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Preface

I became interested in the topology of Coxeter groups in 1976 while listening
to Wu-chung and Wu-yi Hsiang explain their work [160] on finite groups
generated by reflections on acyclic manifolds and homology spheres. A short
time later I heard Bill Thurston lecture about reflection groups on hyperbolic
3-manifolds and I began to get an inkling of the possibilities for infinite
Coxeter groups. After hearing Thurston’s explanation of Andreev’s Theorem
for a second time in 1980, I began to speculate about the general picture
for cocompact reflection groups on contractible manifolds. Vinberg’s paper
[290] also had a big influence on me at this time. In the fall of 1981 I read
Bourbaki’s volume on Coxeter groups [29] in connection with a course I was
giving at Columbia. I realized that the arguments in [29] were exactly what
were needed to prove my speculations. The fact that some of the resulting
contractible manifolds were not homeomorphic to Euclidean space came out
in the wash. This led to my first paper [71] on the subject. Coxeter groups have
remained one of my principal interests.

There are many connections from Coxeter groups to geometry and topology.
Two have particularly influenced my work. First, there is a connection with
nonpositive curvature. In the mid 1980s, Gromov [146, 147] showed that,
in the case of a “right-angled” Coxeter group, the complex �, which I had
previously considered, admits a polyhedral metric of nonpositive curvature.
Later my student Gabor Moussong proved this result in full generality in [221],
removing the right-angled hypothesis. This is the subject of Chapter 12. The
other connection has to do with the Euler Characteristic Conjecture (also called
the Hopf Conjecture) on the sign of Euler characteristics of even dimensional,
closed, aspherical manifolds. When I first heard about this conjecture, my
initial reaction was that one should be able to find counterexamples by using
Coxeter groups. After some unsuccessful attempts (see [72]), I started to
believe there were no such counterexamples. Ruth Charney and I tried, again
unsucccessfully, to prove this was the case in [55]. As explained in Appendix J,
it is well known that Singer’s Conjecture in L2-cohomology implies the Euler
Characteristic Conjecture. This led to my paper with Boris Okun [91] on the
L2-cohomology of Coxeter groups. Eventually, it also led to my interest in
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Dymara’s theory of weighted L2-cohomology of Coxeter groups (described in
Chapter 20) and to my work with Okun, Dymara and Januszkiewicz [79].

I began working on this book began while teaching a course at Ohio State
University during the spring of 2002. I continued writing during the next
year on sabbatical at the University of Chicago. My thanks go to Shmuel
Weinberger for helping arrange the visit to Chicago. While there, I gave a
minicourse on the material in Chapter 6 and Appendices B and C. One of the
main reasons for publishing this book here in the London Mathematical Society
Monographs Series is that in July of 2004 I gave ten lectures on this material
for the London Mathematical Society Invited Lecture Series at the University
of Southampton. I thank Ian Leary for organizing that conference. Also, in
July of 2006 I gave five lectures for a minicourse on “L2-Betti numbers”
(from Chapter 20 and Appendix J) at Centre de Recherches mathématiques
Université de Montreal.

I owe a great deal to my collaborators Ruth Charney, Jan Dymara, Jean-
Claude Hausmann, Tadeusz Januszkiewicz, Ian Leary, John Meier, Gabor
Moussong, Boris Okun, and Rick Scott. I learned a lot from them about
the topics in this book. I thank them for their ideas and for their work.
Large portions of Chapters 15, 16, and 20 come from my collaborations in
[80], [55], and [79], respectively. I have also learned from my students who
worked on Coxeter groups: Dan Boros, Constantin Gonciulea, Dongwen Qi,
and Moussong.

More acknowledgements. Most of the figures in this volume were prepared
by Sally Hayes. Others were done by Gabor Moussong in connection with
our expository paper [90]. The illustration of the pentagonal tessellation of the
Poincaré disk in Figure 6.2 was done by Jon McCammond. My thanks go to all
three. I thank Angela Barnhill, Ian Leary, and Dongwen Qi for reading earlier
versions of the manuscript and finding errors, typographical and otherwise.
I am indebted to John Meier and an anonymous “reader” for some helpful
suggestions, which I have incorporated into the book. Finally, I acknowledge
the partial support I received from the NSF during the preparation of this book.

Columbus, Mike Davis
September, 2006
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Chapter One

INTRODUCTION AND PREVIEW

1.1. INTRODUCTION

Geometric Reflection Groups

Finite groups generated by orthogonal linear reflections on Rn play a decisive
role in

• the classification of Lie groups and Lie algebras;

• the theory of algebraic groups, as well as, the theories of spherical
buildings and finite groups of Lie type;

• the classification of regular polytopes (see [69, 74, 201] or
Appendix B).

