI"}, then by definition yis
a regular value of f.)

Exercise 1.11. If A'is a differentinble submanifold of A, the inclusion A — A
is an embedding; and conversely if £ : Afy — A is an embedding then f{A,) is n
differentiable submanifold.

Exercise 1.12. Hy is a regular value of £ : M™ — M, then f~'{y} is a differen-
tiable submanifold of A/™ of dimension n — p {or is empty).

Definition 1.13. A subset A of R" has measure zero if it may be covered by n
countable collection of cubes Oz, r) having arbitrarily small total volwme. In such
o case, R" — A is everywhere dense (i.c., it intersects every non-emply open set),

LEMMA 1.14. Let U be an apen subset of R*; let f:U = R be

differentiable. If A C U has measure 0, so does f(A).

_Proof. Let C be any cube with© c I/. Let b denote the maximum of |afijoci)
on € for all i, j. By Lemma 1.4, ||f(x) — f{y)]] < bnijz ~ y|| for x,y € T.

Now ANC has measure zero; let us cover A N C by cubes C(z;, r;), with closures

contained in U, such that 337, ' < e Then f(C(xi, 1)) C C{f(z.),bur:), s0
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that f{A N C} is covered by cubes of total volume §"n" 3 r? < "n"e. Hence
f(ANC) has measure zero.
Since A can be covered by countably many such cubes C, f{A} has measure

zero. O
COROLLARY 1.15. [f f : U — R? s differentiable, where U is an open

subset of R® and n < p, then f(U/) has measure zero.

Proof. Project I x RP~" onto [/ and apply f. Since I/ x 0 has measure zero
in B", so does f(U/). O

Definition 1.16. If A C M, A has measure zero if h{ANT) has measure zero
for every coordinate system (LJ, h).

COROLLARY 1.17. If f: MI™ — MP is differentiable and n < p, then

f(AM™) has measure zero.

Definition 1.18. Let M(p,n} denote the space of p x n matrices, with the
differentiable structure of the euclidean space RP™. Let M(p, n; k) denote the sub-
space consisting of matrices of rank k. Thus AM(p, n; n) is an open subset of M{p, n)
if p > n; the determinental criterion for rank proves this. More generally, we have:

LEMMA 1.19. M(p, n;k) is a differentiable submanifold of M(p,n) of
dimensior k(p + n — k), where k < min{p, n).
Proof. Let Ey € M(p, n; k); we may assume that Ej is of the form AM” M“v .

where Ap is a non-singular k x & matrix. There is an € > 0 such that if alt the
entries of 4 — Ag are less than ¢, A must also be nonsingular. Let I/ consist of all
matrices in M(p,n) of the form £ = AM. Wv , with all the entries of A — Ag less
than e.

Then E is in M(p,n; k) il and only if I = CA~B; for the matrix

L 0\{A B\_{ A4 B
X L. )\C D) \XxA+C XB+D

las the same rank as E. If X = ~CA~", this matrix is

A B
0 -CA'B+DJ}°
Ii D = CA~'B, this matrix has rank k. The converse also holds, for if any clement

of ~CA='B + D is different from zero, this matrix has rank > k.
Let IV be the open set in cuclidean space of dimension

{pn = {p= k}{n — 1)) = k(p+ a0 — K)

A B
cC 0

A B A B
c 0J7\c -ca'B

is then a diffeomorpliism of 117 onto the neighborhood U N M({p, n; k) of Ey. O

consisting of matrices A v. with all the entries of A —~ Ay less than ¢. The map
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THEOREM 1.20. Let IV be an open set in R™, and let f : U — RP be
differentiable, where p > 2n. Given ¢ > 0, there is a pxn motriz A = (a})
with each [a}| < ¢, such that g{z) = f(z) + A x i3 an immersion. |Here
T is written as a column matrit.)

Proof. Dg(z) = Df(x} + A; we would like to choose A in such a way that
Dg(x) has rank n for atl 2. Le., A should be of the form Q — Df, where @ has
rank n.

We define Fi : M(p, n; k) x U — M(p, n} by the equation

Fi{Q.2}=Q = Df(z).

Now Fy is a differentiable map, and the domain of Fi has dimension k{(p+n—k)+n.
As long as k < n, this expression is monotonic in & (its partial with respect to k is
p+ n — 2k). Hence the domain of Fi has dimension not greater than

(n=1}{p+n-(n=1l+n=2n=p)+pn-=1

for k < n. Since p > 2n, this dimension is strictly less than pn = dim M(p, n).
Hence the range of Fi has measure zero in M(p, i), so that there is an element

A of M(p,n), arbitrarily elose to the zero matrix, which is not in the range of Fi

for k= 0,...,n=1 Then A+ Df(zx) = Dg(z) has rank n, foreach x. [
THEOREM 1.21. Let U be an open subset of R"; and let f : U/ — RP

be differeniiable. Givene >0, thereisa pxn mairic A anda px1
matriz B, with enlries less than e in absolute value, such that the map

glz)=fz)+A-c+ B
has the origin as a regular value.
Remark. The following much more delicate result has been proved by |Sard,
A.J: The set of critical values of any differentiable map bas measure zero.
Proof of .Hrna_..nu: 1.21. Note that the theorem is trivial if p > n, since then
f{UY) has measure zero, and we may choose A = t and B small in such a way that
0 is not in the imoge of g.

Assume p < n. We wish Dg{z¢) = Df(co)+ A to have rank p, where 1o ranges
over all points such that

Hxp) = 0 = flxg)+A-20+ B.

Hence A is of the form @ — D f{z}, and B is of the form — f(z) — A -z, where Q is
to have rank p.
We define Fi. : M(p, n; k) x U — M(p,n) x RP by the equation

Fi{Q,z) = (@-Df(z), —J(x) —{Q - D)) - x).

Then F} is differentinble. If & < p, the ditmension of its domain is not greater than
{(p—1)(p+n—(p—1))+n = p4+pn—1. Hence the image of Fy, k =0, ..., p—1 has
measure zero; 50 that there is a point (A, B) arbitrarily close to the origin which is
not in any such image set. This completes the proof. O
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Definition 1.22. A covering of X is locally finite if every point has a neigh-
borhood which intersects only finitely many elements of the covering. A refinement
of a covering of X" is a second covering each element of which is contained in an ele-
ment of the first covering. A Hausdorfl space is paracompact il every open covering
has a locally finite open refinement.

If X' is parncompact, and U, is an apen covering, there is a locally-finite indexed
open covering V;, with ¥, C U, for each a. (Each point has a neighborhood that
intessects V., for only finitely many a.) For let Wy be a locally-finite refinement
of U, such that distinct indices g correspond to distinct sets; choose a(3) so
that Wa C U for each 3. Set V,, = a(8)zay Wo- Given a neighborhood
intersecting only finitely many Wy, it intersects only finilely many V,, as well.

THEOREM 1.24. Jf X is locally compact and Heusdor{f, having e count-
able basis, X is paracompact.

Thus every “manifold”, in the sense of Definition 1.1, is automatically paracompact.

Proof of Theorem 1.23. Let Uy, Uy, ... be a basis for X with U; colnpact
for each i. We first construct a sequence A, Az, . .. of compact sels whose union is
X, such that A; C Intd;y,. Start with A, = U\, Given A; compact, let & be the
smallest integer such that & = i, and such that 4; is contained in Tyu---uly; and
let A;41 be the closure of this union.

Let © be an open covering of X. Cover the compact set Ay — Intd; by a
finite munber of open sets Vi,.. ., V, where each ¥, is contained in some element of
O, and in the apen set IntA;12 — A;_;. Let P; denote the collection LTI A
and let £ = PyU P LI---. P refines O, and since any compact closed neighborhood
C is contained in some A, € can intersect only finitely many elements of P. 0

Exercise 1.24. Prove that every parncompact space is normal {disjoint closed
subsets have disjoint neighborhoods). First prove that it is regular (the special
case where one of the two closed sets is a point).

THEOREM 1.25. Let M" be a differentiable munifold, {U,} an open
covering of M. There is a collection (V;, h;) of coordinate systems on M
such that
(1) {V;) 15 a locally-finite refinement of {U,}.
(2) h(V;) = C"(3).
(3) JF W) = hyY(C™(1)), then {WV;]} covers AL
Proof. The proof proceeds vlong lines similor to the previous oue. The only
difference is that one chooses the V; to satisly (2), and makes sure that the sets
:._u_ah.:z also cover Ay ~Intd;. O
LEMMA 1.26. Thkere enists a O™ function @(z', ... ,z") such that
p=lon Of1), 0<p<l on CE~C(1), =0 on R" ~ C(2).
It fuct, this function may be defined by the equation (!, ... ,2") = [T} é(z),
where
() M2+ z) AM2-z)
Y B+ AC-D+ M- D+ :z=1)
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and

e~V= gf >0

0, if z<0

Note that the denominator in the expression for 1 is always positive, and that

Az) =

PYlr) = 1 for |71
0 < ¢z < 1 if 1<[z]<2
wiz) = 0 if g2 o

Definition 1.27. Let f,g: X — ¥, where Y is o metric space, and let é(xr)
be a positive continuous function defined on X. Then g is a d-approximation to
J il d(f(z), g(z)) < 8(z) for oll z. {One can impose o topology on the space
F(X,Y) of all differentisble maps by taking the d-appraximotions to f as basic
neighborioods of f. This topology is independent of the choice of metric on Y,
provided that X, Y are paracompact.]

THEOREM 1.28. Given a differentiable mop f : A" — RP where

P 22n, and o conlinuous positive function § on A*, there cxists an im-

mersion g : A" — R? which is a é-appronimation to f. Ifrank f = n an

the closed set N, we may choose gjy = f|n.

Proof. Clearly the rank of f isequal to n on a neighborhood U of N. Cover
A" by U and A" — N. Let {14, ;) be a refinement of this covering, constructed as
in Theorem 1.25. As before, h;(17) = C{1) and ki (1) = C(3). Let h(V"}) = C(2),
so that ¥} 3 ¥ O IV, Let the V; be indexed with positive and negative integers
50 that those V; with i < 0 are the ones contained in U. Let ¢ = min &(z) on the
compact set ﬂ“

Set fo = f. Given fi_y : M™ — RP, having rank n on Ny_, = Ujex Wi,
consider fi_h;? 1 C(3) ~ R”. Let Abea P x n matrix; let Fq : C(3) — R? be
defined by the equation

"Falz) = fierhi'(2) + o(x) A - (),
where () is written as usual as an 5 x 1 column matrix; A i yet to be chosen;
and p(x) is the function defined in Lemuwna 1.26.
First, we want F(z) to bave rank n on the sot & = hi(Ni—1 T7L); we are

given that fi_ 7! has rank n on K. Now

D(Fa(z)) = D(fe1h M (=) + A~ (2) - Diplx) + 9(z) A.

(Here D is o 1 x 5 matrix.) The map of K x M(p, n) into AM{p,n) which car-
ries (z, A) intlo D(Fu(z)) is continuous. It carries K x {0) into the open subset
M(p, n; n} of M{p,n). Hence if A is sufficiently small, this map will carry K x A
into AM({p, 1; n); our first requirement is that 4 be this small.

Secondly, we require A to be small enough that [|A - (z)|| < e/2% for all
T e C(3).

Finally, by Theorem 1.20, A may be chosen arbitrarily small 5o that

Jecahg () + A - ()
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has rank n on C(2). Let A be chosen to satisfy this requirement. We then define
fx 1 M™ — RP by the equation:

Jealy) + olhe(@)) A-(ly), for peW
Je—r{): for yeM-T,.

These definitions agree on the overlapping domains, so that f; is differentiable. By
the first condition on A, it has rank r on Ny—;; by the third condition it has rank
n vn .. By the second condition, fi is a §/2% approximation to fi-,.

We define g(z) = limx_o fx{z). Since the covering V; is locally finite, all the f;.
agree on a given compact set for k sufficiently large; it follows that g is differentiable
and has rank n everywhere. It is also a d-approximation to f. O

LEMMA 1.29. If p > 2n, any tmmersion f ; M™ — RF can be -

approzimated by an injective immersion g. If f is injeclive in o neighbor-
hood U of the closed set N, we moy choose gly = flx.

Proof. Choose a covering {U,} of Af such that each f|y;, is an embedding. Let
(V. i) be the locally finite refinement constructed in Tlheorem 1.25, and let o(z)
be the function constructed in Lenuna 1.26. Then we can define a differentiable
function from Af to R by the formula

fuly) =

My}, if ¥
wily) = MTEW Ve

otherwise.

As before, we assume (15, h,) refines the covering {U/, M — N} and that those
Vi with i = 0 are the ones contained in U. Let f3 = f. Given the immersion
Sy 2 M™ — RP, we define fi inductively by the equation

Sily) = fumrlg) + crlyde,

where by, is u point of R” yet to be chosen. By the argument of the previous theorem,
if by is sufficiently smoll, fi will have rank n everywhere. The frst requirement is
that bi be this small, and the second requirement is that by be small enough that
fi be a 6/2% approximation to fi_;.

Finally, let N" be the open subset of Af™ x A" consisting of paits (y, '}, with
wily) # puly’). Consider the differentiable map

_ Jualy) = frly')
wily) — wely’)

from N2" into BP. Since 21 < p, the image of N?" Los meusute 0, so that by may be
chosen arbitrarily small and not in this image. For every & > 0, it follows easily that
Je(p) = fi{y') if and only if both ou(y) - @e(y’) = 0 and fisa(y) = fima(¢) = 0.

Define g(y) = limg_.co fi(y}. This limit exists and is differentiable since the
covering {15} is locally finite. If g{y) = g(y') with y # &', it would follow that
Jetly) = fra(v) and @(y) = i(y’) for all & > 0. The former condition implies
that fly) = fiy'), so that y and y' cannot belong to any one sct ¥, Because of the
latter condition, this means that neither is in any set V! for i = 0. Hence, they lie
in U, contradicting the fact that f is injectiveon If. 0O

{my) —
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Definition 1.30. Let f: A/™ — RP. The /imit set L(f) is the set of y € BP
such that y = lim f(z,) for some sequence {x;,=, ...} which has no subsequence
converging to a point on Af"®,

Exercise. Show the following:
(1) (A1) is a closed subset of R if and only if L{f) € f{M).
(2) Jisatopological embedding if and only if f i injective and L{f)Nf(A)
is vacuous.
LEMMA 1.31. There erists a differentiable map f: M™ — R with L{f)
emply.
Proof. Let (V;, h;) and  be chosen as in Theorem 1.25 and Lemma 1.26, with
i ranging over positive integers; and again let

e(hilw))., if yeV;
Q-

wily) = otherwise.

Define f{y} = 32, (3 wi(¥)). This sum is finite, since V; is a locally finite covering.
Ii {x;} is a set of points of M having no limit point, only finitely many lie in
any compact subset of M. Given m, there is an integer i such that x; is not in
Wi+ -ulF,,. Hencez; € q& for some j > m, whence f(x;) = m. Thus the
sequence f(z,) cannot converge. [

COROLLARY 1.32. Every M™ can be differentiably embedded in RZ"+

as a closed subset.

Proof. Let f: Af" — R C R¥*! differentiobly, with L{f) = 0. Set d(z) =1,
and let g be an injective immersion which is a §-approximation to f. Then L(g) is
emnpty, so that g is a homeomorphism. O

Definition 1.33. Consider a differentinble map f : M™ — NP, together with
a codimension g differentiable submanifold Ny = N{'™ C NP. Given a point
r € f~YN)) € M, let {u,..., u"} be a coordinate system about z; and let
(v', ..., "} be a coordinate system about f{z) cliosen so that the intersection
of My with the associated coordinate neighborhood is defined by the equations
v! =...=v? =0, (Compare Lemma 1.6.) By defnition, the transverse regularity
condition for f and Ny is satisfied at z if the ¢ x n matrix
4 i t = u- ceay
(@v'/8u) j=1,....n
has rank q at z.

Remark 1.34. This condition is independent of the particular choice of lo-
cal coordinates. In terms of the first derivalive map from the tangent space
Te{M) = Ty(N) where y = f(z}, and the quotient map from T,,{N) to T,(N)/T,{M),
it is just the condition that the composition maps T, (A ) onto T,(N)/T, (V). Com-
pare the discussion in Definition 2.6 below.

Note that the set of paints on which this transverse regularity condition is
satisfied is open as a subset of f~!(N,;). The map [ is said to be transverse regular
on N if the condition is satisfied for every = in f~1(Ny).
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LEMMA 1.35. If f : M"™ — N7 is transverse regular on NT™7 then

F~YNy) is a differentiable submanifold of dimension n = q {or i3 empty).

Proof. Let m project R? onto its first g compaonents; # : RP — R If
(V. h) = {u!, ..., ¢P) is the coordinate system hypothesized in Definition 1.33, then

NNV = h'sY0),

where 0 denotes the origin in R, and f~'{Ny; 1 V) = (rhf)"}(0). Since whf has
rank ¢ ot = € F71(N, N V), the origin is o regular value of whf. Hence (whf)~1(0)
is a differentinble submanifold of Af of dimension n — ¢ (see Exercise 1.12). O

THEOREM 1.36. Let [ : M" — NP be differentiable; let Ny = NP7

be a closed differentiable submanifoid of N. Lel A be a closed subsel of M

such that the trunsverse regulanity condition for f and Ny holds al each

x in AN fYN). Let § be a positive continuous function on M. There

exists a differentiable map g : AI™ — NP such thai

(1) 7 is a §-approzimation to f,
(2) g 15 transverse regular on Ny, and
(3) 9la = fla.

Proof. There is a neighboriood & of A in M such that f satisfies the trans-
verse regularity condition on U N f~1{V,). Cover N by Yy = N ~ N}, together
with coordinate gystems (Y;, ;) for § > 0 each of which has coordinate functions
{v',...,u") such that v! =--- = 49 = 0 on Ny. Now the open sets f~'(¥;) cover
Al us do the open sets U and A1 ~ A. Let {{V},h,)} be a refinement of both cov-
erings, constructed ag in Theorem 1.25. Reeall that h;(15} = C(3), k(V]) = C(2),
h;(;) = C(1), and the W; cover M. The V} are to be indexed with positive and
negative integers so that those V; which are contained in U are the ones with j < 0.

Let 42 be as in Lemma 1,26, and define (z) = w(hi(z)) for £ € V; and
wi(x) = 0 elsewhere. For each j clicose 1(j) = 0 so that f(V;} is contained in ¥(;).

Set fo = f. Suppose fy_; : M — N is defined and satisfies the Lransverse regu-
farity condition for Ny at ench point of the intersection of f; !, (M) with |, ., ;.

Furthermore suppose that .Pl_:dm”_ C Yj) for each j. Setting i = i(k), it follows
in particular that fi (V) C V.
Consider the composition
._._.:...-..r.l:..r. 1C(2) — RY,

where again r projects R” onto RY. By Theorem 1.21, there is an arbitrarily small
affine function L{z) = A - (x) + B from RF to RY such that when added to the
previous funcijon, the resulting map has the origin as a regular value. Consider RY
as Lhe first ¢ coordinates in R?, and define

fiz)= -___..._ (i fe—1(x) + L{he(x)) we(z)), for x in a neighborhood of ﬂﬂ
y fe-1(x), forzin Af~ V.

Here L is yet to be chosen. OFf course, we must clioose L small enough that

Hifi—1 + Ly,
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" 1

lies in C(1) for £ € V,, in order that »; ' may bLe applied to it. This is the
first requirement on L. Secondly, we choose L small cnough that fy is o /2%
approximation to fiy. Thirdly choose L small enough so that b..aw“.u is contained
in Yy for each 3. This is possible since only a finite mwnbet of the sets ﬂ.H can

intersect V.

Now fi by definition satisfies the transverse regularity condition for N) at each
point of £ (M) NT¥,. We want to choose L small enough that the condition is
satisfied at each point of the intersection of fi7'(N) with Ut ;. It is sufficient

to consider the intersection of the latter set with T, ; let this iutersection be denated
by J{. Consider the function which maps each pair (x, L) with x € K to the pair

(@), DSBS - (i) € N x Ma,n).

(Here the dot means that the derivative matrix is to be evalusted ot the point
hi(x}.) This function is continuous and earries i x (D) into the set

QZ —M)x .__SS.EV u A_Z x M(q, EEV.

whicli is open in N x M(g, n). lHence for L sufficiently small, {(x, L) is carried into
this set, so that fy. satisfies the transverse regularity condition for Ny at cach point
of M (M) ACF# ﬂmv.
We define g(z) = ling oo filz), 2s usual. 0O
2. Vector Space Bundles

Definition 2.1. An n-dimensional real vector space bundle £ is a triple {7, a, 5.
Here « is a continwous map of £ onto B, where £ and B are Hausdoril spaces;
and cach set F, = n~1(b) is called o fibre. Themap ¢ : Rx E — E must carry
cach R x I}, onto Fy; while the map a is defined on |J, (R x ) C Ex £ and
catries each Fy, x F, onto Fy,.

The following tmust be satisfied:

{1) Each F; is an n-dimensionn! real vector space with s and a as scalar
product and vector addition, respectively.
(2) (Local triviality.) For each b in B, there is a neighborhood & of & and
a homeomorphism 3 : U x R -+ 7~ !(I/) such that ¢2 is a vector space
isomorphism of &' x B" onto Fyr for each ¥ in U,
if in (2) the neighborkood IF moy be taken as all of B, the bundle is said to be the
trivial bundle.

Ii €, n are n-dimensional and p-dimensional vector space bundles, respectively,

we define the product bundle £ x 5 s follows:

E(€ xm) = E(£) x E(n)
B(§ x n) = B(§) x B(x)
(7 x A=) = (n(2) M)

wlere m, A are the projections in £, 5 respectively and Fu(£ x n) has the usual
product structure for vector spaces.
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If 7 is a subset of B(£), then £|y denotes the bundle «: =W (U/) — U. It is
colled the restriction of the bundle £ to I,

Definition 2.2. Let M" he a differentiable manifold and et xp bein A, A
tangent vector at xy is an operation X which assigns to each differentiable function
J defined in o neighborhood of zg, a real number. The following conditions must
be satisfied:

(1) 1f g is the restriction of f, X{y) = X(f).

(2) X(cf +dg) =cX{f)+dXN () (where c, d are real numbers).

