Appendix B

Homotopy theory

I do not know any book on homotopy theory which covers all the material to
which I need to refer, but one useful introduction is May’s book [89].

B.1 Definitions and basic properties

A continuous map X x I — Y is said to be a homotopy between the maps
X — Y given by its restrictions to X x {0} and X x {1}. The relation of homot-
opy between maps is an equivalence relation. A major concern of homotopy
theory is the set of homotopy equivalence classes of maps X — Y, which in
this appendix we denote by [X : Y]. Unless otherwise stated we fix base points
in X and Y and require maps and homotopies to respect the base point. The
base point is usually denoted =, but is often suppressed from the notation. A
map X — Y homotopic to the constant map X — x* is said to be nullhomo-
topic. We write X* for the disjoint union of X and a point, taken as base point.

An important type of homotopy occurs when B C A, h : A x I — A satisfies
h(x,0) =xforallx € A, h(x,t) = xforallx € B, r € [and h(A x {1}) = B: B
is then called a deformation retract of A and h is a deformation retraction. A
simple example is when A is a square and B the union of three sides.

Two spaces X, X' are said to be homotopy equivalent if there are maps f :
X — X'and f’ : X’ — X such that each composite f o f’, f' o f is homotopic
to the identity map.

If f: S§"~! — X is a continuous map, we define a space X Uy e": as a set,
we have the disjoint union of X and D"; the map g: D" — X Uy e" is given
by the identity on D" and by f on §"~!; and we declare a subset to be open
if its preimages by both g and the inclusion of X are open. This process is
called attaching an n-cell to X. We can allow n = 0: S~! is the empty set, so
X Uy e = X is the disjoint union of X and a point.
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B.1 Definitions and basic properties 315

A space obtained by attaching a finite number of cells to the empty set is
a cell complex. A CW-complex is obtained by a (possibly infinite) sequence
of attachments of cells to ¥, subject to the condition that each attaching map
has image in a finite subcomplex, and that the topology is given by declaring
a set to be open if its intersection with each finite subcomplex is. A CW-pair
(K, L) consists of a CW-complex L and a CW-complex K obtained from L by
attaching cells. We are mainly interested in finite CW-complexes and pairs, or
at worst those with a finite number of cells of each dimension.

Given a CW-complex (or pair) we can change the attaching maps by homot-
opies (and K by a homotopy equivalence) to ensure that cells are attached in
order of increasing dimension: the argument parallels that of §5.2, which is
modelled on the CW case. The space obtained at the intermediate stage when
all cells of dimension < n have been attached, is called the n-skeleton of K and
denoted K™,

In general, we use the term ‘space’ for a topological space homotopy equiv-
alent to a CW-complex. This class of objects is closed under various natural
constructions, including fibrations and formation of function spaces (with the
compact-open topology).

For any space X and n > 1, the set [S” : X] has the structure of a group and
is denoted 7, (X). The group is abelian if n > 2; if X is connected, it is inde-
pendent of the base point. The group m;(X) is called the fundamental group
of X.

Given a space Y and subspace X, we can similarly define 7, (Y, X) using maps
f:D"— Y with £(§""') C X; more generally given any map j: X — Y we
define 7, (j). There is an exact sequence

T (X) S (V) = () = e (X))

Going one further, given a commutative diagram

A 2 B

Piqgl ri,
c > D
we can define 7,(®) by homotopy classes of commutative diagrams of maps of
an n-sphere, the upper and lower hemispheres of its boundary, and the equator
into @: this is a group for n > 3. There are exact sequences
oo Tu(p) = 7u(8) = TW(P) = 71 (p),
T (q) = T (r) = (D) — me_1(g).

A space X is contractible if it is homotopy equivalent to a point. It is weakly
contractible if any map K — X, with K a finite CW-complex, is homotopic to
a constant map. It is sufficient to check this for K a sphere, i.e. that 7, (X) is
trivial for all i > 0.
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316 Appendix B. Homotopy theory

If we merely suppose that every map K — X, with K a finite CW-complex
of dimension < n, is homotopic to a constant map, X is called n-connected.
For this, it is sufficient that 77,(X) is trivial for all 0 < i < n.

Recall that a map f : X — Y is said to be a weak homotopy equivalence if,
for any CW-pair (K, L) and mapsa : L - X andb: K — Y withb|L = foa
there exists ¢ : K — X withc|L = a and f o ¢ homotopic to b keeping L fixed.

L—2sX

e

K—tsy
For this it suffices to consider pairs S*~!  DFinstead of L C K; thus for X con-
nected it suffices if f induces isomorphisms f; : 7,.(X) — 7,(Y) of homotopy
groups.

The map f : X — Y is said to be n-connected if this condition holds for all
(K, L) with K of dimension < n. If f is the inclusion of a subset, we say that
the pair (Y, X) is n-connected. For this it is sufficient that m,(Y, X) is trivial
for all 0 <i < n: equivalently (if n > 2) that X and Y are connected, the map
fv 1 (X)) = m,.(Y) is an isomorphism for r < n and surjective for r = n.