Finite reflection groups also play important roles in many other areas of
mathematics, e.g., in the theory of quadratic forms and in singularity theory.
We note that a finite reflection group acts isometrically on the unit sphere Sn−1

of Rn.
There is a similar theory of discrete groups of isometries generated by affine

reflections on Euclidean space En. When the action of such a Euclidean reflec-
tion group has compact orbit space it is called cocompact. The classification
of cocompact Euclidean reflection groups is important in Lie theory [29], in
the theory of lattices in Rn and in E. Cartan’s theory of symmetric spaces. The
classification of these groups and of the finite (spherical) reflection groups can
be found in Coxeter’s 1934 paper [67]. We give this classification in Table 6.1
of Section 6.9 and its proof in Appendix C.

There are also examples of discrete groups generated by reflections on the
other simply connected space of constant curvature, hyperbolic n-space, Hn.
(See [257, 291] as well as Chapter 6 for the theory of hyperbolic reflection
groups.)

The other symmetric spaces do not admit such isometry groups. The reason
is that the fixed set of a reflection should be a submanifold of codimension
one (because it must separate the space) and the other (irreducible) symmetric
spaces do not have codimension-one, totally geodesic subspaces. Hence, they
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do not admit isometric reflections. Thus, any truly “geometric” reflection group
must split as a product of spherical, Euclidean, and hyperbolic ones.

The theory of these geometric reflection groups is the topic of Chapter 6.
Suppose W is a reflection group acting on Xn = Sn,En, or Hn. Let K be
the closure of a connected component of the complement of the union of
“hyperplanes” which are fixed by some reflection in W. There are several
common features to all three cases:

• K is geodesically convex polytope in Xn.

• K is a “strict” fundamental domain in the sense that it intersects each
orbit in exactly one point (so, Xn/W ∼= K).

• If S is the set of reflections across the codimension-one faces of K,
then each reflection in W is conjugate to an element of S (and hence,
S generates W).

Abstract Reflection Groups

The theory of abstract reflection groups is due to Tits [281]. What is the
appropriate notion of an “abstract reflection group”? At first approximation,
one might consider pairs (W, S), where W is a group and S is any set
of involutions which generates W. This is obviously too broad a notion.
Nevertheless, it is a step in the right direction. In Chapter 3, we shall call such
a pair a “pre-Coxeter system.” There are essentially two completely different
definitions for a pre-Coxeter system to be an abstract reflection group.

The first focuses on the crucial feature that the fixed point set of a reflection
should separate the ambient space. One version is that the fixed point set of
each element of S separates the Cayley graph of (W, S) (defined in Section 2.1).
In 3.2 we call (W, S) a reflection system if it satisfies this condition. Essentially,
this is equivalent to any one of several well-known combinatorial conditions,
e.g., the Deletion Condition or the Exchange Condition. The second defini-
tion is that (W, S) has a presentation of a certain form. Following Tits [281],
a pre-Coxeter system with such a presentation is a “Coxeter system” and W
a “Coxeter group.” Remarkably, these two definitions are equivalent. This
was basically proved in [281]. Another proof can be extracted from the first
part of Bourbaki [29]. It is also proved as the main result (Theorem 3.3.4) of
Chapter 3. The equivalence of these two definitions is the principal mechanism
driving the combinatorial theory of Coxeter groups.

The details of the second definition go as follows. For each pair (s, t) ∈
S× S, let mst denote the order of st. The matrix (mst) is the Coxeter matrix
of (W, S); it is a symmetric S× S matrix with entries in N ∪ {∞}, 1’s on the
diagonal, and each off-diagonal entry > 1. Let

R := {(st)mst}(s,t)∈S×S.
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(W, S) is a Coxeter system if 〈S|R〉 is a presentation for W. It turns out that,
given any S× S matrix (mst) as above, the group W defined by the pre-
sentation 〈S|R〉 gives a Coxeter system (W, S). (This is Corollary 6.12.6 of
Chapter 6.)

Geometrization of Abstract Reflection Groups

Can every Coxeter system (W, S) be realized as a group of automorphisms
of an appropriate geometric object? One answer was provided by Tits [281]:
for any (W, S), there is a faithful linear representation W ↪→ GL(N,R), with
N = Card(S), so that

• Each element of S is represented by a linear reflection across a
codimension-one face of a simplicial cone C. (N.B. A “linear
reflection” means a linear involution with fixed subspace of
codimension one; however, no inner product is assumed and the
involution is not required to be orthogonal.)

• If w ∈ W and w �= 1, then w(int(C)) ∩ int(C) = ∅ (here int(C) denotes
the interior of C).

• WC, the union of W-translates of C, is a convex cone.

• W acts properly on the interior I of WC.

• Let Cf := I ∩ C. Then Cf is the union of all (open) faces of C which
have finite stabilizers (including the face int(C)). Moreover, Cf is a
strict fundamental domain for W on I.

