
Appendix B

Homotopy theory

I do not know any book on homotopy theory which covers all the material to
which I need to refer, but one useful introduction is May’s book [89].

B.1 Definitions and basic properties

A continuous map X × I → Y is said to be a homotopy between the maps
X → Y given by its restrictions to X × {0} and X × {1}. The relation of homot-
opy between maps is an equivalence relation. A major concern of homotopy
theory is the set of homotopy equivalence classes of maps X → Y , which in
this appendix we denote by [X : Y ]. Unless otherwise stated we fix base points
in X and Y and require maps and homotopies to respect the base point. The
base point is usually denoted ∗, but is often suppressed from the notation. A
map X → Y homotopic to the constant map X → ∗ is said to be nullhomo-
topic. We write X+ for the disjoint union of X and a point, taken as base point.
An important type of homotopy occurs when B ⊂ A, h : A× I → A satisfies

h(x, 0) = x for all x ∈ A, h(x, t ) = x for all x ∈ B, t ∈ I and h(A× {1}) = B: B
is then called a deformation retract of A and h is a deformation retraction. A
simple example is when A is a square and B the union of three sides.
Two spaces X, X ′ are said to be homotopy equivalent if there are maps f :

X → X ′ and f ′ : X ′ → X such that each composite f ◦ f ′, f ′ ◦ f is homotopic
to the identity map.
If f : Sn−1 → X is a continuous map, we define a space X ∪ f en: as a set,

we have the disjoint union of X and D̊n; the map g : Dn → X ∪ f en is given
by the identity on D̊n and by f on Sn−1; and we declare a subset to be open
if its preimages by both g and the inclusion of X are open. This process is
called attaching an n-cell to X . We can allow n = 0: S−1 is the empty set, so
X ∪ f e0 = X+ is the disjoint union of X and a point.
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B.1 Definitions and basic properties 315

A space obtained by attaching a finite number of cells to the empty set is
a cell complex. A CW-complex is obtained by a (possibly infinite) sequence
of attachments of cells to ∅, subject to the condition that each attaching map
has image in a finite subcomplex, and that the topology is given by declaring
a set to be open if its intersection with each finite subcomplex is. A CW-pair
(K,L) consists of a CW-complex L and a CW-complex K obtained from L by
attaching cells. We are mainly interested in finite CW-complexes and pairs, or
at worst those with a finite number of cells of each dimension.
Given a CW-complex (or pair) we can change the attaching maps by homot-

opies (and K by a homotopy equivalence) to ensure that cells are attached in
order of increasing dimension: the argument parallels that of §5.2, which is
modelled on the CW case. The space obtained at the intermediate stage when
all cells of dimension≤ n have been attached, is called the n-skeleton of K and
denoted K (n).
In general, we use the term ‘space’ for a topological space homotopy equiv-

alent to a CW-complex. This class of objects is closed under various natural
constructions, including fibrations and formation of function spaces (with the
compact-open topology).

For any space X and n ≥ 1, the set [Sn : X] has the structure of a group and
is denoted πn(X ). The group is abelian if n ≥ 2; if X is connected, it is inde-
pendent of the base point. The group π1(X ) is called the fundamental group
of X .
Given a spaceY and subspaceX , we can similarly defineπn(Y,X ) usingmaps

f : Dn → Y with f (Sn−1) ⊂ X ; more generally given any map j : X → Y we
define πn( j). There is an exact sequence

. . . πn(X )
j∗−→ πn(Y )→ πn( j)→ πn−1(X ) . . ..

Going one further, given a commutative diagram

� :
A

p−→ B
q ↓ r ↓
C

s−→ D

,

we can define πn(�) by homotopy classes of commutative diagrams of maps of
an n-sphere, the upper and lower hemispheres of its boundary, and the equator
into �: this is a group for n ≥ 3. There are exact sequences

. . . πn(p)→ πn(s)→ πn(�)→ πn−1(p),

. . . πn(q)→ πn(r)→ πn(�)→ πn−1(q).
A space X is contractible if it is homotopy equivalent to a point. It is weakly

contractible if any map K → X , with K a finite CW-complex, is homotopic to
a constant map. It is sufficient to check this for K a sphere, i.e. that πn(X ) is
trivial for all i ≥ 0.
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316 Appendix B. Homotopy theory

If we merely suppose that every map K → X , with K a finite CW-complex
of dimension ≤ n, is homotopic to a constant map, X is called n-connected.
For this, it is sufficient that πn(X ) is trivial for all 0 ≤ i ≤ n.

Recall that a map f : X → Y is said to be a weak homotopy equivalence if,
for any CW-pair (K,L) and maps a : L→ X and b : K → Y with b |L = f ◦ a
there exists c : K → X with c |L = a and f ◦ c homotopic to b keeping L fixed.

L
a ��

i
��

X

f
��

K

c

���������� b �� Y

For this it suffices to consider pairs Sk−1 ⊂ Dk instead of L ⊂ K; thus for X con-
nected it suffices if f induces isomorphisms f∗ : πr(X )→ πr(Y ) of homotopy
groups.
The map f : X → Y is said to be n-connected if this condition holds for all

(K,L) with K of dimension ≤ n. If f is the inclusion of a subset, we say that
the pair (Y,X ) is n-connected. For this it is sufficient that πn(Y,X ) is trivial
for all 0 ≤ i ≤ n: equivalently (if n ≥ 2) that X and Y are connected, the map
f∗ : πr(X )→ πr(Y ) is an isomorphism for r < n and surjective for r = n.