For any K, we define the cylinder on K to be the product K x I, the cone
CK on K to be obtained from K x I by identifying the subspace K x {0} to
a point (so there is an inclusion K — CK with x — (x, 1)), and the suspen-
sion SK to be obtained by further identifying (x x I) U (K x {1}) to a point.
More generally, for any map f : K — L we define the mapping cone LUy CK
to be obtained from the disjoint union L U CK by identifying, for each x € K,
the point (x, 1) € CK with f(x) € L: this generalises the procedure of attach-
ing a cell to L using a map f : S"~! — L. We also define the mapping cylinder
Cyl(f) :== LUy (K x I) to be obtained from the disjoint union L U (K x I) by
identifying, for each x € K, the point (x, 1) € (K x I) with f(x) € L: this con-
tains K x {0} as a subspace, and has L as a deformation retract.

The join of two spaces K and L is the space K * L obtained from K x L x [
by identifying each {k} x L x {0} to k € K and each K x {l} x {1} to [ € L.
The smash product of spaces K and L is defined to be

KAL:= (K xL)/(K x {+}U{x} xL).
In particular, the suspension SK = S' A K.

A map i:K — L is said to have the homotopy extension property
(HEP) if given any map f : L — Y and homotopy g: K x I — Y such that
g(x, 0) = f(i(x)) for each x € K there is a homotopy 4 : L x I — Y such that
h(i(x,t)) = g(x, t) foreach (x,¢) € K x Iandho (i x 1;) = g. This is a typical
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B.1 Definitions and basic properties 317

property of inclusion maps: the inclusion of a subcomplex L in a CW-pair (K, L)
has the HEP. Any map f : K — L is homotopy equivalent to the inclusion
K — Cyl(f) = LUy (K x I), which has the HEP. If i : K — L has the HEP,
identifying CK to a point gives a homotopy equivalence L U; CK — L/K: to
obtain a homotopy inverse, extend the homotopy of CK which shrinks the cone
to its vertex to a homotopy of the identity map of L U; CK: at the end of the
homotopy is a map sending CK to a point, hence factoring through L/K.
For any f : K — L and any X, the sequence
[K:X] < [L:X] < [LU;CK:X]

is exact, foramap L — X extends to L Uy CK if and only if its restriction to K is
nullhomotopic. For any f : K — L, denote by Af the inclusion L — L Uy CK.
Since Af has the HEP, (L Uy CK) U, CL is homotopy equivalent to CL/(L Uy
CK) = SK, so up to homotopy A2 f is a map L Ur CK — SK. Iterating once
more gives a map A’f : SK — SL which differs from the suspension Sf by
reversing orientation in /. Thus the sequence A" f of maps induces, for any X,
an exact sequence

[K:X] <« [L:X] <« [LUfK:X] < [SK:X] <« [SL:X]...
Each set [SK : X] admits a natural group structure, and [S%K : X] is abelian.

A map p : X — Y is said to be have the covering homotopy property (CHP)
if given a space K, a map a: K — X and a homotopy »: K x I — Y such
that b | (K x 0) = p o a, there exists a homotopy ¢ : K x I — X such thata =
c|(Kx0)andb=poec.

Kx0-21>X

[l

KxI-t >y

If this holds for K a finite CW-complex, it follows for any CW-complex; it also
follows if (K, L) is a CW-pair that ¢ can be chosen to extend a lift already given
on L x 1. It suffices to require this condition for pairs (K, L) = (D", S"~'). We
may regard the CHP as a sort of dual notion to the HEP.

We recall from §1.3 that if G is a Lie group acting on a smooth manifold F,
amap 7 : E — B is the projection of a fibre bundle (with base space B, total
space E, and fibre F) if B can be covered by open sets U, such that

(i) There are homeomorphisms ¢, : U, X F — 7~ (U,) such that for all
meUy,xeF,tp,(m,x)=m.

(i1) For each pair («, B) there is a continuous map g4 : Uy N Ug — G such
that form € U, NUg, x € F, pg(m, x) = @o(m, go4p(m).x).
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318 Appendix B. Homotopy theory

Lemma B.1.1 The projection map 7 : E — B of a fibre bundle has the CHP.

This is trivial if 7 is the projection of a product B x F' — B, thus we can lift
a homotopy whose image is contained in some U, ; and now the result is proved
by subdividing K x I into small pieces.

This result motivates the definition that a map = : E — B is a fibration if it
has the CHP. Given a fibration, write F for the fibre F := 7 ~!(x). Then for any
space X, the sequence [X : F] — [X : E] — [X : B] is exact, for given a map
f X — B with m o f homotopic to the map to *, we can lift the homotopy to
give a homotopy of f to a map into F.

Now let X be a connected space and consider the space EX of continu-
ous maps « : I — X. There are two projections pg, p; : EX — X given by
po(a) = «(0) and p; (o) = «(1): each has the CHP. The map py is a homotopy
equivalence: a homotopy inverse is given by constant maps ¢ : X — EX with
c(x)(t) = x; the map h: EX x [ — EX given by h(wx,t) = o, with o, (u) =
a(min(t, u)) is a homotopy of ¢ o py to the identity. Thus PX := pal () is con-
tractible. The restriction ¢g; := p; | PX also has the CHP, and QX := ql’l(*) is
called the loop space of X.

For any map f : K — L we form the pullback

X :={(k,a) e K x EL| f(k) = a(0)};

write i = (i1, i) for the inclusion of X in K x EL. Since py is a homotopy
equivalence, so is the projection i; : X — K. The composite f oi; = pgoir:
X — L is homotopic to the map 7 : p; o i5.

Lemma B.1.2 The projection w : X — L defined above has the CHP.