Proofs of the above facts can be found in Appendix D. Tits’ result was
extended by Vinberg [290], who showed that for many Coxeter systems there
are representations of W on RN , with N < Card(S) and C a polyhedral cone
which is not simplicial. However, the poset of faces with finite stabilizers is
exactly the same in both cases: it is the opposite poset to the poset of subsets of
S which generate finite subgroups of W. (These are the “spherical subsets” of
Definition 7.1.1 in Chapter 7.) The existence of Tits’ geometric representation
has several important consequences. Here are two:

• Any Coxeter group W is virtually torsion-free.

• I (the interior of the Tits cone) is a model for EW, the “universal space
for proper W-actions” (defined in 2.3).

Tits gave a second geometrization of (W, S): its “Coxeter complex” �. This
is a certain simplicial complex with W-action. There is a simplex σ ⊂ �
with dim σ = Card(S)− 1 such that (a) σ is a strict fundamental domain and
(b) the elements of S act as “reflections” across the codimension-one faces
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of σ . When W is finite,� is homeomorphic to unit sphere Sn−1 in the canonical
representation, triangulated by translates of a fundamental simplex. When
(W, S) arises from an irreducible cocompact reflection group on En, � ∼= En.
It turns out that � is contractible whenever W is infinite.

The realization of (W, S) as a reflection group on the interior I of the
Tits cone is satisfactory for several reasons; however, it lacks two advantages
enjoyed by the geometric examples on spaces of constant curvature:

• The W-action on I is not cocompact (i.e., the strict fundamental
domain Cf is not compact).

• There is no natural metric on I that is preserved by W. (However, in
[200] McMullen makes effective use of a “Hilbert metric” on I.)

In general, the Coxeter complex also has a serious defect—the isotropy
subgroups of the W-action need not be finite (so the W-action need not be
proper). One of the major purposes of this book is to present an alternative
geometrization for (W, S) which remedies these difficulties. This alternative is
the cell complex�, discusssed below and in greater detail in Chapters 7 and 12
(and many other places throughout the book).

The Cell Complex �

Given a Coxeter system (W, S), in Chapter 7 we construct a cell complex �
with the following properties:

• The 0-skeleton of � is W.

• The 1-skeleton of � is Cay(W, S), the Cayley graph of 2.1.

• The 2-skeleton of � is a Cayley 2-complex (defined in 2.2) associated
to the presentation 〈S|R〉.

• � has one W-orbit of cells for each spherical subset T ⊂ S. The
dimension of a cell in this orbit is Card(T). In particular, if W is finite,
� is a convex polytope.

• W acts properly on �.

• W acts cocompactly on � and there is a strict fundamental domain K.

• � is a model for EW. In particular, it is contractible.

• If (W, S) is the Coxeter system underlying a cocompact geometric
reflection group on Xn = En or Hn, then � is W-equivariantly
homeomorphic to Xn and K is isomorphic to the fundamental polytope.
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Moreover, the cell structure on � is dual to the cellulation of Xn

by translates of the fundamental polytope.

• The elements of S act as “reflections” across the “mirrors” of K. (In the
geometric case where K is a polytope, a mirror is a codimension-one
face.)

• � embeds in I and there is a W-equivariant deformation retraction
from I onto �. So � is the “cocompact core” of I.

• There is a piecewise Euclidean metric on � (in which each cell is
identified with a convex Euclidean polytope) so that W acts via
isometries. This metric is CAT(0) in the sense of Gromov [147].
(This gives an alternative proof that � is a model for EW.)

The last property is the topic of Chapter 12 and Appendix I. In the case
of “right-angled” Coxeter groups, this CAT(0) property was established by
Gromov [147]. (“Right angled” means that mst = 2 or ∞ whenever s �= t.)
Shortly after the appearance of [147], Moussong proved in his Ph.D. thesis
[221] that � is CAT(0) for any Coxeter system. The complexes � gave one
of the first large class of examples of “CAT(0)-polyhedra” and showed that
Coxeter groups are examples of “CAT(0)-groups.” This is the reason why
Coxeter groups are important in geometric group theory. Moussong’s result
also allowed him to find a simple characterization of when Coxeter groups are
word hyperbolic in the sense of [147] (Theorem 12.6.1).

Since W acts simply transitively on the vertex set of �, any two vertices
have isomorphic neighborhoods. We can take such a neighborhood to be the
cone on a certain simplicial complex L, called the “link” of the vertex. (See
Appendix A.6.) We also call L the “nerve” of (W, S). It has one simplex
for each nonempty spherical subset T ⊂ S. (The dimension of the simplex
is Card(T)− 1.) If L is homeomorphic to Sn−1, then � is an n-manifold
(Proposition 7.3.7).