For any K, we define the cylinder on K to be the product K × I, the cone
CK on K to be obtained from K × I by identifying the subspace K × {0} to
a point (so there is an inclusion K → CK with x 	→ (x, 1)), and the suspen-
sion SK to be obtained by further identifying (∗ × I) ∪ (K × {1}) to a point.
More generally, for any map f : K → L we define the mapping cone L ∪ f CK
to be obtained from the disjoint union L ∪CK by identifying, for each x ∈ K,
the point (x, 1) ∈ CK with f (x) ∈ L: this generalises the procedure of attach-
ing a cell to L using a map f : Sn−1 → L. We also define the mapping cylinder
Cyl( f ) := L ∪ f (K × I) to be obtained from the disjoint union L ∪ (K × I) by
identifying, for each x ∈ K, the point (x, 1) ∈ (K × I) with f (x) ∈ L: this con-
tains K × {0} as a subspace, and has L as a deformation retract.
The join of two spaces K and L is the space K ∗ L obtained from K × L× I

by identifying each {k} × L× {0} to k ∈ K and each K × {l} × {1} to l ∈ L.
The smash product of spaces K and L is defined to be

K ∧ L := (K × L)/(K × {∗} ∪ {∗} × L).
In particular, the suspension SK = S1 ∧ K.

A map i : K → L is said to have the homotopy extension property
(HEP) if given any map f : L→ Y and homotopy g : K × I → Y such that
g(x, 0) = f (i(x)) for each x ∈ K there is a homotopy h : L× I → Y such that
h(i(x, t )) = g(x, t ) for each (x, t ) ∈ K × I and h ◦ (i× 1I ) = g. This is a typical
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B.1 Definitions and basic properties 317

property of inclusionmaps: the inclusion of a subcomplex L in a CW-pair (K,L)
has the HEP. Any map f : K → L is homotopy equivalent to the inclusion
K → Cyl( f ) = L ∪ f (K × I), which has the HEP. If i : K → L has the HEP,
identifying CK to a point gives a homotopy equivalence L ∪i CK → L/K: to
obtain a homotopy inverse, extend the homotopy ofCK which shrinks the cone
to its vertex to a homotopy of the identity map of L ∪i CK: at the end of the
homotopy is a map sending CK to a point, hence factoring through L/K.
For any f : K → L and any X , the sequence

[K : X]← [L : X]← [L ∪ f CK : X]
is exact, for amap L→ X extends to L ∪ f CK if and only if its restriction toK is
nullhomotopic. For any f : K → L, denote by A f the inclusion L→ L ∪ f CK.
Since A f has the HEP, (L ∪ f CK) ∪g CL is homotopy equivalent to CL/(L ∪ f

CK) = SK, so up to homotopy A2 f is a map L ∪ f CK → SK. Iterating once
more gives a map A3 f : SK → SL which differs from the suspension S f by
reversing orientation in I. Thus the sequence Ar f of maps induces, for any X ,
an exact sequence

[K : X]← [L : X]← [L ∪ f K : X]← [SK : X]← [SL : X] . . .

Each set [SK : X] admits a natural group structure, and [S2K : X] is abelian.

A map p : X → Y is said to be have the covering homotopy property (CHP)
if given a space K, a map a : K → X and a homotopy b : K × I → Y such
that b | (K × 0) = p ◦ a, there exists a homotopy c : K × I → X such that a =
c | (K × 0) and b = p ◦ c.

K × 0 a ��

i
��

X

f

��
K × I

b ��

c

����������
Y

If this holds for K a finite CW-complex, it follows for any CW-complex; it also
follows if (K,L) is a CW-pair that c can be chosen to extend a lift already given
on L× I. It suffices to require this condition for pairs (K,L) = (Dn, Sn−1). We
may regard the CHP as a sort of dual notion to the HEP.
We recall from §1.3 that if G is a Lie group acting on a smooth manifold F ,

a map π : E → B is the projection of a fibre bundle (with base space B, total
space E, and fibre F) if B can be covered by open setsUα such that
(i) There are homeomorphisms ϕα : Uα × F → π−1(Uα ) such that for all

m ∈ Uα , x ∈ F , πϕα (m, x) = m.
(ii) For each pair (α, β ) there is a continuous map gαβ : Uα ∩Uβ → G such

that for m ∈ Uα ∩Uβ, x ∈ F , ϕβ (m, x) = ϕα (m, gαβ (m).x).
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318 Appendix B. Homotopy theory

Lemma B.1.1 The projection map π : E → B of a fibre bundle has the CHP.

This is trivial if π is the projection of a product B× F → B, thus we can lift
a homotopy whose image is contained in someUα; and now the result is proved
by subdividing K × I into small pieces.
This result motivates the definition that a map π : E → B is a fibration if it

has the CHP. Given a fibration, write F for the fibre F := π−1(∗). Then for any
space X , the sequence [X : F]→ [X : E]→ [X : B] is exact, for given a map
f : X → B with π ◦ f homotopic to the map to ∗, we can lift the homotopy to
give a homotopy of f to a map into F .
Now let X be a connected space and consider the space EX of continu-

ous maps α : I → X . There are two projections p0, p1 : EX → X given by
p0(α) = α(0) and p1(α) = α(1): each has the CHP. The map p0 is a homotopy
equivalence: a homotopy inverse is given by constant maps c : X → EX with
c(x)(t ) = x; the map h : EX × I → EX given by h(α, t ) = αt with αt (u) =
α(min(t, u)) is a homotopy of c ◦ p0 to the identity. Thus PX := p−1

0 (∗) is con-
tractible. The restriction q1 := p1 |PX also has the CHP, and �X := q−1

1 (∗) is
called the loop space of X .

For any map f : K → L we form the pullback

X := {(k, α) ∈ K × EL | f (k) = α(0)};
write i = (i1, i2) for the inclusion of X in K × EL. Since p0 is a homotopy
equivalence, so is the projection i1 : X → K. The composite f ◦ i1 = p0 ◦ i2 :
X → L is homotopic to the map π : p1 ◦ i2.
Lemma B.1.2 The projection π : X → L defined above has the CHP.