Proof Given g:Y — X and a homotopy G :Y x I — L such that G|Y x
{0} =m og we need to construct £:Y x I — X with h|Y x {0} = g and
7 o h = g. To this end, write i o g = (g1, g2), i o h = (hy, hy); use t as parame-
ter for paths belonging to EL and s as the homotopy parameter in /; thus write
hy as hy(y,t,s) € L.
Then the conditions that (g, g2) and (hy, hy) factor through X are
F(&1()) = 8, 0), f(hi(y,5)) = ha(3, 0, 5);
that & extends g is
@y, 0)=g1(), h.1,0)=g01),
and that A lifts G is
(. 1,5) = G(y, 5).

We take h;(y,s) = g1(y), and then the equations define h,(y, ¢, s) if either
t =0, s=0 or t =1: moreover the two values for A,(y, 0, 0) agree since
S(hi(y,0)) = f(g1(y)) = g2(y, 0) and those for hy(y, 1,0) do since G(y) =
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B.2 Groups and homogeneous spaces 319

7 (g(y)) = g2(y, 1). Since the union of 3 sides of the square / x [ is a retract
of the whole square, we can extend these values to define &, for all values. [

The fibre of 7 is called the mapping fibre of f; we may denote it by M.
Thus My := {(k,a) € K x EL| f(k) = a(0), a(1) = *}. We have seen that if
fhasthe HEP, LU; K >~ L/K. Dually, if f : K — L has the CHP, with fibre F’,
then F' is homotopy equivalent to M. Let us write Bf for the map My — K:
up to homotopy, if f has the CHP, this agrees with the inclusion F C K. As
7 has the CHP, so does My — K, and this has fibre QL, so B2 f:1QL— My.
Analogously to the above discussion of Af, up to homotopy we can identify
B*f with Qf : QK — QL. It follows that for any space X, there is an exact
sequence

L X QK> [X QL - [X:My] — [X K] — [X: L]

Composition of loops induces a group structure on the set [X : K], and there
is a natural bijection of this set on [SX : K]. In particular, 7, (2X) = 7,41 (X).
Taking X a sphere in the exact sequence gives

.- .JT,,(K) - 7Tn(L) - 7Tn—l(Mf) - 71’,,_1(K) - 7Tn—l(L)-
Here we may identify m,_ (M) with the group 7, (f) and the sequence with
the exact homotopy sequence described above. If also f : K — L has the CHP,
with fibre F', then M is homotopy equivalent to F'.

Lemma B.1.3 Given a sequence A;4, 5 A; where the maps o; are fibrations,
there are natural isomorphisms q,, nn(@ A= l(ﬂi 7, (A)).

Given a sequence of maps f; . A; — B; between two sequences of fibrations,
with each f; a weak homotopy equivalence and f; o o; = B; o fir1 for each i,
the induced map l(ﬂ1 A — l(ln B; is a weak homotopy equivalence.

For a map §" — l(ln A, defines a sequence of maps S" — A;, so we have a
natural map g,,. Since «; is a fibration, if the homotopy class of a map S" —
A; lifts to that of a map to A;1, so does the map itself. It follows that g, is
surjective; injectivity follows similarly.

The second assertion now follows.

Many of the definitions and results in this section have a formal nature. A
set of axioms for homotopy theory, with a development along these lines, was
given by Quillen [126].

B.2 Groups and homogeneous spaces

We observed in §3.1 that for any Lie group G and Lie subgroup H, we have a
fibre bundle with projection G — G/H and fibre H; and that if we have two
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320 Appendix B. Homotopy theory

Lie subgroups H; C H, C G, the projection G/H, — G/H, is that of a fibre
bundle, with fibre H,/H;, so has the CHP.

The group GL,(R) acts transitively on the space P of positive definite
quadratic forms on R”, and O, is the isotropy group of the usual inner product,
so we have an induced diffeomorphism of GL,(R)/O,, on P, and hence a fibre
bundle O, — GL,(R) — P. Since P is a convex subset of a Euclidean space, it
is contractible. Thus GL,(R) is homotopy equivalent to O,,. It is usually more
convenient to work with the compact group O,,.

Similarly, any Lie group G has maximal compact subgroups K, any two
are conjugate, and G/K is contractible. Thus for homotopy purposes, we may
replace G by K. In particular, we may replace GL,(C) by U,,.

Since O,, acts transitively on the Grassmann manifold Gr,, x of k-dimensional
subspaces of R”, and the subgroup leaving RF @ {0} can be identified with O} x
O,_i, we can identify Gr, ; with the coset space O, /(Ox x O,_;). This is a
smooth manifold, and there is a natural vector bundle y, ; over Gr,; whose
fibre is the k dimensional linear subspace.

The space V. of injective linear maps R¥ — R” is homotopy equivalent
to the space of isometric linear embeddings R — R”. The latter is called the
Stiefel manifold, and denoted V,,  (we call V, , the weak Stiefel manifold). It can
be identified with O,,/O,_, hence with SO,,/SO,_;. For any n-vector bundle
& : E — B with group O, there is an associated bundle with fibre V,, ;: a point
in its total space can be interpreted as an isometry of R¥ into some fibre of &.

For any Lie group G, there is a contractible space E(G) admitting a free
action of G. Write B(G) := E(G)/G and i : E(G) — B(G) for the projection.
Then this is a principal G-bundle, and for any principal G-bundle & over any
space X there is a map f : X — B(G), unique up to homotopy, such that § is
equivalent to f*7g. The bundle 77 : E(G) — B(G) is determined uniquely up
to homotopy by this condition.

