
4

General position and transversality

We open our discussion of the deeper properties of smooth manifolds with
Whitney’s embedding theorem for two reasons. The first is historical: smooth
manifolds were originally considered as submanifolds of Euclidean spaces, and
this theorem reconciled this approach with the abstract form of definition which
we prefer. Secondly, the proof is quite simple, and opens the way to our later
discussion of the general transversality theorem.
In Chapter 5 we will give a method for describing compact manifolds up to

diffeomorphism. The method consists in defining a smooth function f : Mm →
R; and then we can regard M as ‘filtered’ by the subset f−1(−∞, a] as a
increases. In order to carry out this process in detail, it is necessary to sup-
pose f non-degenerate. Thus we next give a direct proof of the existence of
non-degenerate functions.
We proceed to techniques for moving a smooth map into ‘general position’.

The language of jet spaces, which is basic to the study of singularities of smooth
maps, is introduced in §4.4. Jets are also used to define topologies on function
space (we give some proofs of properties of these topologies in §A.4).
The fundamental technical general position result is the transversality the-

orem, which is stated and proved in §4.5, and extended in the following
section to multitransversality, to deal with the interaction of two maps with
a common target. The development of transversality as a tool is due to
Thom [150]; the very flexible formulation of multitransversality is due to
Mather [88].
The main theorems include ‘general position’ results which we will often

use in later chapters. In particular, a map f : V v → Mm may be supposed an
embedding ifm > 2v (or an immersion ifm = 2v); it may be deformed to avoid
any subset of M of dimension < (m− v ), and to be transverse to any given
submanifold of M.

94
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4.1 Nul sets 95

However the results allow a much wider range of application: for example,
dealing with transversality to submanifolds of jet space rather than just of M;
and establishing that the set of smooth maps satisfying such conditions is open
and dense in function space. We thus spend some time in §4.7 applying the
main results to describe the singularities of a dense open set of maps when the
target dimension is either small (≤ 2) or large (≥ 3

2m). The main results also
lead to local normal forms for smooth maps, and in §4.8 we obtain these in the
same cases. The details here are somewhat technical, and the reader may prefer
to pass over them and just read the statements of the theorems to get a feel for
what can be proved.

4.1 Nul sets

We say that a subset A of Rn is nul if for each ε > 0, A can be enclosed in a
countable union of discs of total volume (i.e. the sum of the volumes)< ε. The
useful terminology ‘nul’ is now out of fashion; it is equivalent to saying that A
has Lebesgue measure zero.
It is trivial that a countable union of nul sets is nul; also that a nul set has no

interior: its complement is everywhere dense.

Lemma 4.1.1 Suppose U open in Rn, f : U → Rn smooth, and A ⊂ U nul.
Then f (A) is nul.

Proof Let K be a compact subset of U . Then in K the partial derivatives of f
of first order are bounded, so infinitesimal lengths are multiplied by a bounded
factor: let c be a bound. Then the image of a ball of radius r is contained in a
ball of radius cr. If A ⊂ K is nul, for any ε > 0 it is contained in a number of
balls in K of total volume less than ε, so f (A) is contained in a union of balls
of total volume less than cnε, so is nul.
Now as in Theorem 1.1.4, we may find a countable set of discs Ki = Dn

xi (2δi)

contained inU , with the D̊n
xi (δi) coveringU . AsKi is compact, and Ai := A ∩ Ki

is nul, f (Ai) is nul. Hence so is the countable union f (A) =⋃i f (Ai).

We say that a subset A of a smooth manifold N is nul if, for each coordinate
neighbourhood ϕ : U → Rn, ϕ(U ∩ A) is nul. Since by the lemma, nul sets
are preserved by smooth maps, it is sufficient to verify the condition for a set
(Uα, ϕα ) of coordinate neighbourhoods with theUα covering N.

Corollary 4.1.2 (i) If A ⊂ Nn
1 is nul, and f : N

n
1 → Nn

2 smooth, f (A) is nul.
(ii) Suppose U open in Rv , v < n, f : U → Rn smooth. Then f (U ) is nul.
(iii) If v < n and f : V v → Nn is smooth, f (V ) is nul.
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96 General position and transversality

Proof (i) follows at once from Lemma 4.1.1 and the definition. For (ii) define
F : U × Rn−v → Rn by F (x, y) = f (x). Then f (U ) = F (U × O), but U × O
is nul in Rn. Similarly for (iii).

These give the basic properties of nul sets: we now go on to the deeper result
whichwewill need. If f : V v → Mm is a smoothmap, a pointP ∈ V is a regular
point of f if df : Tg(P)V → Tf (P)M has rank m. Otherwise P is a critical point,
and f (P) a critical value of f .

Theorem 4.1.3 (Sard’s Theorem) Let f : V v → Mm be a smooth map. Then
the set of critical values of f is nul.

We give the proof here only for v ≤ m. For v > m, we refer the reader to the
original paper of Sard [132] or to Milnor’s account [100].

Proof We observe that it is sufficient to consider values in a coordinate neigh-
bourhood of M, and further that, since V is a countable union of coordinate
neighbourhoods, we may also restrict attention to a coordinate neighbourhood
of V . This reduces the proof to the case M = Rm, V an open subset of Rv . For
v < m, the result follows by Corollary 4.1.2 (ii).

Now let m = v . If P is a critical point, the Jacobian determinant of f van-
ishes at P, so given δ, we can find a ball containing P with |J( f )| < δ in
the ball. Hence the volume of the image is at most δ times the volume of
the original ball, so it can be contained in balls of at most twice this total
volume.
If K is a compact submanifold of Rv , A the set of critical points in K, we

enclose these in small balls of total volume less than 2μ(K), say. Then f (A)
can be enclosed in balls of total volume less than 4δμ(K). But δ is arbitrarily
small, so f (A) is nul. The set of critical values is a countable union of sets f (A),
hence also is nul.

4.2 Whitney’s embedding theorem

The proof of the embedding theorem 1.2.11 is very simple, but the result is
rather weak.We shall now obtain a stronger version, with a bound on the dimen-
sion of the Euclidean space, and an approximation clause. It is possible by sim-
ilar methods to give a proof for non-compact manifolds; we defer this exten-
sion till Corollary 4.7.8. First remark that the result extends to manifolds with
boundary, as if M has boundary, form the double D(M): then any embedding
of D(M) restricts to give an embedding of M.
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4.2 Whitney’s embedding theorem 97

Each non-zero vector in Rn determines the parallel unit vector from the ori-
gin, and hence its end-point, which lies on Sn−1. Define u : (Rn \ {0})→ Sn−1

by u(x) := x
‖x‖ .

Lemma 4.2.1 Let f : Mm → Rn be an embedding. Then the set of points of
Sn−1 parallel to a tangent of Mm is nul if n ≥ 2m+ 1, and the set of those
parallel to a chord is nul if n ≥ 2m+ 2.

Proof Any tangent ofMm is parallel to a unit tangent. Let B be the sub-bundle
of T(M) consisting of unit vectors. Then df : T(M)→ T(Rn) restricts to df :
B→ T(Rn), and the identification of tangent spaces to Rn with Rn defines a
smooth map T : T(Rn)→ Rn. Moreover, since B consists of unit vectors, T ◦
df maps B to Sn−1. Hence the set of points in Sn−1 whose vectors are parallel to
a tangent of M is the image of B under a smooth map. Since B has dimension
2m− 1, the first result follows from Corollary 4.1.2 (iii).

For chords we proceed similarly. LetM ×M be the product manifold,�(M)
the diagonal, and write M(2) for M ×M \�(M): this is a smooth manifold.
Since f is an embedding, any two distinct points have distinct images, so if we
define � f : M(2) → Rn by � f (P,Q) = f (P)− f (Q) (vector subtraction), the
image does not contain O. Thus we can define δ f := u ◦� f : M(2) → Sn−1.
Again we see that the set of points of Sn−1 whose vectors parallel to a chord of
M is the image under a smoothmap; this time ofM(2). SinceM(2) has dimension
2m, the result follows as before.

Theorem 4.2.2 (Whitney’s Embedding Theorem) Let Mm be a smooth com-
pact manifold. Any map of Mm to R2m+1 may be approximated arbitrarily
closely by an embedding.

Since we have not yet discussed topologies for mapping spaces (see §4.4
below), approximation is here to be understood in the sense of pointwise
convergence.

Proof Let f1 : Mm → R2m+1 be the given map; by Proposition 1.1.7 (applied
to each component), we may suppose f1 a smooth map. By Theorem 4.2.2,
we can choose an embedding f2 : Mm → Rn for some n. The product map f3 :
Mm → R2m+1+n is an embedding, for since f2 is an immersion and injective,
so is f3.
By Lemma 4.2.1, the set E of points of S2m+n whose vector is parallel to

a tangent or chord is nul, thus its complement is everywhere dense. Choose a
point x, close to the unit point on the last axis, and not in E, and project f3(M)
orthogonally in the direction x to R2m+n. The first 2m+ 1 coordinates of the
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98 General position and transversality

projected map f4 differ from those of f3, and hence of f1, by an amount which
can be made arbitrarily small by choice of x.

We claim that f4 is an embedding. For since x is parallel to no chord of
f3(Mm), no two distinct points of M have the same image under f4; and since
x is parallel to no tangent vector, there is no tangent vector which is mapped to
zero by df4. Thus f4 is an immersion and injective, hence an embedding.
We may now repeat the projection process a further (n− 1) times, obtaining

ultimately an embedding inR2m+1 with coordinates differing by arbitrarily little
from those of f1.

Theorem 4.2.3 Any map of a compact smooth manifold Mm to R2m may be
approximated by an immersion.

Proof As for Theorem 4.2.2, we obtain an embedding in R2m+1, and then
choose x ∈ S2m, arbitrarily close to the unit point on the last axis, and parallel to
no tangent vector (which is possible, as before, using Lemma 4.2.1). Projecting
parallel to x, we obtain the desired immersion.

4.3 Existence of non-degenerate functions

Let f be a smooth function onM, and P a critical point of f , so that df (TPM) =
0. If we take local coordinates with P as origin, we have f (O) = 0 and ∂ f /∂xi
vanishes at O for 1 ≤ i ≤ m. It is now natural to consider the Hessian matrix
(∂2 f /∂xi∂x j ) of second derivatives of f at O. We regard the Hessian as a sym-
metric bilinear form H( f ) : TPM × TPM → R, given in local coordinates by

H( f )

(∑
ai

∂

∂xi
,
∑

bi
∂

∂xi

)
=
∑

aib j
∂2 f

∂xi∂x j
.

We can also formulate an equivalent definition without referring to coordinates:
given u, v ∈ TPM, extend v to a local vector field v defined (at least) in a neigh-
bourhood of P; then H( f )(u, v ) = u(v( f )) is independent of the extension v of
v (since P is a critical point). (Recall here that a tangent vector is a mapping of
functions on M to the reals, and a vector field maps functions to functions.)

