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Abstract. We examine the ®niteness properties of certain subgroups of
``right angled'' Artin groups. In particular, we ®nd an example of a group
that is of type FP�Z� but is not ®nitely presented.

1. Introduction

The two fundamental ®niteness properties in group theory are the properties
of being ®nitely generated and of being ®nitely presented. There are many
examples of ®nitely generated groups that are not ®nitely presented. Indeed,
there are uncountably many ®nitely generated groups, but only countably
many ®nitely presented ones [Ne]. A remarkable example of one such group
was constructed by Stallings in [St]. It can be described as the kernel of the
homomorphism of the direct product F2 � F2 of free groups of rank 2 to the
in®nite cyclic group Z that sends both basis elements of both factors to
1 2 Z.

More general ®niteness properties were introduced by C.T.C. Wall in
[Wa 1]. A group H is said to be of type Fn if it has an Eilenberg-Mac Lane
complex K�H ; 1� with ®nite n-skeleton. Equivalently, a group is of type Fn if
it acts freely, faithfully, properly, cellularly, and cocompactly on an �nÿ 1�-
connected cell complex. Clearly, a group is ®nitely generated if and only if it
is of type F1, and is ®nitely presented if and only if it is of type F2.

One can generalize this notion further by replacing the phrase ``�nÿ 1�-
connected'' in the latter de®nition by the phrase ``homologically �nÿ 1�-
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connected (with respect to a given coe�cient ring R)''. This gives a weaker
®niteness property, which we call FHn�R�. It has been an open question
whether FHn�Z� is equivalent to Fn for n > 1. It is known that FH1�R� for
any nontrivial R is equivalent to ®nite generation of the group, and hence to
F1.

The ®niteness properties FPn�R� used in the literature were introduced by
Bieri [Bi 2] and are slightly weaker than the properties FHn�R� above.
Precise de®nitions and the relationship between these properties are given in
Sect. 3. The main point is that we use the topologically de®ned FHn�R� to
detect if our groups satisfy the ®niteness conditions FPn�R�.

The ®rst example of a group which is ®nitely presented but not of type
FP3�Z� was given by Stallings in [St]. It may be described as the kernel of the
homomorphism F2 � F2 � F2 ! Z that sends all basis elements to 1 2 Z.
This was generalized in [Bi 3] to produce examples of groups which were of
type FPn�Z� but not of type FPn�1�Z� for all n � 1. Other examples of
groups of type Fn but not of type FPn�1�Z� for all n � 1 were discovered
later by Stuhler [Stu] and by Abels and Brown [AB].

In this paper, we give a general construction which provides examples of
groups having one type of ®niteness property but not another. See Section 6
for speci®c examples. In particular, we produce groups of type FP�Z� which
are not ®nitely presented.

Our construction begins with the class of ``right angled Artin groups''.
These are also known as graph groups. We associate a right angled Artin
group GL to each ®nite ¯ag complex L (a ¯ag complex is a simplicial complex
that is determined by its 1-skeleton). For example, if L is the n-sphere tri-
angulated as the �n� 1�-fold join of 0-spheres, then GL is the �n� 1�-fold
direct product of free groups F2 considered in the Stallings-Bieri examples
above.

Next we examine the ®niteness properties of the kernel HL of the ho-
momorphism GL ! Z that ``sends all basis elements to 1''. Now, each Artin
group GL acts in a nice fashion on a CAT(0) space XL (analogous to the
action of a free group on a tree). Our method consists of constructing a map
f : XL ! R which is equivariant with respect to the homomorphism
GL ! Z and viewing it as a Morse function on XL. This allows us to obtain
information about the homotopy type of the point preimages or ``level sets''
of f . The key point is that HL acts cocompactly on each level set, so this
translates into information about ®niteness properties of HL.

This Morse theory point of view can be found in [Bi 1] and in [BNS]. The
Bieri-Neumann-Strebel ``geometric invariants'' of [BNS] are related to ho-
motopy types of halfspaces fÿ1�t;1� (or more precisely to the homotopy
type of the pro-system fÿ1�t;1� as t!1).

The main theorem relates ®niteness properties of HL to the topology of L.

Main Theorem. Let L be a ®nite ¯ag complex. Let G � GL be the associated
right angled Artin group, and H � HL the subgroup of GL described above. We
compute homology with coe�cients in a ring R with 0 6� 1.
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(1) H 2 FPn�1�R� if and only if L is homologically n-connected.
(2) H 2 FP�R� if and only if L is acyclic.
(3) H is ®nitely presented if and only if L is simply connected.

The subgroups HL are interesting test cases for other questions in group
theory. The equivalence of ®nite generation of HL and connectivity of L was
already proven in [MV]. Meinert [Me] has related connectivity properties of
L to ®nite generation of HL in the more general setting of graph products of
groups.

The outline of this paper is as follows. In Sects. 2, 3 and 4 we give the
de®nitions and properties of Morse functions in the category of a�ne cell
complexes, and we discuss ®niteness properties of groups. In Sect. 5 we
describe the Morse theory view of the homomorphism from the right angled
Artin groups above to Z. Theorem 4.1 can now be interpreted as proving the
®niteness properties of HL in the Main Theorem from the topological
properties of L.

We de®ne the notion of sheets in Sect. 6. These are used in Sects. 7 and
8 when we prove the reverse implications of the Main Theorem. Examples
and applications of the Main Theorem are provided in Sect. 6.

It is worth noting that all implications in the Main Theorem follow
directly from the homotopy description of the sublevel sets furnished in
Theorem 8.6. However, we provide separate proofs of certain implications
in Theorem 4.1, and Theorem 7.1. We feel that these demonstrate the power
of the Morse theory and homology arguments alone. Another application of
these ideas can be found in [B].

We thank Aldo Bernasconi and Steve Gersten for pointing out that the
groups GL we consider are indeed Artin groups. We also thank Robert Bieri
and the referee for their comments.

2. Morse theory on a�ne cell complexes

In this section we develop Morse theory for a�ne cell complexes. This has
some very interesting applications in geometric group theory. For example,
it was the motivation for our construction in Sect. 5 below. In [B] it is used
to construct an example of a hyperbolic group containing a ®nitely pre-
sented subgroup which is not hyperbolic.

De®nition 2.1. Let X be a CW complex. We say that X is an a�ne cell-
complex if it is equipped with the following structure. An integer m is given,
and for each cell e of X we are given a convex polyhedral cell Ce � Rm and a
characteristic function ve : Ce ! e such that the restriction of ve to any face of
Ce is a characteristic function of another cell, possibly precomposed by a
partial a�ne homeomorphism (=restriction of an a�ne homeomorphism) of
Rm. An admissible characteristic function for e is any function obtained from
ve by precomposing with a partial a�ne homeomorphism of Rm.
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Thus the restriction of an admissible characteristic function to a face is
an admissible characteristic function (of another cell).

De®nition 2.2. A map f : X ! R de®ned on an a�ne cell-complex X is a
Morse function if
� for every cell e of X f ve : Ce ! R extends to an a�ne map Rm ! R,

and f ve is constant only when dim e � 0, and
� the image of the 0-skeleton is discrete in R.

The main concern of this paper is to determine the topology of the f pre-
images of closed intervals in R. We use the following notation and termi-
nology. For a nonempty closed subset J � R denote by XJ the set fÿ1�J�,
and also let Xt � Xftg. We call the sets Xt level sets of the Morse function f .
We refer to the set X�ÿ1;t� as the sublevel set corresponding to Xt.

Lemma 2.3. If J � J 0 � R are connected and XJ 0 n XJ contains no vertices of
X , then XJ ,!XJ 0 is a homotopy equivalence.