The space B(G) is called a classifying space for G. Since E(G) is con-
tractible, it follows that G is homotopy equivalent to the loop space QB(G).

The classical construction of a classifying space is based on the Grassmann
manifolds. The natural inclusion Gr,, y C Gry414, s (n — k)-connected, and the
union | J,, Gr,x can be taken as a classifying space B(Oy) for bundles with
group Oy. This construction may be adapted for other Lie groups.

There is an alternative construction, due to Milnor [91], using the sequence
of iterated joins G * G * ... * G (on which G acts freely), and taking E(G) as
the union.

Yet another approach is axiomatic. The set £g(X) of equivalence classes of
bundles over X with a given structure group G is a contravariant functor of
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B.2 Groups and homogeneous spaces 321

X, and it is not difficult to verify the hypotheses of Brown’s representability
theorem [33]. This shows again that there exists a space B(G) and a bundle
&¢ over it with structure group G such that taking a map f : X — B(G) to the
bundle f*&: induces a bijection of [X : B(G)] on E6(X).

In some sense, we can regard any space X as a classifying space for QX,
which plays the part of the group, since we have a fibration QX — PX — X
with PX contractible.

An (n — 1)-spherical fibration consists of a fibration 7 : F — E — X
together with a homotopy equivalence $"~! — F. It follows from the axiomatic
approach that there is a classifying space B(G,) for the set £¢(X) of homot-
opy equivalence classes of (n — 1)-spherical fibrations over X and a fibra-
tion v, : S ! — S(G,) — B(G,), such that f — f*v, gives a bijection [X :
B(G,)] — E§(X).

This notation goes with writing G,, for the set of maps of §"~! to itself of
degree £1, with the multiplication given by composition of maps. Although
this is not a group, it can be treated as one for the purposes of homotopy theory.
In particular we have a homotopy equivalence G, — Q2B(G,). Restricting to
maps of degree +1, or to fibrations with a fixed orientation of the fibre, gives a
monoid SG, and a classifying space B(SG,). The inclusion O, C G, gives rise
to a natural map B(O,) — B(G,).

We write F,, C G,y for the set of base-point preserving maps S" — S" of
degree +1, and SF; for those of degree +1. The suspension of a self-map of
§"~! is a self-map of the same degree of S" which fixes a base point; thus
we also have an inclusion G,, C F;. Since all components of Q"S", including
SF,, are homotopy equivalent, we have ,(F,) = m,.,(S"). We have a fibration
SF,_; — SG, — §"!, and hence an exact sequence

oo T (8" = 71,.(Gy) = 7 (ST, (B.2.1)

The classifying spaces B(G) are infinite dimensional, and not homotopy equiv-
alent to finite dimensional spaces. They may, however, be approximated by
smooth manifolds. Since the map Gr,,x — B(Oy) is m-connected, for a mani-
fold M of dimension at most m, the set of homotopy classes of maps M — Gry,
maps bijectively to that of maps M — B(Oy). In general, we first replace
the original B(G), or indeed any space X, by the (N + 1)-skeleton X; of
its singular complex. Next, provided the homotopy groups of X are count-
able, we can replace X; by a countable (N + 1)-simplicial complex X,; then
by a locally finite complex X3, and finally imbed X3 properly in Euclidean
(2N + 3)-space and take an open neighbourhood X, of which it is a deformation
retract.
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322 Appendix B. Homotopy theory

In the construction of classifying spaces we have emphasised principal bun-
dles. However, for any G-space L we can study bundles with group G and
fibre L, and the classification is the same as for the associated principal bun-
dles: they are induced from the universal bundle E(G) x L. For example,
using the action of GL,(R) on R”, we obtain a universal vector bundle over
B(GL,(R)).

Likewise we have a universal orthogonal vector bundle y; over B(Oy), whose
total space contains the associated unit disc bundle A(Oy). Writing S(Oy) for
its boundary sphere bundle, we have the Thom space T (Oy) = A(Oy)/S(Ok).
Thus for any group G with a given homomorphism G — Oy we have induced
bundles S(G) C A(G) and T'(G) is obtained from A(G) by identifying S(G) to
a point.

More generally, since each sphere bundle is a spherical fibration, we have an
inclusion O,, C G, and maps B(O,) — B(G,), S(O,) — S(G,). Here the role
of A(G,) is played by the mapping cylinder Cyl(rr ), where 7 : S(G,) — B(G,)
denotes the projection, and we define T'(G,,) to be its mapping cone. Again, any
map X — B(G,) induces a spherical fibration £ over X and we have a Thom
space. In this situation there is still a natural isomorphism, called the Gysin
isomorphism

H'(X) — H""(Ag, Sg) = H(T (§)).

A summary of calculations of cohomology of classifying spaces is in §8.6.

In general, if x € H*(B(G); A) is a cohomology class, and 7 : E — X is a
G-bundle, 7 is induced by a map f : X — B(G), so we have a class f*x €
H"(X; A). Such a class is called a characteristic class of the bundle 7, and
denoted x(f). For example, we have H*(B(0,) : Z,) = Z,[wy, . .., w,], so any
polynomial in wy, ..., w, defines a characteristic class for vector bundles of
fibre dimension 7.

