2

Geometrical tools

We can regard a compact smooth manifold as built up by glueing together
smaller pieces, which are easier to analyse. In this chapter we begin the descrip-
tion of this process. After obtaining some basic results on Riemannian metrics,
we study geodesics for such metrics. The key result is that any two nearby
points are joined by a unique shortest geodesic. This leads us to study the way
in which a closed submanifold lies in a manifold: we describe the structure of
a neighbourhood of the submanifold as having the form of a tube.

A diffeotopy, or differentiable isotopy, can be considered either as deforming
the embedding of one manifold in another or as an embedding of a product with
1. If the deformation can be extended to the whole manifold, the two embed-
dings are equivalent. The diffeotopy extension theorem asserts that under cer-
tain conditions, this extension is possible; it may thus be looked on as a unique-
ness theorem. We apply this result to obtain a uniqueness theorem for tubular
neighbourhoods, which enables us to pass from knowledge of the structure of
a compact submanifold M of a manifold N to knowledge of a neighbourhood
of M: the only extra piece of information needed is the structure of the nor-
mal bundle N(N/M). This contributes to the general aim of building up global
results from merely local ones.

We define inverse procedures for straightening a corner, to yield a manifold
with boundary, and for introducing corners: it will be useful in Chapter 5 to be
able to effectively ignore corners.

Finally we discuss glueing and the inverse process of cutting: these are sim-
ple geometrical constructions which, given some smooth manifolds (perhaps
with boundaries and corners) and additional data where necessary, give rise to
new manifolds. On account of their perspicuity, these methods are traditional
in describing the topology of surfaces, and they remain a very powerful tool in
higher dimensions.

36
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2.1 Riemannian metrics 37

2.1 Riemannian metrics

We recall that if M™ is a smooth manifold, the bundle over M associated to
the tangent bundle and whose fibre over P is the set of all positive definite
quadratic forms on 7pM is called the Riemann bundle, and any cross-section
of it a Riemannian structure on M; in local coordinates this takes the form
ZZ’j:l g,-ﬁj(x)dx,‘dxj.

We saw in Theorem 1.3.1 that every smooth manifold M™ has a Riemannian
structure. Such a structure induces an inner product on each 7pM, which we
use to introduce the notion of length of tangent vectors. A (smooth) path in M
is a smooth map p to M with source R or an interval contained in R. For a path
p, we define the length of p between two of its points by

b ds
l = —dt,
(p) /a 7

where (ds/dt)> = Zi, ;&i.jldxi/dr)(dx;/ dt)?, the derivatives being taken along
the path. We set

p(P, Q) = inf{l(p) : p a path joining P to Q};

this is defined if and only if P, Q are in the same component of M. We could also,
for example, define p(P, Q) = 1 whenever P and Q are in different components,
but the case of interest is when M is connected.

We call p the Riemannian metric: we now show that it is a metric.

Theorem 2.1.1 The function p defines a metric on M which induces the given
topology on M.

Proof The triangle inequality follows since, as in Lemma 1.1.8, we can (up to
re-parametrising, which does not alter length) combine smooth paths from P to
Q and from Q to R to give a smooth path from P to R. That p(P, Q) = 0 implies
P = Q follows from the argument below.

To show that the metric induces the given topology, we need to establish that,
for any point P € M,
(i) any neighbourhood of P in M contains {Q € M | p(P, Q) < A} for some A,
(ii) any such set is a neighbourhood of P.

Choose a coordinate neighbourhood ¢ : U — R™ with ¢(P) = O. By a lin-
ear change of coordinates in R™, we can reduce the matrix (g,‘,j (P)) to the iden-
tity, so at P the metric ds* agrees with the Euclidean metric > dxl.z. Hence there
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38 Geometrical tools

is a neighbourhood of P on which the ratio is bounded:

% i d)c,-2 < Z gi,j(dxidx; <2 i dxi2
1 ij 1

for ||x|| < A, say.

Thus if p is a path in M with ¢(p) C 5”(A), and /(¢(p)) denotes the length
of ¢(p) in the Euclidean metric, %l((p(p)) <Il(p) <2Up(p)).

Now (ii) follows since, if B < A, then for any Q = ¢~'(x) with ||x| < g,
taking the path p3 such that ¢(p3) is the straight segment from O to x gives

p(P, Q) < l(p3) < 2l(p(p3)) < B,

so the set {Q | p(P, Q) < B} contains the neighbourhood ¢! {Dom(%B)}.

As to (i), first note that if ¢(Q) = x with ||x|| < %, and p; is a path from Q
with ¢(p;) leaving D"(A), then I(¢(p1)) > 4, hence [(p;) > 4. Thus for any
path p, from P to Q with ¢(p,) leaving D™(A), we have l(p2) = %.

Now for any B < 4, since any path p from P with I(p) < B is contained in
<p‘1{D°m(A)}, it follows that D := {Q € M | p(P, Q) < B} is also contained in
this region; and now since we need only consider paths p in this region, and

I(¢(p)) < 2l(p), D is contained in go‘l{ﬁ'”(2B)}. ]

The basic results about Riemannian metrics: existence of a Riemannian
structure, and the definition and properties of a metric: apply without essen-
tial change also to manifolds with boundary.

Next let V* be a submanifold of a smooth manifold M™. If P € V, the
inclusion i : V — M induces di : TpV — TpM of rank v, hence the dual map
di* : TyM — T,V also has rank v, and its kernel has rank (m — v).

The kernel of di* : T’M — T,V is called the normal space to'V in M at P;
we will denote it by Np(M/V). The union of these normal spaces is the normal
bundle N(M/V) of V in M. We must check that the normal bundle is indeed
a vector bundle over V. Let ¢ : U — R™ be a coordinate neighbourhood of P
inMwithU NV = go’l(]R“); then in U NV we may take dx,1, ..., dx, as a
basis for the normal space. These give the local product maps ¢, required of a
fibre bundle; as with the tangent bundle, the maps g come from Jacobians on
change of coordinates.

A Riemannian structure on M induces one on V. The distinction between
T,’M and TpM disappears, and in this case we can regard N(M/V) as a sub-
bundle of the restriction T(M)|V of T(M) to V.

Proposition 2.1.2 T(M)|V is the Whitney sum of N(M/V) and T(V),
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2.2 Geodesics 39

Proof Since all the above bundles are defined, and the latter two are sub-
bundles of the first, it is sufficient to verify that at each point the fibre of the
first is the direct sum of the latter two. Since we have a positive definite inner
product, it will be sufficient to verify that the fibre N,(M/V) of N(M/V') over
P is the orthogonal complement of the fibre TpV of T(V) in the fibre TpM of
T(M), or that it is the annihilator of 7TpV in TPVM . But since di* is dual to di,
the kernel of di* is certainly the annihilator of the image of di. O

We say that a submanifold V' of M meets 0M orthogonally if the normal
vectors to V and dM at each point of 9V are perpendicular.

Lemma 2.1.3 Let M be a manifold with boundary, V a submanifold. Then M
has a Riemannian metric in which V meets oM orthogonally.

Proof We construct a metric just as in Theorem 1.3.1; the only point to watch is
that V meets 0 M orthogonally in each of the partial metrics to be fitted together.
But since V is a submanifold, at a point of dV/, there is a coordinate map of an
open set of (M, V) to (R, RY), and the Euclidean metric will do. Now when
we fit these together, V continues to meet dM orthogonally. O

2.2 Geodesics

For a connected manifold M™ with a Riemannian structure, we have already
defined the length of a path and the distance function as the infimum of lengths
of paths, and shown in Theorem 2.1.1 that the infimum p(P, Q) of lengths of
paths joining P to Q is a metric defining the topology on M.

We now focus attention on the paths minimising this distance. Recall that
the length of a path p : U — M (U open in R) between two of its points is
defined by /(p) := fab %dt, where (ds/dt)* = Zi,j g[,j(dx,'/dt)(dxj/dt)z, the
derivatives being taken along the path. We now define the energy of p by

b rds\?
E(p) = (b—a)/ (E) drt.

Then a geodesic is defined to be a smooth path p : U — M giving an extremal
value to the energy between any two of its points.
By Schwarz’ inequality,

bds 2 b b rds\? b rds\?
2 _ - - _ _ - —
l(p) = (/a dtdt> gfa dt/a (dt) dt = (b a)/; (dt) dt = E(p),
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40 Geometrical tools

with equality if and only if ds/dt is constant, so that the curve is parametrised
proportionately to arc length. Since any curve can be parametrised by arc
length, the geodesic gives an extremal value also to the length of the path.