Proof Given g : Y → X and a homotopy G : Y × I → L such that G |Y ×
{0} = π ◦ g we need to construct h : Y × I → X with h |Y × {0} = g and
π ◦ h = g. To this end, write i ◦ g= (g1, g2), i ◦ h = (h1, h2); use t as parame-
ter for paths belonging to EL and s as the homotopy parameter in I; thus write
h2 as h2(y, t, s) ∈ L.

Then the conditions that (g1, g2) and (h1, h2) factor through X are
f (g1(y)) = g2(y, 0), f (h1(y, s)) = h2(y, 0, s);

that h extends g is
h1(y, 0) = g1(y), h2(y, t, 0) = g2(y, t ),

and that h lifts G is
h2(y, 1, s) = G(y, s).

We take h1(y, s) = g1(y), and then the equations define h2(y, t, s) if either
t = 0, s = 0 or t = 1: moreover the two values for h2(y, 0, 0) agree since
f (h1(y, 0)) = f (g1(y)) = g2(y, 0) and those for h2(y, 1, 0) do since G(y) =
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B.2 Groups and homogeneous spaces 319

π (g(y)) = g2(y, 1). Since the union of 3 sides of the square I × I is a retract
of the whole square, we can extend these values to define h2 for all values.

The fibre of π is called the mapping fibre of f ; we may denote it by Mf .
Thus Mf := {(k, α) ∈ K × EL | f (k) = α(0), α(1) = ∗}. We have seen that if
f has the HEP, L ∪ f K # L/K. Dually, if f : K → L has the CHP, with fibre F ,
then F is homotopy equivalent to Mf . Let us write B f for the map Mf → K:
up to homotopy, if f has the CHP, this agrees with the inclusion F ⊂ K. As
π has the CHP, so does Mf → K, and this has fibre �L, so B2 f : �L→ Mf .
Analogously to the above discussion of A f , up to homotopy we can identify
B3 f with � f : �K → �L. It follows that for any space X , there is an exact
sequence

. . . [X : �K]→ [X : �L]→ [X : Mf ]→ [X : K]→ [X : L].

Composition of loops induces a group structure on the set [X : �K], and there
is a natural bijection of this set on [SX : K]. In particular, πr(�X ) ∼= πr+1(X ).
Taking X a sphere in the exact sequence gives

. . . πn(K)→ πn(L)→ πn−1(Mf )→ πn−1(K)→ πn−1(L).
Here we may identify πn−1(Mf ) with the group πn( f ) and the sequence with
the exact homotopy sequence described above. If also f : K → L has the CHP,
with fibre F , then Mf is homotopy equivalent to F .

LemmaB.1.3 Given a sequence Ai+1
αi−→ Ai where the maps αi are fibrations,

there are natural isomorphisms qn : πn(lim←− Ai) ∼= lim←− πn(Ai).
Given a sequence of maps fi : Ai → Bi between two sequences of fibrations,

with each fi a weak homotopy equivalence and fi ◦ αi = βi ◦ fi+1 for each i,
the induced map lim←− Ai → lim←− Bi is a weak homotopy equivalence.

For a map Sn → lim←− Ai defines a sequence of maps Sn → Ai, so we have a
natural map qn. Since αi is a fibration, if the homotopy class of a map Sn →
Ai lifts to that of a map to Ai+1, so does the map itself. It follows that qn is
surjective; injectivity follows similarly.
The second assertion now follows.

Many of the definitions and results in this section have a formal nature. A
set of axioms for homotopy theory, with a development along these lines, was
given by Quillen [126].

B.2 Groups and homogeneous spaces

We observed in §3.1 that for any Lie group G and Lie subgroup H, we have a
fibre bundle with projection G→ G/H and fibre H; and that if we have two
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320 Appendix B. Homotopy theory

Lie subgroups H1 ⊂ H2 ⊂ G, the projection G/H2 → G/H1 is that of a fibre
bundle, with fibre H2/H1, so has the CHP.

The group GLn(R) acts transitively on the space P of positive definite
quadratic forms on Rn, and On is the isotropy group of the usual inner product,
so we have an induced diffeomorphism of GLn(R)/On on P, and hence a fibre
bundleOn → GLn(R)→ P. Since P is a convex subset of a Euclidean space, it
is contractible. Thus GLn(R) is homotopy equivalent to On. It is usually more
convenient to work with the compact group On.

Similarly, any Lie group G has maximal compact subgroups K, any two
are conjugate, and G/K is contractible. Thus for homotopy purposes, we may
replace G by K. In particular, we may replace GLn(C) byUn.
SinceOn acts transitively on the Grassmann manifoldGrn,k of k-dimensional

subspaces ofRn, and the subgroup leavingRk ⊕ {0} can be identifiedwithOk ×
On−k, we can identify Grn,k with the coset space On/(Ok × On−k ). This is a
smooth manifold, and there is a natural vector bundle γn,k over Grn,k whose
fibre is the k dimensional linear subspace.

The space V ′
n,k of injective linear maps Rk → Rn is homotopy equivalent

to the space of isometric linear embeddings Rk → Rn. The latter is called the
Stiefel manifold, and denotedVn,k (we callV ′

n,k theweak Stiefel manifold). It can
be identified with On/On−k, hence with SOn/SOn−k. For any n-vector bundle
ξ : E → B with group On there is an associated bundle with fibre Vn,k: a point
in its total space can be interpreted as an isometry of Rk into some fibre of ξ .

For any Lie group G, there is a contractible space E(G) admitting a free
action ofG. WriteB(G) := E(G)/G and πG : E(G)→ B(G) for the projection.
Then this is a principal G-bundle, and for any principal G-bundle ξ over any
space X there is a map f : X → B(G), unique up to homotopy, such that ξ is
equivalent to f ∗πG. The bundle πG : E(G)→ B(G) is determined uniquely up
to homotopy by this condition.
The space B(G) is called a classifying space for G. Since E(G) is con-

tractible, it follows that G is homotopy equivalent to the loop space �B(G).

