
Appendix A

Topology

A.1 Definitions

A topology on a set X is a collection U of subsets, called open sets, such that
X ∈ U , the union of any subfamily of U belongs to U , and the intersection of
two elements of U also belongs to U . A topology can be defined by prescribing
a set V of subsets of X to be a ‘subbase’ of open sets: then define U to consist
of arbitrary unions of finite intersections of elements of V . A set W is a base
of open sets if every open set is a union of elements of W .
A subset F of X is closed if its complement X \ F is open. If A is any subset

of X (in particular, if A is a point) a subset V of X is a neighbourhood of A if
there is an open setU with A ⊆ U ⊆ V .

If Y ⊂ X is a subset of a space X with a topology U , the subspace topology
on Y is given by taking as open sets theU ∩ Y withU ∈ U .
A topology is said to be Hausdorff if for any x1 �= x2 ∈ X we can find

U1, U2 ∈ U with x1 ∈ U1, x2 ∈ U2 and U1, U2 disjoint, i.e. U1 ∩U2 = ∅. This
is a rather weak condition, and all spaces we will consider are Hausdorff. In a
Hausdorff space, each point is a closed set. There are also stricter separation
conditions (which hold for smoothmanifolds): a topology is completely regular
if any point x and closed set F not containing it are contained in disjoint open
sets, and normal if disjoint closed sets F1, F2 are contained in disjoint open sets
U1, U2 ∈ U .

A mapping f : X → Y between two topological spaces is continuous if
whenever V is open in Y , f−1(V ) is open in X . It is a homeomorphism if f
is bijective and both f and f−1 are continuous. We call f an embedding if it is
injective and gives a homeomorphism between X and f (X ) with the subspace
topology.
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A.1 Definitions 297

An important condition on a topology is the existence of a countable base of
open sets. This holds for Rn since we can take the balls with rational radii and
centres having rational coordinates.
A set U = {Uα |α ∈ A} of subsets of X is a covering if

⋃
α∈AUα = X ; it is

an open covering if each Uα is open in X , and it is locally finite if each point
of X has a neighbourhood intersecting only a finite number of the Uα . A cov-
ering V = {Vβ |β ∈ B} of X refines U if for each β there is an α such that
Vβ ⊆ Uα .

The space X is compact if for every open covering U , a finite subset of U
already covers X . It is locally compact if every neighbourhood of a point con-
tains a compact neighbourhood. Since any point has a neighbourhood which is
a disc, any manifold is locally compact. A space is paracompact if every open
covering has a locally finite refinement by an open covering.
Any compact subset K of a Hausdorff space X is closed. For if x �∈ K, then

for each k ∈ K, x and k have disjoint neighbourhoodsUx, Vx. The K ∩Vx form
an open cover of K, so there is a finite subcover. The intersection of the corre-
spondingUx is an open neighbourhood of x disjoint from K.
If {Ua} is a locally finite family of subsets of X and K ⊂ X is compact, then

K has a neighbourhood intersecting only finitely many of theUa. For each point
k ∈ K has such an open neighbourhood Nk; we may choose a finite subset of
the Nk which cover K, and their union is a neighbourhood of K with the desired
property.
If f : X → Y is continuous and K ⊂ X is compact, the image f (K) is com-

pact. For if {Uα} is an open cover of f (K) we can write Uα = f (K) ∩Vα with
Vα open in Y . Since f is continuous, f−1(Vα ) is open in X , and these give an
open covering of K. Taking a finite subcovering here gives a finite subcover of
{Uα}.

Thus if K is a compact space and f : K → Y is continuous, f takes closed
sets to closed sets, so if f is bijective it is a homeomorphism; if f is injective,
it is an embedding.

Lemma A.1.1 If X is a locally compact space any neighbourhood of a com-
pact set K ⊂ X contains a compact neighbourhood of K.

Proof Let U be the given neighbourhood of K: then U is a neighbourhood of
each x ∈ K, so we can find neighbourhoods Ax, Bx, Cx of x in X with Cx ⊂
Bx ⊂ Ax ⊂ U and Ax,Cx open and Bx compact. Since the open sets Cx cover
the compact set K, there is a finite subcover {Cxn}. The (finite) union of the Bxn
is compact and contains the open neighbourhood

⋃
n Cxn of K.
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298 Appendix A. Topology

Taking K as a point x ∈ X , any open neighbourhood Ax of x ∈ X contains
a compact neighbourhood Bx, which contains an open neighbourhood Cx: and
so on.
The product

∏
Ai of a family of spaces has a topology defined by the subbase

consisting of products
∏
Ui withUi open in Ai for each i andUi = Ai for all but

finitely many. If each Ai is compact, so is
∏

i Ai.

The inverse limit lim←− Ai of a sequenceAi+1
αi−→ Ai (i ≥ 1) is defined to be the

subset of the product
∏
Ai with αi(xi+1) = xi for each i. If the Ai are topological

spaces, it inherits a topology as a subspace of the product.