Proposition 2.2.1 In local coordinates, geodesics are defined by equations

d%x; dxj dxk
=0
dr? +Z *ar dr

Proof Euler’s equation for the variational problem of minimising the integral

._ dxjdy, - 3G __ d (3G . .
of G:= ijgjk g S =G (a) ) where y, = l.ThlS gives

dgidx; d d d
yodndydn _ d ()5 d;
— Ox, dt dt dt dt
Jk J
dzxj 0grj dx; dxy
§rian ax, dt dr
dzx] dxjdx, (08 = 08k
8% " ar dr \axe | ox; )

=2g

where in the last step we use symmetry under the interchange of j and k. If g'/
is the inverse matrix to g; ;, multiply by g, sum over r and simplify:

d2x,- 1 . Bg,j 8grk 8gjk dxj dxk
— 4 = w22/ + =
EREPIL ( o | ox; ) dr dr

The coefficient of the last term is usually abbreviated to F;k. O

Theorem 2.2.2 For any point Q € M, we can find a neighbourhood V of Q in
M and an ¢ > 0 such that for any P € V, and v € Tp(M) with ||v|| < &, there
is a unique geodesic p(t) with

d
0)=P, —p(t =0.
p(0) p tp( ) . v
This is defined for |t| < 2, stays in'V, and depends smoothly on p, v, t.
Proof We take a coordinate neighbourhood ¢ on M at Q mapping onto D"(3)

and apply the Existence Theorem for Ordinary Differential Equations (Theo-
rem 1.4.1). Consider the system

dx;/dt = y;
dy;/dt = T (xX)y;yi
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2.2 Geodesics 41

where x € Dom(3), lyll < 3 corresponds to the U of that theorem, and x €
D™ (2), |lyll <2 to its K. Then for some ¢ > 0, we find a unique solution
x = f(x0, o, t) for all ||xo|| <2, [lyoll < 2, || < & depending smoothly on all
its arguments, and lying in ||x|| < 3. Lifting to V by ¢!, this gives a geodesic
in M.

To deduce the theorem, we need only change parameter by ¢’ = %t; this has
the effect of multiplying the initial % p(t) by the inverse factor, and so altering
the condition |o|| <2 to o] < e. O]

It is worth emphasising that though the argument involved defining a flow in
the tangent bundle T (M), the geodesic itself is a path in M.

As for flows in general, the local existence and uniqueness of geodesics given
by Theorem 2.2.2 does not imply global existence, but does imply uniqueness
in the whole range of existence (by applying the result to a sequence of points
along the geodesic), given the initial point and direction.

Let P € M,v € TpM, and suppose that the geodesic with direction v at P can
be defined for |f| < 1. Then we write exp(P, v) for the point at || = 1 on the
geodesic, and call exp the exponential map. We also define the map Exp from a
subset of T(M) to M x M by Exp(P, v) = (P, exp(P, v)). We have shown that
these maps are defined on a neighbourhood V of T°(M) in T(M).

A submanifold V C M is called fotally geodesic if each geodesic in M tan-
gent to V is contained in V. Thus a one-dimensional submanifold is totally
geodesic if and only if it is a geodesic.

We now obtain further properties of the exponential map.

Proposition 2.2.3 The Jacobian determinant of Exp is non-zero on T°(M).

Proof For P € M,lety : U — R™ be a coordinate neighbourhood, and choose

X1, ..., Xy as coordinates in M, dx;, . .., dx,, as coordinates in the fibres TpM;

write the latter as vy, ..., v,, and write coordinates in M x M as xi, ..., X,

21, - - -, Zm- Then we have Exp(x, v) = (x, z), so it remains to compute the par-

tial derivatives of the z; at 0. Now z is the point at # = 1 on the solution of the
dz

equation S=Y with initial condition z = x, y = vy, i.e. at the point 7y on the

solution with initial condition z = x, y = v9/fp = v. Hence
Z = x + tyo + smaller terms, where #; is small, v fixed,

and so to find fl—f set (vo); = fod;;; then

i)
J

0z _ dulwo)|  _
dvj By |
This proves the result: for later reference note also that §—§ = §;j. O
J
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42 Geometrical tools

It follows from Proposition 2.2.3 and the Inverse Function Theorem 1.2.5
that T°(M) has a neighbourhood V" in T(M) on which Exp is defined, and is a
local diffeomorphism. It now follows using Corollary A.2.6 that T°(M) has a
neighbourhood V" in T(M) on which Exp is defined, and is a diffeomorphism.

We have an even sharper statement.

Theorem 2.2.4 There is a neighbourhood W of A(M) in M x M such that if
(x,y) € W, there is a unique geodesic from x to y of length p(x,y). Hence Exp
defines a diffeomorphism of Exp~ (W) onto W.

Proof For each P € M, it follows from the above that we can find a neigh-
bourhood Vp of P such that Exp_l defines a diffeomorphism of Vp x Vp on a
neighbourhood of T°(Vp). Then if Up is a sufficiently small neighbourhood of
P, each pair of points in Up is joined by a unique geodesic lying in Up, and (as
in the proof of Theorem 2.1.1) each geodesic going outside Up is longer. Thus
this geodesic gives a minimum length for curves in Up joining the two points.
(In the technical language of Calculus of Variations, the metric is positive defi-
nite, the problem is regular, and we have constructed a semi-field of extremals,
passing through a point and covering a neighbourhood.)

The geodesic gives the global minimum, which we defined as the distance
p(x,y). Thus Exp~! is a diffeomorphism on Up x Up: we take W as the union
of such neighbourhoods. O

This has the following useful application.

Corollary 2.2.5 There exist a neighbourhood W of A(M) in M x M and a C*
map H : W x [0, 1] = M such that for each (P, Q) € W, H(P, Q,0) = P and
HP,Q, 1 —-1)=HQ,P).

Proof Take W as given by the theorem. Then for each (P, Q) € W there is a
unique geodesic gpg : [0, p(P, Q)] — M with gpp(0) = P and gpp(1) = Q.
We can thus take H(P, Q,t) = gpo(t.p(P, Q)). 0

We will need a variant of this below (for Proposition 6.4.4).

Proposition 2.2.6 For M a smooth manifold, the map ey : T(M) — M x M
given by ey (§) = (exp(§), exp(—£)) is a local diffeomorphism along A(M)
and there exist neighbourhoods Ay of TO(M) in T(M) and Oy of AM) in
M x M such that ey gives a diffeomorphism of Ay on Oyy.

For it follows from the proof of Proposition 2.2.3 that, in the natural local
coordinates, the differential of ¢j; takes the form (x, v) — (x + v, x — v), sois
an isomorphism. The conclusion now follows as above.

In the region where geodesics are unique, the distance function also has the
expected properties.
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2.2 Geodesics 43

Proposition 2.2.7 On the set W of Theorem 2.2.4, the square p(x, y)* of the
distance is a smooth function.

Proof In view of Theorem 2.2.4, it suffices to show that taking the square of
the length of the geodesic defines a smooth function on a neighbourhood of
TO(M) in T(M). But this function is just the square of the length of the tangent
vector in question, so is a smooth function since the Riemannian structure is
smooth. O

We recall that a metric space is complete if each Cauchy sequence of points
converges to a limit point, or equivalently, if each bounded closed subset is
compact. With this concept, we can give the global forms of the above theorems.

Theorem 2.2.8 M is complete if and only if geodesics may be indefinitely pro-
duced, i.e. if exp and Exp are definable on T(M). Any two points in a complete
manifold may be joined by geodesics: the length of at least one such is the
distance between them.

Proof Suppose first M is complete, and p(¢) a geodesic which exists only for
t < k. Then the points p(t — %) form a Cauchy sequence: since M is complete,
these have a limit point P. But by Theorem 2.2.2, P has a compact neighbour-
hood K such that any geodesic within K may be produced a distance ¢. This
gives a contradiction.

Now suppose exp globally definable, but that there are pairs of points (P, Q)
not joined by a geodesic of length p(P, Q). Let r be the greatest lower bound
of the distance of such points Q from P (by Theorem 2.2.4, r > 0), let K| =
{v e TpM | ||v]|| < r}, and let K = exp(K;). Then K; is compact, hence so is K,
by definition of r, K contains all points at distance less than » from P. Choose
2& < r as the number ¢ in Theorem 2.2.2, and choose Q such that p(P, Q) =
ro < r—+ ¢, but P and Q are not joined by a geodesic of length p(P, Q). Now
let P; be a smooth path from P to Q of length at most ry + 1/i, and let R; be the
point on it at distance r — ¢ from P. The R; lie in the compact set K; let R be a
cluster point. Then

p(P,R) <limsupp(P,R))=r—¢,

P(R, Q) < limsup p(R;, Q) =ro —r+¢,
so by the triangle inequality we have

pPR)=r—¢, pR O =rg—r+e.

By the definition of r, &; P can be joined to R by a geodesic of length r — ¢;
R to Q by on of length ry — r + €. If these met at an angle at Q, we could
construct a shorter path by rounding the corner in a neighbourhood of Q. Hence
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Figure 2.1 Rounding the corner of a path

they have the same direction at Q, so by the uniqueness theorem form part of
the same geodesic. Thus P is joined to Q by a geodesic of length p(R, Q) : a
contradiction. The idea of this proof is sketched in Figure 2.1.