The classical construction of a classifying space is based on the Grassmann
manifolds. The natural inclusionGrn,k ⊂ Grn+1,k, is (n− k)-connected, and the
union

⋃
m Grn,k can be taken as a classifying space B(Ok ) for bundles with

group Ok. This construction may be adapted for other Lie groups.
There is an alternative construction, due to Milnor [91], using the sequence

of iterated joins G ∗ G ∗ . . . ∗ G (on which G acts freely), and taking E(G) as
the union.
Yet another approach is axiomatic. The set EG(X ) of equivalence classes of

bundles over X with a given structure group G is a contravariant functor of
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B.2 Groups and homogeneous spaces 321

X , and it is not difficult to verify the hypotheses of Brown’s representability
theorem [33]. This shows again that there exists a space B(G) and a bundle
ξG over it with structure group G such that taking a map f : X → B(G) to the
bundle f ∗ξG induces a bijection of [X : B(G)] on EG(X ).
In some sense, we can regard any space X as a classifying space for �X ,

which plays the part of the group, since we have a fibration �X → PX → X
with PX contractible.

An (n− 1)-spherical fibration consists of a fibration π : F → E → X
together with a homotopy equivalence Sn−1 → F . It follows from the axiomatic
approach that there is a classifying space B(Gn) for the set EnS (X ) of homot-
opy equivalence classes of (n− 1)-spherical fibrations over X and a fibra-
tion νn : Sn−1 → S(Gn)→ B(Gn), such that f 	→ f ∗νn gives a bijection [X :
B(Gn)]→ EnS (X ).
This notation goes with writing Gn for the set of maps of Sn−1 to itself of

degree ±1, with the multiplication given by composition of maps. Although
this is not a group, it can be treated as one for the purposes of homotopy theory.
In particular we have a homotopy equivalence Gn → �B(Gn). Restricting to
maps of degree +1, or to fibrations with a fixed orientation of the fibre, gives a
monoid SGn and a classifying space B(SGn). The inclusion On ⊂ Gn gives rise
to a natural map B(On)→ B(Gn).
We write Fn ⊂ Gn+1 for the set of base-point preserving maps Sn → Sn of

degree ±1, and SFn for those of degree +1. The suspension of a self-map of
Sn−1 is a self-map of the same degree of Sn which fixes a base point; thus
we also have an inclusion Gn ⊂ Fn. Since all components of �nSn, including
SFn, are homotopy equivalent, we have πr(Fn) ∼= πr+n(Sn). We have a fibration
SFn−1 → SGn → Sn−1, and hence an exact sequence

. . .→ πr+n−1(S
n−1)→ πr(Gn)→ πr(S

n−1). (B.2.1)

The classifying spaces B(G) are infinite dimensional, and not homotopy equiv-
alent to finite dimensional spaces. They may, however, be approximated by
smooth manifolds. Since the map Grm,k → B(Ok ) is m-connected, for a mani-
foldM of dimension at mostm, the set of homotopy classes ofmapsM → Grm,k
maps bijectively to that of maps M → B(Ok ). In general, we first replace
the original B(G), or indeed any space X , by the (N + 1)-skeleton X1 of
its singular complex. Next, provided the homotopy groups of X are count-
able, we can replace X1 by a countable (N + 1)-simplicial complex X2; then
by a locally finite complex X3, and finally imbed X3 properly in Euclidean
(2N + 3)-space and take an open neighbourhoodX4 of which it is a deformation
retract.
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322 Appendix B. Homotopy theory

In the construction of classifying spaces we have emphasised principal bun-
dles. However, for any G-space L we can study bundles with group G and
fibre L, and the classification is the same as for the associated principal bun-
dles: they are induced from the universal bundle E(G)×G L. For example,
using the action of GLn(R) on Rn, we obtain a universal vector bundle over
B(GLn(R)).

Likewise we have a universal orthogonal vector bundle γk over B(Ok ), whose
total space contains the associated unit disc bundle A(Ok ). Writing S(Ok ) for
its boundary sphere bundle, we have the Thom space T (Ok ) = A(Ok )/S(Ok ).
Thus for any group G with a given homomorphism G→ Ok we have induced
bundles S(G) ⊂ A(G) and T (G) is obtained from A(G) by identifying S(G) to
a point.
More generally, since each sphere bundle is a spherical fibration, we have an

inclusion On ⊂ Gn and maps B(On)→ B(Gn), S(On)→ S(Gn). Here the role
of A(Gn) is played by the mapping cylinderCyl(π ), where π : S(Gn)→ B(Gn)
denotes the projection, and we define T (Gn) to be its mapping cone. Again, any
map X → B(Gn) induces a spherical fibration ξ over X and we have a Thom
space. In this situation there is still a natural isomorphism, called the Gysin
isomorphism

Hr(X )→ Hk+r(Aξ , Sξ ) ∼= H̃k+r(T (ξ )).

A summary of calculations of cohomology of classifying spaces is in §8.6.
In general, if x ∈ Hn(B(G);A) is a cohomology class, and π : E → X is a

G-bundle, π is induced by a map f : X → B(G), so we have a class f ∗x ∈
Hn(X;A). Such a class is called a characteristic class of the bundle π , and
denoted x( f ). For example, we haveH∗(B(On) : Z2) ∼= Z2[w1, . . . ,wn], so any
polynomial in w1, . . . ,wn defines a characteristic class for vector bundles of
fibre dimension n.

IfM is a smooth manifold, its tangent bundle T(M) is classified by a map φ :
M → B(O), so a class x ∈ Hn(B(O);A) induces a characteristic class x(M) :=
φ∗(x) ∈ Hn(M;A). If J is a stable group andM has a J structure, wemay replace
O by J here.
If moreover M has the same dimension n, we have φ∗(x)[M] ∈ A: this is

called a characteristic number ofM (ifA = Zwe do just have a number). IfW is
a cobordism ofM toM′, x ∈ Hn(B(G) : A), and ψ :W → B(G) classifies a G-
structure onW , then φ∗(x)[M] = φ

′∗(x)[M′], since ψ restricts to φ and φ′, and
〈ψ∗(x), [M]− [M′]〉 = 0 since [M]− [M′] = 0 in homology, as the boundary
ofW . Thus characteristic numbers are cobordism invariants.