There is great freedom of choice for the simplicial complex L. As we shall
see in Lemma 7.2.2, if L is the barycentric subdivision of any finite polyhedral
cell complex, we can find a Coxeter system with nerve L. So, the topological
type of L is completely arbitrary. This arbitrariness is the source of power for
the using Coxeter groups to construct interesting examples in geometric and
combinatorial group theory.

Coxeter Groups as a Source of Examples in Geometric
and Combinatorial Group Theory

Here are some of the examples.

• The Eilenberg-Ganea Problem asks if every group π of cohomological
dimension 2 has a two-dimensional model for its classifying space Bπ
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(defined in 2.3). It is known that the minimum dimension of a model
for Bπ is either 2 or 3. Suppose L is a two-dimensional acyclic
complex with π1(L) �= 1. Conjecturally, any torsion-free subgroup of
finite index in W should be a counterexample to the Eilenberg-Ganea
Problem (see Remark 8.5.7). Although the Eilenberg-Ganea Problem is
still open, it is proved in [34] that W is a counterexample to the
appropriate version of it for groups with torsion. More precisely, the
lowest possible dimension for any EW is 3 (= dim�) while the
algebraic version of this dimension is 2.

• Suppose L is a triangulation of the real projective plane. If � ⊂ W is a
torsion-free subgroup of finite index, then its cohomological dimension
over Z is 3 but over Q is 2 (see Section 8.5).

• Suppose L is a triangulation of a homology (n− 1)-sphere, n � 4,
with π1(L) �= 1. It is shown in [71] that a slight modification of �
gives a contractible n-manifold not homeomorphic to Rn. This gave
the first examples of closed apherical manifolds not covered by
Euclidean space. Later, it was proved in [83] that by choosing L
to be an appropriate “generalized homology sphere,” it is not
necessary to modify �; it is already a CAT(0)-manifold not
homeomorphic to Euclidean space. (Such examples are discussed
in Chapter 10.)

The Reflection Group Trick

This a technique for converting finite aspherical CW complexes into closed
aspherical manifolds. The main consequence of the trick is the following.

THEOREM. (Theorem 11.1). Suppose π is a group so that Bπ is homotopy
equivalent to a finite CW complex. Then there is a closed aspherical manifold
M which retracts onto Bπ .

This trick yields a much larger class of groups than Coxeter groups. The
group that acts on the universal cover of M is a semidirect product W̃ � π ,
where W̃ is an (infinitely generated) Coxeter group. In Chapter 11 this trick
is used to produce a variety examples. These examples answer in the negative
many of questions about aspherical manifolds raised in Wall’s list of problems
in [293]. By using the above theorem, one can construct examples of closed
aspherical manifolds M where π1(M) (a) is not residually finite, (b) contains
infinitely divisible abelian subgroups, or (c) has unsolvable word problems. In
11.3, following [81], we use the reflection group trick to produce examples
of closed aspherical topological manifolds not homotopy equivalent to closed
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smooth manifolds. In 11.4 we use the trick to show that if the Borel Conjecture
(from surgery theory) holds for all groups π which are fundamental groups of
closed aspherical manifolds, then it must also hold for any π with a finite
classifying space. In 11.5 we combine a version of the reflection group trick
with the examples of Bestvina and Brady in [24] to show that there are Poincaré
duality groups which are not finitely presented. (Hence, there are Poincaré
duality groups which do not arise as fundamental groups of closed aspherical
manifolds.)

Buildings

Tits defined the general notion of a Coxeter system in order to develop the
general theory of buildings. Buildings were originally designed to generalize
certain incidence geometries associated to classical algebraic groups over finite
fields. A building is a combinatorial object. Part of the data needed for its
definition is a Coxeter system (W, S). A building of type (W, S) consists of a
set � of “chambers” and a collection of equivalence relations indexed by the
set S. (The equivalence relation corresponding to an element s ∈ S is called
“s-adjacency.”) Several other conditions (which we will not discuss until 18.1)
also must be satisfied. The Coxeter group W is itself a building; a subbuilding
of � isomorphic to W is an “apartment.” Traditionally (e.g., in [43]), the
geometric realization of the building is defined to be a simplicial complex
with one top-dimensional simplex for each element of �. In this incarnation,
the realization of each apartment is a copy of the Coxeter complex �. In
view of our previous discussion, one might suspect that there is a better
definition of the geometric realization of a building where the realization of
each chamber is isomorphic to K and the realization of each apartment is
isomorphic to �. This is in fact the case: such a definition can be found
in [76], as well as in Chapter 18. A corollary to Moussong’s result that �
is CAT(0) is that the geometric realization of any building is CAT(0). (See [76]
or Section 18.3.)

A basic picture to keep in mind is this: in an apartment exactly two chambers
are adjacent along any mirror while in a building there can be more than
two. For example, suppose W is the infinite dihedral group. The geometric
realization of a building of type W is a tree (without endpoints); the chambers
are the edges; an apartment is an embedded copy of the real line.