A.2 Topology of metric spaces

A metric on a set X is a mapping ρ : X × X → R such that ρ(x, y) ≥ 0 for all
x, y ∈ X , ρ(x, y) = 0 if and only if x = y, and ρ(x, z) ≤ ρ(x, y)+ ρ(y, z) for
all x, y and z ∈ X . This defines a topology with a base consisting of the sets
{x | ρ(x, y) < d} for all y ∈ X, d > 0. Equivalently, a subsetU ⊆ X is open if,
for each x ∈ U , there exists ε > 0 such that ρ(x, y) < ε implies y ∈ U .
We have seen in Theorem 2.1.1 that smooth manifolds are metric as topo-

logical spaces.
The prime example of a metric space is Rn, with points x = (x1, . . . , xn) and

distance function ρ(x, y) = ‖x− y‖ = √∑n
1(xi − yi)2. The basic examples of

topological spaces are subsets of Rn with the topology given by the induced
metric.We are not concernedwith arbitrary subsets: more typical are polyhedra,
or subsets defined by vanishing of a certain number of polynomial functions.
However, we will need the general terminology as we will also need to consider
spaces of mappings.
In a metric space X , we define a sequence {xn} of points to converge to a limit

x∞ if ρ(xn, x∞)→ 0 as n→∞. The limit, if it exists, is unique, since if ywere
another limit we would have ρ(y, x∞) = 0. We call a metric space X complete
if it satisfies Cauchy’s convergence condition, namely that for any sequence
xn ∈ X such that ρ(xm, xn)→ 0 asm, n→∞ there exists a limit point x∞ ∈ X
such that ρ(xn, x∞)→ 0 as n→∞.
For metric spaces X , topological conditions can be expressed in terms of

convergence of sequences; for example, f : X → Y is continuous iff for all
xi → x ∈ x we have f (xi)→ f (x).
If X is a metric space, x ∈ X , F ⊆ X is closed, and x �∈ F , then x has a

neighbourhood disjoint from F , so there exists ε > 0 such that y ∈ F implies
ρ(x, y) ≥ ε, so ρ(x,F ) := inf{ρ(x, y) | y ∈ F} is strictly positive. For any A ⊂
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A.2 Topology of metric spaces 299

X , ρ(x,A) = 0 if and only if x is in the closure of A if and only if there is a
sequence ai ∈ A with ai → x.
Clearly |ρ(x,F )− ρ(y,F )| ≤ ρ(x, y), so the map x 	→ ρ(x,F ) is continu-

ous. If F and F ′ are disjoint closed sets, there are disjoint open neighbourhoods
G := {x | ρ(x,F ) < ρ(x,F ′)} of F and similarly forG′. Hence anymetric space
is normal. It may be that ρ(F,F ′) = 0: for example, consider F = {(x, y) ∈
R2 | xy = 1} and F ′ = {(x, y) ∈ R2 | y = 0}. However if K is compact and dis-
joint from F we have ρ(F,K) > 0, for the image of K by the continuous map
x 	→ ρ(F, x) is a closed subset of R not containing {0}. Even if ρ(F,F ′) = 0,
the formula s(P) := ρ(P,F )/(ρ(P,F )+ ρ(P,F ′)) defines a continuous map
s : X → I with s(F ) = 0 and s(F ′) = 1.

A metric space K is compact if and only if every sequence has a convergent
subsequence. To see this, first observe that if xi → y, then the set whose ele-
ments are the xi and y is compact, for given any open cover, one of the open sets
of the cover contains y, hence all but finitely many of the xi. Now if {xi} has no
convergent subsequence, the set

⋃
i{xi} is closed, its complementU is open, and

{U ∪ {xi}} is an open cover of K with no finite subcover. Conversely, if there is
a cover with no finite subcover, there is a countable one {Ur} and if we choose
xn �∈

⋃
r≤n Ur if a subsequence converged to y ∈ K we would have y ∈ Un for

some n and thenUn would contain all but finitely many of the subsequence.
From this, or directly, it follows that the direct product of two, or indeed of

any family of compact spaces is compact.
We will call a sequence {xn}with no convergent subsequence discrete. If {xn}

is a discrete sequence, the set having these as elements is a closed set.

Lemma A.2.1 Let f : A× B→ C be a continuous map of compact metric
spaces. Then for any ε > 0 there exists δ > 0 such that ρ(b, b′) < δ implies
that ρ( f (a, b), f (a, b′)) < ε for all a ∈ A.
Proof Suppose not. Then there exist ε > 0 and sequences bn, b′n ∈ B with
ρ(bn, b′n) <

1
n and an ∈ A with ρ( f (an, bn), f (an, b′n)) ≥ ε. In view of com-

pactness, these all have convergent subsequences; passing to these, we may
suppose bn → b, b′n → b′ and an → a. It follows that ρ(b, b′) = 0, so b = b′

and by continuity that ρ( f (a, b), f (a, b′)) ≥ ε, a contradiction.

The notion of compactness for spaces is accompanied by the important
notion of properness for maps.

LemmaA.2.2 The following conditions on a map f : X → Y of metric spaces
are equivalent:
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300 Appendix A. Topology

(i) f is closed and for each y ∈ Y , f−1(y) is compact;
(ii) every sequence xi ∈ X such that f (xi) converges has a convergent

subsequence;
(iii) for each compact subset K of Y , f−1(K) is compact.

A map is said to be proper if it satisfies these conditions.

Proof (i)⇒ (ii) Suppose (i) holds, that {xn} is discrete, but that f (xn) con-
verges to a limit y. Since C = {xn | n ∈ N} is closed, so is f (C), and since
f (xn)→ y, y ∈ C. The same argument shows that for any subsequence {xnk}
of {xn} we have y = f (xnk ) for some k. Thus y = f (xn) for all but finitely many
n; hence f−1(y) contains a discrete sequence, contradicting its compactness.

(ii)⇒ (iii) Suppose (ii) holds, that K ⊂ Y is compact, and that f−1(K) is
not. Then f−1(K) contains a discrete sequence {xn}. Since { f (xn)} lies in the
compact set K, it has a convergent subsequence. It follows from (ii) that {xn}
has a convergent subsequence, so is not discrete.

(iii)⇒ (i) It follows at once from (iii) that preimages of points are compact.
Let C be closed in X and f (xn) be a sequence of points of f (C) converging
to a limit y. Then the set K consisting of y and the points f (xn) is compact,
so by (iii) f−1(K) is compact. The sequence xn of points in this compact set
has a convergent subsequence xnk with limit x, say; asC is closed, x ∈ C. Thus
f (xnk )→ f (x); hence y = f (x) ∈ f (C).

