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Chapter 1
Introduction

The road between topology and group theory goes through the fundamental group. Suppose X is a space
that admits a universal covering space (i.e., X is semi-locally 1-connected). Its fundamental group acts as
the group of deck transformations on the universal cover X̃ . Given a presentation for a group π , there is a
standard construction of a connected, 2-dimensional CW complex X with π1(X) = π . (Start with a wedge
of circles, one for each generator; then attach a 2-cell for each relation.) One can continue to attach cells
to X of dimension greater than 2 to kill all the higher homotopy groups πi(X), i ≥ 2. The result is a CW
complex with fundamental group π and all higher homotopy groups = 0. We denote such a space Bπ and
call it the classifying space of π . Standard arguments in homotopy theory show that Bπ is unique up to
homotopy equivalence, e.g., see [80]. Thus, algebraic topological properties of Bπ such as its cohomology
are properties of the group π .The universal cover of Bπ , denoted Eπ , is contractible. The space Bπ is also
called an Eilenberg-MacLane space K(π,1). Such a space with vanishing higher homotopy groups is said to
be aspherical.

Usually, the CW complex Bπ cannot be taken to have a finite number of cells. For example, if π has
nontrivial torsion, then Bπ must be infinite dimensional. later

Suppose a group G acts on a cell complex X by an action that permutes the cells. We write G y X to
mean that G acts on X . There are several different situations to consider. First, the complex X could be locally
infinite. In this case, cell stabilizers might well be infinite. For example this is often the case in Serre’s theory
of groups acting on trees. If X is locally finite, then Aut(G) is a locally compact, totally disconnected group.
Although the cell stabilizers might still be infinite, we will primarily be interested in the case when G is a
discrete subgroup of Aut(X). The group G, is then said to act properly on X . Finally, the cell stabilizers in
G might be trivial. In this case, the G-action is free. The G-action is cocompact if the orbit space X/G is
compact.

If a group G has nontrivial torsion, then BG cannot be finite dimensional. (The proof is due to P.A. Smith: if
H is a finite cyclic subgroup of G, then BH→ BG is a covering space. If H is nontrivial, BH has cohomology
in arbitrarily high degrees. So, BH and a fortiori BG must be an infinite dimensional.)

A group G is virtually torsion-free if it has a torsion-free subgroup Γ of finite index. The virtual cohomo-
logical dimension of G, denoted by vcdG, is the cohomolgical dimension of such a Γ . The group G is type
V F if there is a finite index subgroup Γ of type F . (These notions are independent of the choice of Γ .)

When a group G has nontrivial torsion, there is a notion of a “universal space for proper actions” which is
sometimes more useful than the universal space EG.

Definition 1.1. For a discrete group G, its universal proper G-space is a CW complex EG together with a
proper cellular action, G y EG, so that for any finite subgroup H < G, the subcomplex, (EG)H , which is

1



2 1 Introduction

fixed by H, is contractible. (In particular, if every finite subgroup of G is trivial, then EG = EG.) The quotient
complex EG/G is denoted by BG. (The complex BG is an orbihedron.)

Definition and next 2 paragraphs
might go in intro For example, if Y a locally finite CAT(0) polyhedron and G y Y by isometries, then Y = EG.

The universal property of EG is that for any CW complex Y with a cellular, proper G-action (i.e., with
finite isotropy groups), there is an equivariant map Y → EG, unique up to equivariant homotopy.



Chapter 2
Polyhedral preliminaries

2.1 Cell complexes, links

By a cell complex we will mean a space X formed by gluing together convex polytopes (in some euclidean
space) via isometries of their faces. The decomposition of X into polytopes (“cells”) is part of the structure.
The word “polyhedron” will be used synonymously with “cell complex”.

In classical definitions of a convex cell complex, one often adds the conditions that each cell is embedded Delta

and that the intersection of two cells is either empty or a common face of each. We call these two requirements
the classical conditions. The first of these conditions rules out the possibility of a 1-gon while the second rules
out a 2-gon. (Even when X does not satisfy the classical conditions, the induced cell structure on its universal
cover often will satisfy them.) Two types of cell complexes are of particular interest: first, if each cell is
required to be a simplex we have “∆ -complex” in the sense of Hatcher [80], second if each cell is a cube, we
have a “cube complex”. A ∆ -complex or a cube complex can have “multiple faces,” e.g., in a ∆ -complex two
different simplices can have the same vertex set. If a ∆ -complex satisfies the classical conditions, then it is a
simplicial complex. Similarly, if a cube complex satisfies the classical conditions, then it is sometimes called
a simple cube complex (for example this terminology is used in [79]).

Given a face F of a convex polytope P and a point x in its relative interior, the normal cone N(F,P) is the
set of all inward-pointing tangent vectors at x that are orthogonal to F . It is a convex polyhedral cone in the
the tangent space TxP. The dimension of N(F,P) is the codimension of F in P. The link of F in P, denoted
Lk(F,P), is set of unit tangent vectors in N(F,P). In other words, Lk(F,P) is the space of inward-pointing
normal directions to F in P. It is a geodesically convex polytope in the unit sphere of TxP. If F < F ′, where
F ′ is another face of P, then Lk(F,F ′) is identified with a face of Lk(F,P). Given a cell τ of a cell complex
X , we can then glue together the corresponding links to to form a cell complex:

Lk(τ,X) :=
⋃
σ

τ<σ

Lk(τ,σ), (2.1)

called the link of τ in X . (The definition given in (2.1) needs to be slightly modified when there are self-gluings.
For example, P is the polytope corresponding to the cell σ and faces F1, F2 of P are identified to get a single
cell τ of X , then Lk(τ,σ) be interpreted to be Lk(F1,P)∪Lk(F2,P)’)

For example, if P an n-simplex and F < P is a k-dimensional face, then Lk(F,P) is a spherical (n−k−1)-
simplex. So, if X is a ∆ -complex and σ is a cell in X , then Lk(σ ,X) is a ∆ -complex. Moreover, if X is a
simplicial complex, then so is Lk(σ ,X). Similarly, if F is a k-dimensional face of an n-cube P, then Lk(F,P)

3



4 2 Polyhedral preliminaries

is a (n− k−1)-simplex. Hence, if X is a cube complex, then Lk(σ ,X) is a ∆ -complex and if X is a simple
cube complex, then Lk(σ ,X) is a simplicial complex.

One can define the notion a geodesically convex polytope in any simply connected space of constant
curvature κ . In dimension n≥ 2 the possibilities are euclidean n-space En for κ = 0, the n-sphere of curvature
κ , Sn

κ , for κ > 0, and hyperbolic n-space of curvature κ , Hn
κ , , , A cell complex X made by gluing together

polytopes in a space of constant curvature κ is called a constant curvature κ is called a constant curvature
polyhedron. (See [23] or [48] for more details.) We shall be interested only in the cases κ =+1, 0, or −1.
We shall say that X is piecewise spherical, piecewise euclidean or piecewise hyperbolic, respectively. If a
constant curvature polyhedron X is connected, then it inherits a natural length metric as follows. The length
of a geodesic segment in a polytope of constant curvature κ is defined as usual. If x,y ∈ X , then d(x,y) is
defined to be the infimum of the lengths of all piecewise linear paths from x to y. If X is locally finite, then this
gives X the structure of a geodesic space meaning that the infimum d(x,y) is always realized by a geodesic
path (= isometric embedding), γ : [0,d]→ X with γ(0) = x, γ(d) = y. (For more details see [23, Ch I.3].)Is this correct?

Since the link of a face of any polytope in a constant curvature space is always a spherical polytope in Sn
1,

we see that the link of any cell of a constant curvature polyhedron is always a piecewise spherical polyhedron
(κ = 1). Similarly, for any point x ∈ X , let Lk(x,X) be the union of all unit tangent vectors which point into a
cell of X . (If x belongs to the relative interior of a k-cell σ , then Lk(x,σ) = Sk−1. When this is the case it
follows that Lk(x,X) can be identified with Sk−1 ∗Lk(σ ,X), the k-fold suspension of Lk(σ ,X).) Let Nε(x,X)
(resp. ∂Nε(x,X)) denote the ball (resp. sphere) of radius ε about x, i.e., Nε(x,X) = {y ∈ X | d(x,y)≤ ε} and
∂Nε(x,X) = {y ∈ X | d(x,y) = ε}. One sees ∂Nε(x,X) can be identified with Lk(x,X) and that

Nε(x,X)∼= Coneε(Lk(x,X)), (2.2)

where Coneε(A) stands for the cone of radius ε , that is, A× [0,ε] with A×0 collapsed to a point. Formula
(2.2) means that Lk(x,X) determines the local topology of X . For example, X is a PL n-manifold if and only
if Lk(x,X) is piecewise linearly homeomorphic to Sn−1 for each x ∈ X .

2.2 The CAT(0)-inequality

Using ideas of Alexandrov and Busemann, Gromov [76] defined what it means for a geodesic metric space
X to have curvature bounded above by a real number κ (where usually, κ ∈ {−1,0,+1}). First, a geodesic
triangle in X satisfies the CAT(κ)-inequality, if the distance between any two points of the triangle is ≤ the
distance between the corresponding points of a comparison triangle in the simply connected 2-manifold of
constant curvature κ , i.e., in the hyperbolic plane, the euclidean plane, or the 2-sphere, as κ =−1,0 or +1. A
geodesic space X is CAT(κ) if each triangle satisfies the CAT(κ)-inequality. The CAT(κ)-inequality implies
the CAT(κ ′)-inequality for κ ′ > κ . In particular, if a space is CAT(κ) with κ ≤ 0, then it is CAT(0).

Remark 2.1. he terminology “CAT(κ)-inequality” is due to Gromov [76, p.106]. The acronym CAT stands
for “comparison inequality of Alexandov and Toponogov,” although sometimes the “C” is said to stand for
“Cartan.”

The uniqueness of the geodesic connecting two points in a CAT(0) space X follows immediately from the
definitions. With a little work one can see that the constant map X → X which each point to a basepoint is
homotopic to the identity via geodesic contraction. This gives the following.

Theorem 2.1. If a complete geodesic space is CAT(0), then it is contractible.



2.2 The CAT(0)-inequality 5

The space X has curvature ≤ κ if it satisfies the CAT(κ)-inequality locally. We say that X is nonpositively
curved (abbreviated NPC) if this is true for κ = 0. (See [23].)

Theorem 2.2. (Globalization Theorem of Cartan-Hadamard, cf. [76, p. 119], [23, p. 193], or [4]). Suppose X
is a complete geodesic space of curvature ≤ κ

(i) Suppose κ ≤ 0. Then X is CAT(κ) if and only if it is simply connected.
(ii) ([76, p. 122]. Suppose κ > 0. Then X is CAT(κ) if and only if it has no closed geodesic of length

≤ 2π/
√

κ .

An immediate corollary to the first part of this theorem is the following.

Corollary 2.1. Suppose a complete geodesic space X has curvature≤ κ with κ ≤ 0. Then its universal cover omit

X̃ is CAT(κ).

The relevance of nonpositive curvature to geometric group theory is explained by the next theorem, which
combines Theorem 2.1 and Corollary 2.1.

Theorem 2.3. If a complete geodesic space is NPC, then it is aspherical.

Just as in the case where a polyhedron is obtained by gluing together euclidean polytopes, one can consider
a polyhedron X where each cell is identified with some convex polytope in a space of constant curvature
κ . In general we call such an X a piecewise constant curvature polyhedron and we say that it is piecewise
hyperbolic, piecewise euclidean, or piecewise spherical as κ =−1,0,or+1, respectively. As before any such
X is a length space and in fact, a geodesic space whenever it is locally finite.

Example 2.1. (Dimension one). If X is a connected graph with finitely many edges and we assign a length Should be Definitionstyle

to each edge, then X is a constant curvature polyhedron for any curvature κ for any κ . It is locally CAT(κ).
So, if each edge of X is assigned length 1, then X is an NPC cube complex. If X is a tree and each edge has
length 1, then, by Theorem 2.2 (i), X is a CAT(0) cube complex. We can also regard the metric on a graph X
as giving it a piecewise spherical structure. In this case, by part (ii) of Theorem 2.2, X is CAT(1) if and only
if it has no circuit (= closed geodesic) of length ≤ 2π .

We turn now to the question of when a piecewise constant curvature polyhedron (with the curvature
constant = κ) has curvature ≤ κ . The answer is provided by the “Link Condition,” stated in Theorem 2.4
below. The proof of the Link Condition is a combination of three facts: first, the link of any cell in a piecewise
constant curvature polyhedron X is naturally a piecewise spherical polyhedron; second, an open ball centered
at a point x ∈ X is isometric to an open neighborhood of the cone point in the cone (or “κ-cone”) on a
piecewise spherical polyhedron (essentially the link of x), and third, the κ-cone on a piecewise spherical
polyhedron L is CAT(κ) if and only if L is CAT(1). Since such graphs occur as links in 2-dimensional
constant curvature polyhedra, we get, via the Link Condition in Theorem 2.4, a condition for a 2-dimensional
polyhedron to be locally CAT(κ).

As was pointed out in Section 2.1, if F is a face of a geodesically convex polytope P in constant curvature
space, then Lk(F,P) is a polytope in the unit sphere of the tangent space. Hence, if τ is a cell of a constant
curvature polyhedron X , then Lk(τ,X) has a natural piecewise spherical structure. If x is any point of a face
F of a polytope P, then let Lk(x,P) be the space of inward-pointing tangent vectors at x. This space is a join
Sx(F)∗Lk(F,P) where Sx is the unit sphere in TxF . This space has a length metric as a subspace of the unit
sphere in TxP. (This is the metric of the “spherical join” defined in [23, p. 63]. The union of these spherical
joins at a point x of the polyhedron X is denoted Lk(x,X) and is called the space of directions at x.



6 2 Polyhedral preliminaries

Lemma 2.1. Let X be a piecewise constant curvature polyhedron, τ a cell of X and x a point in X. Then
Lk(τ,X) and Lk(x,X) are piecewise spherical polyhedra.

Suppose L is a piecewise spherical polyhedron. Define the euclidean cone on L by

ConeL := (L× [0,∞))/∼, (2.3)

where L× 0 is identified to a point. If (θ ,r) ∈ Sn−1× [0,∞) are polar coordinates in Rn, then by using
the Law of Cosines one can write a formula for the euclidean distance on Rn. By using (θ ,r) ∈ L× [0,∞)
as polar coordinatest he same formula defines a metric on the euclidean cone, Cone(L). is defined using
(θ ,r) ∈ L× [0,∞) as polar coordinates and the Law of Cosines in euclidean space. Similarly, for any real
number κ and nonnegative real number r, define the κ-cone of radius r on L, by

Coneκ
r (L) := (L× [0,r])/∼, (2.4)

where the metric is defined using polar coordinates and the Law of Cosines in the space of constant curvature
κ . (See [23, p. 59] for more details.) If κ > 0, we require the radius of the cone to be ≤ π/

√
κ .

Lemma 2.2. ([23, pp. 206-207]). Coneκ
r (L) is CAT(κ) if and only if L is CAT(1).

Lemma 2.2 immediately implies the second sentence of the next lemma.

Lemma 2.3. ([23, pp. 206-207]). If x is a point of a piecewise constant curvature polyhedron X, then for
small enough ε the ball of radius ε centered at x is isometric to Coneκ

ε (Lk(x,X)). Hence, X has curvature
≤ κ if and only if for all x ∈ X, Lk(x,X) is CAT(1).

Definition 2.1. A piecewise constant curvature polyhedron X satisfies the Link Condition if for each vertex v,
each connected component of Lk(v,X) is CAT(1).

Theorem 2.4. (The Link Condition, cf. [23, Theorem 5.4, p. 206]). A piecewise constant curvature polyhedron
X has curvature ≤ κ if and only if it satisfies the Link Condition.

Theorem 2.4 is almost the same as Lemma 2.3. The only difference is that in Lemma 2.3 links are CAT(1)
at all points x ∈ X , while in Theorem 2.4 this need only be true at vertices.

Example 2.2. (The Link Condition for 2-dimensional piecewise euclidean polyhedra).Should be Definitionstyle?

a) Let X be a piecewise euclidean polyhedron of dimension 2. If X is a surface, then the link of any vertex v
is then a circle. Each edge of the link corresponds to a 2-cell containing v. With its natural spherical structure,
the length of the edge is equal to the interior angle of the 2-cell at v. So, we get the following well-known
statement statement from folklore: the surface X is NPC if and only if the sum of the angles at each vertex is
≥ 2π . If X is a general 2-dimensional piecewise euclidean polyhedron, then the link of each vertex is a graph
and the Link Condition says that X is NPC if and only if for each vertex v, Lk(v,X) contains no circuit of
length < 2π (cf. Example 2.1).

b) If X is a square complex, then since each interior angle in a square is π/2, the Link Condition says
each link must be simple graph without 3-circuits. More generally, if each cell of X is a regular euclidean
m-gon, then each interior angle is (m−2)π/2m and hence, this is the length of each edge in Lk(v,X). So,
when m≥ 6, we see that X is NPC whenever each link is a simple graph (i.e., no circuits of length 1 or 2.
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Example 2.3. (Regular 2k-gonal complexes, cf. Examples 4.4 and 4.6 of Section 4.2). Suppose L1 is a simple
graph and that k is an integer ≥ 2. In Section 4.2 by using the theory of Coxeter groups we shall see that there
is a simply connected 2-complex Xk so that each 2-cell is a regular euclidean 2k-gon and the link of each is
L1. Since the vertex angle of a regular euclidean 2k-gon is π−π/k, L1 should be given a piecewise spherical
structure with each edge having length π−π/k. When k = 2, L1 is CAT(1) if and only if it has no circuits of
length 3, and when k > 2, it is always CAT(1). Thus, for k > 2 the 2-complex Xk is CAT(0) for any L1, while
for k = 2 it is CAT(0) provided L1 has no circuits of length 3.

To prove Theorem 2.4 we need Lemmas 2.4 and 2.5 below. Before stating Lemma 2.4 we need the notion
of a “spherical join”. For i = 1,2, suppose σi is a spherical polytope in Smi . The join these two polytopes,
denoted σ1 ∗σ2, is naturally a spherical polytope in Sm1+m2+1. The euclidean cones Cone0(σi) are polyhedral
cones in Rmi+1 and the product Cone0(σ1)×Cone0(σ2) is the polyhedral cone in Rm1+m2+1 corresponding
to the spherical polytope σ = σ1 ∗σ2. In other words, the link of cone point of Cone0(σ1)×Cone0(σ2) is
the spherical join σ = σ1 ∗σ2, where the spherical polytope σ1 ∗σ2 has its natural spherical metric. If, for
i = 1,2, Li is a piecewise spherical polyhedron, then the spherical join, L1 ∗L2, is defined by

L1 ∗L2 :=
⋃

(σ1,σ2)

σ1 ∗σ2, (2.5)

(Here (σ1,σ2) ∈ P(L1)×P(L2), where P(Li) means the poset of cells in Li, including the empty cell, and
either σ1 or σ2 is nonempty.)

The proof of the next lemma is easy.

Lemma 2.4. Suppose L1 and L2 are piecewise spherical polyhedra. Then L1 ∗L2 is CAT(1) if and only if
both L1 and L2 are CAT(1).

Lemma 2.5. If X is a constant curvature polyhedron, then either of the following conditions is equivalent to
the Link Condition for X.

(1) For each x ∈ X, Lk(x,X) is CAT(1).
(2) For each cell τ of X, Lk(τ,X) is CAT(1).
(3) For each cell τ of X, Lk(τ,X) has no closed geodesic of length ≤ 2π .

Proof. If x lies in the relative interior of a k-dimensional cell τ of X , then Lk(x,X) is isometric to the spherical
join Sk−1 ∗Lk(τ,X). By Lemma 2.5, either Lk(x,X) and Lk(τ,X) are both CAT(1) or neither is CAT(1).

Proof (of Theorem 2.4). Given a vertex v ∈ X , put L = Lk(v,X). If τ is a cell of X containing v, then there is fix

a corresponding cell τ ′ in L (with dimτ ′ = dimτ−1) and Lk(τ,X) can be identified with Lk(τ ′,L). If L is
locally CAT(1), then Lk(τ ′,L) is CAT(1). Hence, if the link of each vertex of X is CAT(1), then Lk(τ,X)
is CAT(1) for each cell τ of X and therefore, by Lemma 2.5, Lk(x.X) is CAT(1) for all points x ∈ X . By
Lemma 2.3, this is equivalent to X having curvature ≤ κ .

2.2.1 Piecewise hyperbolic polyhedra

One also can consider polyhedra of constant curvature −1 (i.e., piecewise hyperberolic polyhedra). Each cell
of such a piecewise hyperbolic cell complex is a convex polytope in some hyperbolic space Hn. As before,
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the link of each cell in this cell complex is piecewise spherical complex and by Theorem 2.4, X has curvature
≤−1 if and only if each link is CAT(1).

Next we consider the possibility of deforming the metric on a piecewise euclidean cell complex Xe to a
piecewise hyperbolic cell complex Xh. If Xe is NPC, then when will Xh be CAT(−1)? The problem is that
since the angles change when we deform a euclidean polytope to one which is hyperbolic, the links in Xe
might not remain CAT(1) in Xh. If Pe is a small euclidean polytope, say with all edge lengths < ε , then a
small deformation will be small hyperbolic polytope Ph. The link of a face in Ph will be a small deformation of
the link of the corresponding face of Ph. A precise formulation of this result can be found in [102]. However,
after even a small deformation, the link of the cell in Xh may fail to be CAT(1). The reason is that if a closed
geodesic in the link of a cell in a piecewise euclidean cell complex has length = 2π , then under a small
deformation its length can become < 2π . For example, each angle of a regular convex 4-gon in H2 is < π/2.
So, if a euclidean square complex has a vertex link with a circuit with 4-edges, then after deformation this
circuit will become a closed geodesic in the link of length < 2π; hence, the hyperbolic square complex
will fail to be locally CAT(−1). The condition that the link have no such 4-circuits is the “no � condition”
discussed below. More generally, given a compact 2-dimensional piecewise euclidean cell complex X , it caninsert reference

deformed to a piecewise hyperbolic complex of curvature ≤−1 provided that for each vertex v of X , each
circuit of Lk(v,X) has length > 2π , cf. Example 2.2. (It may be necessary be necessary to first rescale the
metric on X so that all its edge lengths are small.)

Definition 2.2. A piecewise spherical complex L is large if it is CAT(1). The cell complex L is extra large
if the length of the shortest closed geodesic in L is strictly greater than 2π and if the same holds true for
Lk(σ ,L) for any cell σ in L.

Lemma 2.6. (Moussong [102, Lemma 5.11]). Suppose L is a piecewise spherical cell complex with finitely
many cells. If L is extra large, then any sufficiently small deformation of it will be CAT(1)

A corollary of this lemma is the following.

Proposition 2.1. (Moussong [102]). Suppose X is a NPC piecewise euclidean cell complex with finitely many
shapes of cells so that for each cell σ of X, Lk(σ ,L) is extra large. Then, after rescaling the metric, X can be
deformed to a piecewise hyperbolic cell complex with curvature ≤−1.

2.2.2 A few remarks concerning word hyperbolic groups

The most important chapter in geometric group theory begins with Gromov’s work on hyperbolic groups
in [76]. He first defines what it means for metric space to be hyperbolic - his definition encapsulates the
notion of having negative curvature in the large. The definition is easiest to state for a geodesic metric spaces.
A geodesic in triangle in a geodesic metric space X is δ -thin if the distance from any point x on one side
of the triangle to the union of the other two sides is ≤ δ . The geodesic space X is hyperbolic if there is a
constant δ > 0 so that every triangle in X is δ -thin. (See [23, pp. 408–409], [76].) A finitely generated group
G with a finite set of generators S is word hyperbolic if its Cayley graph Cay(G,S) is a hyperbolic metric
space. The property of being hyperbolic is invariant under quasi-isometry. It follows that the property of a
group being word hyperbolic is independent of the choice of generating set S. The action of a group on a
metric space X by isometries is geometric if the action is proper and cocompact. The Fundamental Lemma of
Geometric Group Theory states that if a group G acts geometrically on two metric spaces X and X ′ then they
are quasi-isometric; in particular, any such X is quasi-isometric to Cay(G,S). Since the hyperbolic plane H2
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is a hyperbolic, any CAT(−1)-space is a hyperbolic metric space; hence, any group which acts properly on a
CAT(−1)-space is word hyperbolic. The above discussion is summarized in the next lemma.

Lemma 2.7. If a group G acts geometrically on a piecewise hyperbolic CAT(−1) cell complex X, then G is
word hyperbolic.

2.2.3 Reshetnyak’s Gluing Lemma

2.3 Flag complexes and Gromov’s Lemma

A ∆ -complex L is a flag complex if it is a simplicial complex and if it satisfies the following: any finite set of
vertices that are pairwise connected by edges of L, spans a simplex of L. In other words, any clique in the
1-skeleton L1 spans a simplex of L. (A clique in a simplicial graph Γ is a finite set of vertices of Γ such that
the induced subgraph is a complete graph. Note that a complete graph is the 1-skeleton of a simplex.)

Remark 2.2. (Comments about terminology). Combinatorialists use the term “clique complex” instead of
“flag complex”. The clique complex of a simplicial graph Γ is the simplicial complex whose simplices are
the cliques in Γ . So, a simplicial complex L is a flag complex if and only if L is equal to the clique complex
determined by L1.

Here is a slick version of this definition. A simplicial complex L is a flag complex if and only if every
non-simplex contains a non-edge (a set of vertices is a “non-simplex” if it is not the vertex set of a simplex).

A simplicial graph is a circuit of length m if it is isomorphic to the boundary complex of an m-gon). A
circuit Γ of length m is a flag complex if and only if m > 3. More generally, a simplicial graph Γ is a flag
complex if and only if it contains no circuits of length 3.

Instead of “flag complex” Gromov [76] used the terminology that L satisfies “the no ∆ condition” (pro-
nounced “the no triangle condition”).

A natural way in which flag complexes arise is as order complexes of partially ordered sets.

Example 2.4. (Barycentric subdivisions). If X is a classical convex cell complex, then the order complex of
its poset of cells is a simplicial complex. The geometric realization of the order complex is the barycentric
subdivision of X . It follows that the requirement of being a flag complex puts no restriction on the topological
type of X .

The next lemma is left as an exercise for the reader.

Lemma 2.8. (Some properties of flag complexes).

(i) A full subcomplex of a flag complex is a flag complex.
(ii) The join of two flag complexes is a flag complex.

(iii) The link of a simplex in a flag complex is a flag complex.