(Co)homology

A recurrent theme in this book will be the calculation of various homology and
cohomology groups of � (and other spaces on which W acts as a reflection
group). This theme first occurs in Chapter 8 and later in Chapters 15 and 20
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and Appendix J. Usually, we will be concerned only with cellular chains and
cochains. Four different types of (co)homology will be considered.

(a) Ordinary homology H∗(�) and cohomology H∗(�).

(b) Cohomology with compact supports H∗c (�) and homology with
infinite chains Hlf

∗ (�).

(c) Reduced L2-(co)homology L2H∗(�).

(d) Weighted L2-(co)homology L2
qH∗(�).

The main reason for considering ordinary homology groups in (a) is to prove
� is acyclic. Since � is simply connected, this implies that it is contractible
(Theorem 8.2.13).

The reason for considering cohomology with compact supports in (b) is
that H∗c (�) ∼= H∗(W;ZW). We give a formula for these cohomology groups
in Theorem 8.5.1. This has several applications: (1) knowledge of H1

c (�)
gives the number of ends of W (Theorem 8.7.1), (2) the virtual cohomological
dimension of W is max{n|Hn

c (�) �= 0} (Corollary 8.5.5), and (3) W is a virtual
Poincaré duality group of dimension n if and only if the compactly supported
cohomology of� is the same as that of Rn (Lemma 10.9.1). (In Chapter 15 we
give a different proof of this formula which allows us to describe the W-module
structure on H∗(W;ZW).)

When nonzero, reduced L2-cohomology spaces are usually infinite-
dimensional Hilbert spaces. A key feature of the L2-theory is that in the
presence of a group action it is possible to attach “von Neumann dimensions”
to these Hilbert spaces; they are nonnegative real numbers called the “L2-
Betti numbers.” The reasons for considering L2-cohomology in (c) involve two
conjectures about closed aspherical manifolds: the Hopf Conjecture on their
Euler characteristics and the Singer Conjecture on their L2-Betti numbers. The
Hopf Conjecture (called the “Euler Characteristic Conjecture” in 16.2) asserts
that the sign of the Euler characteristic of a closed, aspherical 2k-manifold
M2k is given by (−1)kχ (M2k) � 0. This conjecture is implied by the Singer
Conjecture (Appendix J.7) which asserts that for an aspherical Mn, all the
L2-Betti numbers of its universal cover vanish except possibly in the middle
dimension. For Coxeter groups, in the case where � is a 2k-manifold, the
Hopf Conjecture means that the rational Euler characteristic of W satisfies
(−1)kχ (W) � 0. In the right-angled case this can be interpreted as a conjecture
about a certain number associated to any triangulation of a (2k − 1)-sphere
as a “flag complex” (defined in 1.2 as well as Appendix A.3). In this form,
the conjecture is known as the Charney-Davis Conjecture (or as the Flag
Complex Conjecture). In [91] Okun and I proved the Singer Conjecture in
the case where W is right-angled and � is a manifold of dimension ≤ 4
(see 20.5). This implies the Flag Complex Conjecture for triangulations of S3

(Corollary 20.5.3).
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The fascinating topic (d) of weighted L2-cohomology is the subject of
Chapter 20. The weight q is a certain tuple of positive real numbers. For
simplicity, let us assume it is a single real number q. One assigns each cell
c in � a weight ‖c‖q = ql(w(c)), where w(c) is the shortest w ∈ W so that w−1c
belongs to the fundamental chamber and l(w(c)) is its word length. L2

qC∗(�)
is the Hilbert space of square summable cochains with respect to this new
inner product. When q = 1, we get the ordinary L2-cochains. The group W
no longer acts orthogonally; however, the associated Hecke algebra of weight
q is a ∗-algebra of operators. It can be completed to a von Neumann algebra
Nq (see Chapter 19). As before, the “dimensions” of the associated reduced
cohomology groups give us L2

q-Betti numbers (usually not rational numbers).
It turns out that the “L2

q-Euler characteristic” of � is 1/W(q) where W(q) is
the growth series of W. W(q) is a rational function of q. (These growth series
are the subject of Chapter 17.) In 20.7 we give a complete calculation of these
L2

q-Betti numbers for q < ρ and q > ρ−1, where ρ is the radius of convergence
of W(q). When q is the “thickness” (an integer) of a building � of type (W, S)
with a chamber transitive automorphism group G, the L2

q-Betti numbers are
the ordinary L2-Betti numbers (with respect to G) of the geometric realization
of � (Theorem 20.8.6).

What Has Been Left Out

A great many topics related to Coxeter groups do not appear in this book,
such as the Bruhat order, root systems, Kazhdan–Lusztig polynomials, and the
relationship of Coxeter groups to Lie theory. The principal reason for their
omission is my ignorance about them.