It follows from the characterisation (iii) that the composite of two proper
maps is proper. Also since the product of compact spaces is compact, for any X
and compactK, the projectionK × X → X is proper. Since every closed subset
of a compact space is compact, any continuousmap f : K → Y withK compact
is proper.

Lemma A.2.3 A proper injective map f : X → Y of Hausdorff spaces is an
embedding.

Proof Replacing Y by f (X ), we may suppose f bijective. But now f takes
closed sets to closed sets, hence also open sets to open sets, so is a homeomor-
phism.

We now give some results for metric spaces which are useful for proving
existence of embeddings when we weaken the requirement of compactness.

Lemma A.2.4 (i) Let Y be a metric space, X a closed subset. For any open
neighbourhoodU of X in Y , there is a positive continuous function f on X such
that if x ∈ X and ρ(x, y) < f (x), we have y ∈ U.
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A.2 Topology of metric spaces 301

(ii) If X is a compact subset of the metric space Y , any open neighbourhood
U of X in Y contains an ε-neighbourhood for some ε > 0.

Proof (i) Define f (x) = ρ(x,Y \U ): then | f (x)− f (x′)| ≤ ρ(x, x′), so f is
continuous: it is non-zero and satisfies the condition.
(ii) Take ε = inf f , where f is given by (i).

We may apply this result in particular whenY = X × X with X embedded as
the diagonal�(X ). Thus if X is compact, there exists ε > 0 such that ρ(x, y) <
ε ⇒ (x, y) ∈ U . Combining these ideas gives

Lemma A.2.5 If X is a compact subset of the metric space Y , and U an
open neighbourhood of X × X in Y × Y , then for some ε > 0, if V is the ε-
neighbourhood of X in Y , U contains V ×V.

Proof Take ε = 1
2ρ(X × X, (Y × Y \U )). Then if ρ(v1,X ) < ε, ρ(v2,X ) < ε

we have ρ((v1, v2),X × X ) < 2ε = ρ(X × X, (Y × Y \U )), so (v1, v2) does
not lie in Y × Y \U .

Corollary A.2.6 Let Y be a metric space, f : Y → Z a map such that each
P ∈ Y has a neighbourhood UP with f |UP an embedding, and X ⊂ Y such that
f |X is injective. Then X has a neighbourhood V in Y such that f |V is injective.
If also each f (UP) is open, f |V is an embedding.

Proof Let D = {(y1, y2) : y1 �= y2, f (y1) = f (y2)} ⊂ Y × Y . Since f |X is
injective, D is disjoint from X × X . The closure D̄ is contained in the closed
subset defined by f (y1) = f (y2), which is equal to D ∪�(Y ). But by hypoth-
esis, each point (P,P) has a neighbourhood UP ×UP disjoint from D. Thus
D̄ is disjoint from �(Y ), so D is closed. Now apply Lemma A.2.5, taking
U = Y × Y \ D: this gives a neighbourhood V of X such that V ×V does not
meet D, so f |V is injective.
As each f |UP is an embedding, f induces a homeomorphism between UP

and f (UP) with the subspace topology. Thus the inverse map is continuous on
f (UP), which is open in f (V ). Thus it is continuous at each point of f (V ).

The following can be used to replace Theorem 1.1.4, which we proved for
smooth manifolds.

Proposition A.2.7 Suppose X locally compact and a countable union of com-
pact subsets. Then there exist coverings by sets Fa ⊂ Ga with each Fa compact,
each Ga open, {Ga} locally finite, and

⋃
a Fa = X.

Proof By Proposition 1.1.3, we can find compact subsets Cn and open sub-
sets Bn+ 1

2
such that X =⋃n Cn and for all n ≥ 1, Cn ⊂ Bn+ 1

2
⊂ Cn+1. It now
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302 Appendix A. Topology

suffices to setFn := Cn+1 \ Bn− 1
2
andGn := Bn+ 3

2
\Cn−1: these are locally finite

since any x ∈ X belongs to some Cn \Cn−1, so the open set Bn+ 1
2
\Cn−1 is a

neighbourhood of x, and meets GN only if n− 2 ≤ N ≤ n+ 1.

The relation between paracompactness and countability is given by

Proposition A.2.8 (i) If each component of X is open, X is paracompact if
and only if each component is.
(ii) A connected locally compact space X is paracompact if and only if it is

a countable union of compact subsets.

Proof (i) is immediate since an open cover of X induces (and is induced by)
open covers of each of its components.
(ii) If X is paracompact, the open covering by neighbourhoods of points with

compact closures has a locally finite refinement. Since these sets have compact
closures, each meets only finitely many others. Starting with one such set U0,
only finitely many others meet it; only finitely many meet one of the above, and
so on. But since X is connected, each Uα is connected to U0 by a finite chain.
Thus there are only countably manyUα , and X is the union of their (compact)
closures.
Conversely if X =⋃n≥0Un is a countable union, setting Vn :=

⋃
0≤i≤n Ui,

we may assume the sequence Vn increasing. Any compact subset is covered by
theUn, hence by a finite subset, hence is contained in someVn. Each point ofVn
has a compact neighbourhood;Vn is covered by these neighbourhoods, hence by
finitely many. Their union is compact, so is contained in someVm. Thus, passing
to a subsequence, we may suppose that Vn+1 contains an open neighbourhood
of Vn. Now any open cover of X induces one of the compact set Vn+1 \ IntVn,
which has a finite refinement. The union of all these refines the given cover,
covers all of X , and is locally finite since any point is in some Vn+1 \ IntVn, so
has a neighbourhood contained in Vn+2 and disjoint from Vn−1.

The following useful result has a different nature.