Lemma 2.9. (Gromov’s Lemma, cf. [76, p. 122], [23, p. 211] or [48, Lemma I.6.1]). Suppose L is a finite
dimensional all right, piecewise spherical simplicial complex (or ∆ -complex). Then L is CAT(1) if and only
if it is a flag complex.
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Example 2.5. (An all right simplicial complex that is not CAT(1)). Start with the triangulation of S2 as the
boundary complex of an octahedron in which each 2-simplex is all right. Let L be the complement of the
interior of one of the 2-simplices ∆ . Of course, L is not a flag complex since it has an empty triangle, namely
∂∆ . Note that ∂∆ is a short closed geodesic in L (its length is 3π/2). (To see that ∂∆ is a closed geodesic, it
suffices to show that it is a local geodesic. This follows from the fact that at each vertex of ∂∆ the link is a
circular arc of length 3π/2.)

Combining Gromov’s Lemma with the observation in Example 2.4 about barycentric subdivisions, we get
the following well-known result of Berestovskii.

Corollary 2.2. (Berestovskii [11]). Any finite dimensional polyhedron can be given a piecewise spherical
CAT(1) metric.

The form in which Lemma 2.9 will most often be used is that in the following corollary. This corollary
will also be referred to as “Gromov’s Lemma.”

Corollary 2.3. (Gromov’s Lemma for cube complexes). A piecewise euclidean cube complex is NPC if and
only if the link of each vertex is a flag complex.

Proof (of Gromov’s Lemma). If L has curvature ≤ 1 and is not a flag complex, then an argument similar to
that in Example 2.5 shows that L has a short geodesic. It folllows by induction on dimension that if L is not a
flag complex, then at least one of its links has a short closed geodesic of length 3π/2.

In all right simplicial complex the closed star of a vertex v is the closed ball Bπ/2(v). An abbreviated
version of Gromov’s argument goes as follows. Suppose L is a flag complex and that γ is a closed geodesic
which intersects the interior of Bπ/2(v) in a geodesic arc γ ′. The claim is that l(γ ′) = π . (This is proved by
developing the surface determined by v and γ ′ onto the northern hemisphere of S2.) Hence, if l(γ) < 2π ,
then it cannot intersect two disjoint open stars about vertices. So, if V denotes the set of vertices v such that
γ intersects the interior of Bπ/2(v), then any two element of V are connected by an edge. Since L is a flag
complex V must span a simplex of L. But an all right spherical simplex does not contain a closed geodesic.
So, l(γ)≥ 2π .

The no � condition. When is an all right flag complex L extra large as in Definition 2.2? Since all edge
lengths are = π/2, all closed geodesic of length 2π must correspond to an “empty 4-circuit” in L, i.e., a
4-circuit in L so that there is no other edge of L connecting a pair of diagonally opposite edges in the 4-circuit.
So, the answer is simple: L cannot contain any empty 4-circuit. (In [76] this is called the no � condition.)
Proposition 2.1 then yields the following.

Lemma 2.10. A cube complex can be given a piecewise hyperbolic structure with curvature ≤−1 if and only
if the link of each vertex is a flag complex satisfying the no � condition.

2.4 Some first examples of NPC cube complexes

2.4.1 Products

Any graph is a 1-dimensional NPC cube complex. Hence, any tree is a CAT(0) cube complex (by Theorem 2.2
(i)).repeat from earlier

G = Ω?
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A product of graphs is naturally an NPC cube complex. To see this, suppose X = G1×·· ·×Gn is a product
of graphs. The cubes in X correspond to collections {c1, . . . ,cn}, where ci is either an edge or a vertex of Gi.
The corresponding cube �(c1, . . . ,cn) is isometric to c1×·· ·× cn. Its dimension is the number of ci which
are edges. If v = (v1, . . . ,vn) is a vertex of X , then its link is the n-fold join:

Lk(v,X) =
i=n∗
i=1

Lk(vi,Gi) (2.6)

Noting that the link of a vertex in a graph is a discrete space, we see that Lk(v,X) is a simplicial complex in
which each (k−1)-simplex is a join of k points. With the metric of a spherical join, each such simplex is all
right. By Lemma 2.8 (ii), Lk(v,X) is a flag complex. By Gromov’s Lemma 2.3, X is an NPC cube complex.
A similar argument gives the following result.

Proposition 2.2. The product of cube complexes is a cube complex. If X = X1×·· ·×Xn is such a product
and each Xi is NPC, then X is NPC.

Remark 2.3. One can prove directly, without mentioning the link condition, that a product of NPC spaces is
NPC. (See [23, Exercise 1.9 (c), p. 163 and Examples 1.15(3), p. 167].)

Example 2.6. (The cubical complex PL). Given a finite simplicial complex L with vertex set I, in section 3.1
of Chapter 3 we define a subcomplex of the cube [−1,1]I such that the link at each vertex is L. It follows
from Gromov’s Lemma that if L is a flag complex, then PL is NPC.

2.4.2 Alternating link complements

2.4.3 Square complexes

Higman groups. In Serre’s book. Paper by Martin put in bibliography

Burger-Mozes. Wise

2.4.4 Configuration spaces of a graph

Given a space Y and a natural number n ∈ N, the configuration space of n ordered points in Y is the space of Γ instead of G?

reference [132] Świn-tuples (y1, . . . ,yn) ∈Y n such that yi 6= y j for 1≤ i < j ≤ n, in other words, it is the complement in Y n of the
fat diagonal. When Y is a cell complex we shall often remove a neighborhood of the fat diagonal instead. For
example, suppose Y is a connected graph G. Define Cn(G) to be the subcomplex of Gn consisting of all cubes
of the form �(c1, . . . ,cn), where {c1, . . . ,cn} is a collection of pairwise disjoint cells of G. In other words,
Cn(G) is the union of all cubes in Gn which do not meet the fat diagonal. After replacing G by a suitable
subdivision, it is easy to see that Cn is a deformation retract of the complement of the fat diagonal in Gn. So,
Cn(G) is a model for the configuration of n ordered points in G.

The symmetric group Σn acts freely and cellularly on Cn(G). The orbit space Cn(G)/Σn is denoted by
Cn(G) and is called the unordered configuration space of G. Since Σn acts freely on Cn(G), the unordered
configuration space is also a cube complex. A k-cube in Cn(G) corresponds to a set {x1, . . . ,xk,u1, . . . ,un−k},
where the xi are edges of G and the ui are vertices. The cube is denoted �{x1, . . . ,xk,u1, . . . ,un−k}.
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Proposition 2.3. The cube complexes Cn(G) and Cn(G) are NPC.

Proof. After subdividing we may assume that G is a simplicial graph. Since Cn(G) is a covering space of
Cn(G), it suffices to consider Cn(G) . Put C = Cn(G). According to Gromov’s Lemma 2.3, we only need
show that the link of each vertex of C is a flag complex. A vertex x of C has the form, x = (x1, . . . ,xn), where
{x1, . . . ,xn} is a collection of n disjoint vertices in G. By (2.6), Lk(x,Gn) is the join L1 ∗ · · · ∗ Ln, where
Li = Lk(xi,G). since C obtained from Gn by deleting certan open cells, Lk(x,C) is similarly, obtained from
Lk(x,Gn). First, notice that certain vertices must be deleted from Lk(x,Gn). This happens whenever xi and x j
are adjacent vertices in G. Indeed, if c = [xi,x j] denotes the edge from xi to x j, then all faces of the square
c× c, except for the vertices (xi,x j) and (x j,xi), are deleted. Let ui j be the vertex of Li corresponding tot
the direction from xi to x j. (Similarly, u jI ∈ L j corresponds to the direction from x j to xi.) Let L′i denote the
complement of

⋃
ui j in Li (a discrete set of vertices). Then Lk(x,C) is a subcomplex of the subjoin,

L′1 ∗ · · · ∗L′n < L1 ∗ · · · ∗Ln = Lk(x,Gn).

To obtain Lk(x,C) we must delete more simplices from L′1 ∗ · · · ∗ L′n. For example, suppose the distance
in G from xi to x j is 2. Let v be a vertex on the geodesic between them. The square [xi,v]× [x j,v] has
vertices (xi,x j), (xi,v), (v,v), (v,x j). Since interior of this square is deleted; however, the interiors of the
edges [xi,v] and[x j,v] are not deleted. If uiv ∈ L′i and u jv ∈ L′j are thedirections correspondin to these edges ,
then the interior of the 1-simplex uiv ∗u jv is deleted from L′i ∗L′j. Similarly, if y0, . . . ,yk are distinct vertices in
{x1, . . . ,xn} and each is another vertex v adjacent to all of them (as in Figure ??), and if uiv are corresponding
vertices of Lk(x,C) then the interior of the k-simplex u0v ∗ · · · ∗ukv is deleted. However, the point is that the
interior of each positive-dimensional subface of u0v ∗ · · · ∗ukv is also deleted. Since L′1 ∗ · · · ∗L′n is a join, it is
a flag complex (by Lemma 2.8 (ii)). The simplicial complex Lk(x,C) is obtained from this by deleting open
simplices and each edge of such a simplex is also deleted, so there are no “empty simplices”. It follows that
Lk(x,C) is a flag complex.

The fundamental groups of Cn(G) and Cn(G) are called, respectively, the pure braid group and braid
group of G and denoted by PBn(G) and Bn(G), [39]. (See also [2], [72], [132].)

The symmetric product of a graph. For any space Y , the symmetric group Σn acts on the n-fold product
Y n. The orbit space Y n/Σn is called the n-fold symmetric product of Y .

2.4.5 Graph braid groups embed in RAAGs

The discussion follows [39].later, after RAAGs

Given a graph G, define another graph ∆(G). The vertex set of ∆(G) is the edge set of G. Given e ∈
Edge(G), denote by e the corresponding vertex of ∆(G). Vertices e and f span an edge of ∆(G) if and only if
e and f are disjoint.

Let A∆(G) be the RAAG associated to ∆(G) and let BA∆(G) be the standard model for its classifying space.
The is a 1-cell of BA∆(G) for each vertex of ∆(G). Choose an orientation for edge of G. Define a cubical map
Φ : Cn(G)→ BA∆(G) by sending the k-cube �{x1, . . . ,xk,u1, . . . ,un−k} to the cube in BA∆(G) spanned by the
edges corresponding to x1, . . . ,xk while respecting the orientations of all edges. (The image of the k-cube in
BA∆(G) is a k-torus.) It is proved in [39, Theorem 2] that Φ is a local isometry and hence, is π1-injective.)
This gives the following.
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Proposition 2.4. (Crisp-Weist [39]). The map Φ , defined above, induces an injection, Bn(G) ↪→ A∆(G).

In other words, any graph braid group is a subgroup of a RAAG.





Chapter 3
Right-angled complexes and groups

Many examples of cubical complexes can be defined using the notion of a “polyhedral product” with respect
to a simplicial complex L. Under suitable conditions the universal cover of such a polyhedral product often
will be CAT(0).

The fundamental group of a polyhedral product is the “graph product” of the fundamental groups of its
factors.

Dual cones, dual of a simplicial complex, strict fundamental domain

3.1 Polyhedral products

Let L be a simplicial complex with vertex set I. The poset of simplices (including the empty simplex) is Change I to V ?

denoted by S(L). If σ is a simplex of L, then I(σ) denotes its vertex set. Vertσ?

Suppose that A = {(Ai,Bi)}i∈I is a collection of pairs of spaces with base points ∗i chosen in Bi.

Definition 3.1. The polyhedral product of A with respect to L is the subset AL of the product ∏i∈I Ai
consisting of the points (xi)i∈I satisfying the following two conditions:

(a) xi = ∗i for all but finitely many i,
(b) {i ∈ I | xi /∈ Bi} is a simplex of L.

For pairs M < M′ of subcomplexes of L, the base points determine natural inclusions AM ↪→ AM′ . When L
is finite, the polyhedral product inherits its topology from the product ∏i∈I Ai. In general AL acquires the
topology of the direct limit, limAM , as M runs through the finite subcomplexes.

One can also view AL as a union of products as follows. For each simplex σ in S(L) put

Aσ = ∏
i∈Vertσ

Ai× ∏
i/∈Vertσ

Bi

So, if σ is the empty simplex, then Aσ = ∏Bi. Also, note that if each Bi = ∗i, then Aσ is just the product of
the Ai, i ∈ Vertσ . Then

AL =
⋃

σ∈S(L)
Aσ . (3.1)

15
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The topology on AL also can be explained using (3.1). If ∆ denotes the full simplex on I, then A∆ is the
subset of the product of the Ai satisfying (a). So, A∆ is the union of all Aσ over all finite subsets of σ ≤ I.
Give A∆ the direct limit topology and AL ≤ A∆ is the induced topology.

The main examples of this book are when:ZL?

(1) each Ai is the interval [0,1], Bi = ∗i = 1,
(2) each Ai is the interval [−1,1], Bi = ∂ [−1,1] = {±1} and ∗i = 1,
(3) each Bi is a discrete space Ei and Ai = ConeEi and ∗i ∈ Ei
(4) each Ai = S1 and Bi = ∗i = 1.

In (3) ConeEi means the cone on Ei, i.e., it is the quotient space (Ei× [0,1])/∼. For example, if Ei = {±1},
then ConeEi can be identified with [−1,1]. The cone point of Ei is the point 0i corresponding to 0 ∈ [0,1]
Choose an element ∗i ∈ EI to be the base point. Let ConeE denote the I-tuple (ConeEi,Ei,∗i)i∈I .

Denote the polyhedral products in (1),(2), (3), (4) by KL, PL, ZL, and TL, respectively, i.e.,

KL = (0,1],1)L, (3.2)

PL = ([−1,1],{±1})L, (3.3)

ZL = (ConeE,E)L, (3.4)

TL = (S1,1)L. (3.5)

When the pairs (Ai,Bi) are independent of i so that (Ai,Bi) = (A,B), we have writen simply (A,B)L instead
of using boldface (for example, this is the case in (3.2), (3.3) and (3.5)).

3.1.1 The cube complexes KL , PL , ZL , and TL

Since polyhedral products are subspaces of products, PL is a cubical subcomplex of the cube [−1,1]I while
TL is a subcomplex of the torus, (S1)I . Regarding S1 as a 1-cube complex with one edge and one vertex,
the product (S1)I becomes a cube complex and TL is a cubical subcomplex. The cone, ConeEi, is the union
of intervals, one for each point of Ei, glued together at the cone point 0i. So, ConeEi is a 1-cube complex.
Hence, the product ∏i∈I ConeEi is a cube complex. It follows that the polyhedral product ZL, defined by (3.4),
is also a cube complex. Each of these cube complexes, KL, PL, ZL and TL has the same dimension, namely,
1+dim(L).

The complex PL. Let C2 = {±1} be the cyclic group of order 2 and denote by (C2)
I (or by ∑i∈I C2 the

direct sum of I copies of C2. Similarly, [−1,1]I is the set of all (ti) in the product satisfying condition (a)
in Definition 3.1. The group (C2)

I y [−1,1]I as a reflection group. Each element of I can be regarded as a
standard basis vector for the euclidean space RI . So, each (k−1)-face σ of the full simplex on I determines a
k-dimensional subspace Rσ spanned by the vertex set I(σ) of σ . The cube complex PL is stable under the
(C2)

I-action on [−1,1]I . Any k-dimensional face of [−1,1]I is parallel to some Rσ . We denote such a face
by �σ . Moreover, given σ the corresponding set of k-cubes forms a single (C2)

I-orbit which we denote by
orb(�σ ). In other words, orb�σ ∼= (C2)

I−I(σ)× [−1,1]I(σ). Thus,

PL =
⋃

σ∈S(L)
orb�σ . (3.6)
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So, orb� /0 means the (C2)
I-orbit of a vertex, i.e., orb� /0 = {±1}I .

Example 3.1. some kind of examples

(i) If L consists of n vertices and no higher dimensional cells, then PL is the 1-skeleton of an n-cube.
(ii) If L = ∂∆ n is the boundary complex of an n-simplex, then PL is the boundary complex of an (n+1)-cube,

i.e., PL ∼= Sn

(iii) Suppose L is an m-circuit (that is, a circle triangulated as the boundary of an m-gon). The square complex
PL is a closed 2-manifold. (since the link of each vertex is S1 and the link of each edge is S0). It is easily
seen to be connected and orientable. Its Euler characteristic is 2m−m2m−1 +m2m−2 = 2m(1−m/4).
This example appeared already in Coxeter’s 1938 paper [37, p. 57]. (Thanks to Alex Suciu for pointing
out this reference.) If m = 4, PL is a flat 2-torus.

If the 1-skeleton L1 of L is not a complete graph, then PL is not simply connected. In general, π1(PL)
depends only on L1 (cf. [51]).

The complex ZL. The polyhedral product, ZL := (ConeE)L, defined by (3.4), is a generalization of the
previous example PL of a polyhedral product of intervals.

Example 3.2. Suppose, for i= 1,2, that Ei is a finite set of mi points. If L is a 1-simplex σ1, then the polyhedral
product Zσ1 = ConeE1×ConeE2 is a square complex. Each square has the form Conee1×Conee2, where
ei ∈ Ei. This square complex also has the structure of cone, namely the cone on Z∂σ1 = (ConeE1×E2)∪
(E1×ConeE2). The space Z∂σ1 can be identified with the join E1 ∗E2 (a complete bipartite graph). (See
Figure ??.)

More generally, suppose σ is an (n−1)-simplex with vertex set I = {1, . . . ,n} and that Ei is a finite set of
cardinality mi. Then Zσ is the product, ConeE1×·· ·×ConeEn, which is a cube complex. Moreover, Z∂σ is
homeomorphic to the join, E1 ∗ · · · ∗En. If I(σ) is the vertex set of σ regarded as a simplicial complex with
no edges, then ZI(σ) is a graph – the star of a vertex lying above i ∈ I is isomorphic to ConeEi. Why say the last sentence?

The fundamental chamber KL. Suppose each Ei is a singleton, necessarily the base point. The polyhedral
product ZL becomes

KL := (Cone∗i,∗i)
L. (3.7)

Since (Cone∗i,∗i) ∼= ([0,1],1), KL is naturally a cube complex. Since each cube contains the base point
∗= (∗i)i∈I , KL is a cone – in fact it can be identified with the cone on the barycentric subdivision of L. Note
that KL is a subcomplex of ZL. In particular, it is a subcomplex of PL. We have that PL is a subcomplex of
[−1,1]I and KL can be identified with the intersection PL∩ [0,1]I . So, it is a strict fundamental domain, in the
sense defined below, for the (C2)

I-action on PL. For this reason, KL is called the fundamental chamber.
To simplify notation, put K = KL and for each vertex i ∈ I, define the mirror Ki to be the intersection of K

with the hyperplane xi = 0. Similarly, for each simplex σ ∈ S(L), put

Kσ =
⋂

i∈Vertσ

Ki = {x ∈ K | xi = 0 for all i ∈ I(σ)}.

later in links

TL, the standard classifying space for a RAAG. The cube complex TL, defined by (3.5), is a polyhedral
product of circles. If L = ∆ is an (n−1)-simplex, then T∆ is the n-torus, while T∂∆ is the (n−1)-skeleton of
the n-torus. If L is a flag complex, then TL is the Salvetti complex. Thus, TL is a subcomplex of T∆ where
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∆ denotess the full simplex on I. In other words, TL is the union of subtori Tσ , where σ ∈ S(L), cf. (3.1).
(In some contexts, we might define the Salvetti complex to be the covering space of TL with group of deck
transformations the RACG associated to L.)

Definition of a strict fundamental domain.

Definition 3.2. Suppose G is a discrete group acting on a space X . A closed subspace Y < X is a strict
fundamental domain if it intersects each G-orbit in exactly one point.

We leave the proof of the next lemma as an exercise for the reader.do we need to assume proper?

Lemma 3.1. Suppose G y X with strict fundamental domain Y . Let π : X → X/G be projection to the orbit
space and let π = π|Y . Then π : Y → X/G is a homeomorphism.

One can reconstruct the G-action on X from the group G, the strict fundamental domain Y , and the
knowledge of the isotropy subgroups Gy at each point y ∈ Y (where Gy = {g ∈ G | gy = y}). Define an
equivalence relation ∼ on G×Y by

(g,y)∼ (g′,y′) ⇐⇒ y = y′ and g−1g′ ∈ Gy . (3.8)

The basic construction is the G-space D(G,Y ) defined by D(G,Y ) = (G×Y )/ ∼ . Let [g,y] denote the
equivalence class of (g,y).

Lemma 3.2. (Properties of the basic construction).

(i) The natural map y 7→ [1,y] from Y into D(G,Y ) is an embedding (which we regard as an inclusion).
(ii) G y D(G,Y ) and Y is a strict fundamental domain.

Links of vertices. One of the main features of PL is that the link of each of its vertices can be identified with
L. We state this as follows.

Lemma 3.3. For each vertex v of PL, Lk(v,PL) = L.

Consider the 1-cube complex ConeEi. Let 0i denote the cone point. There are two types of vertices in
ConeEi: the cone point 0i is a vertex as is each element e ∈ Ei. As for links, Lk(0i,ConeEi) = Ei, while for
each e ∈ Ei, Lk(e,ConeEi) is a point. Next consider the general case, ZL := (ConeE)L. Any vertex v of ZL
has the form v = (vi)i∈I , where vi is a vertex of ConeEi, i.e., either vi ∈ Ei or vi = 0i. Put

τ(v) = {i ∈| vi = 0i}. (3.9)

So, τ(v) is a simplex of L (possibly the empty simplex). This proves the following lemma which describes
links in ZL.

Lemma 3.4. For a vertex v of ZL let τ(v) be defined by (3.9). The link of v in ZL is the join:

Lk(v,ZL) = Lk(τ(v),L) ∗ ∗i∈I(τ(v)) Ei. (3.10)

In particular, if each vi lies in some Ei, then Lk(v,ZL) = L.

Remark 3.1. If each Ei consists of two points, then ZL = PL. However, the cubical structure on PL is coarserearlier

then the one we get by identifying it with ZL. The reason is that if we identify [−1,1] with Cone{±1}, then
we should subdivide [−1,1] into two intervals, [−1,0] and [0,1]. Thus, when thought of as ZL, each n-cube in
PL is subdivided into 2n cubes.
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Definition 3.3. (Compare Definition 3.1 and formula (3.1)). Suppose {Xi}i∈I is a collection of spaces indexedearlier

by the set I of verices of a simplicial complex L. For any simplex σ of L, let X(σ) denote the join∗i∈I(σ) Xi.
The polyhedral join over L of {Xi}i∈I is defined by

∗L Xi :=
⋃

σ∈S(L)
X(σ). (3.11)

Lemma 3.5. The link of each vertex v in TL is a polyhedral join of 0-spheres, Lk(v,TL) =∗L S0.

Lemma 3.6. The polyhedral join of flag complexes is a flag complex.

The next result follows from Lemma 2.3 (Gromov’s Lemma).

Theorem 3.1. The cube complexes KL, PL, ZL and TL are NPC if and only if L is a flag complex.

Proof. The issue is to show that links of vertices in PL, ZL and TL are flag complexes if and only if L is a flag
complex. So, suppose L is a flag complex. Since the link of each vertex in PL is L (by Lemma 3.3), this is
immediate for PL. By Lemma 3.4, the link of a vertex v of ZL has the form Lk(τ(v),L) ∗ ∗i∈I(τ(v)) Ei. By
part (iii) of Lemma 2.8, Lk(τ(v),L) is a flag complex and by part (ii), so is∗i∈I(τ(v)) Ei. Another application
of part (ii) gives that the join, Lk(τ(v),L) ∗ ∗i∈I(τ(v)) Ei, is a flag. complex. The complex KL is the special
case of ZL where each Ei is a singleton. As for TL, if L is a flag complex, then, by Lemma 3.6, so is∗L S0;
hence, by Lemma 3.5, the link of each vertex in TL is a flag complex.

Universal covers. More important for us than the cube complexes PL, ZL and TL will be their universal
covers, denoted P̃L, Z̃L and T̃L, respectively. If L is a flag complex, then by the Cartan-Hadamard Theorem
(Theorem 2.2 (i)), these universal covers are CAT(0) cube complexes. The complex P̃L is the Davis complex
for the right-angled Coxeter group associated to L, when each Ei has a least two points the complex Z̃L is a
right-angled building, and T̃L is the universal cover of the Salvetti complex for the right-angled Artin group
associated to L. In order to describe the groups which act on these complexes we need the notion of a “graph
product” of groups, developed in the next subsection.

Here is another straightforward application of Gromov’s Lemma.

Lemma 3.7. For each i ∈ I suppose Ai is an NPC cube complex and its basepoint ∗i ∈ Ai is a vertex of Ai.
Put A = (Ai,∗i). Then AL is naturally a cube complex. Moreover, it is NPC if and only if L is a flag complex.

3.1.2 Polyhedral products of NPC cube complexes

Theorem 3.2. A polyhedral product over a flag complex L of NPC cube complexes is an NPC cube complex.

Examples? RACGs. Start with a RACG and replace each generator with another RACG, eg., the infinite
dihedral group D∞ (cf..

3.1.3 Graph products of groups

Suppose {Gi}i∈I is a collection of groups indexed by the vertex set I of a simplicial graph L1. Their graph
product, denoted ∏L1 Gi, is the quotient of the free product of the Gi by the normal subgroup generated by all
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commutators of the form [gi,g j], where {i, j} ∈ EdgeL1, gi ∈ Gi and g j ∈ G j. (These were first studied by
Droms [65].)

As examples, if EdgeL1 = /0, then the graph product is the free product, while if L1 is a complete graph,
then the graph product is the direct sum: ∏L1 Gi = ∑i∈I Gi. (The direct sum ∑i∈I Gi is the subset of the direct
product where only finitely many coordinates are not equal to the identity element of Gi.) There is a canonical
epimorphism p : ∏L1 Gi→ ∑i∈I Gi.

Given a system of groups, the notion of their “direct limit” is defined, for example, on page 1 of [128].
The graph product alternatively can be described as the direct limit of certain system of groups indexed by the
poset of cells in L1:

Gi, i ∈ I, Gi×G j, {i, j} ∈ L(1),

together with the natural inclusions Gi ↪→ Gi×G j. The graph product ∏L1 Gi is then the direct limit of this
system of groups. (In Chapter 5 this system of groups will be presented as a nice example of a “simple
complex of groups”.)

Example 3.3. (RACGs and RAAGs). If each Gi is the cyclic group of order two, then the graph product isexamples

called the right-angled Coxeter group associated to L1. (The term “right-angled Coxeter group” will often
be abbreviated to RACG.) If each Gi is the infinite cyclic group, then ∏L1 Z is the right-angled Artin group
(abbreviated to RAAG) associated to L1.

Let G = ∑i∈I Gi denote the direct sum. Suppose Gi y Ei. Then G y (ConeE)∆ , where ∆ means the full
simplex on I. The polyhedral product ZL = (ConeE)L is stable under the G-action. Choose base points ∗i ∈ Ei
so that the I-tuple ∗= (∗i)i∈I is a base point for the polyhedral product ZL. Let KL be the subcomplex of ZL
corresponding to this choice of base points. The cone point 0i of ConeEi lies in KL and its isotropy subgroup
in G is Gi. Let p : Z̃L→ ZL be the universal cover and let ∗̃ be a lift of ∗ in Z̃L. Since KL is simply connected,
each component of p−1(KL) is mapped homeomorphically onto KL. Let K̃ denote the component containing
∗̃ and let 0̃i denote the inverse image of 0i in K̃.

