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Abstract

These lectures are designed to provide a brief introduction to geometric group the-
ory for advanced undergraduates and beginning graduate students. The first lece
ture provides some foundationa! definitions and an introduction to thinking about
groups geometrically. Each of the remaining lectures are dedicated to a classical
theorem in the field. The choice of topics is designed to illustrate the power of the
geometric viewpoint in proving algebraic properties of groups.
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Overview

A central aspect of geometric group theory is that finitely generated groups can be
treated as geometric objects and that this view point allows one to prove results
that are otherwise difficult or inaccessible through purely algebraic means.

The topics for the five lectures will be:

(1) Groups as geometric objects

(2) Curves on surfaces and the word problem
{3) Geometry of finite presentability

(4) Groups and their ends

(5) How many groups are there?

Students should be familiar (or familiarize themselves) with basic notions in group
theory and topology such as: free groups, presenting a group by generators and re-
lators, normal subgroups, fundamental groups, and covering spaces. For instance,
for group theory see: “An introduction to the theory of groups”, by Rotman. For
topology see: “Algebraic Topology”, by Hatcher (Chapters 0 and 1), available at:
http://wvw.math, cornell.edu/hatcher/AT/ATpage . html

*Lecture notes from 2013 Summer School on Modern Mathematics, Beijing, China.
tLehman College and The Graduate Center, City University of New York, U.8.A. Email:
jason.bebrstock@lehman.cuny.edu
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For further jntroductions to various topics studied in geometric group theory,
one can browse the following surveys, each of which has some easily accessible
topics and geveral more advanced ones:

B. Bowditch, A course on geometric group theory. Download available: http:
//www . warwick . ac.uk/masgak/papers/bhb-ggtcourse. pdf

C. Drutu and M. Kapovich, Lectures on Geometric Group Theory. Download
available: http://www.math.ucdavis.edu/kapovich/EPR/ggt . pdf

J. Meier, Groups, Graphs and Trees. Cambridge University Press.

H. Short (edit.): MSRI Notes on Hyperbolic groups. Download available:
http://www.cmi.univ-nrs. fr/hamish/Papers/MSRInotes2004.pdf

M. Gromov, Asymptotic invariants of infinite groups. LMS lecture note series
v. 182 (1993).

1 Groups as geometric objects

Let G be a group with a finite generating set S. We will always assume that the
identity element, e, is not in S and that the generating set is symmetric, i.e., if
x €S thenz~!e8.

There are many interesting examples of finitely generated groups, below are
a few basic examples to keep in mind.

e Z under addition. This is isomorphic to {a} under multiplication, where each
element is a™ for some n € Z.

e Z/5Z under addition. This is isomorphic to {a;a® = 1) under multiplication,
so that each element is a” for some n € {0,1,2,3,4}.

e ZxZ =72 {(n,m);n,m € L}. The free abelian group on two generators.
Equivalently, {a,b;aba'b~! = 1} so that each element is a™b™ for some
n,m E Z.

o Fo = (a,b). The free group on two generators. Any word is of the form
a b2, b for ny,...,n; € Z and k € N. The multiplication here is
given by concatenating words.

o m(Sy). The fundamental group of Sy, where S; denotes the closed orientable
surface of genus g. Example: 7(S2) = {a,b,c, d;aba "6 Yede1d1).

o MCG(Sy) = Out(m (Sy)) = Homeo(S,)/Homeog(S,). The mapping class
group of S,.

For a finitely generated group, G, we define the Cayley graph of G with
respect to the generating set S as the graph whose vertex and edge sets consist of
the following.

o Vertices <= one for each element of G
e Edges <= one connecting each pair a,b € G for which there exists c € §
satisfyinga =b-¢

The Cayley graph of Fo with its canonical generating set is the regular 4
valent tree. In the case of Z2, there is a natural set of generators consisting of
the elements (0,1) and (1,0), and their inverses; with respect to these generators,
we obtain a Cayley graph whose underlying set is the collection of horizontal and
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vertical lines in R? through the integer z and y axes; i.e., this Cayley graph looks

like graph paper. Further examples appear in Figures 1 and 2. ¢
e €
x4 x x A x x x
x3 x2 x5 xZ x3 xz

(a) with generating set {x*1) (b) with generting set {x*2} (c) with generating set {x3}

Figure 1. Cayley graphs of Z/5Z = {; 25) with different generating sets. Note that all line
segments should be considered to have equal length.

-2 =1 0 1 2 3 4 5
() with generating set {x*1}

RRKAHERIK

<

(b} with generating set {£2, 3}

Figure 2. Cayley graphs of Z with different generating sets. Note that ali arcs between vertices
are of equal length.

Associated to any finitely generated group, we may associate the word metric
on G with respect to the finite generating set S as follows: For each z,y € G define:

do.se,1) = =~

where the norm on the right side is defined to be the smallest number of letters
(with multiplicity) from the set S needed to represent the group element =~ 'y.

Remark 1.1. Tt is casily checked that this metric is left-invariant, that is, multipli-
cation on the left is an isometry of the metric. More precisely, for each a, bgelG
we have dg s{ga, gb) = dg s(a,b)
Exercise 1.2. Prove the following are equivalent:

(1) dg.slm,y) =n

(2) z =y w where w is a word of length n

(3) Consider the Cayley graph of G with respect to S and metrize this graph by

making cach edge isometric to [0,1]. In this graph the shortest length of a
path connecting x to y is n.