(3) X(f-9) = X(f)- 9(zo) + f(xn) - X(g), where the dot means ordinary
real multiplication.

For the constant function 1, we have X(1) = X(1-1) = X(1) + X(1), by (3);
lience X(1) = 0. It follows by (2) that X{¢) =0 for any constant function c.

If one thinks of a tangent vector as being the velocity vector of a parameterized
curve lying in the manifold, then X(f) is merely the derivative of § with respect
to the parameter of the curve. This is made more precise below.

LEMMA 2.3. Let (u!, ..., ") be a coondinele system about =. Let X
be a tangent vector at x. Then X may be writlen uniquely as a linear
combination of the operutors 8/0u' evaluated al =z,

Proof. We assume u(z) is the origin. Given any differentiable flul, ... u")
define

ol u") = (flu',...,u") = f0, 02, ..., u"})/ul, it w0
affel, ..., u")fout, il u'=o0.
To sce that g is differentiable, note that
als,u?, ..., u") = ' ﬁ.?n u? L, u")dE
o Oul' T

{Then fiu!, ..., u") = wig{u',...,u") + F(0, o2, ..., u”).) Similarly,
J0, 6%, . u"y =l (n?, L w) + £(D, 0,48, .., u"),
where g3(0) = 8f/0u®(0). Fiually, we have

S e = T Wl f(0), where 0.0 = 2L (0.

Out
Thus
XN = Y X(u)al0) +0- X(g:)
= Mc,mﬁa. where a' = X{u'). o

Remark. The a' are called the components of the vector X with respect to
the coordinate system (u, ..., u"). If {v',...,v") is another coordinate system
sbout z, and X =37 #a/3w, then o' = X(v') = T g0t favi,
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Definition 2.4, (Alternate). A tangent veclor st r is an assignment to
every coordinate system (u!,...,u"} about T of an element (a!,...,a") of B",
with the requirement that if (#7) is assigned to the system (v', ..., v"), then
a' =Y 384! /dei. The derivation operator X is then defined as 3 of 8/8u'.
One checks readily that

(a) X(f) is independent of the coordinate system used, aud
{b) X{/) satisfies requirements (1), (2), and (3} for o tangent vector.

Definition 2.5. The tangent bundle 7 of an n-dimensional differentiable
manifold M is constructed as follows. For each & in Af, the tangent vectors at x
form an n-dimensional vector space. (The operations 8/8u' form a basis, by Lemma
2.3.) Let the disjoint union of these be denoted E{7); and define 7 : E(r) — Af as
mapping the tangent vector X at xg into xp. The local product structure is given
by ¢y : U x R* — E, where (U,£) = {u!, ..., u"} is a coordinatc systcm on M,
and where ,{zn, a',...a") is defined to be the tangent vector

. 0
— ﬂ-l.l'
oS M ® G
at the point xg. One checks immediately that 2, gives us a vector space isomor-
phism for each fibre. Since i, i8 to be a homeomorphism, this structure imposes a
topology on E; and since each 57y, is 2 homeomorphism on (7 N V) x R® this
topology is unambiguously determined.

Indeed, w712, is 8 C° map on (U N V) x R, so that £ is a differentiable
manifold of dimension 2n (using Definition 1.2 of a differentiable manifold}. The
map w s dilferentiable of rank n.

Definition 2.8, If f: Afi — My, there is an induced mop df : E(n ) — E(r2)
defined as follows: df{(X) =Y, where Y (g) = X(yf). If X is a vector at zp, Y is a
vector at f{zg). Clearly df is linear on each fibre; it is called the derivative map.

if (U, h) and (V, k) arc coordinate systems about x¢ and f(zq} respectively, and
if {(a‘), (#*) are the respective components of X and ¥ = df(X} with respect Lo
these coordinate systems, then (34) = D(kfh~')-(a') where the vector components
are wrilten 03 column matrices, 83 usual.

Definition 2.7. Let £, 7 be two n-dimensional vector space bundles. A bundle
map f : £ — 5 I3 o continuous map of E(£) into E(n) which carries each fibre
isomnorphically onto a fibre. The induced mnp fg : B(€) — B(y) is automatically
continuous.

If B{€) = B(n) and the induced map is the identity, f is said to be an equiva-
fence. Note that if f is an equivalence, it is 8 homeomorphiam: Locally f is just a
map U x R* — V x R", and can be described by an expression of the form

(z. (@', ...a") = (2. (B",...0%)) where f= ML.“?VD...
Fl

and where x +— (Aj(z)) is a continuous function from UNV to the group of
non-singular n xn matrices. Since the operation of matrix inversion is continuous,

it follows easily that f=! is also continuous.
If there is an equivalence of £ onto 1, we write £ =~ 5.
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LEMMA 2.8. Guven a bundle 5 with projection map A : E(n) — B{(x),
and a map f: By — B(n), there is a bundle = : B, — By und « bundle
map g : Ey — E(n) such that Ag = fx. Furthenmnore, E| is unique up lo

an equivalence.

This E is colled the induced bundle and is often denoted by  fen.

Proof of Lemma 2.8. Let E) be the subsct of B; x Eln} consisting of points
(b, e} such that f{#) = A(e). Define =n(b,e) = b and g(b,e) = e. The map g
is an isomorplism on each fibre. To show that E; is a veclor space bundle, let
w:V x R® — E(n) be a product neighborhood in E(n), and let f(/} C V. Then
define oy : U x R* — E; by @ilb,x) = {b, o(f{b},x]}). This is continuous and
injective; and its image equals 7= ({/). Its inverse carries (b, e) into (b, pp~t(e))
{where p projects V' x R™ onto R"), so that it is continuous.

Now suppose g’ : E' — E(7) is another bundle map, where 7' : E' — By isa
bundle and Ag' = fr'. We map E' — E; by the formula

(2) e — [n'(e'), d'(e) € Ei.

Because ¢' is on isomorphism on each fibre, this map (2) is also. It is an equivalence,
since it induces the identity on the base space. {1

Definition 2.9. Let £, y be two bundles over B. The Whitney sum £@nisa
bundle definedd os follows: Consider the product bundle E(£) x E(n) — B x B; let
d be the diagonal map B — B x B. The induced bundle d*(€ x 5} is defined as the
Whitney sum £ & .

Note that the fibre over b in £ & g is merely Fy(£) x Fi(n), so that
dim{E® ) = dimg + dimn.

Note also the commutativity and associativity of @. e, £Sp~ & € and
(Ean)d¢ ~ED(na ). The proof is left as an exercise.

Definition 2.10. If £, 5 are bundles over B, then g : E(f) — E(n) isa
homomorphism if
(1) it maps each fibre linearly into a fibre, and
(2) the induced map on B is the identity.
Note that an equivalence is both a bundle map and a homomerphism. An embed-
ding of bundles is a injective homomorplism.

THEOREM 2.11. If f: E(§) — E(n) maps each fibre linearly inlo a
fibre, then f ay be factored into ¢ homoemorphism followed by a bundle
map.

Proof. Let =y, 7z be the projeclions in £, 1, respectively.

Let fu : B(§) — B(y) be the map induced by f. Let E; = fin be the
bundle induced by fg; let g be the bundle map E; — E(y) and # the projection
E, — B(£).

Define h : E(£) — B(£) x E(n) by the equation k(e) = (m{e), f{e})). The
image of A actually lies in that subset of B{€) x E(n) which is Ey; then his a
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homomorphism. From the definition, f = gh.

E(f) 22— By —2= E(x)

B(§) — BlE) —— E()

LEMMA 2.12. Lei £, 7 be bundles over B of dimensions n, p, respec-
tively; let g 1 £ — 5 be a homomorphism. If g is onlo, then the kernel
of g is a well defined vector bundle. If g 15 injective, then the cokernel of
g, i.¢., the quoltent sfimage g is a well defined vector bundie.

Proof. Suppose g is injective {i.c., has runk n when restricted to each fbre).
In E(n), we define e ~ ¢' if e ~ ¢’ exists and is in the image of g. We identifly the
elements of these equivalence closses.; the resulting identification space is defined
to be E(n/g(£)). It is a bundle over B with projection natucally defined and each
fibre is 2 vector space of dim p — n. We need only to show the existence of a local
praduct structure.

Let U be an open set in B, with £|y equivalent to U x R and njy equivalent
to U x RP. Let gy denote the homomorphism of U x R® — U x RP induced by
g. Now (1/g(€))|u is equivalent to the quotient U x RP/gg(/ x R®), so that it
suffices to show that this latter quotient is locally a product.

9o is given by a matrix M(b) € M(p,n) which depends continuously on the
point b £ U. Given by, we may assume that in a neighborhood Uy of by, the first n
rows are independent. We define ki : Uy x R" x RP™ — U; x RF as the linear
function on R? whose matrix (non-singular) is

(sof2)

The image of Uy x B" x 0 under A is just go(Up x R"); since A is an equivalence,
it induces an equivalence of

_ U x R x RP-" Uy x BP
U, L™ —_—
n X R To x R" X D onto 7olUs % B7)

Sccondly, suppose g is onto (ie., it has rank p on each fibre). E(g~ (D)) is
defined ns that subset of E{£) consisting of points e with g(e) = 0. Again, we need
to show the existence of a local product structure. Let I, gy, and A (b) be as above.
Given by, we may assume that the first p columns of Af {b) are independent in the
neighborhood Uy of by. We define h: Up x R® — [y x R? x R"~" by the matrix

function
A M(b) v
N Y A

Now A followed by the natural projection of Up x R? x R"~F outo Uy x R” equals
goju,- Hence h=! maps U x 0 x R"? onto 9% YU x 0); eince h is an equivalence,
the restrictionof h~' te Uy x 0 x R*Pisalso. O
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HRomark. If g is onto, £/¢~"(0) is a bundle, being the quotient of the inclusion
Lomomorphism g=!(0) -~ £. If g is injective, g(€) is a bundle, being the kernel of
the projection homomorphism n — 5/ g{£).

Definition 2.13. If ¢ is a nonnegative function on B, the support of y is the
closure of the set of = with ¢(e) > 0. A partition of unity is a collection y, of
continuous non-negative functions on B, such that the sets €, = support @, form
a locally-finite covering of B, and ¥ y,(z) = 1 (this is a finite sum for each x).

LEMMA 2.14. Let B be a normal space; U, a locally-finite open covering

of B. Then there is a partition of unily @, with support p, < U, Jor

each a.

Proof. First, we show that there is an open covering V, of B with V, C U,
for each a. Assume the U, indexed by o sct of ordinals (well-ordering theorem).
Let V,, be defined for all o < £ and assume that the seis V,, along with the sets U,
for o > f cover B. Consider the set A(B) = B - CnAn | Cnvu U,. Then
A(f} C Up. Let Vj be an open set containing the closed set A(F) with Vs C Ug
(normality)., This completes the construction of the V.

Now let g, be a function which is positive on V., and 0 outside U, {normality
again}. Define pa,(z) = gao{Z)/ 3. Ga(s). Since U, is locally-fnite, the sum in the
denominator is finite and positive, so @, is well-defined. 0O

Remark, If B is a differentisble manifold, ¢, may be chosen to be difieren-
tiable: For fixed a, we can cover B with coordinate systems (V}, &;) as in Theorem
1.25 refining the covering {Ua, B = Vo). As in Lemma 1.31, let w;(y) = w(hi(y))
for y € V;, and = 0 otherwise (with 1 as in Lemma 1.26}. Let g.(y) = T wily),
where the sum extends over all 1 such that V; C U, and then proceed as above.

LEMMA 2.15. Let B be paracompact and let 0 — §£ 4 n 4 {— 0

be an eract sequence of homomorphisms of bundles. Then there is an

equivalence f 1 — £ & ¢, with fi the natural inclusion and of~! the

natural projection.

Proof. Let dim§ = 5n; dim¢ = p. We first construct a Riemannian metric on
7 (i.e., a continwous inner product in E{r)). Let U, be a locally finite covering of
B with njy, trivial; let g, be the corresponding projection of 5]y, onto R™#, Let
a be a partition of unity with support ¢, C U,.

Ife, ¢ are in E(n) and n(e) = n(e’), definee- e 3o Paln(e)) gale) - gale’),
where the dot on the right hand side is the ordinary scalar product in R"+P. This
is o finite sumn; it satisfies the axioms for a scalar product.

The way we use the Riemannian metric is to break  up into iE(£) and its
orthogonal complement. Let £ be the image of £ in 5 and let E(¢’) be defined
09 that subset of E{y) consisting of elements which are orthogonal to i(E(£)). In
order to show that ¢’ has a local product structure, consider the homomarphisin

h:inp—¢
which sends each vector into its orthogonal projection in £', [Verification that / is
continuous. Over any coordinate neighborhood U we can clioose a basis [ TP ™

for the fibre of £'. Then the function k carries v € E{y} into 3" t;a; & E(£') C E(n),
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where ¢; = 3 Bji(v-ay) and where (Bjy} denotes the inverse matrix to (a; - ax).]
Since h is onto, its kernel (' is again a vector space bundle.

Now the bundle i() = ¢ is equivalent to £. It remains to show that ¢’ s
equivalent to ¢ and that 5 is equivalent to £ @ ¢'. The former follows immediately
from the fact that p|¢: is a homomarphism; from rank considerations it must be
injective nnd onto as well. The latter follows by noting that E(£' i ¢’) is defined as
the subset of E{¢'} x E((') consisting of points (e, ez) such that (e} = m(ez).
Consider the map f of E(£' @ (') into E{n) obtained by taking (e,, ez) into their
sum in E(n) (this sum exists because e; and e; lie in the same fibre). This is clearly
a homomorphism; from rank considerations, it must be injective nnd onto. O

Definjtion 2.16. Let A, Af; be differentiable manifolds, and let
J i My -+ AL be an immersion. The normal bundle vy is defined as follows.
Let 71, 7y be the tangent bundles of Afy, Ay respectively. By Theorem 2.11, the
map df : E(r} — E(72) may be factored into a homomorphism & of E{r) into
E(f*7) followed by a bundle map g. Now h is an injective homomorphism because
f is an immersion; hence by Lemma 2.12, f*r/image ki is a bundle over Afy. Tt is
called the normal bundle »;.

Then0 — n — f*r; — vy — 0is an exact sequence of homomorphisms,
50 that by Lemma 2.15, f*7; is equivalent to 7 & vy, Indeed, given a Riemannian
metric on {*ry, ¥y is equivalent to the orthogonal complement of the image of 1.

Let us consider the case Af; = R"*P, where dim Af; = n. Then 7 is the trivial
bundle, so that f* is as well. (Proof: If f: B — B(n) and & is trivial, so is f*7.
We have the dingram

B x R?

H".m—llll.lv.m.

E(f*n) is defined n3 that subset of B x (B x R") consisting of points by, &, ) such
that f(b} = w(b,z}); i.e., of all points {by, (b1}, ). If we map this into [by, z),
we obtain an equivalence of f*n with the bundle By x R® -~ B,.)

Thus 7y & vy is equivalent to a trivial bundle. In what follows, we investigate
the following question: Given £, does there exist an n with £ @ 5 trivial? Using
Theoremn 1.28, this is always the case for £ the tangent bundle of an n-manifold,
and indeed 7 may be chosen also to have dimension n. A more general answer
appears in Lemma 2.9,

Definition 2.17, Let f : M} — Af; let dim Ay = n, dimAy, = p. If f
has rank p at every point of M), it is said to be regufar. If f is reguler, the
homomarphism h : 71 -+ f*7; given by Theorem 2.1} is an onto map. By Lemma
2.12, the kernel of h is a bundle ay. 1t is called the bundle along the fibre.

Note that f~!(y} is a submanifold of AZ; of dimension #—p (by Exercise 1.12
or Lemma 1.35). The inclusion iy, of f~*(y) into M| induces an inclusion di, of its
tangent bundle into 7;. The kernel of & consists precisely of the vectors which are
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in the image of some diy, i.e., the vectors tangent to the submanifolds f~!(y) are
the ones carried into 0 by h.

Oune has the exact sequence 0 — ay — 7 L f*ra — 0, so that by Lemma
2.15, 7y is equivelent to ay @ f*r.

Definition 2.18. A bundle £ is of finite type if B is normal and may be covered
by n finite number of neighborhoods Uy, ..., Uk such that £ly, is trivial for each 4.

LEMMA 2.19. £ is of finite type if B is compact, or paracompact finile

dimensional.

The former statement is clear; let us consider the latter. By definition, the
dimension of B satisfies dim{B) < n if every open covering has an open refinement
such that

{*) no point of B is contained in more than n + 1 elements of

the refinement.
It is a standard thearem of topalogy that an n-manifold has dimension n in this
serse,

Cover B by open sets U, with €|y trivial; let {V, ] be an open refinetent of this
covering satisfying (+). Since B is paracompact (Definition 1.22), we may assume
that {V4,} is locally-finite as well. Let i5, be a partition of unity with suppart
Ya C Vg for each o (Lemma 2.14).

Let A; be the set of unordered (i + 1}-tuples of distinct clements of the index sct
{¥a}- Given a in A;, where a = {aq, ..., a;}, let ¥, be the set of all z such that
walx) < minfg,,{x), ..., @a,(z)] for all a # aq, ..., a;. Each set W, is open,
and W5, and 1, are disjoint if a $ b. Also 1V, is contained in the intersection
of the supports of ., ..., ©,,, and hence in some set V,. If we set X, equal to
the union of all sets 1V, for fixed i, the result is that £|x, is trivial. (For €|y, is
trivial, and the IV;, are disjoint.)

Finally, the sets Xy, ..., X, cover B. Given z in B, r is contained in at most
n + 1 of the sets 15, so that at most n + 1 of the functions y, are positive at x.
Since some ., is positive at r, x is contained in one of the sets W, for ¢ <i<n.

{The intuitive idea of the proof is as follows: Consider an n-dimensional simpli-
cial complex, with 7, the barycentric coordinate of r with respect to the vertex a.
The sets Wh, will be disjoint neighborhoods of the vertices, the sets 1V, disjoint
neighborlioods of the open 1-simplices, and so on.|

THEORENM 2.20. If £ is of finite type, there is a bundle n such that

£ & n s trivial.

Proof. We proceed by showing that £ may be embedded in a trivial bundle
B xR™, o thal we have the exact sequence 0 —~ £ = B x R™ — B x R™/i(£) — 0
by Lenmuma 2.12. The theorem then follows from Lemma 2.15. {Paracompactaess is
not needed since the trivial bundle clearly has a Riemonnian metric.)

Cover B by finitely many neighberhoods Uy, ..., Uy with £ Ju, trivial for each
i. Let 1, ..., ¢ be a partition of unity with support w; C U; for ench {Lemma
2.14). Let f; denote the equivalence of E{€|y, ) onto U; x R™; let f}, ..., 17 denote
the coordinate functions of its projection into R™.

16 COLLECTED PAFERS

LECTURES ON DIFFERENTIAL TOPOLOGY

We define k : E(£) — B x R" as follows:

hie) = (=le), witxle)) - fi@)) TV

(no swmmation is indicated). This is well-defined, since ;(m(e)) = 0 unless
¢ € E(£ly,). 1t is clearly a homomorphism, since each f! is linear on E(£]y,).
To show that it is injective, let e # 0. Then for some i, ;(w(e)) > 0. Since f; is

un equivalence, f7(e) # O for some j. Hence h{e) £ (w(e), 0), as desired. O

Definition 2.21. The bundle £ is s-equivalent to n if there are trivial bundles
o?, o" such that £ @ o” ~ 5 & o".

Here 0? = B x RP. Symmetry and reflexivity are clear. To show transitivity,
assume @ of ~ ndoTadp@o" = (Dot ThenE G o® o™ = { @ o D 0",

Note that s-equivalence differs from equivalence. E.g., consider the two-sphere
5% in R Then v @ 1! = o%. The normal bundle v! is easily seen to be trivial; but
it is @ classical theorem of topology that 72 is not (it does not admit a non-zero
cross-section). Hence 72 is s-trivial, but not trivial.

THEOREM 2.22. The set of s-equivalence classes of veclor space bun-

dles of finile iype over B forms an abelian group' under ©.

Proof, To avoid logical difficulties, we consider only subbundles of 8 x R™,
for all m. This suffices, since any bundle £ of finite type may be embedded in some
B x R™, by Theorem 2.20. The clnss of trivial bundles o7 is the identity elensent,
and the existence of inverses is the substance of Theorem 2.20. O

COROLLARY 2.23. Given two immersions of the differentiable mani-

Jold M in euclidean space, their normal bundles are s-equivalent.

Definition 2.24. AM* is a w-manifold il Al may be immersed in some R™+P
so that its normal bundle is Lrivial.

This is equivalent to the requirement that v be s-trivial: Let v be s-trivial. If
we take some immersion of A7 into R"*?, then 7 & P is trivial by Definition 2.16,
50 that vP is s-trivial, i.c., &P @ 09 = o**9 for some ¢. Consider the composite
immersion M — R"*? C R™P+9. The normal bundle of Af in R+ js just
»? @ 0%, which is trivial.

Conversely, if &7 is trivial for some immersion, then T is s-trivial Lecause
7" & vP is trivial.

Definition 2.26. Let G, , denote the set of all n-dimensional vector subspaces
of R**+" (ie., nll n-dim hyperplanes through the origin). It is called the Grassmann
manifold of n-planes in n + p space.

1 Added 2006.) In the langusge of K-theory, which was introduced into topology shortly
afterwards by Atiyah and Hirzebruch, the gronp of s-exqquivalence classes of vector bundles over B
ia denoted by KR(B) {or KO(B)), where Kp(B) = Z& Kp(B} is the Grothendieck ring of
virtual real vector bundles over the compact connected space 83, and Z is the subring generated
by the trivial line bundle. See for example D. H ller, “Fibre Bundles”, McGraw-Hill 1066,
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Its topology is obtained as follows: Consider M{n,n + p;n) (Definition 1.18).
We identify two elements of this set if the hyperplanes spanned by their row vectors
are the same. G, is in injective correspondence with this identification space, and
is given the identification topology. If p is the projection

p:M(r,n+pmn) = Gpa,

then p{A) = p(B) if and only if A = CB for some non-singular n X n matrix C.
The hyperplane p{A) consisis of all points (z!, ..., "*?) & R"** which equal
(c'y ..., €")- A for some choice of constamts &, If p{A) = p{B), then

(Le,...,00-4 = (cl,...,e!)-B
01,...,00-4 = (q,...,cf)B, etc., for some choice of c!.