Proposition A.2.9 If X is a finite dimensional metric space, any open covering
{Uα} has a finite dimensional refinement. More precisely, there exist an open
covering {Sj | j ∈ J} of X, with each S j contained in Uα for some α, and a map
d : J → {0, . . . ,N} such that if d( j) = d( j′), j �= j′ then S̄ j ∩ S̄ j′ = ∅.

We omit the proof, which is given by Hurewicz and Wallman on [76, p. 54].
To understand the result, the reader should consider the picture of a simplicial
complex K of dimension N: each simplex of dimension r admits coordinates
{x0, . . . , xr}with xi ≥ 0,

∑
i xi = 1, and Sr(K) is a union of sets contained in the
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A.3 Proper group actions 303

interior of each r-simplex. Replace this simplicial complex K by its barycentric
subdivision K′: each vertex V of this is labelled by the dimension d(V ) of the
simplex of which V is the barycentre. Now map each point of K′ to the nearest
vertex: more precisely, define an open neighbourhood of the vertex V to be

N(V ) := {x ∈ K′ | (∀W �= V )ρ(x,V ) ≥ ρ(x,W )− 2−N},
whereW runs over the vertices ofK′. Now set Sr(K) :=

⋃{N(V ) | d(V ) = r}: a
disjoint union of the neighbourhoods N(V ) with d(V ) = r. Now if f : X → K,
define Sr(X ) := f−1(Sr(K)) to obtain subsets with the desired properties.

Notes on this section. The results on compactness and proper maps can be
extended to general (not metric) topological spaces (see [24, §12]).
A closer study of the notion of properness is also given in [47, §3.2], using

the following concept. For any map f : X → Y , define the improper set Z( f )
as the set of y ∈ Y such that there is a discrete sequence {xn | n ∈ N} on X with
f (xn)→ y. This is the smallest closed subset of Y such that the restriction of f
to a map X \ f−1(Z)→ Y \ Z is proper: thus is empty if and only if f is proper.

A.3 Proper group actions

A (left) action of a group G on a set X is a map φ : G× X → X such that
φ(1, x) = x for all x ∈ X and φ(g, φ(h, x)) = φ(gh, x) for all x ∈ X and g, h ∈
G. We usually denote φ(g, x) by g.x. We are really only interested in smooth
group actions, so X will be a Hausdorff space throughout.
Given an action φ, the isotropy group of x ∈ X is Gx := {g ∈ G | g.x = x}.

The orbit of x is G.x := {g.x | g ∈ G}. The action induces a bijection G/Gx →
G.x since

g.x = h.x⇔ h−1g.x = x⇔ h−1g ∈ Gx ⇔ hGx = gGx.

Equivalently, the map φx : G→ X defined by φx(g) := g.x induces an injection
of G/Gx into X .

Given a left group action, we denote the set of orbits by G\X and the pro-
jection by q : X → G\X . We give G\X the quotient topology and call it the
orbit space. The map q is open, for ifU is open in X , q−1(q(U )) =⋃g∈G g.U ,
a union of open sets, hence open; by the definition of quotient topology, q(U )
is open.

Proposition A.3.1 Let φ : G× X → X be a group action. Then the following
are equivalent:
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304 Appendix A. Topology

(i) The map (φ, π ) : G× X → X × X (where π denotes the projection) is a
proper map;
(ii) (φ, π ) is closed and all isotropy groups Gx are compact;
(iii) for any compact subsets K,L ⊆ X, TK,L := {g ∈ G | g.K ∩ L �= ∅} is

compact.

Proof (i)⇒ (ii) since Gx × {x} is the preimage of (x, x) under (φ, π ).
(ii)⇒ (i) since the preimage of (y, x) is empty if y �∈ G.x, and if y = g.x is

the coset gGx, homeomorphic to Gx.
Now by Lemma A.2.2, (i) is equivalent to the condition that for any com-

pact subset of X × X , its preimage under (φ, π ) is compact. It is sufficient to
consider subsets of the form L× K, where K and L are compact subsets of X .
We have (φ, π )−1(L× K) = {(g, x) | g.x ∈ L, x ∈ K} ⊆ TK,L × K. Thus if TK,L
is compact, so is this (closed) subset of it; and if this set is compact, so is its
projection on the first factor, which is TK,L.

A group action will be called proper if it satisfies the equivalent conditions
of Proposition A.3.1. It is not true that for any proper group action φ itself is a
closed map: consider, for example, G = X = R with action by translation.

Lemma A.3.2 (i) A group action of a compact group is proper.
(ii) Given two Lie subgroups H, K of G with K compact, the natural action

of H on the coset space G/K is proper.

Proof (i) It will suffice to show that the preimage of a compact C ⊂ X × X is
compact. The second projection C2 of C is compact, and the preimage of C is
a closed subset of the compact set G×C2.

(ii) It is enough to show that the action of G on G/K is proper. Any compact
subset C of G/K × G/K is a subset of some C1 ×C2 with each Ci compact,
and the preimage of Ci in G is a compact set Bi. The image of B1 × B2 by the
map (x, y) → xy−1 is a compact set B. Now the preimage of C in G× G/K is
a closed subset of the compact set B×C2.

Proposition A.3.3 Let φ : G× X → X be a proper group action and x ∈ X.
Then
(i) the isotropy group Gx is compact;
(ii) the map φx : G→ X given by φx(g) = g.x is proper;
(iii) the orbit G.x is a closed subset of X;
(iv) the induced map G/Gx → G.x is a homeomorphism.

Proof (i) Gx × {x} is the preimage of the point (x, x) (a compact set) under the
proper map (φ, π ).
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A.3 Proper group actions 305

(ii) This is a closed map as it is the restriction of (φ, π ) to the closed subset
G× {x}. The preimage of a compact set K is the preimage of K × {x} under
(φ, π ), so is compact.
(iii) It is the image of G under the proper, hence closed map φx.
(iv) This map is bijective by construction, continuous since φx is, and by the

definition of the quotient topology, and closed since φx is.