The same argument applies with any non-classical homology theory; for
example, with KO-theory.
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B.3 Homotopy calculations

In this section we summarise the results of a large number of homotopy calcu-
lations. We have included text intended to make the summary less unreadable,
but make no attempt to give proofs. The results may be found in texts on homot-
opy theory, but the author has not discovered a convenient single reference for
these results.
(i) There are natural maps πn(X )→ Hn(X;Z) and πn(X,Y )→ Hn(X,Y ;Z).

The Hurewicz Isomorphism Theorem states that if X is (n− 1)-connected (and
n ≥ 2), the natural map πn(X )→ Hn(X;Z) is an isomorphism.
It follows that πr(Sn) is zero for r < n and isomorphic to Z for r = n. We

write ιn for the class in πn(Sn) of the identity map.
The Hurewicz theorem has a relative version: if (K,L) is (n− 1)-connected

(and K, L are simply-connected), the natural map πn(K,L) → Hn(K,L;Z) is
an isomorphism. If we define the homology groups of a map f : A→ B as
those of the pair (Cyl( f ),A) we can write this as: if f is (n− 1)-connected,
πk( f )→ Hk( f ;Z) is an isomorphism for k ≤ n.
(ii) The group SU2 is homeomorphic to the sphere S3, and its action on

P1(C) # S2 gives a fibre bundle map η2 : S3 → S2 called the Hopf map; sim-
ilarly using quaternions or Cayley numbers gives maps η4 : S7 → S4 and η8 :
S15 → S8: using the real numbers gives η1 : S1 → S1 of degree 2, so homotopic
to 2ι1.
(iii) There is a natural homomorphism H : π2n−1(Sn)→ Z, called the Hopf

invariant. Given f : S2n−1 → Sn, form Xf := Sn ∪ f e2n, then Hn(Xf ) and
H2n(Xf ) are infinite cyclic with preferred generators u, v , say, and we set u2 =
H( f )v . This invariant vanishes for n odd (the cup product is skew-symmetric
here), and takes the value 1 for each of η2, η4, η8.
One generalisation of H is defined as follows. The map πr( jn) induced by

the inclusion jn : Sn ∨ Sn → Sn × Sn has a right inverse given by adding the
maps induced by the two projections of Sn × Sn. Then H is the composite

πr(Sn)→ πr(Sn ∨ Sn)→ πr+1(Sn × Sn, Sn ∨ Sn)→ πr+1(S2n),

where the first map is induced by collapsing the equator to a point, the second
by the splitting in the exact homotopy sequence of (Sn × Sn, Sn ∨ Sn) and the
third by collapsing Sn ∨ Sn to a point.
(iv) Let f : (Dm, Sm−1)→ (X, ∗) represent α ∈ πm(X ) and g : (Dn, Sn−1)→

(X, ∗) represent β ∈ πn(X ): then theWhitehead product [α, β] ∈ πm+n−1(X ) is
the homotopy class of the map F : ∂ (Dm × Dn)→ X given by F (x, y) = f (x)
if y ∈ ∂Dn and = g(y) if x ∈ ∂Dm.
We have [ιn, ιn] ∈ π2n−1(Sn), andH([ιn, ιn]) is 0 if n is odd, and 2 if n is even.
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324 Appendix B. Homotopy theory

(v) The ‘Hopf invariant 1’ problem, the questionwhetherH : π2n−1(Sn)→ Z

is surjective, was solved by Adams [3]: it is surjective only if n is 2, 4, or 8.
This is analogous to the Kervaire invariant problem.
(vi) A further relative version of theHurewicz theorem is theBlakers–Massey

Theorem [18]. Given a commutative square

� :
A

p−→ B
q ↓ r ↓
C

s−→ D

,

of simply-connected spaces, we can define H∗(�,Z) so that there are exact
sequencesH∗(q;Z)→ H∗(r;Z)→ H∗(�,Z)→ H∗−1(q;Z). Then if p is (r −
1)-connected, q is (s− 1)-connected, and H∗(�,Z) = 0, πn(�) vanishes for
n < r + s− 1 and πr+s−1(�) ∼= Hr(p;Z)⊗ Hs(q;Z).
(vii) We can apply (vi) to the square given by the inclusions of Sn in the two

hemispheres En+1
− and En+1

+ of Sn+1 (these inclusions are n-connected), and
theirs in Sn+1. This gives πr(�) = 0 for r ≤ 2n and π2n+1(�) ∼= Z. Since the
hemispheres are contractible, the sequence πr(En+1

− , Sn)→ πr(Sn+1,En+1
+ )→

πr(�) becomes πr−1(Sn)→ πr(Sn+1)→ πr(�).
The map πr−1(Sn)→ πr(Sn+1) is called the suspension map. It is thus an

isomorphism for r ≤ 2n− 1, so the groups πn+k(Sn) for n ≥ k + 2 are all iso-
morphic; the limit value is denoted πS

k . Also we have an exact sequence

π2n(Sn)→ π2n+1(Sn+1)→ Z → π2n−1(Sn)→ π2n(Sn+1)→ 0.

Here the second map is the Hopf invariant, and 1 ∈ Z maps to [ιn, ιn]. It
follows from the above that if n is even, the second map is zero so we have
an exact sequence 0→ Z → π2n−1(Sn)→ πS

n−1 → 0; if n �= 1, 3, 7 is odd we
must replace Z by Z2 here.
(viii) For the groups πr(Sn) we have a range given by r < nwhere the groups

vanish, and a range n ≤ r < 2n− 1 where they are stable. We get information
in the next ‘metastable’ range 2n− 1 ≤ r < 3n− 2 as follows.