\
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As one can see by generalizing the above examples, any given group may
have many distinct Cayley graphs, depending on the choice of finite generating
set. In Figure 1 we see different Cayley graphs for the group Z/5Z. In Figure 2,
we sce Cayley graphs of Z with the generating sets {£1} and {#£2,+3}. As an
exercise, you can draw Cayley graplhs with respect to the generating sets {41, £3},
{#1,42, 43}, or ... Indeed, the attentive reader will notice that we can even build
Cayley graphs with infinite generating set, but those are beasts of a different nature
and will not be discussed further in these notes as their geometry is quite a bit
different than those arising from finite generating sets (we encourage the reader
to justify this statement).

Considering these examples raises the question of whether there is any rela-
tion between different word metrics on the same group. Contrary to what might
be your expectation from these examples, it turns out that the answer is “Yes!”
when given an appropriate formulation. The formulation which we consider uscs
the following definition which makes precise the notion that two Cayley graphs
for the same group “look roughly the same from far away.” Although our main
interest will be in Cayley graphs, we formulate the following definition in the more
general context of arbitrary metric spaces.

Definition 1.3. Let (X, dx) and (Y,dy) be metric spaces. A map ¢: X — Y is
called a quasi-isometric embedding if there exist constants K 2 1 and C = 0 such
that for all a,b € X:

Fidx(a,b) = C < dv(¢(a), #b) < Kdx(a,b) + C.

This map is called a quasi-isometry if, additionally, every point of Y lies in
the € neighborhood of the image of ¢.

Definition 1.4. Let f: X — Y be a quasi-isometry. We say a quasi-isometry
g: Y — X is a quasi-inverse to f if the maps satisfy the following:

dx(gof,lx) < 00 and dY(fogilY) < co

where 1y denotes the identity map on X and distance is given by the supremum
over all points in the relevant space.

: The following exercise is a good way to get used to working with quasi-
isometries, even though it will not be needed explicitly in these lectures.

Exercise 1.5. Given a quasi-isomnctry between metric spaces, f: X = Y, prove
that f has a quasi-inverse.

We will now prove that for any finitely generated group the word metric is

unique up to quasi-isometry, i.e., any two word metrics on a fixed finitely generated
group arc quasi-isometric.

Notation 1.6.. Wh‘en the group is clear we simplify the notation dg g to dg or
even d when this will not cause ambiquity, Also, for w € G we use the notation
""’“s = dgle, w).
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Proposition 1.7. If S, T are two finite generating sets for a group, G, then (G, dg)
and (G, dr) are quasi-isometric. 5

Proof. We will show the identity map from ds to dr is a quasi-isometry.

Since T is a generating set, any element of G, and, in particular, any eletnent
of § can be written as a product of elements of T'. Accordingly we can set K; =
max dr(e, s) and this will be a positive integer. Now, since § generates, any w € G

can be factored as a product of elements of S and the shortest way todosoisa
word in elements of S of length ||w|| . Given this factorization as elements of S,
we can write each of the elements of § as a word in the elements of T with length
at most ;. We have thus shown that for any w € G we have Hw"T £ Kl”"”“s-
Setting Ko = max ds(e, t), the argument above with the roles of § and

reversed shows that for any w € G we have ||u||g < Ko||wl| -
Taking K = max{/1, K>} and C = 0, we then have:

Tli,-ds(a,b) _C < dp(a,b) < Kds(a,b) +C

foralla,be S. 0
Example 1.8. Any two finite groups are quagi-isomnetric.

Milnor—Svarc Lemma and its applications. After recording a few preliminary
definitions we will state a result which is sometimes called the Fundamental Ob-
servation of Geometric Group Theory. The proof of this result will be postponed
until the third lecture.

Definition 1.9. A geodesic metric space is a metric space X with the property
that for any two points z,y € X there exists an isometric embedding, g: [0, d(z, ¥)}
— X, of an interval into X which satisfies g(0) = z and gld(z,y)) =y.

We say that a metric space X is proper if closed balls in X are compact.
Note that any proper metric space is locally compact and complete.

A discrete group, G, acting by homeomorphisms on a locally compact topo-
logical space is said to act properly if for any compact subset K C X, the set

{geG: gKNK # @}

is finite. If the quotient of a space by a group action is compact, we say the group
action is cocompact

Exercise 1.10. Prove that a Cayley graph of a finitely generated group is @ proper
geodesic melric space. Further, we noted previously that a group acts on itself
isometrically by left multiplication; check that in doing so G acts on its Cayley
graph properly and cocompactly.

The following is a quintessential geometric group theory result: starting with
no hypothesis on a group except that it acts in a reasonable way on a space with
some mild geometric/topological hypotheses, we then use geometry to deduce
an algebraic result, which in this case is that the group in question is finitely
generated.
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Lemma 1.11 (Milnor-Svarc). Let G be a group acting, on the left, properly and
isometrically on a proper geodesic metric space, X. If G\X is compact, then G is
finitely generated and is quasi-isometric to X.

We say two groups are commensurable if they “differ by a finite subgroup”;
more precisely this means that one can be obtained by the other by passage to
a finite index subgroup and/or by quotienting by a finite normal subgroup. Be-
low are two immediate corollaries of the Milnor-Svarc Lem:ma which show that

commensurable groups are quasi-isometric.