Proof. For each cell e of X and each admissible characteristic function
ve : Ce ! X we construct a strong deformation retraction Hve

t of
Ce \ �f ve�ÿ1�J 0� to Ce \ �f ve�ÿ1�J� so that

� if ve is precomposed by a partial a�ne homeomorphism h, then H ve
t is

conjugated by h, i.e. Hveh
t � hÿ1H ve

t h and
� the restriction of Hve

t to a face of Ce is the strong deformation re-
traction associated to that face.

The construction is by induction on dim e. The inductive step amounts to
the following observation. If C is a convex cell in some Euclidean space and
F and G are two disjoint faces with F top dimensional and G either top
dimensional or just a vertex, then any strong deformation retraction from
@C n F to G extends to a strong deformation retraction from C to G.

The deformation retractions constructed above induce a strong defor-
mation retraction from XJ 0 to XJ : u

Ascending and descending links

Any a�ne cell complex can be equipped with a natural PL structure. This is
done inductively over skeleta while at the same time proving that all ad-
missible characteristic functions are PL. For the inductive step, ®rst observe
that every admissible attaching map @C ! X �i� is PL, since the restriction to
each face of C is PL by the inductive hypothesis. Thus X �i�1� can be given
the PL structure as the adjunction space of X �i� and the attaching maps
de®ned on the boundary of convex �i� 1�-cells in Euclidean space.

When a : A! B is a PL map between polyhedra and a 2 A is an isolated
point of aÿ1a�a�, then a induces a map Lk�a;A� ! Lk�a�a�;B� between links
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of a and a�a�. We shall denote this map by a� (the point a is understood
from the context).

In particular, when ve : Ce ! X is an admissible characteristic function
of a cell e of an a�ne cell complex X and w is a vertex of Ce, we have a
well-de®ned map ve� : Lk�w;Ce� ! Lk�ve�w�;X �. We may then identify the
link Lk�v;X � of a vertex v of X with

Lk�v;X � �
[
f ve��Lk�w;Ce�� : ve�w� � v g:

De®nition 2.4. The ascending link (the "-link) is

Lk"�v;X � �
[
f ve��Lk�w;Ce�� :

ve�w� � v and f ve has a minimum at w g � Lk�v;X �

and the descending link (the #-link) is

Lk#�v;X � �
[
f ve��Lk�w;Ce�� :

ve�w� � v and f ve has a maximum at wg � Lk�v;X �:

Lemma 2.5. Let f : X ! R be a Morse function on an a�ne cell complex as
above. Suppose J � J 0 � R are closed and connected, inf J � inf J 0, and
J 0 n J contains only one point r of f �0-cells�. Then XJ 0 is homotopy equivalent
to XJ with the copies of Lk#�v;X � (v a vertex with f �v� � r) coned o�.

A similar statement holds when inf J � inf J 0 is replaced by sup J
� sup J 0 and Lk#�v;X � by Lk"�v;X �.
Proof. The argument is similar to that of Lemma 2.3. Since XJ 0\�ÿ1;r�,!XJ 0 is
a homotopy equivalence, we may assume by Lemma 2.3 that sup J 0 � r. Let
r ÿ � � sup J . If a cell e of X has the property that min f je > r then e is
disjoint from XJ 0 . For any admissible characteristic function ve : Ce ! X of
any other cell e we construct, inductively on dim e, a strong deformation
retraction of �f ve�ÿ1�ÿ1; r� onto the subset

�f ve�ÿ1�ÿ1; r ÿ �� [
[
fF : F is a face of Ce with f ve�F � � �ÿ1; r�g

satisfying both naturality properties from the proof of Lemma 2.3.
These strong deformation retractions induce a strong deformation re-

traction of XJ 0 onto XJ with the cones attached as stated in the Lemma. u

Unless otherwise indicated, all homology groups are taken with coe�-
cients in a ®xed commutative ring R with 0 6� 1.

Corollary 2.6. Let f : X ! R be a Morse function on an a�ne cell complex as
above. Suppose that J � J 0 � R are nonempty and connected.
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(1) If each "-link and each #-link is homologically n-connected, then in-
clusion XJ ,!XJ 0 induces isomorphism in ~Hi for i � n and epimorphism in ~Hn�1.

(2) If each "-link and each #-link is simply connected, then inclusion
XJ ,!XJ 0 induces isomorphism in p1.

(3) If each "-link and each #-link is connected, then the inclusion XJ ,!XJ 0

induces an epimorphism in p1.

Proof. Since f �X �0�� is discrete, the proof follows by induction from
Lemma 2.3, Lemma 2.5, the Mayer-Vietoris and the Seifert-Van Kampen
Theorems. u

3. Finiteness properties of groups

In this section H is a discrete group, and R is a commutative ring with 1 6� 0
which we consider as a trivial RH -module.

De®nition 3.1. A group H is said to be of type FPn�R� if there exists a
resolution (exact sequence)

Pn ! Pnÿ1 ! � � � ! P0 ! R! 0

of the trivial RH -module R by ®nitely generated projective RH -modules Pi.

De®nition 3.2. A group H is said to be of type FP�R� if there exists a ®nite
resolution

0! Pn ! � � � ! P0 ! R! 0

of R by ®nitely generated projectives over RH .

De®nition 3.3. A group H is of type Fn if there exists a K�H ; 1� with ®nite
n-skeleton. One often writes H 2 FPn�R� to mean H is of type FPn�R�.

An application of Schanuel's Lemma from homological algebra gives us
the following method of showing that a group H is of type FPn�R� but not
of type FPn�1�R�. A proof of this can be found in K. Brown's book [Br 1]
(pp. 192±193) for example.

Proposition 3.4. If there exists a resolution

0! Zn ! Pn ! � � � ! P0 ! R! 0

where the Pi are all ®nitely generated, projective over RH and Zn is not ®nitely
generated over RH , then H is of type FP n�R� but not of type FPn�1�R�. u

The most important way of producing projective resolutions (actually free
resolutions) of R over RH comes from algebraic topology. The following
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de®nitions appeared in the introduction as natural generalizations of Wall's
®niteness conditions Fn.

De®nition 3.5. A group H is said to be of type FHn�R� if it acts freely,
faithfully, properly discontinuously, cellularly, and cocompactly on a cell
complex X such that ~Hi�X ;R� � 0 for all i � nÿ 1.

De®nition 3.6. A group H is said to be of type FH�R� if it acts freely, faith-
fully, properly discontinuously, cellularly, and cocompactly on an R-acyclic
cell complex X .

The following lemma relates the topological de®nitions FH to the classical
®niteness conditions FP.

Lemma 3.7. The following implications hold for a group H , and ring R with
1 6� 0.

(1) If H 2 FHn�R� then H 2 FPn�R�.
(2) If H 2 FH�R� then H 2 FP�R�.
(3) If H acts freely, faithfully, properly discontinuously, cellularly, and

cocompactly on an �nÿ 1�-connected cell complex X , then H is of type Fn.

Proof. From De®nitions 3.5 and 3.6 we see that in parts 1 and 2 the group
H acts nicely on a cell complex X which satis®es certain homological
properties. All one has to do is write out the reduced chain complex of X
with coe�cients in R. Note that the vanishing of reduced homology groups
implies that this is a resolution of R. The RH -module structure comes from
the action of H on X , so compactness of the quotient X=H implies ®nite
generation of the corresponding chain groups as RH -modules.

For part 3 note that X=H can be made into a K�H ; 1� by adding cells of
dimension n� 1 and higher. u

In a similar fashion, Proposition 3.4 yields the following useful topo-
logical criterion which tells when a group is of type FPn�R� but not of type
FPn�1�R�.

Lemma 3.8. Suppose that a group H acts freely, faithfully, properly, cellularly,
and cocompactly on a complex X which satis®es
� ~Hi�X ;R� � 0 for 0 � i � nÿ 1
� ~Hn�X ;R� is not ®nitely generated as an RH -module.