1.2. A PREVIEW OF THE RIGHT-ANGLED CASE

In the right-angled case the construction of � simplifies considerably. We
describe it here. In fact, this case is sufficient for the construction of most
examples of interest in geometric group theory.

Cubes and Cubical Complexes

Let I := {1, . . . , n} and RI := Rn. The standard n-dimensional cube is
[−1, 1]I := [−1, 1]n. It is a convex polytope in RI . Its vertex set is {±1}I . Let
{ei}i∈I be the standard basis for RI . For each subset J of I let RJ denote the
linear subspace spanned by {ei}i∈J . (If J = ∅, then R∅ = {0}.) Each face of
[−1, 1]I is a translate of [−1, 1]J for some J ⊂ I. Such a face is said to be
of type J.

For each i ∈ I, let ri : [−1, 1]I → [−1, 1]I denote the orthogonal reflection
across the hyperplane xi = 0. The group of symmetries of [−1, 1]n generated
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by {ri}i∈I is isomorphic to (C2)I , where C2 denotes the cyclic group of order 2.
(C2)I acts simply transitively on the vertex set of [−1, 1]I and transitively on
the set of faces of any given type. The stabilizer of a face of type J is the
subgroup (C2)J generated by {ri}i∈J . Hence, the poset of nonempty faces of
[−1, 1]I is isomorphic to the poset of cosets

∐
J⊂I

(C2)I/(C2)J.

(C2)I acts on [−1, 1]I as a group generated by reflections. A fundamental
domain (or “fundamental chamber”) is [0, 1]I .

A cubical cell complex 
 is a regular cell complex in which each cell is
combinatorially isomorphic to a standard cube. (A precise definition is given
in Appendix A.) The link of a vertex v in
, denoted Lk(v,
), is the simplicial
complex which realizes the poset of all positive dimensional cells which have
v as a vertex. If v is a vertex of [−1, 1]I , then Lk(v, [−1, 1]I) is the (n− 1)-
dimensional simplex, �n−1.

The Cubical Complex PL

Given a simplicial complex L with vertex set I = {1, . . . , n}, we will define a
subcomplex PL of [−1, 1]I , with the same vertex set and with the property that
the link of each of its vertices is canonically identified with L. The construction
is similar to the standard way of realizing L as a subcomplex of�n−1. Let S(L)
denote the set of all J ⊂ I such that J = Vert(σ ) for some simplex σ in L
(including the empty simplex). S(L) is partially ordered by inclusion. Define
PL to be the union of all faces of [−1, 1]I of type J for some J ∈ S(L). So, the
poset of cells of PL can be identified with the disjoint union

∐
J∈S(L)

(C2)I/(C2)J.

(This construction is also described in [37, 90, 91].)

Example 1.2.1. Here are some examples of the construction.

• If L = �n−1, then PL = [−1, 1]n.

• If L = ∂(�n−1), then PL is the boundary of an n-cube, i.e., PL is
homeomorphic to Sn−1.

• If L is the disjoint union of n points, then PL is the 1-skeleton of an
n-cube.

• If n = 3 and L is the disjoint union of a 1-simplex and a 0-simplex,
then PL is the subcomplex of the 3-cube consisting of the top and
bottom faces and the 4 vertical edges. (See Figure 1.1.)
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L
PL

Figure 1.1. L is the union of a 1-simplex and a 0-simplex.

• Suppose L is the join of two simplicial complexes L1 and L2. (See
Appendix A.4 for the definition of “join.”) Then PL = PL1 × PL2 .

• So, if L is a 4-gon (the join of S0 with itself), then PL is the 2-torus
S1 × S1.

• If L is an n-gon (i.e., the triangulation of S1 with n vertices), then PL is
an orientable surface of Euler characteristic 2n−2(4− n).

PL is stable under the (C2)I-action on [−1, 1]I . A fundamental chamber K
is given by K := PL ∩ [0, 1]I . Note that K is a cone (the cone point being the
vertex with all coordinates 1). In fact, K is homeomorphic to the cone on L.
Since a neighborhood of any vertex in PL is also homeomorphic to the cone on
L we also get the following.

PROPOSITION 1.2.2. If L is homeomorphic to Sn−1, then PL is an n-manifold.

Proof. The cone on Sn−1 is homeomorphic to an n-disk. �

The Universal Cover of PL and the Group WL

Let P̃L be the universal cover of PL. For example, the universal cover of the
complex PL in Figure 1.1 is shown in Figure 1.2. The cubical cell structure
on PL lifts to a cubical structure on P̃L. Let WL denote the group of all lifts
of elements of (C2)I to homeomorphisms of P̃L and let ϕ : WL → (C2)I be the
homomorphism induced by the projection P̃L → PL. We have a short exact
sequence,

1−→π1(PL)−→WL
ϕ−→ (C2)I −→ 1.