Lemma 3.8. With notation as above, let G = ∑Gi be the direct sum and let Γ = ∏L1 Gi be the graph product.
Let ZL = (ConeE)L be the polyhedral product and let Z̃L be its universal cover. For each i ∈ I, suppose the
Gi-action on Ei is simply transitive. Then Γ is the group of all lifts of the G-action to Z̃L. Hence, there is a
short exact sequence,

1→ π1(ZL)→ Γ → G→ 1 .

Proof. Let H be the group of all lifts of the G-action to Z̃L and let ϕ : H→ be the canonical projection. Thefix

subgroup Hi consisting of all lifts which fix the point c̃i projects isomorphically onto Gi. If {i, j} ∈ L(1), then
ConeEi×ConeE j is a subcomplex of ZL and there is an isomorphic copy of this subcomplex in K̃ containing
∗̃. In particular, this subcomplex contains the square [∗̃i, c̃i]× [∗̃ j, c̃ j]. The subgroup Hi×H j fixes the point
c̃i× c̃ j and projects isomorphically to Gi×G j. So, Hi×H j is the group of all lifts of Gi×G j which fix c̃i× c̃ j.
In particular, this shows that whenever {i, j} is an edge of L1, the subgroups Hi and H j commute. It follows
from this and the universal property of the direct limit (cf. ??), that the natural inclusions, Gi→ Hi ↪→ H and
Gi×G j→Hi×H j ↪→H, with |[i, j} ∈EdgeL1, extend to a homomorphism φ : G→H from the graph product
to the group of lifts. Since Gi

I acts simply transitively on (Ei)
I , H acts simply transitively on p−1((Ei)

I). A
straighforward argument implies that φ : G→ H is an isomorphism.

Example 3.4. Let L be a finite dimensional flag complex on vertex set I. For each i ∈ I, suppose Gi is a
nontrivial finite group. Let ZL = (ConeGi,∗i)

L be the polyhedral product and Z̃L the associated RAB. Let
Γ be the graph product. Then Γ acts properly, each finite subgroup is conjugate to a finite subgroup of
G = ∑i∈I Gi. It follows that Z̃L is the universal proper Γ -space EG.
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Next consider a polyhedral product, where each Ai = BGi, the classifying space of a discrete group Gi.

Proposition 3.1. Suppose L is a flag complex. Then the polyhedral product (BGi,∗i)
L is the classifying space

for the graph product Γ = ∏L1 Gi.

Proof. Let pi : EGi→BGi be the universal cover. The induced map of polyhedral products, (EGi, p−1(∗i))
L→

(BGi, i)
L, is then a covering projection. Since (EGi, p−1

i (∗i)) is contractible, (EGi, p−1
i (∗i)) and (ConeGi,Gi)

are homotopy equivalent as pairs; so, the polyhedral products ZL = (ConeGi,Gi)
L and YL = (EGi, p−1

i (∗i))
L

also are homotopy equivalent. Hence, their universal covers Z̃L and ỸL are homotopy equivalent. Moreover,
the group of lifts of the (∑i∈I Gi)-action on YL to ỸL is also identified with the graph product Γ . So, the
composition ỸL → YL → (BGi,∗i)

L is the universal cover and Γ is the group of deck transformations. By
Theorem 3.1, since L is a flag complex, ZL is NPC and hence, by the Cartan-Hadamard Theorem, Z̃L is
contractible. (Alternatively, it is proved in [49] that Z̃L is the standard realization of a right-angled building (a
“RAB”) and hence, is contractible (since the standard realization of any RAB is contractible, see ??). Since ỸL
is homotopy equivalent to Z̃L, it also is contractible. Hence, BΓ ∼ (BGi,∗i)

L.

Examples?

Example 3.5. (Standard classifying spaces for RAAGs and RACGs, cf. Examples 3.3). Suppose each Gi is Someplace else

infinite cyclic so that BGi = S1. For each simplex σ ∈ S(L), the polyhedral product (S1,∗i)
σ is a torus with

basis Vertσ . By Proposition 3.1, when L is a flag complex, TL = (S1,∗i)
L is the classifying space BAL for the

RAAG associated to L1. (The NPC cube complex TL from (3.5) in Subsection‘3.1.1 is the Salvetti complex
of AL.)

If each Gi is C2, then BC2 = RP∞. When L is a flag complex, (RP∞,∗i)
L is the classifying space BWL for

the RACG associated to L1.

Proposition 3.1 suggests that the fundamental group of an arbitrary polyhedral product with each Bi = ∗i is
a graph product of the fundamental groups of the factors. In fact, this is proved in [51, Theorem 2.18, p. 248].
We state this as the following proposition without giving the proof.

Proposition 3.2. ([51]). Suppose {Ai}i∈I is a collection of path connected CW complexes indexed by the
vertex set of a simplicial complex L. Let ∗i be a base point and put A = (Ai,∗i) and Gi = π1(Ai,∗i). Then
π1(AL) is the graph product Γ = ∏L1 Gi. (In particular, π1(AL) depends only on the 1-skeleton of L.)

Actually a more general fact is proved in [51]: if the Bi is only required to be a subspace of Ai, then π1(AL)
is an appropriately defined “generalized graph product”.

3.1.4 Graph wreath products

Suppose L1 is a simple graph on vertex set I (which need not be finite) and Γ = ∏L1 G denotes the graph
product. Let J be a group of automorphisms L1. The J-action on L1 naturally induces a J-action on Γ via
group automorphisms. The semidirect product Γ o J is called the (restricted) graph wreath product of the G.
(The terminology was introduced in [91].) When L1 is the complete graph, Γ is the direct sum ∑i∈I G and
Γ o J is the ordinary restricted wreath product. (“Restricted” refers to the fact that we are using the direct
sum rather than the direct product.)

The graph wreath product Γ o J acts naturally on 1) the universal cover Z̃L of the polyhedral product
ZL = (ConeG,G); it also acts on 2) the classifying space EΓ for Γ . To see the action in case 1), first consider
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the action of the ordinary wreath product ∑Go J on the weak product, (ConeG,G)∆(I), where ∆(I) is the
full simplex on I. The subspace (ConeG,G)L is stable under the action of ∑Go J. The group of lifts of this
action to Z̃L is the graph wreath product Γ o J. (To see this it is sufficient to note that since J fixes the base
point of (ConeG,G)L, its group of lifts of J at a base point of Z̃L projects isomorphically to J). Suppose
M = LJ denotes the subcomplex of L fixed by J. It follows that (Z̃L)

J = (Z̃M): in particular, since this fixed
point set contains a given lift of the base point, it is nonempty. It follows that the action of Γ o J on Z̃L is
proper if and only J is a finite group.

One can check case 2) by following the construction in the proof of Proposition ??. The covering space
(EG, p−1(∗))L→ (BG,∗)L corresponds to the homomorphism π1((BG,∗)L) =Γ →∑G. The wreath product
∑Go J acts on (EG, p−1(∗))L and Γ o J is the group of lifts to the universal cover EΓ . If J is finite, then
action of Γ oJ on this model of EΓ is proper. Since EΓ J is homotopy equivalent to Z̃LJ which is contractible,
EΓ J is also contractible. Hence, when J is finite, EΓ is a model for E(Γ o J), the universal space for proper
actions of the graph wreath product. We record this as the following.

Proposition 3.3. Suppose J is a finite group of automorphisms of L and that Γ o J is the graph wreath
product. Then the universal cover of (BG,∗)L is a model for E(Γ o J).

3.1.5 Application: cohomological dimension versus geometric dimension

The geometric dimension of a group G, denoted gdG, is the smallest dimension of a model for BG by a CW
complex. If EG denotes the universal cover of BG, then its cellular chin complex C∗ := {Ci(EG)} is a chain
complex of free ZG-modules. In fact, Ci(EG) is isomorphic to a direct sum of copies of ZG where there is
one summand for each i-cell in BG. Since EG is contractible, the chain complex C∗ is acyclic. In fact, if we
equip it with the augmentation homorphism C0→ Z then C∗ gives a free resolution of Z.

The cohomological dimension of G, denoted cdG is the shortest length of a resolution of Z by projective
ZG-modules. (Here one can replace the word “projective” by “free”.) It follows that gdG ≥ cdG. In the
1950 s Eilenberg and Ganea [66] raised the question if these two numbers are equal and in almost all cases
they proved that they are equal. More precisely, we have the following.

Theorem 3.3. (The Eilenberg-Ganea Theorem [66]).

(1) If cdG = 1, then gdG = 1.
(2) If cdG≥ 3, then gdG = cdG.
(3) If cdG = 2, then either gdG = 2 or gdG = 3

Actually statement (1) follows from results of Stallings and Swan that show that groups of cohomological !
are free. The Eilenberg-Ganea Conjecture is the conjecture that we always have equality between gdG and
cdG.

Acyclic versus contractible.

Probable counterxamples to the Eilenberg-Ganea Conjecture.
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3.2 Reflection groups

There is a well-known, classical theory of groups generated by reflections on the constant curvature spaces, Where should this be in relation to
???

Maybe it stays hereSn, En and Hn. Since much of the intuition for the constructions of polyhedral products in section 3.1, we
briefly will give some highlights of this theory here. A fuller account can be found in ??.

A dihedral group is a group generated by two involutions There are two basic examples of geometric
actions of dihedral actions to have in mind. First, the group generated by the reflections across an interval
in E1 gives an action of the infinite dihedral group D∞ with fundamental domain the interval. The resulting
tessellation of E1 by intervals gives it the structure of a 1-cube complex. Second consider the group generated
by reflections across two lines through the origin in R2. If the angle between the two lines is π/m the group is
the finite dihedral group Dm of order 2m. A strict fundamental domain for the action is the sector bounded
by two rays making an angle of π/m. If we restrict the Dm-action to the unit circle S1, a strict fundamental
domain is a circular arc of length π/m.

Before considering more of the classical geometric pictures, let us discuss a fairly general situation of a
reflection group acting on connected smooth manifold X . A reflection on X is a smooth involution r : X → X
such the its fixed set X r disconnects X into two connected components, the closure of one of these components
is called a half-space and the fixed set X r is a wall. One sees that each wall is a submanifold of codimension
one and that each half-space is a manifold with boundary and a strict fundamental domain for the action of
C2 (= 〈〉) on X . Suppose that W is a discrete group acting properly on X and that W is generated by the set
R of all reflections in W . Choose a K◦ denote a connected component of X −

⋃
r∈R X r and let K denote the

closure of K◦. Then K is a chamber for the reflection group W . One says say that X r is a wall of K if K∩X r

is codimension zero in X r. It follows that K is the intersection of half-spaces bounded by the walls of K. Let
S be the set of reflections across the walls of K. Here are the main facts.

(1) R is the set of all conjugates of elements of S by elements of W . In particular, since R generates W , S is a
set of generators for W .

(2) The group W is a Coxeter group. This means that W has a presentation of the form 〈S | R〉 where S is the
above set of generators and the relations R consists of all words of the form: s2, with s ∈ S and (st)m(s,t),
where {s, t} ranges over all unordered pairs of distinct elements of S and where m(s, t) is the order of st
in W (and if m(s, t) = ∞ we omit the relation.) The pair (W,S) is called a Coxeter systemIf all the m(s, t)
are equal to 2 or ∞, then W is a right-angled Coxeter group.

(3) K is a strict fundamental domain for the W -action (see Definition 3.2). It follows from considering the
basic geometric examples on E1 and R2 that K has codimension one faces where the isotropy group is
C2. In fact it will follow from ?? below that K is a manifold with corners. Hence, X together with the
W -action can be recovered via the basic construction D(W,K) (cf. (3.8) and the following definition).

Next we specialize to the geometric examples where X = Sn, En of Hn, reflections are isometries and
half-spaces are actual geodesically convex half-spaces. Since the fundamental chamber K is an intersection of
half-spaces, it is a convex polytope. We require K to be compact.

(a) (X = Sn). Assume W acts without global fixed points on Sn. Then K is a spherical simplex. (Actually this
is a result in linear algebra, cf. [48, Lemma 6.3.3, p. 78].) This result implies that when X = En or Hn,
the polytope K is simple, which means that the link of each nonempty face of K is a simplex. Similarly,
in the case where X is a general manifold, it follows that K is a manifold with corners.

(b) (X = En).
(c) (X =Hn).
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3.2.1 Davis complex

• Geometric examples with simple polytopes

3.2.2 Semidirect products

subsumed in graph wreath products

3.2.3 The reflection group trick

This is method for showing any group of type F is a retract of the fundamental group of a closed aspherical
manifold. In fact, any group of type FH is a retract of a Poincaré duality group.

Corollary 3.1. (Mess, Weinberger, Sapir)

(i) The fundamental group of a closed aspherical manifold need not have solvable word problem.
(ii) The fundamental group of a closed aspherical manifold need not be residually finite.

(iii) [100] The fundamental group of a closed aspherical manifold need not have solvable word problem.
(iv) It can contain a “Tarski monster” ([123])

3.3 Right-angled buildings

A product of trees is a RAB (provided each vertex has degree ≥ 2). So, the universal cover of a product of
graphs without degree 1 vertices is a RAB.

The RABs of form Z̃∆ are very symmetric RABs. The Z̃L are highly symmetric in that automorphism
group is chamber-transitive.

The space ZL is usually not simply connected. (In fact, if each Ei has at least two elements, then ZL is
simply connected if and only if L1 is a complete graph.)

Definition 3.4. Suppose Card(Ei)≥ 2 for each i ∈ I and suppose L is a flag complex. Consider the polyhedral
product ZL = (ConeE,E)L from (3.4). Then Z̃L, the universal cover of ZL, is called (the standard realization
of) a right-angled building, and abbreviated as RAB.

In fact, each RAB Z̃L is the standard realization of a Tits building (see [?]); the associated Coxeter group
is the RACG, WL, associated to the the 1-skeleton of L; each apartment is isomorphic to its Davis complex P̃L.

3.4 Right-angled Artin groups

Salvetti complex
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3.4.1 The standard cube complex

3.4.2 Residually torsion-free nilpotent, left orderable





Chapter 4
Coxeter groups, Artin groups, buildings

Suppose L1 is a simple graph with its edges labeled by integers ≥ 2. Let S = VertL1. The edge labeling is
a function m : Edge(L1)→ {2,3 . . .} written as {s, t} 7→ m(s, t). For s = t, put m(s,s) = 1. Then m(s, t) is a
symmetric (S×S)-matrix called the Coxeter matrix associated to (L1,m). This data is enough to define two
groups, a Coxeter group W and an Artin group A. Define a presentation of W so that its set of generators S
coincides with the vertex set of L1. The relations are given by

s2, for all s ∈ S, and (st)m(s,t), for all {s, t} ∈ EdgeL1. (4.1)

That is to say, each generator of S is an involution and every other relation is a word involving only the two
letters that correspond to the end points of an edge of L1. Then W is called the Coxeter group and the pair
(W,S) is the Coxeter system associated to the labeled graph (L1,m). For any subset T of S the subgroup WT
generated by T is a special subgroup. It turns out that (WT ,T ) is itself a Coxeter system. If WT is finite, then
the subset T and the subgroup WT that it generates are said to be spherical. Denote by S (or S(W,S)) the
set of spherical subsets of S. There is an associated abstract simplicial complex L(W,S) called the nerve of
(W,S); its vertex set is S and its poset of simplices (including the empty simplex) is S.

To define the presentation for the associated Artin group A we introduce symbols {σs}s∈S for its generators.
The relations are given by omitting the relations corresponding to the s2 in (4.1) and by rewriting the relations
corresponding to (st)m(s,t) as

σsσt · · ·︸ ︷︷ ︸
m(s,t) terms

= σtσs · · ·︸ ︷︷ ︸
m(s,t) terms

(4.2)

In other words, the alternating word of length m(s, t) in σs and σt is equal to the alternating word of the same
length written in the other order. The relation in (4.2) is called the Artin relation (or the braid relation when
m(s, t) = 3). Since each s has order two, it follows that the Artin relation is simply a rewriting of (st)m(s,t).
Hence, the map σs 7→ s gives a canonical epimorphism A→W .

A spherical coset in W is a left coset in W/WT , where WT is a spherical special subgroup. Let

WS :=
⊔

T∈S
W/WT (4.3)

denote the set of spherical cosets. The set WS can be given the structure of a poset. The order relation is
inclusion of one coset in another. Similarly, a spherical coset in A is a left coset in A/AT , where AT denotes
the spherical special subgroup of A generated by {σs}s∈T . Let

27
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AS :=
⊔

T∈S
A/AT (4.4)

denote the poset of spherical cosets in A. The geometric realization of the order complex of WS is the
barycentric subdivision of the Davis-Moussong complex Σ(W,S) described in Subsection 4.2.3. The geometric
realization of the order complex of AS is the barycentric subdivision of the Deligne complex Λ(W,S) described
in Subsection 4.3.3.

The poset of spherical cosets WS also plays an important role in the theory of buildings. As will be
explained in Section 4.4, a building is a set C of “chambers” together with some extra structure. In particular,
every building has an associated Coxeter system (W,S). The standard geometric realization of the building C

is the order complex of its “poset of spherical residues.” An “apartment” in C is a subposet isomorphic to WS.
Roughly speaking, the term “simple complex of groups” means a poset of groups, i.e., an assignment of a

group Gσ to each element of a poset Q. The relevant definitions and the theory of simple complexes of groups
are the subject of Chapter 5. Our goal in this chapter is to explain three basic examples of simple complexes
of groups associated to a Coxeter system (W,S). For all three examples the underlying poset is the same: the
poset S of spherical subsets of S. (Actually to be in compliance with the definitions in [23] we will eventually
want to replace S by its opposite poset Sop where the order relations are reversed.) Here are the three types of
examples.

(1) The complex {WT}T∈S of special spherical subgroups of W .
(2) The complex {AT}T∈S of special spherical subgroups of an Artin group A.
(3) The complex {GT}T∈S of residue stabilizers in building C of type (W,S) with a chamber transitive

automorphism group G (cf. Example ??).

4.1 Some simple complexes of groups

The theory of simple complexes of groups is developed in [23]. Basic examples of simple complexes ofMaybe not needed at this point

groups are provided by Coxeter groups, Artin groups and buildings. So, we will make a few comments
concerning the general theory here and postpone a fuller discussion to Appendix ??

Let P be a poset. A chain in P is a totally ordered subset. In other words, a finite subset {p0, . . . pk} is a
chain if, possibly after reordering, p0 < · · ·< pk. The order complex of P is the set of all chains in P. It is an
abstract simplicial complex; a k simplex is a chain of length k+1. Denote the geometric realization of the
order complex by |P|. Reversing the order relation on P one obtains the opposite poset Pop. Note that the
order complexes of P and Pop are identical

Here is the definition from the book of Bridson-Haefliger.

Definition 4.1. (cf. Bridson-Haefliger [23, II.12.11, p. 375]). A simple complex of groups GQ over a poset Q
is a collection of groups {Gσ}σ∈Q and monomorphisms φστ : Gσ →Gτ defined whenever τ < σ . The Gσ are
the local groups. Furthermore, GQ must be a cofunctor from Q to the category of groups and monomorphisms
in the sense that φστ φτµ = φσ µ whenever µ < τ < σ . (A “cofunctor” is a contravariant functor, i.e., a functor
on Qop.)

Simple complexes of groups arise from group actions with strict fundamental domains. Suppose G y Y
with strict fundamental domain |Q|. The space |Q| has a stratification with strata indexed by Q, where
|Q|σ = |Q≤σ |. (For example if Q is the poset of cells in a cell complex, then each stratum is a cell.) The
local groups are the stabilizers of the strata (one assumes the G-action is without inversions meaning that
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the setwise stabilizer of a stratum fixes each point of the stratum. So, Gσ is the isotropy subgroup of |Q|σ .
(The reason a simple complex of groups is defined as a cofunctor rather than a functor is that for group
actions, a smaller stratum should correspond to a larger isotropy subgroup.) The simple complex of groups is
developable if it is induced from a G-action.

The direct limit, limGQ, is defined in the usual fashion by taking the free product of the Gσ and then
quotienting by relations to insure that Gσ is identified with its image under φστ in Gτ and that φστ φτµ(g) =
φσ µ(g) whenever µ < τ < σ , for all g ∈ Gµ . A simple morphism ψ = (ψσ ) from GQ to a group G is a
function which assigns to each σ ∈ Q a homomorphism ψσ : Gσ →G such that ψτ = ψσ φστ whenever τ < σ .
It turns out that GQ is developable if and only if the canonical simple morphism Gσ → limGQ is injective for
each σ ∈ Q.

The next result uses the basic construction of Subsection 3.1.1 to show that every developable GQ arises
from an action with strict fundamental on the basic construction.

Theorem 4.1. (The basic construction, cf. [23]). Suppose that GQ is developable and G = limGQ. Then there
is a poset D(G,Q) such that G y D(G,Q) with strict fundamental poset Q. Taking geometric realizations, we
get a polyhedron D(G, |Q|) such that G y D(G, |Q|) with strict fundamental domain |Q|.
The basic construction D(G, |Q|),

D(G, |Q|) = (G×|Q|)/∼ (4.5)

is defined as in Subsection 3.1.1. Given x ∈ |Q|, let σ(x) be the index the smallest stratum |Q|σ such that
x ∈ |Q|σ . the equivalence relation ∼ is then defined the same way as in (3.8):

(g,x)∼ (g′,x′) ⇐⇒ x = x′ and g−1g′ ∈ Gσ(x) , (4.6)

in other words, gGσ(x) and g′Gσ(x) are the same coset in G/Gσ(x).
It also turns out that when |Q| is simply connected, then so is D(G, |Q|) (see ??). So, when |Q| is simply

connected, G = limGQ should be regarded as the “fundamental group of GQ”.
Given a Coxeter system (W,S), we define two simple complexes of groups over Sop, where S= S(W,S),

the poset of spherical subsets of S. Denote the order relation on Sop by ≺, so that T ′ ≺ T if T is a proper
subset of T ′. The fundamental chamber K is defined as |Sop|. The stratum KT is the union of all simplices in
|Sop| with maximum vertex = T .

Example 4.1. (The complex of spherical Coxeter subgroups of W .) There is a simple complex of groups WSop

over Sop called the complex of spherical subgroups of W . It is defined as the cofunctor T 7→WT , so that if
T ′ ≺ T , then WT is a subgroup of WT ′ . It is obvious that the direct limit, limWSop, is equal toW . On the level
of posets the basic construction D(W,Sop is equal to the poset of spherical cosets WS defined in (4.3). On
the level of spaces it is the cell complex Σ(W,S) of Subsection 4.2.3 (actually, the strata of D(W,K) are dual
cones to the cells in Σ(W,S)).

Example 4.2. (The complex of spherical Artin subgroups of A.) The complex of spherical subgroups of A is
the simple complex of groups ASop over Sop defined by T 7→ AT . If T ′ ≺ T , then AT is a subgroup of AT ′ .
We also have limASop = A. On the level of posets, D(A,ASop) = AS where AS is poset of spherical cosets
from (4.4) and on the level of spaces, D(A,K) is the Deligne complex Λ(W,S) of Subsection 4.3.3 below.

4.2 Coxeter groups

The material in this section can be found in [48].



30 4 Coxeter groups, Artin groups, buildings

4.2.1 Spherical Coxeter groups

Suppose (W,S) is a Coxeter system with Card(W )< ∞. The group W has a representation as an orthogonal
linear reflection group on Rn, with n=Card(S), so that each s∈ S corresponds to reflection across a supporting
hyperplane of a simplicial cone. When (W,S) is irreducible this representation is unique up to homothety
(e.g., see [15, p. 70]). It is called the canonical representation . The set of reflections R in W is precisely the
set of conjugates of elements of S. A hyperplane Hr fixed by a reflection r ∈ R is a wall and the set of all
such hyperplanes, A := {Hr}r∈R is the associated reflection arrangement. The arrangement A cuts Rn into
simplicial cones; this collection of cones together and their faces is called the fan, Fan(A), associated to A.
Each top-dimensional simplicial cone in Fan(A) is called a chamber. There are two chambers (antipodal to
each other) bounded by the walls indexed by S. Let C be one of them. Then C is a strict fundamental domain
for the W -action on Rn. A codimension-one face Cs of C is the intersection of C with the wall fixed by s. The
intersection of Fan(A) with Sn−1 is called the spherical fan and denoted SFan(A). It is a tessellation of Sn−1

by spherical simplices. The underlying simplicial complex is the Coxeter complex of (W,S).
The intersection C∩Sn−1 is denoted by σ(W,S) (or sometimes simply by σ ) and is called the fundamental

spherical simplex (or the fundamental chamber). The codimension-one faces of σ (= σ(W,S)) are the faces
σs := σ ∩Hs and for each proper subset T < S we have a face σT of σ defined by σT :=

⋂
s∈T . The isotropy

subgroup at a point in the relative interior of σT is a special subgroup WT . Since W ySn−1 with σ(W,S) as
a strict fundamental domain, the sphere Sn−1 can be identified with the basic construction D(W,σ) defined
Subsection 3.1.2, where, as in (3.8), the equivalence relation ∼ on W ×σ is defined by

(w,x)∼ (w′,x′) ⇐⇒ x = x′ and wWS(x) = w′WS(x). (4.7)

Here S(x) = {s ∈ S | x ∈ σs}.
For each s ∈ S, let us be the outward-pointing unit normal vector to the the face Cs of C (or equivalently,

the outward-pointing normal vector to σ ). Since the angle between us and ut is the exterior dihedral angle
along Cs∩Ct , this angle is π−π/m(s, t). Hence, the matrix of inner products 〈us,ut〉 is equal to the cosine
matrix c(s, t) of (W,S). This is the (S×S)-symmetric matrix defined by

c(s, t) =−cos(π/m(s, t)). (4.8)

When s = t, m(s,s) = 1 so that c(s,s) = 1. (The formula in (5.6) for the cosine matrix c(s, t) makes sense for
any Coxeter system (W,S), provided that when m(s, t) = ∞, we interpret −cos(π/∞) to be −cos(0) (=−1).)
Since {us}s∈S is a basis for Rn when (W,S) is spherical we see that the cosine matrix is positive definite
whenever W is finite. The converse is also true and this gives the following well-known characterization for a
Coxeter group to be finite.

Lemma 4.1. (e.g. see [48, Theorem 6.12.9]). The Coxeter group W is finite if and only if the cosine matrix
from (5.6) is positive definite.