Then H is of type FHn�R� but not of type FPn�1�R�. u

There are other ®niteness properties in the literature. Finiteness prop-
erties of groups de®ned in terms of free resolutions were introduced by Serre
[Se]. One says that a group is of type FLn�R� (respectively FL�R�) if it
satis®es the conditions of De®nition 3.1 (respectively De®nition 3.2) with all
occurrences of the word ``projective'' replaced by the word ``free''. A group
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is said to be of ®nite type, denoted F, if it has a ®nite Eilenberg-Mac Lane
space.

The following set of implications shows the relationship between our
properties FH and the classical ®niteness conditions.

Fn ! FHn ! FLn ! FPn

F ! FH ! FL ! FP

Example 6.3 (3) below shows that the implications F! FH and Fn ! FHn

(n � 2) cannot be reversed. Clearly, FH1 ! F1. In [Se] Serre asked if
FP! FL holds. It is still not known if this holds or if the implication
FL! FH holds. The conditions FPn and FLn are known to be equivalent.
One simply takes direct sums of the projectives in the resolution with
complements to obtain a resolution which is free up to dimension n. These
ideas were ®rst observed by Wall [Wa 1]. The condition FLn is equivalent to
FHn for n � 1; 2. A group of type FL1 is, in particular, ®nitely generated,
and is seen to be of type FH1 by considering its Cayley complex with respect
to a given presentation (with ®nite generating set). If the group is of type FL2

then the ®rst homology of the quotient of this Cayley complex is ®nitely
generated. Thus we see that the group is of type FH2 by equivariantly adding
2-cells to the Cayley complex, and killing the ®rst homology of the complex.
Finally, it is not known if the implication FLn ! FHn holds for n � 3.

The next result says that if a ®nitely presented group H acts freely,
faithfully, properly, cocompactly and cellularly on a cell complex Y then
p1�Y � is ®nitely generated modulo the H action. It is used in Sect. 8 to
conclude that certain groups are not ®nitely presentable.

Proposition 3.9. Let H be a ®nitely presented group. Suppose that H acts
freely, faithfully, properly discontinuously, cocompactly, and cellularly on a
connected cell complex Y . Then it is possible to attach to Y ®nitely many
H -orbits of 2-cells so that the resulting complex is simply connected.

Proof. Since H is ®nitely presented, H acts freely, faithfully, properly
discontinuously, cocompactly, and cellularly on a simply connected cell
complex Z. Construct H -equivariant cellular maps a : Y �2� ! Z and
b : Z�1� ! Y �1� � Y . By attaching ®nitely many orbits of 2-cells to Y (one for
every orbit of 2-cells in Z) we may assume that b extends to an equivariant
cellular map ~b : Z�2� ! Y �2�. The map Y �1� � f0; 1g ! Y de®ned by
� y; 0� 7! y, � y; 1� 7! ba� y� extends to an equivariant cellular map
F : Y �1� � f0; 1g [ Y �0� � �0; 1� ! Y by connectivity of Y . After attaching ®-
nitely many orbits of 2-cells to Y (one for every orbit of 1-cells in Y ) we may
assume that F extends to an equivariant cellular map ~F : Y �1� � �0; 1� ! Y .

We now claim that at this stage Y is simply connected. Indeed, let ` be a
loop in Y �1�. Then ~F provides a homotopy between ` and ba�`�. The loop
a�`� is nullhomotopic in Z�2�, and thus so is ~ba�`� � ba�`�. u
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4. Kernels of homomorphisms to Z

In this section we assume that a group G acts freely, faithfully, properly,
cocompactly, and cellularly on a contractible a�ne cell complex X and that
the action preserves the a�ne structure. More precisely, if e is a cell of X
with an admissible characteristic function ve and g 2 G, then gve is an ad-
missible characteristic function for the cell g�e�. We also assume that
/ : G! Z is an epimorphism, and that f : X ! R is a /-equivariant Morse
function (where Z acts on R by translations in the usual fashion). Let H
denote the kernel of / and observe that H acts freely and cocompactly on
level sets Xt. We now investigate the relationship between ®niteness prop-
erties of H and the homotopy types of ascending and descending links.

Theorem 4.1. Let f : X ! R be a /-equivariant Morse function and let
H � Ker�/� be as above.

(1) Suppose that each "-link and each #-link is homologically n-connected.
Then H 2 FHn�1�R�.

(2) If all "-links and #-links are R-acyclic, then H 2 FH�R�.
(3) If all "-links and #-links are simply connected, then H is ®nitely pre-

sented. u

Proof. (1) By Corollary 2.6, for t < s the inclusion X�ÿ1;t�,!X�ÿ1;s� induces
isomorphisms in ~Hi for i � n and an epimorphism in ~Hn�1. Since
X � [r2ZX�ÿ1;r� is acyclic, it follows that ~Hi�X�ÿ1;t�� � 0 for i � n and all t.
Similarly, ~Hi�X�t;1�� � 0 for i � n and all t. Since X � X�ÿ1;t� [ X�t;1� is
acyclic, it follows from Mayer-Vietoris that the intersection Xt is homo-
logically n-connected. Thus H acts freely and cocompactly on a homologi-
cally n-connected complex and so is of type FHn�1�R�.

(2) It follows from the proof of (1) that Xt is acyclic.
(3) By (1) each Xt is connected. By Corollary 2.6 inclusion Xt,!X induces

an isomorphism in fundamental groups. Hence Xt is simply connected and H
is ®nitely presented. u

5. Right-angled Artin groups

We de®ne right angled Artin groups and their associated piecewise euclidean
cubical complexes. The construction of the Eilenberg±Mac Lane spaces for
the right angled Artin groups is not new. See for example [MV] and [CD].

De®nition 5.1. A simplicial complex L is said to be a ¯ag complex if every
®nite collection of vertices of L which are pairwise adjacent spans a simplex
in L. We see that such complexes L are completely determined by their 1-
skeleton.
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It is worth noting that this de®nition does not impose any restrictions on the
topology of L, since the ®rst barycentric subdivision of a simplicial complex
is a ¯ag complex. For a proof see [Br 2], page 28.

De®nition 5.2. The right angled Artin group GL associated to the ®nite ¯ag
complex L has ®nite generating set f g1; . . . ; gN g in one to one correspondence
with the vertex set L�0� � f v1; . . . ; vN g and has ®nite presentation

GL � h g1; . . . ; gN : �gi; gj� � 1 for all edges fvi; vjg in L�1� i

Note that this is a subpresentation of the standard presentation of ZN , so
that there is a natural epimorphism GL ! ZN taking the generators gi to the
standard basis elements of ZN . Composing this with the epimorphism

ZN ! Z : �x1; . . . ; xN � 7! Rixi

gives an epimorphism / : GL ! Z which sends all the generators gi to 1 2 Z.

Thus there is a short exact sequence of groups

1! HL ! GL ! Z! 1

and we are interested in ®niteness properties of the kernel HL.
We obtain information about HL by constructing an Eilenberg-Mac

Lane space QL for GL which is a compact, piecewise euclidean cubical
complex of nonpositive curvature, and a continuous map QL ! S1 which
induces the homomorphism GL ! Z. The universal cover X of QL is a
CAT(0) metric space on which GL acts cocompactly by deck transforma-
tions. The map QL ! S1 lifts to a /-equivariant Morse function

f : X ! R

with the "-links and #-links all isomorphic to L, so the results of Section 4
apply to give one set of implications in the Main Theorem.

We begin with some de®nitions. Denote by (n the regular n-cube in Rn

with vertex at the origin, and edges de®ned by the unit basis vectors.

De®nition 5.3. A piecewise euclidean cubical complex is a cell complex con-
structed from a ®nite, disjoint collection of regular cubes, by glueing their faces
via isometries. We shall refer to these as PE cubical complexes.

Let us look at the local geometry of a PE cubical complex.