Corollary 1.12. Let G be a finitely generated group and G’ a subgroup of finite
indez. Then G is also finitely generated and is quasi-isometric to G.

Corollary 1.13. Let G be a finitely generated group and N a finite normal sub-
group of G, then G is quasi-isometric to N\G.

The next corollary is used so frequently, that it is itself sometimes referred
to as the Milnor-Svarc Lemma.

Corollary 1.14. Let M be a compact Riemannian manifold, then m (M) is quasi-
isometric to M, the universal covering space of M.

The next two examples are immediate consequences of the above corollary;
we single them out for attention because they are examples which we will consider
again in later lectures.

Example 1.15. Let T? be the torus. Its fundamental group my(T?) & Z2 is quasi-
isometric to R®.

Example 1.16. Let S, be the closed orientable surface of genus g > 2, then m1(S,)
is quasi-isometric to the hyperbolic plane, H?.

To verify the second example, choose a Riemannian metric of constant cur-
vature —1 on S, and consider the associated action of m;(S,) on HZ.

Remark 1.17. Generalizing this example, we note that in each dimension, all com-
pact manifolds of constant curvature —1 have quasi-isometric fundamental groups,
since they are each quasi-isometric to H*. Using the (highly non-trivial) result that
there exists hyperbolic 3-dimensional manifolds whose volumes are not rationally
related, from such examples one can obtain many quasi-isometric groups which
are not commensurable.

Exercise 1.18. For cach m,n = 2, the groups F,, and F,, are commensurable. In
particular, for all m,n =2 2 the groups ¥,,, end F,, are quasi-isomeiric.

Hint. This follows from the algebraic fact that for all k = 2 the group Fy is a
subgroup of Fa. We sketch a topological proof of this algebraic fact. Consider
Fo = 71 (S v §1), where S! v S! denotes the wedge of two circles. Each (k — 1)-
sheeted cover of S! v S! is a graph with (k — 1) vertices and 2(k — 1) edges. Thus
the Euler characteristic of any such cover is 1 — k and hence its fundamental group
is Fy.. It follows that Fy is an index & — 1 subgroup of F2 and hence that Fy, is
quasi-isometric to Fs. O
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Exercise 1.19. Any tweo infinite reqular trees whose valence at each gertex is al
least 3 are quasi-isomeiric. The case where the valence is a multiple of 4 is a
consequence of the previous ezercise about F,,. Find a geometric argument that
treats all cases and thus gives an alternate proof of the above exercise as well.

2 Curves on surfaces and the word problem

Problem 2.1 (Contractibility problem). Let S, denote the closed orientable sur-

face of genus g and let v denote a closed curve on Sg. Can v be contracted lo a
point?

Figure 3. A curve, -y, on the closed orientable genus three surface, Ss.

We start with an observation used by Dehn in the early 1900’s and perhaps
known earlier. Given a surface S, we write S to denote the universal cover of §
and 7 to refer to a lift of v to S,

Observation. -y is a contractible closed curve in Sy & ¥ is a closed curve in §g.

Proof of observation. (=) Since v can be contracted to a point, we can do so
fixing a basepoint. Such a contraction then lifts to a contraction of ¥ fixing both
endpoints. Hence these two endpoints of ¥ must coincide and thus we have that
¥ is a closed curve in 5.

(«=) Since the universal cover of a closed surface is homeomorphic to either
§? or RzL we know that if ¥ is a closed curve in S, then J is contractible in .
Viewing S, as being tessellated by polygons given by translations of a fundamental

domain, we see that by contracting % through one polygon in S, at a time, that
this contraction in the cover projects to a contraction of v in . 0

Problem 2.2 (Alternative formulation of Contractibility Problem). In m(S,), is
[v] = 12 Here |y] denotes the homotopy class of the curve 7.
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Recall that  (S;) = (al,...,ag,bl,...,bg;alblal'lbl'l,...,agbgaglbgl). For-
mally, we can think of a group as the quotient of the free group (generators) by the
normal subgroup generated by the relators. When the set of generators is finite we
say the group is finitely generated, when the set of relators is also finite, then we
say the group is finitely presented; by an abuse of grammar, it is common parlance
to also use these phrases in the case when there exists such a presentation, even if
a particular presentation is not indicated. Given any word', w, in the generators
(and their inverses), we can consider the associated element in the group, which
we denote [w]. Note that there are many words which all have the saume associ-
ated group element. A word may contain an “obvious shortenings™ if it admits a
subword of the form a~'a or aa~! where « is a generator, since the word cbtained
by removing this subword still represents the same group element. If there are no
obvious shortenings we say the word is reduced. A word is cyclically reduced if it
and all of its cyclic conjugates are reduced.

Problem 2.3 (Word Problem; Dehn, 1912). In a finitely presented group, give a
method whereby it may be decided in a finite number of steps whether or not any
particular given word in the generators represents the identity element.

Delin noticed that the labelled net of polygons which form S can also be seen
as a Cayley graph for 1 (S). Thus the contractibility problem for S is equivalent to
the word problem for m;(S). This led to Dehn’s 1912 proof of this problem using
the geometry of H?; later that same year he gave a more topological/algebraic
proof. We will give a version of the latter argument after first mentioning what
happens in the simplest cases (which, it so happens, are also the only closed
surfaces which do not admit hyperbolic structures).