We say that P is a degenerate (resp. non-degenerate) critical point of f if
H( f ) is a singular (resp. nonsingular) bilinear form. Thus P is singular if and
only if the matrix ∂2 f

∂xi∂x j
is; equivalently, if the rows are linearly dependent, i.e.

if for some constants λi not all zero we have
∑

i λi
∂2 f

∂xi∂x j
= 0 for all j.

We call f non-degenerate if it has no degenerate critical point. Many authors
call such functions ‘Morse functions’.
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4.3 Existence of non-degenerate functions 99

For i : M → Rn an embedding, since we identify T(Rn) with Rn × Rn, we
may identify N(Rn/M) with the submanifold of Rn × Rn given by

N(Rn/M) = {(P, v ) : P ∈ M, v orthogonal to di(TPM)}.
Here the exponential map is given by exp(P, v ) = P+ v (vector addition).

In general, ifM is a submanifold of the complete Riemannian manifold N, a
critical value of exp : N(N/M) → N is called a focus ofM; if the corresponding
critical point is a vector at P, it is a focus of M at P. It follows from Sard’s
theorem 4.1.3 that the set of foci of M in N is nul.

Figure 4.1 A focus

The existence of non-degenerate functions will now follow from the theorem
below. Let M be a smooth submanifold of Rm+n; for P ∈ Rm+n, define LP :
M → R by LP(Q) := ‖P− Q‖2.
Theorem 4.3.1 LP has a critical point at Q ∈ M if and only if the vector Q− P
is normal to M at Q. Q is a degenerate critical point if and only if P is a focus
of M at Q.

Proof The first statement is clear. For the second, first supposeM is a curve in
R2. Then a focus must be a point of intersection of consecutive normals, i.e. a
centre of curvature. But LP has a degenerate critical point at Q if and only if
‖P− X‖2 is constant to the second order at X = Q, i.e. again if and only if P is
the centre of curvature of M at Q. The notion of focus of a curve is illustrated
in Figure 4.1.
The result holds in general for essentially the same reasons, but for clar-

ity we calculate in convenient coordinates. We may suppose M given in the
neighbourhood of Q as the graph B of a map A : Rm → Rn with A(0) = 0
and d0A = 0: thus A has components ar whose Taylor expansions at 0 begin
ar =

∑m
i, j=1 p

i, j
r xix j, where p

i, j
r is symmetric in i and j. Differentiating B with
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100 General position and transversality

respect to xi gives a vector αi whose jth component is δi, j (i.e. 1 if i = j, 0
if not) and with rth component ∂ar

∂xi
. These span TxM, hence a base for NxM is

given by the vectors βr with ith component − ∂ar
∂xi

and sth component δr,s.
We now have exp(x, v ) = B(x)+∑r vrβr. Its derivative with respect to vr is

βr; the derivative with respect to xi has the last n coordinates zero. Thus at a sin-
gular point of exp theremust be a linear relation of the form

∑
λi

∂
∂xi

exp(x, v ) =
0 with the λi not all zero. This reduces to

∑
i λi

∂
∂xi

(x j −
∑

r vr
∂ar
∂x j

) for each j,

so occurs at x = 0 if and only if λ j − 2
∑

i,r λivr p
i, j
r = 0 for each j.

On the other hand, the square of the distance of B(x) from a typical point
on NQM, with coordinates (0, . . . , 0, c1, . . . , cn) is

∑m
1 x

2
i +
∑n

1(cr − ar(x))2,
whose Taylor expansion at 0 is

∑n
1 c

2
r +
∑m

1 x
2
i − 2

∑
r,i, j cr p

i, j
r xix j.

The quadratic form q(x) :=∑m
1 x

2
i − 2

∑
r,i, j cr p

i, j
r xix j is degenerate if and

only if, for some λi not all zero, the derivative
∑

i λi
∂q
∂xi

vanishes identically,

i.e. 2
∑

i λixi − 4
∑

r,i, j λicr p
i, j
r x j = 0, i.e. 2λi − 4

∑
r, j λicr p

i, j
r = 0 for each

i. This coincides with the previous condition on setting cr = vr. The result
follows.

Corollary 4.3.2 Any compact manifold M admits non-degenerate functions.

Proof By Theorem 4.2.2, M can be imbedded in Euclidean space. By Sard’s
theorem, the set of foci, which are critical values of a smooth map, is nul. So we
can choose P /∈ M not a focus, and then by the theorem LP is a non-degenerate
function.

We remark that compactness is inessential, and also that using the approxi-
mation clause in Theorem 4.2.2, we could obtain one here.
If P /∈ M, we can also replace LP = ‖P− Q‖2 by the distance function

‖P− Q‖.

4.4 Jet spaces and function spaces

We now introduce the methods for studying smooth mappings in general. We
begin by introducing the language for describing a mapping locally, near a
point.
Two functions f , g each defined on some neighbourhood of a point x of a

topological space X have the same germ at x if there is a neighbourhood of x
on which they take the same value. The definition applies whether the values
are real numbers or lie in any space. We talk of germs, or map-germs at (X, x).
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4.4 Jet spaces and function spaces 101

Lemma 4.4.1 Let f , g : Rv → Rm be smooth map-germs at O such that the
values of f and all its partial derivatives of orders ≤ r agree with those of g
at O. Let ϕ, ψ be diffeomorphisms of Rv , Rm keeping O fixed. Then the values
of ψ ◦ f ◦ ϕ and all its partial derivatives of orders ≤ r agree with those of
ψ ◦ g ◦ ϕ at O.

Proof The result is an immediate consequence of the chain rules for differen-
tiating a composite: ‘a function of a function’.

For g, h : (V v ,P)→ Mm smooth map-germs, write g∼r h at P if, with
respect to some local coordinates at P and g(P), we have g(P) = h(P), and
all partial derivatives of order ≤ r of g and h at P agree. By the lemma, this
is independent of the chosen coordinate system. Clearly, ∼r is an equivalence
relation for maps defined on a neighbourhood of P. An equivalence class is
called an r-jet of maps from V to M at P. The set of all jets of maps of V to M
is the jet space Jr(V,M).
Each jet is a jet of a smooth map at some P ∈ V , so there is a natural

projection πs : Jr(V,M)→ V . Similarly (since r ≥ 0), since two functions
g, h with the same r-jet at P have g(P) = h(P), there is another projection
πt : Jr(V,M)→ M. We call the point πs( j) ∈ V the source of the jet j and the
point πt ( j) ∈ M its target. The map (πs, πt ) identifies J0(V,M) with the prod-
uct V ×M. For any k ≥ r ≥ 0 there is a natural projection π k

r : Jk(V,M)→
Jr(V,M).
In terms of local coordinates (x1, · · · , xv ) on V at P, (y1, · · · , ym) on M

at Q, since two functions with the same partial derivatives define the same
jet, we may take these partial derivatives as coordinates in Jr(V,M). If ω =
(ω1, · · · , ωv ) is a string of non-negative integers, write

xω = (xω1
1 · · · xωv

v ), ∂ω = (∂/∂x1)ω1 · · · (∂/∂xv )ωv ,

|ω| = ω1 + · · · + ωv , ω! = ω1! · · ·ωv !.

Then if f is a smooth map-germ on (V,P) toM with targetQ, its partial deriva-
tives of order ≤ r are the numbers uωj = ∂ωy j (0 ≤ |ω| ≤ r, 1 ≤ j ≤ m), and
these values determine the r-jet of f at P. We sometimes write y j for the con-
stant term u j.
Conversely, given a set of numbers aωj (where the point (a j ) must lie in the

prescribed neighbourhood of Q), there exists a corresponding smooth map-
germ: we may choose the polynomials y j =

∑
0≤|ω|≤r a

ω
j x

ω/ω!. Hence the set
of r-jets j with source P and target Q is isomorphic to a Euclidean space. We
can take (xi, uωj ) as local coordinate system in Jr(V,M), and coordinate changes
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102 General position and transversality

are smooth (they exhibit, again, the chain rule for partial differentials: we shall
spare the reader a detailed exhibition of them). We conclude that Jr(V,M) is a
smooth manifold, and the projections πs and πt are smooth maps.
The above polynomial is called the polynomial representative of the r-jet (in

the given coordinates). It agrees with the sum of terms of degree ≤ r in the
Taylor series expansion of f in the given coordinates. We are not concerned
here with the question of convergence of this series.
For f : V → M a smooth map, the equivalence class of f at a point P ∈ V

is an r-jet at P, so f defines a cross-section jr f : V → Jr(V,M) to πs, which
is smooth since f (and hence all its partial derivatives) is. Here the restric-
tion to infinitely differentiable maps allows simpler statements: if g is a CN

map (with continuous partial derivatives of order ≤ N), then jrg is CN−r

for r ≤ N.
We can calculate the derivative of jr f : the following result will be used

explicitly below.

dj1 f

(
∂

∂xi

)
= ∂

∂xi
+
∑
j

uij
∂

∂y j
+
∑
j,k

uikj
∂

∂ukj
. (4.4.2)

For dj2 f (∂/∂xi) we add a further sum
∑

j,k,l u
ikl
j ∂/∂u

kl
j , and so on.

Since J0(V,M) ∼= V ×M, j0 f is just the graph of f . A 1-jet with source P
and target Q is determined by these points and a linear map TPV → TQM, and
j1 f (P) = (P, f (P), dfP).
One can also consider jets at more than one point. We define rJk(V,M) to

be the subset of the r-fold direct product (Jk(V,M))r consisting of r-tuples
( j1, . . . , jr ) such that the source points of the ji are all distinct. We do not insist
that the targets are distinct, and indeedwe are largely interested in the casewhen
they are not. Extending the notationM(2) of §4.2, writeV (r) for the set (the con-
figuration space) of ordered r-tuples of distinct points ofV . Then the Cartesian
power ( jk f )r : Vr → (Jk(V,M))r induces a map r jk f : V (r) → rJk(V,M). We
call rJk(V,M) the multijet space and r jk f the multijet of f .
We use jets to define topologies on spaces of smooth maps. One standard

topology on function spaces is the so-called compact-open topology, which we
call the C0 topology. This is the topology on the space C0(X,Y ) of continuous
maps X → Y defined by taking the sets

A(K,U ) := { f | f (K) ⊂ U} with K ⊂ X compact, U ⊂ Y open

as a sub-base of open sets. It can be described as the topology of uniform con-
vergence of f on compact sets.
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4.4 Jet spaces and function spaces 103

There is also the fine topology (or fine C0 topology), which we define by
taking the

B(U ) := { f | (1× f )(X ) ⊂ U} withU open in X × Y

as a base of open sets.
For smoothmanifoldsV v andMm, writeCr(V,M) for the set of mapsV → M

whose restrictions in any local coordinates have continuous partial derivatives
of all orders ≤ r; in particular, C∞(V,M) is the set of smooth maps of V to
M. Taking r-jets gives an injective map jr : Cr(V,M)→ C0(V, Jr(V,M)). The
topology onCr(V,M) induced by regarding it as a subspace ofC0(V, Jr(V,M))
with the compact-open topology is called the Cr topology, and the topology
induced from the fine topology is the fine Cr topology.
The inclusion of C∞(V,M) in Cr(V,M) induces topologies on it, and we

define the C∞ topology to be the union of the Cr topologies, in the sense that
a set is open if it is open in one of these topologies. Correspondingly, the fine
C∞ topology, which we christen theW∞ topology, is the union of the fine Cr

topologies.
Properties of these topologies are discussed in Appendix A.4. We summarise

some key results:
Both topologies onC∞(V,M) are completely regular. They agree ifV is com-

pact.
With the C∞ topology, C∞(V,M) is a complete metric space. However, a

sequence of maps convergent for theW∞ topology is eventually constant out-
side a compact set; hence this topology is neither metrisable nor even locally
countable.
The space C∞pr (V,M) of proper C∞ maps is open in C∞(V,M) in the W∞

topology.
The composition map C∞(V,M)×C∞(M,N) → C∞(V,N) is continuous

for the C∞ topologies; however for the W∞ topologies this fails unless V is
compact: more precisely, for the W∞ topologies, C∞pr (V,M)×C∞(M,N) →
C∞(V,N) is continuous, and the mapC∞(M,N) → C∞(V,N) defined by com-
position with f : V → M is continuous if and only if f is proper.