De®nition 5.4. Let v be a vertex of a regular cube (n in Rn. The euclidean
metric on Rn gives an inner product on the tangent space Tv�Rn�. We de®ne
the link of v in (n �denoted by Lk�v;(n�� to be the set of unit tangent vectors
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at v which point into (n. It is a subset of the unit sphere Snÿ1 which is
homeomorphic to an �nÿ 1�-simplex. It has a natural spherical metric in which
all dihedral angles are right angles. Such spherical simplices are termed all
right simplices.

Thus the link of a vertex in a PE cubical complex is a piecewise spherical cell
complex, all of whose cells are all right simplices. The next de®nition gives a
combinatorial version of nonpositive curvature for PE cubical complexes.

De®nition 5.5. A PE cubical complex is said to be nonpositively curved if the
link of each vertex is a ¯ag complex.

The following lemma of Gromov [Gr] (p. 122) (see also [Da] Lemma 9.3)
tells when a piecewise spherical cell complex, whose cells are all right sim-
plices, satis®es the CAT(1) inequality. (Gromov's statement uses the ``no
triangle condition'' instead of the ``¯ag complex'' condition below).

Lemma 5.6 (Gromov). Let L be an all right, piecewise spherical complex. Then
L is a CAT(1) space if and only if it is a ¯ag complex. u

A PE cubical complex whose links are all CAT(1) spaces satis®es a local
CAT(0) inequality (see [Gr] p. 120 or [GH] p. 197), and so its universal cover
is a CAT(0) metric space (and hence is contractible)Ð see [Gr] p. 119 or [GH]
p. 193. There is a comprehensive survey of these results in section I of [Da].

The following de®nition will be useful in describing the link structure in
our PE cubical complexes.

De®nition 5.7. Let L be a simplicial complex, and let

f S0a ga2L�0�

be a collection of 0-spheres indexed by the set of vertices in L. The spherical
complex associated to L is denoted by S�L� and is de®ned to be the union

S�L� �
[
fS0a0 � � � � � S0am

: < a0; . . . ; am > an m-simplex of Lg

Lemma 5.8. Let L be a ¯ag complex. Then the associated spherical complex
S�K� is also a ¯ag complex.

Proof. Let p : S�L��0� ! L�0� be the 2-to-1 map which takes the two vertices
of S0a to a for all a 2 L�0�.

It is clear from the de®nition of S�L� that the pair of vertices in each
0-sphere S0a are not adjacent. Therefore, given a collection fv0; . . . ; vkg of
pairwise adjacent vertices in S�L� the set fp�v0�; . . . ; p�vk�g is a collection of
distinct, pairwise adjacent vertices in L. These vertices span a simplex in L
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(since L is a ¯ag complex), and the original vertices span a simplex in the
corresponding k-sphere in S�L�. u

The following result about ¯ag complexes will be used in local compu-
tations in Section 8. First we de®ne the subcomplexes St�r; L� and St0�r; L�
associated to a simplex r in a simplicial complex L.

De®nition 5.9. Let L be a simplicial complex, and r a simplex of L. We denote
by St�r; L� the subcomplex of L consisting of all simplices which contain r.
This is called the closed star of r in the literature.

We denote by St0�r; L� the subcomplex of L consisting of all simplices which
contain a face of r.

Proposition 5.10. Let L be a ¯ag complex equipped with the all right CAT(1)
metric and let r be a simplex of L.
(1) St0�r; L� is contractible.
(2) Let s be another simplex of L and assume that d�a; b� < p=2 for a point

a 2 s and a point b of r. Then r \ s 6� ;.

Proof. We see that St0�r; L� is contractible as follows. For each simplex q in
L, the closed star St�q; L� is contractible as it is a union of simplices, any
subcollection of which intersects in a common face containing q.

Given a collection fvi; . . . ; vkg of vertices of r let hv1; . . . ; vki denote the
face of r which they span. Since L is a ¯ag complex, we see that

St�v1; L� \ � � � \ St�vk; L� � St� hv1; . . . ; vki; L�

is contractible. Thus the union

St0�r; L� �
[
f St�v; L� : v a vertex of r g

is also contractible.
For (2) note that the simplicial map from St0�r; L� to a 1-simplex (of

length p=2), which maps r to one vertex and the frontier Fr�St0�r; L�� to the
other vertex, is distance nonincreasing in the spherical metric. We see this by
noting that the map restricts to a distance nonincreasing simplicial map on
each simplex of St0�r; L�.

Now suppose that a 2 s and b 2 r are such that d�a; b� < p=2, and that
r \ s � ;. Then a geodesic c from a to b intersects Fr�St0�r; L��, and so
c \ St0�r; L� maps onto the 1-simplex. But this implies that d�a; b� � p=2, a
contradiction. u

The following lemma also concerns the spherical geometry of all-right
piecewise spherical simplicial complexes. It is due to Gromov (see [Gr] p.
122 or [Da] Sublemma 3.13), and is the spherical geometry component of the

456 M. Bestvina, N. Brady



proof of Lemma 5.6 above (Gromov's Lemma). We shall need this result in
the proof of Lemma 8.3.

Lemma 5.11. Let v be a vertex in an all-right, piecewise spherical simplicial
complex, and let B be the ball (closed star) of radius p=2 about v. Let x; y 2 @B
(the sphere of radius p=2 about v), and let c be a geodesic from x to y which
intersects the interior of B. Then the length of c is at least p. u

The cubical complex QL

We de®ne and describe properties of the PE cubical complex QL associated
to a ®nite ¯ag complex L. Speci®cally, we have.

Theorem 5.12. Let L be a ®nite ¯ag complex, GL the associated right angled
Artin group, and / : GL ! Z the epimorphism de®ned above. Then there exists
a nonpositively curved PE cubical complex QL and a map l : QL ! S1 satis-
fying the following conditions

(1) l induces the homomorphism / : GL ! Z.
(2) QL has one vertex and the link of this vertex is isomorphic to S�L�.
(3) The lift of l to the universal covers is a /-equivariant Morse function

f : X ! R.
(4) All "- and #-links of X (with respect to the Morse function f ) are

isomorphic to L.

Note that since the PE cubical complex QL is nonpositively curved, it is a
K�GL; 1�.

Proof. First construct a geometric realization of L in RN (N equals the
number of vertices of L) in the usual way; mapping each vertex vi of L to the
(endpoint of the) basis vector ei and mapping an m-simplex

r � f vi0 ; . . . ; vim g

to the convex hull in RN of the images of the vij . For each such r de®ne (r

to be the regular �m� 1�-cube based at the origin in RN with edges de®ned
by the basis vectors f eij : vij 2 r g.

Now de®ne QL to be the image of the union of cubes[
f(r : r a simplex of L g

under the projection RN ! T N � RN=ZN . Here ZN acts on RN by trans-
lations in the usual fashion, so T N is just the standard N -torus.

Clearly, QL is a PE cubical complex. Since the vertices of each (r have
integer coordinates, the complex QL has just one vertex. Each m-simplex r in
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L corresponds to an �m� 1�-cube (r in RN which descends to a torus in the
quotient QL. This torus contributes an m-sphere (triangulated as the �m� 1�-
fold join of 0-spheres) to the link of the single vertex in QL. Thus the link of
this vertex in QL is precisely the complex S�L�. This proves property (2).

Since L is a ¯ag complex, Lemma 5.6 ensures that the link S�L� in QL is
also ¯ag, and so QL is nonpositively curved.

The linear map

l : RN ! R : �x1; . . . ; xN � 7! x1 � � � � � xN

descends to a continuous map (®bration) RN=ZN ! S1. Restricting to the
subcomplex QL of the N -torus, gives a continuous map QL ! S1 which we
also denote by l.

The fundamental group of QL is easily computed from the 2-skeleton and
is the Artin group GL. The map l sends each basis vector in RN to the unit
interval in R, and so l� maps generators of p1�QL� to 1 2 Z. Thus l� is the
homomorphism / : GL ! Z, and (1) holds.