Example 2.4. The two-dimensional sphere, 52, which is the closed oriented sur-
face of genus 0, satisfies: m(S?) = {1}. Thus every word in this group is already
equal to 1 and the word problem admats a trivial solution.

The two-dimensional torus T2, which is the closed oriented surface of genus
1, satisfies: 71(T2) = (a,b;aba=167') = Z x Z, so for any word we can take as o
“normal form” the unique representative of the form a™b™. One can arrive at this
normal form by switching the order of adjacent letters a*' and b*!. The solvability
of the word problem then follows from this and the fact that a™b" = 1 & m=n=0.

It remains to discuss the case of closed orientable surfaces with g = 2.

Remark 2.5. Note that there exists a Cayley graph for the fundamental group of
a closed orientable surfaces with g = 2 which consists of a planar net of 4g-gons
with 4g at each vertex. We will work with this particular Cayley graph, which will
be described in more detail below.

Lemma 2.6. If v is a closed path in the Cayley graph of m\{Sy)} with ¢ = 2, then
v has either a “spike” (see Figure 4) or a subpath consisting of more than half the
edges in the boundary of a polygon, in succession.

1A word is a finite sequence of elements from a given alphabet.
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Proof. We assume -y does not contain any spikes; note that this is eguivalent to
assuming that + represents a cyclically reduced word. It thus suffices to show that
there is a subpath consisting of more than half the edges in the boundary of a

polygon.
el
—

Figure 4. A “spike” is a subpath that consists of an edge followed by the same edge in the
opposite direction.

We now describe a planar embedding of a Cayley graph for m,(S,) (see Fig-
ure 5). Fix a collection Cy,Cs,...,Cy,... of nested circles with increasing radii.
Each circle will be subdivided into circumferential edges, and there will be edges
from C; to Cyyy, called radial edges.

Figure 5. A portion of the Cayley graph of m1{5;).

¢ Divide C; into 4g arcs to form the first 4g-gon.

o Each vertex on ; will emit 4g — 2 radial edges to Cz thereby dividing C; into
4g(4g — 2) arcs.

¢ Subdivide each arc in C; so that every region between C; and C» is a 4g-gon
{i.e., insert either 45— 3 or 4g— 4 vertices depending on whether the polygon
contains an arc of C; or not).
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o Repeat the second and third step to construct radial edges from Cz to Cs,
from C3 to C4, ete.

By Remark 2.5, this is a (topological embedding of a) Cayley graph for m,(Sg)
into the plane. A fact which we will not use, but which we note for the reader, is
that this embedding strongly distorts distances.

Consider a closed path « in this graph starting at a vertex of C,. Let Cy. be
the outermost circumferential portion reached by 7; we may assume k& > 1 since
otherwise  must travel around the fuil polygon ;. The curve y must travel across
a radial edge e from Ci_1 to Ci, at which point, since it is not a spike, it must
travel along Cy, and at last return Cx—q via a radial edge from Ci to Cx—). Now
e and the initial segment of « following e determine a 4g-gon. Along this 4g-gon,
+ must travel along either 4g — 1 edges (when this 4g-gon has no edge on Cr-1)
or 4g — 2 edges (when this 4g-gon has one edge on Cr—1); this follows from the
assumption that no spike exists and that Cy is the largest circle that ~ reaches.
Since g = 2 we have that 4g — 2 > %ﬂ and thus we have found a polygon more
than half of whose boundary is traversed by a subpath of ~.

The following is known as Dehin’s algorithm; it was originally formulated in
the context of fundamental groups of surfaces, as it is used here, but it can also be
applied in a significantly more general setting known as small cancellation groups,
of which fundamental groups of surfaces are an important example. We will return
to small cancellation groups in Lecture 5.

Dehn’s Algorithm. Start with a non-trivial word w in the generators of m1(S),
and let jw] € m(S) denote the element which it represents.

(1) Cyclically reduce w, i.e., remove all spikes.

(2) If w contains a subword which corresponds to a subpath consisting of more
than half the edges in the boundary of a polygon, replace this subword with
the inverse of the subword corresponding to the subpath consisting of those
edges in the boundary of that polygon which are not in the previous subword.

Algebraically this corresponds to finding e subword wy C w and 1, a
cyclic permutation of a defining relator satisfying wywy =7 and 2|un| > |rl.
In w we then replace wy by 1wy = wy ! which gives a shorter word which
represents [w) € 71(S).

(3) Repeat the first two steps until there are no longer any spikes nor subpaths
which consist of more than half the edges in the boundary of a polygon (i.e.,
there is neither an “obuious shortenings” nor a subword consisting of more
than half of a relator).

Theorem 2.7 (Dehn). There ezists a solution to the Word Problem Jor the fun-
damental group of a closed orientable surfaces.

Proof. In genus 0 and 1 we have already provided a solution in Example 2.4.
Now we consider a surface S with genus greater than 1.

Fix a non-trivial word w in the generators of 71(S) and let -y be the corre-
sponding curve in a Cayley graph for m,(S). We can remove all spikes without
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changing the class in m,(5), so without loss of generality we may assyme that our
word w is reduced. We now proceed to step two in Dehn's Algorithm and search
w for subwords which are more than half a relator.