PropositionA.3.4 Letφ : G× X → X be a smooth proper group action. Then
the quotient space G\X is Hausdorff, locally compact, and paracompact.

Proof Write � for the diagonal in G\X × G\X . Since (φ, π ) is closed, C :=
{(x, g.x) | x ∈ X} is closed in X × X . Now C = (q, q)−1(�), and since G\X ×
G\X has the quotient topology, it follows that� is closed inG\X × G\X . Thus
G\X is Hausdorff.
By Theorem 3.3.5, any point of X has an invariant neighbourhood of the

form j(G×H V ) with H ⊆ G a compact subgroup and V a disc on which H
acts orthogonally. Thus any point of G\X has a neighbourhood of the form
H\V , which is compact. So G\X is locally compact.

By Proposition A.2.8, paracompactness will follow providedG\X is a count-
able union of compact subsets. But this follows since X is such a union, and the
image of a compact set is compact.

For the special case when G is compact, we have

Proposition A.3.5 If φ : G× X → X is a group action with G compact, then
(i) the map φ is a proper map;
(ii) the action is proper;
(iii) the map q : X → X/G is proper;
(iv) for any Y ⊂ X, any neighbourhood of Y contains a G-invariant neigh-

bourhood.

Proof (i) Suppose F a closed subset of G× X : we want to prove that any limit
point x of φ(F ) belongs to φ(F ). Suppose (gi, xi) ∈ F and gi.xi → x. Since G
is compact, {gi} has a convergent subsequence. Passing to this subsequence, we
may write gi → g. Then xi = g−1

i .(gi.xi)→ y := g−1.x. Thus (gi, xi)→ (g, y),
so (g, y) ∈ F and x = g.y ∈ φ(F ).
(ii) Similarly if (gi, xi) ∈ F and (gi.xi, xi)→ (y, x) we have xi → x and may

suppose gi → g; thus g.x = y, (g, x) ∈ F and (y, x) = (φ, π )(g, x).
(iii) The preimage under q of a point q(x) is the orbit G.x, which is compact

since G is. Now suppose F is closed in X : then G× F is closed in G× X ;
since by (i) φ is proper, G.F = φ(G× F ) is closed in X . Now by the definition
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306 Appendix A. Topology

of quotient topology, q(F ) is closed in X/G since q−1(q(F )) = G.F is closed
in X .
(iv) Let U be an open set containing Y . Then W := X \ q−1q(X \U ) is G-

invariant and contained in U . Since q is proper X \U is closed, thus W is
open.

A similar argument shows that in general if K ⊂ G is compact then the
restriction of φ to K × X → X is proper, and hence if A ⊆ X is closed (com-
pact) so is K.A.

Proposition A.3.6 Let G act properly on M and ρ be a G-invariant metric on
M. Define ρ : G\M × G\M → R by ρ(G.x,G.y) := in fg∈G ρ(x, g.y). Then ρ
is a metric on G\M.
Proof Since the action is proper, the orbit G.y is closed. Thus if x �∈ G.y,
ρ(x,G.y) > 0, i.e. G.x �= G.y implies ρ(G.x,G.y) �= 0.

For any x, y, z ∈ M and any ε > 0 we can choose g, g′ ∈ G with ρ(x, g.y) <
ρ(G.x,G.y)+ ε and ρ(y, g′.z) < ρ(G.y,G.z)+ ε. Thus
ρ(G.x,G.z) ≤ ρ(x, gg′.z) ≤ ρ(x, g.y)+ ρ(g.y, gg′.z),

and this is equal to
ρ(x, g.y)+ ρ(y, g′.z) < ρ(G.x,G.y)+ ρ(G.y,G.z)+ 2ε.

Since this holds for any ε > 0, we have ρ(G.x,G.z) ≤ ρ(G.x,G.y)+
ρ(G.y,G.z), so the triangle inequality holds.

Note As for the definition of proper maps, one can define and study a ‘bad
set’. If G is a locally compact group acting on a Hausdorff space X , then x ∈ X
is a wandering point if it has a neighbourhoodVx such that {g ∈ G |Vx.g∩Vx �=
∅} has compact closure, or equivalently, if there exists a compact subsetK ⊂ G
such that g /∈ K implies Vx.g∩Vx = ∅. The set �(X ) of all wandering points
is open, and the action of G on �(X ) is proper; the action on X is proper if and
only if �(X ) = X . In the case when G is a discrete group, the term ‘properly
discontinuous’ is often used instead of ‘proper’.

A.4 Mapping spaces

We begin by discussing topologies on the set C0(X,Y ) of continuous maps
between two topological spaces X and Y . We are only interested here in the
case when X and Y are manifolds, and hence metrisable.

Perhaps the most commonly used topology on function spaces is the so-
called compact-open topology, which we call the C0 topology. This is the
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A.4 Mapping spaces 307

topology on C0(X,Y ) defined by taking the sets

A(K,U ) := { f | f (K) ⊂ U} with K ⊂ X compact, U ⊂ Y open

as a sub-base of open sets. It can be described as the topology of uniform con-
vergence of f on compact sets.
There is also the fine topology (or fine C0 topology), which we define by

taking the

B(U ) := { f | (1× f )(X ) ⊂ U} withU open in X × Y

as a base of open sets.

Lemma A.4.1 (i) The sets I({Kα,Uα}) :=
⋂

α A(Kα,Uα ), with Kα ⊂ X com-
pact, Uα ⊂ Y open, {Kα} locally finite, are a subbase for the fine topology.
(ii) For f ∈ C0(X,Y ) and ρ a metric on Y , the sets

J( f , k) := {g ∈ C0(X,Y ) | (∀x ∈ X ) ρ( f (x), g(x)) < k(x)},
with k ∈ C0(X,R>0), are a base of neighbourhoods of f in the fine topology.