Lemma 4.4.3 If U is open in Jk(V,M), the set of f : V → M with jk f (V ) ⊂
U is open in C∞(V,M) in the W∞ topology. If K is a compact subset of
V , the set of f : V → M with jk f (K) ⊂ U is open in C∞(V,M) in the C∞

topology.

This follows directly from the definitions of the topologies, and explains why
we need the W∞ topology. In particular, since immersions are just the maps
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104 General position and transversality

whose 1-jet takes values in the open subset of J1(V,M) with dfP injective, it
follows that the set Imm(V,M) of immersions is open inC∞(V,M) in theW∞

topology.
It can be shown (see, for example, [73, 2.1.4]) that the set Emb(V,M) of

smooth embeddings is open in C∞(V,M) in theW∞ topology. We will see in
Corollary 4.6.4 that the set of injective immersions is open, which will suffice
for our purposes. It follows from this using the openness ofC∞pr (V,M) that the
set of closed embeddings is open, and hence takingV = M that the set Diff(M)
of diffeomorphisms of M is open.

The following result ties up the notion of approximation in function space
with more geometrical notions of equivalence.

Proposition 4.4.4 If V is a compact manifold and f : V → M an embedding,
there is a neighbourhood U of f in C∞(V,M) such that for any g ∈ U , g is an
embedding and f and g are ambiently diffeotopic.

Proof Choose a neighbourhood W of �(M) in M ×M and a map H :W ×
[0, 1]→ M as in Corollary 2.2.5. Now choose a neighbourhood U of f such
that
(i) for all g ∈ V and all P ∈ V , ( f (P), g(P)) ∈W , so we can define a smooth

map ft by ft (P) = H( f (P), g(P), t ),
(ii) with the same notation, for each t ∈ [0, 1], ft is a smooth embedding.

Then ft is a diffeotopy of f to g, and by Theorem 2.4.2, this diffeotopy is
ambient.

A topological space W is said to have the Baire property, or to be a Baire
space, if the intersection of any countable family of dense open subsets ofW
is dense. By Baire’s Theorem A.4.5, any complete metric space has the Baire
property.
In a Baire space, a countable intersection of dense open sets is called a resid-

ual set. It is not in general open: in examples, to prove openness, further work
is required.
Since it has a complete metric, C∞(V,M) with the C∞ topology has the

Baire property. The result for the fine C∞ topology also holds: by Theo-
rem A.4.9, if F is any subspace of C∞(V,M) which is closed in the C∞ topol-
ogy then F , with either the C∞ topology or the W∞ topology, has the Baire
property.
From now on, unless explicitly stated otherwise, we use the W∞ topology

on function spaces.
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4.5 The transversality theorem 105

4.5 The transversality theorem

Let V v , Mm be smooth manifolds, and let Nn be a submanifold of Mm. We say
that a smooth map f : V → M is transverse to N if for every P ∈ V such that
f (P) = Q ∈ N, we have df (TPV )+ TQN = TQM. Equivalently, this states that
df induces an epimorphism of TPV on TQM/TQN.
If dimV < codimN, the map df cannot be surjective: in that case transver-

sality requires f (V ) to be disjoint from N.
The following result gives some indication of the geometrical meaning of

the condition.

Lemma 4.5.1 Let f : V → M be transverse to a submanifold N of M. Then
f−1(N) =W is a submanifold of V , whose codimension equals that of N in M.
Moreover, dfP : TPV → Tf (P)M induces an isomorphism of the normal space
NP(V/W ) toW in V at P with the normal space Nf (P)(M/N) of N in M at f (P).

Proof Let P ∈ V , f (P) = Q ∈ N, and let N be locally defined at Q by x1 =
· · · = xc = 0, where the xi have linearly independent differentials at Q, and
c = codimN. Then, by transversality, the functions x1 ◦ f , · · · , xc ◦ f have lin-
early independent differentials at P, and their vanishing definesW near P. That
W is a smooth submanifold follows using Corollary 1.2.6, as in the proof of
Proposition 1.2.10. The same calculation gives the isomorphism of the normal
spaces.

We extend the concept as follows. Let N be a submanifold of Jr(V,M). Then
we say that f is transverse to N if jr f is so.

Lemma 4.5.2 If K is a closed subset of V , and N a closed submanifold of
Jr(V,M), the set of maps which are transverse to N at all points of K is open
in C∞(V,M) in the W∞ topology; if K is compact, it is also open in the C∞

topology.

Proof The differential of jr f is determined by the partial derivatives of f of
order ≤ (r + 1), and hence by jr+1 f . Since the set of linear maps Rv → Rm

which fail to be transverse to a given subspace of Rm is defined by the vanish-
ing of some determinants, it is a closed subset. Thus the subset of Jr+1(V,M)
of jets of maps transverse to N is open. The conclusion now follows from
Lemma 4.4.3.

The transversality theorem states that the set of maps transverse toN is dense.
The full proof is somewhat technical, but the following simple idea lies at its
heart.
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106 General position and transversality

Lemma 4.5.3 Let N be a submanifold of M, and let F : V ×U → M be trans-
verse to N (for example, a submersion). Then for a dense set of u ∈ U the map
fu : V → M given by fu(x) = F (u, x) is transverse to N.

Proof Since F is transverse to N, by Lemma 4.5.1, W := F−1(N) is a sub-
manifold of V ×U . Denote by ϕ the compositeW ⊂ V ×U → U . By Sard’s
Theorem 4.1.3, the set of critical values of ϕ is nul, so for a dense set of u ∈ U ,
u is a regular value of ϕ. We claim that for such u, fu is transverse to N.
If u is a regular value of ϕ and fu(P) = Q lies in N, then (P, u) ∈W , so

dϕ(T(P,u)W ) = TuU . Thus W meets V × {u} transversely at (P, u). But this
implies that fu is transverse at P to N.

This leads to a plan for proving the jet transversality result. First define
the partial jet map jr1F : V ×U → Jr(V,M) of a family F : V ×U → M by
jr1F (v, u) := jr fu(v ), where fu(v ) := F (v, u). Then seek to embed f in a fam-
ilyF : V ×U → M such that the partial jet map jr1F is a submersion, and hence
transverse to N. Then the set of u with fu transverse to N is dense inU .

It is not so easy to construct such a family directly, but we can do it near a
point, and will then be able to obtain the full result using the Baire property.
We develop the local results in a lemma.

Lemma 4.5.4 Let f : V v → Mm be a smooth map, jr f (P) = Q. Then we can
find:
a neighbourhoodW of f in C∞(V,M),
a coordinate neighbourhood (U1, ϕ1) of P in V ,
and a coordinate neighbourhood (U2, ϕ2) of Q in Jr(V,M),

such that for each g ∈W there is a family G : V × Y → M with G0 = g, each
gu ∈W , and such that the restriction toU1 × Y of the partial jet map jr1G takes
values in U2 and is a submersion.

Proof Choose coordinate neighbourhoods of P with Ū1 ⊂ U ′
1 and a chart ϕ2 :

U2 → Rm of f (P) inM. LetB be aC∞ function onV to [0, 1], vanishing outside
U ′
1, and with B(U1) = 1.
Let ε be such that y ∈ Rm, ‖y‖ < ε implies that y is in the image of ϕ2. Let

W1 be the set of g ∈ C∞(V,M) such that for all x ∈ U ′
1, ‖ϕ2( f (x))‖ < ε/3.

Let Y be the set of polynomial maps y : Rv → Rm of degree ≤ r, and let Y ′

be the subset such that for x ∈ ϕ1(U ′
1), we have ‖y(x)‖ < ε/3.

For g ∈W define G′ : U ′
1 × Y ′ → Rm by G′(x, y) := g(x)+ B(x)y(x). Since

this takes values y with ‖y‖ < ε, it lifts under ϕ2 to a map G′′ : U ′
1 × Y ′ → M.

Now define G : V × Y ′ → M by G(P, y) = G′′(P, y) if P ∈ U ′
1 and G(P, y) =

g(P) otherwise.
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4.5 The transversality theorem 107

We claim that jr1G restricts to a submersion of U1 × Y ′ to Jr(V,M). For on
this subset,G is given in local coordinates byG(x, y) := g(x)+ y(x). At x = 0,
this has Taylor series the sum of those of g and y. But by construction, the
tangent space toY ′ isY , essentially the same as the fibre of πs : Jr(V,M)→ V ,
so the derivatives with respect to the y-coordinates span the tangent space to
the fibre. Since jrg is a section of πs, the derivatives with respect to the x-
coordinates span the tangent space to V . Thus the sum is indeed a submersion.
The same result holds for points x �= 0 since although the Taylor expansion
at x is not the same as at 0, the space of all polynomials of degree ≤ r is the
same.

Corollary 4.5.5 Let f : V v → Mm be a smooth map, and let N be a subman-
ifold of Jr(V,M) of codimension p. Let jr f (P) = Q ∈ N. Then we can find a
coordinate neighbourhood U1 of P in V , a coordinate neighbourhood U2 of Q
in Jr(V,M), and an open neighbourhoodW of f in C∞(V,M) such that
(a) For g ∈W , jrg(Ū1) ⊂ U2.
(b) For every g ∈W , there are maps h arbitrarily close to g in C∞(V,M)

such that jrh|U1 is transverse to N.

Proof Define W and construct G as above. Since jr1G gives a submersion of
U1 × Y ′ to Jr(V,M), by Lemma 4.5.3, there exist y ∈ Y arbitrarily close to 0
such that jrgy |U1 is transverse to N.