If M is a smooth manifold, its tangent bundle T'(M) is classified by a map ¢ :
M — B(0), so aclass x € H"(B(0); A) induces a characteristic class x(M) :=
¢*(x) € H'(M; A).If J is a stable group and M has a J structure, we may replace
O by J here.

If moreover M has the same dimension n, we have ¢*(x)[M] € A: this is
called a characteristic number of M (if A = Z we do just have a number). If W is
a cobordism of M to M’, x € H"(B(G) : A), and ¥ : W — B(G) classifies a G-
structure on W, then ¢*(x)[M] = ¢*(x)[M'], since ¥ restricts to ¢ and ¢’, and
(¥*(x), [M] — [M']) = 0 since [M] — [M'] = 0 in homology, as the boundary
of W. Thus characteristic numbers are cobordism invariants.

The same argument applies with any non-classical homology theory; for
example, with KO-theory.
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B.3 Homotopy calculations

In this section we summarise the results of a large number of homotopy calcu-
lations. We have included text intended to make the summary less unreadable,
but make no attempt to give proofs. The results may be found in texts on homot-
opy theory, but the author has not discovered a convenient single reference for
these results.

(i) There are natural maps 7,,(X) - H,(X; Z)and 7,(X,Y) — H,(X,Y; Z).
The Hurewicz Isomorphism Theorem states that if X is (n — 1)-connected (and
n > 2), the natural map 7,,(X) — H,(X; Z) is an isomorphism.

It follows that ,.(S") is zero for r < n and isomorphic to Z for r = n. We
write ¢, for the class in m,(S") of the identity map.

The Hurewicz theorem has a relative version: if (K, L) is (n — 1)-connected
(and K, L are simply-connected), the natural map n,(K, L) - H,(K, L; Z) is
an isomorphism. If we define the homology groups of a map f: A — B as
those of the pair (Cyl(f),A) we can write this as: if f is (n — 1)-connected,
i (f) — Hi(f; Z) is an isomorphism for k < n.

(ii) The group SU, is homeomorphic to the sphere S, and its action on
P'(C) ~ §? gives a fibre bundle map 1, : S — S? called the Hopf map; sim-
ilarly using quaternions or Cayley numbers gives maps 14 : 7 — $* and g :
§15 — 88: using the real numbers gives ; : S' — S of degree 2, so homotopic
to 2.

(iii) There is a natural homomorphism H : m5,-1(S") — Z, called the Hopf
invariant. Given f:S$*! — §" form X;:=S"U; ¢, then H"(X;) and
H* (X[ ) are infinite cyclic with preferred generators u, v, say, and we set ur =
H(f)v. This invariant vanishes for n odd (the cup product is skew-symmetric
here), and takes the value 1 for each of 1, 4, 1s.

One generalisation of H is defined as follows. The map 7,(j,) induced by
the inclusion j, : $* v §" — S$" x §" has a right inverse given by adding the
maps induced by the two projections of S" x S". Then H is the composite

7.(§") = 7. (8" Vv S") > 7, (S x S", 8"V S —> 71,+1(Sz”),

where the first map is induced by collapsing the equator to a point, the second
by the splitting in the exact homotopy sequence of (§" x §”, $" v §") and the
third by collapsing S" v S" to a point.

(iv)Let f : (D™, S 1) — (X, %) represent @ € m,,(X)and g: (D", S" ') —
(X, %) represent 8 € m,(X): then the Whitehead product [, B] € myqn—1(X) is
the homotopy class of the map F : (D™ x D") — X given by F(x,y) = f(x)
ify € D" and = g(y) if x € 0D™.

We have (i, t,,] € 2,-1(S"), and H([t,, t,])is Oif nis odd, and 2 if n is even.
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(v) The ‘Hopf invariant 1’ problem, the question whether H : mp,—(S") — Z
is surjective, was solved by Adams [3]: it is surjective only if n is 2, 4, or 8.

This is analogous to the Kervaire invariant problem.

(vi) A further relative version of the Hurewicz theorem is the Blakers—Massey
Theorem [18]. Given a commutative square

A2 B

®:ql ri,
c > D
of simply-connected spaces, we can define H,(®, Z) so that there are exact
sequences H.(q; Z) — H.(r; Z) — H.(®,Z) - H._1(q; Z). Thenif pis (r —
1)-connected, g is (s — 1)-connected, and H,(®, Z) = 0, m,(P) vanishes for
n<r+s—1land 1 (P) = H.(p; Z) ® Hy(q; Z).

(vii) We can apply (vi) to the square given by the inclusions of S” in the two
hemispheres E™! and Ei“ of $"*! (these inclusions are n-connected), and
theirs in S"*!. This gives 77,(®) = 0 for r < 2n and 7,41 (P) = Z. Since the
hemispheres are contractible, the sequence 7, (E"™!, ") — 7,.(S"*!, E frl) —
7,-(P) becomes 7,_1(S") = m,(S"!) = 7,.(D).

The map m,_;(S") — m.(S"1) is called the suspension map. It is thus an
isomorphism for r < 2n — 1, so the groups m,,++(S") for n > k 4 2 are all iso-
morphic; the limit value is denoted 77. Also we have an exact sequence

T00(8") = Tou 1 (S™) = Z — 72,-1(S") — 702,(S"!) — 0.

Here the second map is the Hopf invariant, and 1 € Z maps to [t,, t,]. It
follows from the above that if n is even, the second map is zero so we have
an exact sequence 0 — Z — mp,-1(S") — 775—1 — 0;ifn # 1, 3,7 is odd we
must replace Z by Z, here.