Finally, suppose exp(7pM) = M. Then a bounded set lies within a finite dis-
tance from P, so is contained in the image of a closed and bounded, hence
compact, subset of 7pM. But the image of this set is also compact, so it follows
that M is complete. O

Theorem 2.2.9 Any connected manifold has a Riemannian metric in which it
is complete.

Proof We make a slight refinement of the proof of Theorem 1.3.1, asserting the
existence of Riemannian structures. Let ¢, : U, — Do’”(3) be the coordinate
neighbourhoods constructed in Theorem 1.1.4, and define ®, € F; by

Bp(23 — IIxI) if P € Uy, g (P) = x

o (P) =
@) ifP ¢ U,.

Then write ds> = " ®4(}_ dx?) o ¢,. As in the earlier proof, we see that this is
ametric. In ¢ N0 e %)), it is greater than or equal to the Euclidean metric, so
the set of points at distance < % from ¢, 1(D'™)is a closed subset of 0, L(D"™(2)),
so is compact. As in Theorem 2.2.8, it follows that all geodesics from a point of
@, ' (D™), and hence from any point of M, may be produced a distance at least
% from any point. Thus they can all be produced indefinitely. 0

Corollary 2.2.10 (i) For any smooth manifold V, there is a proper map V. —
Ry.
(ii) If M is non-compact, there is a proper map V. — M.

Proof (i) Choose a complete Riemannian metric on V; then for any Py € V, the
distance from Py is a proper map p(Py, —) : V — R,. For we saw above that
the preimage of any set [0, K] is compact. The square p(P,, —)* is also proper,
and is smooth.

Since the composite of two proper maps is proper, (ii) will follow if we can
construct a proper map R, — M. Choose a non-compact component M, of
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2.3 Tubular neighbourhoods 45

M and a point Qy € M,. Suppose inductively chosen Q; € M;: then remove
{PeM;|p(P,Qp) < i} from M;, let M;,, be a non-compact component of the
complement, and choose any Q; | € M,y ;.

Since Q;, Q;y lie in the connected set M;, they can be joined by a path [i, i +
1] — M,. Joining all these paths givesamap ¢ : R, = [0, oo) — M. Since, for
any P € M;, p(P, Qp) > i — 1, the map ¢ is proper. O

2.3 Tubular neighbourhoods

We will now apply the results of §2.2 in the context of a submanifold V* of
M'™. Then we proceed to consider boundaries.

Proposition 2.3.1 The Jacobian determinant of exp: N(M/V)— M on
TOV) is non-zero.

Proof Let P eV, and let ¢ : U — R”" be a coordinate neighbourhood of P

in M such that U NV = ¢~ '(R™). Then if x,, ..., x, are coordinates in R”,
we can take as local coordinates in N(M/V) xi, ..., x,, (coordinates in V)
and vy41, - - - , Uy (coordinates in the fibre) where v; = dx;. Now refer back to
Proposition 2.2.3, where we showed that if exp(x, v) = z, then g—x; = g—g’] = §jj

so that with respect to our coordinates, the Jacobian matrix is the unit matrix,
so its determinant is non-zero. O]

Theorem 2.3.2 Let V be a submanifold of M. Then

(i) the map exp : N(M/V) — M is a local diffeomorphism at T°(V),

(ii) there is a neighbourhood of T°(V) in N(M/V') on which exp is a diffeo-
morphism to a neighbourhood U of V in M,

(iii) V has a neighbourhood U’ in M such that each point P of U is joined to
V by a unique geodesic of length p(P, V), this meets V orthogonally.

Proof (i) follows from Proposition 2.3.1 and the Inverse Function Theorem
1.2.5.

(i) follows from this by applying Corollary A.2.6.

(iii) Let Q € V, and let U; C Uy be neighbourhoods of Q in M as in the
proof of Theorem 2.2.4: any two points in Uy are joined by a unique geodesic
of minimal length, and the minimal geodesic joining two points of U; lies in
Uy. We may suppose Uy compact.

For P € Uy, let rp be the greatest lower bound of distances of P from points
of V. If we have points Q; € V with p(P, 0;) < 1, then for i > D! we have
Q; € Uy, and since Uy is compact, the points Q; have a cluster point Q; since V is
closed, we have Q € V,and now p(P, Q) = rp. By the above choice of Uy, P and
Q are joined by a unique geodesic of minimal length. This meets V orthogonally
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46 Geometrical tools

for if not, by a small modification near Q, we could make it shorter (take a path
orthogonal to V, and smooth off the corner), giving a shorter path from P to V.
Hence there is a point R’ of N(M/V) lying over Q with exp(R') = P.

We may now take U’ as the union of the U . O

Taking the intersection U N U’ gives a neighbourhood of V on which both
exp is a diffeomorphism and the geodesics give shortest distances from V.

For V? a closed submanifold of a smooth manifold M™, a tubular neigh-
bourhood of V in M consists of a bundle B over V with fibre the disc D"~ and
an embedding ¢ : B — M (as submanifold with boundary) extending the map
taking the centre of each disc to the corresponding point of V.

As with coordinate neighbourhoods, the actual neighbourhood 1/ (B) is the
more geometrical concept; but the mapping ¥ is more convenient to work with.
A tubular neighbourhood is pictured in Figure 2.2.

For any tubular neighbourhood, the map i induces an isomorphism of the
normal bundle of V in M with that in B, and hence with the vector bundle
associated to B. If M™ has a Riemannian structure, the normal bundle N(M/V')
has group O,,_,. We may then take B as the associated disc bundle, consisting
of vectors of N(M/V) of at most unit length.

Figure 2.2 Tubular neighbourhood in a manifold and in one with boundary

Theorem 2.3.3 For any submanifold V of a smooth manifold M, there exists
a tubular neighbourhood of V in M.

Proof Choose a Riemannian metric on M. Let W be a neighbourhood of T°(V)
in N(M/V') mapped diffeomorphically by exp: the existence of such W is guar-
anteed by Theorem 2.3.2. Let f be a positive continuous function on V such that
vectors in Np(M/V') of length less than f(P), are contained in W: the existence
of such f follows from Lemma A.2.4 (i). By Proposition 1.1.7, we can find a
positive smooth function g on V such that 0 < g(P) < f(P) forall P € V. We
now define a diffeomorphism 1. Foreach P € V, v € Np(M/V), set

(P, V) = exp(P, g(P)v).
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2.3 Tubular neighbourhoods 47

Multiplication by g(P) in the fibre is possible since g(P) # 0, and for ||v| <1
we have [g(P)v| < g(P) < f(P),so (P, g(P)v) € W. O

We will extend this result to the case of manifolds with boundary, but need
first to develop further ideas.

We now combine Whitney’s embedding theorem with the existence of tubu-
lar neighbourhoods to give a general method of constructing maps into smooth
manifolds. We illustrate by showing the existence of smooth approximations,
extending Lemma 1.1.7.

Let V be a compact manifold. By Theorem 1.2.11, there exists a smooth
embeddingi : V — RY for some N. By Theorem 2.3.3 there exist a disc bundle
7 : WY — V and a smooth embedding ¢ : W — RY, extending i, and whose
image is a neighbourhood U of i(V'). Further, we can choose the discs to have
radius ¢; U is then a e-neighbourhood of i(V). We have a retraction ¢ :=
w oy~ :U — V;foreach x € V, the preimage ¢! (x) is a disc of radius &.

Proposition 2.3.4 Let M and V be smooth manifolds with V.C RN compact.
(i) For any continuous f : M — V and any ¢ > 0 there exists a smooth h :
M — V with |h(x) — f(x)|| < € for every x € M.
(ii) If moreover F is a closed subset of M such that f is smooth on some open
set U D F, we can find h such that also h = f on a neighbourhood of F.

Proof Choose a tubular neighbourhood of V in RY as above. Applying Propo-

sition 1.1.7 to each component of M N V C RY givesasmoothmaph : M —
RY within distance ¢ of f, and hence with image contained in U. Thus ¢ o &
gives amap M — V, and since ¢ moves each point within a disc of radius < ¢,
h is within ¢ of f.

The same argument, but using (iii) of Proposition 1.1.7, gives (ii). O]

For N a smooth manifold with boundary, the discussion of geodesics at non-
boundary points is the same as before. At a boundary point P, we see from the
differential equations that local geodesics can be constructed for all inward-
pointing tangent vectors and for no outward-pointing ones. There are several
possibilities for those tangent to the boundary; as examples, the reader may
consider D? and the closure of R2 \ D?, each with the metric induced from R2,

A Riemannian metric on M is adapted to the boundary if dM is totally
geodesic.

Lemma 2.3.5 Let M™ have a Riemannian metric. Then the product metric for
M x RL is adapted to the boundary.
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48 Geometrical tools

Proof Letx,...,x, belocal coordinates in M, and x, the coordinate in RL.
Then for the metric g; ; we have go; = &o;. Hence one of the defining equations
for geodesics is simply d?xo/dt> = 0. Thus if initially xy = dxo/dt = 0, we
have xy = 0 all along the geodesic, which thus stays in M x {0}. O

A similar argument gives the following.