Proof We have J( f , k) = B(U ), where U = {(x, y) ∈ X × Y | ρ(y, f (x)) <
k(x)}, hence J( f , k) is open. That these give a base of neighbourhoods of f
follows by applying Lemma A.2.4 to neighbourhoods of the graph of f in
X × Y .

The set A(Kα,Uα ) is the preimage by 1× f of the open subset

((X \ Kα )× Y ) ∪ (X ×Uα )

of X × Y . Any finite intersection of these subsets is thus also open. But by
hypothesis, any x ∈ X has an open neighbourhoodUx intersecting Kα for only
finitely many α. Thus the intersection ofUx × Y with I({Kα,Uα}) is equal to its
intersection with a finite number of the A(Kα,Uα ) and hence is open. It follows
that I({Kα,Uα}) is open.
For the converse, it will suffice to check that any neighbourhood J( f , k) of

f contains one of the form I({Kα,Uα}). It will suffice if the Kα cover X and z ∈
Kα , y ∈ Uα implies ρ( f (z), y) < k(z). For each x, set Ux := {y | ρ(y, f (x)) <
1
3k(x)}, choose a compact neighbourhood Kx ⊂ f−1(Ux) ∩ {z | k(z) > 2

3k(x)}
now let {Kα} be a locally finite subcover of the sets Kx.

If X is compact, the fine topology, the C0 topology and the topology of uni-
form convergence are the same.

For whenX is compact, the functions k in J( f , k) have positive lower bounds,
so the base of neighbourhoods J( f , k) is equivalent to the base of neighbour-
hoods J( f , c) (c constant), which defines the uniform topology.
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308 Appendix A. Topology

Both topologies are Hausdorff; indeed completely regular.
We will shortly see that the C0 topology is metrisable, hence Hausdorff and

normal.
For the fine topology, any closed set C not containing f is disjoint from

some J( f , k), so J( f , 1
2k) is an open set containing f disjoint from the open

set {g ∈ C0(X,Y ) | (∀x ∈ X ) ρ( f (x), g(x)) > 1
2k(x)} which contains C.

If X is not compact, the fine topology is very large, and the two topologies
are distinct.

Proposition A.4.2 (i) The spaceC0(X,Y )with theC0 topology has a complete
metric.
(ii) A sequence of maps which converges in the fine topology is eventually

constant outside a compact set.
(iii) If X is not compact, the fine topology on C0(X,Y ) is not metrisable, and

does not admit a countable base, even locally.

Proof (i) First suppose X compact, then choose a complete metric ρ on Y and
take the uniform metric ρ( f , g) = supx∈X ρ( f (x), g(x)). This is complete since
if { fn} is a Cauchy sequence, so is each { fn(x)}, which thus converges to a limit
f (x), and f is continuous as the uniform limit of { fn}.
For X not compact, write X =⋃∞

i=1 Xi as a countable union of compact
subsets. Then the topology for C0(Xi,Y ) is defined by a complete metric ρi,
hence also by the bounded metric ρ ′i ( f , g) := min(ρi( f , g), 2−i). The met-
ric ρ :=∑∞

i=1 ρ
′
i defines the product topology on 'iC0(Xi,Y ), and hence the

required topology on the subsetC0(X,Y ).Moreover,C0(X,Y ) is a closed subset
of the complete 'iC0(Xi,Y ) and is thus also complete.
(ii) Assume fn → f and that for no compact K ⊂ X is the sequence fn even-

tually constant outside K. Choose an increasing sequence {Kn} of compact sub-
sets of X with union X . By hypothesis, there exist xn ∈ (X \ Kn) and in > nwith
fin (xn) �= f (xn). Set δn := ρ( fin (xn), f (xn)). Since the sequence xn diverges,
we can find a positive continuous function k on X such that k(xn) = 1

2δn for
infinitely many n. For none of these n is fin ∈ J( f , k), contradicting the assump-
tion that fn → f .
(iii) follows from (ii).

Not only compactness of spaces, but properness of maps is important in dis-
cussing these topologies, and we have

Lemma A.4.3 If Y is a locally compact, paracompact metric space, the set
C0
pr(X,Y ) of proper maps is open in C

0(X,Y ) in the fine topology.
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A.4 Mapping spaces 309

Proof By Proposition A.2.7, there exist coverings of Y by sets Fa ⊂ Ga with
each Fa compact, each Ga open, {Ga} locally finite, and

⋃
a Fa = Y .

For f : X → Y a proper map, the sets Ka := f−1(Fa) are compact. They
are locally finite, since for any x ∈ X , f (x) has a neighbourhood Ux meeting
only finitely many of the Ga, so f−1(Ux) is a neighbourhood of x meeting only
finitely many of the Ka. Hence by Lemma A.4.1, I({Ka}, {Ga}) is a neighbour-
hood of f in the fine topology.
We claim that any g ∈ I({Ka}, {Ga}) is proper. For any compact subset L ⊂ Y

meets only finitely many Ga, so g−1(L) is contained in the union of the corre-
sponding Ka, so is compact.

We turn to the question of continuity of the composition map.

Proposition A.4.4 (i) The composition mapC0(X,Y )×C0(Y,Z)→ C0(X,Z)
is continuous for the C0 topologies.
(ii) The mapC0(Y,Z)→ C0(X,Z) defined by composition with a continuous

map f is continuous for the fine topologies if and only if f is proper.
(iii) The composition map C0

pr(X,Y )×C0(Y,Z)→ C0(X,Z) is continuous
for the fine C0 topologies.

Proof (i) It will suffice to show that the preimage of a subbasic open set
A(KX ,UZ ) is open, and thus to show that if g ◦ f ∈ A(KX ,UZ ), it contains a
neighbourhood of ( f , g).