We can now prove the general theorem.

Theorem 4.5.6 (Transversality Theorem) Let N be a submanifold of Jr(V,M).
The set of maps f : V → M transverse to N is dense inC∞(V,M); if N is closed,
it is also open.

Proof First let K be a compact subset of V . Then K can be covered by a finite
number of the neighbourhoods Uα

1 of the lemma. The intersection of the cor-
responding setsWα is an open neighbourhoodW of f , and the subset ofW of
functions g with g|Uα

1 transverse to N is dense in W , by the lemma. Since by
Theorem A.4.10 the open set W has the Baire property, the set of g ∈W with
g|K transverse to N is also dense in W . Since this holds for some neighbour-
hoodW of any f , the set T of g ∈ C∞(V,M) with g|K transverse to N is dense
in C∞(V,M). Also, T is open by Lemma 4.5.2.
SinceV may be covered by a countable family of compact setsK, the density

result follows since C∞(V,M) has the Baire property. Openness is given by
Lemma 4.5.2.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316597835.005
Downloaded from https://www.cambridge.org/core. Moritz Law Library, on 05 Aug 2019 at 19:47:26, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.005
https://www.cambridge.org/core


108 General position and transversality

The following addendum is often useful in applications, usually taking
X = ∂V . For f : V → M and X ⊂ V denote by C∞(V,M; f ,X ) the set of
g ∈ C∞(V,M) with g|X = f |X .

Proposition 4.5.7 Let N be a submanifold of Jr(V,M), X a closed subset of
V , f : V → M transverse to N along X. The set of maps g ∈ C∞(V,M; f ,X )
transverse to N is dense in C∞(V,M; f ,X ); if N is closed, it is also open.

This follows from the same argument on making two changes. First, as well
as the setsUα above, we choose open setsUβ which cover X and are such that f
is transverse toN alongUβ : we then defineWβ to be the open set of g transverse
toN alongUβ . Secondly, note that by TheoremA.4.9,C∞(V,M; f ,X ) is a Baire
space.
The Transversality Theorem is the general tool for proving ‘general position’

arguments in differential topology, and admits a wide variety of applications.
We spend some time giving such examples, beginning with the simplest.
The following easy application seems worth formulating explicitly.

Corollary 4.5.8 Given two embeddings f : V → M and f ′ : V ′ → M, we can
perturb f by an arbitrarily small diffeotopy to a map transverse to f ′.

In general, the set of f satisfying a transversality condition is residual; by
further applications of Baire’s theorem, we see that the set of f satisfying a
finite, or even a countable, number of conditions of the above type is resid-
ual, hence dense. Thus given a countable family of submanifolds of various
Jk(V,M), the set of maps transverse to all of them is a residual set. Moreover,
for those submanifolds of codimension> v , we know that transversality means
that jk f avoids these submanifolds. In particular,

Lemma 4.5.9 Given a finite or countable collection of submanifolds Aα of
M, each of dimension < (m− v ), the set of maps f : V v → Mm with f (V ) ∩⋃

α Aα = ∅ is residual in C∞(V,M).
Any embedding V → M is diffeotopic to one avoiding all the Aα .

The first assertion is an immediate consequence of the theorem, since
transversality to Aα implies that the two are disjoint. The second follows by
Lemma 4.4.4.
The following was an early application of transversality.

Proposition 4.5.10 Let f : V → M be a smooth map, N a submanifold of
Jk(V,M), and suppose F closed in V such that f |F is transverse to N, then
f can be approximated by g, transverse to N, and with g|F = f |F.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316597835.005
Downloaded from https://www.cambridge.org/core. Moritz Law Library, on 05 Aug 2019 at 19:47:26, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.005
https://www.cambridge.org/core


4.5 The transversality theorem 109

Proof First, by Proposition 2.3.4 (i), we can approximate f by a smooth map
g, and by (ii) of that result, we may suppose that g agrees with f on F .
The result now follows from Proposition 4.5.7.

A case of particular importance is where V has boundary and we take F =
∂V . Even the case k = 0, where we seek transversality to submanifolds of M,
is significant, and is useful for applications to cobordism theory.
In many cases, we can show that the intersection is not only dense, but open.

Suppose we have a finite collection of submanifolds Ai of Jk(V,M). To say
that jk f is transverse to Ai can be regarded as having jk+1 f avoid a certain
subset, Ni, say, of Jk+1(V,M). If the set F :=⋃i Ni of non-transverse jets is
closed, then by Lemma 4.5.2, the set of maps transverse to all the Ai is indeed
open.
A collection of submanifolds Ai of a manifold B is said to be A-regular

in the sense of Whitney if for each sequence xn ∈ Ai converging to a limit
y ∈ Aj and such that the tangent spaces TxnAi converge to a limit τ we have
TyAj ⊂ τ .

Lemma 4.5.11 Suppose {Ai} a finite A-regular collection of submanifolds of
Jk(V,M) with

⋃
i Ai closed. Then the set F :=⋃i Ni of non-transverse jets is

closed. Hence the set of maps in C∞(V,M) transverse to all the Ai is open.

Proof Suppose the condition is satisfied but that there is a sequence ξn of jets
in F with limit η �∈ F . Passing to a subsequence, we may suppose that all
the xn = π k+1

k (ξn) belong to the same submanifold Ai and that the sequence
TxnAi of tangent spaces converges to a limit, τ say. Since

⋃
i Ai is closed, the

limit y = π k+1
k (η) of the xn belongs to Aj for some j. Since A-regularity holds,

TyAj ⊂ τ .
Now ξn induces a 1-jet of maps V → Jk(V,M) and hence a map dξn :

Tπs(ξn )V → TxnJ
k(V,M), and since ξn ∈ Ni, we have dξn(Tπs(ξn )V )+ TxnAi �=

TxnJ
k(V,M). Since the ξn converge to η, it follows that dη(Tπs(η)V )+ τ �=

TyJk(V,M). Hence a fortiori dη(Tπs(η)V )+ TyAj �= TyJk(V,M), thus η ∈ Nj ⊂
F , a contradiction.

In the case k = 0, where we are given a collection of submanifolds of M,
there is even a converse result. We do not give the statement; the crucial point
is that any linear map TxV → TyM occurs as a 1-jet. It is however far from true
that any linear map TxV → TyJk(V,M) is induced by a (k + 1)-jet, on account
of the symmetry of higher derivatives.
Stratifications give important examples of collections of submanifolds, and

A-regularity is often defined in this context.
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110 General position and transversality

We now define some submanifolds of jet space: the most important are
spaces of 1-jets. Recall that a 1-jet with source P ∈ V v and target Q ∈ Mm

is determined by the points P, Q and a linear map g : TPV → TQM. We par-
tition these according to the rank of the linear map g: it is traditional to write

i(V,M) for the set of 1-jets (P,Q, g) such that the rank of g is v − i. Write
also 
i( f ) := {P ∈ V | j1 f (P) ∈ 
i(V,M)}. Since the rank takes values from
0 to min(v,m), 
i is empty unless

if v ≥ m, we have v ≥ i ≥ v − m;
if v ≤ m, we have v ≥ i ≥ 0.

Lemma 4.5.12 (i) The set of (v × m) matrices of rank (v − i) is a smooth
submanifold of codimension i(m− v + i) in the space of matrices.
(ii) 
i(V,M) is a smooth submanifold of codimension i(m− v + i) in

J1(V,M).

Proof (i) In an open subset of the space of matrices, the first v − i columns are
linearly independent. The condition for rank v − i is then that the remaining
m− v + i columns each lie in a subspace of Rv of codimension i. The same
argument applies if we use a different set of columns.
(ii) Using local coordinates withU1 ⊂ V andU2 ⊂ M, we see that the result

holds in the preimage of anyU1 ×U2.

Thus the 
i form a stratification of matrix space, and the 
i(V,M) a strati-
fication of J1(V,M). We may think of the closure of 
i as a submanifold with
singularities: it is the union of the 
 j with j ≥ i, and is a variety in the sense
of algebraic geometry. A first step in putting a map f into general position is to
make it transverse to the 
i. This is facilitated by

Lemma 4.5.13 The stratification 
i is A-regular.

Proof It suffices to consider the submanifolds of the space of matrices, since
J1(V,M) is locally a product of V , M, and Hom(TxV,TyM).
We first show that the tangent space to 
i at a map φ ∈ 
i can be decom-

posed as a sum S1 + S2, where S1 is the set of linear mapsψ withψ (Ker φ) = 0
and S2 the set of those with Imψ ⊂ Im φ. We can take coordinates such that the

matrix of φ is in normal form. Then the matrix

(
A B
C D

)
, with A nonsingular

and r × r, has rank r if and only if D = CA−1B. If we take A− I, B, C and D
as infinitesimals, then to the first order this condition becomes D = 0. Thus we
have the sum of the subspaces S1 (B = D = 0) and S2 (C = D = 0).
Consider a sequence ψn → φ with all ψn of the same rank. We may suppose

that both Ker ψn converges to a limit K and Im ψn converges to a limit L.
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4.6 Multitransversality 111

Then K ⊂ Ker φ and Im φ ⊂ L. We need to show that the tangent space at
φ is contained in the limit, which is the sum of the set of maps with kernel
containing K and that with image contained in L. But this now follows.

Corollary 4.5.14 The set of maps f : V → M with j1 f transverse to each 
i

is open in C∞(V,M).

This follows from Lemmas 4.5.13 and 4.5.11.

4.6 Multitransversality

In general, applying the transversality theorem allows us to control the
behaviour of a map f : V → M near a point of V . However, to describe the
image of f we must contemplate pairs of points of V with a common image,
and multitransversality is designed to enable us to do this.
An advantage of the above proof of the transversality theorem is that the

version of Lemma 4.5.4 for multijets is an immediate consequence, so the same
argument now leads to the multitransversality theorem.

Theorem 4.6.1 (Multitransversality Theorem) Let N be a submanifold of

rJk(V,M). The set of maps f : V → M such that r jk f is transverse to N is
residual in C∞(V,M).

Proof We follow the same plan as for Theorem 4.5.6.
Step 1: As for Lemma 4.5.4, given a smooth map f : V v → Mm and points Pj

(1 ≤ j ≤ r) inV , write jk f (Pj ) = Qj. By that lemma, we have neighbourhoods
W j of f in C∞(V,M), coordinate neighbourhoods (UPj , ϕ j ) of Pj in V , and
coordinate neighbourhoods (UQj , ψ j ) of Qj in Jk(V,M) such that for each g ∈
W j there is a family Gj : V × Kj → M with Gj,0 = g, each Gj,u ∈W j, and
such that the restriction toUPj × Kj of the partial jet map jk1Gj takes values in
UQj and is a submersion.

