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A NOTE ON CURVATURE AND FUNDAMENTAL GROUP

J. MILNOR

Define the growth function γ associated with a finitely generated group and
a specified choice of generators {gl7 -, gp} for the group as follows (com-
pare [9]). For each positive integer s let γ(s) be the number of distinct group
elements which can be expressed as words of length < s in the specified
generators and their inverses. (For example, if the group is free abelian of
rank 2 with specified generators x and y, then γ(s) = 2s2 + 2s -f 1.) We will
see that the asympotic behavior of γ(s) as s —• oo is, to a certain extent, in-
dependent of the particular choice of generators (Lemma 1).

This note will make use of inequalities relating curvature and volume, due
to R. L. Bishop [1], [2] and P. Gύnther [3], to prove two theorems.

Theorem 1. // M is a complete n-dimensional Riemannian manifold whose
mean curvature tensor R^ is everywhere positive semidefinite, then the growth
function γ(s) associated with any finitely generated subgroup of the funda-
mental group 7ΓjM must satisfy

γ(s) < constant sn .

It is conjectured that the group πxM itself must be finitely generated.
The constant in this inequality will depend, of course, on the particular set

of generators which is used to define γ(s).
Theorem 2. // M is compact Riemannian with all sectional curvatures less

than zero, then the growth function of the fundamental group π^M is at least
exponential:

γ(s) > a°

for some constant a > 1.
In both cases, any set of generators for the group may be used in defining

Remarks. Note that there is always an exponential upper bound for γ(s).
In fact the inequality
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implies that γ(s) < γ(l)s. With only a little more work one can verify that
the sequence γ(s)ι/s necessarily converges to a finite limit as s —> oo. (For
each fixed f, setting k = [s/t] + 1, the inequality f(,y) < γ{ki) < γ(tf < γ(t)ι+s/t

implies that lim sup γ(s)1/s < γ(f)vt. Therefore lim sup γ(s)1/s < inf {γ(t)ι/t} <
lim inf γ(s)y\ and the sequence converges.) It will be convenient to say that
a group has exponential growth whenever lim γ(s)1/s > 1.

The two theorems stated above may be contrasted with three classical
theorems; namely Myers' theorem which asserts that if mean curvature is
positive definite on a compact manifold then the fundamental group is finite
the Hadamard-Cartan theorem which asserts that if all sectional curvatures
are < 0 on a complete manifold then the higher homotopy groups TΓ̂ M, i > 2,
are zero; and Preissmann's theorem which asserts that if all sectional curva-
tures are < 0 on a compact manifold then every abelian subgroup of πxM is
cyclic.

The proofs of Theorems 1 and 2 follow. Some examples and further dis-
cussion will be given at the end.

Proof of Theorem 1. Choose a base point x0 in the universal covering
space M, and let V(r) denote the volume of the neighborhood Nr(;c0) consist-
ing of all y € M with d(x0, y) < r, using the Riemannian distance function and
the Riemannian w-dimensional volume element in ΪΛ.

If the mean curvature is everywhere > 0 , then according to Bishop:

( 1) V{r) < ωnr» ,

where ωn denotes the volume of the unit disk in euclidean H-space.
We will identify πxM with the group of all covering transformations of M

over M. Let gu , gp: Λ? -> M be the preferred generators for some sub-
group of π-JMί, and let μ denote the maximum of the numbers d(xQ, gi(xQ)) for
i = 1,2, -,p. Note that the neighborhood Nμs(x0) contains at least p(s)
distinct points of the form g(x0) with g ε πxM-

Choose a number ε > 0 which is small enough so that the neighborhood
Nt(xQ) in M is disjoint from all of the translates g(Nt(x0)), with g Φ 1. Then
the neighborhood Nμs+t(xQ) contains at least γ(s) disjoint sets of the form
8(Ne(x0)). This proves that

( 2 )

Combining (1) and (2) we obtain the required inequality

r(s) <csn , for s > 1 ,

where c = ωn(μ + ε)n/V(ε). This proves Theorem 1.
Before proving Theorem 2 we need to investigate the dependence of the

growth function γ(s) of a group on the particular choice of generators
{&, •••,**} fo* the group.



CURVATURE AND FUNDAMENTAL GROUP 3

Lemma 1. Let {gl9 -,gp} and {hl9 - ,/ιJ be two different sets of
generators for the same group, and let γ(s) and γ'(t) be the corresponding
growth functions. Then there exist positive constants k and k' so that

rV) < r(*0

for all t and γ(s) < γ'(k's) for all s.
Proof. If k is large enough so that each hj can be expressed as a word of

length <k in the generators g€ and gj"1, then the required inequality
f(t) < γ(kt) is clearly satisfied.