Lemma 2.3.6 IfV C M is a submanifold whose normal bundle is trivial, then
M has a Riemannian metric in which the submanifold V is totally geodesic.

Proof Tt follows from Theorem 2.3.3 that V has a neighbourhood in M diffeo-
morphic to V x R¢, where c is the codimension of V in M. We may choose
any metric on V and then take the product metric on V x R in any coor-
dinate neighbourhood of V with metric ds* = ) g;. jdx;dx; this is given by
ds? =3 g jdxidx; + Y dy?. A short calculation shows that any geodesic ini-

tially tangent to V x {0} remains in this submanifold.
As in the proof of Theorem 1.3.1, we can now construct a metric on M which
agrees with this metric on some neighbourhood of V in M. The result follows.
O

Proposition 2.3.7 (i) Every manifold M™ with boundary has a Riemannian
metric adapted to the boundary.

(ii) Given a submanifold V' of M™, there is a metric on M such that V
meets IM orthogonally, and the restriction of the metric to 'V is adapted to the
boundary.

Proof (i) By Theorem 1.5.5, 0M has a collar neighbourhood ¢ : dM x [ —
M. Let ¢ be a metric on M, ¢’ the product of some metric on dIM with the
standard metric of /. We define a metric ¢” by

” 2 outside the image of

e+ —0)BpB—1) aty(P1).

The latter agrees with ¢ in a neighbourhood of ¢ = 1, so is smooth everywhere;
it is a Riemannian structure, as a positive linear combination of positive form
is another, and it agrees with ¢’ near ¢t = 0, so by Lemma 2.3.5, it is adapted to
oM.

(ii) By Proposition 1.5.6(ii), we may suppose that the restriction to dV x [
of the collar neighbourhood of M gives a collar neighbourhood for dV. Then
the metric constructed above has both the desired properties. O

The definition of tubular neighbourhood of a closed submanifold V* of a
manifold M™ with boundary is the same as before: we require a bundle B over
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2.4 Diffeotopy extension theorems 49

V with fibre the disc D"~ and an embedding ¥ : B — M (as submanifold with
boundary) extending the map taking the centre of each disc to the corresponding
point of V.

If w : B— V is the projection of a disc bundle, ¥ the boundary sphere-
bundle of B, and C = 7 ~!(3V), then B has the structure of a smooth man-
ifold with corner, and /B = ¥ N C separates 9B into two parts, with clo-
sures X and C. It follows that if (B, ) is a tubular neighbourhood of V,
¥(C) = IM N Y(B).

Theorem 2.3.8 IfM is a manifold with boundary, V a submanifold, then there
exists a tubular neighbourhood of V in M.

Proof By Proposition 2.3.7 (ii), we can choose a Riemannian metric for M,
adapted to the boundary, in which V meets M orthogonally. As in the proof of
Theorem 2.3.3, we consider the exponential map of the normal bundle N(M/V').
We need to show that this is well defined. The crucial point is that since the
metric is adapted to the boundary, and the vectors in C are normal to V and
hence tangent to dM, integrating them gives curves in dM and hence, at least
locally, a map C — dM. The previous argument shows that this map is a local

diffeomorphism.
The arguments needed to go from having a local diffeomorphism to the result
are the same as those for Theorem 2.3.3. O

2.4 Diffeotopy extension theorems

Let V?, M™ be smooth manifolds, possibly with boundary. A diffeotopy of V in
M is an embedding h : V x I — M x I which is level-preserving, i.e. we can
write

h(x,t) = (h(x), 1) meV,tel

It follows that each 4, is also an embedding. We also say that / is a diffeotopy
between hg and h;.

h is called normalised if it extends to a level-preserving embedding /2 : V x
R — M x R such that h, = ho whent < 0, and , = h; whent > 1.If his any
diffeotopy, the map H : V x R — M x R given by H(m, t) = (hgpt)(m), 1) is
a normalised diffeotopy between &g and £ .

A diffeotopy of M is a diffeomorphism k of M x I which is level-preserving,
thus in particular it is a diffeotopy of M in M. The diffeotopy k of M covers the
diffeotopy h of V in M if, for all x € V, t € I, k;(ho(x)) = h,(x). A diffeotopy
covered by a diffeotopy of M is called an ambient diffeotopy.
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50 Geometrical tools

Lemma 2.4.1 Diffeotopy is an equivalence relation.

Proof The definition h(x, t) = (ho(x), t) gives a diffeotopy between h, and
itself. If &’ gives one between hg and hy, then h”, where b’ (x,t) = W' (x, 1 —t)
gives a diffeotopy between h; and hy. Finally, let /', h” be normalised dif-
feotopies between h and i and h; and h;. Then set

H, (x) ifr <1/2

a _
=0 ifr > 1/2;
hy_,(x) ift > 1/2;

this is a smooth embedding, since 7’ and 4" are so, and we have h” = h; for

_% <t < %, so that the two parts of the definition fit smoothly. O

One of the basic problems in differential topology is to determine the set of
equivalence classes. We will accomplish this in some cases in Chapter 6.

The support of a diffeomorphism 4 of a smooth manifold M is the closure of
the set of points P with h(P) # P.

The support of a diffeotopy 4 of V in M is the closure of the set of points
P € V such that &, (P) is not independent of 7.

Theorem 2.4.2 (Diffeotopy Extension Theorem) Let V, M be smooth mani-
folds, perhaps with boundary, and let h : V x R — M x R be a diffeotopy of
V in M, whose support K is compact, and contained in M. Then there is a
diffeotopy k of M, whose support is compact and contained in M, and which
covers h; in particular, h is ambient.

Proof Since K is contained in M, we can ignore the boundary of M, and sup-
pose simply that M is a smooth manifold, for if the result is proved in this case,
the diffeotopy k of M which we obtain, having compact support, equals the
identity on a neighbourhood of M x R, and can therefore be extended to the
boundary as the identity.

Let k be a diffeotopy of M x R. Then k defines a vector field on M x R as
follows. Write 9, for the vector field which projects to 0 on M and to 9/d¢ on R,
and define a vector field on M x R by & := dk(9,). Since k is level-preserving,
the projection of &, on the second factor is still d/9d¢. Also, if k has compact
support, & = 9, except at some points of a compact set.

Conversely, suppose given a vector field £ whose projection on R is 9/9¢.
If £ is complete, it gives rise to a 1-parameter group (¢,) of diffeomorphisms
of M x R, and hence to the diffeotopy given by k(P, t) = (¢,(P), t). Moreover,
the local uniqueness clause in Theorem 1.4.2 implies that if k gives rise to &,
then we recover the original k.
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2.4 Diffeotopy extension theorems 51

Since by Proposition 1.4.4 (ii) and (iii), the vector field 9, on M x R is com-
plete, it follows by (iv) that if &€ = 9, except on a compact set, then & is complete.
We conclude that to construct the diffeotopy, it is sufficient to construct the
vector field £. By the above argument, we see that the necessary and sufficient
condition that k covers /4 is that on 2(V x R), we have & = dh(d/dt). Thus the
problem is reduced to the construction of a vector field £ on M x R satisfying:

(1) &€ = 0, outside a compact set,

(ii) the projection of £ on R is everywhere /01,

@iii) on A(V x R), & = dh(9/0t).

We assert that if we can do this in a neighbourhood of each point of 2(V x R),
& can be constructed. For such neighbourhoods, together with the complement
Uy of h(V x R), form an open covering of M x R. By Theorem 1.1.5, there
is a smooth partition {¥,} of unity strictly subordinate to this covering. If &,
is a function on the support U, of W, which satisfies conditions (i) — (iii), the
function & := ) &,\V, (where & := 9,) will satisfy all the conditions.

Now A(V x R) is a submanifold of M x R, hence in a neighbourhood of
any point of it we can find a coordinate neighbourhood ¢ : U — R™+! with
U N Imh = ¢~ ' (R**1); say for simplicity that the image of U is D”*'. Then
de(dh(d/3t)) =Y a;d/0x; in De”“; we define £ by taking the same formula
in D" (ie. by taking the a; independent of the last m — v coordinates).

In the case of boundaries, the a; are only defined on Do’f' . But by Whitney’s
Extension Theorem 1.5.1, they can be extended to smooth functions on Do““,
and then extended to D! as above. This completes the proof of the result. [

Corollary 2.4.3 IfM is a smooth manifold, V a compact submanifold (perhaps
with boundary), then any diffeotopy of the inclusion i : V. C M is an ambient

diffeotopy.

Corollary 2.4.4 If M is a smooth manifold with boundary, any diffeotopy of a
compact submanifold (perhaps with boundary) of M is covered by a diffeotopy
of M.

Proof By the theorem, it is covered by a diffeotopy of M with compact support.
Thus dM has a neighbourhood in M fixed by the diffeotopy, which can thus be
extended to M, defining it to be fixed on OM. O

Proposition 2.4.5 Any diffeotopy of 0M is covered by a diffeotopy of M.