Since (C2)I acts simply transitively on Vert(PL), WL is simply transitive on
Vert(̃PL). By Theorem 2.1.1 in the next chapter, the 1-skeleton of P̃L is
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PL
˜

Figure 1.2. The universal cover of PL.

Cay(WL, S) for some set of generators S and by Proposition 2.2.4, the 2-
skeleton of P̃L is a “Cayley 2-complex” associated with some presentation of
WL. What is this presentation for WL?

The vertex set of PL can be identified with (C2)I . Fix a vertex v of PL

(corresponding to the identity element in (C2)I). Let ṽ be a lift of v in P̃L. The
1-cells at v or at ṽ correspond to vertices of L, i.e., to elements of I. The
reflection ri stabilizes the ith 1-cell at v. Let si denote the unique lift of ri

which stabilizes the ith 1-cell at ṽ. Then S := {si}i∈I is a set of generators
for WL. Since s2

i fixes ṽ and covers the identity on PL, we must have s2
i = 1.

Suppose σ is a 1-simplex of L connecting vertices i and j. The corresponding
2-cell at ṽ is a square with edges labeled successively by si, sj, si, sj. So, as
explained in Section 2.2, we get a relation (sisj)2 = 1 for each 1-simplex {i, j}
of L. By Proposition 2.2.4, WL is the group defined by this presentation, i.e.,
(WL, S) is a right-angled Coxeter system, with S := {s1, . . . , sn}. Examining
the presentation, we see that the abelianization of WL is (C2)I . Thus, π1(PL)
is the commutator subgroup of WL.

For each subset J of I, WJ denotes the subgroup generated by {si}i∈J . If
J ∈ S(L), then WJ is the stabilizer of the corresponding cell in P̃L which
contains ṽ (and so, for J ∈ S(L), WJ

∼= (C2)J). It follows that the poset of cells
of P̃L is isomorphic to the poset of cosets,

∐
J∈S(L)

WL/WJ .
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When Is P̃PPLLL Contractible?

A simplicial complex L is a flag complex if any finite set of vertices, which
are pairwise connected by edges, spans a simplex of L. (Flag complexes play
an important role throughout this book, e.g., in Sections 7.1 and 16.3 and
Appendices A.3 and I.6.)

PROPOSITION 1.2.3. The following statements are equivalent.

(i) L is a flag complex.

(ii) P̃L is contractible.

(iii) The natural piecewise Euclidean structure on P̃L is CAT(0).

Sketch of Proof. One shows (ii) =⇒ (i) =⇒ (iii) =⇒ (ii). If L is not a flag
complex, then it contains a subcomplex L′ isomorphic to ∂�n, for some n � 2,
but which is not actually the boundary complex of any simplex in L. Each
component of the subcomplex of P̃L corresponding to L′ is homeomorphic
to Sn. It is not hard to see that the fundamental class of such a sphere is
nontrivial in Hn (̃PL) (cf. Sections 8.1 and 8.2). So, if L is not a flag complex,
then P̃L is not contractible, i.e., (ii) =⇒ (i). As we explain in Appendix I.6,
a result of Gromov (Lemma I.6.1) states that a simply connected cubical cell
complex is CAT(0) if and only if the link of each vertex is a flag complex.
So, (i) =⇒ (iii). Since CAT(0) spaces are contractible (Theorem I.2.6 in
Appendix I.2), (iii) =⇒ (ii). �

When L is a flag complex, we write�L for P̃L. It is the cell complex referred
to in the previous section.

Examples 1.2.4. In the following examples we assume L is a triangulation of
an (n− 1)-manifold as a flag complex. Then PL is a manifold except possibly
at its vertices (a neighborhood of the vertex is homeomorphic to the cone on
L). If L is the boundary of a manifold X, then we can convert PL into a manifold
M(L,X) by removing the interior of each copy of K and replacing it with a copy
of the interior of X. We can convert �L into a manifold �̂(L,X) by a similar
modification.

A metric sphere in �L is homeomorphic to a connected sum of copies
of L, one copy for each vertex enclosed by the sphere. When n � 4, the
fundamental group of such a connected sum is the free product of copies of
π1(L) and hence, is not simply connected when π1(L) �= 1. It follows that
�L is not simply connected at infinity when π1(L) �= 1. (See Example 9.2.7.)
As we shall see in 10.3, for each n � 4, there are (n− 1)-manifolds L with
the same homology as Sn−1 and with π1(L) �= 1 (the so-called “homology
spheres”). Any such L bounds a contractible manifold X. For such L and X,
we have that M(L,X) is homotopy equivalent to PL. Its universal cover is �̂(L,X),
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which is contractible. Since �̂(L,X) is not simply connected at infinity, it is not
homeomorphic to Rn. The M(L,X) were the first examples of closed manifolds
with contractible universal cover not homeomorphic to Euclidean space. (See
Chapter 10, particularly Section 10.5, for more details.)