Now, if -y is a closed curve (or, equivalently, if [w] = 1) this path contains a
subpath which travels along more than half of a relator, by Lemma 2.6. Hence, if
there is no such subword, then [w] # 1 € m(S). On the other hand, if there exists
such a subpath, then we continue following Dehn’s Algorithm. If we start Dehn’s
Algorithm with a closed curve, each iteration produces a shorter closed curve in
the Cayley graph (or equivalently a shorter word w satisfying [w] = 1) and thus
in a finite number of steps w will be reduced to the trivial word, otherwise we will
have a word that can't be shortened, certifying non-triviality. O

Exercise 2.8. Using the techniques of this Lecture, give a solution to the Word
Problem for closed non-orientable surfaces.

3 Geometry of finite presentability

In this lecture we will develop some geometry related to finite presentability and
also provide a proof of the Milnor-Svarc Lemma, which was stated in Lecture 1.

Theorem 3.1. If I is a finitely presented group and TV is a finitely generated
group quast-isometric to T, then TV must be finitely presented.

To prove this theorem we will use the following lemma which gives a topolog-
ical condition characterizing when a set of words forms a complete set of relation
for a given group. We let F(A)} denote the free group generated on the alphabet
given by the elements of A and their inverses. Also, recall that given a subset
R C F(A} the normal subgroup generated by R, denoted ({R)), is defined to be
{{g7'rg : 7' € R and g € F(A)})

Lemma 3.2. LetT' be a group with finite generating set A and let R be a subset
of the kernel of the natural homomorphism F(A) — T'. Build a 2-complez by
attaching 2-cells to each edge loop in the Cayley graph of (T, A) which is labelled
by a reduced word of R. This 2-compler is simply-connected if and only if ((R}) =
ker(F(A) - I).

Sketch of proof. Cayley(T", A) is the quotient of the tree Cayley(F(A4), A) by the
free action of the subgroup given by ker(F{A) — T'). Thus there exists a natural
identification of ker(F(A} — I') with m{Cayley(I", A)). Now apply the Seifert-van
Kampen theorem from algebraic topology. a

Propc_)sition 3.3. A group admits a finite presentation if and only if it acts prop-
erly discontinuously and cocompactly by isometries on a simply-connected geodesic
space.

Sketch of proof. («): This direction is a bit harder and uses different tools then
we need for the rest of the lectures, so we will omit it.

(=): Metrize the simply-connected 2-complex from Lemma 3.2 as a piece-
wise Euclidean complex where all edges have length 1 and all 2-cells are regular
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polygons. The action on the Cayley graph then extends to the desired action on
the complex. ]

Now we are ready to prove the main theorem of this lecture that finite pre-
sentability is preserved by quasi-isometries:

Sketch of proof of Theorem 3.1. Fix I', IV where I' = (A;R) is finitely
presented and I is quasi-isometric to I'. Let £ be the length of the longest word in
R. By Lemma 3.2, the 2-complex K, obtained by attaching 2-cells to the Cayley
graph for (T, A) along all edge loops of length < £, is simply-connected. Note that
to produce the complex K the collection of 2—cells added to the Cayley graph is
locally finite and all of uniformly bounded diameter and hence K is quasi-isometric
toT.

To show I'" admits a finite presentation, by the above Proposition, it suf-
fices to find a simply-connected 2-complex X' on which the group acts properly
discontinuously and cocompactly by isometries. To do this we start with a fixed
Cayley graph for I and add to this a locally finite collection of 2-cells to yield
a simply-connected 2-complex K'. In particular, we add a 2-cell to each loop in
the Cayley graph for IV which is of length at most M, for some sufficient large M.
It remains to show that this complex which we obtain is simply-connected. Note
that since IV is quasi-isometric to I there exist a quasi-isometry ¢: XK' — K.

Now, we want to show that X' is simply-connected, i.e., that any loop in
K' is the boundary of a disk in X'. We will sketch the argument here under the
additional assumption that ¢ and ¢~! are continuous; we leave it as an exercise
for the careful reader to prove that the a priori non-continuous quasi-isometry ¢
can be assumed to be continuous.

Consider a loop v C K’ and note that ¢(vy) is a loop in X’ {this is using the
continuity of ¢ which you proved could be assumed). Now, since X’ is simply-
connected, there exists a disk D C K’ whose boundary is ¢(y). Then map this
disk back to K by the inverse of the quasi-isometry, which we have also assumed
to be continuous. This map of a disk into X' yields a filling for the original loop
in K'. O

By keeping count of the number of cells of the 2-complex in the above proof

one can show:

Corollary 3.4 (Alonso). Among finitely presented groups, the property of heving
a solvable word problem is preserved by quasi-isometries.

We now give a proof of a result introduced in the first Lecture:

Lemma 3.5 (Milnor-Svarc). Let G be a group acting, on the left, properly and
isometrically on a proper geodesic metric space, X. If G\X is compact, then G is
finitely generated and is quasi-isometric to X,

Proof. Let m: X — G\X be the canonical projection. Endow G\X with the
metric d(p,q) = inf{d(z,y): = € 77 (p),y € 77 1(q)}. Since G\X is compact its
diameter, R = sup{d(p, q): p,q € G\X}, is finite.
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Fix a base point o € X and set B = {z € X: d(zq,T} < R}. Note that
since X is proper B is compact. The sets {vB : v € G} form a covering of X.
Define

S={veG:v#eand yBN B # &}

noting that S = §~!, and, since the action is proper, |S| < co.

Setr= inf d(B,~yB). Without loss of generality, we assume G—(SU
TeG=(SU{e})

{e}) is non-empty, since otherwise the result follows immediately since G' would
be finite and X compact.