(viii) For the groups 7,(S") we have a range given by r < n where the groups
vanish, and a range n < r < 2n — 1 where they are stable. We get information
in the next ‘metastable’ range 2n — 1 < r < 3n — 2 as follows.

We use the isomorphism of 7,(QS"") on m,41(S"*!). Up to homotopy,
Q8" has a cell structure with one kn-cell for each k € N. Hence (5!, §")is
(2n — 1)-connected and, by the relative Hurewicz theorem, 7,,(25"*!, §") =
Z. Now applying (vi) to the square

s 5 QSVt-H

|

* —— QS /g ~ 21y e
we find that 77,(Q8"+!, §") — 7,(5%") is an isomorphism for < 3n — 1. This
yields the so-called EHP sequence

n E n H n P n E
Tk (8") = Tkt (8™ = Tppp2(8*2) = mpa1 (") = ..., (B.3.1)
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generalising the sequence (vii), and valid for a range k < 2n — 1. Here the map
P agrees (up to suspension) with the Whitehead product with ¢,: 7 (S") —
Tapk—1(S").

A more general version can be obtained using the fibration §* — QS§"*! —
Q8?1 (after localisation at 2) constructed by James [1] and Toda [6].

(ix) The homotopy group m,(S") is finite for r > n except if n is even and
r = 2n — 1 when it is the direct sum of Z and a finite group.

(x) The calculation of the homotopy groups ,.(S") is a massive enterprise:
see [129] for the state of the art. The stable groups form a ring under compo-
sition; the first few, with generators (here we use the same notation 7, for the
class of the suspension in 7} of 7,), are given by

7 = Tolna), 75 = Zoln3l, 7§ = Zoalnal, n§ =0, ¥ =0.
We have ng =0¢ nlf.

(xi) The group SO, acts transitively on the unit sphere $"~! in R”, and the
stabiliser of the unit point on the x,-axis is the subgroup SO,_;. Thus there
is a fibre bundle SO,_; — SO, — S"!, with an exact homotopy sequence.
Since m;(S") vanishes for i < n, we have isomorphisms 7,(SO,-;) — 7,(SO,)
for r < n — 3. More generally, if X has dimension < r, the suspension map
[X : BSO,] — [X : BSO,4] is bijective for n > r + 1, so stably isomorphic
vector bundles over X of fibre dimension > r 4+ 1 must be isomorphic.

Also all groups 7,(SOy) for N > r 4 2 are isomorphic; the common value
is denoted 7,(SO).

(xii) It was proved by Bott [21] that 7,(SO) is infinite cyclic if r = 3 (mod
4), isomorphic to Z; if r =0 or r = 1 (mod 8), and zero otherwise. A good
account of Bott’s proof is given in [98].

(xiii) The exact sequence of the fibre bundle SO,_; — SO, — §"~! includes

= M1 605 = 1160, 75> Z 5 7, 260,-1) —> 7,-2(S0) — 0.
(B.3.2)
If x € m,_1(SO,) classifies a bundle &, then 7,x can be identified with the Euler
number of £. If x = ¢, then £ is the tangent bundle of S”, so m,d¢, is 2 for n
even, and O for n odd. The image of r, is O for n odd, Z forn = 2, 4, 8 and 2Z
for n even otherwise.
(xiv) Using (ix) and (xi), we see inductively that each group m,(SOy) is
finitely generated; the rank is O except if
@k=2s+1,r=4i—1,1<i<s,or
b)k=2s+2,eitherr=4i—1withl <i<sorr=2s+1.
In these cases the rank is 1 except if k = 4s and » = 4s — 1 when the rank is 2.
(xv) The Stiefel manifolds V, ; = SO, /SO,_; occur in fibre bundles
SO,y = SO, > Vyux I <k<n)and V,_y ;4 = Vg — Vor k<l <n),
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326 Appendix B. Homotopy theory

which give further exact homotopy sequences. It now follows that for r <
n—k —1wehave w,(V, 1) =0, 1i.e. V. is (n — k — 1)-connected.

(xvi) The calculation (xiii), that the kernel of , »(SO,_;) — 7, »2(SO) is
isomorphic to Z for n odd, and to Z, for n even, now implies that the first non-
vanishing homotopy group 7, (V, x) is isomorphic to Z if (n — k) is even and
to Z, if (n — k) is odd.

(xvii) There is a homomorphism J : m4(SO,) — w44 (S"), called the
J-homomorphism, defined as follows. An element ¢ € m;(SO,) is represented
by a map f: S x D" — D". Write ¢ : D" — S" for a map which collapses
D" to x. Write S"T* as the union of S¥ x D" and D**! x $"~!, and define
g: S"* — S" to map the first part by c o f and the second to *. Then J(¢)
is the class of g in 7,1 (S"). An equivalent definition in the language of cobor-
dism is given in §8.8.

For x € my(S0,,), we have H(J(x)) = S"(7 (x)) € m,x(S>*1). Taking k =
25 — 1,n = 2s and x = 01y, then since 7 (x) = 21,1 we deduce H(J(x)) = 2,
so the homomorphism J : 7,1 (SOs) — T45—1(S>*) has rank 1.

(xviii) The image of the stable J homomorphism J; : 7 (SO) — nkS was
determined after heroic calculations by Adams [5]; a simpler proof was found
in joint work with Atiyah [8].