The fundamental dual simplex σ∗(W,S) is the spherical simplex in Sn−1 spanned by the unit vectors
{us}s∈S. The simplex σ∗(W,S) actually is dual to σ(W,S) in the sense that it consists of all points y ∈ Sn−1

of distance ≥ π/2 from σ(W,S), i.e., σ∗(W,S) = {y ∈ Sn−1 | 〈y,x〉 ≤ 0 for all x ∈ σ(W,S)}. The length of
the circular arc connecting the vertices us and ut of σ∗(W,S) is π− π

m(s.t) .
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4.2.2 Coxeter zonotopes

Associated a spherical Coxeter system (W,S) there is a Coxeter zonotope Z (= Z(W,S)) that is dual to the
reflection arrangement A. It is a simple convex polytope such that ∂Z is dual to the simplicial complex Coxeter zonotope

SFan(A). Here is an explicit description. Let C be the fundamental chamber bounded by the walls indexed by
S. Choose a base point x0 in the interior of C and consider its W -orbit, Wx0. Then Z(W,S) can be defined to
be the convex hull of Wx0.

Lemma 4.2. (e.g. see [33, Lemma 2.1.3]). Suppose that (W,S) is a spherical Coxeter system and that Z(W,S)
is the corresponding Coxeter zonotope. Then the face poset of Z(W,S) is isomorphic to the poset of spherical
cosets WS defined in (4.3). The face corresponding to the coset wWT has vertex set (wWT )x0 and this face is
isomorphic to the zonotope Z(WT ,T ).

As examples, if (W,S) is the symmetric group on (n+1) letters (i.e., if its Coxeter diagram is An), then Z
is a permutohedron. When n = 2 a permutohedron is a hexagon. If W = (C2)

n, then Z is an n-cube. N.B. The
action of W on Z, regarded as a cell complex Z “has inversions,” e.g., the maximum cell Z is stabilized by the
entire group W but is not pointwise fixed.

The link, Lk(x0,Z) of the vertex x0 in Z is naturally identified with the dual spherical simplex σ∗(W,S).
The edges meeting at the vertex x0 are parallel to the basis of unit normal vectors, {us}s∈S. The metric on
Z(W,S) depends on the position of x0 in the interior of C. We can normalize this position by choosing x0
to be the unique point of distance = 1/2 from each wall Hs, s ∈ S. This will have the effect of giving each
edge of Z(W,S) a length of 1. The face corresponding to wWT is said to be of type T ; it is a cell of dimension
= Card(T ).

Figure of hexagon and pemutohedron
Zonotopes play the same role in constructing the standard CAT(0) complexes for general Coxeter groups

as do cubes for RACGs. They are also used in the construction of the Salvetti complex for a general Artin
groups.

4.2.3 The Davis-Moussong complex

We return to the situation where (W,S) is an arbitrary Coxeter system. Let S= S(W,S) be its poset of spherical
subsets and let WS be the set of spherical cosets (cf. (4.3)). There is a poset structure on WS defined by
inclusion of cosets, so that

uWT < vWT ′ ⇐⇒ T < T ′ and v−1u ∈WT ′ . (4.9)

The purpose of this subsection is to describe a cell complex Σ = Σ(W,S) together with a proper action W y Σ .
The poset of cells of Σ(W,S) is WS; the cell corresponding to the spherical coset wWT is isomorphic to the
zonotope Z(WT ,T ) (cf. Lemma 4.2). It follows that the barycentric subdivision of Σ(W,S) is the geometric
realization |WS| of the order complex of WS. (The order complex of a poset P is the simplicial complex
whose k-simplices are the chains, p0 < · · ·< pk of length k+1.)

Since the complex Σ(W,S) plays a central role in [48] and is described in detail there, we will content
ourselves with giving a briefer description here. In the case where W is right-angled, Σ(W,S) is the cubical
complex P̃L explained at the end of Subsection 3.1.1. Some properties of Σ are listed in the next proposition.

Proposition 4.1. Let Σ = Σ(W,S).
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(1) The poset of cells of in the cell complex Σ is equal to WS.
(2) Each cell of Σ(W,S) is a Coxeter zonotope. The cell corresponding to the spherical coset wWT is

isomorphic to the Coxeter zonotope Z(WT ,T ); it is a convex polytope of dimesion CardT .
(3) The group W acts properly on Σ . The stabilizer of the cell wZ(WT ,T ) is the subgroup wWT w−1.
(4) The W-action on Σ has a strict fundamental domain homeomorphic to the geometric realization |S| of the

poset S. Hence, when S is finite, Σ/W is compact.
(5) The natural piecewise euclidean metric on Σ is CAT(0). In particular, by Theorem 2.1, Σ is contractible.

In order to appreciate the naturalness and beauty of Σ , we spell out its construction in some detail.
Its 0-skeleton, Σ 0, is identified with W (i.e., with the spherical coset W/W/0). Its 1-skeleton is the Cayley
graph Cay(W,S) – there is an edge connecting w to ws whenever {w,ws} is a coset of W{s}. So, there is
an orbit of edges for each generator s ∈ S. Next we fill in the 2-cells. There is an orbit of 2-cells of the
form Z(W{s,t},{s, t}), whenever Card{s, t}= 2 and m(s, t)< ∞. Each such 2-cell a 2-dimensional Coxeter
zonotope, in this case, it is a polygon with 2m(s, t) sides. The orbits of these 2-cells correspond precisely to
the relations in (4.1). Essentially, Σ 2 is the Cayley 2-complex of (W,S). In particular, Σ 2 is simply connected.
We continue by filling in an orbit of 3-dimensional zonotopes of the form Z(WT ,T ) for each spherical
subset T ∈ S with 3 elements. Miraculously, after filling in all such 3-cells, the resulting 3-skeleton, Σ 3 is
2-connected. The complex Σ is formed by filling in an orbit of Coxeter zonotopes for each spherical coset in
WS. It turns out that Σ is contractible. One way to to show this is to prove statement 5 in the above proposition:
Σ is CAT(0). This is a theorem of Moussong which will be discussed in the next subsection. We note that
when W is finite, Σ(W,S) is equal to the single zonotope Z(W,S) (cf. Lemma‘4.2).

The nerve of (W,S) is the simplicial complex L(W,S) with vertex set S such that a nonempty subset
T ≤ S spans a simplex if and only if T ∈ S(W,S). There is natural piecewise spherical metric on L(W,S)
where the simplex corresponding to T is identified with the fundamental dual spherical simplex σ∗(WT ,T )
defined above. In particular, the edge {s, t} that corresponding to the spherical subset T = {s, t} has length
π−π/m(s, t).

A spherical simplex σ has size ≥ π/2 if the distance from any vertex to the opposite face is ≥ π/2.

Definition 4.2. (Metric flag complexes). Suppose L is a simplicial complex with a piecewise spherical metric
so that whenever e is an edge of L, its length, l(e), lies in the interval [π/2,π] (this follows from the assumption
that each simplex of L has size ≥ π/2). Then L is a metric flag complex if whenever Γ is a subcomplex of L
isometric to the 1-skeleton of a spherical k-simplex σ , then there must actually exist a k-simplex σ in L with
edge lengths specified by the l(e).

The condition in this definition also can be expressed as follows. Suppose T is the set of vertices of a
subcomplex isomorphic to a complete graph Γ and that for distinct vertices t, t ′ of Γ , the length l(t, t ′) of the
edge {t, t ′} lies [π/2,π). Let c(t, t ′) be the “cosine matrix” defined by

c(t, t ′) =

{
1, if t = t ′;
cos(t, t ′), if t 6= t ′.

(4.10)

The condition that eac Then L is a metric flag complex if and only if the (T ×T )-symmetric matrix c(t, t ′) is
positive definite whenever T is vertex set of a simplex of L. In other words, the simplices of L are determined
by the metric on L1. By Lemma 4.1, for each T ∈ S, the corresponding cosine matrix is positive definite; so,
L(W,S), with its natural piecewise spherical structure L(W,S) is a metric flag complex.

Example 4.3. (Metric flag complexes of dimension 1). When is the graph L1 a CAT(1) cell complex? The
answer was alluded to in Examples 2.2: the length of each circuit in L1 must be ≥ 2π . If all edge lengths lie
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in [π/2,π] and if L1 is a simplicial graph, then this condition is vacuous except for circuits with 3 edges, say
e1,e2, e3, in which case the condition reads:

l(e1)+ l(e2)+ l(e3)≥ 2π. (4.11)

This is precisely the condition that the cosine matrix for the 3-circuit fails to be positive definite. Thus, L1 is a
metric flag complex if and only if (4.11) holds for each 3-circuit in L1 and this is equivalent to the condition
that L1 be CAT(1). Moussong’s Lemma, which is stated in the next subsection, is a generalization of this to
higher dimensions.

Example 4.4. (Σ is a 2-dimensional CAT(0) cell complex, cf. Example 2.3). Suppose (L1,m) is a labeled
simplicial graph with edge labeling m : EdgeL1→{2,3, . . .} with associated Coxeter system (W,S). As in
the previous example suppose each spherical subset T ∈ S has cardinality ≤ 2 so that L(W,S) = L1. Then
dimΣ = 2. The 2-dimensional zonotope corresponding to an edge e is a regular euclidean 2m(e)-gon. The
interior angle at a vertex of such a 2m(e)-gon is π − π/m(e). If {e1,e2,e3} is a 3-circuit of L1, then the
condition in (4.11) is equivalent to

3

∑
i=1

1
m(ei)

≤ 1. (4.12)

So, dimΣ = 2 exactly when (4.12) holds for all 3-circuits in L1. Thus, Σ is a 2-dimensional CAT(0) cell with
an orbit of 2m(e)-gons for each e ∈ L1.

Next, consider the question of when does Σ admit a piecewise hyperbolic structure that is CAT(−1). First,
there is the question of how to make the zonotopes hyperbolic. If WT is a spherical Coxeter group, then we
can represent it as a finite reflection group on Hm, where m = CardT . Let Ch be a fundamental cone for the
WT -action on Hm and choose a point x0 in the interior of C of distance 1

2ε
from each wall. Let Zh

ε (WT ,T )
(= Zh

ε ) denote the convex hull of the orbit of x0. Then Zh
ε (WT ,T ) is the hyperbolic zonotope of with all edge

lengths = ε . As before, we can glue together the Zh
ε (WT ,T ) to obtain a piecewise hyperbolic model Σ h(W,S)

of the Davis-Moussong complex. When ε is small, the effect on Lk(x0,Zh
ε (WT ,T ) will be to make a small

change in the dual spherical simplex σ∗(WT ,T ) Hence, there also will only be a small change in the metric
on Lk(v,Σ h

ε ) (cf. [102, Lemma 5.11] or [48, Lemma I.6.7]).

Example 4.5. (2-dimensional CAT(−1) cell complexes). Suppose dimΣ = 2. Then a small deformation of the
metric on L1 is guaranteed to be CAT(1) if and only if the sum of the edge lengths in each circuit is strictly
greater than 2π . As in Example 4.4 we only consider circuits with ≤ 4 edges. If the number of edges is 3 we
must modify (4.12) by requiring the inequality to be strict. If the number of edges is 4, the only case which
leads to a closed geodesic of length 2π is when each edge has length exactly π/2. We exclude that possibility
by requiring that for 4-circuits at least one edge has m(e) 6= 2. (This is a more general version of the no �
condition of Section 2.3.) Following the discussion in Subsection 2.2.1 we see that a small deformation of
the piecewise euclidean structure on Σ to a piecewise hyperbolic Σ h

ε is CAT(−1) if and only if the above
two conditions hold for for L1, i.e., if L1 is extra large in the sense of Definition 2.2, in which case each new
vertex links will be CAT(1). Hence, for small enough ε , Σ h

ε will be CAT(−1) if and only if L1 is extra large.

Example 4.6. (Gromov polyhedra). Here is a corollary to the previous example. Suppose m is an integer
≥ 2 and n ≥ 3. Then there is a simply connected, 2-dimensional polyhedron Xn,2m so that each 2-cell is a
2m-gon and so that the link of each vertex is a complete graph on n-vertices. (Apply the construction in the
previous example to the case where L1 the complete graph and each edge is labelled by the same integer m,
and Xn,m = Σ(W,S), or its 2-skeleton when m = 2.) If m≥ 3, then Xn,m is CAT(0). If m≥ 4, it can be given a
CAT(−1) metric where each polygon is hyperbolic.
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4.2.4 Moussong’s Lemma

Lemma 4.3. (Moussong’s Lemma, cf. [102] or [48]). A piecewise spherical simplicial complex L with all
simplices of size ≥ π/2 is CAT(1) if and only if it is a metric flag complex.

Moussong’s Theorem is a corollary of this lemma.

Theorem 4.2. (Moussong [102], also cf. [62] or [48, Lemma I.7.4]). The piecewise euclidean cell complex
Σ(W,S) is CAT(0).

Proof (Comments on). As explained in Subsection 4.2.2, the link of a vertex in the zonotope Z(WT ,T )
is isometric to the dual spherical simplex σ∗(WT ,T ). It follows that the link of each vertex in Σ(W,S) is
isometric to L(W,S). By Moussong’s Lemma, this link is CAT(1); hence, Σ(W,S) is NPC. Since the 2-
skeleton of Σ is the Cayley 2-complex for (W,S), we see that Σ is simply connected; hence, by Theorem 2.2,
Σ is CAT(0).

When (W,S) is right-angled, its nerve L(W,S) is a flag complex and it has an all-right, piecewise spherical
structure. By Lemma 2.10, L(W,S) is extra large if and only if it satisfies the no � condition. So, the cubical
metric on Σ(W,S) can be deformed to a piecewise hyperbolic metric that is CAT(−1) if and only if L(W,S)
satisfies the no � condition. Basically, this establishes the following proposition. We will give details of its
proof later in Theorem 4.3 below.

Proposition 4.2. Suppose (W,S) is a right-angled Coxeter system (a “RACS”). Then (W,S) is word hyper-
bolic if and only if L(W,S) satisfies the no � condition.

Moussong continued along the line begun in Lemma 4.3 by determining when a piecewise spherical,
metric flag complex L of size ≥ π/2 is extra large (cf. Definition 2.2). As usual S = VertL. For T < S let LT
denote the full subcomplex spanned by T . Then LT is a totally geodesic subspace of L. There are two obvious
types of subcomplexes LT that can lead to a closed geodesic of length 2π in L. They are the following.

(i) The complex LT is isometric to the polar dual of a euclidean simplex so that LT is isometric to the round
sphere of dimension Card(T )−2 and LT combinatorially isomorphic to the boundary complex of a
simplex of dimension Card(T )−1.

(ii) The complex LT decomposes as a spherical join LT1 ∗LT2 , where neither LT1 nor LT2 is a spherical
simplex.

To see that (ii) yields a closed geodesic of length 2π , for i = 1,2, choose points xi,yi in LT1 of distance at
least π . Then the join {x1,y1} ∗ {x2,y2} is a 4-circuit where each edge has length π/2. Moussong proved
in [102, Lemma 10.3] that the metric flag complex L has no closed geodesics of length 2π if and only if
it contains no subcomplexes LT of type (i) or (ii). Applying this in the special case L = L(W,S) we get the
following.

Lemma 4.4. The piecewise spherical complex L(W,S) is extra large if for each subset T of S neither of the
following conditions holds for WT .

(i) The special subgroup WT is an irreducible euclidean reflection group (generated by the reflections across
the faces of a euclidean simplex of dimension ≥ 2.

(ii) (WT ,T ) decomposes as (WT1 ×WT2 ,T1tT2), where both WT1 and WT2 are infinite.

If both conditions (i) and (ii) of this lemma fail to hold, we say that (W,S) satisfies Moussong’s Condition.
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Theorem 4.3. (Moussong’s characterization of word hyperbolic Coxeter groups). The following conditions
on a (finitely generated) Coxeter system (W,S) are equivalent.

(a) The group W is word hyperbolic.
(b) The group W does not contain Z×Z (the product of two infinite cyclic groups.
(c) The Coxeter system (W,S) satisfies Moussong’s Condition.
(d) The CAT(0) metric on Σ(W,S) can be deformed to a piecewise hyperbolic, CAT(−1) metric.

Proof. Since a word hyperbolic group cannot contain Z×Z, (a) =⇒ (b). If a special subgroup WT is a
euclidean reflection group, then its translation subgroup is free abelian of rank Card(T )−1 and this rank
is ≥ 2 when (i) holds. Similarly, if WT =WT1 ×WT2 , where both factors are infinite, then Z×Z <WT . So,
(b) =⇒ (c). By Lemma 4.4, Moussong’s Condition implies that L(W,S) is extra large. As in Example 4.5,
Proposition 2.1 implies that Σ(W,S) can be given a piecewise hyperbolic CAT(−1) metric. So, (c) =⇒ (d).
By Lemma 2.7, (d) =⇒ (a).

Examples of word hyperbolic Coxeter groups. Moussong, Benoist.

4.2.5 Piecewise euclidean metrics on K

Let K = |Sop| (= |S|) be the fundamental chamber defined in Section 4.1 and put KT = S
op
�T . In other words,

KT is the union of simplices in the order complex of Sop with maxmum vertex T . Since W y Σ with
strict fundamental domain K (cf. Definition 3.2), we get a different description of Σ in terms of the basic
construction of (5.2): Σ = D(W,K). Here D(W,K) = (W ×K)/∼, where ∼ is defined by: (u,x)∼ (v,x′) if
and only if x = x′ and uWS(x) = vWS(x), where S(x) is the index of the smallest stratum containing x. This
description is dual to the cellulation of Σ by Coxeter zonotopes described in Proposition 4.1.

The fundamental domain K is a cube complex. For any T ∈ S , the poset S≤T (= S
op
�T ) is the power set

of T . This means that the order complex of Sop
�T can be identified with a standard subdivision of a cube �T

of dimension Card(T ). More generally, for any subset T ′ of T consider the interval [T,T ′] in Sop defined by
[T,T ′] = {J ∈ S | T ′ ≤ J ≤ T}. So, [T,T ′] is a standard subdivision of a cube �T−T ′ (�[T,T ′]) of dimension
Card(T −T ′). Explicitly, �[T,T ′] is the subcomplex of |Sop consisting of all simplices in |Sop| with minimum
vertex T and maximum vertex T ′. In other words, the simplices in |Sop| (= K) can be amalgamated into cubes,
giving K the structure of a cube complex. By taking the union of all translates of such cubes in |WS| (= Σ )
we see that Σ is also a cube complex. We state this as follows.

Lemma 4.5. The fundamental chamber K has the structure of a cube complex as does the Davis-Moussong
complex Σ .

The subcomplexes �[T,T ′] are only combinatorially equivalent to cubes. What is the relationship between
these combinatorial cubes and the Coxeter zonotopes in Σ . Suppose Z(WT ,T ) is the Coxeter zonotope in RT

corresponding to WT and let Fan(WT ) be the fan cut out by the reflecting hyperplanes. A top dimensional
simplicial cone in Fan(WT ) is called a sector. The intersection BT := Z(WT ,T )∩Fan(WT ) is called a Coxeter
block; it is combinatorially isomorphic to the cube �[T, /0]. However, BT need not be isometric to to a unit
cube. (The link of the vertex the Coxeter block corresponding to T ∈ S≤T (the cone point in the fan) is
isometric to the spherical simplex σ(WT ,T ) while the link at the opposite vertex corresponding to /0 ∈ S≤T
is the dual spherical simplex σ∗(WT ,T ) defined near the end of Subsection 4.2.1.) The natural piecewise
euclidean metric on Σ is the path metric defined by giving each zonotopal cell in Σ its natural metric as a
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Coxeter zonotope (say, with each edge of length = 2). Similarly, the natural piecewise euclidean metric on K
is the path metric defined by giving each Coxeter block its natural metric as a convex subset of the Coxeter
zonotope. We just showed in Theorem 4.2, that with its natural piecewise euclidean metric Σ is CAT(0). On
the other hand, we could give K the piecewise euclidean metric where each subcomplex �[T,T ′] is isometric
to the unit cube. Denote K with this cubical metric by K�. Similarly, the cubical metric on Σ is denoted Σ�.
The cube complexes K� and Σ� may fail to be CAT(0) since links need not be flag complexes. the condition
that we need to insure that all klinks are flag complexes is given in the following definition.

Figure of pentagon with square, Figure of hexagon with square

Definition 4.3. A Coxeter system (W,S) is type FC if its nerve L(W,S) is a flag complex. Similarly, an Artin
group is type FC if its associated Coxeter system is FC.

The cubical structures on these polyhedra induce the piecewise euclidean cubical metrics, denoted by K�

and Σ�, respectively. N.B. In general, K� and Σ� need not be CAT(0). On the other hand, we just showed
in Theorem 4.2, that Σ is CAT(0) when given the metric induced from its zonotopal cells. We shall see in
Proposition ?? below, the condition that we need to insure that the cube complex Σ� is CAT(0) is that the
nerve L(W,S) of the Coxeter system is a flag complex.

Proposition 4.3. The cube complex Σ� is CAT(0) if and only if the Coxeter system (W,S) is type FC.

Proof. Of course, this should follow from the version of Gromov’s Lemma stated as Corollary 2.3; however,
it does not quite immediately follow from the fact the fact that L(W,S) (= L) is a flag complex. Although
it is not true that the link of every cube in Σ is isomorphic to L or a sublink of the form Lk(σ ,L), it is true
that the link of every 0-cube in Σ is isomorphic to a join SFan(WT ,T )∗Lk(σT ,L), where SFan(WT ,T ) is the
spherical Coxeter complex and σT is the simplex corresponding to T . Since any spherical Coxeter complex is
a triangulation of a sphere as a flag complex (cf. [33]), both factors of the join are flag complexes and hence,
so is the join.

This shows that when (W,S) is type FC one can prove, without using Moussong’s Lemma, that Σ(W,S)
has a CAT(0) structure. In Subsection 4.3.2 essentially the same observation will be used to show that if an
Artin group is FC, then its Salvetti complex has a CAT(0) cubical structure.

4.2.6 The Tits representation

When W is infinite, it also has a representation on Rn, with n = CardS, as a group generated by linear
reflections (which need not be orthogonal linear transformations). Let c(s, t) be the cosine matrix defined
as in (5.6) with the proviso that c(s, t) = −1 when m(s, t) = ∞. Then there is a symmetric bilinear form
B : RS×RS→ R defined by B(es,et) = c(s, t). For each s ∈ S, let ρs be the linear reflection on RS defined by

ρs(x) := x−2B(es,x)es. (4.13)

(The eigenvalue −1 of ρs has eigenvector es.) The map s 7→ ρs extends to a homomorphism ρ : W →GL(RS),
called the canonical representation. More interesting to us is the dual of the canonical representation,
ρ∗ : W → GL((RS)∗), which we call the geometric representation or the Tits representation of W . The main
fact about the geometric representation is that it defines a W -action on a certain open convex set Ω with a
strict fundamental domain. This allows us to conclude that the representation ρ∗ is discrete and faithful.
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To see this, first define a simplicial cone C in (RS)∗ by the inequalities: es(v)≤ 0, for all s ∈ S. (Each basis
vector es gives linear form, v 7→ es(v) on (RS)∗.) For each subset T ≤ S, let CT be the face of C defined by
es(v) = 0, for all s ∈ T and let C f denote the complement in C of the union of all faces CT with T /∈ S. That
is to say, C f = {x ∈C | S(x) ∈ S}, where S(x) = {s ∈ S | x ∈Cs}. The Tits cone Ω is defined to be

⋃
w∈W wC.

Let Ω denote the interior of Ω . Tits established the following facts (e.g., see [15, Prop. 6, p. 102]).

(a) For any nontrivial w ∈W , w(intC)∩ (intC) = /0.
(b) Ω is a convex cone. So, its interior Ω is an open W -stable subset in Rn (= (RS)∗).
(c) Ω =

⋃
w∈W wC f .

(d) The isotropy subgroup at a point x ∈C f is WT where CT is the smallest face such that x ∈CT .

It follows from (a) that ρ∗ : W →GL(Rn) is injective and that its image is a discrete subgroup of GL(Rn). By
(d) each isotropy subgroup is finite; hence, W acts properly on Ω .

Theorem 4.4. The group W acts on Ω with strict fundamental domain C f . Thus, Ω is equivariantly homeo-
morphic to the basic construction D(W,C f ) defined by formula (3.8) in Section 3.1. It follows that there is a
W-equivariant, piecewise linear embedding Σ(W,S) ↪→Ω whose image is a spine for Ω .

So, W y Ω as a reflection group.

4.3 Artin groups

The material in this section comes from [64], [32, 33].

4.3.1 The complement of the complexification of a reflection arrangement

Let (W,S) be a spherical Coxeter system so that W acts on Rn (=RS) via the geometric representation. Let A
be the corresponding reflection arrangement of hyperplanes in Rn. Complexifying, we get W yCn as well as
a reflection arrangement of complexified hyperplanes A⊗C in Cn. The complement of this arrangement is
denoted by

M(A⊗C) := Cn−
⋃

H∈A⊗C
H . (4.14)

It is well-known that π1(M(A⊗C)) = PAW , where PAW is the pure Artin group is defined as the kernel of the
canonical epimorphism ϕ : AW →W . The group W acts freely on M = M(A⊗C). So, π1(M/W ) is the Artin
group AW . For example, if W is the symmetric group Sn+1 acting on Rn+1 by permuting the coordinates, then
the complement M is identified with the configuration space of n+1 distinct ordered points in C and M/Sn+1
is the unordered configuration space. It follows from the definition of the braid group, that π1(M) is the pure
braid group on n+1 strands, PBn+1, while π1(M/Sn+1) is the braid group, Bn+1.

Theorem 4.5. (Deligne’s Theorem [64]). The arrangement complement M is aspherical. Hence, M is a model
for BPAW and M/W is a model for BAW

In fact, Deligne proved that whenever A is a real simplicial arrangement in Rn, the complexified complement
M(A⊗C) is aspherical.
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When W is not required to be finite, we can realize it as a group generated by reflections on Ω < Rn via
the Tits representation ρ∗ : W → GL(Rn), as in Subsection 4.2.6. The group W acts properly on the open
subset Rn + iΩ of Cn and freely on the arrangement complement, M = M(A⊗C), defined by

M = (Rn + iΩ)−
⋃

H∈A⊗C
H , (4.15)

where A is the collection of all reflecting hyperplanes in Rn.
The following conjecture, which was made independently by Arnold, Phan, and Thom, asserts that a

generalization of Theorem 5.3 holds for any Artin group. It is the most important open question about Artin
groups. the conjecture is explained in detail in [32, 33] and [96].

Conjecture 4.1. (The K(π,1)-Conjecture for Artin groups). The space M/W is a model for BAW .

There is an order relation on W × S that is closely related to the one given in (4.9). it is defined by
(u,T )< (v,T ′) if and only if the following two conditions hold:

(a) uWT < vWT ′ as in (4.9), i.e., v−1uWT <WT ′ ,
(b) v−1u is the shortest element in the coset v−1uWT .