Then IA = CB, where C has rank n because A does. The converse is clear.

(8) Gp,n is locally euclidean. Let A € M(n, n + p; n); after permuting the
columns, we may assume A = (P, Q) where P is n x n and non-singular. Let U be
the set of all such A; it is an open set in M(n, n+p; n), being the inverse image of
the non-zero reals under the continuous map {P, Q) — detP. If o{P,Q} = p{(R, $),
where P is non-singular, then (P,Q) = (CR, C5) for some non-singular C. Hence
R is necessarily non-singular; it follows that p~'(p(U)) = U, so that p{U) is open
in Gp, » (by definition of the identification topology).

We show p(L/) hemeomorphic with RP™, Define g : I7 — RP by p(P,Q) = P~1Q.
If p(P, Q) = p(R, §) then (P,Q) = (CR, CS), so that

P7'Q =~ (CRY ' {CS)= R'S.

Hence  induces a continuous map g : p(U/) — R*". Define ¢ : R — p{l/} by
w(Q) = p(f,Q) where @ is an n x p matrix. One checks immediately that ¢ and
47g are inverses of each other.

Min,n + p;n) o U
| S
o
Gp,n > AU TIRe
[

{b) To show that 3, , is Hausdorf, we show thot ¥ maps every compact
set into a closed set (this will clearly suffice). Let K be a compact subset of
RP?; we shaw ¢~ !(K} is closed in M(n, p + n;n). p~1(K) consists of all matrices
(P.Q) with P non-singular and P-'Q € K. Let (P,Q) € M{n,n+p; n) be the
limit of the sequence (F;,Q;} of elements of = !(K). Since K is campact some
subsequence of the sequence (P, @i} = P,7'Q; converges to a point R of K.
Then the corresponding subsequence of the sequence €; converges to PR, so that
{P,Q) = P(I, R). Since {P, Q) has rank n it follows that P is non-singular, so that
{(P.Q) € ¢~ (K, as desired.

Hence Gy, is a manifold of dimension pn.
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(c} Gp.n is a differentiable manifold and p is a differentiable map. A function
f on the open set V in G, , belongs to the differentiable structure D if fp is dif-
ferentiable. To show that this satisfies the conditions for a differentiable structure,
we show that {p{I7), wq), as defined in {a), is a coordinate systemr. Let f be defined
onV © p(U). Given @ € R*™, fi;'(g) = fp(!, Q) 50 that fiz;" is differentiable
if fp is. Conversely, given (P,Q) € V, [p(P,Q) = f 'wop(P,Q) = e (P~'Q),
so that fp is differentiable if fiop" is.

(d) Gp,« is compact. Let L be the subset of AM(n,n + p;n} consisting of
matrices whose rows are orthonormal vectors. L is a closed and bounded subset of
Rn+P) Sinee p(L) = Gp,n (the Gram-Schmidt orthogonalization process proves
this), Gy, is compact.

(e) Gp,n is diffcomorphic to G, p. Geometrically, the homeomorplism 4 is
defined as carrying each hyperplane into its orthogonal complement. It is clearly
injective; to show it is differentiable we use the coordinate system (p(U), 7o) defined
in (a). Let g map U into M{n,n + p; p} by carrying (P, Q) into (—(P1Q)", I,.);
it is differentiable (T denotes transpose). The row space of (P, Q) is the same as
that of (f,, P~'Q), while the row vectors of this matrix are orthogonal ta those of
{=(P~1Q)", I,) (multiply the one by the transpose of the other). Hence g induces
hjp(uy, 80 that the latter is differentiable.

Definition 2.26. Let E{7;) be defined as that subset of Gp 0 % R™* con-
sisting of pairs (#,z) where 1 is a vector lying in the hyperplane H. It is called
the universal bundle (for reasons we shall see). The projection m maps (H, &) into
H; the fibre is thus an n-dimensional subspace of R"*?,

‘Ta show that - is an n-dimensional vector space bundle over G, .., we need
to show the existence of a local product structure. Let (p{L)), yg) be a coordinate
neighborhood on Gy, as in (a) above, We define h : p(U) x R" — a~1p(U)
as carrying (H,(z!, ... ,=")) into (H, (', ... 2"} - (1., Q)) where @ = u(H).
This is a vector in the hyperplane H; £ is clearly an isomorphism on each fibre.
Its inverse is continuous, since it sends (H, (y', ..., y")) in Gp . x R**" into
(H, (4", ... ™)) in p(U7) x RA.

Definition 2.27. £ is a differentiable vector space bundle if E(€) and B(£)
are differentiable manifolds, and if the homeomorphisms

U xR — oY)
which specify the local product structure can be chosen as diffeomorphisms.

It follows that 7 : E — B is differentiable of maximum rank. Note that 5 can
be differentiably embedded in E by mapping b into the 0-vector of F. The normal
bundle of this embedding is just £.

Examples of differentiable bundles include the tangent bundle of a manifold,
the normal bundle of an immersed manifold, and the universal bundle 75 above.
In the latter case, E{y}) is embedded differentiably in G, x RP+7,

THEOREM 2.28. Let £® be an n-dimensional vector space bundle over
o normal base space. The fellouning conditions are equivalent:
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(a) £ is of finile type. o
(b} There is a bundle 5P such that £" & P is trivial. )
(c) There is a bundie map E* — 4 Jor some p. (Thus the termi-
nology * universal bundle” for vj.)
Proof. We have already shown that (a) implies (b) Theorem 2.20 ; the r::&._n
KP there constructed has dimension n(k — 1), s.._.m_nn r is 5.5 wﬂEu_um.. of elements in
the covering Uy, ..., Uy of B(£) = B such that |y, is trivial. ) .
{b) implies (c): .Qon&sa: (b) means that £* may be embedded in the m_._Ew_
bundle B(£) x RP*"; let f be this embedding. We wish to define g and gg in the
following diagram:

E(§) —2» E(7})

Fo
B(§) —5~ Gp.n

Since f is an injective homomarphism, f{F}) is the nE.-.P...mE_ product om..v and an n-
dimensional hyperplane H® in RP*"; let gp(b) cqual this hyperplane H". If e M Fy,
then f(e) = {b,z), where T is o vector in the hyperplane H"; let g(e) _.H+ :At ..Hu
in Gpa x RP*". Then gle) actually lies in the subset nm Gpn X .—ﬂ sj_nr
constitutes E(y7). From rank considerations, g is automatically an isomorphism

on each fibre. . )
It remains to show that g is continuous. Locally, g just looks like a map

U x R* — Gp,a x RP*7.

We fuctor it into a continuous map h : U x R* — Min, n + p; & x RFt®
followed by the projection g x 1 into G, x RP*". Locally, f looks like o map
U xR* — B x R**P_ Let ey, ..., e, be a basis for R™; we define a?..au as
{A, p2f(b,z)). Here pz projects B x R"P onto its second m_n_an E.E A is the
matrix having p2f(b,€1), --., p2f(b,en) 03 its rows. Then h is continuous, and
x 1}h equals g.
? Auopa"_ the mnoué_.mm assertion, (c) implies (b}, can be proved by the same
t.

Emzﬁ_%waw_mﬁ (a): Being compact, G, . is nacnwnm by finitely many =m..m_.vo_.__o.2_m
U; with 47|y, trivial. (In foct {(n + p}!/nip! neighborhoods will mE.mnn.”_ .:. fisa
bundle map £" — 4} then the sets fz YUY = V; cover B, and £y, is equivalent to
the bundle induced by fp : Vi — Gp,» (the uniqueness part of Lemma 2.8). Then
&y, is trivial (sinee it is induced from a trivial bundle}. O

3. The Cobordism Theory of Thom.

Definition 3.1. An n-manifold-with-boundary Q is u Hausdorfl space with
a countable basis which is locally homeomorphic with H® (the subsct of R® such
that z! > 0). The boundary 8Q is that subset of Q@ Sﬂﬁucam.mum to w:.._. under
the local hiomeomorphism (R"=! being the subset of R® with 2" = c~. aqQ is ,.”.._=-
defined, since the image of an open set in R under s homeomorphism of it into
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R" must be open (Brouwer theorem on invariance of domain). It is clear that 8Q
is an (n — 1}-manifold.
A differentiable structure D on Q is a collection of real-valued functions f
defined on open subsets of Q such that
(1) every poiot of Q has an open neighborhaod U7 and a homeomorphism
h of U into an open subset of H", such that f is in D if and only if Fh!
is differentiable. (f is defined on an open subset of IJ; fh~" differentiable
means that it may be extended to o neighborhood of A(L7) in R® so0 as to
be differentiable).
{2) Ii U; are open sets contained in the domain of f and U = |J U;, then
fly € D if and only if fy, € D for each .
As before, (U, 4) is called a coordinate system on @, and ane can define differ-
entiable structures alternatively by means of coordinate systems.

We impose an additional condition on D in Definition 3.2.

Definition 3.2, Let Af;, Af; be compact differeatiable n-manifolds. They
are said to lie in the same cobordism class (M; ~ MAl) if there is a compact
differentiable n 4 1 wanifold-with-boundary @ such that 8@ is diffeomorphic with
the disjoint union of M; and Af; (denoted by A + MG) .

Symmetry and reflexivity of this relation are clear. To show transitivity, we
impose the additional condition on P that there is a neighborhood &/ of 8Q in Q
which is diffeomorphic with 8Q x [0,1), the diffeomorphism being the identity on
8Q x 0. This is redundant, but we assume it to avoid proving it. Transitivity
followsa:

Let M) + AL be diffeomorphic with 8Q; and My + My diffeomorphic with
8Q3; let ki1, hy be the diffeomorphisms. We form a new space Q3 from @, U Q;
by identifying each point of hy{Afz) with its image under bub_i. There is then a
homeomorphism of Mz x (—1,1) into this space which equals h; when restricted
to ALz x 0, and is a diffeomorphism of M x [0, (-1)) into Q; for § = 1,2. (It
is derived from the postulated “collar neighborhoads” 8Q; x [0,1).) If this is
taken to be a coordinate system on Qy, then J3 becomes a differentiable manifold-
with-boundary, and A + Af; is diffcomorphic with 8@y, while ¢, and Q4 are
diffeomorphic with subsets of Q.

Definition 3.3. As usual, there are logical difficulties involved in consider-
ing the collection of all manifolds. One way of avoiding them is to consider only
manifolds-with-boundary embedded in some euclidean space RP: If @, is a dif-
ferentiable manifold-with-boundary and §; = 9@, x {0,1), then the space Qs
constructed in the preceding paragraph is a differentiable manifold, so that it may
be embedded in some euclidean space. Hence @, may 50 be embedded.

With these restrictions, the set of cobordism classes of n-manifolds forms an
abelian group (denoted by A} under the operation + (disjoint union). If Afy ~ A
and Az ~ Mj, this means that M; + M} is diffeomorphic with 8Q;. Then
(M) + Afz) + (M + ML) is diffeoinorphic with (@) U Qa), so that My + Mg ~
M) + Mj and the operation + is well-defined on cobordism classes. The zero el-
ement is the vacuous manilold or the n-sphere {or 8Q, where @ is any compact
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differentiable {n + 1)-manifold-with-boundary}. The remaining axioms arc clear.
Note that A + M is diffcomorphic with 8{Af x [0, 1]}, so that every element is of
order 2.

The groups A, are called the (non-orientable) cobordism groups. Let A denote
the direct sum My @& N, @ Ag i@ ---. There is a bilinear symmetric pairing of A,
Nj into Aiy;, i.e., 8 homomorphism of M; @ Nj into N, induced by the operation
of cartesian product.

First, (M) + Ma) x Ay = (Al x M3) + (A2 x M) by definition of cartesian
product. Second, if My, ~ 0, ie., A = 8Q, then M, x M, is diffeomorphic with
.QAD x bhu..__. so thot A x Afg ~ 0.

Since M; x AMa ~ Ay x Ay, and since My, x p ~ Al} (where p is a point-
manifold), this pairing makes A into a (graded) commutative ring with unit. In-
deed, it is a graded algebra over the field Z/2.

Remark 3.4. The general result of Thom is the following

Theorem. N is a pelynomual algebra over Z[2 wnth one generater in

each posilive dimension except those of the form 2™ — 1. Ifn is even, the

real projeclive n-space is a generulor.

This theorem means that there are compact manifolds AF2, M4, A5, ... such
that every compact manifold is in the cobordism class of a disjoint union of products
of these manifolds, and that there are no relations among the generators {except
comumnutativity and associativity of products).

Thom's procedure is to show that A, is isomorphic with the (n+ k)t homotopy
group of a certain space T, and then to compute these homotopy groups. We shall
congider only the first of these two problems in the present notes.

Definition 3.5. Let h be an embedding of the diffierentiable manifold A" in
R™**; cousider the normal bundle of this embedding. Using the standard Riemann-
ian metric for the tangent bundle to R***, this normal bundle is equivalent to the
arthogonal complemment of the image in the tangent bundle of R"+k of the tangent
bundle of M™ {Definition 2.16); this complement we denote by +%. Define e as the
canonical map of E(v*) into R"* which maps the vector v normal to M" at =
into its end point. {Described differently, ane maps the tangent bundle to R*+*
into itself canonically by mapping the vector v, based at x, into the point z + v of
R"+%, This map is differentinble; its restriction to E(1*) is the map e.)

Consider A" as the set of zero vectors of E{(v*).

THEOREM 3.8. There ts a neighborhood of M™ m E(v*) whick is

mapped diffeomorphically by e onlo a neighborhaod of M" in RP+*,

Proof. Note that e is differentiable, and that it has rank n 4 & at points of
A" € E{v*). (This is easily checked by computing the derivative matrix of e with
respect to a local coordinate system.) Hence e has rank n+& in some neighborhood
of M" in E(v*), so that it is a local homeomorplism at points of A/*, that is, it
maps a neighborhood of each x € A" homeomorphically onto a neighborhood of
flz). We then appeal to the topological lesnma:
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If f : X = Y is a local homeomorphism-onto and the restriction of f to
a closed subset A is a ki phism, then f is a homeomorphism on
some neighborhood V' of A.
(X, Y are Housdocff spaces with countable bases; X is locally compact.} This
lemuna is proved as follows:

{1} If A is compact, the lemma holds. For otherwise, there would be paints
x, y arbitrarily close to A such that f{z) = f(y). Since A has a compact
neighborhood, we may choose sequences x5, y, converging to z, y, respec-
tively, in A such that 2, # yn and f{z,) = f(y). Hence f(z) = f(y) so
that = = y, f being a homeomorphism on A. But then f is not a local
homeomorphism at z.

(2) Let Ao be a compact subset of 4. Then there is a neighbarhood Uy of
Ag such that Iy is compact and f is a homeomorphism on T U A4: It will
suffice for f to be injective, since f is n local homeomorphism-onto. By (1),
let Vg be a neighborhood of Ag so that f|j, is injective. If no neighborhood
of Ay in Vg satisfies the requirements for {7y, there is a sequence of points
T, of X — A converging to x € Ap with f(zx,) € f(A). Choose y, € A
with f{z.) = f(yn)- Since f is continuous, f(y,) converges to f(z); since
S is a homeomorphism on 4, y, converges to z. Since z, # y,, this
contradicts the fact that f is a local homeomorphism at .

(3) Express A as the union of an ascending sequence of compact scts
Ay C Az C -+-. Let W, be a neighborliood of A, such that ¥, is compact
and f is a homeomorphism on ¥, U A {by {2)). Given V; a neighborhood
of A; satisfying ..m_.ﬁx.. conditions, consider the set V; Uiy, It is a com-
pact subset of V; U A, and f is a homeomorphism on V; U A. Hence by
(2) there is a neighborhood Viy, of V; U A4, with Vi compact, such
that f is & homeomorphism on ¥;4y U A. We proceed by induction. f is
injective on V = {J V41, so that it is 8 homeomorphism of V' (being a
local homeomorphism-onto). 0O

COROLLARY 3.7. Any differentiable submanifold (withou? boundary)
of R"t* is g differentiable neighborhood retruct.

The projection of E(¥*) -+ M" induces (under ¢) a differentiable map of a
neighborhood of M™ in R™* anto M™ which is the identity on Af™.

Definition 3.8. Let £ be a vector space bundie with compact base space B(£).
The one-point compactification T'(£) of the total space E(£) is called the Thom
space of £. The added point will be denoted by co.

Let € have a Riemannian metric. Let T{£) be obtained from E{£) by identifying
all vectors of length greater than or equal to € to a point. Let a{z) be a ©> function
with a’(z) = 0 which equals 1 in a neighborhood of r =0 and — oo ns z — 1.
The map of E(£) inte T'(€)} which carries the vector e into the vector ea(||e|[/e)
induces a homeomorphism of T, (£) onto T(£) which is a dilfeomorplism on the set

E.(£), consisting of vectors of length less than e. The fact that B is compact is
used heve.
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Definition 3.9. Let the compact manifold Af® be embedded in R7HY, p® s
given the Riemannian metric of R"+%; by Theorem 3.6 there is a neighborhood
of M" in R"** which is diffeomorphic o the subset Ez (%) of E(v*). Such a
neighborhood is called a tubular neighborhood of A™.

By Definition 3.8, we see that T(1/*} is homeomorphic with the space obtained
from R"+* by collnpsing the exterior of the tubular e-neighborhood of M to a point.

We will need three lemmas concerning approximation by differentiable func-
tions.

LEMMA 3.10. Let A be a closed subset of the differentiable manifold

Al let f: M — R™ be differentiable on A. Let § be a positive conlinuous

Sfunction on M. There enists g : M — R™ such that

(1) g is differentiable
{2) g s e d-apprommation {o f
(3) gla=fla

Proof. 1t suffices to prove this lemina in the case m = 1.

Given x € A, f|4 may be extended to a differentiable function f; in a neigh-
borhood N of x. Let N: be chosen small enough that | f2(y) — f(y)| < &(y) for
ally € N;.

Given = € M ~ A, choose a neighborhood N. of = small enough that
Hw) = £()| < 6(y) for oll y € N;. Define f (y) = f(z) for y € Ny.

Now let 1, be a differentiable partition of unity with support ,, contained in
some N, say Ny, for each o. Define g{y) = 3 o (y) Szio)(¥). One checks the
conditions of the lemma easily,. O

More generally:

LEMMA 3.11. Let f : My — Mz be a continuous map of differen-
tinble manifolds which is differentiable on the closed subset A of Afy. Let
e(x) > 0 be given; and give A3 the metric determined by some embedding

Mz © RP. Then there exists g : My — Mg such that

(1) g is differentiable
(2} g is an e-approzimation to f
(3} gla=fla.

Proof. There is a neighborhood U of Ay in R? of which My is a differestiable
retract (Corollary 3.7). Let p be the differentiable retraction of I/ onto Af;. Let
5(x} be a positive function on A3 so chosen that the cubical neighbarhood of f(z)
of radius §(z) lies in Uf, and so that its image under p has radius less than €(z).
Let f, : M, — R? be a differentiable map which is a §-approximation to f, such
that fil4 = fla (by Lemma 3.10). Define g(z) = p(fi(z)}). O

LEMMA 3.12. Let f: My — M; be a continuous map of differentiable
manifolds; let the metric on Aly be obtained by embedding it in some eu-
clidean space. Given (x), there is a 6(x) such that if g: My — My isa
d-approzimation to f, g is homotopic lo f under a homolopy F(x, t) with
(1) F(z,t) = fiz) for any = such tha! g(z) = f{z) and
(2) F(z.t) is an c-appromimation to f for any ¢.
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Proof. Let U, p and 5(z) be chosen as in Lemma 3.11. Let g: M, — M be
a d-approximation to f.
Then the line segment from g{z) to f(z) lies in I/, so that

F(z,t) = pltg(z) + (1 - )1 ())
ts well-defined. Furthermore F(z,¢) is on e-approximation to f(z} for auy ¢. 0O

Definition 3.13. Let £* be a differentiable vector space bundle with B(¢)
compact and n-dimensional; let E{£*) be given a metric by embedding it as a clased
differentiable submanifold in some euclidean space (it is an (m + k)-manifold).

Given an elenient of x4 (T(£*), 00}, let it be represented by the map

3) £+ (Cosky BCnys}) — (T(E¥), 00),

where T is the closed cube [0, 1]%* and 8T, 44 i its boundary. Let I/ denote
the open subset f~!(E(£*)) of Coye. Let g : If — E(£*) be o differentiable 4-
approximation to fly, where 4 is so chosen that § < 1 and g is homotopic to A
the homatopy F* also being o 1-appraximation to f. {This ensures that [ will be
continuous if we define F(z, ) = co for x € Cpyr — U,

Now g may be appraximated in turn by a differentiable map h: U — E(£)
which is transverse regular on the submanifold B(£) of £(£}. We chiaose the ap-
proximation close enough that g is homotapic to A, the homotopy H being & 1-
approximation to g for each t. Extend h to Cpys by defining h(x) = oo for
* € Cnyx — U. Then h is in the homotopy class of f; and h=1{B(£)) is a dif-
ferentiable submanifold A/® C U/ which is closed in Chik, and thus compact.

THEOREM 3.14. There i3 a well-defined homomorphism
At Tasi(T(E5),00) — N,

which assigns to each homatopy class of meps [ the cobordism class of

the manifold M" constructed above.

Proof, Let H : (Chyx x 1, 8Cpsn x 1) — {T(£*}, o0) be a homotopy
between hg = H(z,0) and by = H (x,1). Let hg, hy satisfy the conditions

{1) h; is differentiable on A7 ' (E(£))
(2) A is transverse regular on B(£), (i=1,2.)
We wish to show that h;'(B) and h{'(B) belong to the same cobordism class,

We may assume that H(x,t} = H(z,0) for ¢ < 1/3, and H{x,t) = H{z,1)
for t > 2/3. Let U = h=Y(E(£)) N [Cnsx x (0,1); then U is an open subset of
R™EHL Let G: U — E(£) be a differentinble 1-approximation to H which equals
H ou the closed subset A, where A = U 1 [Coys x ((0,1/4] U3/4,1))]. (See
Lemma 3.11. H ia differentiable on A.)