11(8)

Figure 6. B and vB with v € 5.

Claim (1). r = 0.

Proof. Choose ' € G — (S U {e}) and set ' = d{B,+'B). By the definition
of § and the compactness of B, we have that v/ > 0. Now consider the set
{ye G- (5U{e}): d(B,vB) < r'} which is non-empty (since it contains +') and
finite (since G acts properly). Thus r is actually the minimum over a finite set of
positive numbers, This establishes the claim. |

Claim (2). S generates G and there ezists A > 1 such that for all v € G we have

1
_d($017$0) £ ds(e,’}') < d(.’l.'o, 7-’1"0) + 1.

A
Proof. Fix v € G. Let k be the smallest integer such that d(zg,vxze) < k-7 + R.
Since X is geodesic, there exist 1,2, ..., Tk, Tp1 = yTo such that d{zo,z1) < R
and d{z;,zi41) < rforalli e {1,2,...,k}.

| =
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Since {gB}g,ec covers X, we can choose 71,%2,...,7+1 € G such that
z; € uBforl €i < k+1with vy = e and Y41 = 7. Set 85 = 7{17.-4.1.
Note that we then have that v = 8182...5;. We will now show that for each
t we have s; € S U {e}. Since G acts on the left isometrically on X, we have
d('y,-_lm,‘,"y,-_la:,-H) < r where 4] 'z; € B and v, 'Tiyq = s,-'y;,_ll:c.-ﬂ € g;B. Since
r= 1eG—i?£u{c})d(B’ vB) this then implies that v € SU {e}.

Hence ds(e,y) < k. Since we chose k to satisfy (k — 1)r + R < d(xp,¥2a),

we have; 1 R
ds(e,7) < ~d(zo,770) +1 - —.

By induction on dg(e, ), it then follows that:
d(.'.l:g, 72:0) £ /\ds(e, 'T)

where A = sup{d(xzo, szo)}. This establishes the claim., [ ]
€S
Now define f: G — X by f: 9 — vyxg.
By claim (2}, for any ;,72 € G we have

2 d(F(n), f(2)) < ds(1, 1) < K -d(f(m), F(2)) +1

where K = max{1, A}.
And we have d(f(G), X) < R since {yB : v € G} is a covering of X. O

4 Groups and their ends

Definition 4.1. Let X be a connected, proper and geodesic metric space (e.g.,
a locally finite graph). The number of ends of X, denoted e(X), is defined to be
the limit as n — oo of the number of infinite diameter connected components of
X — Bp(x) where xg is a fixed point in X and Bp(xg) is the ball of radius n
about zg.

Exercise 4.2. Prove that for eny space X as above this limit either exists or is
infinite and that the value of the limit is independent of the choice of zg € X.

Exercise 4.3. If two connected, proper, geodesic metric spaces are quasi-isometric,
then they have the same number of ends.

Hint. Consider a path connecting two points which stays away from some large
ball in the space X. Let ¢: X — Y be a quasi-isometry. Show that the image of
the path (which need not be a path since quasi-isometries need not be continuous),
can be “connected up” to form a path disjoint from a (possible smaller, but still
fairly large) ball in Y. |

Definition 4.4. The number of ends of a finitely generated group is defined to be
the number of ends of a(ny) Cayley graph with respect to some finite generating
set.
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Example 4.5. Consider Fy = (a,b) and the Cayley graph of this grou;? with respect
to the generators {a,b}. For any non-negative integer n, removing a ball of radius
n leaves 4 x 3" unbounded connected components. Thus F» has infinitely many
ends,

The poof of the next Proposition is left as an easy exercise.
Proposition 4.6. A finitely generated group has zero ends if and only if it is finite.

Considering Cayley graphs with respect to their standard generating set, we
easily obtain the following two examples.

Example 4.7. Z has 2 ends and, for each integer n = 2, the group Z" has 1 end.

Surprisingly, the four simple examples given above exhaust all possibilities
for values of e(G} where G is a finitely generated group, as shown by the following:

Theorem 4.8 (Freudenthal-Hopf; 1944). Every finitely generated group has either
0, 1, 2, or infinitely many ends.

Proof. Suppose G is a group with 3 £ €(G) < 0o ends, for simplicity of notation
we set e(G) = k. We fix a finite generating set for G and a corresponding Cayley
graph, which as an abuse of notation, we also denote G.

By the exercise given above, since & > 0 we have |G| = o0.

Since G has & ends, there exists a ball B C G large enough so that G — B
has & unbounded connected components. Further, since G is infinite, there exists
g € G satisfying d(e, g} > 2 - diam{B) and with g in an unbounded component of
G — B. Note, in particular, that this yields BN gB = @.

Since g acts as an isometry, one of the & unbounded connected components
of G — B contains gB and removing gB from this component divides it into at
least & — 1 unbounded connected components. Thus B U gB is a compact set
in G whose removal leaves at least 2(k — 1) unbounded components. Hence the
space obtained by removing the ball of radius 2d(e, g) from G has at least 2(k ~ 1)
unbounded connected components. Since &£ > 3 we then have a contradiction,
since by hypothesis e(G) = &k and whence k = e(G) 2 2(k - 1) > k. O

The following theorem, first proven by Wall in 1967, yields a straightforward
way to recognize exactly which groups have two ends. There are a number of
proofs of this result many of which are elementary. I like the following argument,
the details of which appear in the book listed above by John Meier.