We use the isomorphism of πr(�Sn+1) on πr+1(Sn+1). Up to homotopy,
�Sn+1 has a cell structure with one kn-cell for each k ∈ N. Hence (�Sn+1, Sn) is
(2n− 1)-connected and, by the relative Hurewicz theorem, π2n(�Sn+1, Sn) ∼=
Z. Now applying (vi) to the square

Sn

��

�� �Sn+1

��
∗ �� �Sn+1/Sn # S2n ∪ e3n . . .

,

we find that πr(�Sn+1, Sn)→ πr(S2n) is an isomorphism for r < 3n− 1. This
yields the so-called EHP sequence

πn+k(Sn)
E→ πn+k+1(S

n+1)
H→ πn+k+2(S

2n+2)
P→ πn+k−1(S

n)
E→ . . . , (B.3.1)
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B.3 Homotopy calculations 325

generalising the sequence (vii), and valid for a range k < 2n− 1. Here the map
P agrees (up to suspension) with the Whitehead product with ιn: πk(Sn)→
πn+k−1(Sn).
A more general version can be obtained using the fibration Sn → �Sn+1 →

�S2n+1 (after localisation at 2) constructed by James [1] and Toda [6].
(ix) The homotopy group πr(Sn) is finite for r > n except if n is even and

r = 2n− 1 when it is the direct sum of Z and a finite group.
(x) The calculation of the homotopy groups πr(Sn) is a massive enterprise:

see [129] for the state of the art. The stable groups form a ring under compo-
sition; the first few, with generators (here we use the same notation η2 for the
class of the suspension in πS

1 of η2), are given by

πS
1
∼= Z2[η2], πS

2
∼= Z2[η22], π

S
3
∼= Z24[η4], πS

4 = 0, πS
5 = 0.

We have η32 = 0 ∈ πS
3 .

(xi) The group SOn acts transitively on the unit sphere Sn−1 in Rn, and the
stabiliser of the unit point on the xn-axis is the subgroup SOn−1. Thus there
is a fibre bundle SOn−1 → SOn → Sn−1, with an exact homotopy sequence.
Since πi(Sn) vanishes for i < n, we have isomorphisms πr(SOn−1)→ πr(SOn)
for r ≤ n− 3. More generally, if X has dimension ≤ r, the suspension map
[X : BSOn]→ [X : BSOn+1] is bijective for n ≥ r + 1, so stably isomorphic
vector bundles over X of fibre dimension ≥ r + 1 must be isomorphic.

Also all groups πr(SON ) for N ≥ r + 2 are isomorphic; the common value
is denoted πr(SO).
(xii) It was proved by Bott [21] that πr(SO) is infinite cyclic if r ≡ 3 (mod

4), isomorphic to Z2 if r ≡ 0 or r ≡ 1 (mod 8), and zero otherwise. A good
account of Bott’s proof is given in [98].
(xiii) The exact sequence of the fibre bundle SOn−1 → SOn → Sn−1 includes

→ πn−1(SOn−1)
i∗−→ πn−1(SOn)

π∗−→ Z
∂−→ πn−2(SOn−1)

i∗−→ πn−2(SO)→ 0.
(B.3.2)

If x ∈ πn−1(SOn) classifies a bundle ξ , then π∗x can be identified with the Euler
number of ξ . If x = ∂ιn, then ξ is the tangent bundle of Sn, so π∗∂ιn is 2 for n
even, and 0 for n odd. The image of π∗ is 0 for n odd, Z for n = 2, 4, 8 and 2Z

for n even otherwise.
(xiv) Using (ix) and (xi), we see inductively that each group πr(SOk ) is

finitely generated; the rank is 0 except if
(a) k = 2s+ 1, r = 4i− 1, 1 ≤ i ≤ s, or
(b) k = 2s+ 2, either r = 4i− 1 with 1 ≤ i ≤ s or r = 2s+ 1.

In these cases the rank is 1 except if k = 4s and r = 4s− 1 when the rank is 2.
(xv) The Stiefel manifolds Vn,k = SOn/SOn−k occur in fibre bundles

SOn−k → SOn → Vn,k (1 < k < n) and Vn−k,l−k → Vn,l → Vn,k (k < l < n),
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326 Appendix B. Homotopy theory

which give further exact homotopy sequences. It now follows that for r ≤
n− k − 1 we have πr(Vn,k ) = 0, i.e. Vn,k is (n− k − 1)-connected.

(xvi) The calculation (xiii), that the kernel of πn−2(SOn−1)→ πn−2(SO) is
isomorphic to Z for n odd, and to Z2 for n even, now implies that the first non-
vanishing homotopy group πn−k(Vn,k ) is isomorphic to Z if (n− k) is even and
to Z2 if (n− k) is odd.
(xvii) There is a homomorphism J : πk(SOn)→ πn+k(Sn), called the

J-homomorphism, defined as follows. An element φ ∈ πk(SOn) is represented
by a map f : Sk × Dn → Dn. Write c : Dn → Sn for a map which collapses
∂Dn to ∗. Write Sn+k as the union of Sk × Dn and Dk+1 × Sn−1, and define
g : Sn+k → Sn to map the first part by c ◦ f and the second to ∗. Then J(φ)
is the class of g in πn+k(Sn). An equivalent definition in the language of cobor-
dism is given in §8.8.
For x ∈ πk(SOn), we have H(J(x)) = Sn(π (x)) ∈ πn+k(S2n−1). Taking k =

2s− 1, n = 2s and x = ∂ι2s, then since π (x) = 2ι2s−1 we deduce H(J(x)) = 2,
so the homomorphism J : π2s−1(SO2s)→ π4s−1(S2s) has rank 1.
(xviii) The image of the stable J homomorphism Jk : πk(SO)→ πS

k was
determined after heroic calculations by Adams [5]; a simpler proof was found
in joint work with Atiyah [8].
(a) If k ≡ 0 or k ≡ 1 (mod 8), the map Jk is a split monomorphism.
(b) If k = 4m− 1 the image of Jk has order equal to den(Bm/4m), and is a

direct summand of π k
S .