Now & satisfies the transverse regularity condition for B(£) at points in A
(since hy and h; are transverse regular on B} so that by Theorem 1.36 there is
a differentiable map F : U —~ E(£) which equals G on A, is transverse regular
on B(£), and is a 1-approximation to ¢, Because F is a 2-appraximation to H,
it remains continuous if we define F(z,t) = oo for (z,t) € (Cays x (0,1)) — U.
Because F equals H on A, it remains continuous if we define F{z,t) = H{z,t)
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for ¢ = 0,1, Hence F~'(B) is o compact subset of Ty 45 x [, being closed and
bounded.

Because F)ys is transverse regular on B, (Fly)~'{B) is a diiferentiable (n + )-
submanifold of Csx x (0,1). Its intersection with Coyr x ¢ equals hy ' (B} x ¢
fort < 1/4 and 3.._.;5 x t for t > 3/4. Hence F~1(B) is a dillerentiable manifold-
with-boundary whose boundary is 4z '(B) + h7'(B). Thus A is well-defined.

It is trivial to show that A is a homomorphism, because the sum in N, is derived
from disjoint unions of represcntative maniiolds. [J

THEOREM 3.15. If £ 15 the universal bundie 4%, where k > n+ 1,

m > n, then X : mopklT(5 ), 00) — AN, is onto,

Proof. Let A" be a compact n-manifold; let & > n+1. Let A" be embedded
in Cuyx (Corollary 1.32); let v* be the normal bundle of this embedding. The
Riemannian metric on E(”*) is that derived from the natural scalar product on the
tangent bundle to R"**, in which v* is contained.

By Theorem 3.6, for small € the subset of Ej. (v*) of E{+*) is diffeomorphic
with a tubular neighborhood of Af™ in Cpix; let U be the image of E.(v*).

Let p; project Cn . on the space obtained from Cr, 4 by identifying Cpx — U
to a point (denoted by Cpas/Cuix — U).

Let p; be the diffeomorphism of If onto E,(v*), followed by the map of E(v*}
into Ty(1*} which identifies all vectors of length > ¢ {Definition 3.8). p2 is then
extended by mapping Cuyx — U into oo,

Let p3 be the homeomorphism of T, (+*) onto T{v*) constructed in Definition
3.8. The composite map papy py is a diffeomorphism of I/ onte E(1*).

Finally, let py be the bundle map of v* into 4, induced from the embedding
of Af™ in R"** ¢ R™**, Because both fibres bave dimension k, this map satisfies
the transverse regularity condition for G . at each point of Af". Extend p, in the
obvious way to map T(v*) into T(+%,).

Let g = pypspa 1. Then g : 8C — ovo. Let g{M"™} denote the homotopy class
of g in w44 {T(7% ), 00). Now g is transverse regular on Gy, and A" = g~ (G ).
By definition, the cobordismn class of M" is the image of p{AM™) under A, so that
As(A®) =[ar). O

THEOREM 3.16. Jf £¢ is the universol bundie 1 withk 2 n+2,

m > n, then A is ene-lo-one.

Proof. Given an element of #,4+£{T(7%), co), we may suppose it represcnted

by a map
1+ (Catie, Cnik) = (T(3R), )
which is differentioble on f~'(E) and transverse regular on Gy {by Definition
3.13). Let
M™ = [ G

we wish to show that if Af™ is the boundary of an (n + 1}-manifold-witl boundary
@, then f is homotopic to the constant map.

M™ is a submanifold of C,1x; let its normal bundle be v*, Let € be chosen so
that By, (%) is diffeomorphic with the 2e-neighborhood of Af™; let U, be the image
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of the vectors E, (%), Impose o Riemannian metric on 1%,; let § be chosen so that
liz|| = € implies ||f(z)]| > & for £ € E(v*).
Step 1. f is homotopic to a map f; such that

(1) /i is differentiable on J; Y E) and transverse regular on Gy x.

(2) f=fion M= [ (Cuni).

(3) fi carries everything outside U, into co.
Define F : E(q%) x I — T(v%) by the equation F(e,t) = ea(l|[¢]|/5), where a is
the function defined in Definition 3.8. Let fi(z) = F{f(z),1).

Step 2. By the diffleomorphism of Uz, with Ea,, fi induces a map f, of E, (v*)
into (7% ) which carries §(E,) into co. Any homotopy of , which leaves 3{E,)
at co induces a homotopy of f;.

Now f, is homotopic to a map f, such that

(1) 7, is differentiable on T, (E) and tronsverse regular on G, i.

(2 Ta=Tron M" =77 (Gms).

(3) 75 is locally a bundle map in some neighboarhood of A™.
The homotopy leaves 9{E, ] at co.

Consider G : E, (1) x I — T{y%) defined by the equation Gle, t} = f{te)/t.
Ast — 0, G(e, t) approaches a limit which is non-zero if e # 0 {since f, is differen-
tiable and {-regular). It is casily seen to be o bundle map. It will not suffice for our
purposes, since it does not carry 3{E,) % f into co. Choose § > 0 so that |jz]| 2 e imn-
plies [IG(z, t)|| = 6 forz € E{v*), ¢ € F, and define H{e, t) = [Gle, )] & (||Ge, £)])/5).
If we set f, = H{e,0), then J; is a bundle map for Jle|| small (since a(z) = 1 for
z small). The map E(e, 1) = f{e) a{lIf,(€)||/) does not cqual ], but it is ho-
motopic to f;, the homotopy leaving 8(E,) at oa. The hometopy is defined by the
equation

K(e,t) = Fy(e) o(tT, ()iI/8), s in Step 1.
Step 3. Let @ be the n + 1 manifold-with-boundary such that Af® = 8Q. Let
A be a diffeomorphism of Af™ x [0,1) into Q which carries A" x D onlo Q.
Define hy : Q@ — Cppx % I as lollows:
Iz =hipt) where y € M" and 0 = t = 1/2, let fulz) = (y, ).
If x ¢ image h, let hy(z) = p, where p is some fixed point interior to Cpeu x 1.
If z = h(y,t) where y € A" and 1/2 <1 <1, let

hy(z) = (1-8()} iy, 1/2) + Bltlp, where

2(t) is o C® function with d@'(t) > 0, 8{¢) = D in a neighborhood of

t = 1/2 and G(t) = 1 in a neighborhood of ¢ = 1.
Iy is o differentiosble map of Int @ into Int (Cryx x I); and hy is an injective
immersion in a neighborhood of 8Q. Since dim (Cyyx x ) = 2(n + 1), h; may be
approximated by an injective immersion hy which equals A, in a neighborhood of
8Q (by Lemma 1.29). It may be extended to an embedding of Q inte €, ,p x 1.
(Since Q s compact, an injective immersion is automatically an embedding.) Let
Q now be considered as this subset of Cyx x 1.
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Step 4. We have o mop f3 of Cpye x 0 inta T(1%) which is a bundle map
when restricted to a small tubular neighborhood of Af™ x 0 in Crik x 0. We extend
it to s X [0,b) for b small in the trivial way, Suppose there exists a map g
of the ¢-neighborhood N of Q in Chys x I into T{7%) which equals Jf; in some
neighborhood of 8Q in €14 x I and maps each point of N — @ into a non-zero
vector in E{y%,). Our theorem then follows: Let & be so chosen that, if the distance
of z from @ is > €1/2, then |[g(z)]| = é.

Define gy : Cnyx % I - T(~%) by the equation

_ ) al=z.8) allig(=, s)lI/6), for (r,s}) e N, and
alz, 8) = AB. otherwise.

The restriction of g, to 4t x0 does not equal the map f3, but it is bamotopic
to fz, by the same technique as used at the end of Step 2. Thus g; provides the
homotopy required for our theorem.

To show that the extension g exists, we refer to Steenrod, “Fibre Bundles™
(Princeton University Press, 1951). According to §19.4 and 19.7 of this book, the
principal bundle associated with 4% is an m-universal bundle. That is: given a
vector space bundle £* over a complex of dimension < m, any bundle map of £*,
restricted to a subcomplex, into 4%, can be extended throughout £*. We will assume
the well known result that ¢ can be trinngulated. The dimension n+lofQis = m.
Hence any bundle map of the normal bundle 1v* of Q, restricted to a polybedral
neighborhood of 80, into v%, can be extended throughout v*,

Applying this result to the map fa, this completes the proof of Theorem 3.16.
O

Letting T stand for the union of the Thom spaces T(v:) c T{yE ) €,
in the fne (direct limit) topology, Theorems 3.15 and Theorem 3.16 imply the
following.

THEOREM 3.17. The cobordism group N, is canonically isomorphic

to the stable homotopy group ma4x(T}), for k > n+2.
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1. Strong and Weak Diffectopies: the diffeotopy extension
problem.

We shall be concerned solely with smooth, i.e. C™, manifolds. Without making
precise definitions for the moment, we can state our basic problem as follows: can
every motion of a submanifold of a given manifcld V' be extended to all of V7
Figure 1 illustrates a motion of a submanifold of R® which cannot be extended to
all of R%.  The trefoil knot is moved so that the knotted portion approaches a

JOOOO

FIGURE 1.

point; at the final stage the knot is replaced by a circle. We will ilfustrate, after a
few definitions, other motions of submanifolds which cannot be extended.
Definition. Let Af and ¥ be two smooth manifolds. A smoothmap f: M — V
is an embedding iff.
{1} f is 8 homeomorphism of Af into V
(2) the rank of f, at p € M is the dimension of A at p [where f, is the
induced map on the tangent space of A].
If f(M) =V then f~! will be smooth and f is called a diffeomorphism.
Definition. A diffeotopy from M into V is a one-parameter family of em-
beddings which is smooth as a function of both variables, i.e. a smooth map
f:M x I =V (I denotes the unit interval [0, 1]) such that each f, : M — V, de-
fined by fi(x) = f(z, t) is an embedding. The map f is called a diffeotopy between
Jo and fy, which are called diffeotopic maps.
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The family of embeddings of §' into R? indicated in Figure 1 is not a diffeotopy
becouse it is not smooth at (x, 1), where 2 is the point towards whose image the
knotied portion of the circle converges.

Although the unit interval f is strongly suggested as a parameter space in the
definition of homotopic maps, it has several disadvantages for defining diffeotopic
maps. For one thing, it is not inunediately clear that diffeotopy is an equivalence
relation. Moreover M x [ is a manifold with boundary if M has no boundary, and
Af % I has corners if M has a boundary. These objections present no real difficulties
because, without less of generality, we may assume that

o= [ for otz
T 1A for tz=2/3.

To see this simply define N as fiq) where X is smooth and
(1) A=0 for ¢<1/3
(2) A=1 for t>2/3
{(3)o<ac<i.
It now becomes clear that the relation of diffeotopy is transitive. Furthermore we
see that the open unit interval [or the full real line) can be used in place of [ in the
definition.

Definition. A strong diffeotopy of V to itselfis a dilfeotopy f from V into V'
such that each f; is a diffcomorphism. If fo, fi : M — V are two embeddings, fy
is strongly diffeatopic to fy iff there is a strong diffeotopy F of V to itself carrying
fato fi, ie such that Fy is the identity and Fy o fy = f;.

Two maps f and g may be diffeotopic without being strongly diffectopic. Figure
2 indicates a family of embeddings of R into R?; at the last stage the image of R is
a circle minus a point.

-O-O-O

FIGunE 2.

Clearly there is not even a homeomorphism of R? onto itself which will take the
first embedding into the last. We might hope to avoid such situntions by requiring
that each fi(Af} be a closed subset of V. However there is an embedding of R into
R? which shows that this requirement is not sufficient; it is indicated in Figure 3.

For ju| = 1 the embedding fo satisfies fy(u) = (1, 0, 0). The embedding fp is
diffeotopie to the standard embedding of R in R?. This can be seen by sliding the
knotted portion to the left to oo, as follows: let

Ji(u) Jolu+t/(1-8)) - (f(1-1),0,0), 0<t<1
H_.A:v T._. 0, cv.
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-1 . 1
FIGURE 3.

It is agnin clear that fp and f, are nol strongly diffeotopic. This example is really
just that of Figure 1, with the bad point at oo.

A somewhat more spectacular example of an embedding of R in R? that is
diffeolopic, but not strongly diffeotopic, to the usual embedding is illustrated in

Figure 4.
S -

FIGURE 4.

There are loops infinitely far to the left but there is a rightmost loop after
wihich we have the usual embedding of a line. Clearly, by pulling out the last loop
between { = 0 and ¢ = 12, the second belween ¢ = 1/2 and ¢ = 3/4, elc., we can
get a diffeotopy with the standard embedding, which can certainly be extended to
R? between ¢ = 0 and t = tp for any g < 1. Nevertheless, the fundamental group of
the complement of R® under this embedding is non-abelian, so that the diffeotopy
cannot be extended ta R? between ¢t = 0 and ¢t = 1, {see - Foax, A remarkable
simple closed curve, Annals of Math. 50 (1949}, 264-265.)

These examples should justify all the hypothesis of the following theorem.

THEOREM 1.1. Let M and V' be smooth manifolds. Let fu, fL: M -V

be two smooth embeddings which are diffeotopic under a diffeolopy which

leaves all points fired outside a compact set My C M. Then fu ond f, are

sirongly diffeotopic, under a strong diffeotopy which leaves all poinis fired

outside a compact set Vo C V.

This theorem is due to R. Thom, La classification des immersions, Séminaire
Bourbaki 167 (Dec. 1957). See also R. Palais, Local trivialily of the restriction map
Jor embeddings, Commentarii 34 (1960), 305-312.

Proof. We may assume that f; is defined for all real ¢, and that

o for ¢t<1/3
f h,  for rz=2/3.
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Define amap F: M xR — V x R by F(z, t) = (fi(z), t)- It is easy o sce
that F is an embedding. The map F is indicated in Figure § where V is a line and
Al a point.

FIGuURE 5.
Let Vj be a compact neighborhood of f{Afy x I).
We wish to define a vector field X on V' x R such that
(1) outside of ¥y x I the field X is 2.
(2) in F(M x R} the field X is Fu{£).
(X is indicated by arrows in Figure 5).

If y & (Va x I) and y € F(M x R) these requirements agree: if (2nd, coord y)
# [0, 1] they agree because f, is constant for ¢ ¢ [0, 1]; if (1st. coord y) & Vi then
¥ € f{Ag x I) so they agree since f; is constant outside Mp. Therefore X has been
defined on F(A x R) and outside Vg x 1.

In order to extend X to all of V x R it is sufficient to extend it Jocally {we then
use partitions of unity). At points on the boundary of Vj x I we can clearly extend
X locally by using the field £. If y € F(M x I} there is, by the implicit function
theorem, a local coordinate system (uy, ..., tip41) for ¥V x R in a neighberhood &7
ofpsuchthat UNFM x N ={peV xI:ufp)= ... = tpilp) = 0} where
n=dimV, and k= dim M. It is clear how to extend a vector field on a (k + 1)-
plane of R**! o all of R**!, which gives an extension of X to the neighborhood
of U. If y is in the interior of Vg x I and y € F(M x I) then we can extend the
vector field arbitrarily.

Thus we can got a vector field X on V x R satisfying (1) and (2). We may
also assume that
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(3) the R component of X is always .

In fact we may replace X by X’ where the V-component of X’ is equal to the
V-component of X but the R component is .

Conditions (1) and (2} remain valid.

Let ¢ : V' — V be given by ¢;(x) = first component of solution at time ¢ of
the vector field X, passing through (z, 0). (The second component is clearly ¢, by
condition (3)). The solutions of the vector field X are known to exist locally; their
global existence, from time ¢ = 0 to ¢ = 1, follows from conditions (1) and (3) and
the compactness of Vy x I. By condition (2), if z € M we have ¢1(z) = fi(z). The
family ¢, thus gives us the desired strong diffeotopy of V onto V. (Clearly ¢ leaves
all points fixed outside V5. ) O

Remark. The above prool works just as well if Af is a manifold with boundary.
However, the theorem is false if V' has a boundary, as is seen by pushing a small
circle to the boundary of a large disk, (Figure 6).

FIGURE 6.

2. Embedding a Cell in a Manifold.

Denote a point (zy, ..., z,) € R" by &, for convenience. § denotes (0 ..., 0).

LEMMA 2.1. Let § be ¢ smooth map of R™ into R™ such that f{0) = 0.
Then there are smooth functions §; such that
7 = M%E

and . }

a® = 2L @.

(This second condition actually follows from the first.}
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Prool.
L

5= [y \Msﬁmw&
4 £

il

1
g= [,
- [

THEQOREM 2.2, Let M be a smooth, connecled, orieniable manitfold
of dimension n. Let f, g : R® — A be smooth, orentalion preserving
embeddings. Then f is (weakly} diffeotopic to g.

Proof.

Case 1: M =R", Itissufficient to show that H is diffeotopic to the standard
m:.vnmm_um We can assutme that s {0) = 0, where we are now using the
notation f'=(f1, ..., fu), with fi :R" — R,

Let

Therefore we can let

ME D =7 (td)  for 0.

To examine the behavior of h = {R1s .-y hn) s t — 0 we write, using
Lemma 2.1,

hi(Z, 1) ¢ f;(t5)

Y trau(tE)
i=1

I

MUH..S._.:.&.
i=1

Therefore h is smooth if we define h; by tlis formula on R” x R.

For ¢ # 0 the map T — h(, §) is clearly an embedding. At ¢t = 0 we
have

n
af;
hi(£,0) = Tigi 2
u(Z, 0) m ©1g:5{0) = MH. 720
which is linear, non-singular, and of positive determinant, siuce the matrix

i =
(5o

is non-singular and f is orientation preserving, Thus f is diffeotopic to o
linear map which is diffectopic to the identity.
Case 2: Al unrestricted but f{R") C g(R™). Case 2 is clear from Case 1.
Case 3: f(R")Nng{R"} # #. We can choose an orientation preserving em-
bedding h so that A(R") is a cell in f(R") N g(R"). By Case 2, we have
h= fand h = g, so that f == g.
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Case 4: General case. Since Af is counected there is a sequence of embed-
dings
&. "ﬁua- }_.- ey mu- - g
such that A;(R®) Nh; (R") #0, (¢=0,...,n~1). By Case 3
f=hym=hy=...=hy=
The following theorem is due to R. Paluis and J. Cerf. (| R. Palais, Ertending
diffeomorphisms, Proceedings Amer. Math. Soc. 11 (1960, 274-277.)
THEOREM 2.3. Let D" be the closed unit disk in R*. Let M be a
smooth, connected, orientable maenifold of dimensionn. Let f,g: D™ — M
be orientalion preserving embeddings such that f and g can be extended to
embeddings F', G : R" — Af. Then f and g are strongly diffeotopic.
Actually, F and G will always exist if M has no boundary, so that this hypoth-
esis is redundant.
Proof. This follows from Theorems 1.1 and 2.2. O
Definition. Let M be a smooth, compact, oriented maonifold. The diffeotapy
classes of all orientation preserving dilfeomorphisms is a group under composition,
denoted by wg Aut M.
As an application of Theorem 2.3 we will prove the following.
THEOREM 2.4. mgAut 8™ is abelian.

Proof, Let f : 5* — 5" be a emooth map and let i : D" — S§" be the
“standard” embedding of D" into the northern hemisphere on S™, given by
i{tid) = ((sintn/2)i, costn/2).
Assume that §" is so oriented that i is crientation preserving. We have two maps i,
foi:S" — 8" By Theorem 2.3 there is a fomily of diffeomorphisms A, : §* — 5

with fig = I and hy o f o i = i, which means that k; o f is the identity on t(D").
Therefore [ = hg = [ is diffeotopic to A o f, a map which is the identity on i(D").

Now given two maps f, g: 5™ — 5" let
f = [
9 ~ g
where f leaves the northern hemisphere fixed and g leaves the southern hemisphere
fixed. Then
Jog n.\.l_. nhln Rt H. nﬁfc:..__ lg _“.._.,_—.U_IH.
This last map cleatly leaves ali points of 5% fixed.

3. The Connected Sum of Two Manifolds.

Definition. Let Afy and Al be smooth, conbected, oriented monifolds, both
of dimension n. Let D" be the unit n-disk in R" and let rDB" be the n-disk of
radius r. Let iy : 2D" — M, be embeddings (g = 1, 2}, one preserving orientation,
one reversing it. Form the disjoint sum

T:.u £ u-AWU:Z + —h.;u = uuawbsz
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and identify #;(t@) with iz(t'@) for # € 5~ and 1/2 < ¢ < 2. The result is
denoted Afy#Ma, and called the connected sum of M, and M. It has an obvious
orientable smooth structure.

By Theorem 2.3, the manifold Afy#Mf, is well defined {up to orientation pre-
serving diffeomorphism]). Moieover, it is clear that # is commutative, associative,
and has 5™ as a zero element {up to orientation preserving diffeomorphism).

For convenience we will consider only compact connected oriented n-manifolds
without boundary. Let A, be the set of classes of these manifolds under orientation
preserving diffeomorphism. Then My, with the composition operation #, is a semi-
group.

M;=0.

M3 is a free commutative semi-group on one generatar, the torus.

My is & free commutative semi-group on Afy gencrators.

(This result is essentially due to H. Kneser. See J. Milnor, A unigue decomposition
thearem for 3-mantfolds, to appear.!)

The structure of M, is not known. However, M, does not satisfy the can-
cellation law, as shown by an example of Hirzebruch, and hence cannot be free
commutative. Let M4 = CP? be complex projective 2-space. Let ﬁ.. = M* with
the opposite oricatation. Then it can be shown that

AMYHAMARIT ~ AYE(S? x S
but
MYATT % 5% x S
For higher values of r it may happen that M#N == §™ but M # 5. This definitely
occurs for n = 7.
THEOREM 3.1. [f Af#N = 8" then M is homeomorphic to 5.

Proofl. We form the infinite sum M#N#FM#FN# .-, Since
M#N = N#M = 5" we have

MANFMENGE -« = (MFNYHF(MEN)F---
= SUHSH#S .-
= R".
MFENHFMHENFE -+ = MFINFM)SE(NHEMH#---
= MPS"HSH...
= MF#R".

So R™ = M#R". DBut since M = M#5™ we have Af-point= AM#R" = R".
Therefore Af is homeomorphic to S™.

14 unigue decomposition theorem for $-manifoids, Amer. J. Math. [1962), 1-T; ar Collected
Papers 11: The Fundamental Group. Publish or Perish [1995).
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4. Differentiable Structures on Spheres.