Lifting l to the universal covers gives a continuous map

f : X ! R

which is clearly /-equivariant. In order to establish (3), it remains to prove
that f is a Morse function on X .

From the de®nition of f we see that for each m-cell e of X

f ve � sl

where the attaching map ve may need to be precomposed with an isometry
(m ! (m, and where l: (m ! R is the restriction of the linear map

Rm ! R : �x1; . . . ; xN � 7! x1 � � � � � xN

and s : R! R is an integer translation. Note that f ve is constant only when
e is a vertex of X . Also, the f image of the 0-skeleton X �0� is just Z � R.
Thus f is a Morse function on X .

Finally, note that the local picture of X at a vertex can be embedded in
RN by mapping the vertex to the origin. The local picture of f at this vertex
is then given by the linear map l : RN ! R de®ned above. Thus one sees
that the "- and #-links are isomorphic to L. u

6. Sheets

In this section we de®ne and record properties of sheets. These are special
¯ats in the universal cover X of QL, which we view as building blocks. This
point of view enables us to determine the homology and homotopy type of
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(sub)level sets in Sections 7 and 8. We also state the Main Theorem and give
some examples.

Recall that QL is the union of tori, one for every simplex of L.

De®nition 6.1. A sheet in X is a ¯at which is a subcomplex of the preimage in X
of one of the tori in QL.

Note that in general there are ¯ats in X that are not sheets. Indeed, when L
consists of 2 points, X is a tree, and there are countably many sheets, but
uncountably many biin®nite geodesics.

Alternatively, we can describe sheets as follows. Any simplicial map
L0 ! L induces a map QL0 ! QL. When L0 is a single simplex of L, this map
can be regarded as inclusion to a subcomplex (with underlying space a
torus). A sheet is a component of the preimage in X of such a subcomplex as
L0 ranges over all simplices in L.

Given a vertex v 2 X and A � X a union of sheets, we de®ne St�v;A� to be
the cone on Lk�v;A�, and consider it as a small neighborhood of v in A.
Similarly, St#�v;A� is just the cone on Lk#�v;A�. We also use St to denote the
closed star of a simplex in a simplicial complex as in Proposition 5.10. It
should be clear from the context what the notation refers to.

There is a natural retraction rv : Lk�v;X � ! Lk#�v;X �. This map takes
vertices in Lk"�v;X � to corresponding vertices in Lk#�v;X � by a central
symmetry in v. It ®xes the vertices of Lk#�v;X �, and extends simplicially to
give a map: Lk�v;X � ! Lk#�v;X �. The map rv can be coned o� to give a
retraction of neighborhoods St�v;X � ! St#�v;X � also denoted by rv.

We record the following properties of sheets.

Proposition 6.2. (1) X is covered by the sheets.
(2) The intersection of any collection of sheets is either empty, a vertex, or a

sheet.
(3) All (sub)level sets of f restricted to a sheet are contractible. Moreover,

all "- and #-links of the restriction are single simplices.
(4) The retraction rv preserves sheets through v.More precisely, if A � X is

a union of sheets and v 2 A, then the restriction of rv induces retractions
Lk�v;A� ! Lk#�v;A� and St�v;A� ! St#�v;A� and these are also denoted rv.
Moreover, rÿ1v �Lk#�v;A�� � Lk�v;A�.

Proof. Property (1) follows immediately from the de®nition of sheets and
the fact that QL is a union of tori.

We see that property (2) holds for the intersection of any two sheets, and
proceed by induction.

The restriction of f to a k-dimensional sheet is given by the linear map

l : Rk ! R : �x1; . . . ; xk�7!x1 � � � � � xk
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where Rk has the usual cubing. So property (3) clearly holds.
Property (4) is immediate from the de®nitions of sheet and of the map

rv. u

Here is the Main Theorem and some examples.

Main Theorem. Let L be a ®nite ¯ag complex. Let G � GL be the associated
right angled Artin group, and / : G! Z the homomorphism with kernel
H � HL as in Theorem 5.12. We compute homology with coe�cients in a ring
R with 0 6� 1.

(1) H 2 FPn�1�R� if and only if L is homologically n-connected.
(2) H 2 FP�R� if and only if L is acyclic.
(3) H is ®nitely presented if and only if L is simply connected.

Note that all 3 implications( follow from Theorem 5.12 and Theorem 4.1.
In the next two sections we shall develop an understanding of (sub)level sets
which is su�cient to prove the three implications ).

Examples 6.3.

(1) For L � Sn and any R, HL is of type FPn but not of type FPn�1.
Triangulating Sn as the �n� 1�-fold join of 0-spheres, the group GL is F n�1

2 ,
the �n� 1�-fold product of free groups of rank 2, and the homomorphism to
Z sends each basis element of each coordinate F2 to 1 2 Z. For n � 1; 2 this
is the Stallings' example [St], and for all n this is due to Bieri [Bi 3].
(2) Let p be a prime and let L be the (appropriately triangulated) Moore

space obtained from the n-sphere (n � 1) by attaching an �n� 1�-cell via a
degree p attaching map. Then L is acyclic over any ®eld of characteristic 6� p,
but over ®elds of characteristic p it is only �nÿ 1�-connected. Thus HL is of
type FP over ®elds of characteristic 6� p. Over a ®eld of characteristic p HL is
of type FPn but not FPn�1. For example, for p � 3 and n � 1 HL is an
example of a group that is not ®nitely presented (and not even of type
FP2�Z=3�) but is of type FP�R� whenever 3 2 R is invertible.

Bieri and Strebel [BS] have constructed a group that is of type FP2�F � for
any ®eld F , but is not of type FP�Z�.
(3) Let L be an acyclic nonsimply-connected ®nite ¯ag complex, say of

dimension 2. Then HL is FP (over all rings) but it is not ®nitely pre-
sented. This example answers in the negative a long standing question
concerning ®niteness properties of groups which ®rst appeared in [Bi 2]
Chapter I (2).

Furthermore, the cohomological dimension of HL is 2 since the level sets
are 2-dimensional and acyclic. It is natural to ask if such groups HL have
2-dimensional Eilenberg-Mac Lane spaces. Thus one obtains a family of
potential counterexamples to the Eilenberg-Ganea conjecture.
If L is a ¯ag triangulation of a spine of the Poincare homology sphere,

then in Theorem 8.7 we show that HL is either a counterexample to the
Eilenberg-Ganea conjecture or that there is a counterexample to the
Whitehead conjecture.
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Recall that the Eilenberg-Ganea conjecture states that if a group H has
cohomological dimension 2, then it has a 2-dimensional Eilenberg-Mac
Lane space K�H ; 1�. The Whitehead conjecture states that every connected
subcomplex of an aspherical 2-complex is aspherical.

7. Homology of (sub)level sets

We now ®x a ®nite ¯ag complex L and the associated right angled Artin
group G � GL. Let X � eQL, / : G! Z, H � HL, and f : X ! R be as in
Theorem 5.12. The goal of this section is to compute homology groups of
sets XJ for a nonempty closed connected J � R.

Theorem 7.1. Let A be a (possibly in®nite) union of sheets and vertices in X ,
and denote by AJ the intersection of A and the set XJ . Then

H��A;AJ � � a
v=2AJ

H��St#�v;A�; Lk#�v;A��

where the sum ranges over the vertices in A that are not contained in AJ .
Since H��;; ;� � 0 we could be summing over all vertices in X not contained
in XJ .

Proof. We ®rst construct a homomorphism

WA : H��A;AJ � ! a
v=2AJ

H��St#�v;A�; Lk#�v;A��

and then show it is an isomorphism.
The coordinate of WA corresponding to v 2 A n AJ is de®ned as the

composition

H��A;AJ � ! H��A;AnInt St�v;A�� � H��St�v;A�; Lk�v;A��
!rA�H��St#�v;A�; Lk#�v;A��:

An element x of H��A;AJ � can be represented by a relative cycle supported in
a ®nite subcomplex of A, and then the coordinates of WA�x� corresponding
to the vertices outside the support are 0. Therefore, WA is a well-de®ned
homomorphism into the direct sum.