After comparing (a) and (4.9), we see that the projection p : W × S→WS defined by (w,T ) 7→ wWT is
order-preserving.

Theorem 4.6. (Salvetti [122] and Charney-Davis [33]). The arrangement complement M is homotopy equiva-
lent to |W ×S|.

The proof is based on the following standard result which combinatorialists call the “Nerve Lemma”.

Lemma 4.6. (The Nerve Lemma). Suppose U is a locally finite, open cover of a paracompact space Y such
that each U ∈ U, as well as, each finite, nonempty intersection of such U is contractible. Then Y is homotopy
equivalent to the nerve of the open cover, Nerve(U).

Theorem 4.6 is then proved by applying the Nerve Lemma to a certain open cover U of M, the nerve of
which is the order complex of W ×S. Although M is defined as a subset of Rn + iΩ , we can replace it by the
homotopy equivalent space M∩ (bΣ ×bΣ), where the barycentric subdivision bΣ of Σ is identified with the
order complex of WS. For each (w,T ) ∈W ×S, define Star(w,T ) to be the open star of vertex corresponding
to wWT in bΣ , let Sec(w,T ) be the open “sector” in Σ which is bounded by the walls indexed by wTw−1 and
which contains the open chamber Star(w, /0). Put

U(w,T ) := Star(w,T )×Sec(w,T ).

It is clear that both Star(w,T ) and Sec(w,T ) are contractible; hence, so is U(w,T ) If x ∈ Star(w,T ) lies in a
wall, then that wall is indexed by a reflection in wWT w−1. Since the open sector Sec(w,T ) intersects no such
wall, we see that U(w,T )< M. We see that U= {U(w,T ))}(w,T )∈W×S is an open cover of M. It is proved in
[33, Lemma 1.5.2 (ii)] that U(w0,T0)∩·· ·∩U(wk,Tk) is nonempty precisely when {(w0,T0), . . . ,(wk,Tk)} is
a chain in W ×S. Thus, Nerve(U) = |W ×S|. Theorem 4.6 follows.

Combining Salvetti’s Theorem 4.6 with Deligne’s Theorem 5.3, we see that when W is spherical, the finite
CW complex X = |W ×S| is a model for BPAW (and so, X/W is a model for BAW ). A corollary is that each
spherical Artin group is type F.
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4.3.2 The Salvetti complex and its universal cover

Given a locally finite arrangement A of affine hyperplanes in Rn, Salvetti [122] constructed a cell complex
X(A) homotopy equivalent to the complement in Cn of the complexification of the arrangement. If there
are finitely many hyperplanes in the arrangement, then X(A) is a finite cell complex. The cells of X(A) are
zonotopes – each zonotope is the dual of a central arrangement normal to an intersection of hyperplanes from
A. When A is the arrangement associated to the action of W on Ω , the cell complex X (= X(A)) is homotopy
equivalent to the complement M defined in (5.11).

The barycentric subdivision bX of the Salvetti complex X can be defined as the geometric realization of the
order complex of W ×S. A k-simplex in the order complex is a chain, (w0,T0)< · · ·< (wk,Tk). We note that
(W ×S)≤(w,T ) ∼=WS≤wWT

∼=WT (S≤T ). So, (W ×S)≤(w,T ) is isomorphic to the poset of faces of the Coxeter
zonotope Z(WT ,T ). There is a cell structure on X defined by identifying the union of all in simplices of bX
with maximum vertex (w,T ) with the cell Z(WT ,T ). Let us also use the notation X(W,S) for X (= X(A))
(= X) and call it the Salvetti complex of (W,S).

Using Theorem 4.6, we get the following analog of Proposition 4.1.

Proposition 4.4. ( cf. [122], [33]). Let X(W,S) be the Salvetti complex as defined above.

(1) The poset of cells in X(W,S) is equal to W ×S. The cell corresponding to (w,T ) is the Coxeter zonotope
wZ(WT ,T ); its dimension is equal to CardT .

(2) The fundamental group of X(W,S) is the pure Artin group PAW .
(3) There is a free action W y X(W,S). The quotient space X(W,S)/W is a finite CW complex (provided the

set of generators S is finite).

Here is another way to understand the cell structure on X (= X(W,S)). Each cell of X can be represented
as a pair (v,F), where F is a zonotopal cell in Σ (= Σ(W,S)) and v ∈ VertF . The partial order on the set
of such (v,F) is defined by (v,E) < (v′,F ′) if and only if F < F ′ and the shortest edge path from v′ to F
terminates at v′. The geometric realization of the projection p : W ×S→WS is also denoted p : X → Σ . If F
is a cell of Σ of type (WT ,T ), then the set of connected components of p−1(intF) is naturally bijective with
VertF . The closure of such a component is isomorphic to F . Just as we did for Σ(W,S) in Subsection ??, let
us spell out the cell structure on X(W,S) in more detail.

(a) A vertex of X has the form (v,v) where v ∈ VertΣ . Hence, the 0-skeleton of X is naturally isomorphic to
the 0-skeleton of Σ and both correspond bijectively to W .

(b) If E is an edge of Σ with end points u and v, then there are two edges in X lying above it: (u,E) and
(v,E). The edge (u,E) is directed so that its initial vertex is (u,u) and its terminal vertex is (v,v). If E is
labeled by the element s, then label the two directed edges lying above it by the Artin generator σs. Thus,
each edge of Σ is doubled to get a circuit consisting of two directed edges in X .

(c) Similarly, if F is a 2m-gon in Σ corresponding to an edge {s, t} ∈ EdgeL1 with m(s, t) = m, then p−1(F)
consists of 2m copies of F . The face (v,F) is glued to the 1-skeleton as follows. The two edge paths from
v to the antipodal vertex −v in F are labeled by alternating words of length m, st · · · and ts · · · . If we
direct these edge paths as traveling from v to −v, then correspnding to an edge labeled by s (or t) there is
a directed doubled edge labeled by σs (or σt ). Then (v,F) is glued onto X1 so that the two edge paths of
F correspond to the positively oriented edge paths σsσt · · · and σtσs · · · in X1.

(d) The projection p : W ×S→WS has a section f : WS→W ×S defined by wWT 7→ (u,T ) where u is
the shortest element in the coset wWT . This induces a continuous map f : Σ → X that is a section of
p : X → Σ . THIS IS WRONG



40 4 Coxeter groups, Artin groups, buildings

The 1-skeleton of X is isomorphic to the Cayley graph of (W,S) except that each edge is doubled and each
of the new edges is then assigned a direction. Each doubled edge corresponds to a conjugate of the square
of an Artin generator by an element of A and these conjugates give a set of generators for PAW . By (c) the
2-cells in X correspond to conjugates of the Artin relations in (4.1). It follows that π1(X2) = PAW . (This also
follows from the fact that X is homotopy equivalent to the arrangement complement, M(A⊗C).)

Definition 4.4. Let X̃ be the universal cover of X .

Here are some more properties of X and X̃ .

(e) The group W acts freely on X and π1(X/W ) = AW (cf. Theorem 4.6).
(f) There is an equivalence relation∼ on Σ so that X/W = Σ/∼. (By (d) there is a surjection Σ ↪→X→X/W

which induces the equivalence relation on Σ .
(g) The space X/W is a finite CW complex (provided S is finite) with a single vertex and with one cell of

dimension k for each spherical subset T ∈ S with CardT = k.
(h) The 1-skeleton X̃1 is the Cayley graph of AW with respect to the standard generating set {σs}s∈S. Similarly,

X̃2 is the Cayley 2-complex of AW .
(i) The cell complex X̃ satisfies the classical conditions for a convex cell complex in Section 2.1: the

intersection of two cells is either empty or a common face of both.

The K(π,1)-Conjecture can be rewritten as follows.

Conjecture 4.2. (The K(π,1)-Conjecture for Artin groups, second version). The finite CW complex X/W is a
model for BAW . In other words, X̃ is contractible.

4.3.3 The Deligne complex

Given an Artin group A=AW , let G=ASop, the complex of spherical Artin groups defined in Example 5.2. The
basic constructions of Theorem 5.1 give a poset D(A,Sop) and a space D(A,K), with K = |Sop|, see (5.1). The
poset D(A,Sop) is equal to the poset AS from (4.4) of spherical cosets in A. The space D(A,K) is the Deligne
complex for A; it will be denoted by Λ (= Λ(W,S)). So, Λ(W,S) is analogous to the definition of Σ(W,S)
given in Subsection 4.2.5 using the basic construction and fundamental chamber K as of Subsection 4.2.5.

The facts which are summarized in the next paragraph can be found in [23] as well as in [32].
Since K is simply connected, Λ can be identified with the “universal cover of the complex of groups” G

(see ??). As is true for any complex of groups, there is a classifying space BG for G, together with a projection
map p : BG→ K = |Sop|. In our case, BG can be identified with Λ ×A EA where EA denotes the universal
cover of the aspherical space BA and where the projection map p is induced by projection onto the first factor
Λ ×EA→Λ after dividing by A to get Λ ×A EA→Λ/A = K. The space BG is characterized by the fact that
it is an “aspherical realization of the local groups”. In our context this means that if vT ∈ |Sop| denotes the
vertex corresponding to T , then p−1(vT ) is homotopy equivalent to BAT .

Proposition 4.5. The universal cover X̃ of the Salvetti complex X(W,S) is contractible if and only if the
Deligne complex Λ(W,S) is contractible.

Proof. As in Subsection 4.3.2, the natural projection W ×S→WS induces X → Σ . Dividing out by W we
get a projection map q : X/W → K. One checks that q−1(vT )∼= X(WT ,T )/WT . By Deligne’s Theorem 5.3
and Salvetti’s Theorem 4.6, X(WT ,T )/WT is homotopy equivalent to BAT . So, X/W also is an aspherical
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realization of G and hence, X/W ∼ BG (where the symbol ∼ stands for “homotopy equivalent”. It follows
that X̃ ∼ (Λ ×EA). So, X̃ and Λ are simultaneously contractible or not.

A corollary is that the K(π,1)-Conjecture holds for A if and only if Λ is contractible.
As explained in Subsection 4.2.5, each copy of the fundamental chamber K is cellulated by Coxeter blocks,

each of which is the intersection of a Coxeter zonotope and a sector in a fan for a reflection arrangement. This
induces a natural piecewise Euclidean metric on Λ analogous to the natural piecewise euclidean metric on the
zonotopal complex Σ .

Conjecture 4.3. (cf. [32, Conjecture 4.4.4, p. 622]). With its natural piecewise euclidean metric Λ is CAT(0).

Using Theorem 2.1 this conjecture implies that Λ(W,S) is contractible, Hence, by Proposition 4.5, Conjec-
ture 4.3 implies Conjecture 4.2. The issue in Conjecture 4.3 is showing that the link of each cell of Λ satisfies
the Link Condition of Definition 2.1.

When (W,S) is spherical, we define its spherical Deligne complex Λ ′(W,S) by using |S<S| as fundamental
chamber instead of |S|. In other words, the fundamental domain for AW y Λ ′(W,S) is the fundamental
simplex σ(W,S) for the W -action on the unit sphere Sn−1 in the reflection representation, W yRn. This
induces the natural piecewise spherical metric on Λ ′(W,S). . As we will explain at the end of this subsection,
when (W,S) is spherical Λ ′(W,S) is a union of subcomplexes, called apartments, each of which is isometric
to the round sphere Sn−1. (When (W,S) is spherical, Deligne’s actual definition in [64] was of a complex
Λ ′′(W,S) obtained by filling in each apartment of Λ ′ with a round ball.)

To prove Conjecture 4.3 there are three types of links of cells in Λ which must be shown to be CAT(1).

(a) The link of a Coxeter block BT . Such a link corresponds to the order complex of ST , i.e., it is a sublink of
L(W,S).

(b) A link isomorphic to Λ ′(WT ,T ).
(c) A join of a link of type (a) with one of type (b)

Links of type (a) are metric flag complexes; hence, they are CAT(1) by Moussong’s Lemma 4.2.4. The
spherical join of two CAT(1) piecewise spherical complexes is CAT(1) (see [23, Proposition 5.15, p.,64]] or
[?cd93, Appendix, Theorem A9]). So, it suffices to consider links of type (b). This leads to the following
conjecture in [33, Conjecture 3, p.,6]).

Conjecture 4.4. For any spherical (W,S), the spherical Deligne complex Λ ′(W,S) is CAT(1).

So, Conjecture 4.4 implies Conjecture 4.3. (When proving the natural metric on Σ is CAT(0), the links of
type (b) are replaced by Coxeter complexes of the form D(WT ,σ(WT ,T ) which are round spheres and hence,
CAT(1). So, in the case of Σ , it was unnecessary to consider links of type (b) and (c).)

Nonpositive curvature and the Deligne complex was used successfully in [32] in proving the K(π,1)-
Conjecture [32] in two special cases described below. First, Conjecture ?? is true for any (W,S) with
CardS≤ 2.

Proposition 4.6. (cf. [32, Proposition 4.4.5]). The spherical Deligne complex Λ ′(W,S) is CAT(1) whenever
CardS≤ 2.

This is proved in [32] by observing that it follows from a lemma of Appel-Schupp that for S = {s, t}, the
shortest loop in Λ ′(W,S) has length 2m(s, t) corresponding to an Artin relation. A corollary is the following.

Corollary 4.1. The K(π,1)-Conjecture holds for AW whenever dimΛ ≤ 2.
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The cubical structure on K defined in Subsection 4.2.5 gives Λ the structure of a cube complex denoted
Λ�. Once one shows that links of type (b) are flag complex (by [32]), the proof of Proposition 4.3 shows that
cube complex Λ� is CAT(0) if and only if L(W,S) is a flag complex.

Proposition 4.7. (cf. [32]). The cube complex Λ� is CAT(0) if and only if (W,S) is type FC (see Defini-
tion 4.3).

First, one could define its barycentric subdivision bΛ to be the geometric realization of the order complex
of the poset AS of spherical Artin cosets (cf. (4.3)):

AS :=
⊔

T∈S
A/AT . (4.16)

In the same way as Σ was defined in Subsection 4.2.5 we also could define Λ by using the basic construction
with fundamental chamber K (= |S|) as a strict fundamental domain, i.e., Λ = D(A,K) = (A×K)/∼ , where
the local group at x ∈ K is AS(x). When (W,S) is spherical, one defines its spherical Deligne complex Λ ′

by using S<S in place of S. (When (W,S) is spherical, Deligne’s actual definition in [64] was of a complex
Λ ′′(W,S) obtained by filling in certain round spheres in Λ ′ with balls, see below.) The natural piecewise
euclidean metric on Λ is induced from the natural piecewise euclidean metric on K. This metric on K also
induces the natural metric on Σ . Similarly, since the fundamental spherical simplex σ(WT ,T ) is a fundamental
domain for the WT -action on the round sphere Sk−1 (= SFan(WT )), the natural piecewise spherical metric on
the spherical Coxeter complex SFan(WT ) is isometric to Sk−1. In the same way, there is a natural piecewise
spherical metric on the spherical Deligne complex Λ ′(WT ,T ) induced from the fundamental spherical simplex
σ(WT ,T ).

Remark 4.1. (Apartments in Λ(W,S)). If s1 . . .sk is a reduced decomposition of an element w ∈W , then the
element aw = σs1 . . .σsk is a well-defined element of A depending only on w and not on the choice of reduced
decomposition for it. (This follows from the solution to the word problem for Coxeter groups by Matsumoto
and Tits.) Hence, q : w 7→ aw is a section of the canonical epimorphism A→W (The function q is only a
map of sets; it is not a homomorphism). The canonical epimorphism A→W induces a simplicial projection
bΛ → bΣ and q induces a simplicial section q : bΣ → bΛ . Moreover, for any a ∈ A by composing with
translation with a we get another section aq : bΣ → bΛ . The image of such a section is called an apartment
of Λ (cf. [64]).

4.4 Buildings

In the 1960s, J. Tits [133,134] developed the theory of buildings and their automorphism groups in connectiondate, reference

with his work on incidence geometries and algebraic groups. Each building has an associated Coxeter system
(W,S). For buildings that arise from algebraic groups, only spherical and euclidean Coxeter groups play a
role. Nevertheless, Tits was careful to develop the theory for arbitrary Coxeter systems. In fact, it seems that
Tits motivation for introducing the notion of a Coxeter system was for its use in developing the theory of
buildings. Another remarkable aspect of this work is that the symmetries of a building were not involved in
its definition; in particular, a building need not have the structure of a complex of groups.

References for this material include [1], [133–136], [43, 49], and [48, Ch. 18]
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4.4.1 The combinatorial theory of buildings

A chamber system is a set C together with a family of equivalence relations on C indexed by another set S.
Chambers C,D ∈ C are s-adjacent if they are s-equivalent and not equal. A gallery in C is a finite sequence
of chambers (C0, . . . ,Ck) such that C j−1 is adjacent to C j, for 1≤ j ≤ k. The type of this gallery is the word
s = (s1, . . . ,sk) where C j−1 is s j-adjacent to C j. If each s j belongs to a given subset T of S, then the gallery is
a T -gallery. Two chambers are in the same T -connected component if they can be connected by a T -gallery.
The T -connected components of a chamber system C are its residues of type T . An s-equivalence class is
the same thing as a residue of type {s}. If C ∈ C and T ≤ S, then ResT (C) denotes the residue of type T
containing C.

Example 4.7. (The chamber system associated to a family of subgroups). Suppose that G is group, that B is a
subgroup, and that (Gs)s∈S a family of subgroups of G such that each Gs contains B. Define a chamber system
C= C(G,B,(Gs)s∈S) as follows: C= G/B; chambers gB and g′B are s-adjacent if they have the same image
in G/Gs.

For each subset T of S, let GT be the subgroup generated by {Gs}s∈T . As we will see in Chapter 5, if P
denotes the power set of S, then {GT}T∈Pop is a simple complex of groups over the opposite poset to P.

A building is a chamber system with some extra structure that depends on a Coxeter system (W,S).

Definition 4.5. (cf. [1]). Suppose (W,S) is a Coxeter system. A building of type (W,S) is a pair (C,δ )
consisting of a nonempty set C (the elements of which are called chambers), and a function δ : C×C→W
(called the Weyl distance) so that the following conditions hold for all C,D ∈ C

(WD1) δ (C,D) = 1 if and only if C = D.
(WD2) If δ (C,D) = w and C′ ∈ C satisfies δ (C′,C) = s ∈ S, then δ (C′,D) = sw or w. If, in addition,
l(sw) = l(w)+1, then δ (C′,D) = sw.
(WD3) If δ (C,D) = w, then for any s ∈ S there is a chamber C′ ∈ C such that δ (C′,C) = s and δ (C′,D) =
sw.

Example 4.8. The group W itself has the structure of a building: δ : W×W →W is defined by δ (v,w) = v−1w.
It is called the thin building of type (W,S).

Now suppose C is a building of type (W,S). Chambers C,D ∈ C are s-adjacent if δ (C,D) = s; they are
s-equivalent if they are either s-adjacent or equal. This gives C the structure of a chamber system. By (WD3)
every s-equivalence class has at least two elements. A building C is thick if each s-equivalence class contains
at least 3 elements.

When C=W , a T -residue is just a left coset of WT . A residue of type T in a building is itself a building;
its type is (WT ,T ). A building is spherical if its type is a spherical Coxeter system (cf. Subsection 4.2.1). It is
a right-angled building (a RAB) if its type is a right-angled Coxeter system (cf. Subsection 3.3). Let RT (C)
denote the set of all residues in C of type (WT ,T ). In practice the set of chambers C in a buiding will usually
be associated to a family of subgroups C(G,B,(Gs)s∈S) as in Example 4.7. When this is the case, C= G/B
and a residue of type T is the image of a left coset gGT in G/B.

Let R(C) denote the disjoint union of all RT (C) with T ∈ S. The set R(C) is called the poset of spherical
residues. The order relation is inclusion of residues: ResT (C)< ResT ′(C′) if T < T ′ and the first residue is a
subset of the second. The geometric realization of the order complex of R(C) is the standard realization of C. In
this realization each apartment is isomorphic to bΣ(W,S), the barycentric subdivision of the Davis-Moussong
complex in Subsection 4.2.3.
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Definition 4.6. An apartment in C is a subset which is W -isometric to the thin building W . In other words, if
ρC : C→W denotes the function D 7→ δ (C,D), then a subset A of C is an apartment if (ρC)|A : A→W is an
isomorphism. The function C→A, defined as the composition of ρC with the inverse of (ρC)|A, is called the
retraction onto A centered at C.

Definition 4.7. The thickness of a locally finite building C of type (W,S) (at a chamber C) is the s-tuple
(qs)s∈S, where each {s}-residue containing C has exactly qs +1 elements.

If C is the building for an algebraic group over a finite field Fq of order q, then each {s}-residue has q+1
elements since it can be identified with the projective line over Fq. Hence, each qs is equal to q.

The rank of a building of type (W,S) is Card(S).

Example 4.9. (Rank one buildings). The only Coxeter system of rank one is (〈s〉,{s}), where 〈s〉 means the
cyclic group of order two. So, a rank one building is any set with more than two elements (the chambers) and
δ : C×C→ 〈s〉 is defined by

δ (C,D) =

{
1, if C = D,

s, if C 6= D.

Example 4.10. (Rank two buildings). If (W,{s, t}) is a Coxeter system of rank two, then W is a dihedral
group Dm of order 2m, where m = m(s, t), and where D∞ means the infinite dihedral group. If m < ∞, then a
building C of type (Dm,{s, t}) is a generalized m-gon. A generalized 3-gon is a projective plane. The spherical
realization of C is a bipartite graph of girth 2m and diameter m, the edges of the graph are the chambers C.
Each vertex of an edge determines a residue of type {s} or {t}. An apartment in C is a subgraph which is a
circuit of length 2m. A building C of type (D∞,{s, t}) is the same thing as a tree without terminal vertices,
that is to say, C is the set of edges in such a tree. An apartment is a subtree isomorphic to the real line, that is,
to the Coxeter complex of (D∞,{s, t}).

Example 4.11. (Products). For i = 1,2, suppose (Ci,δi) is a building of type (Wi,Si). Then (W,S) = (W1×
W2,S1tS2) is Coxeter system and (C,δ ) = (C1×C2,δ1×δ2) is a building of type (W,S). For example, if
each (Ci,δi) is the building corresponding to a tree Ti, then (C1×C2,δ1×δ2) is a building corresponding
to T1×T2; its associated Coxeter group is D∞×D∞. Each apartment in T1×T2 is isomorphic the euclidean
plane with its square tiling.

If s = (s1, . . . ,sk) is a word in S, then its value w(s) = s1 · · ·sk is the corresponding element of W . A gallery
(C0, . . . ,Ck) of type s is reduced if s is a reduced expression for w(s).

It is proved in [1, Prop. 5.23] that the conditions (WD1),(WD2), (WD3) in Definition 4.5 are equivalent
to the following two conditions on a chamber system C, equipped with a function δ : C×C→W .

• Each s-equivalence class has at least two elements.
• Given a reduced expression s for an element w ∈W , there is a gallery of type s from C to D if and only if

δ (C,D) = w.

(This is the definition in [117].)previous 3 paragraphs could be
omitted or put later An automorphism of C is a self-bijection which preserves s-equivalence classes for each s∈ S. Equivalently,

it is a self-bijection which preserves Weyl distance.
Given C ∈ C, the combinatorial ball of radius n about C is the set BC(n) := {D ∈ C | l(δ (C,D)) ≤ n}.

There is a natural topology on the group Aut(C) of automorphisms of C: an open neighborhood of 1 ∈Aut(C)
is the set of automorphisms which fix each element of BC(n) for some n ∈ N and C ∈ C. (The neighborhood
is small if n is large.) Since C is locally finite, Aut(C) is a locally compact, totally disconnected topological
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group. As such, it has a Haar measure. A closed subgroup G⊂Aut(C) inherits a topology and a Haar measure.
A subgroup Γ ⊂ G is a lattice if it is discrete and G/Γ has finite volume. It is a uniform lattice if G/Γ is
compact. A discrete subgroup Γ ⊂ Aut(C) is a uniform lattice if and only if C/Γ is finite. (See [?thomas]
for a discussion of lattices in Aut(C), when C is a right angled building.)

Definition 4.8. A subgroup G⊂ Aut(C) is chamber-transitive if it is transitive on C. It is strongly transitive
if it is transitive on the set of pairs (A,C), where A is an apartment in C and C ∈A (cf. [1, §6.1.1]). (In fact,
it is not necessary use all apartments in this definition, A need only belong to a certain “system of apartments”
satisfying the classical axioms for a building, cf. [1, §6.1]).

It turns out that if G is strongly transitive on a thick building, then it inherits the structure of a BN pair
(also called a “Tits system”), cf. [1, Thm. 6.56].

4.4.2 Geometric realizations of buildings

Given a Coxeter system (W,S), let K = |Sop| be its fundamental chamber. Even though C need not be a group,
the definition of the basic construction can be modified to work for C. The definition of D(C,K) is essentially
the same as that for the standard complex Σ(W,S) in Subsection 4.2.3 or for the Deligne complex Λ(W,S) in
Subsection 4.3.2. To wit, D(C,K) = (C×K)/∼, where the equivalence relation ∼ is given by

(C,x)∼ (C′,x′) ⇐⇒ x = x′,and the chambers C, C′ belong to the same S(x)-residue.

(Here, as before, S(x) = {s ∈ S|x ∈ Ks}).) The polyhedron D(C,K) is the standard realization of C. Since K
is the geometric realization of S, D(C,K) can be identified with |R(C)|, the geometric realization of the poset
of spherical residues.

As in Subsection 4.2.5, K is partitioned into Coxeter blocks BT , with T ∈ S, where BT is the union of
all simplices in the order complex of the subposet [T, /0] of Sop; furthermore, each BT has a natural metric
as a convex polytope in some euclidean space. (Recall BT is the intersection of a Coxeter zonotope with
a WT -sector.) This induces the natural piecewise euclidean metric on K, as well as, the natural piecewise
euclidean metric on D(C,K). Moreover, each apartment in D(C,K) is isometric to D(W,K) = Σ(W,S), with
its CAT(0) metric. To simplify notation denote the standard realization D(C,K) with its natural piecewise
euclidean metric by |C|.

Theorem 4.7. (cf. [43]). For any building C, the natural piecewise Euclidean metric on its standard realization
is CAT(0).

Suppose (WT ,T ) is a spherical Coxeter system as in Subsection 4.2.1. The group WT acts on the unit
sphere Sm−1 in the geometric representation on Rm. A fundamental domain for the action is the fundamental
spherical simplex σ(T ); so, Sm−1 = D(WT ,σ(T ) (see Subsection 4.2.1). Now suppose C(T ) is a spherical
building of type (WT ,T ). The spherical realization of C(T ) is the basic construction applied to C(T ) with
fundamental domain σ(T ):

D(C(T ),σ(T )) = (C(T )×σ(T ))/∼ ,

with its natural piecewise spherical metric induced from σ(T ). We shall also write ∆(C(T ) for D(C(T ),σ(T )).
In this spherical realization, each apartment is isometric to the round sphere D(WT ,σ(T )) = Sm−1. More
precisely, if A is an apartment in C(T ), then the map induced by (ρC)|A from Definition 4.6 induces an
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isometry from the spherical realization of A to Sm−1. (N.B. The standard realization of C(T ) uses for
fundamental domain the Coxeter block BT so that each apartment becomes isometric to the Coxeter zonotope
Z(WT ,T ).)