Proof We shall suppose the diffeotopy 4, of M normalised so that i, = 1 for

t < % and h; = hy fort > % Let ¢ : 0M x I — M be a collar neighbourhood

of M in M (such exist by Theorem 1.5.5). Then we define a covering diffeotopy
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k; of M by

0 if O ¢ Im(v),
k(Q)=10 ifQ=v({Ls), s>t,
Y(h_s(P),s) ifQ=y(Ps), s<t.

Thus for s = 0, k, agrees with A, and for s > %, k:(P) = P, so that k is every-

where smooth, and does cover A. O

Theorem 2.4.6 Let M be a manifold with boundary, V a submanifold (perhaps
with boundary). Any diffeotopy of V in M with compact support is covered by
a diffeotopy of M with compact support.

Proof Following the proof of Theorem 2.4.2, we see that it only remains to
show that we can construct £ in a neighbourhood of each point of 4(V x R).
In this case, in a neighbourhood of any point of A(V x R) we can find a
coordinate neighbourhood ¢ : U — R™*! with U N Imh = (p’l(R’fl). By
Theorem 1.5.1 we can write do(dh(3/3t)) = Y a;0/0dx; in D with the g
smooth in R"*! and define £ by taking the same formula in R™*!, O

We shall need one or two further kinds of diffeotopy extension, when we
come to consider corners, but feel that by now proofs may be left to the reader.
We mention one immediate application of our results.

Proposition 2.4.7 Let M™ be a manifold (perhaps with boundary), V° a com-
pact submanifold with boundary. Then there is a submanifold U® of M™ con-
taining V°.

Proof First suppose that M has no boundary. Let ¢ : 9V x I — V be a tubular
neighbourhood of 9V in V. We define a diffeotopy of V by

h(P)=P P ¢Img
hio(P, u) = (P, f(t,u))

where f is chosen with

f,u)y=uforu>1-—-¢,

FO,u) =u,

f(@,0)>0for0 < ¢,
and df/du > 0 everywhere; so that the diffeotopy ‘pushes’ the boundary a
little way into V': for example, we can take f(¢, u) = u + Bp(t — u) provided
t < k, where in this range Bp'(¢t) < 1. Now #, is a diffeotopy, hence (V being
compact) is ambient, and so covered by H,, say, h (V) C V. We can thus take
U=H'V).
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2.5 Tubular neighbourhood theorem 53

If M is bounded, we argue similarly, using that part of the boundary of V not
contained in V. O

This result has the effect that to describe a neighbourhood of V in M, we can
use tubular neighbourhoods of U; tubes round V do not give neighbourhoods.

2.5 Tubular neighbourhood theorem

We shall now use our results on diffeotopy extension to complete the discus-
sion in §2.3 of tubular neighbourhoods by showing that these are, essentially,
unique.

We recall the definition. If B is an (m — v)-disc bundle over V, with group
O,,—,, and central cross-section By, then a tubular neighbourhood of V in M is
an embedding ¢ : B — M, as submanifold with boundary, extending the pro-
jection of Byon V.

We say that two tubular neighbourhoods ¢ : B— M and ¢’ : B — M are
equivalent if there is a bundle map x : B — B’ over the identity map of V, and
an ambient diffeotopy of ¢ on ¢;x which is fixed on By.

Our object is to show that any two tubular neighbourhoods are equivalent.
Since we shall use the result of §2.4 we shall have to assume that V is compact.
One might expect that this assumption was unnecessary; however, it cannot be
omitted, as the example of Figure 2.3 illustrates.

i

Figure 2.3 Example of a bad tubular neighbourhood

In the figure, T is the set defined by —3 < y < 3 and 2+ y— 2)2 > 1, and
the projection of 7 on R! is defined by straight lines through (0, 3). This gives
a tubular neighbourhood of R! in Ri, which is not a closed subset, so is not
equivalent to a standard one.

The same example thus also shows the necessity of the compactness hypoth-
esis in Theorem 2.4.2.

Let ¢ : B— M be a tubular neighbourhood for V in M. We consider the
bundle E associated to B but with fibre R”~". Then B is a submanifold with
boundary of E. For the tubular neighbourhoods of §2.3, E is simply the normal
bundle N(M/V).
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We say that an embedding ¢ : E — M as open submanifold, extending the
projection of Ey on V, is a open tubular neighbourhood of V in M.

Lemma 2.5.1 Any tubular neighbourhood ¢ : B — M can be extended to an
open tubular neighbourhood ¢ : E — M.

Remember that we are assuming that V is compact. We use the same idea as
for Proposition 2.4.7.

Proof We can define a diffeotopy of ¢ as follows. Recall that over each neigh-
bourhood U in V, Bis a product of U with a vector space; in the sequel, we per-
mit ourselves to form sums and products by scalars in these vector spaces, using
the standard notation. Then our diffeotopy is ¢, (x, v) = @(x, tv) for % <tr<l1
(where x € V, v € D™7"). Since V, and so also B, is compact, the diffeotopy is
ambient: say it is covered by the diffeotopy k; of M. But ¢;,, can be extended
to a open tubular neighbourhood, for example, by the map

A1)
‘”(x’”)_‘”(x’ ol '”)’

where y is smooth, y (t) = %t forO<t <1,y (t) >0,and y(t) < 1. We can
now define ¢ = kl_/l2 o¢.

A suitable y can be constructed by using bump functions, for example, we
may take

y(@) = l/ {1+ (™= 1)Bpx— 1)}dx.
3/ N

Lemma 2.5.2 Let@ : E — M, §' : E' — M be open tubular neighbourhoods
of Vin M such thatIm ¢ C Im @'. Then for some bundle map X : E — E’, there
is a diffeotopy of @ on ¢’ o § which is fixed on By.

/

Proof Let j=@ ' o@:E — E', then jis an embedding. Consider the map-
pings j, given by j,(e) =t"'j(te) for 0 < t < 1, e € E; where the multiplica-
tions by t~!, ¢ are again scalar multiplications in the fibre. Clearly j, = j; we
shall show that the definition of j, can be extended to ¢+ = 0, and that jj can be
taken as x: @’ o j; will then give the required diffeotopy of ¢ = @' o j on ¢'x;
it is fixed on By.

Take local coordinates x = (xq, ..., X,) in V, and let y, z be Euclidean coor-
dinates in the fibres of E, E’. Then setting j(x, y) = («(x, y), B(x, y)) we have

Ji(x,y) = (alx, 1), 171 B(x, ty)).
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But j carries the zero cross-section of E onto that of E’, so
a(x,0) =x, Bx,0)=0.

Now by Lemma 1.2.3, applied to B (regarded as a function of y with x as a
parameter), there are smooth functions 8; with B(x,y) = Y_ y:Bi(x, y). Then
t71B(x, ty) = Y yiBi(x, ty), so we can write j, in the form

Jilny) = @, 1), Y yiBilx, 1),

where the left-hand side is a smooth function also at # = 0. This shows that we
have a smooth map J : E x I — E’ x I defined by the j,; to have a diffeotopy,
we must check that the Jacobian is everywhere non-zero. This follows for ¢ # 0,
since j is a diffeomorphic embedding, and multiplication by ¢ or t~! gives a
diffeomorphism. Now

y=0>

Joe ) = (%, D2 yibi(x, 0)) = (x, > g—f
induces a linear map of each fibre, with matrix (08;/9y;) = (dz;/9dy;) which is
also the matrix of partial derivatives of j on By. Since jj is an embedding, this
is non-zero. It follows that jj is a GL,,—,-bundle map, hence a diffeomorphism.
We can thus take ¥ = jo. We have also verified by the same token that J is a
diffeotopy. O

Corollary 2.5.3 The result holds also without the assumption Im@ C Im ¢@'.

Proof For Im@ NIm ¢’ is a neighbourhood of V, which thus has a tubular
neighbourhood, hence also a open one ¢”, with Im¢@” C Im @ N Im @’. Then
there are bundle maps modulo which ¢” is diffeotopic both to ¢ and ¢’, whence
the result follows. O

Lemma 2.54 Let@:E — M, ¢ : E' — M be open tubular neighbourhoods
of V in M where the bundles E, E' have group O,,_,. Then the conclusion of
Lemma 2.5.2 holds, with x an O,,_,-bundle map.

Proof 1t suffices to show that any v : E — E’ which is a GL,,_,(R)-bundle
map is diffeotopic to an O,,_,-bundle map. As above, in coordinates, ¥ is given
by

Yy =(x,2) where z =Y a;(x)y;.

Now since the group is the orthogonal group, we can speak of the length of
a vector in the fibre (compare §1.2). By the Gram—Schmidt orthogonalisation
process, take the vectors b; with components a;;, and write b; =

1
=1 Aijejs
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where the e; are orthonormal, and each A;; > 0. If ¢; has components ¢;;, con-
sider now the diffeotopy

ki(x,y) = (x,z), where (z)i= Y (thij+ (1 = 1)8;)ey.
Jk
That this is a diffeotopy follows as no matrix (tA;; + (1 —¢)d;;) is singular (for
the matrix is triangular, with non-zero diagonal terms); k; is the given map v,
and kj takes one orthonormal base to another, so is an O,,_,-bundle map. [

Theorem 2.5.5 (Tubular Neighbourhood Theorem) Let M™ be a smooth man-
ifold and V° a compact submanifold. Then any two tubular neighbourhoods of
Vin M are equivalent.