The homomorphism WA is natural, i.e. if A � A0 and A0J � A0 \ XJ , then
the diagram

H��A;AJ � ÿ!WA a H��St#�v;A�; Lk#�v;A��
# #

H��A0;A0J � ÿ!
WA0 a H��St#�v;A0�; Lk#�v;A0��

commutes (the vertical arrows are induced by inclusion).
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We now prove that WA is an isomorphism. Since homology commutes
with direct limits, it su�ces to prove this when A is a ®nite union of sheets
and vertices of X . For such A we proceed by induction on the number of
sheets and vertices in the union. When A is empty, a single sheet, or a vertex
in AJ then both groups are zero. When A is a vertex in AnAJ , then the only
nonvanishing groups are in dimension 0, they are both isomorphic to the
coe�cient group, and WA is an isomorphism.

Now suppose that WA is an isomorphism whenever A is a union of � k
sheets and vertices, and let A be a union of k � 1 sheets and vertices. Write
A � A0 [ S where S is a sheet or a vertex, and A0 is a union of k sheets and
vertices. Note that A0 \ S is a union of � k sheets and vertices (by Propo-
sition 6.2(2)) and so WA0\S , WA0 , and WS are isomorphisms. That WA is an
isomorphism now follows from the Mayer-Vietoris sequence, the naturality
of W and the 5-lemma. u

As a corollary, we have the following description of the homology of
level and sublevel sets.

Corollary 7.2. There are isomorphisms of RH -modules

(1) ~H��X�ÿ1;t�� �av 2 X�t;1�
~H��L�.

(2) ~H��Xt� �av =2 Xt
~H��L�: u

We can now prove two more implications in the Main Theorem.

Proof of (1) and (2) of Main Theorem. Let n be the smallest integer such that
~Hn�L� 6� 0. Then ~Hn�Xt� is not a ®nitely generated RH -module, so the claim
follows from Lemma 3.8.

8. Homotopy type of (sub)level sets

In this section we see how to construct X using sheets; starting with sheets
through a given vertex, and then adding sheets which pass through neigh-
boring vertices. This view of X enables us to determine the homotopy type
of the (sub)level sets in Theorem 8.6 below, and hence to prove part (3) of
the Main Theorem.

We begin with some lemmas describing the intersections of certain col-
lections of sheets and (sub)level sets.

Lemma 8.1. Let w be a vertex of X and let K be the union of a collection of
sheets containing w. Let J be a closed and connected interval in R. Then

(1) K is contractible.
(2) All "- and #-links of K are contractible except possibly at w, and at w the

two are naturally isomorphic.
(3) KJ � K \ XJ is homotopy equivalent to Lk#�w;K� when w =2XJ and it is

contractible if w 2 XJ .
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Proof. K is a cone with conepoint w, hence contractible. We prove (2) for
#-links, the other case being similar. Let x be any vertex of K di�erent from
w. There is a sheet S � K that contains w and x and is minimal with this
property. Thus Lk#�x;K� is the union of the simplex r � Lk#�x; S� and the
simplices of the form Lk#�x; S0� where S0 ranges over sheets in K that pass
through x and w. All these simplices contain r, so the union is contractible.

There is a natural central symmetry de®ned on each sheet S through w.
This maps Lk"�w; S� bijectively to Lk#�w; S�, and these combine to give the
isomorphism between Lk"�w;K� and Lk#�w;K�.

We now prove (3). First suppose that w 2 XJ . Then it follows from
Lemma 2.5 that the inclusion KJ ,! K is a homotopy equivalence, and thus
KJ is contractible. If w =2 XJ , assume for concreteness that w is above XJ , i.e.
that f �w� > t for all t 2 J . Choose � 2 �0; 1� such that f �w� ÿ t > � for all
t 2 J . Then again from Lemma 2.3 it follows that inclusions

KJ ,! K�ÿ1;f �w�ÿ��  - Kf �w�ÿ�

are homotopy equivalences. Finally, to show that Kf �w�ÿ� is homotopy
equivalent to Lk#�w;K� observe that the correspondence

Lk#�w; S� $ S \ Xf �w�ÿ�

is a 1-1 order preserving correspondence between elements of closed covers
of Lk#�w;K� and Kf �w�ÿ� both of which are closed under intersections and
have contractible elements. Hence Lk#�w;K� and Kf �w�ÿ� are homotopy
equivalent (see [BoS] Sect. 8.2). u

The next lemma shows that the minimum distance from a vertex in X to
a cube in X is attained at a vertex of the cube. It is used in Lemmas 8.4 and
8.5 below.

Lemma 8.2. Let X be a CAT (0) PE cubical complex, Q � X a cube, and
c 2 X a vertex. Then the minimal distance from c to Q is attained at a unique
point of Q. Moreover, this point is a vertex of Q.

Proof. Suppose there are two points x and y of Q which realize this mini-
mum distance. Then the geodesic �x; y� lies in Q, since cubes are convex in X .
Applying the CAT(0) inequality to the geodesic triangle xyc we see that all
interior points of �x; y� are closer to c than either of the endpoints. This
contradicts the choice of x and y.

Let c be a distance minimizing geodesic from c to Q, and suppose that c
does not end at a vertex of Q. Then c meets Q in the interior of some face.
Let e denote an edge of this face.

For each point p 2 c choose the minimal cube Qp in X which contains p.
Consider the collection of all such cubes Qp for p 2 c.

We claim that there is a cellular map from the union of such cubes to a
1-simplex which takes c to an interior point of the simplex. Hence, c could
not be a vertex, and the Lemma is proven.
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Let Q0 be the cube which contains the edge e and the initial segment of
the geodesic c, and is minimal among cubes with this property. Here we
parameterize c so that it starts at Q and ends at c. This cube contains the
face of Q at which c originates, and so has a metric product structure,
de®ned as the product of a codimension one face times the edge e. Since c
minimizes the distance from c to Q we see that Q0 \ c is perpendicular to the
e-coordinate.

The metric product structure induces a codimension-1 metric product
structure on the face of intersection of Q0 and the next cube Q1 of the
collection along the geodesic c. This extends uniquely to a codimension-1
product structure of Q1 and so on.

Finally, we map the e-coordinate onto a 1-simplex, collapsing the other
coordinates to a point. The geodesic c remains perpendicular to the e-co-
ordinate throughout, and so maps to an interior point of the 1-simplex. u

Now we begin to build up X as a union of sheets. Choose a base vertex v
in X and an ordering v � v1; v2; v3; � � � of all vertices in X such that
d�v; vi� � d�v; vj� whenever i � j. Denote by Ki the union of all sheets
through vi. We will study the homotopy type of K1 [ K2 [ � � � [ Kn by in-
duction on n. To that end, we ®x n > 1, let w � vn, and let
K � Kn \ �K1 [ K2 [ � � �Knÿ1�.

In Lemma 8.4 below, we give a description of K as the union of a
collection of sheets containing vn. This together with Lemma 8.1 ensures
that K is contractible. This will be important in proving Theorem 8.6. First,
we need to prove that sets like the Ki are convex in X .

Lemma 8.3. Let x 2 X be a vertex, and let Kx denote the union of all sheets
through x. Then Kx is a convex subset of X .

Proof. We break the proof into a number of steps. The ®rst step gives a local
formulation of the problem in terms of convexity of subcomplexes of all-
right piecewise spherical simplicial complexes. In the second step we show
that the purely combinatorial condition of ``fullness'' ensures the convexity
of a subcomplex of an all-right piecewise spherical simplicial complex. Steps
3 and 4 reduce the problem to that of checking that

Lk#� y;Kx� � Lk#� y;X � � L

is a full subcomplex, for all vertices y 2 Kx. Finally, in step 5 we calculate
these #-links, and complete the proof.