Consider the standard cellulation of Σ(W,S) by Coxeter blocks. Let vT be a vertex corresponding to the
center of a Coxeter zonotope Z(WT ,T ), then the link of vT in Σ = Σ(W,S) decomposes as a spherical join:

Lk(vT ,Σ) = Sm−1 ∗Lk(T, |S|). (4.17)

Here Sm−1 is the link of vT in the zonotope and Lk(T, |S|) = |S>T |= Lk(vT ,KT ) is the the link of vT in the
stratum of a chamber corresponding to T . Since |S>T | is a link in the metric flag L(W,S), it is also a metric
flag complex; so, by Moussong’s Lemma 4.3, it is CAT(1). A similar analysis holds for the link of a vertex
vT in the geometric realization |C|= D(C,K) except that in (4.17), the round sphere Sm−1 must be replaced
by the spherical realization of a building of the form ResT (C). In other words, the formula in (4.17) should
be replaced by

Lk(vT , |C|) = ∆(C(T ))∗Lk(T, |S|), (4.18)

where ∆(C(T )) =D(ResT (C),σ(T )). So, to show that Lk(vT , |C|) is CAT(1) it suffices to prove the following
lemma which states that the spherical realization of any spherical building is CAT(1).

Lemma 4.7. (cf. [43]). If C(T ) is a spherical building of type (WT ,T ), then its spherical realization ∆(C(T ))
is CAT(1).

Lemma 4.7 is a corollary of Theorem 4.7. Indeed, a neighborhood of the vertex vT in |C(T )| is isometric
to a neighborhood of the cone point in Cone(∆(C(T )). By Lemma 2.2, if vT has a CAT(0) neighborhood,
then ∆(C(T )) is CAT(1).

Remark 4.2. If Lemma 4.7 holds for all spherical building, then, by the Link Condition (Definition 2.1), |C|
is NPC. Since it is also not hard to see that |C| is simply connected, it might seem that the way to prove
Theorem 4.7 is to first establish Lemma 4.7. However, the proof in [43] is by a more direct argument which
we shall explain below.

Proof (Sketch of proof of Theorem 4.7). The proof in [43] follows a standard argument in [?brbook, Ch. VI
§3]. An important consequence of Definition 4.5 is one of the classical axioms for a building: any two
chambers are contained in a common apartment. Passing to the geometric realization, this that any two points
x,y ∈ |C| are contained in the realization of |A| of an apartment. If C is a chamber in an apartment A, we
have ρC,A : C→A the retraction onto A centered at C (cf. Definition 4.6. Its geometric realization is denoted
ρC,A : |C| → |A| (or simply by ρ). If x,y ∈ |A|, then ρ takes a geodesic segment connecting them in |C| to a
geodesic segment in |A|. Using the fact that |A| is CAT(0) one argues that the geodesic segment in |C| from x
to y is equal to the geodesic segment in |A|. Moreover, ρ is distance decreasing.

If x,y,z are vertices of a triangle in E2 and pt = tx+(1− t)y is a point on the segment from x to y, then it
is an easy exercise to see that d2(z, pt) = (1− t)d2(z,x)+ td2(z,y)− t(1− t)d2(x,y), where d2(x,y) denotes
the square of the euclidean distance. It follows that the CAT(0) inequality for a triangle in a geodesic space
with vertices x,y,z is equivalent to the same formula with the equality replaced by an inequality:

d2(z, pt)≤ (1− t)d2(z,x)+ td2(z,y)− t(1− t)d2(x,y) (4.19)

Now choose an apartment A so that x,y ∈ |A| and a chamber C so that pt ∈ |C| and let ρ : |C| → |A| be the
geometric realization of ρC,A. Then
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d2(z, pt) = d2(ρ(z), pt)

≤ (1− t)d2(ρ(z),x)+ td2(ρ(z),y)− t(1− t)d2(x,y)

≤ (1− t)d2(z,x)+ td2(z,y)− t(1− t)d2(x,y) .

Hence, the CAT(0)-inequality holds for the triangle [x,y,z].

One can also use this argument to decide when the standard realization of a building has a piecewise
hyperbolic, CAT(−1) metric. This gives the following analog of Theorem 4.3.

Theorem 4.8. (cf. [43, Remark 11.8]). Suppose C is a building of type (W,S), wtih W word hyperbolic. Then
its standard realization D(C,K) can be given a piecewise hyperbolic, CAT(−1) metric.

For example, if W is a reflection group on H2 generated by reflections across the faces of a hyperbolic
polygon, then C is a Fuchsian bulding. In the right-angled case these have been constructed and studied by
Bourdon [20, 21].

4.4.3 Using covering spaces to construct buildings

In Section 3.1 we gave a technique for constructing RACGs, RAAGs and RAB, that involved first taking
a polyhedral product and then passing to the universal cover. Here we discuss a generalization of [49] that
works for arbitrary Coxeter systems not just the right-angled ones. Suppose (W ′,S′) is a Coxeter system
with nerve L′ and that L is another simplicial complex with vertex set S. Suppose that f : S→ S′ defines a
simplicial map L→ L′ whose restriction to each simplex is injective. Let (m′(s′, t ′)) denote the Coxeter matrix
of (W ′,S′). Define a new (S×S) Coxeter matrix (m(s, t)) by

m(s, t) :=


1 if s = t,
m′( f (s), f (t)) if {s, t} ∈ Edge(L),
∞ otherwise,

(4.20)

and let (W,S) be the corresponding Coxeter system. in other words, if m′ : Edge(L′)→ {2.3, . . .} is the
edge labeling defining (W ′,S′), then (W,S) is defined by the edge labeling m which is the composition m
of m′ with f |Edge(L′), i.e., m = m′ f : Edge(L)→ {2,3, . . .}. The map of generating sets S→ S′ extends to a
homomorphism ϕ f : W →W ′; moreover, ϕ f is surjective if and only if f is surjective.

For example, f : L→ L′ could be

(a) a covering projection,
(b) an embedding onto a subcomplex, or
(c) a covering space of an embedded subcomplex.

Let K(L′) denote the fundamental chamber for (W ′,S′), i.e., K(L′) is the geometric realization of the order
complex of S(L′). Similarly, if S(L) denotes the poset of simplices of L, then K(L) = |S(L)| is the fundamental
chamber for a W -action on D(W,K(L)). The space D(W,K(L)) need not be contractible: a necessary and
sufficient condition for this to be true is that for every spherical subset T ∈ S(W,S), T is the vertex set of a
simplex of L. The map f can be used to get a new stratification of K(L) indexed by S(L′):
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K(L)s′ :=
⊔

s∈ f−1(s′)

K(L)s and K(L)T ′ =
⊔

T∈ f−1(T ′)

K(L)T . (4.21)

Let D(W ′,K(L)) be the result of applying the basic construction to this new stratification of K(L). If W 6=W ′,
then D(W ′,K(L)) will not be simply connected. Indeed, a necessary condition for it to be so is that K(L)s′ is
connected for each s′ ∈ S′ and that K(L){s′,t ′} 6= /0 whenever m′(s′, t ′) 6= ∞ (see [48, Prop. 8.2.11]). However,
the natural ϕ f -equivariant map, D(W,K(L))→ D(W ′,K(L), is projection map of the universal covering .
Similarly, for A′ the Artin group associated to (W ′,S′), we get a version of the Deligne complex D(A′,K(L)).
More interesting is the case of buildings. Given a building C′ we get a building of type (W ′,S′), we get a
nonstandard realization D(C′,K(L)). The main result of [49] is the following.

Theorem 4.9. ([49]). With notation as above, the universal cover of D(C′,K(L)) is the geometric realization
of a building C of type (W,S).

Example 4.12. (RACGs, RAAGs, RABs). Here are the examples of type (b) which were considered previously
in Section 3.1. Suppose that L is a flag complex with vertex set S, that S′ = S and that ∆(S) is the simplex on
S. Then L is a subcomplex of ∆(S) and K(L) is a cubical subcomplex of the cube [0,1]S. Let W ′ = (C2)

S be
the sum of cyclic 2-groups. Then D((C2)

S,K(L)) is the polyhedral product PL of (3.3), W = ∏L1 C2 is the
RACG associated to L1 in Example 3.3 and D(W,K(L)) = P̃L = Σ(W,S) is the Davis-Moussong complex of
Subsection 4.2.3. If A′ = ∑S Z (= (Z)S), then D(∑Z,K(L) is the polyhedral product ZL = (ConeZ,Z)L of
(3.4) and if A = ∏L1 Z denotes the associated RAAG of Example 3.3, then D(A,K(L)) = Z̃L = Λ(W,S), the
Deligne complex of Subsection 4.3.3 (Λ(W,S) is also the RAB for A). Finally, if E = {Es}s∈S is a family
of discrete sets, each having more than two elements, then Cs = Es is a rank one building and the product
C′ = ∏Cs is a building of type ((C2)

S,S). The thickness (qs) is the S-tuple defined by qs + 1 = Card(Es).
Moreover, D(C′,K(L)) is the polyhedral product (ConeE,E)L of (3.4) and its universal cover is the geometric
realization a RAB C of type (W,S).

Definition 4.9. A coloring of a simplicial complex L is a simplicial map f : L→ ∆(S′) whose restriction to
each simplex is injective. The elements of S′ are the colors. (The map f gives a coloring of the vertices of L
by elements of S′.)

Example 4.13. (Coxeter systems of type FC). Here is a generalization of the previous example. Suppose
(W ′,S′) is spherical so that L′ = ∆(S′) is the simplex on S′. Suppose L is a flag complex with vertex set S
and that f : L→ ∆(S”) is a coloring. The resulting Coxeter system (W,S) is type FC (see Definition 4.3).
Conversely, if (W,S) is type FC, then there is an inclusion f : L(W,S) ↪→ ∆(S) (in particular, f is a coloring)
and one can realize ∆(S) as the nerve of a spherical Coxeter system (W ′,S) by the simple expedient of labeling
by 2 all edges of ∆(S) which are missing from L, i.e., if m(s, t) = ∞, then change it to m′(s, t) = 2. Thus, every
Coxeter system of type FC is the pullback of a spherical Coxeter system via some coloring. The complex
D(W ′,K(L)) plays the role of the polyhedral product PL and the natural map D(W,K(L))→ D(W ′,K(L)) is
the universal cover. Thus, π1(D(W ′,K(L)) is a torsion-free subgroup of finite index in W . As before, (W ′,S′)
and (W,S) have respective Artin groups A′ and A. Not all Coxeter systems occur as the type of a locally finite,
thick spherical building; however, the irreducible Coxeter systems with diagrams An, Bn, Dn, G2, F4, E6, E7,
and E8 all can occur. For spherical buildings of rank two whose Coxeter group is a dihedral group of order
2m (= a generalized m-gon), by a theorem of Feit-Higman [?fh] there are locally finite examples only for
m ∈ {2,3,4,6,8}

Example 4.14. (The case dimL = 1, Fuchsian buildings). If C′ is a generalized m-gon, then (W ′,S′) =
(Dm,{s′, t ′}) and L′ is the 1-simplex ∆(S′). If L is any bipartite simplicial graph, then it admits a coloring
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f : L→ ∆(S′). For example, L could be a 2k-gon or a finite tree. So, for any bipartite graph L, there is a
labeling of Edge(L) where each edge is labeled by the same integer m. If m ∈ {2,3,4,6,8}, we can choose a
thick rank two spherical building C′ of this type. Hence, if L is any bipartite graph, there is a building C such
that each rank two spherical residue is isomorphic to C′. In other words, the link of each vertex of K(L) is
isomorphic to the 1-dimensional piecewise spherical complex D(C′,σ(S′)). (A vertex of K(L) corresponds
to the midpoint of an edge of L.) If L is a 2k-gon and if m≥ 3 when 2k = 4, then K(L) can be realized as a
2k-gon in H2; so, C is a Fuchsian building.

We can get many more examples with dimL = 1 by starting with (W ′,S′) a spherical Coxeter system (in
which case L′ = ∆(S′)) or possibly a euclidean Coxeter system (in which case L′ = ∂∆(S′)). To simplify the
discussion let us suppose L is an n-gon. The simplicial map f : L→ ∆(S′) is just a closed edge path, possibly
with backtracking. If (W ′,S′) has diagram Ãn−1, then ∂∆(S′) contains an n-circuit with each edge labeled
3. Let f : L→ ∂∆(S′) be an embedding with image this n-circuit. If C′ is a building of type (W ′,S′), then
over each edge of f (L) we have a rank two spherical residue with diagram A2, i.e., a projective plane. In
particular, L can be an n-gon with n odd and each edge labeled 3. The resulting building C over K(L) will be
Fuchsian provided n > 3. In this fashion we can find examples of buildings with L an n-gon whose edges are
labeled fairly randomly by elements of {2,3,4}. We note that when C′ is an irreducible spherical building
corresponding to an algebraic group over a finite field Fq or a euclidean building corresponding to discrete
valuation ring with residue field Fq, then C′ as well as the resulting building C will have constant thickness q. I doubt it

Example 4.15. (Branched covers). Suppose L′ is the nerve of a Coxeter system (W ′,S′) and that f : L→ L′

is a regular covering space with group of deck transformations Γ . The simplicial structure on L′ lifts to
a simplicial structure on L – a simplex of L is a component of the inverse image of a simplex of L′. We
can pull back the labeling on Edge(L′) to get a labeling on Edge(L) and hence, a Coxeter system (W,S)
where S = f−1(S′). By construction, L≤ L(W,S) and an easy argument shows that L(W,S)≤ L (use the fact
that each triangle in L projects to a triangle in L′). Since K(L′) = ConeL′ and K(L) = ConeL, the natural
projection K(L)→ K(L′) is a branched cover (branched at the cone point). The stratification of K(L′) indexed
by S(W ′,S′) lifts to one on K(L) with the same index set; K(L) also has a natural stratification indexed by
S(W,S).

Example 4.16. (Fuchsian buildings).

Example 4.17. (Hyperbolic buildings).

4.4.4 Constructions, lattices

automorphism groups, lattices, Algebraic groups, Simple complexes of groups, (B,N) pairs





Chapter 5
Simple complexes of groups

Suppose a group G acts on a space X . Two points of X belong to the same orbit type if their isotropy groups
are conjugate subgroups of G. The points of a given orbit type form a pure stratum of X . (In fact we will want
to define a pure stratum to be a connected component of a set of points of a given orbit type.) The closure of a
pure stratum is a stratum. So, X is a stratified space as in [23, II.12.1].

A strict fundamental domain for G y X is a closed subspace C ⊂ X such that C intersects each orbit
in exactly one point. It follows that restriction of the orbit projection p : X → X/G to the subspace C is
a homeomorphism and hence, that C provides a section s : X/G→ X of p defined by s = (p|C)−1. The
stratification of X induces a stratification of C. This means that two points of C belong to the same pure
stratum if and only if their isotropy subgroups are equal. Similarly, if G acts on a poset P by order-preserving
automorphisms, then a strict fundamental domain for G on P is a subposet Q which intersects each G-orbit in
exactly one element. Simple complexes of groups are designed to deal with group actions on cell complexes
which admit a strict fundamental domain.

The basic reference for the following material is [23]. Other references include [32], [60], [68], [116]. [48]?

The theory of simple complexes of groups is developed in [23]. Basic examples of simple complexes
of groups are provided by Coxeter groups, Artin groups and buildings. So, we will make a few comments
concerning the general theory here and postpone a fuller discussion to Appendix ??

Let P be a poset. A chain in P is a totally ordered subset. In other words, a finite subset {p0, . . . pk} is a
chain if, possibly after reordering, p0 < · · ·< pk. The order complex of P is the set of all chains in P. It is an
abstract simplicial complex; a k simplex is a chain of length k+1. Denote the geometric realization of the
order complex by |P|. Reversing the order relation on P one obtains the opposite poset Pop. Note that the
order complexes of P and Pop are identical

Simple complexes of groups arise from group actions with strict fundamental domains. Suppose G y Y
with strict fundamental domain |Q|. The space |Q| has a stratification with strata indexed by Q, where
|Q|σ = |Q≤σ |. (For example if Q is the poset of cells in a cell complex, then each stratum is a cell.) The
local groups are the stabilizers of the strata (one assumes the G-action is without inversions meaning that
the setwise stabilizer of a stratum fixes each point of the stratum. So, Gσ is the isotropy subgroup of |Q|σ .
(The reason a simple complex of groups is defined as a cofunctor rather than a functor is that for group
actions, a smaller stratum should correspond to a larger isotropy subgroup.) The simple complex of groups is
developable if it is induced from a G-action.

The next result uses the basic construction of Subsection 3.1.1 to show that every developable GQ arises
from an action with strict fundamental on the basic construction.

51
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Theorem 5.1. (The basic construction, cf. [23]). Suppose that GQ is developable and G = limGQ. Then there
is a poset D(G,Q) such that G y D(G,Q) with strict fundamental poset Q. Taking geometric realizations, we
get a polyhedron D(G, |Q|) such that G y D(G, |Q|) with strict fundamental domain |Q|.

The basic construction D(G, |Q|),
D(G, |Q|) = (G×|Q|)/∼ (5.1)

is defined as in Subsection 3.1.1. Given x ∈ |Q|, let σ(x) be the index the smallest stratum |Q|σ such that
x ∈ |Q|σ . the equivalence relation ∼ is then defined the same way as in (3.8):

(g,x)∼ (g′,x′) ⇐⇒ x = x′ and g−1g′ ∈ Gσ(x) , (5.2)

in other words, gGσ(x) and g′Gσ(x) are the same coset in G/Gσ(x).
It also turns out that when |Q| is simply connected, then so is D(G, |Q|) (see ??). So, when |Q| is simply

connected, G = limGQ should be regarded as the “fundamental group of GQ”.
Given a Coxeter system (W,S), we define two simple complexes of groups over Sop, where S= S(W,S),

the poset of spherical subsets of S. Denote the order relation on Sop by ≺, so that T ′ ≺ T if T is a proper
subset of T ′. The fundamental chamber K is defined as |Sop|. The stratum KT is the union of all simplices in
|Sop| with maximum vertex = T .

Example 5.1. (The complex of spherical Coxeter subgroups of W .) There is a simple complex of groups WSop

over Sop called the complex of spherical subgroups of W . It is defined as the cofunctor T 7→WT , so that if
T ′ ≺ T , then WT is a subgroup of WT ′ . It is obvious that the direct limit, limWSop, is equal toW . On the level
of posets the basic construction D(W,Sop is equal to the poset of spherical cosets WS defined in (4.3). On
the level of spaces it is the cell complex Σ(W,S) of Subsection 4.2.3 (actually, the strata of D(W,K) are dual
cones to the cells in Σ(W,S)).

Example 5.2. (The complex of spherical Artin subgroups of A.) The complex of spherical subgroups of A is
the simple complex of groups ASop over Sop defined by T 7→ AT . If T ′ ≺ T , then AT is a subgroup of AT ′ .
We also have limASop = A. On the level of posets, D(A,ASop) = AS where AS is poset of spherical cosets
from (4.4) and on the level of spaces, D(A,K) is the Deligne complex Λ(W,S) of Subsection 4.3.3 below.

5.1 Definitions

Definition 5.1. (cf. Bridson-Haefliger [23, II.12.11, p. 375]). A simple complex of groups GQ over a poset Q
is a collection of groups {Gσ}σ∈Q and monomorphisms φτσ : Gσ →Gτ defined whenever τ < σ . The Gσ are
the local groups. Furthermore, GQ must be a cofunctor from Q to the category of groups and monomorphisms
in the sense that φµτ φτσ = φµσ whenever µ < τ < σ . (A “cofunctor” means a contravariant functor i.e., a
functor on Qop.)

A simple morphism ψ = (ψσ ) from GQ to a group H is a function which assigns to each σ ∈ Q a
homomorphism ψσ : Gσ → H such that ψσ = ψτ φτσ whenever τ < σ . The simple morphism ψ is injective
on local groups if each ψσ is injective. If H acts on a poset P with strict fundamental domain Q, we get a
simple complex of groups GQ by setting Gσ equal to the isotropy subgroup at σ for each σ ∈ Qas well as, a
simple morphism ψ ′ : GQ→ H such that ψ ′ : Gσ → H is the inclusion. Similarly, if H acts on a polyhedron
D with strict fundamental domain the geometric realization of Q, we get a simple complex of groups GQ



5.1 Definitions 53

where Gσ is the isotropy subgroup of H at a point in the pure stratum of the fundamental domain |Q|. If the
simple complex of groups GQ arises from an action on a poset P or a polyhedron D, then we say that GQ

is developable and that D is a development. Conversely, as we shall see below in Theorem 5.2 that GQ is
developable if there is a simple morphism GQ to some group H that is injective on local groups (in fact we
can restrict H to being the direct limit of the system of groups GQ, as defined below.

The direct limit of GQ is a group G (= limGQ) together with a simple morphism ψ : GQ→ G with
the following universal property: if ψ ′ : GQ → H is any simple morphism, then there exists a unique
homomorphism θ : G→ H such that θψσ = ψ ′ : Gσ → H for all σ ∈ Q. It follows that if it exists, the direct
limit is unique up to a canonical isomorphism. To establish existence we note that he direct limit can be
constructed in a standard fashion by taking the free product of the Gσ and then quotienting by relations to
insure that Gσ is identified with its image under φτ σ in Gτ and that φµτ φτσ (g) = φµσ (g) whenever µ < τ < σ ,
for all g ∈ Gσ (cf. [128, p. ?].

Remark 5.1. The usual way to regard a poset Q as a category is have an arrow, τ → σ , whenever τ ≤ σ . before simple morphism?

When Q is a set of subsets (e.g. a set of cells in a cell complex), it also is usual for the partial order to be
given by inclusion. Suppose G acts on a cell complex X , that P is the poset of cells in X , and that for each
σ ∈ P, Gσ is the (pointwise) stabilizer of σ . If τ < σ is a face of σ , then Gσ < Gτ , i.e., “smaller cells have
larger isotropy groups.” For example, in the theory of graphs of groups [128], edge stabilizers are included in
vertex stabilizers. If a cell complex Y is a strict fundamental domain for the G-action on X and Q is its poset
of cells, then we get a simple complex of groups GQ= {Gσ}σ∈Q where the φστ : Gσ → Gτ are inclusions.
This explains why GQ is defined to be a cofunctor.

On the other hand, in some earlier papers, e.g., [32, 60], the author has used the reverse convention that a
simple complex of groups is a functor from a poset to groups. The reason for this reversed convention is that
for the complexes of groups associated to Coxeter groups and Artin groups in Section 5.3 the poset which
naturally indexes the local groups is the poset of simplices in a certain simplicial complex L (so that smaller
simplices correspond to smaller local groups). Here we will dispense with this reversed convention by using
as index set, S(L)op, the opposite poset to the face poset of L.

A simple morphism ψ = (ψσ ) from GQ to a group G is a function which assigns to each σ ∈ Q a
homomorphism ψσ : Gσ → G such that ψτ = ψσ φστ whenever τ < σ . The simple morphism ψ is injective
on local groups if each ψσ is injective. If there is a simple morphism ψ from GQ to G, which is injective
on local groups, then, as we shall see in Section 5.2, we get a G-action on a polyhedron D with GQ the
associated complex of groups. If this is the case, GQ is said to be “developable” and D is a “development”
of it. As in [128, p.?], one can define the direct limit of any system of groups and homomorphisms. So,
given a simple complex of groups GQ we get a group, limGQ, called its direct limit. It comes equipped
with a canonical morphism ψ : GQ→ limGQ. The direct limit is characterized by a universal property: if
ψ : GQ→ H is any simple morphism to a group H, then there is a unique homomorphism limGQ→ H
compatible with the canonical simple morphism. The simple complex of groups GQ is developable if the
canonical homomorphism GQ→ limGQ is injective on local groups.

The order complex of a poset P is the simplicial complex whose simplices are the totally ordered finite Put some place else? Change (5.3)

subsets {τ0, . . . ,τk} in P (where τ0 < · · ·< τk). The order complex of a poset P is a simplicial complex whose
underlying topological space is denoted |P| and is called the geometric realization of P. If Popp denotes the
opposite poset where the order relations are reversed, then |Popp| is isomorphic to |P|. There are two natural
stratifications of |P| both indexed by P:

|P|σ := |P≥σ | and |P|σ := |P≤σ |. (5.3)
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In the second case, inclusion of one stratum into another corresponds to the original order relation on P; in
the first case, the order relation is reversed. So, we should regard {|P|σ} as being indexed by Pop. Given
x ∈ |P|, let σ(x) be the index of the smallest stratum |P|σ containing x.Did I reverse something?

If L is a simplicial complex, then S(L) denotes its poset of simplices together with /0 (the empty simplex).
The dual of a simplicial polytope is a simple polytope.

Definition 5.2. (Simplices of groups). Suppose σ is a simplex and ∂σ is its boundary complex. Put Q =This seems wrong. Maybe ok

S(∂σ). The geometric realization of Q can then be identified with the dual simplex σ∗. A simple complex of
groups GQ over Q is called a simplex of groups. If dimσ = 1, then σ∗ is a 1-simplex and GQ is an edge of
groups. If dimσ = 2, then GQ is a triangle of groups.

If GQ is an edge of groups, then limGQ is the amalgamated product of Gv0 and Gv1 along G /0. Here v0 andswitch σ , σ∗ and P , P∗ ?

v1 are the vertices of ∂σ (= the vertices of σ∗) and G /0 corresponds to the 1-simplex σ∗.
Nice examples of simplices of groups come from the theory Coxeter groups (see section 5.3). For example,

when dimσ = 2, the triangle of groups pictured below the direct limit is a Coxeter group W . (In this figure,
Dm stands for the dihedral group of order 2m. The group W is finite if and only if 1/p+ 1/q+ 1/r > 1.)
Other examples of simplices of groups come from spherical buildings with chamber transitive automorphism
groups (see Example 5.6.

Definition 5.3. (Polytopes of groups). Suppose P is a simplicial polytope and ∂P is its boundary complex
(so ∂P is a simplicial complex). Put Q= S(∂P). Let P∗ be the dual simple polytope (meaning that the poset
of nonempty faces of P∗ isomorphic to S(∂P)op). A simple complex of groups GQ over Q (= S(∂P)) is a
polytope of groups. If dimP = 2, then GQ is a polygon of groups.