(xix) It follows from (vi) that πr(SFn) is finite for r > 0 except if n is even
and r = n− 1 when it is the direct sum of Z and a finite group.
In the exact sequence (B.2.1)

. . .→ πr+n−1(S
n−1)→ πr(SGn)→ πr(S

n−1)→ πr+n−2(S
n−1),

the final map is the Whitehead product with ιn−1, so has infinite image if and
only if n is odd and r = n− 1. Thus πr(SGn) is infinite if and only if either
r = n− 1 and n is even or r = 2n− 3 and n is odd. The image of the map
πr(SOn)→ πr(SGn) has infinite order in each of these cases.
To summarise: the homotopy groups are finite except as follows:

Case r n rank(πr(SOn)) rank(πr(SGn))
A 4s+ 1 4s+ 2 1 1
B 4s− 1 4s 2 1
S 4s− 1 2s+ 1 < n �= 4s 1 0
C 4s− 1 2s+ 1 1 1

(xx) If we take the exact sequence (B.2.1), increase n by 1, replace r by k,
and compare with (B.3.1), we see that if πk(Sn) is stable, i.e. 2n ≥ k + 2, we
have an isomorphism πk(SGn+1) ∼= πk(SFn+1).
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B.4 Further techniques 327

The calculations in (xiv) can be compared with Haefliger’s result [64]
πr(Fn,Gn) ∼= πr−n+1(SO, SOn−1) for r ≤ 3n− 6, which he established by geo-
metrical arguments.

B.4 Further techniques

We have defined CW complexes as built up from spheres by attaching cells.
If these are attached in order of increasing dimension, a complex K has an n-
skeleton K (n): the union of cells of dimension ≤ n. The inclusion i : K (n) → K
has the HEP and is n-connected: the mapHr(K (n) )→ Hr(K) is an isomorphism
for r < n and an epimorphism for r = n; and the mapping cone K ∪i CK (n) is
n-connected.

There is also a dual approach. We may start with K, attach (n+ 1)-cells to K
to kill πn(K); then (n+ 2)-cells to kill πn+1, …, obtaining eventually an inclu-
sion j : K → K(n) with πr( j) an isomorphism for r ≤ n− 1 and πr(K(n) ) = 0
for r ≥ n. Denote the mapping fibre of j by pn : K〈n〉 → K: thenK〈n〉 is (n− 1)-
connected and πr(pn) is an isomorphism for r ≥ n. The pair (K〈n〉, pn) is called
the (n− 1)-connected cover of K, and is determined up to homotopy by these
conditions.
It follows that, up to homotopy, there is for each k a fibration K〈k−1〉 →

K〈k〉 → K(k, πk(K)). For any Y we have an induced map [Y : K〈k〉]→ [Y : K];
this is surjective if Y is k-connected, and bijective if Y is (k + 1)-connected.
The sequence of maps . . .→ K〈2〉 → K〈1〉 → K is called the Postnikov tower
of K.

Given CW complexes K,L and a map f : K (k−1) → L of the (k − 1)-
skeleton, the obstruction to extending f over a k-cell of K is an element of
πk−1(L); collecting these over all k-cells gives a cochain on K, which is neces-
sarily a cocycle. Its class in Hk(K;πk−1(L)) is the obstruction to extending the
restriction of f to K (k−2) over K (k).

If this obstruction vanishes, we can seek to extend over the (k + 1)-skeleton,
and so on. However, the later obstructions will in general depend on choices
made at earlier stages. If k is the least integer such that Hk(K;πk−1(L)) is non-
zero, the obstruction in this group depends on no choices, and is called the
primary obstruction.
If ξ is a vector bundle, and ξ 〈k〉 the associated bundle with fibre Vn,k, the

primary obstruction to finding a section of ξ 〈k〉 is denoted Wn−k(ξ ); it lies in
Hn−k(B;πn−k(Vn,k )). The reductionmodulo 2 ofWn−k(ξ ) is equal to the Stiefel–
Whitney class wn−k(ξ ).
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328 Appendix B. Homotopy theory

Given n ≥ 1 and a group π , abelian if n ≥ 2, spaces K(π, n) were con-
structed by Eilenberg and MacLane [49], with the property that πr(K) vanishes
for r �= n and that πn(K) ∼= π : this determines K(π, n) up to homotopy equiva-
lence. For π abelian, there is a natural isomorphism [X : K(π, n)] ∼= Hn(X;π ).
It follows that a map K(π,m)→ K(ρ, n) determines a natural transforma-
tion Hm(X;π )→ Hn(X : ρ). Such a transformation is called a cohomology
operation.
In particular, [K(Zp, n) : K(Zp, n+ k)] ∼= Hn+k(K(Zp, n);Zp). Composing

with an element of this group gives a natural transformation from Hn(X;Zp)
to Hn+k(X : Zp). There are maps

Hn+k(K(Zp, n);Zp)→ Hn+k+1(K(Zp, n+ 1);Zp),
which are isomorphisms for n > k, so the groups with n > k have a com-
mon value Hk(K(Zp);Zp): elements of this give stable operations. Composi-
tion endows the set of these operations with a natural ring structure; this ring
is known as the Steenrod algebra and denoted Sp. Particular such operations
are the Bockstein βp : Hn(X;Zp)→ Hn+1(X : Zp) and Steenrod’s squares
Sqi : Hn(X;Z2)→ Hn+i(X;Z2) and reduced pth powers P r : Hn(X;Zp)→
Hn+2r(p−1)(X : Zp). These operations generate Sp and formulae for their com-
posites (the Adem relations) are well known. There are rules (Cartan formulae)
for evaluating these operations on the cup product of two classes. These define
a diagonal map which furnishes Sp with the structure of a Hopf algebra. It thus
has a canonical anti-automorphism, which is denoted χ .