Since g ◦ f ∈ A(KX ,UZ ) and f is proper, f (KX ) is a compact subset of Y
and g−1(UZ ) is an open neighbourhood of it. By Lemma A.1.1, this contains
a compact neighbourhood, so we can find a compact KY and an open UY with
f (KX ) ⊂ UY ⊂ KY ⊂ g−1(UZ ).
It follows that the preimage of A(KX ,UZ ) contains the open neighbourhood

A(KX ,UY )× A(KY ,UZ ) of ( f , g).
(ii) If f is not proper, there is a discrete sequence xn ∈ X such that f (xn) con-

verges to a limit y0 ∈ Y . Let g : Y → Z be continuous, and consider a neigh-
bourhood J(g ◦ f , k) of g ◦ f . We want to show that for some k, f ∗J(g ◦ f , k)
is not open, in fact does not contain a neighbourhood J(g, �) of g. For if it does,
ρ(g(y), h(y)) < �(y) for all y implies ρ(g( f (x)), h( f (x))) < k(x) for all x.

Since xn is discrete, we can choose k with k(xn) = n−1 for all n. Now as
f (xn)→ y0, if ρ(g( f (xn)), h( f (xn))) < k(xn) = n−1 for all n, it follows that
ρ(g(y0), h(y0)) = 0. Thus we do not have a neighbourhood of g.
(iii) We copy (i); so start with neighbourhood I({KX

α ,U
Z
α }) of g ◦ f : here

as well as the UZ
α being open, the KX

α are locally finite. Any y has a compact
neighbourhood By: then f−1(By) is compact (as f is proper), so meets only
finitely many of the KX

α . Hence the f (K
X
α ) are locally finite.
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310 Appendix A. Topology

We now have a locally finite family of compact sets f (KX
α ) with neighbour-

hoods g−1(UZ
α ) and seek f (K

X
α ) ⊂ UY

α ⊂ KYα ⊂ g−1(UZ
α ) with the K’s compact,

theU’s open and the KYα locally finite. We restate the problem. First use count-
able compactness to say the set of α is countable.We have a locally finite family
of compact setsAn with open neighbourhoodsDn and seekAn ⊂ Bn ⊂ Cn ⊂ Dn

with the Cn compact, the Bn open and theCn locally finite.
Shrinking the Dn, we may suppose each meets only finitely many of the Ai.

Now by Lemma A.1.1 we can find Bn and Cn as above, but have yet to make
theCn locally finite. Set

C′n := Cn \
⋃
{Dr | r < n, Dr ∩ An = ∅}.

Since An ⊂ Cn and we have only removed subsets disjoint from An, we have
An ⊂ C′n. IfC

′
r meetsC′n with r < n thenC′n meets Dr so Dr ∩ An �= ∅. For each

r this holds for finitely many n, and there are only finitely many n < r, so C′r
meets only finitely many C′n. It remains only to take B′n as a neighbourhood of
An contained inC′n.
In the original notation, it follows that the preimage of I({KX

α ,U
Z
α }) contains

I({KX
α ,U

Y
α })× I({KYα ,UZ

α }), a product of neighbourhoods of f and g.

We next discuss the Baire property, which is important for many of our
applications.

Theorem A.4.5 (Baire’s Theorem) Let X be a complete metric space. The
intersection of a countable family of dense open subsets of X is dense.

Proof Let the given subsets be {Ui}, and let V be any non-empty open set.
Then V ∩U1 is non-empty and open, and so contains a metric neighbourhood
U (x1, ε1), say. Next,U2 ∩U (x1, ε 1

2
) is non-empty and open, so contains some

U (x2, ε2). We can thus construct a decreasing sequence of neighbourhoods
U (xi, εi) and have εi → 0. Then {xi} is a Cauchy sequence, so has a limit point
x, which lies in each Ū (xi, εi) (since the later x j do) and so in each Ui and
in V .

This result shows that any complete metric space has the Baire property. It
follows fromPropositionA.4.2 thatC0(X,Y ) with theC0 topology has the Baire
property. For the fine topology, we have to work harder.

Theorem A.4.6 If X is paracompact and Y a complete metric space, then
C0(X,Y ) with the fine topology is a Baire space.
Further, if Q ⊂ C0(X,Y ) is closed in the C0 topology, then Q with the fine

topology is a Baire space.
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A.4 Mapping spaces 311

Proof Let {Ui} be a countable sequence of open dense sets andV a further open
set. Choose f0 ∈ V and a neighbourhood J( f0, k0) of f0 with closure contained
in V .

Now suppose inductively chosen functions f0, . . . , fr and neighbourhoods
J( fi, ki) (0 ≤ i ≤ r) such that fi ∈ V , fi ∈ J( f j, k j ), ki < 2−i and J( fi, ki) ⊂ Ui

for j ≤ i ≤ r. SinceUr+1 is dense, it meets the open set
⋂r

i=0 J( fi, ki): choose
fr+1 in the intersection, and choose a neighbourhood J( fr+1, kr+1) with closure
contained in it and with kr+1 < 2−(r+1).
Since ρ is a complete metric, and the sequence fr converges uniformly, we

can define f to be its limit. Since all fi with i > r belong to J( fr, kr ), f belongs
to its closure, which is contained in Ur (r > 0) or V (r = 0). Thus V ∩⋂r Ur

is non-empty, as required.
Given a countable sequence of open dense subsets Wi of Q, we can take

Ui :=Wi ∪ (C0(X,Y ) \ Q) and argue as above. We only need to note that since
Q ⊂ C0(X,Y ) is closed in the C0 topology, the uniform limit f of the maps
fi ∈ Q also belongs to Q.