Step 1. (Local formulation of convexity) We show that Kx is convex in X by
checking that each geodesic in Kx is also a geodesic in X .

Note that a segment of a geodesic which lies inside a cube in Kx will also
be locally a geodesic in X . So we only need check the points where the
geodesic in Kx passes through vertices of X , or passes from one cube to
another through a common face.
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Suppose a geodesic in Kx passes through a vertex y. In order for it to be a
local geodesic in X we need that the distance in Lk� y;X � between the two
directions de®ned by this path should be at least p. This will hold if

Lk� y;Kx� � Lk� y;X � is convex �A�

where we say that a subcomplex M of an all-right piecewise spherical si-
mplicial complex N is convex if it satis®es the following: For all points
a; b 2 M such that dN �a; b� < p, the geodesic �a; b� is contained in M .

Similarly, if a geodesic in Kx intersects a cube Q in a single interior point,
then it will be a local geodesic in X provided that the link of Q in Kx is a
convex subcomplex of the link of Q in X . Let y be any vertex of Q, and let rQ

be the simplex of Lk�y;X � determined by Q. There is a natural identi®cation
of the link of Q in Kx with Lk�rQ; Lk�y;Kx��. Likewise the link of Q in X can
be identi®ed with Lk�rQ; Lk�y;X ��, and so the convexity condition becomes

Lk�rQ; Lk� y;Kx�� � Lk�rQ; Lk� y;X �� is convex �B�

for all cubes Q in Kx and vertices y 2 Q.
So we only have to verify conditions (A) and (B) above. In the following

steps we reduce this to verifying a simple combinatorial condition at #-links.
Step 2. (Combinatorial condition for convexity in all-right piecewise
spherical complexes) In this step we prove the following. Let M � N be a
full subcomplex of an all-right piecewise spherical simplicial complex N .
Then M is convex in N .

Recall that a subcomplex M � N is said to be full if it satis®es the fol-
lowing: If a set of vertices of M spans a simplex s � N , then s � M .

Suppose that M � N is full, and that a; b 2 M satisfy dN �a; b� < p. We
have to show that the geodesic �a; b� is contained in M . Let ra (respectively
rb) denote the minimal simplex of N which contains a (respectively b). Note
that ra and rb are contained in M .

Now either a � b and the result is trivial, or a 6� b and so the collection
of all simplices r which intersect �a; b� nontrivially in their interiors is not
empty. We claim that the vertices of such r are contained in the union of the
set of vertices of ra and the set of vertices of rb. Hence, r � M by fullness.
But �a; b� is contained in the union of such r, and so �a; b� � M as required.

Suppose r is a simplex of N whose interior intersects �a; b� nontrivially,
and let v 2 r be a vertex. The path �a; b� intersects the open star about
v ��open ball in N of radius p=2 about v). Now if both dN �v; a� and dN �v; b�
are at least p=2 Lemma 5.11 implies that the length of �a; b� is at least p
contradicting the assumption dN �a; b� < p. Thus one of dN �a; v� and dN �b; v�
is strictly less than p=2. Suppose dN �a; v� < p=2. Then either a � v or a lies in
the interior of a simplex with vertex v. In either case, v is a vertex of ra, and
we are done.
Step 3. (Reduction to vertices of Kx) Step 2 implies that, in order to check
that properties (A) and (B) hold, we need only verify that
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Lk� y;Kx� is a full subcomplex of Lk� y;X � �A0�
for all vertices y 2 Kx and

Lk�rQ; Lk� y;Kx�� is a full subcomplex of Lk�rQ; Lk� y;X �� �B0�
for all cubes Q � Kx and vertices y 2 Q.

But property �B0� follows from property �A0� by the following obser-
vation. Let M be a full subcomplex of the simplicial complex N , and let
r � M be a simplex. Then Lk�r;M� is a full subcomplex of Lk�r;N�.
Step 4. (Reduction to #-links) Property �A0� reduces to verifying the fol-
lowing statement.

Lk#� y;Kx� is a full subcomplex of Lk#� y;X � � L �A00�
for each vertex y 2 Kx.

This reduction follows from the following simple observation. Let M be a
full subcomplex of the simplicial complex N . Then the associated spherical
complex S�M� is a full subcomplex of the associated spherical complex S�N�.
Step 5. (#-link computations) Finally, we verify property �A00�. Let y 2 Kx

be a vertex. If y � x then Lk#� y;Kx� � Lk#� y;X � is clearly convex. So we
assume that y 6� x. Then the geodesic �x; y� de®nes a unique point of Lk�y;X �.
Taking the ry image gives a point p 2 L � Lk#� y;X �. Since Kx is a geodesic
cone on x we see that p 2 Lk#� y;Kx�, and that in fact Lk#� y;Kx� is just the
union U of all simplices r � L which contain p. Note that simplicial struc-
ture on U can be described by: s is a simplex of U if and only if there exists a
simplex r containing both s and p.

This is seen to be full in L as follows. Let rp denote the minimal simplex
of L which contains p. Then rp is a face of each simplex containing p. In
particular, if v 2 U is a vertex, then either v 2 rp or fvg [ rp spans a simplex.
Hence, if fv1; . . . ; vjg � U is a collection of vertices which span a simplex
r � L, then fv1; . . . ; vjg [ rp spans a simplex of U . Thus r � U , and so U is
a full subcomplex of L. u

Lemma 8.4. Let K � Kn \ �K1 [ � � � [ Knÿ1� be as above. Then K is the union
of those sheets that contain w and at least one vj with j < n.

Proof. This union is contained in K, so we need only prove the reverse
inclusion. That is, given x 2 K, there exists a sheet S � X through vn which
contains some vj ( j < n) and contains x.

First we prove this for vertices v 2 K. Now v 2 K implies that v 2 Kn \ Ki

for some i < n. Thus vi; vn 2 Kv where Kv denotes the union of all sheets
through v.

By Lemma 8.3 Kv is convex, and so contains the geodesic �vi; vn�. Let Q
denote the minimal cube containing vn and the end segment of the geodesic
�vi; vn�. By minimality, Q � Kv and so Q lies in a sheet S through v. We claim
that one of the vertices of Q is in the set fv1; . . . ; vnÿ1g. Thus the sheet S
contains v, vn and some vj ( j < n) as required.
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To see this claim, note that the ordering on the vi implies that the geo-
desic �v1; vi� is not longer than �v1; vn�, and so the CAT(0) inequality implies
that the distance from v1 to any interior point of �vi; vn� is strictly smaller
than d�v1; vn�. In particular this is true for the points of Q which lie in the
interior of �vi; vn�. Thus vn is not the closest point of Q to v1, and so Lemma
8.2 ensures that one of the other vertices of Q is vj for some j < n.

Finally, suppose that x 2 K is not a vertex. Then x 2 S0 � Kn \ Ki for
some sheet S0 and some i < n. We know that each vertex of S0 is contained in
a sheet through vn and some vj ( j < n). Since there are only ®nitely many
sheets through vn, then one such sheet S must contain a maximal, general
position subset of vertices of S0, and hence contains all of S0 as required. h

Next we investigate the link of w � vn in K.

Lemma 8.5. Lk#�w;K� � Lk"�w;K� is contractible.
Proof. Denote by a the point in Lk�w;X � determined by the geodesic �w; v�
and let b � r�a� 2 Lk#�w;X � be the image of a under the retraction rw (see
section 6). Let r denote the smallest simplex of Lk#�w;X � that contains b.

LetT denote the collection of simplices s in L � Lk#�w;X � such that the
sheet through w corresponding to s contains one of the vi (i � nÿ 1). By
Lemma 8.4 Lk#�w;K� and Lk"�w;K� are isomorphic to the simplicial com-
plex determined by T. Claim 2 below implies that this complex is actually
just St0�r; L� which is contractible by Proposition 5.10 (1).