Theorem 4.9 (Wall). A group G has two ends if and only if G contains a finite
index subgroup isomorphic to Z.

Proof. («): This follows from the fact that Z has two ends and that the number
of ends is preserved by commensurability since it is preserved by quasi-isometries.

(=>): Recall the definition of symmetric difference, AAB = (AUB)—-(ANB),
and two easy consequences, whose proofs are left as exercises:

(1) For all A, B, D we have AAB = (AAD)A(BAD);
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(2) For all X and A, B C X we have AAB = (X — A)A(X — B).

Let F C G be a finite graph for which G — F has exactly two unbounded
components. We will use the notation F° to denote the complement of F' in
G. Without loss of generality we may assume F° has exactly two connected
components (we do this by, if necessary, adding all bounded components to F).
The set F divides G into two unbounded components; we think of these as “left”
and “right” sides and call the vertices of one of these sides R.

For any g € G we can consider the translates g - R = {g-r: r € R} and
g-R°={g-l:1 ¢ R}. Note: g-R° = (g- R)".

To continue the proof, we need the following two lemmas. When we speak of
the cardiality of a subset of G we will mean the number of vertices in that subset.

Lemma 4.10. Because G has two ends, either RAgR or (RAgR)® is finite.

Proof. G — (F'U gF') contains 2 unbounded components. Each of R and g- R
union at most finitely many additional points (i.e., some of F, g+ F, or the bounded
components) is equal to exactly one of these components.

Hence, if both R and g - R contain the same unbounded component, then
RAgR is finite; otherwise, (RAgR)E is finite. O

We leave the proof of the next Lemma as an exercise.

Lemma 4.11. The subset of elements H = {g € G: RAgR} is finite and forms
a subgroup which is of index at most 2 in G.

Let h € H satisfy hF N F = @, then either hF C R or hF ¢ R°, Hence in
this case we have either

RNhR* =@ and R°NhR# 2

or
RNhR*# @ and R°ENER = 2.

We think of the first case above as “translating to the left,” as the image of R®
under h is disjoint from R and the image of R under % intersects RS, similarly,
think of the second case as “translating to the right.”

We now formulate and prove the following propesition which will provide the
key step in proving the theorem:

Proposition 4.12. Let G and H be as above, then there exists a homomorphism
¢: H — Z whose kernel is finite.

Proof. Let i € H, so that RARR is finite. Thus [RNARS| < 0o and |R*NAR| < co.
We define the map ¢: H — Z by setting:

¢(h) = |[RNAR°| - |R°NhR|.
We begin by the following straightforward observation for any g, h € H:
RORR® = (RNER°NhgR®) U (RN AR N hgR)
———

A
and R°*NAR = (R*NAhRNhgRE)U (RN RN hgR).
—
B
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Hence
¢(h)=|RnhR°NhgR| + | RNAR* N hgR|
\_—.—,—/ '
A
—|RENAhRNhgR®| - |RENARN hgR)|.
Ne—. —
B

The first equality here is by definition of ¢, the second is since the } acts on
G as an isometry: ¢{g) = |[RN gR*| = |{R°ngR| = |kRN hgR®| — |hR" N hgR).
Since each of these terms can be written as the sum of two terms, one measuring

the intersection with R and the other with R°, we can rewrite ¢(g) as:

$(g)= |RORRNhgR®| + | RN ERN hgR®|
————

B
—|RNAR° A hgR| - |RE N hR=N hgR)|.
e’
A

Thus, we see that in ¢(h) 4+ ¢(g) the A and B terms are paired with opposite
signs and thus we have: ¢(h) + ¢(g) = |RN hgR?| — |R° N hgR| = ¢(hg), i.e., ¢ is
a homomorphism from H to Z.

Since |F| < oo, there exists only finitely many h € H satisfying hF N F # 2.
Since Lemma 4.11 shows that gF N F = & implies ¢(g) # 0, we know an element
can only be in the kernal if it is in F. Then, since F' is finite, we are done. |

To finish the proof of Wall's Theorem we now just need to observe that the
previous Proposition yields a finite index subgroup A C G and a homomorphism
¢: H — Z with finite kernel. If h € H satisfies ¢(h) # 0, then h generates a finite
index subgroup isomorphic to Z, which is also a finite index subgroup in G. O

Groups with infinitely many ends also admit a particularly nice characteriza-
tion, which we now state. This result is one of the first major theorems in modern
geometric group theory and its proof is beyond the scope of these lectures.

Theorem 4.13 (Stallings Ends Theorem). Let G be a forsion-free® finitely gen-
erated group. Then G has infinitely many ends if and only if G can be written as
the free product of a pair of groups H and K which are both non-trivial and not
both Z/2Z.

5 How many groups are there?

Theorem 5.1 (B. Neumann). There exists uncountably many finitely generated
groups up to isomorphism.

Neumann’s original proof of this theorem in 1937, as well as most subsequent
proofs rely on delicate arguments using torsion. In this Lecture we discuss an
alternate approach, namely, we will describe the following stronger and purely
geometric result, which has the Neumann Theorem as an immediate corollary:

2The torsion-free hypothesis can be removed; if this is done the phrase “frec pro‘d.uct" must be
replaced by “amalgamation along a finite group,” a phrase which might be unfamiliar to readers
of these notes, which is why we took the special case in the main text.
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Theorem 5.2 (Bowditch). There ezists uncountably many quasi-isometry classes
of torsion-free small-cancellation 2-generator groups.