Proof Letg:B— M, ¢’ : B — M be tubular neighbourhoods of V in M. By
Lemma 2.5.1, ¢ and ¢’ extend to open tubular neighbourhoods @, ¢’. By Corol-
lary 2.5.3, there is a bundle map ¥ : E — E’ such that there is a diffeotopy of
@ on ¢ o ¥, fixed on By. By Lemma 2.5.4, we may take ¥ as an O,,_,-bundle
map. Then ¥ maps B into B’, and so we can take y as its restriction. It follows
that x is a bundle isomorphism. Also, by Theorem 2.4.2, the diffeotopy we
have constructed is in fact ambient. O

As a first corollary, we obtain a useful little result.

Theorem 2.5.6 (Disc Theorem) Let M be a connected manifold (perhaps
with boundary), f1, f» : D" — M™ embeddings as submanifold with bound-
ary. Then f| and f, are ambient diffeotopic unless M is oriented and fi, f>
have opposite orientations.

Proof LetP, = f;(0) (i=1,2). Since M is connected, there is a smooth path
connecting Py and P, in M , i.e. a diffeotopy of P, and P,, considered as sub-
manifolds of zero dimension. By the diffeotopy extension theorem, there is an
ambient diffeotopy. Hence we may suppose P; = P, = P. Now fi, f> are tubu-
lar neighbourhoods of P, so by Theorem 2.5.5, there is an orthogonal transfor-
mation x of D™, such that f and f, o x are ambient diffeotopic.

Now if x € SO,,, then f; is diffeotopic, so also ambient diffeotopic to f> o x,
so the result follows. If not, and M is orientable, we have the case excluded by
the theorem. If M is non-orientable, there is an orientation-reversing smooth
path (see the discussion after the definition of orientability), and if we take P
on an ambient diffeotopy round such a path, the sign of the determinant of x
will change. O

We shall use numerous extensions of Theorem 2.5.5 in the sequel; let us
indicate one or two briefly here. The definition of equivalence remains the same.
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2.5 Tubular neighbourhood theorem 57

Proposition 2.5.7 Any two collar neighbourhoods of 9M in M are equivalent
if 0M is compact.

Proof The proof follows the same pattern. The analogues of Lemma 2.5.1 and
Lemma 2.5.2 follow as before. In Lemma 2.5.4, note only that our group is not
GL;(R) or Oy, but simply GL]*(R) or SO; — the trivial group. This makes for a
slight simplification in the argument. O

Proposition 2.5.8 The result of Theorem 2.5.5 holds also if M has a boundary.

We note that in proving uniqueness of tubular neighbourhoods, in contrast to
the case where we had to prove existence, no extra difficulties arise in the case
where we have boundaries.

We now present an alternative approach to the existence of tubular neigh-
bourhoods which, while less immediate than the use of the exponential map, is
more flexible for generalisations.

We begin with notation. For = : E — B the projection map of a vector bun-
dle, we identify B with the zero cross-section (the zero vectors in the fibres).
The map 7 induces m, : T(E) — T(B), hence for each e € E a linear map
T.E — T,B. Vectors in the kernel are called vertical tangent vectors of E, and
we write T (E) for the bundle of vertical tangent vectors.

Define a partial tubular neighbourhood of a submanifold V of M to consist
of a neighbourhood U of V in the normal bundle N(M/V') together with a map
¥ : U — M such that, for each v € V, ¥r(v) = v and the composite

N,(MV) = T (N(MJV)) 2 T,(M) — N,(M/V)

is the identity. We will construct partial tubular neighbourhoods by piecing
together ones constructed over coordinate neighbourhoods in V. The defini-
tion implies that at each v € V the map dy : T,U — T,M is the identity on
the common subspace 7,V and an isomorphism on the quotient, hence by the
Inverse Function Theorem 1.2.5 that ¢ is a local diffeomorphism. Thus if V
is a closed submanifold with a partial tubular neighbourhood in M, it follows
from Corollary A.2.6 that V has a neighbourhood U’ in U such that ¥ | U’ is
an embedding; and so, by the same argument as in Theorem 2.3.3, that V has a
tubular neighbourhood in M.

Proposition 2.5.9 Any submanifold V of a manifold M has a partial tubular
neighbourhood.

Proof Since V is a submanifold, at any point P € V there is a chart ¢ :
(Up, UpNV)— (R", R"). Identifying R” = R” x R"~" gives a partial tubu-
lar neighbourhood for Up NV
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58 Geometrical tools

These open sets Up NV form an open cover {V,} of V; by Theorem 1.1.5,
there is a smooth partition {n,} of unity strictly subordinate to it. Write W, for
the closure of the support of 7n,: thus W, is closed, W, C V,, and the W, cover
V. We will construct a partial tubular neighbourhood over V by extending over
a neighbourhood of one set W, at a time. Arguing as in Proposition 1.1.7, we
can construct a smooth function g, on V, vanishing outside V,, taking the value
2 on a neighbourhood of W,, and with all values in [0,2].

First consider two open subsets V,, V;, of V and partial tubular neighbour-
hoods ¥, : U, — M, ¥, : U, — M. Since each of the images is a neighbour-
hood of V, NV}, in M, the composite @up, := ¥, I Y, is defined on a neighbour-
hood X of the zero cross-section of V,, NV, in N(M/V). Using a trivialisation of
N(M/V) over V;, we can write ¢, which is a partial map of RF x (V, N'V,) to
itself, as @5 (x, y) = ({fi(x, y)}, g(x, y)) in a neighbourhood of {0} x (V, NV,).
Since ¢, preserves the zero cross-section, each f;(x, y) vanishes when x = 0.
Hence by Lemma 1.2.3, we can write f;(x, y) = >, x fi(x, ). Define a defor-
mation by

@' (x, y) 1= ({Z X fi (8, y)} , 8(1x, y)) :
k

As in the proof of Lemma 2.5.2, this is well defined and smooth for a range
including t = 0. By definition, ®' = ¢, = vy, o yr,. It follows from the def-
inition of partial tubular neighbourhood that ®° reduces to the identity.

Define € : V, NV, — [ by €(z) = Bp(%(l + e4,(z) — €p(2))); thus € =1 if
&qs — & > 1 and € = 0 where ¢, — ¢, < —1. Now define ¥, by

Va(2) ifz€ W \ Xp,
Var(2) = | Y (P9 (2)) ifzeV,NV,,
Y (2) ifz € W)\ X,.

Each formula defines a smooth map on an open set.

On the overlap W, N (V,, \ X;,) we have g,(z) = 2, €,(z) < 1,50€(z) = 1 and
the first two formulae agree. Similarly on W, N (V, \ X,) we have €(z) = 0, and
the latter two formulae agree. Hence v, is defined and smooth on W, U W,.

It remains to check the derivative along the zero section. This reduces to
checking the x-derivative at x = 0 of ) « Xk fi(tx, y), which indeed reduces to
the identity.

By Theorem 1.1.4 we may suppose the covering {V,} locally finite and hence
countable, so label the pairs by n € N. We now construct a partial tubular neigh-
bourhood over V by extending over one set at a time. Suppose a partial tubular
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2.6 Corners and straightening 59

neighbourhood constructed on a neighbourhood X of U';;ll W,. Then the con-
struction in the first part of the proof yields a partial tubular neighbourhood on
a neighbourhood of Ule W,; moreover, the alteration takes part only inside V;,.
Since the covering is locally finite, each point of V has a neighbourhood which
is only affected by a finite number of steps of the construction, so the sequence
of maps converges, being ultimately constant on a neighbourhood of any given

point. The limit gives the desired partial tubular neighbourhood of V. O

Proposition 2.5.10 Given submanifolds V. C W C M, there exists a partial
tubular neighbourhood v : U — M of V in M such that the restriction of
to UNNW/V) is a partial tubular neighbourhood of V in W. Hence if V
is closed, there exists a tubular neighbourhood  : N(M/V) — M of V in M
whose restriction to N(W/V') is a tubular neighbourhood of V in W.

Proof The proof of Proposition 2.5.9 goes through with the only change being
the requirement on each of the partial tubular neighbourhoods of compatibility
with W. As before, the existence of a tubular neighbourhood follows from that
of a partial tubular neighbourhood. O

This rather weak relative form of Theorem 2.3.3 will be used in §6.3.

Clearly the argument adapts to further cases suchas V C Wy C W, C M or
to having two submanifolds W, and W, of M such that at each v € V there is a
chart with each of the W; mapping to a coordinate subspace of R”. Let us make
one such result explicit.