Since the Pj are distinct, we may suppose their neighbourhoods disjoint, and
since Gj agrees with g outside a neighbourhood of Pj, for g ∈W :=⋂ j W j

we may combine these deformations to G : V × K0 → M (with K0 :=
∏

j Kj),
where the value near Pj is given by Gj. Then the restriction to

∏
j UPj × K0 of

the partial jet map r jk1G takes values in
∏

j UQj and is a submersion.
Step 2: follow Corollary 4.5.5. We are now given a submanifold N of

rJk(V,M). Let r jk f (P1, . . . ,Pr ) = (Q1, . . . ,Qr ) ∈ N. For g ∈W we construct
G as above. Now since r jk1G gives a submersion to rJk(V,M), by Lemma 4.5.3
there exist k ∈ K arbitrarily close to 0 such that jrgk |

∏
j Uj is transverse to N.
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112 General position and transversality

Step 3: By Lemma 1.1.6(i) (adapted to r-tuples), a compact subset K of V (r)

can be covered by a finite number of sets
∏

j U
α
j with theU

α
j compact and dis-

joint. The intersection of the corresponding setsWα is an open neighbourhood
W of f , and the subset of W of functions g with g|∏ j U

α
j transverse to N is

dense and open in W . It follows using the Baire property that the subset T of
g with g|K transverse to N is also dense in W , and since this holds for some
neighbourhood W of any f , is dense inC∞(V,M); in fact, a residual set.
The result follows by another application of the Baire property.

Unlike Theorem 4.5.6, the set given by an application of Theorem 4.6.1 is
almost never open. In applications, we often want to prove we have an open
subset of mapping space, not just a dense one. It is thus necessary in some
way to ‘fill in’ the diagonal. This is usually accomplished by combining the
multitransversality condition with a simple transversality condition.

Lemma 4.6.2 Let A be a closed submanifold of 2Jk(V,M) and U an
open neighbourhood of �(V ) in V ×V. Then the set of f ∈ C∞(V,M) with

2 jk f | (V (2) \U ) transverse to A is open in C∞(V,M).

Proof By Lemma 1.1.6(ii), we can find a countable collection of pairs of dis-
joint compact sets (Kα,K′

α ) in V such that {Kα,K′
α} is locally finite in V , and

such that the
⋃

α (Kα × K′
α ) ⊇ V (2) \U .

The condition that 2 jk f is transverse to A at all points of the closed subset
(Kα × K′

α ) \U defines an open set in C∞(Kα × K′
α,M) by Lemma 4.5.2, and

hence in C∞(V,M), since the restriction map C∞(V,M)→ C∞(Kα × K′
α,M)

is continuous (for as Kα × K′
α is compact, its inclusion in V is proper).

Nowwe have a countable family of open conditions on the restrictions of f to
members of a locally finite cover ofV , so by the definition of the fine topology,
the intersection again gives an open set.

We now have

Proposition 4.6.3 Suppose W an open subset of C∞(V,M) and A a closed
submanifold of 2Jk(V,M); writeW∗ for the set of f ∈W with 2 jk f transverse
to A.
Suppose that, for each f ∈W∗, each x ∈ V has a neighbourhood Ux such

that {g ∈W | 2 jkg |U (2)
x is transverse to A} is a neighbourhood of f .

ThenW∗ is open in C∞(V,M).

Proof We first show that, for each f ∈W∗, there exist a neighbourhoodUf of
�(V ) in (V ×V ) and an open neighbourhood W f of f in W such that, for all
g ∈W f , 2 jkg(Uf \�(V )) ∩ A = ∅. By hypothesis we have a neighbourhood
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4.6 Multitransversality 113

Ux for each x ∈ V ; we may suppose these open. Since they cover V , we can
pick a locally finite refinement {Uα}. We setUf :=

⋃
α (Uα ×Uα ). By hypoth-

esis, the set of maps g ∈W satisfying the condition on U (2)
x contains an open

neighbourhood of f ; the same follows for U (2)
α . But by the properties of the

fine topology, the intersection W f of a family of open sets defined by condi-
tions on members of a locally finite family of subsets Uα of V is open in the
W∞ topology.

By Lemma 4.6.2, the set XG of maps with 2 jk f | (V ×V \Uf ) transverse to
A is open in C∞(V,M), so W f ∩ XG is open. But this is a neighbourhood of f
inW∗.

Corollary 4.6.4 The set of injective immersions is open in C∞(V,M).

Proof We can take W as the set of immersions V → M and W∗ as the set
of injective immersions: then it suffices to show that, for each f ∈W∗, each
x ∈ V has a neighbourhoodUx such that {g ∈W | g |Ux is injective} is a neigh-
bourhood of f .
But this is clear: we can take coordinates at x and f (x) in which f |Ux is the

inclusion of the unit disc U in Rv into Rm; then the maps whose restriction to
a closed disc of smaller radius project immersively to Rv form an open set (we
have a compact subset of V and an open subset of J1(V,M)).

Given two subspacesP1, P2 of a vector spaceQ, we say that they are transver-
sal ifP1 + P2 = Q: this condition is stable under perturbations. The correspond-
ing condition for a set of several subspaces Pi of Q is less familiar. We require
each Pi to be transverse to the intersection of the others. The neat formulation is
that the set {Pi} of linear subspaces of Q is mutually transversal if the diagonal
map from Q to

⊕
i(Q/Pi) is surjective; equivalently, if the map from Q

⊕
i Pi

to
⊕

i Q, where the first summand is mapped by the diagonal, is surjective.
All our explicit applications of the multitransversality Theorem 4.6.1 follow

a common pattern. Suppose we have submanifolds Ai (1 ≤ i ≤ r) of jet space
Jk(V,M): then define (A1, . . . ,Ar )� to be the submanifold of rJk(V,M) of mul-
tijets ( j1, . . . , jr ) with each ji ∈ Ai, and all πt ( ji) equal. (For convenience, we
take all submanifolds in the same jet space, but if k < l, the preimage of a
submanifold A ⊂ Jk(V,M) in Jl (V,M) is a submanifold A∗ of the same codi-
mension, and f is transverse to A∗ if and only if it is transverse to A.) Observe
that

codim(A1, . . . ,Ar )� =
∑
i

codim(Ai)+ (r − 1)m.

For f : V → M, write Ai( f ) := {x ∈ V | jk f (x) ∈ Ai}.
Lemma 4.6.5 Suppose Pi ∈ V with jk f (Pi) ∈ Ai and jk f transverse to Ai at
Pi for each i, and each f (Pi) = Q. Then r jk f is transverse at (P1, . . . ,Pr ) to
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114 General position and transversality

(A1, . . . ,Ar )� if and only if the subspaces df (TPiAi f ) of TQM are mutually
transversal.

Proof Write ji := jk f (Pi). The tangent space at ( j1, . . . , jr ) to (A1, . . . ,Ar )�
is the pullback of the diagonal under the projection

⊕
i TjiAi →

⊕
i TQM. Thus

transversality holds, i.e. T (A1, . . . ,Ar )�
⊕

i TPiV maps onto
⊕

i(TjiJ
k ) if and

only if the map TQM
⊕

TPiV
⊕

TjiAi −→
⊕

(TQM ⊕ TjiJ
k ) is surjective.

Since transversality holds at each Pi, TPiV ⊕ TjiAi surjects to TjiJ
k, and we

have TPi (Ai( f )) = Ker(TPiV → TjiJ
k/TjiAi). Thus the condition holds if and

only if TQM
⊕

TPiAi( f ) maps onto
⊕

i TQM, which is equivalent to the stated
condition.

Our first application is a simple general result.

Proposition 4.6.6 The set of self-transverse immersions f : V → M is open
and dense in Imm(V,M).

Proof First consider the submanifold (J0, J0)� of 2J0(V,M) consisting of pairs
of 0-jets with a common target. By Theorem 4.6.1, the set of maps f : V → M
with 2 j0 f transverse to (J0, J0)� is dense inC∞(V,M). By Lemma 4.6.5, 2 j0 f
is transverse to (J0, J0)� at a point (P1,P2) with f (P1) = f (P2) = Q if and only
if df (TP1V )+ df (TP2V ) = TQM, i.e. the branches of f (V ) at P1 and P2 meet
transversely at Q.
Since Imm(V,M) is open inC∞(V,M), it follows that the set of immersions

f with this property is dense in Imm(V,M). Higher intersections are dealt with
in the same way using (J0, . . . , J0)� ⊂r J0(V,M).
For openness we use Proposition 4.6.3. Again we give the details

only for the case r = 2. The result will follow if for each self-
transverse immersion f , each x ∈ V has a neighbourhood Ux such that {g ∈
W | 2 jkg |U (2)

x is transverse to (J0, J0)�} is a neighbourhood of f .
But since f is an immersion, each x ∈ V has a neighbourhoodUx embedded

by f . Since the set of embeddings is open, the set of maps of V restricting to
an embedding ofUx is also open.

4.7 Generic singularities of maps

In this section we apply the general theorems to reduce singularities of maps
to general form. We first give applications of jet transversality, then deal with
multijets. As well as showing that maps with a certain form are dense in the
space of all maps, we also show they form an open set, so that the simplifications
do not disappear under small perturbations. We first consider the case m = 1.
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4.7 Generic singularities of maps 115

Theorem 4.7.1 Non-degenerate functions are dense and open in C∞(V,R).

Proof Asm = 1,
i is empty unless i = v or i = v − 1, and
v−1 is smooth of
codimension v . By Theorem 4.5.6, the set of functions f which are transverse
to 
v−1(V,R) is dense and open.

Now j1 f (P) ∈ 
v−1 if and only if dfP = 0: P is a critical point of f . We
claim that j1 f is transverse to
v−1 if and only if f is non-degenerate: this will
imply the result.
Take local coordinates {xi} at P and y on R, and write ui for the coordinate

on J1(V,R) corresponding to ∂y/∂xi. Now apply the calculation (4.4.2), which

reduces here to dj1 f
(

∂
∂xi

)
= ∂

∂xi
+ ui ∂

∂y +
∑

k u
ik ∂
∂uk . Since


v−1 is defined by

the equations ui = 0, its tangent space is spanned by ∂/∂y and the ∂/∂xi. These

together with the dj1 f
(

∂
∂xi

)
span Tj1 f (P)J1(V,R) if and only if the matrix uik =

(∂2 f /∂xi∂xk )P is nonsingular, i.e. P is a non-degenerate critical point of f .

For the case m = 2, we have

Theorem 4.7.2 Maps f with the following properties form a dense open subset
ofC∞(V v ,M2):
v−2( f ) is empty,
v−1( f ) is a smooth curve, and at each point
of 
v−1( f ), there are local coordinates in which j2 f is given by either

(x1,
∑v

i, j=2 bi jxix j ) with (bi j )
v
i, j=2 nonsingular or

(x1, x1x2 +
∑v

i, j=3 bi jxix j ) with (bi j )
v
i, j=3 nonsingular;

in the latter case, the coefficient of x32 in y2 is non-zero.