Definition 5.4. (Trees of groups). Given a tree X , let Q= VertX
⊔

EdgeX be its set of cells, partially ordered
by reverse inclusion. A tree of groups is a simple complex of groups over Q. In fact, exactly the same definition
works for any connected graph X without loop, yielding the notion of a graph of groups.

Suppose GQ is a graph of groups as in the above definition. Put G = limGQ. It follows from a result in
[128] on the structure of amalgams that the natural simple morphism from GQ to G is injective on local
groups, i.e., GQ is developable. (Even when X is allowed to have loops, one can still define a “graph of groups”
as in [128, 4.4]; it is still a complex of groups as in [23, ?]; however, it is not a simple complex of groups. The
difference is that when X is a loop there are two inclusions from the edge group into the vertex group and the
local groups need not inject into the direct limit. However, there is still a notion of a fundamental group of a
graph of groups and the local groups inject into it; so, any graph of groups is developable. For example, If X
is a single loop, then the fundamental group is an HNN extension, cf. Example 5.11 in section 5.6.

5.2 The basic construction

We begin by reviewing material on simple complexes of groups from [23, II.12], [32], [60].move earlier

Theorem 5.2. (The basic construction, cf. [23]). Suppose ψ ′ = (ψ ′σ ) is a simple morphism from GQ to a
group H that is injective on local groups. Also, let G be the direct limit of GQ and ψ : GQ→ G the canonical
simple morphism.

(i) There is a H-action on a poset D(ψ ′,Q) with Q as strict fundamental domain. (The poset D(ψ ′,Q) is
called the development of GQ with respect to ψ .)
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(ii) There is a H-action on a polyhedron D(ψ ′,Q) with strict fundamental domain |Q|.
(iii) (Compare [?vinberg].) The polyhedron D(ψ ′,Q) has the following universal property: suppose

H y Z and f : |Q| → Z is a map such that for all σ ∈ Q, f (|Q|σ ) is contained in Fix(Gσ ,Z),the fixed
point set of Gσ on Z. Then there is a unique extension of f to a H-equivariant map f̃ : D(ψ ′,Q)→ Z.

(iv) The orbit projection p : D(ψ ′,Q)→ |Q| is a retraction.
(v) The space D(ψ ′,Q) is connected if and only if |Q| is connected and the subgroups {Gσ}σ∈Q generate

H.
(vi) The space D(ψ ′,Q) is simply connected if and only if |Q| is simply connected and H = G. vi is key

(vii) If D(ψ,Q) is contractible, then so is |Q|.

Proof. Since ψ ′ is injective on local groups, we may identify each local group Gσ with its image ψ ′σ (Gσ ).
(i) The poset D(ψ ′,Q) is defined to be the disjoint union

⊔
σ∈Q H/Gσ consisting of all pairs (gGσ ,σ),

with g ∈ H and σ ∈ Q. The partial order is the natural one, defined by (hGτ ,τ)< (gGσ ,σ) ⇐⇒ τ < σ and
h−1g ∈ Gτ .

(ii) For any x ∈ |Q|, let σ(x) be the least element σ ∈ Q such that x belongs to the stratum |Q|σ . The space
D(ψ ′, |Q|) is defined by

D(ψ ′, |Q|) := (H×|Q|)/∼ , (5.4)

where the equivalence relation ∼ is defined by (g,x)∼ (g′,x′) ⇐⇒ x = x′and gGσ(x) = g′Gσ(x).

(iii) Suppose [g,x] denotes the equivalence class of (g,x). The map f̃ : D(ψ ′, |Q|)→ Z is then defined by
f̃ ([g,x]) = g f (x).

(iv) This is precisely what is meant by the statement that |Q| is a strict fundamental domain.
(v) and (vii) Since p : D(ψ ′, |Q|)→ |Q| is a retraction, it induces a surjection on π0 (in fact, on the

homotopy groups πi for all i). So, if D(ψ ′, |Q|) is path connected, then so is |Q|. Let H ′ be the subgroup of
H generated by {Gσ}. Since Imψ ′ is contained in H ′, we have a simple morphism ψ ′′ : GQ→ H ′ and an
embedding D(ψ ′′, |Q|) ↪→ D(ψ ′, |Q|). Clearly, D(ψ ′′, |Q|) is both open and closed in D(ψ ′, |GQ|). Statement
(v) follows. Similarly, (vii) is true.

(vi) The universal property of the direct limits gives a homomorphism θ : G→ H. Put D = D(ψ, |Q|) and
D′ = D(ψ ′, |Q|,ψ ′), where ψ : GQ→ H is the canonical simple morphism. By (iii) there is a θ -equivariant
map π : D→ D′ inducing the identity on |Q|; the map π is easily seen to be a covering projection. First
suppose that D′ is simply connected. Then π is a homeomorphism, θ is an isomorphism and by (iv), |Q| is
simply connected. Conversely, suppose that |Q| is simply connected and that G = H. Then we can assume
D = D′. Let E→ D be any connected covering space. We will show that D is simply connected by showing
that E→ D is a homeomorphism. Since |Q| is simply connected the inclusion |Q| ↪→ D lifts to E and gives
a fundamental domain for the group G̃ of all lifts to E of G-action on D (this is the key point). Each local
group Gσ lifts isomorphically to the isotropy subgroup of G̃ at a point of |Q|. Since E is connected, these
local groups generate G̃; hence, G̃→ G is onto. By (iii), the lift of the fundamental domain defines a section
D→ E of the covering projection E→ D. Therefore, E→ D is a homeomorphism.

Remark 5.2. In view of this theorem from now on we shall interpret the statement that “GQ is developable” as
being synonymous to the statement that the canonical morphism ψ : Q→ limGQ is injective on local groups.

Remark 5.3. When G = limGQ, we write D(G, |Q|) instead of D(ψ, |Q|). By part (vi) of the above theorem, remarks

if |Q| is simply connected, then so is D(|Q|,G). So, when this holds, the direct limit should be thought of as
“fundamental group of GQ” and D(|Q|,G) should be thought of as the “universal cover of GQ.” This means
that in some sense the notion of a simple complex of groups should only be considered when |Q| is simply
connected. Indeed, it is only in this case that the G-action on the universal cover has |Q| as a strict fundamental
domain.
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The polyhedron D(|Q|,ψ) is locally finite if and only if each local group Gσ is finite. When this is the
case the G-action on D(|Q|,ψ) is proper.

omit

Example 5.3. (Graphs of groups). Suppose Y is a connected graph without loop. (This means that each edge
of Y has two distinct endpoints; in other words Y is a regular 1-dimensional CW complex.) its vertex set
and edge set are denoted VertY and EdgeY . Let Q= VertY

⊔
EdgeY be its set of cells, partially ordered by

reverse inclusion. A graph of groups on Y is a simple complex of groups over Q. (The standard definition of a
graph of groups in [128, 4.4] allows the possibility of loops: one must use directed edges and for each edge τ

one must give monomorphisms from Gτ to the local groups at its initial and terminal vertices.) If Y is a tree,
then GQ is a tree of groups.

For any system of groups and homomorphisms {Gσ ,φστ} one can form the direct limit (cf. [23, p.]),omit

denoted by lim−→ σ
Gσ In particular, one can take the direct limit of the system formed by GQ denoted limGQ.

The direct limit has the universal property that for any group H and simple morphism ψ : GQ→ H, there
is a unique homomorphism ψ̂ : limGQ→ H such that ψσ = ψ̂ισ (see [23, II.12.13, p. 376]). A simpleomit these paragraphs

morphism ψ = (ψσ ) from GQ to a group G is a function which assigns to each σ ∈ Q a homomorphism
ψσ : Gσ → G such that ψτ = ψσ φστ whenever τ < σ . For each σ ∈ Q, there is a canonical homomorphism
ισ : Gσ → limGQ, hence, a canonical simple morphism ι : GQ→ limGQ. The simple complex of groups GQ

is developable if ι is injective on local groups.
A strict fundamental domain for the action of a group G on a space Y is a closed subspace C ⊂Y such that

C intersects each orbit in exactly one point. It follows that restriction of the orbit projection p : Y → Y/G
to C is a homeomorphism. Note that C provides a section s : Y/G→ Y of the orbit projection p defined by
s = (p|C)−1. Similarly, if G acts on a poset P by order-preserving automorphisms, then a strict funadamental
domain for G on P is a subposet Q which intersects each G-orbit in exactly one element. Simple complexes of
groups are designed to deal with group actions on cell complexes which admit a strict fundamental domain.

Suppose for example, that GQ is a tree of groups, where Q is the poset of cells in the tree Y . Put G= limGQ.
It follows from a result in [128] on the structure of amalgams that that natural maps from the local groups to G
are injective, i.e., GQ is developable. As in [128], one can construct a G-action on a tree T with fundamental
domain Y . The T tree is defined by

VertT =
⊔

v∈VertY

G/Gv and EdgeT =
⊔

σ∈EdgeY

G/Gσ .

The monomorhisms φvσ : Gσ → Gv induce maps G/Gσ → G/Gv, hence, the map EdgeT → VertT which
defines the order relation on the 0- and 1-cells of T . The group G acts on T and one can then check that T is a
tree. The isotropy subgroup at any vertex of T is conjugate to one of Gv and an isotropy subgroup at an edge
is conjugate to one of the Gσ . Moreover, there is a natural inclusion Y ↪→ T under which Y becomes a strict
fundamental domain.

Conversely, suppose a group G acts on a tree T with strict fundamental domain a subtree Y . By associating
to each vertex or edge of Y the corresponding isotropy subgroup of G one gives Y the structure of a tree of
groups.
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5.3 Examples where Q is the dual face poset of a simplicial complex

Given a simplicial complex L, its poset of simplices (including the empty simplex) is denoted by S(L). This
section concerns simple complexes of groups over posets of the form S(L). The geometric realization |S(L)|
of this poset is the cone on the barycentric subdivision of L. (The vertex corresponding to the empty simplex
is the cone point.) Given a simple complex of groups GS(L) and a morphism to a group G, the fundamental
domain for the G-action on on its development D is |S(L)|. To simplify notation, put

K = |S(L)| (5.5)

and call it a fundamental chamber (for the G-action on D). As in (5.3), for each σ ∈ S(L), put Kσ = |S(L)|σ :=
|S(L)≥σ |.

Example 5.4. If L is a PL triangulation of Sn−1, then K is an n-disk and Kσ is the dual cell to the simplex σ . shorten

In particular, if L is the boundary complex of a simplicial convex polytope, then K is the dual simple convex
polytope. To be even more particular, L is the barycentric subdivision of ∂∆ , where ∆ is an n-simplex, then K
is an n-dimensional permutohedron.

Let S be a set. A Coxeter matrix on S is a symmetric (S× S)-matrix M = (mst)(s,t)∈S×S with entries in
N∪{∞}, where the diagonal entries all equal 1 and each off-diagonal entry is an integer ≥ 2 or the symbol ∞.
The Coxeter matrix is right angled if each of its off-diagonal entries is 2 or the symbol ∞. There is a Coxeter
group W associated to the Coxeter matrix M; its set of generators is S and its relations are: (st)mst = 1, where
(s, t) ∈ S×S. Since mss = 1, we have s2 = 1; so, each s has order ≤ 2 (in fact, it must = 2). The cosine matrix
of M is the matrix cosM = (cst)(s,t)∈S×S defined by

cst =−cos(π/mst), (5.6)

where when mst = ∞, cst is interpreted to be −cos(π/∞) =−cos(0) =−1. There is an extensive literature
on Coxeter groups, for example, [15], [48]. The pair (W,S) is a Coxeter system. Given a subset J ≤ S,
let MJ = (mst)(s,t)∈J×J denote the restriction of M to J. The subgroup generated by J is denoted WJ and
called the special subgroup corresponding to J. It is a standard fact that (WJ ,J) also is a Coxeter system (cf.
[15, pp.12-13]). It turns out that the subgroup WJ generated by J is finite if and only if cosMJ is positive
definite. If WJ is finite, then it can be represented as a group generated by orthogonal linear reflection groups
on Rn, where n = Card(J). So, WJ is a finite reflection group on the unit sphere Sn−1 < Rn. For this reason a
finite Coxeter group WJ is said to be spherical; its set of fundamental generators J ≤ S is said to be a spherical
subset of S. It turns out that a fundamental chamber for WJ on Sn−1 is a spherical (n−1)-simplex. The poset
of nonempty spherical subsets of S is an abstract simplicial complex L(W,S) (or simply L) called the nerve of
(W,S). Thus, the vertex set of L is S and a nonempty subset of S is a simplex of L if and only if it is spherical.
If we include the empty simplex in the face poset of L, we get S(L), the poset of all spherical subsets of S.

Suppose σ(S) is the full simplex on S. The face poset of the dual simplex σ∗(S) is isomorphic to
S(∂σ(S))op. If (W,S) is a spherical Coxeter system, then L(W,S) = σ(S). The poset of subgroups {WJ}J<S
generated by the proper subsets of S is a simplex of groups over σ∗ (= σ∗(S)); the development D(σ∗,W ) is
a sphere; and W acts properly of D(σ∗,W ) with strict fundamental domain σ∗. Most of this works for an
arbitrary Coxeter system (W,S): we get a simple complex of groups over S(∂σ(S), i.e., a simplex of groups
over σ∗, and W is the direct limit (provided dimσ(S) ≥ 2). this is the classical definition of the “Coxeter
complex”. The trouble with this definition is that, in general, the W -action on D need not be proper, in general.
(Also, D will not be a sphere.) The remedy is explained in Example 5.5 below: one uses instead the natural
simple complex of groups over the poset of spherical subsets of S.
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Remark 5.4. (Simplicial Coxeter groups). A Coxeter system (W,S) is simplicial if WJ is finite for each proper
subset J < S. If, in addition, W is infinite, then it is called a Lannér group. So, if (W,S) is Lannér, then its
nerve is ∂σ(S) and we get a simple complex of groups over S(∂σ(S)). Thus, the W -action on D(W,σ∗) is
proper exactly in the case when (W,S) is simplicial. When W is Lannér it turns out that D(W,σ∗) can be
identified with either with euclidean space En−1 or hyperbolic space Hn−1 depending on whether the matrix
cosM defined by (5.6) is positive semidefinite or indefinite of signature (n−1,1), , cf. [48, §6.9].

There is another way to associate a group to a Coxeter matrix (mst). For each s ∈ S introduce the symbol
as. The Artin group A associated to M has generating set {as}s∈S and relations:maybe later?

asat · · ·︸ ︷︷ ︸
mst terms

= atas · · ·︸ ︷︷ ︸
mst terms

, (5.7)

where both sides of the equation are alternating words in as and at , where {s, t} ranges over the edges of
the nerve L. Notice that the relation (5.7) can be rewritten as (asat · · ·)(· · ·(as)

−1(at)
−1) = 1. In the Coxeter

group s = s−1, so after replacing as by s, (5.7) becomes (st)mst = 1. Hence, the function as 7→ s extends to an
epimorphism p : A→W . The kernel of p is denoted by PA and called the pure Artin group.

Given a subset J ≤ S, let AJ denote the subgroup generated by {as}s∈J . It is known that AJ is the Artin
group associated to (WJ ,J). Moreover, A is the direct limit of the AJ where J ranges over the simplices in the
1-skeleton of L. The subgroup AJ is a spherical Artin group if J is a spherical subset of S.

Example 5.5. (The complex WS(L) of spherical subgroups in a Coxeter group). Suppose M is a Coxeter
matrix, (W,S) is the associated Coxeter system, L is its nerve and S(L) is the poset of spherical subsets. For
each σ ∈ S(L), let Mσ be the restriction of M to σ and let (Wσ ,σ) be the associated Coxeter system.

(i) For each σ ∈ S(L), there is a natural homomorphism ψσ : Wσ →W induced by the inclusion σ ↪→ S
and similarly, for each τ < σ , there is φστ : Wτ →Wσ . It is immediate from the definition that W is the
direct limit of the family {Wσ}σ∈S(L).

(ii) It is proved in [15] that the homomorphisms φστ and ψσ are injective. Since each of the φστ is injective,
the functor σ 7→Wσ defines a simple complex of groups over S(L). We call this simple complex of
groups the Coxeter complex and denote it WS(L). Since ψσ : Wσ →W is injective, WS(L) is developable.

Let K be the fundamental domain defined by (5.5) and let D = D(K,W ) = (W ×K)/ ∼ be the result of
applying the basic construction (5.4). Often, D is called the Davis complex. The focus of the book [48] is the
study of D.

(iii) It is shown in [48] and [102] that D(K,W ) admits a cell structure so that the resulting piecewise euclidean
metric is CAT(0); in particular, D(K,W ) is contractible. In this cell structure the cells are the “Coxeter
zonotopes” described in ??. With this cell structure it is more appropriate to call D(K,W ) the Davis-
Moussong complex (Moussong proved in his PhD thesis [102] that this cell structure is CAT(0)). In the
right-angled case this is the cubical structure described in Section ??.

(iv) Since each of the local groups Wσ is finite, the complex D(K,W ) is locally finite and the W -action on it
is proper. Since D(K,W ) has a CAT(0)-metric, it is a model for EW (the classifying space for proper
W -actions).Reflection groups on constant

curvature space

RACGs

contractible subcomplexes of the
Davis complex

Coxeter groups first arose in the study of discrete groups generated by reflections on the constant curvature
spaces Sn, En or Hn. Let Xn stand for one of these. The following facts are true (e.g. see [48]).

(a) Any such reflection group is a Coxeter group W .
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(b) The W -action on Xn has a strict fundamental domain P, which is geodesically convex in Xn. (The interior
of P is a component of the complement of the union of the reflecting hyperplanes in Xn.)

(c) Let D(P,W ) = W ×P)/ ∼ be defined as in (5.4). The natural map D(P,W )→ Xn (defined by Theo-
rem 5.2 (iii)) is a homeomorphism. Thus, Xn is tessellated by the W -translates of P.

(d) A generating set S for W can be taken to be the set of reflections across the codimension one faces of P.
Then (W,S) is a Coxeter system and the nerve L(W,S) is dual to the boundary complex, ∂P. The set of
reflections of Xn generated by S is precisely the set of conjugates of S in W . (For this reason, in a general
Coxeter system (W,S) a reflection in W is defined as any conjugate of an element of S in W .)

(e) If P is compact, then it is a compact polyhedron homeomorphic to an n-disk and L(W,S) is the triangulation
of Sn−1 dual to ∂P. Hence, the polyhedron K (defined as the dual of ConeL) is equal to P.

(f) If W is finite, then it has a representation as an orthogonal reflection group on Sn (where n+1 = Card(S)).
This extends to a linear representation on Rn+1 in which each s ∈ S acts as a linear reflection (cf. [48]).
The fundamental chamber is a simplicial cone in Rn+1, bounded by hyperplanes which are fixed point
sets of elements of S.

These facts indicate the way in which one should think of the Coxeter complex WS(L): K should be thought
of as a simple convex polytope, L as the dual triangulation of Sn−1, and the local group Wσ is the isotropy
group of the cell of K which is dual to σ ∈ S(L). The general definitions of a Coxeter system, the fundamental
chamber K and the basic construction D(K,W ) gives a much broader class of examples than occur in constant
curvature. Even when K is required to combinatorially equivalent to a simple convex polytope very few of
these examples examples are equivalent to tessellations of constant curvature space.

If L is a flag triangulation of Sn−1, then K is an n-disk and D(K,W ) is a contractible n-manifold. If L is PL
homeomorphic to Sn−1, then D(K,W ) is PL homeomorphic to euclidean n-space. (For further information
see [48, Ch. 10]).)

There are many classical beautiful tessellations of constant curvature space.
?K(L) is an m-gon. Haglund [23, pp. 393–394]

Example 5.6. (Buildings). The theory of buildings gives an important way to construct a simple complexes of
groups with the same fundamental chamber as a Coxeter system. The type of a building is a Coxeter matrix
M. (Any M can occur at least when all mst , with s 6= t lie in {2,3,4,6}∪{∞}.) The underlying poset is the
same as in Example 5.5: it is S(L) where L is the nerve of the Coxeter system (W,S) of type M. Actually, the
notion of building can be defined without specifying a local group for each σ ∈ S(L). This goes as follows.
A building of type M is a pair (C,δ ) where C is a set (whose elements are called chambers) and where

δ : C×C→W is a function (called a W-valued distance function) where δ satisfies certain axioms listed in
[1, p.]. Let J be a subset of S. Two chambers c,d ∈ C belong to the same J-residue if δ (c,d) ∈WJ . (This is
an equivalence relation on C; a J-residue is an equivalence class.) A residue of type J is spherical if J is a
spherical subset of S. For example, an /0-residue is a singleton {c}. The Coxeter group W itself is a building
where δ : W ×W →W is given by δ (v,w) = v−1. Thus, v and w belong to the same J-residue if and only
if they determine the same coset vWJ = wWJ . An apartment in a building C is the image of an embedding
W ↪→ C which is isometric with respect to the W -valued distance functions. The basic construction on C is
defined using the same fundamental chamber K as for the Coxeter complex (cf. (5.5)), that is,

D(K,C) = (C×K)/∼, (5.8)

where (c,x)∼ (d,y) if and only if x = y and c, d belong to the same σ(x)-residue. Thus, if p : D(K,C)→ K
is the natural projection, then the fiber p−1(x) can be identified with the set of σ(x)-residues. It follows that if
P(C) denotes the poset of spherical residues in C, then its geometric realization |P(C)| is naturally identified
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with D(K,C). The polyhedron D(K,C) defined by (5.8) is also called as the standard realization of C. The
building C has finite thickness if each {s}-residue is finite for each s ∈ S. This implies that each spherical
residue is finite and hence, that the complex D(K,C) is locally finite. One should think of the geometric
realization D(K,C) as follows. For each s ∈ S, let Ks denote the codimension one face |S(L)≥{s}|. For a given
copy of Ks, the set of chambers containing Ks is an {s}-residue, so the number of chambers meeting along
a codimension one face is ≥ 2 (since in any building each {s}-residue must contain at least two elements).
On the other hand, each apartment is a Coxeter complex in which exactly two chambers meet along each
codimension one face. If the fundamental chamber K happens to be a convex polytope (e.g. a simplex) then
D(K,C) is tessellated by copies of K and the link of each codimension one face is a finite set of points while
the link a each codimension two face is the realization of rank two spherical building as a graph. To be even
more specific, suppose W is a cocompact reflection group on the hyperbolic plane with fundamental domain
K a convex polygon with all face angles equal to, say π/3. Let F be a field with q elements. Then there is
a building C with realization D(K,C), so that q+ 1 copies of K meet along each edge. (Here q+ 1 is the
number of points in the projective line over F) and the link at each vertex is the projective plane over F (a
rank two building).

By using the piecewise Euclidean metric on the geometric realizations of its apartments, it is proved in
[43] that D(K,C) also has a CAT(0) cell structure; in particular, it is contractible.

A building C is spherical if the corresponding Coxeter system (W,S) is spherical. The spherical realization
of C is D(C,σ∗) where σ∗ is the simplex dual to the full simplex on S. Each apartment in D(C,σ∗) is a round
sphere, namely, the spherical realization of D(C,σ∗). So, the spherical realization of any spherical building is
a piecewise spherical complex. The standard realization, D(C,K), of the spherical building C is isomorphic to
the cone on D(C,σ∗). It follows that its spherical realization D(C,σ∗ is CAT(1). (See [43].)

A residue in a building is itself a building. In particular, a spherical residue is a spherical building. This
observation provides insight about the local structure of the standard realization of any building C. Suppose
D ∈ P is a spherical residue of type J, where J ≤ S is the vertex set of a simplex τ ∈ S(W,S). The geometric
realization of any chamber c ∈D is homeomorphic to K and D corresponds to a stratum Kτ of K. The normal
link of Kτ in K is isomorphic to the dual simplex τ∗. So, the normal link of the stratum corresponding to D is
isomorphic to D(D,τ∗), which is the the spherical realization of the spherical building D. Hence, the link of
each stratum in the standard realization of a building is the speherical realization of a spherrical building.

A building C is right-angled (a RAB) if its associated Coxeter system is right-angled. For example, the
edge set of any tree without terminal vertices is the set of chambers of a RAB with associated Coxeter groupterminology

the infinite dihedral group on two generators S = {s, t}. Since any tree is bipartite the vertices can be assigned
type {s} or type {t}. Given a vertex of type {s} (or {t}) the corresponding residue is the set of edges which
share that vertex. One need not require any regularity of the tree: two residues of type {s} can have different
cardinality. An apartment in a tree is an embedded copy of the real line with its usual subdivision into edges.
Similarly, a product of trees is a RAB. In general, a RAB C is regular if for each s ∈ S each residue of type
{s} has the same cardinality.

Suppose a group G acts on C through isometries of the W -valued distance function. Then G acts on the
poset P of all spherical residues in C. If the G-action on C is transitive, then by choosing an element c ∈ C as a
fundamental chamber, we get a strict fundamental poset for the G-action and this poset can be identified with
S(L). This gives the data for a simple complex of groups over S(L): for each σ ∈ S(L), Gσ is the isotropy
subgroup of the residue of type σ which contains c. Thus, P is the disjoint union of all cosets of the form
G/Gσ , where σ ranges over S(L). In other words, every chamber-transitive action of a group on a building C

of type (W,S) gives rise to a simple complex of groups over K. When G is chamber transitive, the standard
realization of the building, D(K,C), is the same complex as D(K,G), the development of the complex of
groups GS(L). A good example to keep in mind is where C is a spherical building over a spherical Coxeter
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system (W,S). If G is chamber transitive on C we get a simplex of groups GS(∂σ) with fundamental domain
σ∗. In other words, any spherical building with a chamber transitive automorphism group gives a simplex of
groups (cf. Definition 5.2). More generally, we get a simplex of groups whenever the type of the building
is a simplicial Coxeter system. If C has finite thickness, then GS(∂σ) is a simplex of finite groups and its
development D(σ∗,G) is a locally finite simplicial complex.

The building C has finite thickness if each rank one residue is finite (i.e., if for each s ∈ S each {s}-residue
is finite). It can be shown that this condition is equivalent to the condition that the complex D(K,C) is locally
finite. Suppose C is locally finite. Then its automorphism group Aut(C) is a locally compact topological Should it be AutC?

group. The group Aut(C) is usually not discrete. (For example, in the the full automorphism group of a regular
tree, the stabilizer of a chamber is an inverse limit of finite groups of increasing size.) In addition, suppose
that the Aut(C)-action on the building is chamber transitive. A lattice in Aut(C) is a discrete subgroup G of
finite covolume. The lattice is uniform if it is cocompact (i.e., if D(K,C)/G is compact).

If C is locally finite, then any discrete subgroup G≤ Aut(C) acts properly on D(K,C). Since D(K,C) is Maybe different spot

CAT(0), it is a model for EG. Hence, if G uniform lattice in Aut(C), we get a cocompact model for EG.