Lemma 2.5.11 Let V° — M™ be an embedding of connected oriented man-
ifolds. Then there exist orientation preserving embeddings ¢ : (D™, D) —
(M, V), and any two such are isotopic.

2.6 Corners and straightening

We recall that M™ is a manifold with corner if it has an atlas, with charts map-
ping to open sets in R, and that the corner ZM is the set of points mapping
to R”~2. At such a point ZM has two sides in dM: one corresponding locally
to x; = 0, the other to x, = 0. Globally, the two sides define a double covering

of /M, and we say that the corner is two-sided if this covering is trivial.

Lemma 2.6.1 If /M is two-sided, there is a smooth embedding h : /M x
I> - M with h(x,0,0) =x for each x € ZM and h™'(dM) = (I x {0}) U
({0} x I). Moreover, h is unique up to diffeotopy.

Downloaded from https://www.cambridge.org/core. Moritz Law Library, on 05 Aug 2019 at 19:47:25, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316597835.003


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.003
https://www.cambridge.org/core

60 Geometrical tools

Proof Since we are only interested in a neighbourhood of ZM, we can delete
from oM the complement of a neighbourhood of ZM, and thus suppose that
oM consists of such a neighbourhood and hence, since ZM is two-sided, can
be split into two components, d; M and d,M, each with boundary ZM.

Leth; : ZM x I — 9;M be a collar neighbourhood of ZM in 0, M.

By Proposition 1.5.6, there is a smooth embedding /; : (0,M) x I — M giv-
ing a neighbourhood of ;M. We may now set h(x, t;, ) = hy(hi(x, 11), 1)
forx € ZM and t,, t; € I. Uniqueness up to diffeotopy follows from the corre-
sponding result for collars. O

We can call the map we have constructed a bicollar neighbourhood of ZM.

Define 0°M by cutting M along ZM. By the arguments of Proposition 1.5.6,
we can find a map 0°M x I — M which is an embedding except that a bicollar
neighbourhood is covered twice: call the image a semicollar of 0M. Both a
bicollar and a semicollar are pictured in Figure 2.4.

Figure 2.4 A bicollar and a semicollar

Proposition 2.6.2 If M is a manifold with corner, there exist a manifold with
boundary N and a homeomorphism h: M — N which is a diffeomorphism
except on /M. Moreover, there is a construction of such an N which gives a
result unique up to diffeomorphism.

Proof Our construction is as follows. N will be M itself, with a different dif-
ferential structure, defined by a new set of coordinate neighbourhoods. At
points of M \ ZM, the differential structure and coordinate neighbourhoods are
unchanged. Let i : /M x I> — M be a bicollar neighbourhood as above. Then
a coordinate neighbourhood for /M, with coordinates x3, ..., x,, determines
one for the neighbourhood with additional coordinates 71, t,.

We define N by the same mapping, but followed by taking the new coordi-
nates as (z1, z2) = (t7 — 13, 2t112). Since t; + it lies in the first quadrant of the
complex plane C, z; + iz = (t; + it,)? lies in the upper half-plane z; > 0. We
thus have the structure of smooth manifold with boundary. Uniqueness up to
diffeomorphism follows from the uniqueness in Lemma 2.6.1. O
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—>

WAS

Figure 2.5 Rounding a corner

The resulting manifold N is said to be derived from M by straightening the
corner.

We have discussed straightening corners, but may also consider the converse
process, the introduction of corners. Given a manifold with boundary N, and a
submanifold L of dN of codimension 1, we can construct a tubular neighbour-
hood of L in N, and redefine the differentiable structure, again using the change
of coordinates (z1, z2) = (t} — 13, 2111) in R?, to introduce a corner along L.
The resulting M is unique up to diffeomorphism.

Since we have just reversed the above procedure, if we straighten the corner,
we return to a manifold diffeomorphic to N. The procedure is roughly illustrated
in Figure 2.5.

Lemma 2.6.3 If L is a submanifold of N of codimension 1, we can introduce
a corner on L in an essentially unique way. If we straighten it, we recover L.

While the above method of straightening is satisfactory, it is desirable to have
alternative constructions, and be able to recognise when they give the same
result.

We begin with the picture in the case when M has no corner. We can take
a smooth vector field £ on M, inward pointing at the boundary, and integrate
to construct a collar neighbourhood ¢ : dM x I — M. A smooth submanifold
L C M of codimension 1, contained in the collar neighbourhood, and transverse
everywhere to £, can be identified with the graph of a smooth map oM — . If L
lies in the interior of the collar, it separates the collar into two pieces; it follows
from Theorem 1.5.4 (taking the function f = ¢ as the projection on / and the
vector field as d/9¢) that each is diffeomorphic to dM x I. Now L separates M
into an outer part lying between L and M, and hence diffeomorphic to 0M x 1
and an inner part L*; it follows from Lemma 2.7.2 below that the inner part is
diffeomorphic to M.

We say that a smooth vector field Y | a,-a% is inward pointing in R if
a; > 0onx; =0anda; > 0 on x; = 0. This definition is intrinsic, so passes
to manifolds with corners.
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Proposition 2.6.4 Let & be a smooth vector field on M, inward pointing
at boundaries and corners, L C M a smooth submanifold of codimension I,
contained in a semicollar, and transverse everywhere to &. Then the inner
region of L is diffeomorphic to the manifold N defined by straightening the
corner.

Proof The manifold N is obtained by applying the above change of coordinates
(z1,22) = (t} — 13, 21112) at the corner. The image of the vector field £ is not
smooth at points corresponding to the corner, so we argue as follows.

In N we have a collar neighbourhood of z; = 0 given locally by (z;, ). It
contains a smooth submanifold L, given locally by z, = €. The region between
L. and 9N is a collar, and the inner region for L, is diffeomorphic to N.

The region 0 < z; <& in N becomes 0 <t,f, and 2t;#, < & in M. The
boundary L, given by 2#,, = ¢ is transverse to &, for we have ) . aia%(2t1t2) =
2a1t; + 2at; > 0 since, at least for ¢ small enough, we have a;, a», t, 1, > 0.

If L is any other submanifold transverse to &, there is an L’ contained in the
collar region, transverse to &, and disjoint from both L and L.. Hence the inner
regions for L, L’ and L, are all diffeomorphic. U

Once we have a semicollar, we can regard a neighbourhood of ZM as the
product of ZM with the region 1 > y > |x| in R? and then construct L as the
graph of a function p(x) defined by smoothing |x|. An example of such a func-
tion can be constructed as follows.

The function e~ 'Bp(1 — ‘f—') is smooth, non-negative, vanishes unless |x| <
e, and has [ 8,(x)dx = 1. Now set pu(x) := [°_ |y|8.(x — y)dy. Then p(x)
is smooth, even, p(x) = |x| if |x| > ¢, and p(x) is strictly increasing for x > 0.

Corollary 2.6.5 D’ is derived from D" x D° by straightening the corner

Proof We can take the vector field in D" x D® to be the radial vector field

f"v xia%, which is indeed inward pointing at the corner. We can then take
§™+5=1 as the above L. O

We have given details for rounding corners in the simplest case. It is
not possible to approximate any submanifold (not even any locally tame
one) of a smooth manifold by a smooth submanifold, but the technique of
rounding corners can be extended to the boundary of a submanifold of zero
codimension: we have already mentioned the existence of smooth regular
neighbourhoods.
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2.7 Cutting and glueing 63

2.7 Cutting and glueing

Let M;(i = 1, 2) be manifolds with boundary, 0M; = Q;, and suppose given a
diffeomorphism %4 : Q; — Q,. Take the disjoint union M; U M,, and identify
points corresponding under / to give a topological space N, and an identifica-
tion map 7 : M; UM, — N. Choose collar neighbourhoods ¢; : Q; x I — M;,
and define a map ¢; : Q1 x D' — N by

mei(g,t) ift >0
@(g.1) = .
s (h(g),t)  ifr <0;
these agree on t = 0 since Q) and Q, were identified using 4. Then ¢ is injec-
tive; in fact, it is an embedding. Define a function f on N to be smooth pro-
vided f o is a smooth function on M} U M, and f o ¢ a smooth function on
Q; x D'. The axioms defining a smooth manifold are now satisfied: coordinate
neighbourhoods in M;, Q; x D!, and in M, give rise to coordinate neighbour-
hoods in N, and where these overlap, they agree.

We have not made full use of the assumption dM; = Q;, and none of the
above argument is affected if dM; is the disjoint union of a certain set of com-
ponents, and Q; the union of a subset of these components. In this case, the
remaining boundary components form the boundary of N.

More generally, suppose given manifolds M;, M, with corner, smooth parts
Q; of 0M;, and a diffeomorphism 4 : Q1 — Q,. Then by Proposition 1.5.6 (i)
we have collar neighbourhoods of each Q;, and the same definition now applies.

We say that N is obtained by glueing M, to M, by h (or, along Q).

Lemma 2.7.1 The manifold defined by glueing M to M, by h is determined
up to diffeomorphism.