Claim 1. Every face of r is in the collection T.
Indeed, let S0 be the sheet through w such that Lk#�w; S0� � r. We know

from Proposition 6.2 (4) that Lk�w; S0� contains a. Let Q be the smallest cube
that contains w and such that Lk�w;Q� contains a. Thus Q � S0 and
r � rw�Lk�w;Q��. We shall show that each vertex of Q which is distance one
from w is in the collection fv1; . . . ; vnÿ1g. Hence, r and every face of r is inT.

Let v0 be a vertex of Q which is distance one from w. Then the angle at w
de®ned by �w; v� and �w; v0� is less than p=2. Thus the distance from v to a
point on the edge �w; v0� which is close to w is less than d�v;w�. Lemma 8.2
implies that

d�v; v0� � d�v ; �w; v0� � < d�v;w�

and so v0 2 fv1; . . . ; vnÿ1g.
Claim 2. T � f s a simplex of L : s \ r 6� ; g

For the inclusion �, let s be an element of T, and let S be the corre-
sponding sheet in K. Then S contains vi for some i < n. In the triangle
D�w; v; vi� we have d�v;w� � d�v; vi� and thus the angle at w is <p/2. It
follows that Lk�w; S� contains a point within distance <p/2 from the point a
de®ned above, and hence s � Lk#�w; S� � rw�Lk�w; S�� contains a point
within distance <p/2 from b � rw�a�. Thus it must intersect r by Proposi-
tion 5.10 (2).
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Now for the reverse inclusion. It is clear that if S1 � S2 are sheets and
Lk#�w; S1� is inT, then Lk#�w; S2� is also inT. In particular, if a vertex of a
simplex s of L is inT, then s is inT. If s \ r 6� ; then s contains a vertex of
r. But we've seen that all vertices of r are inT in Claim 1. Hence s 2T. h

Now we are in a position to determine the homotopy type of sublevel sets
XJ .

Theorem 8.6. XJ is homotopy equivalent to the wedge of L's, one for every
vertex of X not in XJ .

Note: When L is connected, the choice of basepoints is irrelevant. When
L is disconnected, di�erent copies of L in the above wedge might have
basepoints in di�erent components.

Proof. We write XJ as the increasing union of sets of the form

X �n� � XJ \ �K1 [ K2 [ � � � [ Kn� :

We may express X �n� as the union X �n� � X �nÿ 1� [ �XJ \ Kn�. Note that
the intersection

X �nÿ 1� \ �XJ \ Kn� � XJ \ �Kn \ �K1 [ K2 [ � � � [ Knÿ1��

is contractible. This follows from Lemma 8.1 (3) (setting Kw � Kn\
�K1 [ K2 [ � � � [ Knÿ1�) and Lemma 8.5.

Now Lemma 8.1 (3) implies that XJ \ Kn is either contractible or
homotopy equivalent to L depending on whether or not vn 2 XJ . Thus,
it follows inductively that X �n� is homotopy equivalent to the wedge of L's,
one for every vi, i � n not contained in XJ . Further, inclusions
X �nÿ 1� ,!X �n� respect the wedge structure, so the theorem follows. u

We can now complete the proof of the Main Theorem.
Proof of (3) of Main Theorem. If L is not connected then part (1) of the
Main Theorem implies that H will not be ®nitely generated, and hence not
®nitely presented.

If L is connected but not simply-connected, then p1�Xt� is the free
product of p1�L�'s, one for every vertex not in Xt. If H were ®nitely pre-
sented, then Proposition 3.9 would imply that p1�Xt� is generated by the
H translates of ®nitely many loops. Since X is contractible, each of these
®nitely many loops is null homotopic in X , and hence is null homotopic in
some block X�tÿT ;t�T �. Since H acts by ``horizontal'' translations, all the H -
orbits of these loops will be null homotopic in X�tÿT ;t�T �. This implies that the
inclusion Xt ,!X�tÿT ;t�T � induces the trivial map on p1. But Corollary 2.6 (3)
says that this inclusion induces an epimorphism in p1, and thus X�tÿT ;t�T � is
simply connected, contradicting Theorem 8.6 above. u

We end this section with an examination of the level sets in the case when
L is a ¯ag triangulation of a spine of the PoincareÂ homology sphere. We
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have the following result which shows that at least one of the Eilenberg-
Ganea and Whitehead conjectures must be false.

Theorem 8.7. Let L be a ¯ag triangulation of a spine of the Poincare homology
sphere. Then either HL is a counterexample to the Eilenberg-Ganea conjecture
or there is a counterexample to the Whitehead conjecture.

We begin by observing that there are `arbitrarily large' copies of L which are
quasi-isometrically embedded in the level set Xt. Given a vertex v 2 X we
identify the complex L with the descending link Lk#�v;X �. Thus each point
x 2 L determines a unique geodesic gx � Kv through v.

De®nition 8.8. Let t 2 R and v 2 X be a vertex such that f �v� > t, and M � L
be a subcomplex of L � Lk#�v;X �. De®ne the shadow of M on Xt to be the set

Sv;M �
[
f gx : x 2 M g \ Xt

Note that Sv;L is homeomorphic to L, by the map which sends each simplex
r � L to Sv;r � Sv;L. Give L a metric by requiring that each 2-simplex is an
equilateral triangle with sidelengths equal to jf �v� ÿ tj and then taking the
induced path metric. The homeomorphism above becomes a quasi-isometry,
with constants which are independent of jf �v� ÿ tj. To see this note that this
is obviously true if Sv;L inherited its metric from Kv (the quasi-isometry
constants would be bounded by a multiple of the cardinality of the 1-skel-
eton of L). But Kv is a convex subset of X by Lemma 8.3. Hence we obtain
the same quasi-isometry inequality for Sv;L as a subset of X .

Proof of Theorem 8.7. If HL does not have geometric dimension 2 we are
done. Otherwise, let Y be a contractible 2-complex on which HL acts freely,
faithfully, properly and cellularly. Since Y is contractible we can de®ne an
HL-equivariant PL map / : Xt ! Y .

Now Xt and /�Xt� are quasi-isometric to each other (if both are metrized
by HL-equivariant path-metrics). Thus point preimages of / will have di-
ameters bounded by the quasi-isometry constants. We denote the restriction
/jSv;L

by /v.
By the observation following De®nition 8.8 above, we may choose a

vertex v 2 X so that jf �v� ÿ tj is large in comparison with the quasi-isometry
constants. For each point x 2 Sv;L the geodesic �x; v� determines a unique
minimal simplex r � L � Lk#�v;X �. The preimage /ÿ1v �/v�x�� will be con-
tained in the contractible (by Proposition 5.10 (1)) subcomplex Sv;St0�r;L�. For
vertices v with jf �v� ÿ tj large enough one can de®ne a left homotopy inverse
to /v by taking each vertex of /v�Sv;L� to a point of its /v-preimage, and
extending over skeleta.

Thus the shadow Sv;L is a homotopy retract of /v�Sv;L�, and so we have

p2�/v�Sv;L�� � p2�Sv;L� � p2�L� � p2�eL� � H2�S3 ÿ f120 pointsg� 6� 0
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The last equality above follows from the fact that L is a spine of the Poincare
homology 3-sphere. In conclusion /r�Sv:L� � Y is a connected subcomplex
of the contractible 2-complex Y which is not aspherical, and so gives a
counterexample to the Whitehead conjecture. u

Remark. Fix a metric on L. We conjecture that there is e > 0 such that if g : L! K is a

surjective PL e-map, then K is homotopy equivalent to L with 1- and 2-cells attached. This

conjecture implies that the geometric dimension of HL is 3.
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Note added in proof. Meier, Meinert, and Van Wyk [MMV] have generalized the Main The-

orem to all (including irrational!) characters GL ! R:
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