We will begin by defining the small-cancellation condition. To do this we
will fix a finite presentation {4;R) with the property that for each relator r € R,
the set R contains r~! and also all cyclic conjugates of 7. (Note that to any finite
presentation, we can add finitely many additional relators to put it in this form.)

Definition 5.3. A cyclically-reduced, non-trivial word w & F(A) is called a piece
if there exist ry,72 € R C F(A) such that r; = wr} and r; = wr} (i.e., if there
exists two distinct relations for which w is an initial subword of both). We now
define two of the most commonly used smali-cancellation conditions:

We say (A; R) satisfies the C(p)-condition if no element of R is a product of
fewer than p pieces. We say (A;R) satisfies the C' (%) condition if each piece w
occurring in r € R satisfies p - £{w) < £(r).

Remark 5.4. C'(1)-condition implies C(p)-condition.

Example 5.5. In earlier lectures we discussed m1{Sg) with the presentation

g
: ~1p-1

(@ar,...,ag,b1,...,by; I Iagb_qag by
i=1

To study pieces we need to modify this presentation by adding additional relators
corresponding to each of the 4g — 1 other cyclic conjugates of this relator (for
instance, bay by .- agboas b tar!, etc) as well as the inverse of this relator

=1
(namely, the word [] by_,-ag_,-b;_l,-a;_lz ) and each of its cyclic conjugates. In this
0

Fr°
presentation we see that a mazimal piece 3 a single letter, so this presentation
satisfies C(4g) and C'(5;5).

Exercise 5.8. Z* = {(a,b,c;aba™b",aca ¢!, beb'c™1). Write the presenta-
tion which contains all inverses and cyclic conjugates of each relator. Then show
that this presentation satisfies C(4).

A powerful tool in working with small-cancellation groups is a result called
Greendlinger’s Lemma which provides that in a group which satisfies a sufficiently
strong small-cancellation condition, for instance C’( é), then any word representing
the identity element contains a subword which is more than half of either a relator
or a cyclic conjugate of a relator.

Hence, any C'({)-presented group admits a Dehn presentation: a presenta-
tion {4; R) such that for any reduced non-trivial word w € F(A) which represents
the identity in (A; R} there exist a relator r = ryr; € R with w = w;r ws and
£(r1) > £(r2) (and thus w can be represented by the shorter word w = wyry Y wg).

Upshot: the word problem is solvable in any group with a Dehn presentation
by applying Dehn’s Algorithm, as we saw in Lecture 1.

Definition 5.7. For Bowditch’s Theorem 5.2 we use small-cancellation to mean
C'(%), in particular, if r is a common subword of two relators r, and r3 then either
m1 =12 or 6|r| < min{|ry}, Ira|}
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Let P(N) denote the power set of N. Given F,F’ € P(N), we write F ~
F' if their symmetric difference FAF’ is finite. This is an equivalence relation
on an uncountable set with each equivalence class countable. Thug there exist
uncountably many equivalence classes, indeed the number of distict equivalence
classes is the cardinality of 2V,

Definition 5.8. Given F € P(N), define S(F) = {2*": n € F} C N. For any
p € N, define
wy, = a{at")” € F(a, b).

Given S C N, define the group I'(S) = {a, b; {w,: p € S}}.
Proposition 5.9. For any F € P(N), the group T'(S(F)) is C'(3).

Proof. The length of w, is 14p + 1. For any p’ # p, the longesl; piece whi:zh Wy
and wy share is aPb” (here we assume, without loss of generality, that p < p’) and
hence has length 2p, and 6 x 2p < 14p+ 1.

Remark 5.10. A result in small-cancellation theory states that any torsion must
arise in the cyclic symmetry of a relator (e.g., a group has an order two clement if
and only if it has a relator of the form w*). Hence, I'(S(F)) is torsion-free.

Theorem 5.11. If F,F' € P(N) and ['(S(F)) is quasi-isometric to T'(S(F")),
then F ~ F'.

Sketch of proof. We are only going to give the idea of the argument here. The
two main ingredients in the argument are the fact that the group is C*(}) and the
super-exponential growth of length of relators.

In a group with a presentation satisfying C’(%), the lengths of relators deter-
mine the size of “holes” in the Cayley graph, i.e., long loops in the graph for which
there is no shortcut. The sizes of these holes geometrically determine a subset of N;
a quasi-isometry of the group only changes these sizes by a bounded multiplicative
and additive amount. Hence, arranging these holes to grow super-exponentially
ensures that from the quasi-isometry type we can recover, up to finite error, the
original set of sizes, as we shall see in the following lemma. O

Let A C N and g € N, define ¢- A = {qa: a € A}

Lemma 5.12. Let F,F' C N for which q- S{F) and q- S{(F") satisfy the property
that there exists k € N such that for each m € q - S(F) satisfying m > k there
exists m' € ¢+ S(F') satisfying 2 < m' < km. Then F ~ F'.

" = n=1
Proof. If not, then there exist n € F'\ F', such that 22" ' > k. Since 22" q €

2m m " n=1 22"
q- S(F), there exists m € F” such that 29 < 2°"q < 2¥"kq. Thus 2"~ < 5~ g

22" < 22"k < 22", Hence m = n which contradicts our assumption that n ¢ F‘!’:.I