Proof The only arbitrary element in the definition was the choice of collar
neighbourhoods of the Q;. The result follows since these are unique up to dif-
feotopy. O

The manifold obtained by glueing M to itself via the identity map oM — M
is said to be obtained by doubling M, and denoted D(M).
Another simple but useful case is the following.

Lemma 2.7.2 The result of glueing M to 0M x I by the map h : OM — OM X
{0} given by h(x) = (x, 0) is diffeomorphic to M.

Proof Letk: 0M x I — M be a collar neighbourhood of M. Define p : M U
(0M x I) — M by:
p is the identity on M \ Im(k),
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Figure 2.6 Cutting and glueing

p(k(x, 1)) = k(x, a(t)) forx € oM, t € 1,

px,t) =k(x, 11 —1)xedM, t €L
This induces a bijection between the manifold obtained by glueing and M pro-
vided that «(t) increases from % to 1 as ¢ increases from O to 1. To make it a
diffeomorphism it will suffice if also «(?) = %(l +t)fort <eand a(t) =t
fort > 1 — ¢, for some small ¢, for example, take «(t) = %{(t +D+@E—1)
Bp(3t — 1)}. O

Glueing, and its inverse operation cutting, are both illustrated in Figure 2.6.
Now let 0"! be a submanifold of N, with inclusion map i : Q@ — N. For each
point P € Q, di(TpQ) is a subspace of TpN of unit codimension, and so sepa-
rates this real vector space into two components. We define a manifold M as
follows. Its points are those of N \ Q, together with two points for each point P
of O, one associated with each complementary component of di(7pQ) in TpN
or, as we shall say, side of Q in N. There is thus a natural projectionw : M — N.
We take for coordinate neighbourhoods in M those induced by 7 from coordi-
nate neighbourhoods in N \ Q; in addition, for each coordinate neighbourhood
f:U — R" with f~'(R"~") = U N Q two coordinate neighbourhoods in M;
induced by 7 from the restriction of f to the inverse images of R, and R”
(in the latter case, we must change the sign of the first coordinate to obtain a
coordinate neighbourhood of standard type). Here, of course, the points of N
corresponding to a certain side of Q in N are mapped by the coordinate neigh-
bourhood for the corresponding side of R"~! in R”; since df is nonsingular, it
preserves the distinction between sides.

We say that the resulting manifold M is obtained by cutting N along Q.

The same definition can be given more generally in the case when N has a
boundary and Q is a submanifold of codimension 1 (so dQ = Q N dN): in this
case the points corresponding to dQ form the corner ZM; this divides dM into
two parts: a part 9;M obtained by cutting dN along dQ and a part 3, M which
is a double covering of Q. The double covering is given by the two sides of Q,
or equivalently by the normal bundle, which we can take to have fibre D! with
boundary giving the two points.

Downloaded from https://www.cambridge.org/core. Moritz Law Library, on 05 Aug 2019 at 19:47:25, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316597835.003


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.003
https://www.cambridge.org/core
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For example, if N \ Q has just two components, with closures M; and M, so
that 9M, = Q = dM,, then cutting N along Q yields the disjoint union of M,
and M,.

Proposition 2.7.3 If N is defined by glueing M, to M, along Q, and we cut
N along w(Qy), we recover M| and M,. Conversely, if N" and its submanifold
0" are connected, Q separates N with parts My and M, and we glue M, to
M, along Q, we recover N.

Proof The first part is immediate from the definition of glueing. For the con-
verse, if the above conditions are satisfied, we obtain M; and M,. Now if
¢ : Q x D' — N is a tubular neighbourhood of Q in N, ¢ defines by restriction
collar neighbourhoods of Q in M, M,. If these are used in the glueing process,
we recover N. The second part of the result now follows from Lemma2.7.1. [

There are alternative definitions of cutting, which yield the same result up to
diffeomorphism. One is to let p be a complete metric on N, and define M as the
metric completion of N '\ Q.

We can also define a manifold M’ by deleting from N the interior of a tubular
neighbourhood of Q. We see directly that this is obtained from the manifold M
obtained by cutting N along Q by removing the interior of a collar neighbour-
hood of the boundary, hence by Lemma 2.7.2 is diffeomorphic to M.

We have seen that cutting and glueing are inverse operations, but cutting as
defined above is more general than the inverse of glueing as it includes the case
when the normal covering of Q in N is non-trivial. However we can also define
glueing more generally: let O, Q> be smooth parts of dM, not necessarily dis-
joint, and i : Q) — O, a diffeomorphism. The definition of glueing along 7 is
now, as above, the quotient of M by identifying along i, with smooth structure
defined using a choice of collar neighbourhoods of the Q;. We see easily that
this remains inverse to the cutting operation.

An important application of glueing is the following. Let M{', M}’ be con-
nected smooth manifolds, f; : D™ — M}" embeddings. Delete the interiors of
the images of the f;, and glue the result along the boundary f;(S"~') by f> i I
Since removing a disc does not disconnect M if m > 1, the result is connected:
it is called the connected sum, and written M#M,. The construction is pictured
in Figure 2.7.

Theorem 2.7.4 M #M,; is determined up to diffeomorphism by summands,
unless these are both orientable, when there are two determinations.

Proof By the Disc Theorem 2.5.6, the embeddings f; are unique up to ambi-
ent diffeotopy and a possible change of orientation. By Lemma 2.7.1 the result
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Figure 2.7 The connected sum

of glueing, given f| and f5, is unique up to diffeomorphism. Hence the result
follows, except for considerations of orientation. Now if fi,f, are replaced by
fior, f» or, where r is a reflection, the connected sum is unaltered. If neither
M; is orientable, the result is trivial; if only M, is orientable, using the above
possibility of simultaneous reversal, uniqueness again follows. If both are ori-
entable, the result has two possible cases. O

To make the result precise in the orientable case, we suppose the M; both
oriented, and that one of the f; preserves, the other reverses orientation. The
result is then again unique, and has a canonical orientation inducing the given
ones of the M;.

The connected sum is also defined for manifolds with boundaries and cor-
ners; we simply suppose that the f; map into the interior. However, in this
case we also have a different sum operation. Let f; : D™™! — dM™ be an
embedding. Introduce a corner along f;(S"~2). We may now glue the f;(D"~")
together by fzfl_1 . The result is called a boundary sum M| + M, of M and M.

Proposition 2.7.5 If MY, M} are connected manifolds with connected bound-
aries, M\ + M, is determined up to diffeomorphism by M, and M, unless 0M,
and 0M, are both orientable, when there are two sums.

Proof This follows by the Disc Theorem exactly as for Theorem 2.7.4. U

We conclude by summing up the simple properties of those operations.

Proposition 2.7.6 Both operations are commutative and associative, with
units: M"™#S" = M"™, M"™ + D" = M™. We have (M| + M,) = OM #0M,.

Proof Commutativity and associativity are immediate. To form M™#S5™ we
simply delete one disc from M™, and replace it by another disc.

The second result may be seen as follows. D™ is obtained from D"~ x I
by straightening the corner. Derive N from M by introducing a corner along
f(S™72) as above; then glueing on D"~! x I does not affect N other than by
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a diffeomorphism by Lemma 2.7.2. The result follows by straightening the

corner.
The last part is merely an observation of what happens to the boundary for
the sum operation. O

2.8 Notes on Chapter 2

§2.1 I have proved a little more than I need at this point, but the existence of a
neighbourhood of A(M) of pairs joined by minimal geodesics allows us to go
further and define a continuous family of paths joining nearby points.

§2.2 These (classical) results on geodesics could be taken as the jumping
off point for further results in differential geometry. Another treatment of this
material is given in Milnor [98, II].

§2.3 It seems that tubular neighbourhoods, along with fibre bundles, were
first introduced by Whitney [174].

§2.4 Our results are restricted to the case of diffeotopies of compact support.
This restriction is necessary; otherwise we have counterexamples; but it may
be possible to improve the result. The result was first proved by Thom [152],
with a sharper version obtained independently by Cerf [36] and Palais [118].

§2.5 The tubular neighbourhood theorem was first proved by Milnor in lec-
tures at Princeton University in 1961; an equivalent result was obtained in [36].

The construction of tubular neighbourhoods by local piecing together of par-
tial tubular neighbourhoods is the method adopted by Cerf [36] and Lang [83];
it gives a proof of Theorem 2.5.10 without using the clumsy hypothesis that the
normal bundle is trivial.

§2.6, §2.7, For a corner which is not two-sided, there is an analogue of a
bicollar neighbourhood which is an embedding of a bundle over /M with fibre
I x I and group Z, interchanging the components.

The disc theorem justifies the definition of connected sum. This seems to be
due to Milnor, in the context of homotopy spheres.

Both these sections are designed for use in Chapter 5 for the theory of handle
decompositions.

Downloaded from https://www.cambridge.org/core. Moritz Law Library, on 05 Aug 2019 at 19:47:25, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781316597835.003


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781316597835.003
https://www.cambridge.org/core