Proof ByLemma 4.5.12,
v−2 has codimension 2v and
v−1 has codimension
(v − 1). It thus follows from Theorem 4.5.6 that the set of maps f : V v → M2

such that 
v−2( f ) is empty and f is transverse to 
v−1 is dense, and from
Corollary 4.5.14 that this set is open.
Since f is transverse to
v−1,
v−1( f ) is a smooth curve inV . We now need

to calculate. We choose local coordinates at a point of 
v−1( f ) such that the
1-jet of f is (x1, 0). The 2-jet is then of the form(

x1 +
∑

ai jxix j,
∑

bi jxix j
)
.

Essentially the same calculation as in the preceding proof using (4.4.2) shows
that this 2-jet is transverse to 
v−1( f ) if and only if the vectors

v∑
j=1

bi jx j(2 ≤ i ≤ v )

are independent.
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116 General position and transversality

There are now two cases. In general, the matrix B := (bi j )vi, j=2 is nonsin-
gular. We may then make a linear substitution x′j = x j + λ jx1 to reduce the
b1, j ( j > 1) to zero, and the further change of coordinates x′1 = x1 +

∑
ai jxix j,

y′2 = y2 − b1,1y21 reduces the 2-jet to (x1,
∑v

i, j=2 bi jxix j ). We label this case

v−1,0. For f in this form, the tangent space to 
v−1( f ) is the x1-axis, and
the restriction of f to 
v−1( f ) is an immersion.
Otherwise the matrix B has rank v − 2, so by a change of coordinates

x2, . . . , xv we can reduce to the case when b2,i = 0 for 2 ≤ i ≤ v . The transver-
sality condition now implies that b1,2 �= 0. Coordinate changes as before allow
us to reduce the 2-jet to the form (x1, x1x2 +

∑v
i, j=3 bi jxix j ). We label this case


v−1,1. For f in this form, the tangent space to 
v−1( f ) is the x2-axis, and the
restriction of f to 
v−1( f ) is not an immersion.
We have effectively defined 
v−1,1 as a subspace of J2(V,M): it has codi-

mension 1 in the space of 2-jets defining maps transverse to 
v−1. A further
application of the transversality theorem tells us that for a dense set of maps,
j2 f is also transverse to this.
Since 
v−1,1 was defined as a subset of 
v−1 by the vanishing of det(B),

f is transversal to it if and only if dj2 f (∂/∂x1) maps onto the normal space
to this. In the neighbourhood of a matrix B of rank v − 2 and with b2,i = 0
for 2 ≤ i ≤ v , the normal space is spanned by b2,2. Since the tangent space to

v−1( f ) is the x2-axis, we need to evaluate dj2 f (∂/∂x2). Again using (4.4.2),
we see that the desired condition holds if and only if the coefficient of x32 in y2
is non-zero.
For openness it suffices by Lemma 4.5.11 to prove that the set of submani-

folds of J2 defined by
v−2,
v−1,0 and
v−1,1 is A-regular; the only non-trivial
case is a sequence in 
v−1,1 with limit in 
v−2. But as 
v−2 is the set of jets
with zero 1-jet, the inclusion of tangent spaces follows.

In the final case, the condition that the coefficient of x32 in y2 is non-zero
implies that f (
v−1( f )) has a simple cusp.

Figure 4.2 A cusp singularity
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4.7 Generic singularities of maps 117

In Figure 4.2, we illustrate a cusp singularity of a map M2 → R2 as the
projection of a surface M embedded in R3, together with the discriminant set
f (
1( f )) ⊂ R2.
Finally, we consider cases with m large compared to v .

Theorem 4.7.3 Maps f with the following properties form a dense open subset
of C∞(V v ,Mm):
if m ≥ 2v , f is an immersion,
if 2m ≥ 3v − 3, 
2( f ) is empty and f is transverse to 
1, so 
1( f ) is a

smooth submanifold of V of dimension 2v − m− 1,
if 2m ≥ 3v − 1, the 2-jet of f at any point of 
1( f ) can be reduced to the

form

y1 = 1

2
x21, y j = x j (2 ≤ j ≤ v ), yi+v−1 = x1xi (2 ≤ i ≤ m− v + 1).

(4.7.4)

Proof By Theorem 4.5.6, the maps transverse to all the 
i form a dense set,
and by Corollary 4.5.14 it is also open.
Sincem ≥ v , the codimension of
1 ism− v + 1. Thus ifm ≥ 2v , the maps

avoiding 
1, i.e. immersions, are dense and open in C∞(M,V ). This already
sharpens Theorem 4.2.3.
Next, the codimension of 
2 is 2(m− v + 2), so provided this exceeds v ,

i.e. 2m ≥ 3v − 3, for a dense open set of maps f , we have 
2( f ) = ∅ and f
is transverse to 
1. We choose local coordinates in which the 1-jet of f at P
is given by (0, x2, . . . , xv , 0, . . . , 0), thus ∂/∂x1 spans ker(df ). Thus at j1 f (P),

1 is locally the set of jets such that the first row of (uij ) is a linear combination
of the rest, and the tangent space of 
1 is given by infinitesimal vanishing of
u11 and u

1
j for v < j ≤ m.

From the calculation (4.4.2) we see that the coefficient of ∂/∂u1j in
dj1 f (∂/∂xi) is u1ij , i.e. ∂

2y j/∂x1∂xi.
Now f is transverse to 
1 if and only if dj1 f (TPV ) spans the normal space

to 
1, i.e. the matrix (∂2 f j/∂x1∂xi) j=1,v< j≤m,1≤i≤v has rank m− v + 1.
Consider the subvariety 
1,1 of J2(V,M) consisting of jets in 
1 at P such

that ker(df )P ⊂ TP
1( f ). Since 
1( f ) has codimension m− v + 1, and we
now imposem− v + 1 further conditions,
1,1 has codimension 2(m− v + 1).
By Theorem 4.5.6, provides this exceeds v , i.e. 2m ≥ 3v − 1, the condition that
j2 f (V ) avoids 
1,1, i.e. at each point of 
1( f ), dj1 f (ker df ) is not tangent to

1, holds for a dense set of maps f .
The condition for this tangency is that dj1 f (∂/∂x1) lies in the subspace

where the coefficients of ∂/∂u11 and ∂/∂u1j for v < j ≤ m vanish, i.e. that
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118 General position and transversality

∂2 f1/∂x21 = 0 and ∂2 f j/∂x21 = 0 for v < j ≤ m. If this condition does not hold,
we may suppose, after replacing y1 and the y j for v < j ≤ m by linear combi-
nations, that ∂2 f1/∂x21 = 1 and ∂2 f j/∂x21 = 0 for v < j ≤ m.

It now follows that the matrix (∂2 f j/∂x1∂xi)v< j≤m,2≤i≤v has rank m− v . We
can thus make a linear transformation of the y j with v < j ≤ m to arrange that
∂2 f j/∂x1∂xi = 1 for j = v − 1+ i and vanishes otherwise for v < j ≤ m, 2 ≤
i ≤ v . Thus the 2-jets take the form
y1 = 1

2x
2
1 + Q1(x2, · · · , xv ),

y j = x j + Qj(x1, · · · , xv ), for 2 ≤ j ≤ v ,
yi+v−1 = x1xi + Qi+v−1(x2, · · · , xv ) for 2 ≤ i ≤ m− v + 1,

where the Qj are quadratic. Finally, if we make the coordinate changes
x′j = x j + Qj(x1, · · · , xv ),
y′1 = y1 − Q1(y2, · · · , yv ), and
y′i+v−1 = yi+v−1 − Qi+v−1(y2, · · · , yv ),

the quadratic terms drop out too.
For openness we could seek to show that A-regularity continues to hold when

we throw in
1,1. It is easier to apply the method of Proposition 4.6.3. WriteW
for the set of f ∈ C∞(V,M) transverse to the 
i and W∗ for the set of f ∈W
with j3 f transverse to 
1,1. Since for any f ∈W , j2 f (V ) avoids 
2, it avoids
a neighbourhoodUf of 
2 in J3(V,M), hence there is an open neighbourhood
W f of f inW such that, for all g ∈W f , j2g(V ) avoidsU .

In the complement of U we only need to consider 
2,0 and 
2,1, and here
the A-regularity condition trivially holds (the latter is a smooth submanifold
of codimension 1 in 
2 and the former is its complement). By Lemma 4.5.11,
transversality defines an open subset ofUf . It follows that W∗ ∩Uf is open in
Uf , soW∗ contains an open neighbourhood of f .

We now give applications of multitransversality: we treat the cases in the
same order, so begin with functions f ∈ C∞(V ). Recall that the critical values
of f are the f (P) with P a critical point of f .

Proposition 4.7.5 Non-degenerate functions with all critical values distinct
form a dense open set in C∞(V ).

Proof By Theorem 4.7.1, functions with only non-degenerate critical points
are dense. As the submanifold (
v−1, 
v−1)� of 2J1(V,R) of pairs of singular
jets with the same image has codimension 2v + 1, it follows from the Multi-
transversality Theorem 4.6.1, that functions avoiding it are also dense. As these
are both residual sets, so is their intersection.
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4.7 Generic singularities of maps 119

For openness it suffices, by Proposition 4.6.3, to show that for each non-
degenerate function f with distinct critical values, each x ∈ V has a neigh-
bourhood Ux such that the set of non-degenerate functions gwhose restriction
to Ux has distinct critical values is a neighbourhood of f . Choose a coordi-
nate neighbourhood U ′

x so that f has at most one critical point on U ′
x, and

let Ux be the neighbourhood defined by a disc of half the radius. Then the
set of non-degenerate functions on V with at most one critical point in Ux

is open.

We come to target dimension 2.

Theorem 4.7.6 For any V v , M2, maps with the following properties form a
dense and open subset of C∞(V,M):
the singular set of f is a smooth curve 
( f ) embedded in V ,
f |
( f ) is a smooth embedding except that
(a) for a discrete set of points P ∈ 
( f ), the curve f (
( f )) has a cusp at

f (P),
(b) for a discrete set of pairs (P,Q) of points in 
( f ) (all distinct from the

cusps), f (
( f )) has a transverse self-intersection at f (P) = f (Q).

Proof We give the proof of density: openness is more technical and is best
established using methods described in the Notes §4.9.
Most of the conclusions were obtained in Theorem 4.7.2, but we have yet to

consider double points of f (
( f )).
First apply the multitransversality theorem to the submanifold

(
v−1,1, 
v−1)� of 2J2(V,M). This has codimension v + (v − 1)+ 2, so
is avoided by a dense set of maps; thus cusps will not be double points.
Now apply the theorem to (
v−1, 
v−1)�. This has codimension (v − 1)+

(v − 1)+ 2, so occurs at isolated points. It follows by Lemma 4.6.5 that the
self-intersection of f (
( f )) is transverse at such points.