Example 5.7. (The graph product complex). We recall the construction of RABs in 3.3. Let ∆ be the simplex
on a set S. The RACG with nerve ∆ is (C2)

S. A building of type (Ws,{s}) is just a discrete set Es of cardinality
at least two. Its standard realization is ConeEs. The product building ∏s∈S Es has type ((C2)

S,S) with standard
realization ∏s∈S ConeEs. The fundamental chamber for the product building is K(∆) (as in ??, K(∆) can
be identified the cube [0,1]S). Next suppose that L is a flag complex with the same vertex set S andd with
1-skeleton L1. Define a right-angled Coxeter matrix (mst) by

mst =


1, if s = t,
2, if {s, t} ∈ EdgeL1,
∞, if {s, t} /∈ EdgeL1,

(5.9)

Let (WL,S) be the associated RACS with nerve L. (In other words, WL is the graph product of copies of C2
over L1.) Since L is a subcomplex of ∆ , K(L) is a subcomplex of K(∆). Let p : ∏s∈S ConeEs→ K(∆) be
the natural projection. As in Definition 3.4, put ZL = p−1(K(L)). (The space ZL can be identified with the
polyhedral product ConeEL.) When L 6= ∆ , the space ZL will not be simply connected. It is shown in [49]
that the universal cover Z̃L is the standard realization of a RAB C of type (WL,S). If c ∈ K(L) denotes the
cone point corresponding to /0 ∈ S(L), then C can be identified with the inverse image of c in Z̃L. Since any
residue of type {s} in C is identified with Es, the building C is regular. Moreover, any regular RAB comes
from this construction. The building C is locally finite if and only if each Es is a finite set. For example, if
Card(S) = 2 and L1 = S0, then WL is the infinite dihedral group and the realization of C is a biregular tree.

Next suppose that each Es admits a transitive action of a group Gs. So, Es can be identified with Gs/Bs,
where Bs is the isotropy subgroup at a basepoint. The Gs-action is effective if and only if the subgroup
Bs is malnormal. (This means that gBsg−1 ∩Bs = {1} if g /∈ Bs.) We assume each Bs is malnormal. Then
∏Gs y ∏ConeEs and the action is chamber transitive. The subcomplex ZL is stable under the ∏Gs-action.
The group G of all lifts of this action to the universal cover Z̃L is called the generalized graph product of the
family {(Gs,Bs)} with respect to L1. If each Bs is trivial, then G is the ordinary graph product as defined in
subsection 3.1.3.

The simple complex of groups GS(L) associated to the G-action on this RAB is called the graph product
complex. Thus, the local group Gσ associated to the simplex σ ∈ S(L) is the direct sum, Gσ = ∏s∈σ Gs. If
τ < σ , then φστ : Gτ → Gσ is the natural inclusion.
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Example 5.8. (Constructing buildings from spherical buildings). We recall the construction of RABs in 3.3.
Let ∆ be the simplex on a set S. The RACG with nerve ∆ is (C2)

S. For each s ∈ S, let Es be a discrete set
with Card(Es) ≥ 2. Then Es is a building of type (C2,{s}); its standard realization is ConeEs. Similarly,
the product ∏s∈S ConeEs is a building of type ((C2)

S,S); its realization is ∏s∈S ConeEs. The fundamental
chamber for ∏s∈S ConeEs is K(∆) (as in ??, K(∆) can be identified the cube [0,1]S). Next suppose that L is
a flag complex with the same vertex set S. Define a right-angled Coxeter matrix (mst) by

mst =


1, if s = t,
2, if {s, t} ∈ EdgeL,
∞, if {s, t} /∈ EdgeL,

(5.10)

and let (W,S) be the associated RACS with nerve L. Since L is a subcomplex of ∆ , K(L) is a subcomplex
of K(∆). Let p : ∏s∈S ConeEs→ K(∆) be the natural projection. As in Definition 3.4, put ZL = p−1(K(L)).
(The space ZL can be identified with the polyhedral product ConeEL.) When L 6= ∆ , the space ZL will not
be simply connected. It is shown in [49] that the universal cover Z̃L is the standard realization of a RAB.
If c ∈ K(L) denotes the cone point corresponding to /0 ∈ S(L), then the set of chambers C in this RAB can
be identified with the inverse image of c in Z̃L. Any regular right-angled building comes from the above
construction. More precisely, if C is a regular RAB with associated RACS (W,S) each residue of type {s}
has cardinality qs +1, then taking Es to be a set of cardinality qs +1 and applying the above construction we
recover C.

?K(L) is an m-gon
In [49] it is shown that the process of starting from a product building and constructing a RAB can be

generalized to a process for constructing new buildings starting from an arbitrary spherical building C′ of
type (W ′,S). As before, the nerve of (W ′,S) is the simplex ∆ on S. The standard realization of this building is
D(K(∆),C′) Let (m′st) be the Coxeter matrix of (W ′,S). Next choose a collection of edges in ∆ and for each
edge, {s, t}, in this collection change m′st to the symbol ∞. This produces a new Coxeter matrix (mst) with
associated Coxeter system (W,S) with nerve L. As before, K(L)≤ K(∆). By taking the inverse image of K(L)
in D(K(∆),C′), we get D(K(L),C′)≤ D(K(∆),C′). Finally, let D̃ denote the universal cover of D(K(L),C′).
This is the standard realization of a building whose set of chambers C can be identified with the inverse image
of the cone point c in the universal cover.

Variations of this constructions are given in [49].

Questions: Tits [135] covering paper: Simply connected local building =⇒ building?

Example 5.9. (The complex AS(L) of spherical Artin subgroups). Given a Coxeter matrix M there is another
way to get a complex of groups over S(L). Let A be the associated Artin group with generating set X = {as}s∈S
and relations given by (5.7). For each σ ∈ S(L), let Aσ be the spherical Artin group corresponding to Mσ . As
for Coxeter groups as described in Example 5.5 we have the following.

(i) For each σ ∈ S(L), there is a natural homomorphism ψσ : Aσ →W induced by the inclusion σ ↪→ S and
similarly, for each τ < σ , there is φστ : Aτ → Aσ . It is immediate from the definition that A is the direct
limit of the family {Aσ}σ∈S(L).

(ii) The homomorphisms φστ and ψσ are injective (cf. [32], [96]). Since each of the φστ is injective, the
functor σ 7→ Aσ defines a simple complex of groups over S(L). This simple complex of groups is called
the Artin complex and denoted by AS(L). Since ψσ : Aσ → A is injective, AS(L) is developable.

Let K be defined by (5.5) and let D = D(K,A) = (A×K)/∼ be the result of applying the basic construction
(5.4).
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(iii) The complex D(K,A) is not locally finite since each nontrivial local group is infinite. For example, the
subgroup A{s} generated by the Artin generator as is infinite cyclic.

(iv) If M is right-angled, then A is a RAAG and D(K,A) is a RAB of the type considered in Example ??. If
A is not a RAAG, then D(K,A) is not a building. It is probably never a building.

However, the complex D(K,A) is “building-like” in that it has many properties similar to those of a building
with a chamber transitive group action. First, the fundamental chamber for A on D(K,A) isomorphic to
that of the associated Coxeter system (W,S). Second, D(K,A) has a large collection of subcomplexes each
isomorphic to the Davis complex D(K,W ). These subcomplexes are natural candidates for apartments. (To see
these subcomplexes use the fact that, as in [64], there is a set theoretic section of the canonical epimorphism
p : A→W .) Third, by Theorem 5.2 (vi), D(K,A) is simply connected. It is not known whether or not D(K,A)
is contractible. This is the main unanswered question about Artin groups. (As explained below in section ??,
it is equivalent to answering the K(π,1)-Question for Artin groups.)

Example 5.10. (Spherical Artin groups and complements of hyperplane arrangements). An Artin group can
be understood in terms of the fundamental group of a complement of an arrangement of complex hyperplanes.
Suppose A is a spherical Artin group associated to a spherical Coxeter system (W,S). As was pointed out in
Example 5.5 (f), there is a canonical representation of W as a group generated by linear reflections on Rn.
Complexifying we get a W -action on Cn. Let A denote the collection of linear hyperplanes which are fixed
by reflections in W . Let

M(A) = Cn−
⋃

H∈A
H, (5.11)

be the complement of the union of the reflecting hyperplanes. It is straightforward to see that π1(M(A) can
be identified with the pure Artin group PA. Since W acts freely on M(A), M(A)→M(A)/W is a covering
space and so,

A = π1(M(A)/W ). (5.12)

The prototypical example of a spherical Artin group is Artin’s braid group, [6]. The braid group Bn+1 on
n+1 strands has several different incarnations. For example, it is the fundamental group of the configuration
space of n+1 points in the plane (cf. subsection 2.4.4). It can also be described as the fundamental group of a
hyperplane arrangement. The associated Coxeter group is Sn+1 the symmetric group on n+1 letters. It acts as
a reflection group on Rn+1 by permuting the coordinates, as well as on the subspace (∼= Rn) orthogonal to the
diagonal. Complexifying we get a Sn+1-action on Cn with reflecting hyperplanes defined by the equations
xi = x j giving the arrangement A. Then Bn+1 = π1(M(A)/Sn+1).

The most important result about spherical Artin groups is the following.

Theorem 5.3. (Deligne’s Theorem, [64]). Suppose A is the arrangement of reflecting hyperplanes for a
spherical Artin group A. Then M(A) is aspherical. Hence, M(A)/W is a model for the classifying space BA.

Remark 5.5. General Artin groups also have an interpretation as the fundamental groups as complements of
complex hyperplane arrangement, cf. [96], [32]. Tits showed that for any Coxeter system (W,S) there is a
linear representation on Rn so that the elements of S act as reflections across the facets of a simplicial cone
(the fundamental chamber), that the union of all W -translates of this chamber is a convex cone, and that the
W -action is proper on the interior I of this cone. (See [15] or [48].) Moreover, W acts properly on Rn +

√
−1I.

The reflecting hyperplanes give an arrangement A of codimension two subspaces in Rn +
√
−1I and the

quotient by W of the complement of their union has fundamental group A. It is conjectured that Deligne’s
Theorem holds in this more general situation, i.e., that M(A)/W is a model for for BA.
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Given a Coxeter system (W,S) there is an associated Artin group A. This group has one generator xs for each
s ∈ S; its relations are the braid relations: and where mst denotes the order of st in W . The matrix (mst) is
called the Coxeter matrix. For any T ≤ S, let AT denote the Artin group corresponding to the Coxeter system
(WT ,T ). As with Coxeter groups, AT can be identified with the special subgroup of A generated by {xt}t∈T .
(When T is a spherical subset of S, this is proved in [64, Thèoréme 4.13 (iii)] and in general in [96, Theorem
4.14].) The Artin group AT is spherical if T is a spherical subset of S. As with Coxeter groups, let S(L) be the
poset of spherical subsets of S. The spherical special subgroups of A give a simple complex of groups AS(L)
called the Artin complex. When σ is a simplex of L and T = Vertσ , we shall often write Aσ instead of AT . It
is clear that the direct limit limAS(L) is A. Since Aσ is isomorphic to a subgroup of A, AS(L) is developable.
Note that if L′ is any subcomplex of the full simplex on S with the same 1-skeleton as L, then limAS(L′) = A.

By Deligne’s Theorem in [64], any spherical Artin group Aσ has a classifying space BAσ which is a finite
CW complex of dimension one greater than dimσ . (There is a specific model for BAσ called the Salvetti
complex, see [33] or Subsection 2.2.2). The “K(π,1)-Conjecture” for Artin groups is the conjecture that the
K(π,1)-Question has a positive answer for any Artin poset AS(L). By Proposition 5.1 this is equivalent to the
conjecture that D(|AS(L)|,A) is contractible. It is the most important unsolved problem concerning general
Artin groups. A detailed discussion can be found in [32], where the conjecture is proved whenever L is a flag
complex (we generalize this in Theorem ?? below).

5.4 Polygons of groups

5.5 Aspherical realizations and the K(π,1)-Question

The classifying space of a discrete group H is denoted BH and its universal cover by EH. A simple complex
of groups GQ gives the data for a poset of spaces {BGσ ,φ στ}, where τ < σ ∈Q and where φ στ : BGτ → BGσ

is the map induced by the monomorphism φστ : Gτ → Gσ . Using this data we can glue together the disjoint
union of spaces

⊔
|Q|σ ×BGσ by using iterated mapping cylinders. For each τ < σ , |Q|σ is a subcomplex of

|Q|τ and one glues the subspace |Q|σ ×BGτ of |Q|τ ×BGτ to |Q|σ ×BGσ via the map:

I×φ στ : |Q|σ ×BGτ → |Q|σ ×BGσ ,

where I denotes the identity map on |Q|σ . The resulting space BGQ is called the aspherical realization of GQ.
It is well-defined up to homotopy equivalence. If |Q| is connected and simply connected, then it follows from
van Kampen’s Theorem that π1(BGQ) = limGQ. We note that

dimBGQ= sup{(dimBGσ +dim |Q|σ ) | σ ∈ Q} (5.13)

Proposition 5.1. Suppose GQ is a simple complex of groups over Q with |Q| simply connected. Let G= limGQ

and let D = D(|Q|, ι) be the basic construction. When GQ is developable, BGQ is homotopy equivalent to the
Borel construction EG×G D.

Proof. Projection on the second factor induces a projection p : EG×G D→ D/G = |Q| so that the inverse
image of the vertex σ is homotopy equivalent to BGσ . This uses the fact that GQ→ G is injective on local
groups, otherwise, p−1(σ) is homotopy equivalent to BGσ , where Gσ means the image of Gσ in G. It follows
that EG×G D is an aspherical realization of GQ.
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Corollary 5.1. Suppose GQ is a developable simple complex of groups with |Q| simply connected. Then the
K(π,1)-Question for GQ has a positive answer if and only if D is contractible.

Proof. By Proposition 5.1, BGQ∼ EG×G D. Hence, BGQ is aspherical if and only if the universal cover of
EG×G D is contractible. This universal cover is EG×D, which yields the corollary.

Remark 5.6. Since |Q| is a retract of D, a necessary condition for D to be contractible is that |Q| is contractible.

In the construction of BGQ we can assume that for each σ , dimBGσ = gdGσ . Next, we seek a condition
which implies that the maximum value of the quantity dimBGσ + dim |Q|σ in (5.13) occurs when σ is a
maximal element of Q, i.e., when |Q|σ is a point. The condition is the following:

gdGσ > gdGτ , whenever σ > τ. (5.14)

Since a k-simplex in |Q|τ corresponds to a chain τ = τ0 < · · · < τκ , we see that (5.14) implies gdGτk ≥
gdGτ + k ≥ gdGτ +dim |Q|τ ; so the maximum value occurs when σ is maximal.

Proposition 5.2. Suppose a simple complex of groups GQ is developable and that the K(π,1)-Question for
GQ has a positive answer. Then

gdG≤ dimBGQ= sup
σ∈Q
{gdGσ +dim |Q|σ}.

If (5.14) holds, then gdG = supσ∈Q{gdGσ}.

Proof. Since gdG ≤ dimBGQ, the first formula follows from (5.13). So, if condition (5.14) holds, gdG ≤
sup{gdGσ | σ ∈ Q}. Since EG/Gσ is a model for BGσ , gdG≥ gdGσ , so the previous inequality must be an
equality.

5.6 The semidirect product construction

A simple complex of groups GQ is a functor from a poset Q to the category of groups. To say that Γ acts on
GQ means that Γ is a group of natural automorphisms of this functor. In other words,

(a) Γ y Q through order-preserving bijections (for (γ,σ) ∈ Γ ×Q, the action is denoted (γ,σ) 7→ γσ ),
(b) for each σ ∈ Q, there is an isomorphism fσ : Gσ → Gγσ , so that
(c) whenever τ,σ ∈ Q with τ < σ , the following diagram commutes

Gτ

fτ−−−−→ Gγτ

φτ,σ

y yφγτ,γσ

Gσ

fσ−−−−→ Gγσ .

Let G be the direct limit, G = limGQ. Recall that the development of GQ is defined to be the set of pairs
(hGσ ,σ) in G/Gσ ×Q (see the proof of (i) in Theorem 5.2). Suppose Γ y GQ. Then the semidirect product
GoΓ acts on D(Q,G) by

(g,γ) · (hGγσ ,σ) = (gγ(h)Gσ ,γσ). (5.15)
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This a corresponding action of GoΓ on the space D(|Q|,G) with quotient space |Q|. When the Γ -action
on |Q| does not have a strict fundamental domain, the (GoΓ )-action on D(|Q|,G) will not have a strict
fundamental domain; so, the action will not give rise to a simple complex of groups. However, it still gives
rise to a nonsimple complex of groups, which we denote by GQoΓ . If |Q| is simply connected, then the
fundamental group of GQoΓ is GoΓ .

Example 5.11. (HNN extensions). Suppose A is a subgroup of a group G and θ : A→ H is a monomorphism.
(This is the data for a loop of groups: H is the vertex group and A is the edge group). In [128, Prop. 5,
p. 8] Serre defines the HNN construction ∗θ H as a semidirect product of Z with a tree of groups (cf.
Definition 5.4). The tree is the real line subdivided into edges of the form [n,n+1] so that the vertex set of
the tree is Z. The poset Q is the dual of the face poset of the tree. The group Hn associated to a vertex n
is a copy of H. Each edge group is a copy of A. For the edge [n,n+1] there are monomorphisms A→ Hn
and A→ Hn+1 corresponding to the left and right endpoints. The first is natural inclusion i : A→ H and the
second is θ . This defines a simple complex of groups GQ. Let G = limGQ, in other words, G is an amalgam
of infinitely many copies of H. The Z-action on Q induced by translation on R gives a Z-action on GQ and
represents Z as a group of automorphisms of G. The HNN extension is then defined by∗θ H := GoZ.

Example 5.12. (Semidirect products with Coxeter groups and their relatives). A diagram automorphism of a
Coxeter system (W,S) is a permutation γ of S which preserves the associated Coxeter matrix (i.e., mγs,γt =ms,t ).
Such a permutation defines an automorphism of the Coxeter group W as well as an automorphim of the
associated Artin group A. Similarly, γ induces an automorphism on any building of type (W,S). (The diagram
automorphism can be regarded as a simplicial automorphism of the nerve L(W,S) which preserves the
labels mst on the edges.) Suppose Γ is a group of diagram automorphisms (W,S). We can then form the
semidirect products W oΓ and AoΓ with corresponding complexes of groups WS(L)oΓ and AS(L)oΓ

(cf. Examples 5.5 and 5.9). Similarly, if G is a chamber transitive automorphism group of a building, we can
form a corresponding semidirect product GoΓ .

If S is a finite set, then L is a finite simplicial complex and the group of diagram automorphisms Γ is
necessarily a finite groups. When L is an (n−1)-sphere, the finite group Γ acts on the contractible n-manifold
D(K,W ) (= E(W oΓ )). By choosing Γ so that the fixed set of Γ on L is not equivalent to a linear subsphere
one can produce examples where the fixed set of Γ on D(K,W ) is either (a) knotted at infinity as in [70] or
not a manifold as in [61], see [48, Thm. 11.7.3]

The universal cover of a development. Our principal use for the semidirect product construction is to
understand the universal cover of a development of a simple complex of groups over a poset Q′ where |Q′|
need not be simply connected. Let P be the universal cover of |Q′| and let p : P→ |Q′|. The elements of Q′

are the vertices of the geometric realization |Q′| of its order complex. The simplicial structure on |Q′| lifts
to a simplicial structure on P. This defines a poset structure Q on the vertex set of P so that p : Q→ Q′ is
order-preserving and |Q′|= P. Explicitly, if τ,σ ∈Q, then τ < σ if and only if p(τ)< p(σ) and the edge from
p(τ) to p(σ) lifts to an edge from τ to σ . Next suppose G′Q′ be a developable simple complex of groups over
Q′. Define a simple complex of groups GQ over Q by: Gσ := Gp(σ). Put π = π1(|Q|). Then π acts on |Q| as
deck transformations. This extends to π y GQ, where for any γ ∈ π each of the corresponding isomorphisms
fγ : Gσ → Gγσ is the identity. By the universal property of direct limits there is obvious epimorphism
ψ : G→ G′. Put N = kerψ . The natural map D(|Q|,G)→ D(|Q′|,G′) is a covering projection. Since |Q| is
simply connected, it follows from Theorem 5.2 (vi), that D(|Q|,G) is simply connected. Hence, D(|Q|,G)
is the universal cover. As in the first paragraph of this section, Goπ acts on D(|Q|,G) and N oπ is the
group of deck transformations of D(|Q|,G)→ D(|Q′|,G′). So, we have proved the following generalization
of Theorem 5.2 (vii).
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Proposition 5.3. With notation as above, the fundamental group of D(|Q′|,G′) is N oπ and its universal
cover is D(|Q|,G). So, if D(|Q′|,G′) is aspherical, then so is |Q′|.

Proof. The last sentence follows from Theorem 5.2 (iv) and the fact that a retraction of an aspherical space is
aspherical.

Suppose (W,S) is a Coxeter system (cf. [15] or [48]). This means that W is a group, that S is a distinguished
set of generators and that W has a presentation of the form

W := 〈si ∈ S | s2
i = (sis j)

mi j = 1〉

For any subset T of S, the subgroup generated by T is denoted WT and called the special subgroup corre-
sponding to T . It is a standard fact that (WT ,T ) also is a Coxeter system (cf. [15, pp.12-13]). The subset T
is spherical if WT is finite, in this case WT is a spherical special subgroup. Let S(W,S) denote the poset of
spherical subsets of S. There is a simplicial complex L (= L(W,S)), called the nerve of (W,S). Its vertex set is
S and a subset T ≤ S spans a simplex of L if and only if T is spherical. Thus, S(L) = S(W,S), the poset of
spherical subsets. This gives a simple complex of groups over S(L), denoted WS(L), and called the complex
of spherical Coxeter groups (or simply the Coxeter complex). The local group Wσ at a simplex σ ∈ S(L) is
the spherical subgroup generated by the vertices of σ . The direct limit of WS(L) is the Coxeter group W .

The discussion in Example 5.9 yields the following proposition.

Proposition 5.4. Let A be an Artin group such that the nerve L of its associated Coxeter system is d-
dimensional. If the K(π,1)-Question for the associated Artin poset has a positive answer, then gdimA = d+1.

Proof. Since the aspherical realization BAS(L) is formed by gluing together the BAσ ×|S(L)|σ with σ ∈ S(L)
and since dimBAσ = dimσ +1, we have dimBAS(L)= d+1. Since BAS(L) is a model for BA, gdimA≤ d+1.
On the other hand, for any d-simplex σ ∈ S(L), the spherical Artin group Aσ contains a free abelian subgroup
of rank d + 1 (e.g., see [?dh16]). So, cdAL ≥ d + 1. Hence, d + 1 ≥ gdimAL ≥ cdAL ≥ d + 1; so all
inequalities are equalities.

Definition 5.5. A simplicial complex L is a flag complex if it satisfies the following: if T is any finite set of
vertices of L which are pairwise connected by edges, then T spans a simplex of L. A simplicial graph L1

determines a flag complex L: the simplices of L are the cliques in L1. (This is also called the “clique complex”
of L1.)

Definition 5.6. Suppose L1 is a simplicial graph with vertex set V and edge set E. Let {Gv}v∈V be a collection
of groups indexed by V . The graph product of the Gv, denoted ∏L1 Gv, is the quotient of the free product of
the Gv, v ∈V , by the normal subgroup generated by all commutators of the form, [gv,gw], where {v,w} ∈ E,
gv ∈ Gv and gw ∈ Gw.

Example 5.13. (The graph product complex). Suppose ∏L1 Gv is a graph product and that L is the flag complex
determined by L1. There is a simple complex of groups GS(L) over S(L) called the graph product complex. It
is defined by putting Gσ equal to the direct product,

∏
v∈Vertσ

Gv,

for each simplex σ ∈ L and letting φστ : Gτ → Gσ be the natural inclusion whenever τ < σ . It is immediate
that ∏L1 Gv = limGS(L).
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Remark 5.7. Another approach to the graph product complex is given in [43] or [?davis12] using the
notion of a “polyhedral product”. Suppose L is a simplicial complex with vertex set V and that we are given a
collection of pairs of spaces (uy,uy) = {(Xv,Yv)}v∈V together with a choice of basepoint ∗v ∈Yv. Let ∏v∈V Xv
denote the subspace of the Cartesian product consisting of all V -tuples (xv)v∈V such that xv = ∗v for all
but finitely many v. Given a V -tuple, x = (xv), put σ(x) = {v ∈ V | xv ∈ Xv−Yv}. The polyhedral product
(ux,uy)L is the subspace of ∏v∈V Xv consisting of all x such that σ(x) is a simplex in L. (Usually, we only
shall be concerned with the case where each Yv equals the basepoint ∗v, in which case the notation will
be simplified to uxL.) For any τ ∈ S(L), the set of all x with σ(x) ≥ τ , can be identified with the product,
Xτ := ∏v∈Vertτ Xv. Thus, uxL is the union of the Xτ , with τ ∈ S(L).

Next let L1 be any simplicial graph and L′ any simplicial complex with 1-skeleton = L1. Let G be the
graph product ∏L1 Gv and H = ∏v∈V Gv be the direct product. Let ι : GS(L1)→ G and ψ : GS(L1)→ G be
the natural simple morphisms. Consider the polyhedral product:

Z(L′) = (ConeGv,Gv)
L′ .

Then Z(L′) is locally isomorphic to a product of discrete sets. Moreover, Z(L′) can be identified with the
development D(|S(L′)|,ψ). The fundamental group of Z(L′) can be identified with the kernel of the natural
epimorphism G→H. So, the H-action on Z(L′) lifts to a G-action on the universal cover Z̃(L′) with the same
strict fundamental domain. It follows from Remark ?? that Z̃(L′) = D(|S(L′)|, ι).

Proposition 5.5. (cf. [63, Theorem 2.22] and [?dk]). Suppose G = ∏L1 Gv is the graph product of nontrivial
groups over a simplicial graph L1, and let L be the determined flag complex. Then the K(π,1)-Question for
GS(L) has a positive answer.

Since BG1×BG2 is a model for B(G1×G2), it is obvious that

gdim(G1×G2)≤ gdimG1 +gdimG2.

On the other hand, by using certain torsion-free subgroups of RACGs, Dranishnikov [?dran] showed
that there are groups G1 and G2 for which the inequality is strict (cf. [48, Example 8.5.9]). Hence, for
Gσ = ∏v∈σ Gv, we have that gdimGσ ≤ ∑v∈σ gdimGv and the inequality can be strict.

A corollary to Proposition 5.5 is the following calculation of the geometric dimension of any graph product
of groups.

Corollary 5.2. Suppose G = ∏L1 Gv is the graph product of nontrivial groups over a simplicial graph L1. Let
L be the flag complex determined by L1. Then gdimG = sup{gdimGσ | σ ∈ S(L)}.
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