Proof of Theorem 2. Let — a2 < 0 be an upper bound for the sectional
curvature of M. Then according to Gϋnther the volume V(r) is greater than
or equal to the volume

nωn j (or1 sinh ax)n'ιdx

of a corresponding ball in the space of constant negative curvature. This
expression is asymptotically equal to 2c exp (λr) as r —> oo (where
c = nωnj{n — l)(2ar)n and λ = (n — l)αr are positive constants). Hence

( 3 ) V(r)>c exp (Λr)

for r sufficiently large.
Let 5 be the diameter of M. The projection M -+M clearly maps the

compact neighborhood N=Nδ(xQ) onto M. Hence the set of all translates
gN, with g € TΓiM, forms a covering of M. Note that this covering is locally
finite. (For otherwise, for some finite r the neighborhood Nr(x0) would inter-
sect infinitely many of the gN, and hence Nr+δ+t(x0) would contain infinitely
many disjoint sets gNt(x0), each of volume V(έ) > 0. This is impossible since
V(r + δ + ε)< co.)

Let F be the finite set consisting of all elements g in πλM such that the
translate gN intersects N. Let v > 0 be the minimum of d(gN, N) as gN
ranges over all translates of N which do not intersect N.

Lemma 2. // d(x0, gN) < vt + δ for some positive integer ί, then g can be
expressed as a ufold product, g = /,/, /„ with fly ., ft € F.

Proof. Choose yegN with d(*0, v) < pi + 5, and choose points
yuy*, — 9y*+i = y along the minimal geodesic from c to y so that

d(xQ, yx) < δ and d(yt9

Each yt belongs to some translate hiN, where we can choose hλ to be 1 and
ht+1 to be g. Let fi = hrlhiJhl so that /j/2 /£ = g. Since the two points
h^yi and h^yi+1 have distance <y, and belong to iV and to /^respectively,
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it follows from the definitions of v and F that ft e F. This proves Lemma 2.
In particular it follows that the elements of F generate the group πJM,

Let γ'(t) denote the growth function of πxM9 computed using F as the set of
preferred generators.

According to Lemma 2, the interior of the neighborhood Nvt+δ(x0) is com-
pletely covered by the translates fj2 ftN with /* e F. Since precisely γ'(t)
of these translates are distinct, this proves that

( 4 )

By Lemma 1 there exists a positive integer k so that

γ(kt) > r'(t)

or in other words

( 5 ) r(s)>r\[s/k])7 for * > * .

Combining (3), (4) and (5) we clearly obtain

( 6) γ(s) > cx exp (V)

for all sufficiently large s, where the constants ^^ c exp (λδ — λv)l(V(δ) and
λλ = λv/k are both positive. Since γ(s) > 1 for all s > 1, it is now easy to
choose a constant a > 1 so that

T(s) > a*

for all s. This completes the proof of Theorem 2.
Remark. It may be conjectured that some weaker hypothesis, in which

some zero sectional curvatures were allowed, would still be sufficient to imply
exponential growth. Perhaps the hypothesis of negative definite mean curva-
ture would already suffice?

Examples. First consider the 2-dimensional case. On a sphere or projec-
tive plane or torus or Klein bottle we can impose a metric with curvature > 0,
so that Theorem 1 applies. Choosing the most familiar generators for πjbd,
the growth function is given by

γ(s) = 1 for the sphere,

TO?) = 2 for the projective plane P2,

γ(s) = 2s2 + 2s + 1 for the torus or Klein bottle.

Thus 5s2 is an upper bound in each case.
Similarly for an Λ-dimensional torus the growth function of πτ is a poly-

nomical of degree n, providing that the standard generators are used (com-
pare [6]).
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Now consider the non-orientable surface P2 # P 2 # % P 2 which is obtained
from the 2-sphere by attaching p "cross-caps". If p > 3 it is known that
this surface admits a metric of (constant) negative curvature. The funda-
mental group has generators, say xl9 JC2, , xP, subject to the single relation
x\x\ - - xp = 1. To estimate the growth function we will use the following.

Lemma 3. For a free group, which is freely generated by the preferred
set of generators {&, , gp}, the growth function is given by

r(s) = (p(2P - iy - i)i{p - l ) .

Hence

(2p - 1)« < γ(s) < (2p + iy .