(@) Ifk=0ork =1 (mod 8), the map J; is a split monomorphism.

(b) If k = 4m — 1 the image of J; has order equal to den(B,,/4m), and is a
direct summand of né.

(xix) It follows from (vi) that ,(SF;) is finite for r > 0 except if n is even
and r = n — 1 when it is the direct sum of Z and a finite group.

In the exact sequence (B.2.1)

o= T 1 (8" = 1,(SG,) = (ST = w2 (ST,

the final map is the Whitehead product with ¢,,_;, so has infinite image if and
only if n is odd and r = n — 1. Thus 7,.(SG,) is infinite if and only if either
r=n—1and n is even or r = 2n — 3 and n is odd. The image of the map
7,.(S0,) — m,(SG,) has infinite order in each of these cases.

To summarise: the homotopy groups are finite except as follows:

Case r n rank(w,(S0,)) rank(w.(SG,))
A 4s+14s+2 1 1
B 4s5—14s 2 1
S 4s—12s+1<n##ds 1 0
C 45—12s+1 1

(xx) If we take the exact sequence (B.2.1), increase n by 1, replace r by k,
and compare with (B.3.1), we see that if m(S") is stable, i.e. 2n > k + 2, we
have an isomorphism 7, (SG,+1) = w1 (SF,41).
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The calculations in (xiv) can be compared with Haefliger’s result [64]
w-(Fy, Gy) = -3 41(SO, SO,,—1) for r < 3n — 6, which he established by geo-
metrical arguments.

B.4 Further techniques

We have defined CW complexes as built up from spheres by attaching cells.
If these are attached in order of increasing dimension, a complex K has an n-
skeleton K™: the union of cells of dimension < n. The inclusion i : K™ — K
has the HEP and is n-connected: the map H,(K") — H,(K) is an isomorphism
for r < n and an epimorphism for » = n; and the mapping cone K U; CK™ is
n-connected.

There is also a dual approach. We may start with K, attach (n + 1)-cells to K
to kill 7, (K); then (n + 2)-cells to kill 7,41, ..., obtaining eventually an inclu-
sion j : K — K,y with m.(j) an isomorphism for r < n — 1 and 7,(K(,)) = 0
for r > n. Denote the mapping fibre of jby p" : K™ — K:then K™ is (n — 1)-
connected and 7,(p") is an isomorphism for r > n. The pair (K, p") is called
the (n — 1)-connected cover of K, and is determined up to homotopy by these
conditions.

It follows that, up to homotopy, there is for each k a fibration K*~1 —
K* — K(k, m;(K)). For any Y we have an induced map [Y : K®¥] — [V : K];
this is surjective if Y is k-connected, and bijective if Y is (k + 1)-connected.
The sequence of maps ... — K» — K1) — K is called the Postnikov tower
of K.

Given CW complexes K, L and a map f:K* D — L of the (k—1)-
skeleton, the obstruction to extending f over a k-cell of K is an element of
mr—1(L); collecting these over all k-cells gives a cochain on K, which is neces-
sarily a cocycle. Its class in H*(K; m;_; (L)) is the obstruction to extending the
restriction of f to K*=2 over K®.

If this obstruction vanishes, we can seek to extend over the (k + 1)-skeleton,
and so on. However, the later obstructions will in general depend on choices
made at earlier stages. If k is the least integer such that H*(K; m;_ (L)) is non-
zero, the obstruction in this group depends on no choices, and is called the
primary obstruction.

If & is a vector bundle, and & (k) the associated bundle with fibre V,,;, the
primary obstruction to finding a section of & (k) is denoted W, _(£); it lies in
H"*(B; Tn—k(Vix))- The reduction modulo 2 of W,,_; (&) is equal to the Stiefel—
Whitney class w,,_(§).
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328 Appendix B. Homotopy theory

Given n > 1 and a group , abelian if n > 2, spaces K(7,n) were con-
structed by Eilenberg and MacLane [49], with the property that (K vanishes
for r # n and that 77,,(K) = 7: this determines K (s;r, n) up to homotopy equiva-
lence. For 7 abelian, there is a natural isomorphism [X : K(7, n)] = H"(X; 7).
It follows that a map K(m, m) — K(p, n) determines a natural transforma-
tion H"(X; m) — H"(X : p). Such a transformation is called a cohomology
operation.

In particular, [K(Zp, n) : K(Z,,n+ k)] = H"*k(K(ZP, n); Z,). Composing
with an element of this group gives a natural transformation from H"(X; Z,)
to H"**(X : Z,). There are maps

H" ™ K(Z,, n); Z,) - H" N (K(Zp, n+ 1); Z,),

which are isomorphisms for n > k, so the groups with n > k have a com-
mon value H*(K (Zp); Zp): elements of this give stable operations. Composi-
tion endows the set of these operations with a natural ring structure; this ring
is known as the Steenrod algebra and denoted S,,. Particular such operations
are the Bockstein B, : H'(X; Z,) — H™ (X . Z,) and Steenrod’s squares
Sq' : H'(X; Z») — H""(X; Z,) and reduced pth powers P’ : H"(X; Z,) —
H"™2»=D(X : 7,). These operations generate S, and formulae for their com-
posites (the Adem relations) are well known. There are rules (Cartan formulae)
for evaluating these operations on the cup product of two classes. These define
a diagonal map which furnishes S,, with the structure of a Hopf algebra. It thus
has a canonical anti-automorphism, which is denoted .