This section will describe constructions by which one can obtain exotic dif-
ferentiable structures on spheres. However the proof that some of the resulting
manifolds are not diffeomorphic to the usunl sphere will only be given Ister.

Deflnition. Let f: §"-1 — §7-! be g difleomorphism. We wish to define
a manifold by taking the disjoint union of two hemispheres and identifying their
boundary (n — 1)-spheres by f. As a matter of convenience, for defining the differ-
entiable structure on this new manifold, we adopt the following procedure: Take
R" + R" and identify tif in the first R® with ¢~1(@) in the second, for i € S"!
and 0 < t. The resulting smooth manifold is denoted Af{f) and is called a twisted
sphere with twist f. Clearly Af{f} is topologically a sphere.

As an example, if 1 denotes the identity map of §7~1, we have M (i) =~ 5.

Remark. It can be shown that a closed manifold M is a twisted sphere if and
only if there exists a smooth real valued function on M with exactly two critical
points, both being non-degenerate. Smale has recently proved that, at least for
n # 3,4, M is a twisted sphere if and only if A7 has the homotopy type of a sphere.

LEMMA 4.1. The correspondence J — M(f) defines a homomorphism
Jrom the group me Aut 5™~ into the semi-group M,,. Thal is,
o (1) if f = g then M(f) is orientation preserving diffeomorphic to
(2) M(gof) 1s orientation preserving diffeomorphic to M(f)#M(g).
uu-..wo—.. If f = g we have the diagram of figure 7, where f: SP~! — S7~! and
g: nm.m.l — 577%; and there is an extension H from the annular region A between
577! and 55! to the annular region B between 53~ and ST (sinee f = g). Let
M = (S UA) + (8 U B) with z identified with H{z) for z &€ A.

.m.a.._ Mml .m.u=-_ .m..”?_
\nﬂm\

FIGURE 7.

It is clear that Af = M (f) and also M = M(g).

To show Af(go f} = M{f}#M(g) consider the dingram shown in figure 8
To form M (f}#M(g) we may remove cell A from M(f) and cell B from M(g) and
identify their boundary n — 1 spheres by the identity map. This is clearly the same
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4 ¢ (e
LAY, 4 & Mig)

FIGuRE 8.

as identifying the hemispheres € and D along their boundory n— 1 spheres by ga f.
a

Definition. The image group of mg AutS*=! under this homomorphism is
denoted by [,. We may describe [, as the group of twisted n-spheres.

Next we describe a procedure for constructing non-trivial difieomorphisms of
§*~!, Let n — 1 = p+ q. Start with two homotopy classes

(/) € mp(80,) and (g) € my(50,)
where S0, denotes the group of rotations of R%. These homotopy classes are
represented by smooth maps
S:R? -2 80,5, amd g: R? — 50,
whete f{z) = e for ||=]| = 1, y(y) = € for |||l = 1. Now define automorphisms F
ond G of RPY7 = RP x RY by
Flz, y) {z. flz)-y)
Gz, p) = (aly) -z u).
Then FGF~'@7! is an sutomorphism of RP*? which Jeaves everything ontside of
DP x D% fixed. Hence FGF'G! extends to an automorphism of the smooth
manifold S§r+4,
LENMMA 4.2. This construction grves rise to o bilinear pairing
7p(504) ® 74{SO,) — w0 Aut S0,

Proof. if fo and £y represent the same clement of mp(50,,) then one can choose
asmooth homotopy f; between them, where fi{x) = efor |{z|| = 1. Now the formula
FGF71G! describes a diffeotopy Letween the cotresponding automorplisms of
Sra,

Next consider the sum of two homotopy classes (fy) and {f2) in mp{S04). We
may assutne that

1
htm)=e for |lell 2 5
and that fo{x) = e except for x lying in a ball contained in the region 1/2 < Jizf| < 1.

Then
Salz) = fi(z) - falz)
represents the homotopy class (i} + (f2). The identity

(RGF'G'WREF'G™Y) = RGF'G!
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now shows that our construction is bilinear.

As an example, suppose that p = g = 3. Then the rotation group SO; has the
sphere 5 as 2-fold covering space. Hence

73(S03) = m(S?) = Z;

and we have bomomorphisms

Z=ZQZ -2 mAut 8¢ 2. ;.

It will be shown Iater that Soa is nen trivial. En fact it is known that I’z is a cyclic
group of order 28 generated by Sa(l). Almost nothing is known abeut mp Aut §°
or image o or kerne] 4.

5. Tubular Neighborhoods

Definition. An ¢-disk bundle is a fiber bundle with the f-disk Df as fiber
and the orthogonal group O(£) as a structure group. An (-dimensional vector
bundle is o fiber bundle with R? as fiber and the general linear group GL(¢, R) as
structure group. (For the definition of & Aber bundle sec N. Steenrod, The Topology
of Fibre Bundles.) A fiber bundle is smooth if all spaces and maps appearing in
the definition are smooth.

Definition. Let M and V be smooth manifolds without boundary, of dimen-
sions & and n = k+-{, respectively. Suppose that M is compact and that i : Af == V
is an embedding. A tubular neighborhood of M in V is & smooth £-disk bundle
with base space A and total space & closed neighborhood N of i(M), such that
the embedding i : Af < N agrees with the canonical cross-section of the bundle
obtained by selecting the center of D? at each point. The projection map 7 of the
bundle is therefore a retraction of ¥ onto M.

We will first show that tubular neighborhoods always exist. For the case
V =R" we will give a detailed proof; we will then indicate how the proof may
be modified for the general case.

If M is a smooth compact k-dimensional manifold without boundary and

i: M — R" is an embedding, where n = k + ¢, define
E = {(z,v) € M x R" : v is perpendicular to i,{AL)}.

If (z, v) € E we can choose a coordinate system v, ... , 4™ for a neighborhood
U of ¢(x) in R® s0 that

M)nU ={yeR" nU:u*(y) = ... = «"(y) = 0}.

Let g;;{y) = inner product of ..q_mq_.._ and %_g. Then a point (y, a, ..., a®) of
M xR" is in E if and only if

n
Y ailwed =0 for i=1,... k

J=1
Since the k x n matrix g;;(y) bas rank k this shows that £ is an n-dimensional
smooth submanifold of Af x R".
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Let exp : E — R" be the map (the exponentinl map) defined by
expl(z, v} = i(z) -+ v; this map is easily scen to be smooth. Let

E = {(x,v) € E: ]| <¢)

and
Ne = {y € R*: d(y,i(M)) < €}.

THEOREM 5.1. For sufficiently small ¢, the map exp is a diffeomor-
phism from E, onlo N,.

It is then clear that Nz is a tubular neighborhood of A.

Proof. Let UV C E be the set of non-critical points of exp. It is easy Lo see
that any pair {(x, 0} € E belongs to I/; and that En_u_c. i a local diffeomorphism.
Choose €; sothat U 2 Uy = {(z, v) € E: ||v]| € &4 }-

Then U, is compact and we may use the following lemma.

LEMMA 5.2. Let Ag be a closed subset of a compact metric space A.

Let f: A — B be a local homeomorphism such that fla, is one-to-one.

Then there is a neighborhood U of Ag such that fly; 13 one-lo-one.

Proof. Let C C Ax A be the set of all pairs (z, y) with z £ y but f(z) = f{y).
Then C is elosed: let (., yn} be a sequence in C with z, — T and y,, — y ; since
f(zn) = fya) for every n we have f{z) = f(y); moreover z # y since f is locally
one-to-one.

Let g : C — R be defined by g(z, ¥) = d{z, Ao)+d{y, An). Then g is everywhere
positive. Siuce C is compact there is an ¢ > 0 such that ¢ > 2¢ on C. Then f is
one-to-one on the e-neighborhood of Ag.

We may apply the lemma to the map exp which is a local homeomorphism on
the compact metric space Uy and one-to-one on {(z, 0) € E}. It follows that for
sufficiently small ¢ the map exp is a difeomorphism of E, into N,.

If p € N, there is a point z of M which is nearest to p. Then the vector i(z), p

—_—

is perpendicular to 1,{};) and has length < e. Therefore p = exp (r, i(z), p) s0
that exp takes F, diffeomorphically onto N,.

In the general case (when V is not R") choose some Riemannian metric g for
V. Define

E = {(z,v): z€ M and v isa tangent vector of Vi) with g{v, i,(Af)) =
E. = [{zx,v) €E: Jalv,v) <€}
Ne = {yeV:oply (M) < ¢}

where p is the (topological) metric on V induced by g.

For small enough ¢ the map exp may be defined as follows: given a tangent
vector v at i(z) let w be the geodesic with w{0) = i(x} and w'(0) = v. Ifeis
sufficiently small w may be defined on [0, 1]. The point w(1) is defined as exp(z, v),

Theorem 5.1 remains true; the proof is the same.

Next we will prove a theoremn which asserts that tubular neighborhoods are
essentially unique. Let i : M/ — V be an cmbedding of the smooth compact
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manifold Af into the smooth manifold V. Suppose that we are given two tubular
neighborhoads of M with projection maps.
TN M o:N - Af

respectively.

THEOREM 5.3, There erists-a strong diffeolopy F; of V' leaving i(Af)

pointwise fired so that

(1) Ry = identity map of V, and
(2} Ry~ 15 a bundie map of N onio N'.

Thus Fy is an automorphism of V which throws each {-disk 7—(z) lincarly

onta the disk #'~%(z).

The proof begins as follows, We may clearly assume that ¥ € E € V [or
N' C E' € V| where E [or E’] has the structure of a smoath {-dimensional vector
bundle over Al which extends the structure of the given k-disk bundle,

LEMMA 5.4. There is a bundle map f : E — E' such that f: E — V

is weakly diffestopic to the inclusion EC V.

Proof. Case 1: Suppose that E  E, and let j : £ — E' be the inclusion
map. Define

Jile) = t71j(te) for ¢t £0,e € E:

wlhiere multiplication by ¢ [or £-1] is the multiplication within the fiber aver n{e)
[or o j{te)].

Choosing local coordinates (z, y) for E where z = (=*, ..., =%) gives the

point in the base space M and y the point in the fiber R? ; and choosing similar
coordinates (z’, ') for ' we have

Je{z, ¥) = {alz, ty), t~'B(x, ty))
for certain smooth maps a and 8, where
Qﬁuu- Ov =TI uﬂuﬂ- Qw =0

{since j leaves M fixed). The first coordinate afz, ty) is clearly a smooth function
of z, y and ¢ even when ¢ — 0.

We can write f(z, y) = 3. y'gi(z, y) by Lemma 2.1. {The extra varizbles r do
not affect the proof of Lemma 2.1.) Thus

2e(z. ¥) = (alz, ), I_ y'ilz, ty))
which makes sense, and is smooth, even for ¢t = 0. In fact
oz ) = (2, ) valz, 0)).

Thus the second coordinate of jy is a linear function £ of g, for fixed x. In order
to complete the proof of Case ! it is sufficient to show that L in non-singular.

Since gi(z,0) = mmw?.. 0) the matrix of L is

op
ﬁ%ah_ Ovv.

JOHN MILNOR 189




PART 2. EXPOSITORY LECTURES

Thu determinant of this matrix is the same as the determinant of the matrix af 3,
s0 it is non-zero. Thus jy is a bundle isomorphisin from F to E'.

Case 2 {the General Case): The set E M £’ is a manifold containing .
There is an {-dimensional vector bundle E® < E M E' (since there is a tubular
neighborhood of Af in E M £’). Then Case 1 may be applied to E and E” and to
E' and E™. This completes the proof of Lemma 5.4. 0O

We now wish to prove that F} can be made a bundle map when the group is
reduced to the orthogonal group O(f). Let L : I — IV’ be a non-singular linear
transformation between two real vecior spaces with o Euclidean inner product. We
will need the following facts:

(1) Any nen-singular matrix A can be expressed uniquely as A = OP where
O is orthogonal and P is symmetric positive definite. (See C. Chevalley,
Theory of Lie Croups I, p. 14.) Furthermore O and P depend differen-
tiability on A.

{2) The set of symmetric positive definite matrices is convex.

Fuct {1) implies that L can be factored uniquely L = OP (where P : W — W
and O ;: W — W) with P positive definite and O an isometry. We may apply
this factorization to the bundle map f constructed in Lemma 5.4 fiber by fiber to

obtain a factorization of f,
L
N
E

f = OP where O and P are smooth fiber maps, P is symmetric positive definite
on each fiber, and O is an isometry on each fiber. Since the symmetric positive
definite matrices are convex the famity of bundle maps

fo=0-t1 + (1 = 1)P)

is o diffeotopy between f and a bundle map E — E' which is an isometry on each
fiber. Therefore we have proved:

LEMMA 5.5. There is a bundle map g : E — E' which is an isomelry
on each fiber such that ¢ : E — V is weakly diffeotopic to the inclusion
EcCV.

Proof of Theorem 5.3. Clearly |y gives a bundle map from N to N', which
is weakly dilfeotopic, in V, to the inclusion N € V. Since N is compact we can
apply Theorem 1.1 and conclude that g|y is strongly diffeotopic Lo the inclusion.
This completes the proof. O

E
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1. Basic constructions

2. Manifolds are homogencous

3. Connected sums and the group A, of invertible exotic spheres

4, The group 'y © Ap of twisted n-spheres, and the homomorphisms
wDilT (5" 1) = T, and 7, (S0p) @ 7, (S0,.) — meDifTt (S™+")

5. The invariant A(M*~ 1) e Q/Z

6. Existence of exotic spheres (added in 2006)

Appendix: Constructing smooth real valued functions

1. Basic Constructions: Smooth Manifolds and Smooth
Maps.

Lot H™ be the Buclidean half-space consisting of all points = = (1, ...,2,) of
the real Euclidean space R" such that z,, = 0. Define the boundary OH™ = R
of H" as the set of all points in H" with z,, = 0. {For the case n = 0, we define
H? = R® to be a single point with vacuous boundary.)

The concept of smoothness (or more precisely C*°-smoothiness') will first be
defined for maps between open subsets of Euclidean spaces or hall-spaces and then
for more general smooth manifolds. If V is an open subset of R* or of H", and
if V' is an open subset of R™ aor H™, then a coptinuous map f : V — ¥/ will
be called smooth if the partial derivatives of all orders 2L nre defined and

x5y 08),
continuous as mappings from V to the real numbers. Note that the identity map

1For the purposes of dilferential topology, une could equally well work with C*-smooth man-
ilolds and C"-smooth maps for any integer r > 1. In fact any CT-smoothness structure can be
upgraded o a C™-gmoothness structure and any C"-difly phism can be approximated by n
C™.diffeomorphism, provided that r > 1. Ilowever, C™ structures are particularly convenient to
work with.
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of V is smooth, and that the composition of smooth maps between open subsets of
Euclidean spaces or half-spaces is again smooth.

Smooth functions to the real numbers will play a special role. We will make
use of the fact that a smooth real valued function on an open subset of H" can
always be extended locally, near any point, to a smooth real valued function on an
open subset of R". (Compare the Appendix.?)

Let V be an open subset of H" or R". By a germ of a function at o poinbzeV
is meant an equivalence class of functions, each defined on some neighborliood of =
in V, where two functions f,, f; defined in neighborhoods Vi, V2 of 2 are said to
be equivalent if there is a neighborhood V3 of z, with V5 C V; N V4, such that h
and fi coincide on V3.

Fixing some point x € V, let S:{V) be the ring consisting of all germs of
smooth real valued functions defined on open neighborhoods of the point x in V.
(Note that 5:(V) = §.(H") if V is open in H", and that SV} >SRNV is
open in R.) The union $(V) = |,y Sz(V) consists of all germs of smooth real
valued functions at the points of V. Note that a function f: ¥V — R is smooth if
and only if its germ at each point x € ¥ belongs to this ring S;(V). Furthermore,
afunction z = f(z) = (filz),..., fm(z)) oM VW0 V' CR™ or V' CH™ s
smoath if and only if each component function f; : VV — R satisfies this condition.
Still anather equivalent condition can be given as follows.

LEMMA 1.1. A smoothness criterion in R", Again let V and V' e

open subsets of Euclidean spaces or half-spaces. A function [ : V — W/

is smooth fthat is, has continuous partial derivatives of all onders) if and

only if, for each x € V and for each germ g € Sy)(V'} of a smooth real

valued funclion at the point y = f(z), the germ of the compositien g o f

al T belongs to S.(V).

The proof is completely straightforward. These constructions should help to
motivate the following,

Definition 1.2. A smooth manifold is a pair (A, S(M}) consisting of a Haus-
dorfl space Al together with a set S{Af) of germs of real valued functions on open
subsets of M, satisfying the following condition:

For each point p € M there is a neighborhood U of p, an open subsct V'

of H* or of R" for some n > 0, and a homeomorphism A : f -+ V, such

that a germ of real valued functions in V belongs to S(V) if and only if
the corresponding germ in I/ belongs to S(Af).

The set S(M) will be called a smoothness structure on Af. The triple (U, V, h) i=
called a coordinale chart for (Af, S(M)), and U is called o coordinate neighborhood
of the point p.

(Occasionally, when the simoothness structure S(AI) is completely clear, we
may simply refer to Af as a simcoth manifold.)

?The proofl requires some work. For an easier presentation, one could just define a smooth
function on an open suliset of H® to be one which extends locally to a smooth function on R™.
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As examples, the hali-space (H", S{H")) and the full Euclidean space (R*, S(R"))
are certainly examples of smooth manifolds. Similarly, any open subset ¥V  H®
or ¥V  R" hos a natural smoothness structure S{V), defined as above. Other
examples will be described presently.

Remarks,

(1) The dimension n is a contisuous integer valued function or Af, and is there-
fore constant on each connected component of Af. In most applications, this dimen-
sion function takes the same value everywhere, and one speaks of an n-dimensional
manifoid, or briefly an n-manifold. However, occasionally it can be convenient
to allow the more general case, where different connected components may have
different dimensions.

(2) If the charts {I/, V, 4) all have the property that each V is an open subset
of R {or of the open hali-space z,, > 0 in H"}, thex we speak of a manifold without
boundary.

{3) It is often convenient to describe a smooth manifold structure by means of
its callections of coordinate charts, We will sce in Lemma 1.4 that this form of the
definition is completely equivalent to the one given above.

The coneept. of a smooth map between arbitrary smooth manifolds can now be
defined as follows.

Definition 1.3. Let (M, S{Af}), (N, S(N)) be smooth manifolds. A continu-
ous map f: M — N is smooth if for each = & M and each p £ Sy(z) (N}, the germ
of o f at T belongs to Sz{M). If the inverse map f~! : N — A{ is also defined and
smooth, then f is called o diffeomorphism (or more precisely a C*-diffeomorphism)
between (M, S{M}) and (N, S(N]).

Evidently the identity map of M is smooth, ¢s is the composition of any two
smooth maps. In the special case where A and N are open subsets of Euclidean
spaces or half-spaces, it follows from Lemma 1.1 that § is smooth in this new sense
if and only if it is smpoth in the original sense (continuous partial decivatives of all
arders).

F1G. 1. Overlapping coordinate charts.
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LEMMA 1.4. Overlapping coordinate charts, Let (U, Vi, h) and
(U;, Vi, h;) be lwo coordinale charis for the smouth manfold (M, S(M)),
and suppese that U; Uy £ 0. Then the composition

By bV (U AU — hy(Usn Uy
r 7

is a smocth map belween open subsels of R" or H". Conversely, let M
be a Hausdorff space and {{U;,V;, h;}} a collection of triples where the U;
are open subsels with union equal to M, where each V; is an open subsei
of some R" or H™, and each h; is o homeomorphism of U, onto V;. If
each tronsition map

hyo Yt (UNU) — by (U.NU)
4 ] 4 1 !

has continuous portiel derivatives of all orders, then there 13 one and only
one smoothness structure S(M) so that (M,S(M)} is a smooth manifold
and so that each h; is a diffeomorphism.

Thus the definition of smooth manifold as given above, in terms of germs of
smooth real valued functions, is completely equivalent to the more customary defi-
nition in terms of overlapping coordinate charts. The proof is straightforward. O

1.1. Operations with smooth manifolds. To conclude this section, we de-
scribe seven basic constructions involving smooth manifolds.

(1) Submanifolds. Let (Af, S{Af)) be a smooth manifold and let & be any
subset of Af. Define the restriction of the smoothness structure S(Af) lo N as
follows: A germ g of o real valued function at the point z € N belongs to this
restriction S(N'} = S(Af}|n if and only if there exists o neighborhood I of  in Af
and a smooth real valued function on &7 whose restriction to I/ 1 [V represents the
given germ g. If this S(NV) is a smoothness structure, or in other words if the pair
{V,5(N)} is 8 smooth manifold, then {N,S(N)}) is called a smooth submantfold of
(M, 8(M)). We waoy also say that (N, S(N}} is smoothly embedded in (M, S(M)).
Note that this will always be the case if N is an open subsct of Af.

{2) Boundary. Recall that the boundary of the half-space H” = {(zy,..., 1.} ;
z, 2 0} is defined to be the subset IH" = {(x;,...,Ta) ; To = 0}. Similarly, for
any open subset 1 C H", the boundary is defined to be the set 9V = V i OH". It
is not difficult to check that any diffeomorphisin between open subsets of H® must
carry boundary to boundary.

For any smooth manifold (M, S{A)), the boundary (8M, S(BA)) is a possibly
vacuous smooth submanifold. We first define the subset 8M C AL IF (U, V. h) is
a coordinale chart for (M, S(AM)), then we sel OU = h~'(9V), and define M to
be the union AU over all such coordinate charls. The closed subset 3Af ¢ M
defined in this way is always a smooth submanifold. In other words, the restric-
tion S(@Af) = S(M)|aar is necessarily a smoothness structure on JAf. In fact
it is not diflicult to check that 87 = U N @A, and that the collection of triples
{(8U5i, 8V;, hilay,)} constitutes a family of coordinate charts with |JOU; equal to
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M. The complement M = A ~ OAf is called the interior of AL, If A is o mani-
fold without boundary (i.c., with vacuous boundary), then every point of Af is an
interior point.

Since OV is an open subset of JH" 2 R"™L, jt follows that 8V is an (n — 1)-
dimensional manilold without boundary: (V) = 8. For any A it follows that
9M is a manifold without boundary. If M has constant dimension n (for example
if M is connected), note that M has constant dimension n — 1.