For the cases of large target dimension, we have

Theorem 4.7.7 Maps f with the following properties form a dense subset of
C∞(V v ,Mm) if V is compact, or of C∞pr (V,M) in general:
(i) If m ≥ 2v + 1, f is an embedding.
(ii) If m = 2v , f is an immersion with isolated points of transverse self-

intersection.
(iii) If 2m ≥ 3v − 3, 
2( f ) is empty and f is transverse to 
1, so 
1( f ) is

a smooth submanifold of V of dimension 2v − m− 1.
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120 General position and transversality

(iv) If 2m > 3v , f is an embedding except as follows. There are double
points, forming a submanifold D( f ) of dimension 2v − m, and singular points,
forming a submanifold
1( f ) of dimension 2v − m− 1. Near
1( f ), f is given
locally by (4.7.4). Hence the closure D̄( f ) of D( f ) is D( f ) ∪
1( f ) and is
smooth, and f (D̄( f )) is a submanifold of M with boundary f (
1( f )).
(v) If 2m = 3v the same holds, except that now D( f ) is immersed with trans-

verse self-intersection, and f (D( f )) can have triple points with transverse self-
intersection.

Proof We extend the results of Theorem 4.7.3. For (i), we may suppose f an
immersion, and apply multijet transversality to (J0, J0)�. Since this has codi-
mension 2v , it is avoided by a dense set of maps. Thus injective immersions
are dense in C∞(V,M); now any proper injective immersion is an embedding
by Proposition 1.2.10.
Now (ii) follows using Proposition 4.6.6.
We make three further applications of the multitransversality Theorem 4.6.1.

First consider the subvariety (
1, J1)� of 2J1(V,M) consisting of pairs of jets
with the same image, one of which (say the first) is singular. As this has codi-
mension m+ (m− v + 1), if 2m ≥ 3v , the set of maps avoiding it is dense.
Next consider (J0, J0)�: by Lemma 4.6.5, 2 j0 f is transverse to this at (P1,P2)

if and only if df (VP1 )+ df (VP2 ) = MQ. By the previous paragraph, neither P1
nor P2 is a singular point, so we have a transverse intersection of smooth pieces
of the image, giving the set D( f ) of double points of f .
Finally consider the subvariety (J0, J0, J0)� of 3J0 of triples of jets with the

same image. Since this has codimension 2m, if 2m > 3v it follows by mul-
titransversality that the set of maps avoiding it is dense. If 2m = 3v , this will
appear at isolated points, and by Lemma 4.6.5, the three branches at such points
are mutually transverse.
We have seen thatD( f ) is an immersed submanifold; when there are no triple

points it is imbedded. That D( f ) remains a manifold near 
1( f ), with 
1( f )
as its frontier, follows from the equations (4.7.4). Now D( f ) is simply given by
xi = 0 (2 ≤ i ≤ m− v + 1) (modulo higher terms). Moreover f (D( f )) is also
a submanifold, except perhaps near f (
1( f )); but there it is locally given by
y1 ≥ 0, yi = 0 (2 ≤ j ≤ m− v + 1) and (v + 1 ≤ j ≤ m).

To prove openness it again suffices by Proposition 4.6.3 to show that, for each
f satisfying the conditions, each x ∈ V has a neighbourhoodUx such that the set
of maps gwhose restriction to 
1(g) ∩Ux is injective is a neighbourhood of f .
By Theorem 4.7.3, we may suppose that at the point x, either f is an immer-

sion (in which case the immersions give a neighbourhood of the desired type),
or the 2-jet of f has the form (4.7.4): y1 = 1

2x
2
1, y j = x j for 2 ≤ j ≤ v , and
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4.7 Generic singularities of maps 121

Figure 4.3 A Whitney umbrella

yi+v−1 = x1xi for 2 ≤ i ≤ m− v + 1; so 
1( f ) is given (to the first order) by
xi = 0 for 1 ≤ i ≤ m− v + 1. Restricting to a small neighbourhood U we see
that for any nearby g, the coordinates xi for i > m− v + 1 are independent on

1(g) and define an injective map of it.

We can now give a fuller statement of Whitney’s Embedding Theorem.

Corollary 4.7.8 For any smoothmanifoldV v there exist proper smooth embed-
dingsV v → Rm whenever m > 2v . The image of such an embedding is a closed
submanifold of Rm.

The existence of proper maps V → Rm is given by Corollary 2.2.10 and of
proper smooth maps follows from Proposition 1.1.7; it follows by the theorem
that there exist proper smooth embeddings. The final statement follows from
Proposition 1.2.10.
It also follows that for a dense open set of maps of a compact smooth sur-

face to 3-dimensional space, the possible types of singularity of the image
are the curves D of (transverse) self-intersections of the surface, triple points
where three sheets meet transversely, and a set S of isolated singular points,
where the map is locally of the form (modulo higher terms, but we will see in
Theorem 4.8.5 that these are unnecessary)

f (x1, x2) = (x21, x2, x1x2),

so here the image is defined by y23 = y1y22 andD is the curve y2 = y3 = 0, y1 >
0. Points of this type are known as Whitney umbrella points: an example is
pictured in Figure 4.3.
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122 General position and transversality

Although the results using multitransversality always give a partial descrip-
tion of the picture of the map in the target manifold M, this should be treated
with caution unless we restrict to the space C∞pr (V,M) of proper maps. We
already saw this in §1.2 when discussing the notion of submanifold. More-
over, though we have proved that the set of such ‘excellent’ maps is open, we
have used theW∞ topology, which is somewhat counterintuitive. For example,
it is possible to construct a non-degenerate function with distinct critical values
which are dense in R: maps nearby in the C∞ topology need no longer have
distinct critical values.

4.8 Normal forms

We show in this section that in each of the cases studied in the preceding section,
we can choose local coordinates to reduce the map f to a precise normal form.
We begin by showing that a mutually transverse set of submanifolds has as

local normal form a set of linear subspaces of a vector space.

Lemma 4.8.1 Suppose the submanifolds Vi of M each contain a point P, and
suppose that the subspaces TPVi of TPM are mutually transverse. Then there
exists a chart ϕ : (U,P)→ (Rm, 0), with U a neighbourhood of P in M, such
that each ϕ(Vi ∩U ) is an open subset of a coordinate subspace of Rm.

Proof For each i, if Vi has codimension ri, we know that there is a set of ri
smooth functions on M, each vanishing on Vi, whose differentials at P are lin-
early independent.
It follows from the definition of mutual transversality that the differentials

of all these functions at P are linearly independent, so we can extend them
to a basis of T∨P M by adjoining the differentials of a further m−∑i ri smooth
functions. It follows from the Inverse Function Theorem that the set of all these
functions defines a chart at P, and by construction, this has the desired property
on some neighbourhood of P.

A normal form theorem for non-degenerate functions is proved as follows.
First take local coordinates with sourceO ∈ Rm and target 0 ∈ R; then by linear
algebra reduce the 2-jet of f to the form

∑m
1 εix

2
i , with each εi = ±1.

Proposition 4.8.2 (Morse Lemma) Let f be a smooth function on a neigh-
bourhood of 0 in Rn with 2-jet

∑n
1 εix

2
i , where each εi = ±1. Then there is a

smooth coordinate change y = y(x) such that y(0) = 0, ∂y
∂x

∣∣∣
0
= In, and near 0,

f (x) =∑n
1 εix

2
i .
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4.8 Normal forms 123

Proof We have f (0) = 0, so by Lemma 1.2.3 there exist near 0 smooth func-

tions fi with f (x) =∑ xi fi(x). Also, fi(0) = ∂ f
∂xi

∣∣∣
0
= 0, so we can apply the

result again to obtain hi j with fi(x) =
∑
x jhi j(x). Write gi, j(x) = 1

2 (hi j(x)+
h ji(x)).We think of f (x) =∑i j gi, j(x)xix j as a quadratic form, and diagonalise.
Note that

gi, j(0) = 1

2

∂2 f

∂xi∂x j

∣∣∣∣
0

=
{
0 i �= j

εi i = j.

Set y1 = (ε1g11(x))−1/2(
∑n

j=1 g1 jx j ). Then

∂y1
∂x1

= ±1,
∂y1
∂xi

= 0 if i > 1, and f (x) = ±y21 +
n∑

i, j=2

g′i, j(x)xix j.

We now repeat the reduction, observing only that although g′i, j(x) depends on
x1 we can express x1 by y1, and the dependence is smooth. Eventually we obtain
the required result.

For the remaining cases we require further machinery, which is provided by
the Malgrange Preparation Theorem. To formulate this, we need some nota-
tion. Denote by En the ring of germs at 0 of smooth functions on Rn under
pointwise addition and multiplication. This is a local ring with maximal ideal
mn consisting of germs of functions vanishing at 0. This is closely related
to our introduction of jets: it follows from Lemma 1.2.3 by a simple induc-
tion that a function-germ f on (Rn, 0) has zero r-jet: f ∼r 0: if and only
if f ∈ mr+1

n .

Theorem 4.8.3 (Malgrange Preparation Theorem) For u : Rm → Rn a map-
germ and f1, . . . fp ∈ Em, the following are equivalent:
the fi generate Em as module over En,
the images of the fi generate Em/u∗my.Em as real vector space.

We omit the proof: see Notes §4.9 for references.
By Theorem 4.7.2, for a dense open set of maps f : V v → M2, local coordi-

nates can be taken at any point P ∈ V such that we have either a submersion, a
map with 2-jet (x1,

∑v
i, j=2 bi jxix j ) with (bi j ) nonsingular, or a map with 2-jet

(x1, x1x2 +
∑v

i, j=3 bi jxix j ) with (bi j ) nonsingular, and a non-zero coefficient of
x31 in y2.

Theorem 4.8.4 For a dense open set of maps f : V v → M2, local coordinates
can be taken at any point P ∈ V such that f takes one of the forms
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124 General position and transversality

(x1, x2),
(x1,

∑v
i=2 εix

2
i ), or

(x1, x1x2 + x32 +
∑v

i=3 εix
2
i ).

We give the proof only for v = 2.

Proof In each case, y1 has 1-jet x1. First simplify by taking x′1 = y1(x1, x2),
x′2 = x2. By the Inverse Function Theorem 1.2.5, this is an allowed coordinate
change, and it reduces us to the case y1 = x1.

We recall that by Lemma 1.2.3, if g is a smooth function and g(0) = 0, there
exist near 0 smooth functions gi with g(x) =

∑
xigi(x). We can thus write y2 =

x1A1 + x2A2. As y2 has 2-jet x22, each of A1 and A2 vanishes at 0, so applying
the lemma again gives y2 = x21A11 + x1x2A12 + x22A22.

Thus the ideal f ∗m2.Ev = 〈y1, y2〉 = 〈x1, x21A11 + x1x2A12 + x22A22〉 =
〈x1, x22A22〉. But A22(0) �= 0, so A22 is invertible, hence the ideal coincides with
〈x1, x22〉, and the quotient Ev/u∗m2.Ev is generated by {1, x2}. In case (iii) a
similar argument shows that the ideal is equal to 〈x1, x32〉, and the quotient is
generated by {1, x2, x22}.
In case (ii), it follows by Theorem 4.8.3 that Ev is generated over E2 by {1, x2}.