It was shown by Milnor [93] that the dual algebra S If is a polynomial algebra
on a 1-dimensional generator b, and generators ¢, (r > 1) of degrees 2(p" — 1).
The quotient 3,, of S, by the ideal generated by f§, has dual the polynomial
algebra on the ¢,. A careful and thorough account of this material is given in
[145].

Steenrod squares are related to Stiefel-Whitney classes as follows. If £ is
a vector bundle, with projection 7 : E — B and Thom space T'(§), we have
the Gysin isomorphism & : H*(B : Z,) — H*(T(£); Z), with ®(1)=U,
say: then S¢'U = ®(w;(€)) = w;(§).U. Classes v; € H(B(O); Z,) are defined
uniquely by the rule w; = v; + Z.’:l Sq’v;_;, which may be written compactly
as w, = Sq*v,. In the special case of the tangent bundle of a manifold M™,
we have the formulae, known as Wu relations, Sg'x[M] = xv;[M] for any x €
H™ (M : Z,): these follow from the above and duality in M (see [103, IX, 5]).

As well as primary operations such as Steenrod squares there are sec-
ondary operations. The general idea is that if something vanishes for two
independent reasons, this leads to a construction. Perhaps the simplest exam-

ple: given maps Ay i) Ay i) As i) As such that f> o f] and f3 o f, are
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nullhomotopic, choose homotopies i : Ag X I — A and hy : A} X [ — Aj:
then both h; o f3 and hy o fy are homotopies of f3 o f> o fj o fy to a point.
Glueing these together thus gives a map SAg — As. This depends not only on
the homotopy classes of the f; but also on the choices of the homotopies, so
(in the additive case) is unique up to adding elements of f3 o [SAp : A>] and
[SA] . A3] o Sfl.

For example, if A, = K(G, m) and A3 = K(H, n), the map f5 defines a coho-
mology operation ¢ : H"(X; G) — H"(X; H). Thus if f, represents a class
& € H"(Ay; G) such that 6 =0 and ¢(§) =0 we obtain an element of
H"(SAo; H) = H""'(Ao; H), which is denoted ¢, £.

If p is a prime, we can localise a (finitely generated) abelian group A at p by
forming the tensor product A ® Z,, with the group of integers localised at p
(i.e. rational numbers with denominator prime to p). An Eilenberg—MacLane
space K(A, n) localises to K(A ® Z,), n). Building up using fibrations, one can
define the localisation X, at p of any simply-connected space X: it is unique
up to homotopy, and 7, (X)) is the localisation of 7, (X) at p. See, for example,
[23] for a textbook account. Similarly we can localise at any set S of primes.
This permits calculations where we can ignore throughout the contribution of
all primes not in S. This technique of ‘mod C’ theory is due to Serre [136].

We define a spectrum A to be a sequence of (based) spaces A, (n € Z) and
maps i, : SA, — A,+1: equivalently, we may require maps A, — QA, 4. [tis
called an Q2-spectrum if the maps A,, — QA, are all homotopy equivalences.

The map i, induces 7,1,(A;) = Trpni1(SAL) = Trpnt1(Ans1) and, for any
C,Hn(Ay; C) > Hyy i 1(SA, - C) > Hpg i1 (Ayyq; €): the limits of these are
defined to be 7,.(A) and H.(A; C).

Proposition B.4.1 Let X be a spectrum whose homology groups are finitely
generated. Then the natural map nkS(X) — Hi(X; Z) has finite kernel and
cokernel.

This is proved using the methods of mod C theory [136]. It is a very useful
first step in calculation of bordism groups.

We give important examples of spectra. The sphere spectrum S is defined by
the sequence S" and SS" ~ §"*!. The Eilenberg-MacLane spectrum K(A, k) is
defined by the sequence K(A, n + k) and the homotopy equivalences K(A, n +
k) — QK(A,n+ k+1). The cohomology ring H*(K(Z,, k); Z,) is free on
one generator over S,; H*(K(Z, k); Z,,) is free over gp.

For J a stable group in the sense of §8.2, the sequence of maps Ay, : ST (J;) —
T (Jy41) defines a spectrum, which we denote by TJ.
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A different example is obtained using the homotopy equivalence QU —
B(U) established by Bott: set Ay, = B(U) and A,,—; = U. This gives an Q-
spectrum BU with 7, (BU) = Z for all n € Z. Similarly using a homotopy
equivalence Q80 — O we define a spectrum BQ. For any spectrum A we
can define the (k — 1)-connected cover A(k): as for spaces, A% is (k — 1)-
connected and % : A% — A induces isomorphisms of the homotopy groups
7, for r > k. The spectrum BO(k), which is a Q-spectrum with O-term B(O)(k),
plays a role in Chapter 8.

A spectrum A is aring spectrum if we are given a system of maps A,, A A, —
A,+n compatible with the i,. There is a natural condition of associativity. For
the above examples, S is a ring spectrum, a ring structure on A induces one on
K(A, k), and TJ is a ring spectrum if (M) and (A) hold for J.

Any spectrum A = {A,, i,} gives rise to a homology theory (satisfying the
axioms discussed in §8.4) on defining

Hy(X; A) = lim m,en(A, AXT)
Hy(X.Y: ) = lim 7, (A, A XY, A, AYT)
—00

= lim 7 nvA, AX, A AY).
N—oo

If A is a ring spectrum we obtain external products which are associative if
the spectrum is.
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