(3) Tangent bundle. If p is an interior point of a smooth manifold Af, then
a tangent vecior v at p can be defined for example as an equivalence class [¢] of
smooth curves ¢ : (—¢,€) — M, with ¢(0} = p, where (~¢,¢} is some neighbor-
hood of zero in R. By definition, two such curves ¢ and o are egusvalent if, for
some coordinate chart (U, V, k) with p € U, the derivatives dh(¢(t))/dt at ¢ = 0
are equal to the corresponding derivatives dh;(¥(¢))/dt at t = 0. This condition
does not depend on the particular choice of coordinate chart. The sot of all such
tangent vectors at p form a vector space T'Afp. In fact if V has dimension n and if
z(t} = h(¢(¢)}, then the correspondence

] - RM|M3."= = A$..... m%v_nno

maps the tangent vector space T'Af,, isomorphically onto R". Note that any smooth
map f : M — N induces a linear map Df, : TM,, -+ TNy, called the derivative
of f at p, by the formula Df,[¢] = [f = ¢}

If p is a boundary point of A, then we must modify this definition by allowing
curves ¢ 1 [0,€) — Af or ¢ : {—¢,0] — A/ which are defined only on a one-sided
neighborhwod of zero. The corresponding tangent vectors [¢] are said to point
inward in the first ense and outward in the second. Thus the tengent space TM,, at
a boundary pont is the union of o half-space of inward vectors Logether with e half-
space of outward veclors. The intersection of these two balf-spaces is the tangent
space T{DM), of the boundary manifold at p.

The tangent manifold TAf of an n-dimensional smooth manifold A is a 2n-
dimensional smooth manifold which can be expressed as the union of disjoint subsets
TAL,, where p ranges over M. This union TAf is topulogized and given a smoothness
structure so that the following two conditions are satisfied:

(a) If V is an open subset of R® or H”, then TV is diffeomorphic to
¥ x R™ C R* under the correspondence [¢) « (4{0), 42(0)) .

(b) If (I, V, h) is o coordinate chart for M, then (T, TV, Dh) is a coor-
dinate chart for TAl. In particular, the tangent manifold TI/ is an open subset
of TM, and the derivative Dh maps TU difleomorphically onto TV, which can be
identified with V' x R" as above.

It follows easily that every smooth map f : M — N gives rise to an induced smooth
map Df : TM — TN which carries each subset TAJ, to the subset TNy, by the
linear map Df,. Further details will be Jeft to the reader.

{4) Ovientation. By an orientation for a fnite dimensional vector space
IV is meant an equivalence class of ordered bases, where two bases {e;} and
{e} = ¥; aie;) are equivalent {or define the same orientatian) if and ooly if the
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matrix [a;;] lias positive determinant. An orientation for a smooth manifold is n
choice of orientation for every tangent vector space TAlp,, where these orientations
are required to depend continuously on the point p, in the following sense. Each
Po € A should have a neighborkood U and a choice of basis {p — e;(p) & TM,}
depending continuously on p € U, s0 that {e;{p)} determines the specified orienta-
tion for each p € /. The manifold is said to be orientable if it possesses such an
otientation. If a connected manifold is orientable, then evidently it can be given
exactly two possible orientations,

(5) Disjoint sum. Let {{Af, S{M:))}icr be an arbitrary family of smooth
manifolds, and let (4 Af; be the topological sum (that is the disjoint union of the
Af;, topologized so that each M is embedded as an open subset). We make this
into o smooth manifold by setting S(i) Af;) equal to the union of the S(Af;). Evi-
dently each (Af;, S{AL;)) is embedded as a smooth open submanifold of this union
(1) M;, (1 M)

{6) Product, If (M, S(M)), (N, S(N)) are smooth manifolds and if at least
one of the two has vacuous boundary, then we define S{(Af x N} as the unique
smoothness structure on the cartesian product Af x N for which the projections m
and pa are smoath and which satisfies the following universal property:

Given any smooth manifold (X, S{X}} and smooth maps f,, f3, as in the
diagram below, the product function £ = {f;, f;) is also smooth.

(X, $(X))
N f2
(A1, m:::n\ F /»E. S(M)
/ \

(A x N, S(M x N))

This definition can easily be extended to any finite number of factors, provided that
at most one of these factors has non-vacuous boundary.

(7) Quotient manifolds. Let (M, S(A/)) be a smooth manifold and let < be
an equivalence relation on Af. Then we can form the quotient space A/, together
with a canonical projection j : Af — AI/%. If this quotient space is sufficiently well
behaved, then it can be given the structure of a smooth manifold, with smoothness
structure S{Af/~) defined as follaws. A germ of a real valued function i ot the point
y € M/~ belongs to the ring Sy (M /<) if and only if the germ of the composition
0 7 belongs to Sz(M) for every z in the equivalence class j~!{y). I M/% is
a Hausdorff topological manifold, aud if S,{Af/<) is a smoothness structure on
this manifold, then (A/%, S(Af/%)) is called the quotient smooth manifold. As
&n example, if A = R"*! ~ {0} and if the equivalence class j~'(j(z)}) is the set
(R~ {0})x consisting of all non-zero real muitiples, then the quotient space R*+1 /5
is called the real projective space RP™. If we carry out the same construction using
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complex numbers in place of real numbers, then we obtain the complez projective
space CP™, which is a 2n-dimensional smooth manifold.
5till another important construction, pasting together the boundaries of two
smooth manifolds via a boundary diffeomorphism, will be deseribed at the end of
the following section.
2. Manifolds are Homogeneous.

This section will first prove the following.

THEOREM 2.1. Equivalence of disk-embeddings. Let f : D" -+ M

and g : D" — A be two smooth embeddings of the closed disk D" as

submanifolds of the interior of a smooth connected n-dimensional manifeld

M. If M is orientable, we assume also that these two embeddings hove

compatible orienialions. Then there erists ¢ diffeomorphism h: M — Af

such that ho f = g, where h is equal to the identity outside a compact

subset of the interior of M.

The general strategy of the proof can be described as follows. (Compare PALAIS
[1960].} We first compose f with a diffeomorphism £, so that hy o £(0) = g(0).
Then we compose with a further diffeornorphism kg so that the embedding Agoh o f
is actually tangent to g at 0. After composing with still another diffeomorphism,
we may suppase that the two maps coincide throughout some neighborhood of 0.
Finally, by deforming both f and g down into this small neighborhood we can
complete the argument.

This proof will depend on a number of Jemmas, starting with the following
global form of the inverse function theorem.

LEMMA 2.2, Diffeomorphism criterion. 4 smooth map f: A= N

i3 o diffeomorphism if and only the induced map Df : TM — TN is

bijective (ie., one-io-one and anto).

In other words, £ is a diffeomorphism if and only if (a) f itself is bijective, and
(b) for each p € Af the linear map D, : TM, — TNy, belween tangent spaces is
also bijective. .

Proof. First suppose that f : V -+ V' is a map between open subsets of R" or
H". Then the proof proceeds just as for the standard inverse function theorem. It
is convenient to identify T'V with V¥ x R, and to use the slightly modified notation

Df(z,v) = {f(z), Pfs(v))
for the induced map of tangent bundles in this case, where Df: con be identified
with the n x n matrix of first derivatives at z. Write the Taylor series at a point as

flz+4rx) = f(r) +DL(A2)+R,

where the remainder term satisfies [|R|/JAzl| — Cas Az — 0. 1fy = flz) and
¥+ Ay = f(z + Azx), then we have

y+4ay) = z+4z = W)+ DLy A +R',

where R = —{Df}~}(R). It follows easily that [R'||/Ay]| — 0 as Ayl — 0, s0
that £~} is differentiable at y, with a derivative D(f 1)y ={Df:}~" which depends
continuously on y. Thus f~! is at least C'-smooth throughout the set fVy=v',
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Now let us apply this same argument to the smooth map F = Df : TV — TV,
A Dbrief computation shows that the (2a} x (2a) matrix DFj; ,) Las the form

Aam . &mv

where » stands for the matrix of sccond derivatives of f at x. Thus DF is also
bijective, bence ! is at least C'-smooth. Since the matrix of first derivatives of
F~! contains the matrix of second dexivatives of f=', this implies that f-! is at
least C?-smooth. Now applying this same argument to F, it follows that F~! is at
least C2-smooth, hence f is at least C¥-smooth. Continuing inductively, it follows
that §=! is C"-smooth for every positive integer r.

This proves Lemma 2.2 for open subsets of R® or H?. The transition to arbi-
trary smooth manifolds is straightforward, using local coordinate charts. O

Using Leinma 2.2, we will prove that smooth maps of R" which are sufficiently
close to the identity must necessarily be diffecmorphisms.

LEMMA 2.3. A diffeomorphism criterion in R". Let f: R" — R"
be a smooth map such that

for all points i R™ and ell 1, §, where (5;;] is the tdenteily matriz. Then f

is a diffeomorphism.

Proof. Let us write f(x} = = + a(z), with compenents fi{z) = =i + ai(z)-
These functions a;{r) evidently satisfy, }fa;/0z;] < 1/2n, for all i and j. It will
be convenient for this proof to use the maz norm on Euclidean space, defined by
the formula ||zlmax = max{|z|, ..., [za.]}. II we follow a broken path from z to y
in R", changing just one coordinate at a time, and apply the mean value theorem
to each segment of this path, then we see that

n n
jai(z) —ai(p)f < M m.ﬂ.._H._. -ul = M %"_H = Ylmex = w__.a = Ylmex
=1 =1
henee
lla(z) = a(mMlmax < §ll= = Ylimax
for all z, y € R". Thus the mapping x — a(z) contracts distances uniformly.
It follows that f is bijective. For if we choose any base point z € R" and set

g:{x) = z-alz),
then clearly the map g, from R" to R" also contracts distances uniformly,
llg:(=) — a:() < 3ltz - pl}-
lence, by a standard argument, g, has one and ouly one fixed paint z = g:{z). In
fact, if we start with an arbitrary point y € R™ and apply the map g, over and

over again, then the resulting orbit y — g.(y) — g:(g:(y)) » ... will necessarily
converge to this unigue fixed point . But clearly x is o solution to the equation
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S{x) = z+a(z) = £ if and only if g.(z) = z —a(x) is equal to . Thus the equation
J{z} =z has one and ouly one solution .

For any z € R", the linear map Df. : TR? — TR}, also satisfies the hypoth-
esis of Lemma 2.3. Hence the argument above also shows that each D f; is bijective.
Hence, by Lemma 2.2, f is a difeomorphism. O

LEMMA 2.4. Moving a point in R*. IfV is a neighborhood of the

point p € R", then for any g € R" which is sufficiently close to p there

ezisls ¢ diffeomerphism [ : R® — R™ with f(p) = q such that f is the

identity outside some compact subsel of V.

Without loss of generality, we may assume that p = 0 and that V contains the
closed unit disk. Let o : R — R be a smooth function such that

1, if u<1/2,

W=V0 i v>1.

{Compare Lemma A.1 in the appendix.) Let g be a point in R" and
Filz) = z; + ol i, where jz]] = /3 Hm is the Euclidean norm. Then

3fif0x; = &i; + 2z;0' (|=)) i,
from which it follows that
101:f0z; — &5 = [2zi0" (1P i .

Therefore, it suffices to take {jg|| less than 1/(4n max{jo’{x)|}) to mect the condi-
tions of Lemma 2.3 and conclude that £ is a diffeomorphism which maps the origin
to ¢ and equals the identity cutside the compact subset |z|| < 1 of V. This proves
Lemma 2.4. 0

LEMMA 2.5. Moving a point in a manifold. Let M be u connecicd
smooth manifold with interier M. Given any two points p and g in M,
there erists o diffeomorphism f : M — Al such that f(p) = q. In fact

we can always choose f to be a diffeomoerphism wnth compact support con-

tained in Al

That is, we can choose f so that f{z) = x for z outside of some compact subset
of the interior of Af.

Proof of Lemma 2.5. Let p be a point of M and (I, V, ) o coordinate chart,
with p € U and h : -V © R®. By Lemma 2.4, there is a neighborhood V!
of h(p} in V so that we can mave A(p) to any point of V' by a diffeomorphism ¢
which is the identity outside of o compact subsci of V. Hence we can move p to
any point of A~'{V’) by a diffcomorphism A~ o ¢ o A which is the identity outside
& compact subset of U. Evidently A~! o ¢ o h extends to a dilfeomorphism of the
whole manifold M.

Now define an equivalence relation on AT by sctting p equivalent to g whenever
there exists a diffeomorphism of Af onto itsell with compact support in M that maps
ptog. By the above arguments, the equivalence classes are open, and therefore
closed. Since Af is connected, there can be only one equivalence class. O
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LEMMA 2.6. Realizing a prescribed first derivative map at o
point. Given an isomorphizm (orieniation preserving if the manifold is
orientable} of the langent space TAf, of M at p onio the tangent space
TM,, the diffeomorphism of Lemma 2.5 can be chosen such that the de-
rivative Dfy, : TAf, — TAl; is egual to the given isomorphism.

Proof. First consider the cose p=g=0¢& R". Let

f(z) = = +o(llzl*) Liz)

where L(z} is a linear transformation of R™ into itsell, and where

1 i u<iy2,
quT. i ouxl,

as before. Then, 8f;/0z; = &; + 2x0'([|2]*}Li(z) + o(liz|*)BLi/Oz; . If the
8L;/0z; are sufficiently small, or in other words if the linear transformation L is
sufficiently close to the zero map, then, [8f;/0x; — &;j| < 1/2n . Therefore fis a
diffeomorphism, with f(z) = z for ||z]| > 1, and

fix) = s+ L{x) for [x®<1/2.
Thus f{0} = 0, and the derivative Dfy is equal to I + L, where [ is the identity
map and L can be any linear map sufficiently close to zero.

This implies that the subgroup consisting of all I + L € GL(n,R) for which
there exists a diffeomorphism f of R® with compact support, with {0} = 0, and
with Dfy == I + L, is open. But an open subgroup is necessarily also closed, since
its cornplement is the union of cosets which are open. Hence this subgroup must
contain the connected component of the identity.

When the manifold is orientable, Lemma 2.6 follows immediately. If the man-
ifold is not otientable, an argument similar to the proof of Lemma 2.5 shows that
there must exist a diffeomorphism with compact support that maps p onto p and
reverses the local orientation. The conclusion then follows easily. O

LEMMA 2.7. Extending a given germ to a difeomorphisin. Given

a point p € M, and a diffeomorphism [ of some neighborhood of p inlo
M whick preserves the orientation, there erists a diffeomorphism k of M
onto itself which coincides with f in a smaller neighborhood of p.

Proof. After compaosing f with a diffeomorphism of Af, we moy assume by
Lemnma 2.6 that f(p) = p and that the derivative Df, is the identity map of the
tangent space Tp M. Thus, choosing a coordinate chart, it suffices to consider the
case where A is a neighborhood of the origin 0 € R™, with p= f(p) =0 and with
(8i/8x;)(0) = d;;. Let f(x) = x +a(z), with a(0) = 0 and (8a;/0z;)(0) = 0. Now
choose r > 0 sufficiently small so that f is defined throughout the gisk ||z|| < 2r,
and set,

h(=) = z+a(e)olliel?/rY),
with o as above. Then & is a smooth map which extends throughout R” with

hz) = ﬁE. if sl <1/v2,

T, if llxlj = r.
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Furthermore, 4 is a diffeomorphism if r is sufficiently small. In fact,
OhifBz; = & +2z;a(z) o' Izl /r) /1 + (Dai Oz} o,

and as r — 0 we have, figl/r - 0 ond Ba;fdz; — 0 forall Jjxf) < r , with
o, o' and {z;|/r bounded. The conclusion follows, using Lemma 2.3. O

LEMMA 2.8. Extending disk embeddings. Any smooth embedding

J 2 D" — M of the closed unit n-disk into the interior of n smooth n-

manifold can be extended to an embedding f : D™(1+2) — M of a slightly

larger disk.

Proof. Identifying the tangent space TD" as usual with the product D" x R",
consider the outward unit vector feld £ — (2, 2/lzfl) for 2 € D® ~ {0}. Note that
Lhe associnted differential equation dr/dt = x/||z|| has a unigue integral curve

z(t) = tu for 0<tx1

which meets the boundary D" = S™=! at n specified unit vector . Using the
diffeomorphism Df : TD" — T(f{D"}}, we obtain a corresponding vector field
y— wiy) &€ TAl, for y belonging to the image disk f{D"} C M. Thus the differen-
tial equation dy/dt = w(y) bas general solution t v y = f(tu) for 0 < ¢ < 1, where
u cun be any point in the sphere $7~}. Using a partition of unity, it is not difficult
to extend the vector field w throughout some neighborhood of f{D"). (Compare
Lemma 2.14 of the Muikres Lecture Notes on page 162.) The solution curves then
extend also, 50 as to be defined say for 0 < ¢ < 1 +¢. There is then a unique
extension f of f to the open (1+¢’)-disk so that these extended solution curves are
given by ¢ — y = f{tu). Using Lemma 2.2, it follows that § is a diffcomorphism
on some sufficiently smail neighborhood of D", say the neighberhiced H%(1 + £} of
radiug 1 +¢. 00

Proof of Theorem 2.1. Recall that f and g are embeddings of the closed
disk D" into the interior of Af. Choose extensions f and § as in Lemma 2.8. By
Lemma 2.7, after composing one of these two embeddings with a diffeomorphism of
M, we may assume that f(z) = g{z) for |jz]| < ¢, provided that & is smalt enough.
Now let e, : R -+ R be a monotone smooth function such that

aafi) £, if r<l,
£ 1, if  r>l+g/2,

and consider the diffcomorphisie §, : B" — E" defined by S.iz) = zo.lllzl).
Making use of 5., we can define an auxilinry diffeomorphism F : Af — A by the
formula
Fip) =" ) il pgiD(l+e/2),
foSco/ M ph i pef(D(1+¢).

Then, Fo f(z) = foS,(z) = flez) = glex), forall z € D. Similarly define a
diffeornorphism & of Af so that G o g(z) = g(ex) for = € D". Then applying G*
to bath sides of the equation Fo f = Gog, wesee that i = G~ o F is the required
diifeomorphism of Af, with ko f = g. 0
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To conelude this scction, we discuss a way of constructing new manifolds out
of old by pasting together diffeomorphic boundary components. Let (M, S{Af]] be
a smooth manifold with non-vacuous boundary.

Definition. An open neighborhood U C Af of DM is called o collar neighbor-

hood of AT if (I, S(U)) iz dilfeomorphic to the product (DA x [0,1), S(BM x [0,1))).

Whenever this is so, the diffeomorphism can be chosen in such a way that each point
pin OM C U is mapped to the pair (p,0) € M x [0,1).

THEOREM 2.9. Collar neighborhoods. If the boundary QA is com-
pact, then 8M has a collar neighborhood within the menifold M.

A proof can be outlined as follows. (Compare the discussion of tubular neigh-
borhioods in §3 of the Munkres notes, page 168, or in §5 of the Lectures on Dilferen-
tiable Structures, page 187.) Using a smooth partition of unity, one can construct
a smooth Riemannian metric on Af. Then any point p € Af which is sufficiently
close to JAf can be joined to OM by a unifue geodesic of shortest length. (This
shortest patlh is necessarily smooth, and mcets the boundary at right angles.} Let
fip) € DAl be its boundary endpoint, and let £(p} be the length of this shortest
path, or in other words the Riemannian distance between p and f(p). Then the cor-
respondence p — (f(p), £{(p}/e) maps the e-neighborhood of A diffeomorphically
ounto OM x [0, 1), provided that £ is sulficiently small. O

Now let (M, S(Af])), (N, S(N)} be smooth manifolds, and let Afy and Ny be
connected components of the boundaries 8Af and JN, respectively. We suppose
that these two boundary components are compact, and that they are diffeomorphic
to each other under a diffeomorphism i : My — Ny, Let P = AM Uy N be the
identification space in which Af; and N are pasted together under h. In other
words, let

P = MU, N = (MyN}/r

where the equivalence relation r is such that each p € Af) is equivalent to h(p} € Ny,
but otherwise points are equivalent only to themselves.

COROLLARY 2.10. Pasting together boundaries. Under these
conditions, there exists a smoothness structure S(P) for P such that (P, S(P))
is a smooth memifold and contains both (M, S(M}) and (N,S(N)) s
smooth submanifoelds,

Proof. We need only specify the smoothness structure 8:(P) at the points
of the identified boundary. Choose collar neighborhoods &/ = AL x [0,1) and
U= Ny x (=1,0] of My and N; respectively. Then the union U Uy, U’ can clearly
be given a smoothness structure so that it s diffeomorphic to Afy x (—1,1). Further
details are siraightforward. 01

Remark. If we are given explicit collar neighborhoods with explicit diffeomor-
phisms to Afy x[0,1) and Ny % (—1,0), then this smoothness structure is unique. In
fact, with a little more work, one show that collar neighborhoods with prescribed
product structure are unique up to diffeomorphism of the ambient manifold. Hence
the resulting swooth manifold (P, S(P)) is also unique up to diffeomorphism.

02 COLLECTED PAPENRS

SMOOTH MANIFOLDS WITH BOUNDARY

3. Connected sums and the group A, of invertible exotic
spheres.

Let Af and N be smooth n-dimensional manifolds which are connected and
oriented. Then the connected sum M#N is a new smooth manifold, well defined
up to orientation preserving diffeomorphisn. Intuitively, it can be construeted by
cutting a small disk out of cach manifold and then pasting together the resulting
boundaries. However, to keep control of arientation E:_ smoothness structure, we
proceed more carcfully os follows. Let f : D™ — AF, g : D" — N be smooth
embeddings such that f preserves the orientation and g reverses it. Define an
orientation preserving diffeomorphism A : f :u: ~0) — g(D" < 0) by

h{fire)} = g{(1 ~ r)u)

for every unit vector u € S"~! = D" and for every 0 < r < 1. Then, by definition,
the connected sum

M#N = ?7 .:sv Us ?7 ﬁsv

is obtained by remaoving one point each from M and N and then pasting together
the neighborhoods f{D" ~. 0) and g(£5® . 0) of these points under h.

Evidently M#N is also a smooth orieated nr-dimensional manifold, compact
il both M and N are compact, and connected provided that n > 2. It follows
easily from Theorem 2.1 that this sum is well-defined up to orientation preserving
diffeomorphism.