For smoothmanifoldsV v andMm, writeCr(V,M) for the set of mapsV → M
whose restrictions in any local coordinates have continuous partial derivatives
of all orders ≤ r; in particular, C∞(V,M) is the set of smooth maps of V to
M. Taking r-jets gives an injective map jr : Cr(V,M)→ C0(V, Jr(V,M)). The
topology onCr(V,M) induced by regarding it as a subspace ofC0(V, Jr(V,M))
with the compact-open topology is called the Cr topology, and the topol-
ogy induced from the fine topology is the fine Cr topology. The image of
jr : Cr(M,N) → C0(M, Jr(M, n)) is closed in the Cr topology.
The inclusion of C∞(V,M) in Cr(V,M) induces topologies on it, and we

define the C∞ topology to be the union of the Cr topologies, in the sense that
a set is open if it is open in one of these topologies. Correspondingly, the fine
C∞ topology, which we christen theW∞ topology, is the union of the fine Cr

topologies.
The properties of these metrics are similar to those for the case r = 0, and

the proofs run in parallel, though with complications of detail (the case r = ∞
requiring a little more effort), so we omit most of them. The discussion extends
to manifolds with boundaries, corners, etc. The following statements hold for
all r ≤ ∞: it is the case r = ∞ which is of prime interest to us.
We have equivalent characterisations of the fine Cr topology if the above

conditions on the images of the maps are replaced by conditions on the r-jets.
However if in the C∞ version of I({Kα,Uα}) we allow the Uα to be open in
jet spaces Jr(V,M) for varying values of r we obtain a new topology, the very
strong topology, which we do not discuss further in this book.
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312 Appendix A. Topology

Both topologies on C∞(V,M) are completely regular. They agree if V is
compact.
For theW∞ topology, a convergent sequence of maps is eventually constant

outside a compact set; hence the topology is neither metrisable nor even locally
countable.

Theorem A.4.7 With the C∞ topology, C∞(V,M) is a complete metric space.

Proof First suppose V is compact. Each jet space Jr(V,M) is a smooth mani-
fold, and admits a complete Riemannian metric ρr, say. The distance function
ρr( f , g) := supP∈V ρ

r( jr f (P), jrg(P)) is well defined since V is compact, and
defines the Cr topology on C∞(V,M).
The same topology on Jr(V,M) is given by the non-Riemannian metric ρ ′r =

inf(ρr, 1), and the metric ρ( f , g) =∑r 2
−rρ

′r( f , g) defines the C∞ topology
onC∞(V,M).
A Cauchy sequence { fi} in C∞(V,M) must à fortiori be Cauchy with the

metric ρr. Since Jr(V,M) is complete, the maps jr fi converge to a limit gr,
which is continuous, since the convergence was uniform.
The coordinates uω, j of jr fi are the partial derivatives of the u0, j. Let ω′ be

derived from ω by increasing ωi by unity, and |ω′| ≤ r: then uω′, j = ∂uω, j/∂xi
and so uω, j is the indefinite integral with respect to xi of uω′, j. Integration com-
mutes with uniform limits, so the relation uω′, j = ∂uω, j/∂xi also holds for gr.
Thus the u0, j = y j are r-times continuously differentiable, gr is the r-jet of aCr

function g, independent of r, so g is smooth, and is the limit of the sequence.
ForV not compact, writeV =⋃∞

i=1Vi as a countable union of compact sub-
manifolds (with boundary). Then the topology for C∞(Vi,M) is defined by a
metric ρi, bounded by 1. Hence the metric ρ =∑∞

i=1 2
−iρi defines the prod-

uct topology on 'iC∞(Vi,M), and hence the required topology on the subset
C∞(V,M).

Now C∞(V,M) is a closed subset of the complete
∏

i C
∞(Vi,M) which is

thus also complete.

Lemma A.4.8 The set C∞pr (V,M) of proper smooth maps is open in C∞(V,M)
in the W∞ topology.

Proof Let f : V → M be a proper map, and {ϕα : Uα → D̊m(3)} a locally finite
open cover of M as in Theorem 1.1.4, so that M is covered by the compact
sets Kα := ϕ−1

α (Dm(2)). Since f is proper, Fα := f−1(Kα ) is compact. Then
W := {g | ∀α g(Fα ) ⊂ Uα} is an open neighbourhood of f . For any g ∈W and
any compact L ⊂ M, L meets only finitely manyUα , so g−1(L) is contained in
the union of the corresponding Fα , so is compact.
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A.4 Mapping spaces 313

The composition map C∞(V,M)×C∞(M,N) → C∞(V,N) is continuous
for the C∞ topologies; however for the W∞ topologies this fails unless V is
compact: more precisely, C∞pr (V,M)×C∞(M,N) → C∞(V,N) is continuous,
and the mapC∞(M,N) → C∞(V,N) defined by composition with f : V → M
is continuous if and only if f is proper.

Theorem A.4.9 (see, for example, [73, 2.4.4], [57, 3.4]) If F is any subspace
of C∞(V,M) which is closed in the C∞ topology, then F (with either the C∞

topology or the W∞ topology) has the Baire property.

For example, if f ∈ C∞(V,M) and K is a closed subset of V , we can take
F = {g ∈ C∞(V,M) | g|K = f |K}.

We also have

TheoremA.4.10 IfW is open inC∞(V,M) with theC∞ orW∞ topology, then
W has the Baire property.

Proof Since C∞(V,M) is completely regular, for any f ∈W we can choose
a neighbourhood U of f whose closure F ⊂W . If now the Ui are dense open
subsets ofW , theUi ∪ (W \ F ) are dense open subsets of X , hence their inter-
section

⋂
Ui ∪ (W \ F ) is dense in X , and hence intersects U . Thus U meets⋂

Ui, and since this holds for any neighbourhood of f contained in U , f is in
the closure of

⋂
Ui. As this holds for all f ∈W ,

⋂
Ui is dense inW .
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