It was shown byMilnor [93] that the dual algebra S∨
p is a polynomial algebra

on a 1-dimensional generator bp and generators cr (r ≥ 1) of degrees 2(pr − 1).
The quotient S p of Sp by the ideal generated by βp has dual the polynomial
algebra on the cr. A careful and thorough account of this material is given in
[145].
Steenrod squares are related to Stiefel–Whitney classes as follows. If ξ is

a vector bundle, with projection π : E → B and Thom space T (ξ ), we have
the Gysin isomorphism � : H∗(B : Z2)→ H̃∗(T (ξ );Z2), with �(1) = U ,
say: then SqiU = �(wi(ξ )) = wi(ξ ).U . Classes vi ∈ Hi(B(O);Z2) are defined
uniquely by the rulewi = vi +

∑i−1
j=1 Sq

jvi− j, which may be written compactly
as w∗ = Sq∗v∗. In the special case of the tangent bundle of a manifold Mm,
we have the formulae, known as Wu relations, Sqix[M] = xvi[M] for any x ∈
Hm−i(M : Z2): these follow from the above and duality inM (see [103, IX, 5]).

As well as primary operations such as Steenrod squares there are sec-
ondary operations. The general idea is that if something vanishes for two
independent reasons, this leads to a construction. Perhaps the simplest exam-

ple: given maps A0
f1−→ A1

f2−→ A2
f3−→ A3 such that f2 ◦ f1 and f3 ◦ f2 are
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B.4 Further techniques 329

nullhomotopic, choose homotopies h1 : A0 × I → A2 and h2 : A1 × I → A3:
then both h1 ◦ f3 and h2 ◦ f0 are homotopies of f3 ◦ f2 ◦ f1 ◦ f0 to a point.
Glueing these together thus gives a map SA0 → A3. This depends not only on
the homotopy classes of the fi but also on the choices of the homotopies, so
(in the additive case) is unique up to adding elements of f3 ◦ [SA0 : A2] and
[SA1 : A3] ◦ S f1.
For example, if A2 = K(G,m) and A3 = K(H, n), the map f3 defines a coho-

mology operation φ : Hm(X;G)→ Hn(X;H ). Thus if f2 represents a class
ξ ∈ Hm(A1;G) such that f ∗1 ξ = 0 and φ(ξ ) = 0 we obtain an element of
Hn(SA0;H ) ∼= Hn−1(A0;H ), which is denoted φ f1ξ .

If p is a prime, we can localise a (finitely generated) abelian group A at p by
forming the tensor product A⊗ Z(p) with the group of integers localised at p
(i.e. rational numbers with denominator prime to p). An Eilenberg–MacLane
spaceK(A, n) localises toK(A⊗ Z(p), n). Building up using fibrations, one can
define the localisation X(p) at p of any simply-connected space X : it is unique
up to homotopy, and πn(X(p) ) is the localisation of πn(X ) at p. See, for example,
[23] for a textbook account. Similarly we can localise at any set S of primes.
This permits calculations where we can ignore throughout the contribution of
all primes not in S. This technique of ‘mod C’ theory is due to Serre [136].

We define a spectrum A to be a sequence of (based) spaces An (n ∈ Z) and
maps in : SAn → An+1: equivalently, we may require maps An → �An+1. It is
called an�-spectrum if the maps An → �An+1 are all homotopy equivalences.
The map in induces πr+n(An)→ πr+n+1(SAn)→ πr+n+1(An+1) and, for any

C,Hr+n(An;C) → Hr+n+1(SAn : C)→ Hr+n+1(An+1;C): the limits of these are
defined to be πr(A) and Hr(A;C).

Proposition B.4.1 Let X be a spectrum whose homology groups are finitely
generated. Then the natural map πS

k (X)→ Hk(X;Z) has finite kernel and
cokernel.

This is proved using the methods of mod C theory [136]. It is a very useful
first step in calculation of bordism groups.
We give important examples of spectra. The sphere spectrum S is defined by

the sequence Sn and SSn # Sn+1. The Eilenberg–MacLane spectrum K(A, k) is
defined by the sequence K(A, n+ k) and the homotopy equivalences K(A, n+
k)→ �K(A, n+ k + 1). The cohomology ring H∗(K(Zp, k);Zp) is free on
one generator over Sp; H∗(K(Z, k);Zp) is free over S p.
For J a stable group in the sense of §8.2, the sequence of maps hk : ST (Jk )→

T (Jk+1) defines a spectrum, which we denote by TJ.
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A different example is obtained using the homotopy equivalence �U →
B(U ) established by Bott: set A2n = B(U ) and A2n−1 = U . This gives an �-
spectrum BU with π2k(BU) ∼= Z for all n ∈ Z. Similarly using a homotopy
equivalence �8O→ O we define a spectrum BO. For any spectrum A we
can define the (k − 1)-connected cover A〈k〉: as for spaces, A〈k〉 is (k − 1)-
connected and π k : A〈k〉 → A induces isomorphisms of the homotopy groups
πr for r ≥ k. The spectrumBO〈k〉, which is a�-spectrumwith 0-term B(O)〈k〉,
plays a role in Chapter 8.
A spectrumA is a ring spectrum if we are given a system ofmapsAm ∧ An →

Am+n compatible with the in. There is a natural condition of associativity. For
the above examples, S is a ring spectrum, a ring structure on A induces one on
K(A, k), and TJ is a ring spectrum if (M) and (A) hold for J.

Any spectrum A = {An, in} gives rise to a homology theory (satisfying the
axioms discussed in §8.4) on defining

HN (X;A) = lim
N→∞

πn+N (An ∧ X+)

HN (X,Y ;A) = lim
N→∞

πn+N (An ∧ X+,An ∧ Y+)
= lim

N→∞
πn+N (An ∧ X,An ∧ Y ).

If A is a ring spectrum we obtain external products which are associative if
the spectrum is.
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