LEMMA 3.1. Properties of connected sums. IfAf, N, P are
connecled, oriented, smooth manifalds of ditnension n > 2, then:
(1) AMl#SM =M,
(2) M#N =2 N#AM,
(3) MFH{INH#P) = (MEN)#P,
(4) MR = M ~ (point), and similarly
(5) M#D™'2 A ~ f(D"), where f(D") is a smoothly
embedded disk. Furthermore:
(8) The connected sum of a surface of genus g and ¢ surface of
genus h is diffeomorphic lo a surface of genus g + h.
Here 2 stands for the relation of orientation preserving diffeoinorphism, and
8" stands for the unit sphere in R"*! with its standard smoothness structure.

Proof. The proof is not diffienlt, and will be left to the reader. O

It follows that the set of all oriented diffeomorphizm classes of smooth ori-
ented n-manifolds forms a commulative monoid, that is, a commutative nssociative
semigroup with 2-sided identity element. We will be particularly interested in the
submonoid made up out of compact manifolds without boundary:

Definition. Let M, be the set of equivalence classes, under arientation pre-
serving diffeomarphisin, of connected, orientable smooth n-manifolds which are
compact and without boundary. Evidently the connected sum operation makes
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i, into o commulative monoid with the equivalence class of 57 as identity ele-
ment, for n = 1. {For compact manifolds withoul boundary, even the case n = 1
makes sense, although it is not very interesting.} As examples:

13 has only the identity element.

93 is a free monvid on one generator, namely the surface 5* x ! of genus one.

;3 is & free commutative monoid with infinitely many generators. (See KNESER
{1929], MiNonr {1962]. These papers consider only piccewise-linear manifolds,
However, in dimensions < 3, it follows from MUNKRES [1960a, 1964] and Hinscu
{1963}, together with SMALE [1050b], that there is a one-to-one correspondence be-
tween smooth manifolds up to diffeomorphism and piecewise-lincar manifolds up to
piecewise-linear hameomorphism. Furthermore, Moise [1952] showed that topolog-
ical manifolds have on essentially unique piecewise-linear structure, in dimensions
<3}

However, P, is not free. Indeed, let CP? be the oriented comnplex projective
plane and let TP be the complex projective plane with opposite oricntation. Then
(CP?#TP)#TP° = (52 x S)%#CP, although CP*#TPB° 3 5% x 52 .
Thus the cancellation law does not hold in 831,, 50 this monoid is certainly not free,

Here is an outline proof of these statements. I M is any complex manifold
of complex dimension 2, then the connected sum Af %m—wu can be identified with
the manifold obtained by “blowing up” a peint in Af. (Compare MCDUFF AND
SALAMON [1995 p. 216].) On the other hand, identifying 52 with CP!, the bira-
tional correspondence, (1: z) x (1: w)} — (I:z:w), between CP! x CP! and
CP? gives rise to an analytic isomorphism between CP! x CP* with one point
(0:1) x (0:1) blown up and CP? with two points (0:1:0) and {0: 0: 1) blown
up. {(Compare GRIFFITIIS AND HARRIS [1978, pp. 478-180).) However, the two

manifolds CE>#CP and 5% x 5% are not diffeororphic; in fact their cohomology
rings are diflerent.

We will be particularly interested in elements of f,, which admit an inverse
under the connected sum operation.

Definition. Let A, be the subgroup of 591, congisting of all invertible elements.
As examples, it follows from the discussion above that A;, A3 and A3 contain only
the identity element. On the other hand, we will see that A7 is non-trivial.

THEOREM 3.2. (Maozur), #-Invertible manifolds are topolog-

ical spheres. If M and N are smooth connecled n-munifolds, and if

M#N = 8", then M as e lopological space is homeomorphic to 5™.

COROLLARY 3.3. If the group A, is non-trivial, then S™ admits two

or more essentivlly distinct differentiable structures.

In order to prove Theorem 3.2 we introduce the concept of an infinite connecled
sun.

Definition 3.4. Let Ay, Afz, ... be smooth connected n-manifolds and let
Hr:D" — AL,
Jogi: D" — M, i=2,3,...
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be smooth embeddings such that the f; preserve orientation and the i Teverse it
with £i{D") N gi(D"} = @. Cousider the disjoint union

{1 (M~ i) & [ (M~ (£0) 0u(0)})

22

and the equivalence relation,

Jru} ~ gipi{(1~r)u), dor ufj=1,0<r<1,i=1,2,...
The quotient of the disjoint union of Equation (1} with respect to the equivalence
relation ~ is by definition the infinite connected sum, My # Mz 3 My # - .

One then shows, as for finite connected sums, that the infinile sum is well-defined
and associative.

Example 3.5. [t is easy to sce that, S™ #£ 5" # --- = R".

We can now give a proof of the theerem,
Proof of Theorem 3.2. If M#V & S” then we have,
R™ = (M#N)#(MAEN)HE--- = MP(NSMME--- o M#ER® = M ~ point,
which implies that Af is homeomorphic to the n-sphere. O
The preceding theorem is contained in the following.
THEOREM 3.6. Characterization of #-invertible manifolds. If
M 13 an oriented, compact and connected smooth manifold without bound-
ary, then the following conditions ere equivalent:
(1) M#N = 8" for some N.
(2) M ~ {point} =R".
(8) Af = Uy U, with Uy, Uy open in M and both thffeomorphic to
Mﬂn—

(1) If J(D") € Ml is an embedded disk, then the complement
M~ f(D") can be smoothly embedded in 5°,

K M :
m

R

= d'ems gy onsks oin)

FiG. 2. On the right: Proof that (3) = (4). On the left: Proof
that (4) = (1).
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Prool. The proof of Mazur's theorem shows that (1) impliey {2). To sce that
(2) implics (3} it is enough to take U; = Af ~ p;, with distinct points m and po.
To show that (3) implies (4), first note that Af ~ U} is compact aud is contained
in Uz. Let fi : R"SU; € M. Then f;'(M ~ U)) is a compact subset of R, s it
is contained in some disk D"(r) of large radius. Then M ~ fz(D™r)) c U, = R".
Consequently, Af ~ f2(D"(r)) can be embedded in R® < S®, as required. (It is
enough to prove this for just one smooth embedding of a closed n-disk, since any
two such embeddings are equivalent by Theorem 2.1.)

The proof that (1) implies (1) can be autlined as follows. Intuitively, the state-
ment that M#N = 5" means that there exists a smooth embedding ¢ : S*~! — §»,
cutting the n-sphere into two regions AT and N with ¢(5™="') ns common boundary,
50 that if we fill the hole in Af with an n-disk we obtain the manifold M , while if
we fill the hole in N with an n-disk we oblain N. But condition [4) implies that
the manifold Af (that is, Af with an open disk removed) can indeed be embedded
in S”, 50 that we can construct the required manifold N. To make this argument
mote precise, let f be a smooth embedding of the disk D" in M. By (4}, there
oxists a diffeomorphism g from the open set Al ~ f({D"(1/3)) onto an open set
U € 5™ Let A = D"(2/3)~ D"(1/3) be the n-dimensional ‘annulus’ consisting of
vectors = € D" with 1/3 < [|z]| < 2/3. We construct a new manifold N from the
disjoint swm of the disk D"(2/3} and the apenset V = 8§"~ a(df ~ S(D"(2/3)))
by pasting A c D (2/3) onto g{f{A)} C V by the diffcomorphism g o f o p, where
plru) = (1 — #)u. Then we claim that the resulting manifold N = V Ugrs D™(2/1)
has the required property that M#N = 87 In fact, let i : by - N
be the inclusion map. Then M#N can be obtained from the digjoint sum of
Mo~ f(D™(1/3)) = U and N ~ i{D™(1/3)) = V by pasting together the subsets
J(A) and 1(A) under iopo f~' But g on the frst summand and the inclusion map
V — 5" on the second induce a diffcomorpliistn of this identification space with
s~ 0

Remarks. Except in dimension 4, we can make the sharper statement that a
smooth n-dimensional manifold is homeomorphic to 57 if and only if it is invertible
under #. For n =< 3 this is true trivially, since there is only one differentiable
structure on the n-sphere, up to diffeomorphism, in these dimensions. (Compare
the discussion of My above.) For the discussion of dimensions n > 5, sce the next
section.

4. The group I, C A, of twisted n-spheres, and the
homomorphisms mDifft(5"') — I, and
Tm(SOn) @ 7a(S0,,) — m DI+ (S™+n).
One particularly casy way of constructing an exotic n-sphere is to take two

copics of the closed disk D" and paste their boundaries together by some diffeo-
morphism

Hnrm.:lp — .m.:l— .
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More precisely, in order to keep track of smoothness structures, let us work with
the full Euclidean space R™ in place of the unit disk.

Definition 4.1. Let Dif*{$%~!) be the group consisting of all oricntation
preserving diffeomorplisms of the {n — 1)-sphere. Given any f € DifH(5"~?) we
construct & new smooth manifold

E{f) = R"ugR",
homeomorphic Lo the n-sphere, by pasting together the subsets R" ~ {0} under the
diffeomorphism
F{tu) = f(u)ft for ueS" ! and O0<t=coo.
This manifold £(f}, with the oriestation coming from the first copy of R™, will be
called o twisted n-sphere, with twist f.

Since L(f) is homeomorplic to the first copy of R", together with a single point
at infinity, it is certainly homeomorphic to the standard n-sphete.

Definition 4.2. Two difficomorphisms f,g: Al — N are said to be smoothly
isotopic if there is a family of diffeomorphisms hy : M — N, where ¢ ranges over
the real numbers, so that

I
hy

and so that the correspondence

Jf for t<0
g for t21,

(t,x} v~ M(zx)
defines a smooth mapping from R x Af to N.

It is easy to check that this is an equivalence relation between diffeomorphisms.
In the special case where M = N, the set of all smooth isotopy classes of diffeo-
morphisms from Af to itself will be denoted by mgDilf{Af). The composition of
diffeomorphisms defines a group structure in the set DIlf(Af) of all diffeomorphisms,
and hence in myDiff{Af). This is a non-abelian group, in general. (As an exam-
ple, mDiff(S* x 5') can be identified with the group GL(2,Z) of 2 x 2 invertible
matrices.) However:

LEMMA 4.3. Commutativity. The group myDifi* (5") of isolopy classes

of orientation preserving diffeomorphisms of the n-sphere is abelian.

Proof. We will make use of Theorem 2.1 in a slightly sharper form: Any two
smooth orientation preserving embeddings of the n-disk in a connected n-manifold
are equivalent under a diffeomorphism of the manifuld which is isotopic to the
identity. In fact the proof in §2 can easily be modified to provide this sharper
statement. Now let f;, f2 be any two elements of Difi (5"). Denote by DY and
D2 the upper and lower hemispheres of S", respectively. There exists Ay and A,
both isotopic to the identity, such that Ay o f; |pn is the identity map of D" and
ha o fo _uuf is the identity map of D%. Then clearly h; = f; commutes with by o f3,
Therefore fy o f; is isotopic to fpo fy. [
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LEMMEA 4.4. Twisted splieres. The correspondence () — E{ [} grves

rise lo a hemomorphism
mDillt (s — 4,

frum the commutative group of sotopy classes of erientution presering

diffeomorphisms of S"! into the commutative group A, of mvertible ex-

olic n-spheres.

By definition, the image of this homomorphism will be called the group 'y € A,
of twisted n-spheres.

Proof of Lemnma 4.4. We must first show that if f is isotopic to g, or in
other words if 9" o f is isotupic to the irlentity, then B(f) is diffeomerplic to £(g).
Let {A¢} be a smoath fumily of diffcomorphisms k, : 57! — $"1 wlere we may
asswne that hy is the identity map for ¢ < 1 and that he=yg"v0 f for £ > 2. Then
the required diffeomorphism from Z(f} =R"UrR" to E(g) = R" Ug R" is given
by the formula

tu = th(u)
on the first copy of B", and by
f(u}/t — gohu)t
on the second. It is easy to check that this expression is compatible with the
identifications, and defines the required diffeomorphism.
Now we must prove that

Z()#E(g) = B(ye ).

In fact il iy, iz : R — E(f)} are the embeddings of the two copies of R® into Z(f),
and if 3), 75 : R — B(g) are the correspanding embeddings for E(g), then we can
then form a maonifold difeomorphic to the connected sum from the disjoint union

(BN~ (0] @ (S(a)~ (@)
by identifying the subsets i(R" ~, {0}) and 7 (R" ~. {0}) under the correspondence
tu — uft. (This is a slight varintion on our construction of the connected sum,
but is easily seen to be equivalent to it. Compare Theorem 2.9 and its Corollary.)
In other words, we form the disjoint sum iH(R") F2(R") and then identify the
complements of the origin under the composition

tu o flu)/t =0 f(u) = g(f(u))t
But this is just the required manifold E(g o f). Thus our correspondence

mDIff (5"~ — A,

is a well defined group homomorphism, Evidently the image is just the group of
ariented diffeomorphism classes of twisted spheres. CF

Remarks, There are several other important characterizations of twisted
spheres. An argument due to Rees {1952} shows that a closed n-manifold is a
twisted sphere if aud only if it admits & Morge function with only Lwo eritical
points. According to THoa {1959], the manifald A" is a twisted sphere if and only
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il a Cl-triangulation K — A yields a simplicial complex K which is piecewise-
linearly homeomarphic to the standard piecewise-linear sphere,

In dimensions n # 4, every smooth manifold Lomeowmorphic to §” is a twisted
spliere, so that Ty = A,. In fact, for n < 3, as noted in the previgus section, we
have Ty = A, = 0. In dimensions = 7, STALLINGS [1960] proved that any compact
combinatorinl manifold without boundaty having the homotopy type of ue n-sphere
is the union of two open subsets piecewise-linearly homeomorphic to R", and hence
is invertible and homeomorphic to §°. (Compare Theorem 3.4.) Smaik [1960,
1961, 1962 proved an even sharper version of this statement, showing that every
smooth homotopy n-sphiere is a twisted sphere if n = 5. Thus only dimension
four remains open. In fact, CERF [1968] showed that Ty = 0, and FREEDMAN
[1982) showed that every homotopy 4-sphere is a lopological 4-sphere. However,
the possibility that Ay 3 0, and also the possibility that there exist smoothness
structures on the d-sphere which are not #-invertible, remain open, as far as [
know.

For these constructions to be useful, we must have some way of constructing
non-standard diffeomorphisms of spleres. One easy construction can be described
as a bilinear pairing

B T (80,) @ m(SOm) — mDift(§™t") .

Here S0, is the rotation group, congisting of n x n orthogonal matrices of deter-
minant +1, which acts linearly on the Euclidean space R", (As a geueral reference
for this material, sce STEENROD [1951, p, 25].} Every element of the homotopy
group 7,,,(80,,) can be represented by a smooth map

¢:R™ — 50,

with compact support. That i3, we zssume that d{x} is the identity matrix I,
for |jz|| sufficiently lorge. The set of all smooth homotopy ctasses (with uniform
compact support) of such maps ¢ forms a group, using the coraposition aperation
@1 - ¢p2 which comes from the product in SO,,:

(91 da)lz) = ¢(z)- palz) .

(This is completely equivalent Lo the more standard definition in terms of contin-
uous maps from the m-sphere and cantinuous homotopies.) The resulting group
Tn{S0,) is commutative, since we can always deform one of the two maps ¢; by a
homotopy, so that the two have disjoint support.

Given ¢ : R™ — 50, and t : R" — SO,,, both smooth with compact support,
we use the action of the rotation group on the corresponding Euclidean space to
construct diffecomorphismg

¢, ¥ € DIfit(R™ x R™)
as follows. For each £ € R™, y € R", set
@AH. tv = AH. ﬁnHvﬂw. Gﬁ.d. Eu s ?_‘.:ﬁvh. 5 :
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The commutator oW odh=1oW~¥ i then a diffeomorphism of R™ x R®. 1t is easy
to check that this commutator has compact support, in the sense that

bdoWod low Y z,y) = (x,p)

whenever either ||z]| or ||yl is sufficiently large.

Now identify R™ x R" = R™" with the complement of a point py € §+",
under stereographic projection. Then this commutator extends uniquely to a dif-
feomorphism of S™+" which is the identity in some neighborlood of py. Let

Alg,¥) € mDifit(5*"*")
be the isotopy class of this extended commutator.
LEMMA 4.5. The pairing 3. This construction gives rise lo a well de-
fined bilinear puiring from Tm{S0) X7 (S0m) to the group my DIl H{§™+").
Proof. Clearly the isolopy class §(¢, 1} depends only on the smooth hometopy
class of ¢ and . To prove that

maﬁ— .o_vu- ﬁ-u = h:v-. ﬁbw + mﬁﬁn. @w
we simply deform ¢, so that its support is contained in the disk {z € R™; ||z < 1}
and deform ¢ so that its support is contained in {x € R™; 1 < |lz]| < 2}. After
this modification, the two corresponding diffeomorphisms ¢, 0¥ o .v_l od! and
dro0Wody Yo~ will have disjoint support. The conclusion then follows easily, O

The final two sections will outline a proof that, for suitable choice of m and n,
the compaosition
Fen(SO0) © 7 (50m) — DT (S™") = Progntr

is non-trivial.

5. The invariant A(M%-1) € Q/Z.

This section will first describe the Hirzebruch Signature Theorem. For all
details of proof the reader is referred Lo HiRzEBrucH {1966], or Lo MiLNOR AND
STASHEFF [1974]. We then use this thearem to construct a diffeomorphism invariant
A which can be used to distinguish between different smoothness structures on the
gphere S~ for guitable k.

Let B be a commutative ring and ry,x3,... indeterminates, where by del-
inition the indeterminole x4 is assigned degree d. Consider the ring of poly-
nomials P = Blxy,xz,...]. We deline the degree of o monomial x4, x;, -z, a8
fy #1124+ ++ 1, and we denote by Py the finitely generated B-module consisting of
polynomials in 9P which are homogeneous of degree &. Thus P = B Py is a graded
B-algebra, with P = B and with PP,  Prys.

Let Ky, K, I3, ... be a sequence of polynomials

Ky = Kj{zy,....z;) € By,
with Ky = 1. Then to every formal power series of the form

@) =1+pz+pa® +--
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we can assign a new formal power series
K(f(z)) = 1+ Ki{p)z + Ka(pr, p2)2® + Ka(ppas pa)2® 4 -+,
or in other words
= r oo .
K1+ pe) = 3 Kytpuroomi)e
F=1 Fu0

We say that {K;} is a multiplicative sequence if this correspondence f{z)} — K f(z)
is a multiplicative homomorphism. Equivalently, setting

-+WH“.Nm < AH._.MH.‘N‘V A—+Mw_uuu..v

i=l

where z, 2, =, are indeterminates, the sequence {#;} is multiplicative if

W_ﬁ.?._......nvm - AW,_@F.:..H;& AWE?__.....&EV.
j=0

=0 F=0

LEMMA 5.1. Classification of multiplicative sequences. Civen a
Jormal power series H“lw F.Nu with coefficients in B, where by = 1, there
ezisis onc and only ene multiplicative sequence {K;} which satisfies the
condition that the coefficient of Hm_ in Ky{xy,..., ;) is equol to b; for
ench j, or in other words the condilion that K maps the formal power

series f(z2)=14+z240+0+4--- to
K(142) = 1+byz4+baz® 4.« .
By definition, vU.w.ol.c b;z! is the characteristic series for the multiplicative sequence
(K3}
Proof. The proof of this lemma is based on the identity
K +4,2)- K{l4t,2) = K(l4 0124 022° 4+ +0a2") ,

where the t; are indeterminates of degree one, and where the o, are the elementory
symiuetric functions of the #;. Details will be omitted. (8

Now let us specialize to polynomials with evefficients in the field Q of rational
numbers. To every smooth manifold Af" there are associated the Pontrjagin classes
pi € HY{M"; Q) of its tangent bundle. Thus to any multiplicative sequence {1}
with rational coeflicients we can associate cohomology classes

Kilpa, ... p) € HY(A™Q).
In particular, if Af™ is compact and oriented, without boundary, of dimeunsion
n = 4k, then we can integrate the cohomology class Ki(p , ...ps) over the man-

ifold {or in other words evaluate it on the fundamental homology class [AM¥]
H¥(A1; Z)) to obtain a characteristic number Ki(p , ..., p;j)|M**), or briefly

K[Ar¥ € Q.
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We set K{AI"] = 0l n is not of the form 4k, The multiplicative property of the
sequence A7} yields the identity

K[A™ x N7 = K{M™]- K[N7) .
Now reeall the theary of cobordisin as defined by THoM [1954]. Two smooth closed
oriented manifolds A" and N™ are oriented cobordant if there is 4 stnooth compact
oriented (n+1}-dimensional manifold whose boundary consists of A/* with its given
orientation, together with N" with the opposite of its given orientation. Thom

showed that the collection £, consisting of all cobordism classes of closed oriented
manifolds forms a graded ring which, up to torsion, is a polynonsial ring

. eQ = Q[cp?, CcP, CFe, .. ],

generated by the complex projective spaces CP?* of real dimension 4%, Further-
more, he showed that a manifold Af** represents the zero element of 02, ®RQ if and
ouly if all of its Pontrjagin numbers p;, - -- p;, [A/**] are zero.

One important tepological invariant of a closed oriented df-manifold is the
signature. (The term ‘index’ is also used in the literature.) The definition follows.
Given any basis ay, ..., ay for the middle dimensional coliomology H2*{Af*;Q),

the cup products a;a; € H'*5{A1**; Q) give rise to a symmetric matrix

a;a, [AL%]
of rational numbers. Clioosing the basis so that this matrix is diagonal, the
sum of the signs of the diagonal cotries a}{A74%] is defined ta be the signeture
sgn[A%] € Z. (This choice of notation is supposed to suggest that the signature
has properties quite similar to those of a characteristic number.) If the dimension

n is not of the form 4k, then we define sgn|Af®] to be zero. Thom showed that
this signature is a cobordism invariant, with

sgn[M™ x N"| = sgujd™)| . sgn[N"] .
He then cencluded that the signature can be expressed as a rational linear combi-
nation of Pontrjagin nwubers. More precisely, following HinzerrucH [1966]:

THEOREM 6.2. The signature formula. There ts one and only one
mulliplicative sequence {L;} unth ratienal coefficients which solisfies the
wlentity

LICP?™| =1
for every complex projective space CP*. It follows that
LiM™ sEn[A")

Jor every smooth closed oriented manifold. The associaled characteristic
series s given by the fermula

¥ .z F# m: e e B
2_+-T§._:\m|_+u e+ f.ﬁmﬂ 1) gmr_

where By = 1/6, By = 1/30, By = 1/42, ... are Bernoullt numbers.
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For example

7 -1} 62p3 ~ Lipyp; + 2pf
Lilpr) = B, La(p,pa) = PEHL 1y, o o) = 222 0P 3 200
3 45 915

The proof will be omitted.