Thuswe canwrite y2(x1, x2)− εx22 = A(y1 ◦ u, y2 ◦ u)+ x2B(y1 ◦ u, y2 ◦ u) for
some C∞ functions A,B. Now change coordinates first by x′2 = x2 + ε2

2 B(y1 ◦
u, y2 ◦ u) to eliminate B; then by y′2 = y2 − A(y1, y2) to achieve the desired
normal form.
In case (iii), Ev is generated over E2 by {1, x2, x22}. We can thus write

x32 = (A ◦ f )+ x2(B ◦ f )+ 3x22(C ◦ f ),
where we omit the explicit dependence of A, B and C on y1 and y2. So

(x2 −C)3 = (A+ BC + 2C3)+ (x2 −C)(B+ 3C2).

If we can substitute

x′1 = (B+ 3C2) ◦ f , x′2 = x2 −C ◦ f , y′1 = B+ 3C2, y′2 = A+ BC + 2C3,

we indeed obtain

y′1 = x1, y′2 = x32 − x1x2.

Equating successively coefficients of x1, x1x2 and x32 shows that the 1-jet of A
is y2 and the 1-jet of B has the form−y1 + αy2. Hence by the Inverse Function
Theorem, the change of y coordinates is legitimate. Now the 1-jet of B ◦ f is
−x1 and the 1-jet ofC ◦ f has the form βx1, so also the change of x coordinates
is legitimate.
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4.9 Notes on Chapter 4 125

In Theorem 4.7.3 we saw that if 2m ≥ 3v − 1, maps f with the following
properties form a dense open subset ofC∞(V v ,M2):
2( f ) is empty, f is trans-
verse to
1, and the 2-jet of f at any point of
1( f ) can be reduced to the form

y1 = 1

2
x21, y j = x j for 2 ≤ j ≤ v, yi+v−1 = x1xi for 2 ≤ i ≤ m− v + 1.

Theorem 4.8.5 There exist local coordinates in which f takes precisely this
form.

Proof Here Theorem 4.8.3 gives generators {1, x1}. So we can write
y1 = 1

2x
2
1 + x1A1(y)+ B1(y),

y j = x j + x1Aj(y)+ Bj(y) for 2 ≤ j ≤ v , and
yi+v−1 = x1xi + x1Ai+v−1(y)+ Bi+v−1(y) for 2 ≤ i ≤ m− v + 1;

moreover equating terms of order 2 shows that the B∗ have zero 1-jet, and the
1-jet of each Ai is a linear combination of the yi with i = 1 or i > v .

First substitute x′1 = x1 + (A1 ◦ f ); this reduces the map to a map of the same
form, but with A1 absent. We continue to write Aj, Bj, etc. for the new terms.

Next substitute x′j = x j + x1(Aj ◦ f )+ (Bj ◦ f ) for 2 ≤ j ≤ v; this elimi-
nates Aj and Bj but gives yi+v−1 = x1(x′i − x1Ai(y)− Bi(y))+ x1Ai+v−1(y)+
Bi+v−1(y) for 2 ≤ i ≤ m− v + 1. Now set y′i+v−1 = yi+v−1 + 2y1Ai(y) to elim-
inate the term in x21, and renotate as before.

Thirdly write x′i = xi + (Ai+v−1 ◦ f ) for 2 ≤ i ≤ m− v + 1. We now have
y1 = 1

2x
2
1 + B1(y),

y j = x j − Ai+v−1(y) for 2 ≤ j ≤ v , and
yi+v−1 = x1xi + Bi+v−1(y) for 2 ≤ i ≤ m− v + 1.

By the Inverse Function Theorem 1.2.5, the equations y′1 = y1 − B1(y), y′j =
y j + Ai+v−1(y), y′i+v−1 = yi+v−1 − Bi+v−1(y) can now be solved to give a coor-
dinate transformation; making these substitutions reduces f to the stated
form.

4.9 Notes on Chapter 4

§4.1 Sard’s work followed that of Brown [32] which obtained a weaker result
sufficient for most applications. There is a neat account of the proof in Milnor’s
little book [100].
§4.2 Whitney’s great paper [175], although written in terms of explicit

inequalities, effectively also introduced theW∞ topology on the space of maps.
§4.3 The elementary argument here essentially goes back to Monge. A simi-

lar account is given by Milnor [98, I]. The importance of non-degenerate func-
tions will appear in §5.1.
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126 General position and transversality

§4.4 Jets were first introduced by Ehresmann [48]. Their application to sin-
gularities was pioneered by Whitney, and systematically promoted by Thom
[153].
A general discussion of these function space topologies, with references for

proofs, is given, for example, in [121, §3.4]. A number of proofs are given in
[73, §2.1] (but with a number of errors); another useful reference is [57]. The
account in §A.4 includes proofs for the C0 cases, which can be adapted to the
C∞ case.

There is no general agreement on terminology for these topologies. Some
authors refer to the Thom topology forC∞ and to theWhitney topology forW∞,
though neither of these authors formally introduced these topologies. Indeed,
the first formal use ofW∞ seems to be in [88]. A discussion of their origins is
given on [47, p. 59].
§4.5 The idea and use of transversality was introduced by Thom in [150]. The

original proof was somewhat clumsy, but soon evolved to essentially the one
presented here. An abstract form of the argument was given by Abraham [1].
Direct construction of families allowing use of Lemma 4.5.3 was given in

many cases in [168].
The submanifolds 
i were first introduced by Thom, as were extensions to

higher orders. A precise account, with the notations 
i, j etc., was given by
Boardman [19]. Whitney’s regularity conditions were first formulated in [180].
The transversality Theorem 4.5.6 can be adapted to obtain results about

1-parameter families of mappings. We consider such a family as a map F :
V × R → M × R of the form F (x, t ) = ( f (x, t ), t ): F is compatible with pro-
jection on R; we say that it is level-preserving. If N is a submanifold of
Jr(V × R,M × R), we wish to make jrF transverse to N allowing only per-
turbation of F through level-preserving maps.
The idea of the proof of Theorem 4.5.6 is to embed g in a family G : V ×

U → M such that the partial jet map jr1G : V ×U → Jr(V,M) is a submersion,
and then apply Lemma 4.5.3; moreover we constructed G by piecing together
maps locally constructed as G′ : X × Y → Rm defined by G′(x, y) := g(x)+
B(x)y(x), where X is a coordinate chart for V and Y is the set of polynomial
maps y : Rv → Rm of degree ≤ r.
To adapt this to 1-parameter families, we must replace Y by the set Y lp of

level-preserving polynomial maps Rv+1 → Rm+1 of degree ≤ r. We then need
to require that N is a submanifold of Jr(V × R,M × R) transverse to the set
of level-preserving jets. In practice, it is more efficient to use the methods of
Mather mentioned below.
Consider in particular M = R and N = 
v−1. A generic map f meets this

only at its (isolated) critical points, all non-degenerate. It can be shown that a
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4.9 Notes on Chapter 4 127

generic homotopy F can be locally put in one of the forms of Theorem 4.7.2:
(x1, x2), (x1,

∑v
i=2±x2i ) or (x1, x1x2 + x32 +

∑v
i=3±x2i ), with x1 = t the param-

eter in R. In the first case, ft has no critical point; in the second there is a crit-
ical point at the origin; in the third, there are no critical points if t > 0, but if
t = −3u2 there are two critical points, at (±u, 0, . . . , 0). This gives the model
for the deformation of a function corresponding to the handle cancellations
considered in §5.4.
In Lemma 4.5.13 I offered a direct proof of A-regularity: however, it fol-

lows from the fact that the strata are the orbits of the natural action of
GL(V )× GL(M) that the stratification is locally trivial, which is stronger than
A-regularity.
§4.6 Versions of transversality involving several source points were current

in the early 1960s (and indeed examples were given in the original version of
these notes) but the formulation in terms of multitransversality is due to Mather
[88] III in 1969. Some of the openness lemmas are new.
§4.7 We have just focussed on the examples needed later. Proving openness,

as well as density, is harder than is often given credit for. A useful general
criterion was given by Looijenga (see [56, p. 146], [47, Theorem 3.4.11]).
We have presented the results in three stages, following the natural progres-

sion. Thom used the term ‘source genericity’ for the results obtained from
transversality (for example, Theorem 4.7.3) and ‘target genericity’ for those
using multitransversality (for example, Theorem 4.7.7); we go on to normal
forms (for example, Theorem 4.8.5). These cases (2m > 3v) are due to Hae-
fliger, who used them in his original proof [60] of Theorem 6.4.11.
§4.8 In general, given v and m, we can think of a generic map of V v to Mm

as one which satisfies all the transversality conditions which can be stated in
terms of v , m alone (using no special facts about V ,M).

This vague idea is made precise in §4.7 and §4.8 above in the cases m = 1,
m = 2, and 2m ≥ 3v . In each of these cases we have a class of maps with the
four properties of characterisation, local normal form, density, and stability. It
can be shown [88] that (at least if V is compact) maps with these properties
are C∞ stable in the sense that nearby maps are equivalent up to diffeomor-
phisms of the source and target, and that in these dimensions, C∞ stable maps
are dense in C∞(V,M). The case v = m = 2, motivating the search for results
in higher dimensions was obtained byWhitney [179], and the casem = 2v − 1
by Whitney [176].
A general survey and discussion was given by Thom in [153]. However, he

found that to describe general map-germs R16 → R16 a finite list of normal
forms does not suffice: one needs to allow a parameter. The simplest exam-
ple is for R8 → R6: for a general map in these dimensions, 
4 f consists of
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128 General position and transversality

isolated points, and to describe the 2-jet of f at such a point involves a homo-
geneous quadratic map R4 → R2; and the classification of such maps involves
a parameter.
The above method of direct reduction to normal form is somewhat clumsy.

A more general approach was introduced by Mather [88] III. Here one uses the
Malgrange preparation theorem to construct vector fields, and then integrates
these to find changes of coordinates. I have written an expository account of
this approach in [169]. Malgrange gave a proof of his preparation theorem in
Cartan seminars in 1962–63; full details appear in his book [86]. There have
been many further proofs: four appear in the volume [166].
Mather’s work created a full theory ofC∞ stability: see [88], also [121]. The

final conclusion is that stable maps are dense inC∞(V v ,Mm) (V compact), and
a finite explicit list of normal forms analogous to the above can be given, if
and only if the pair (v,m) belongs to the so-called nice dimensions, which are
given if m− v ≥ 4 by 7v < 6m+ 8; otherwise by

m− v 3 2 1 0 −1 −2 ≤ −3
m < 30 < 23 < 16 < 9 < 8 < 6 < 7.
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