The proof is not difficult.
Now for the required group, with generators xl9 , xp and relation

χ{.. x2

p = 1, note that the elements *!,-•-, xp-λ generate a free subgroup
(see [7]). Thus we obtain the estimate

(2p - S)s < ϊ(s) < (2p + iy ,

which supports Theorem 2.
In the case of an orientable surface of genus q > 2, a similar argument

shows that (4q — 3)* < γ(s) < (4q + 1)*. (For examples of higher dimension-
al manifolds of negative curvature, see Borel, Compact Clifford-Klein forms
of symmetric spaces, Topology 2 (1963) 111-122.)

As a final example, let G denote the nilpotent Lie group consisting of all
3 X 3 triangular real matrices with 1 's on the diagonal, and let H be the sub-
group consisting of all integer matrices of the same form. Then the coset
space G/H is a compact 3-dimensional manifold with fundamental group H.

Lemma 4. The growth function of H is quartic:

Cp*4 < γ(s) < c2ί
4 , with cλ > 0.

Outline of proof. As preferred generators take the matrices x = / + e2Z

and y = / + e12. Let c denote the central element yxy^x"1 = / + eu. Note
that every expression of the form * y c * with 0 < k < f can be expressed as
a word of length It in x and y. Hence every jc*yyc* with 1 < i < t, 1 < / < ί,
and 1 < k < t2 has length <4ί , which proves that

Conversely, if xiyJ'ck can be expressed as a word of length <s then it is easily
verified that \i\ < s, |/| < s, and \k\ < (s/2)2, which yields a quartic upper
bound for γ(s).
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Corollary.1 No Riemannian metric on G/H can satisfy either the hypothesis
of Theorem 1 or the hypothesis of Theorem 2.

For Lemma 4 shows that γ(s) is larger than any constant times sz, but
smaller than any as, a > 1, for sufficiently large s.

If we impose the most natural metric, which comes from a left invariant
metic on G, computation shows that the mean curvature tensor of G/H is in-
definite, with signature ( + ,—,—). The scalar curvature ΣRJj tarns out to
be negative. Thus: The fundamental group of a compact manifold of nega-
tive scalar curvature need not have exponential growth. On the other hand
the product of a surface of genus 2 with a small sphere provides an example
of a manifold of positive scalar curvature whose fundamental group does have
exponential growth. Perhaps the scalar curvature of a manifold of dimension
> 3 has no influence at all on the fundamental group?

(Here is an alternative example of a 3-manifold whose fundamental group
is the nilpotent group H of Lemma 4. Let Λί3 be the intersection of the
algebraic variety zx

2 + z2

z + z* = 0 in complex 3-space with the unit sphere.
Compare [4], [8, §9]. This manifold can also be described as the 6-fold
cyclic branched covering of the 3-sphere l^l2 + |z2j

2 = 1, branched along the
trefoil knot zλ

2 + z,3. = 0. I do not know whether or not this manifold M3 is
diffeomorphic to G/H.)

A concluding problem. It is interesting to compare the growth function
γ(s) of a group with the behavior of left-invariant, symmetric random walks
on the group, as studied by2 Kesten [5]. Each such random walk is described
by a symmetric matrix mgh whose spectrum has largest element

λ = lim sup (m&ψ* .

Here m$ denotes the probability of passing from g to h in s steps of the ran-
dom walk. We will assume that every pair g, h of group elements "commu-
nicate" (that is mjg > 0 for some s).

This number λ is equal to 1 if the group is solvable, but is less than 1 if
there exists a free non-cyclic subgroup. The distinction λ = 1 or λ < 1
depends only on the group and not on the particular probability distribution
used to define the random walk.

Lemma 5. // X < 1 then the growth function satisfies lim γ(s)u* > 1
(exponential growth).

Proof, Choose the random walk so that only right multiplication by the
preferred generators or their inverses has positive probability at each step.
Applying Schwarz's inequality to the equation

mlQ — 2 J mlhmhg

1 The second half of this corollary could equally well be derived from Preissmann's
theorem.

2 I am indebted to R. Lyndon for pointing this out.
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we obtain mg" < mg°. Averaging this inequality over the γ(Zt) elements g

represented by words of length <2t, we obtain

1

7(20

hence

lim
< lim sup (ml?)1'* < 1 ,

which completes the proof.

Surprisingly, the converse statement is false. For example the group with

generators x9y and defining relation xyx"1 = y2 is solvable, so that λ = 1.

But γ(2t) > 2\ since the words

with e« = 0 or 1 all represent distinct elements of this group.

Problem. Consider such a random walk on the fundamental group of a

compact manifold of negative curvature. Is λ necessarily less than 1?
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