Since the polynominl L, is homogencous of degree k, we can express it as a
i sum

R

hr?-. cre i) = bw?—.. s =1 _.uv + 8P,
where the coefficients
3t =1/3, 33 =T7/45, 53 =062/045, ..., s, = 222" _1}B, f{2n)l
are certain non-zero rational numbers. From this we obtain the following.
COROLLARY 5.3. The expression
mﬁ:—__:_ . hkc_._.. ey Pl O:b:
Sk
is an integer, equal lo the Ponirjugmn number pi[M).

Now let 11" be o compact, counected smooth manifold of dimension 1% with
boundary 81 = M. The cohomalogy sequence of the pair (I, M) takes the form
oo YD) WA L W) S A
| where rational coefficients are to be understood. If Af has the rational cohomol-
ogy of a sphere, that is if H(M) = Hi[{§%-1), then the homomorphism j is an
isomorphism for 0 < i < 4k, and & is an isomorphism for i = dk. For0 < i < k,
it follows that the Poutrjagin class p; &€ H4(11’) pulls back to a well defined clasy
_ 3~Vp € HY(W, M).
The orientation of IV determines n hemomorphism [IV] = #4%(W, A6 — Q,
still using rationnl coefficients. We define sgn[IV] to be the signature of the bilinear
form determined by the composition

H%(W, M) @ HA*(iv, ar) - 1%y, ary M g,
Then we can define a rational number A(VW, M) by the formula
N Ffi-l i=lg,
>:—....>~u = mm_——_— _ hrc Ply-eas ]} _E.Iu.c::\_ € O .

8y i
As examples, for & = 1,2,3 (simplifying the notation slightly) we obtain the ex-
pressions
45 - 2 045 - - 253
A u.mmz_:I_. 15 mm.u..+3 _=\n_. 945 - sgn nm: + 13mp ___:u_
_.E—F.n:qruw.
LEMMA 5.4. The invariant A. The residue closs of this retional num-

ber A(W, Al) modulo Z depends only of the smooth oriented mantfold A,
and not on the particular choice of oriented manifold WV with boundary
{ Al In other words, if 0| = OWa = A then

AW, M) = AV, Af)  (mod Z) .
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We now define the invariant A(Af) € Q/Z to be this common residuc class
A(W, M) mod Z. As an example, if A is diffeomorphic to the standard sphere
under a diffeomorphism h : Al — S'%-1, then we can attach a standard 4k-disk
to . The resulting union &/ = W Uy, D** can be given a compatible smoothness
structure by the Corollary to Theoremn 2.9. It then follows easily from the discussion
abave that A(W, M) = p[U] € Z. Hence the invariant MAf) € Q/Z is zero.

The proof that A(M) is independent of the choice of 1V proceeds as follows.
Suppose that A = 81 = §IV;. Form a closed ariented manifold I = ¥, U, 1V
from the disjoint sum ¥, & W; by pasting together boundaries under the identity
map ¢ of M. Here we give I/ the orientation frem ¥y, so that the embedding
¥, — U is orientation preserving but the embedding Wz — U is orientation
reversing. As above, this union If has a compatible smoothness structure.

We next note that the relative cohomology ring of the pair (Uf, Af) splits natu-
rally as a direct sum

H* [, M) = H (W, M) @ H (W, M) .
In fact we have the following diagrum, where the inclusion maps
ky : (W, M) — (U W), ka: (W, M) — (U, W3),

induce isomorplism of cohomology rings. (This is the Eilenberg-Steenrod ‘excision’
property.)

HI-Y AL
X /
H1W, M) H HY(WWh, M)
it i
k} HYU, A6 k3
it 47
Ha(U, W) I H3(U, W)
L n3
H(L)
m; my
Ha(W) - Hs(Wy)
hy hy
H3(Al)
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Here cach triangle is commutative and each straight line corresponds to an exact
setjuence, so that

Im & = kerj*, Imj* = ker :*,
Imj, = keri, Imn, = kerm], fora=1,2.

It follows easily from this dingram that the homomorphisms ji and if, induce
isomorphisms

HYU, W) @ HIWU, W) = HYU,M) = BV, MY HI(Wa, A1),

a3 required. Furthermore, these isomorphising commute with cup products.
Next note that we have o commutative diagram of hemomarphisms

H () e JA(U, M) — H*(IV,, M) @ HY% (1, AT)
___.._._ —_-—.._ =W}
Q = Q

where the minus sign on the right is used since 11 und U/ have opposite orientations.
Since

H*U) = H%(U M) = H¥*(WVy, M) & H*(V, A,
it follows easily that
sgn[U} = sgoil¥y] —sgu[ivy) .

On the other hand, for every 0 < i < k it follows from naturality properties of the
Pontrjagin class p; that the isomorphism

HY () = HYOW ) @ HY (1)

earries p(U) to p:(1V)) @& pi(1Va) . From this, it follows casily that the Pontrjagin
numbers of the union {7 are given by the formula

Poopi U] = gy WA = iy oo pe W]

provided that iy, ..., i. < k. Combining these statements, we see that the differ-
ence A{WWy, M) — A(VW, M) is equal to

mﬂz—h\_ - hrg- y roe oy PR—14 ﬁ; ﬁc_
Sk

= mlU].
Hence this difference is an integer, which completes the proof of Lenuna 5.4, O

This invariant A(Af%*-!) & Q/Z is defined for any simooth ariented (4k — 1)-
dimensional manifold which has the rational colhomology ff*(A*~1; Q) of a sphere,
and which represents the zero clement of the cobordism group £4¢y. In fact we
can clarify these conditions by noting the follewing result.

Assertion 5.5. If a closed oriented manifold AI™ has the mod 2 cohomology
of a sphere, then it is a boundary, that is it represenis the zero element of {1,,.
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Proof. In fact, such a manifold Af™ must also be a rational cohomology sphere.
It then follows from “On the cobordism ring Q° and a complex analog, I" (pages
257-273 of this volume), or from Aversun [1959) or Novikov {1960, 1962], to-
gether with THoM {1054, that A/™ can only represent a 2-lorsion element in the
cobordism group fl,; and according to \WALL [1960] it must actually represent the
zero element. O In particular, the invariant A{(M**~!) is defined for any smoeth

W..-w

H.a.a

FiGg. 3. The connected sun of boundarics.
{4k — 1)-manifuld which is a topological sphere.
LEMNMA 5.0. The homomarphism A. This construction yielids a well
defined homomorphism from the group Ay of #-invertible manifolds
into Q/Z.
Proof. We must show that
MMM = MAL)+ AMAMR).
Consider the manifolds Afy = 81V;, My = 3115, Let f, g be proper embeddings of
D=V i My and Al respectively, f preserving the orientation and g reversing it;
let p: (D%=1-.0) — (D¥*-10) be defined by p(ru) = (1-r)uzand F = gapof1,
Then with F we obtain My #Mz. We consider D*! as contained in the boundary
of % Let B4, E™* be the half-disks or radius 1 and 1/2 respectively (see Figure
3). Then p, f, g, F can be extended to diffeomorphisms j3, .... L a, respectively:
p: (E%~0) — (EY* < 0),
: E¥ i,
EY* o W,
F=jgopofl:j CW:./S - §E*~0).

'-':a Sy

Let us sel
W = {111 ~ f0)) U (W ~ g(0)).
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We have :F: W = M#AL.,

Let W, = _5 - :.m..#v. W, = Wy — glE"¥). Then iV, is diffecmorphic Lo
W, and W =11, Ugr Wy, where F is the restriction of F to the imnge under fof
:.a boundary of E™ in m_ #*_ 8o we conclude thut W, 117, is homeomorplic to
D=1, Therefore it is contractible and when forming the 286_. -Victoris sequence
of the proper triad (W; W[, Iy} we obtain the isomorphisms

HA(W) 2o (W) @ HY W), q>0.
In this way we obtain the relation o(1V) = a(117) +o(1Wz), and also the analogous
relation for the Pontrjagin numbers. From this it follows that
A(W) = A(Wi) + A(IV2), and the lemma is proved. O
6. Existence of Exotic Spheres (added in 2008).

In §4 we showed how to construct examples of twisted spheres, and in §5 we
described an invariant MAf) € Q/Z which can distinguish between different twistec
spheres. However, to evaluate A{A) we must present this twisted sphere A as the
boundary of a smooth compact manifold. This final section will tie these two
chaplers together by carrying out this construction. {(Compare the discussion in
the paper “Differentisble Structures on Spheres”, on pages 35-15 of this volume.
This will be referred to briefly as [DSS).)

In fact we will describe certain smooth manifolds M{f,, f2) of the forin

M{h, f2) = 0W(A, f2),
where W({f;, f2) is a siooth compact manifold of dimension p + ¢ having the

hometopy type of the union 57 v 57 of two spheres intersecting in a single point.
Here, for the moment,

Hh:8' >80, and fi:597 =850,
can be arbitrary smooth maps. To begin the construction, consider the union
(D x DY) v (DP x DY) U (D x D)

of three disjoint copics of the product DF x DY, {This is illustrated in Figure 4
for the ease p = ¢ = 1. Here ench dotied line is supposed to be identified with
the opposite dotted line.) Now paste the two partial boundaries SP~! x D7 and
507! x D7 together by the diffcomorphism

Filz,¥) = (=, hiz}-v),
where [lzf| = 1. Then the union {D* x D*}Upr, (D} x DY) can be described as the
D?-bundle over the p-sphere nssociated, with the homotopy class {f)) € #,_1(SO,).
{Compare STEENROD [1951}.) I will use the notation £{f;) for this disk bundle.
We will be particularly interested in maps which satisfy any one of the following

three equivalent conditions.

(1) The disk bundle £(f,) admits o nowlhere zero cross-section.

(2) The associnted vector bundle splits as the \Whitney sum of an

R '-bundle and a trivial line bundle.
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57Dy D« DY
Ex.m.u:. t ._.m.u Drx st b“xv.«..
DY =D} DPxDr DYx B}
o ) Fi £
— —_
7 ppesy
DDy

FiG. 4. Construction of W(f1, f2).
(3) The map f, factors ns a composition §7~! — $0,., € 50,, up to
homotopy.
Similarly, we can paste the two partinl boundaries DPx 59! and D x 57! together
by the diffeomorphism
Fax,y) = ?As ‘x, &.
where [lyl| = 1. Then (D? x DY} UF, (D} x D3} will be a DP-bundle £(f;) over the
g-sphere. The union
_”U.“.- ® Uv C.Jl» Ahum_ b4 UJC-...LUW X .UM”_

will be the required manifold W ({1, f2). Evidently the zero-sections of these two
disk bundles are spheres of dimension p and g which intersect transversally at the
midpoint of DF x D9,

There is of course a technical difficulty here, in that 11{f;, f2), 0s described,
would have a corner along the submanifold $7~' x 59! of its boundary. We will
assumme that the differentinbile structure has been modified near this cOrner, 50 as
to smooth it out. (Compare the discussion in §8 of “Differentiable Manifolds whicl
arc Homotopy Splieres™, on pages 65-88 of this volmue. )

THEOREM 6.1. If at least one of the two disk-bundies £(f,) and £(f2)

has a nowhere zero cross-section, then the boundary

M{f1, f2) = OW{fy, fa)

is a twisted sphere. If both of these bundles have nowhere zero sections,
then this twisted sphere can be idenlified with the image of 3($y, ¢2) under
the homemorphism

B 5 Tp-1(5041) @ 741 (S0p-1) — TeDIfFF(S7*9°2) — Tpygs
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of Lemma 4.5, where Tpyq_y i9 the group of all twisted {p+ g~ 1)-spheres.
Here ¢y and ¢ are lo be homotopy classes which map lo (f,) and (f2)
undes the natural homomorphisms

qﬂtluﬁmOalnv bl qﬂ-u!-ﬁmoqw end .a.n_l;mo_ul_v -— H.AI—AMO«L A
Proof. The first statement is an inunedinte consequence of {DSS, Lemuma
1, p. 36]. To prove the second statement, note that the boundary M(fi, fz) =

AV (fy, f1) can be obtained from the digjoint union (DY x S¥~') U (5°-1 x DY)
by gluing boundaries together under the diffeomorphism

m.noh..._.l_ 5 M_.WI- x mm_ln -t h%l— X QM!-.

However, letting Fy oct as a diffeomorphizm of 5% =1 x D3, we sce that the gluing
map

FloRyo Pyl 807t x 11 - 85t x 8371
will give rise to o diffeomorphic manifold. Similarly, we can compese on the
right with the diffeomorphizm Fy' of D} x $§™!, 5o s to obtain the commuta-
tor o Fao F” 1o m.nl. as gluing map.

Now let us use the hypothesis that the image f1{57~") lics in the subgroup
804-1 € S0y, and that f(897!) € 80,_; C 50,. Intuitively we can think of eacl)
Ji(x) as a rotation which fixes the north and south poles of 5971, and each fa(y)
us a rotation which fixes the poles of SP~!. Furthermore, after deforming f, and
Jf2 by homotapies, we may assume that fy(z) is the identity rotation, except for =
in a small disk N, around the north pole, and similarly that fao(y) is the identity
unless y € Ny. It then follows easily that

FioFaoF{ o Fy'(z,y) = (z,y) unless (r,y) € Ny x Ny.
In other words, a manifold diffeomorphic to M{fi, f:) ean be obtained from the
standard (p+q— 1)-sphere of radius v/2 by cutting it open along the set Ny x Na ©
5°~1 x 89! and then pasting the two resulting copies of Ny x Ny together by
FioFyo ™' o F'. The construction of Lemma 4.5 is almost identical, except
thot we cut along a bi-disk in the equator of §7+9-1, Since it is casy Lo deform on
set onte the other by an isotopy of 57+9-1, this completes the prool. O

Now let us compute that invariant

A(Mn 1) € @z

of Lemuna §.4. It is easy to see that this invariant is zero unless both p and g
are divisible by 4, so let us assume that p = 4m and g = 4n. We will prove the
following,.
LEMMA 6.2. Lel fra(fi) € Z be the integer oblained by evaluating the
Pontrjagin class py(£(f1)) on the fundamentel homology cluss of the base
space §', and define Pa(f2) similarly. Suppose that at least one of the
bundles £(fy) and £(f2) has a non-zerv section, so that M{f;, f:) 1s a
tunsted sphere. Then

MM, f2)) = &5 ) Bl f2)smon/omn (mod Z),
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where the sign depends an orientation choices.

Proof. (Compare [DSS, §3].) It is not hard to see that the signsture of
W =W{f, fa} is zero, aud that the only relevant Pontrjagin number is puga[tV].
Thus the only problem is to compute the coefficient of p,p, in the Hirzebruch
polynomial L4 .{pi, 2, ..., Pstn)- To do this, consider a closed manifold N4®
whose only non-zero Pontrjagin number is p,[Nn], so that the signature formula
reduces Lo

mﬂ-.A.?Z:u = 48n E-LZ.—:_ .
If AF¥™ i3 an analogous manifold of dimension 4m, then using the identity
sgn(M x N} = sgn(M) - sgn(N),

a brief computation shows that the coefficient of pp, in the polynomial L., ., is

equal to i
ImBn — Sman if m#En,

{SnSn = Bman)}f2 i m=n,
wiere 5., is the cocflicient of py;,. On the other hand, Pmpu|WV] is equal to

either p,,(fi) Pa(f2) or to twice this nunber according as m # n or m = n. The
conclusion follows. O

According to Himzeprucit [1966, p. 12|, the coefficient s, is given by the
formula
s, =222 |, f(2m),
where the B, are Bernoulli nmnbers. (For relevant information about Bernoulli
numbers, compare MILNOR AND STASHEFF [1974, Appendix B.)
Here are some numerical values, expressed ns quotients of products of primes.

a 1 2 3 4 5 6 7 8

B 1 1 1 ) 5 691 2 A 3617
w 33 T3 237 238 Fa0l 735713 23 T35-17

. 1 7 2.31 137 273 12389631 2725191 31151 3017
"3 ¥E FET FET FEn FEITILIE FET3 FEVT 11317

liowever, in order to muke use of Lemma 6.2 we need to kinow what values of 5, (f;)
are possible.
LEMMA 6.3. If g <2m then the homomorphism

Pin 2 a...—:..._ﬁmo.n“_ - Z

15 zero; but if g > 2m then its image is a non-zero additive group. The
generator of this group is ¢ multiple of (2m — 1)!, and its prime divisors
are el < 2m.

In fact, if g > 4 then Bott showed that that Lhis image is generated by either
(2m — 1)l or 2(2m — 1) according as m is even or odd. (Compare BoTT AND
MILNOR on page 220-231 of this volume.) The general case follows by using results
of Serre on stable omatopy groups of spheres. For details, see |DSS, Lemma 5) on
page 43. O

Below is a table showing the denominators of the quotients 3,8, /Sm4n, €X-
pressed as fractions in lowest terms, for oll m and i with m € n < 2m and
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m+n £ 8. Those prime factors which are less than 2n are shown in parentlesis,
gince by Lemma 6.3 they will cancel against factors of Ba(f2). (In fact, all of the
useful factors seem to come from the numerator of $p4p.)

m n dimension denom{sm5n/5m4n)
I 1 7 7
2 2 15 (3)-127
2 3 19 (5)-73
3 3 23 23-80- 401
a4 a7 (2-5-7)-8101
4 4 A& (7)-91.151- 3617
3 5 3 {3)-31-151.3017

As an example, using either of the last two lines together with Lemmas 6.2 and
G.3, we see that there exist at least 31- 151 - 3617 = 16931177 distinct differentiable
structures on the 31-dimensional sphere.

Appendix: Construction and Extension of Smooth Real
Valued Functions.
The first two Iemmas will construct certain smooth functions of one real vari-
able.

LEMMA A.l. There exists a C=-function ¥ : R — [0,1] such thet
W(t) = 0 for |¢| = 1, with Y{0) = 1, and with n-th derivative D"H(0) ~ 0
Joralin>1.

Prool. Start with
et for t>0
0, for t< 0,

the standard example of a function which is C° but not real analytic. Evidently
@(8) > 0 if and only if ¢ > 0. It follows that ¢{t) + ¢(1 — ) > 0 everywhere. The

ratio
n(t) = #(1 - )/ (9(t) + #(1 - 1))
is then a C*-function satisfying 0 < n{t) < 1, with n{¢) =0 for ¢t > 1 ond n{t) = 1
for t < 0, Setting ¥(t) = n(t?), we obtain a function with the required propertics. O
LEMMA A.2. Given ¢ completely arbitrory seq e of real numbers
ag, a1, az, ... there enists a C™ map f : R = R whose n-th derivative at
the origin is equal to a, fer each n > 0.

é(t) =

Proof. Choose numbers by > |ax| + 1, and set
(2) FO) =3 anw(but) tkl,
k20
with ¢ ay above. If the k-th term of this series is non-zero, then we must have
|bit| < 1 hence

| ax (but) 5 /R < b -1 (1/be)5 /R < 1K
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for k > 1. Thus the series of Equation {2) converges uniformly, hence f is a well
defined continuous function. Note also that f(¢) = 0 for |¢] 2 1, since & > 1 for all
k.

It follows by induction on a that the n-th devivative of the k-th term in the
series ean be expressed as a sum

min(k.n)
@ D avlbt)m) = Y @ axb YN (k- 5y,
1=0
where "= stands for the derivative D"~/y evaluated at the point bet, where
again we may assume thut |bye| < 1. From this, we casily obtain an upper bound
of the form
0" (g (bet) * /K1) < Ca b}/ (k = n)!
for k > n, where C, is a constant which depends only on n. Now sum over k = n
for fixed n. Since the resulting series converges uniformly for each n, it follows that
£ has continuous derivatives of all orders.

Finally, for the special case ¢ = 0, note that the j-th term of the summation
of Equation (3) is equal to a, if § = & = n, and is zero otherwise. It follows that
D" f{0) = a,, as required. O

We now apply this lemma to study a local smooth function on the closed Lalf-
space H" C R".,

LEMMA A.3. Let V' be a neighborhood of the origin in R*, and suppose

that f: VNH" — R has continuous pariial derivatives of all orders. Then

there exists a smaller neighborhood V' of the origin in R™ and a smooth

Junction g : V' — R whick coincides with [ throughout the intersection

V' nH".,

Proaf. It is convenient to identify points of H” with pairs (z,t) e R"! xR
where ¢ = 0. Let ax(x) be the k-th partinl derivative of f{z, 2} with respect to ¢ at
¢ =0. Let D, be the closed e-disk centered at the origin of R*! x R, where ¢ is
small enough so that D, C V, and choose real numbers by, so that b > 1+ |ax(z)|
whenever ||zi| < e. For every (z,t) in D, sct

fz, b, i t=0
glx,t) =
Do () (bt R, i i<o
Then it is not difficult to check that g is smooth throughout the interior of D,.
Since g clearly coincides with f whenever both functions are defined, the conclusion
follows. O

For a much more general statement about smooth extensions of real valued

functions defined on subsets of Euclidean space, the reader is referred lo WHITNEY
[1936).
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ALGEBRAIC TOPOLOGY

This section will consist of the following four papers:

On the parallelizability of the spheres [with [L Bott), Bulletin
American Mathematical Society 84 (1958) 87-89.

Some consequences of a theorem of Bott, Annals of Mathematics
68 (1958) 444-449.

On the Whitehead homomorphismn J, Bulletin American Mathe-
matical Society G4 (1958) 79-82.

Bernoulli nwnbers, homotopy groups, and a theorem of Rohlin
(with M. Kervaire), in “Proceedings International Congress of
Mathematies 1958", Cambridge Univ. Press (1960) 454-458.

FiG. 1. Raoul Bott at the Bonn Arbeitstagung in 1969
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