Finally, suppose L = ∂X, where X is an aspherical manifold with boundary
(i.e., the universal cover of X is contractible). It is not hard to see that the
closed manifold M(L,X) is also aspherical. This is the “reflection group trick” of
Chapter 11.
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Chapter Two

SOME BASIC NOTIONS IN GEOMETRIC

GROUP THEORY

In geometric group theory we study various topological spaces and metric
spaces on which a group G acts. The first of these is the group itself with
the discrete topology. The next space of interest is the “Cayley graph.” It is a
certain one dimensional cell complex with a G-action. Its definition depends on
a choice of a set of generators S for G. Cayley graphs for G can be characterized
as G-actions on connected graphs which are simply transitively on the vertex
set (Theorem 2.1.1). Similarly, one can define a “Cayley 2-complex” for G
to be any simply connected, two dimensional cell complex with a cellular
G-action which is simply transitive on its vertex set. To any presentation of G
one can associate a two-dimensional cell complex with fundamental group G.
Its universal cover is a Cayley 2-complex for G. Conversely, one can read off
from any Cayley 2-complex a presentation for G (Proposition 2.2.4). These
one- and two-dimensional complexes are discussed in Sections 2.1 and 2.2,
respectively. One can continue attaching cells to the presentation complex,
increasing the connectivity of the universal cover ad infinitum. If we add
cells to the presentation 2-complex to kill all higher homotopy groups, we
obtain a CW complex, BG, with fundamental group G and with contractible
universal cover. Any such complex is said to be aspherical. An aspherical
complex is determined up to homotopy equivalence by its fundamental group,
i.e., the homotopy type of BG is an invariant of the group G. BG is called
a classifying space for G (or a “K(G, 1)-complex”). Its universal cover,
EG, is a contractible complex on which G acts freely. In 2.3 we discuss
aspherical complexes and give examples which are finite complexes or closed
manifolds.

2.1. CAYLEY GRAPHS AND WORD METRICS

Let G be a group with a set of generators S. Suppose the identity element, 1,
is not in S. Define the Cayley graph Cay(G, S) as follows. The vertex set of
Cay(G, S) is G. A two element subset of G spans an edge if and only if it has
the form {g, gs} for some g ∈ G and s ∈ S. Label the edge {g, gs} by s. If the
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order of s is not 2 (i.e., if s �= s−1), then the edge {g, gs} has a direction: its
initial vertex is g and its terminal vertex is gs. (The labeled graph Cay(G, S)
often will be denoted by � when (G, S) is understood.)

An edge path γ in � is a finite sequence of vertices γ = (g0, g1, . . . , gk)
such that any two successive vertices are connected by an edge. Associated to
γ there is a sequence (or word) in S ∪ S−1, s = ((s1)ε1 , . . . , (sk)εk ), where si is
the label on the edge between gi−1 and gi and εi ∈ {±1} is defined to be +1
if the edge is directed from gi−1 to gi (i.e., if gi = gi−1si) and to be −1 if it is
oppositely directed. Given such a word s, define g(s) ∈ G by

g(s) = (s1)ε1 · · · (sk)εk

and call it the value of the word s. Clearly, gk = g0g(s). This shows there is
a one-to-one correspondence between edge paths from g0 to gk and words
s with gk = g0g(s). Since S generates G, � is connected. G acts on Vert(�)
(the vertex set of �) by left multiplication and this naturally extends to a
simplicial G-action on �. G is simply transitive on Vert(�). (Suppose a group
G acts on a set X. The isotropy subgroup at a point x ∈ X is the subgroup
Gx := {g ∈ G | gx = x}. The G-action is free if Gx is trivial for all x ∈ X; it
is transitive if there is only one orbit and it is simply transitive if it is both
transitive and free.)

Conversely, suppose that �̃ is a connected simplicial graph and that G acts
simply transitively on its 0-skeleton. (A graph is simplicial if it has no circuits
of length 1 or 2. The 0-skeleton, �̃0, is the union of its vertices.) We can use �̃
to specify a set of generators S for G by the following procedure. First, choose
a base point v0 ∈ Vert(�̃). Let S̃(v0) denote the set of elements x ∈ G such that
xv0 is adjacent to v0. Noting that x−1 takes the edge {v0, xv0} to {x−1v0, v0},
we see that if x ∈ S̃(v0), then so is x−1. Define S(v0) to be the set formed by
choosing one element from each pair of the form {x, x−1}. Clearly, �̃ is G-
isomorphic to Cay(G, S(v0)). Explicitly, the isomorphism Cay(G, S(v0))→ �̃

is induced by the G-equivariant isomorphism g→ gv0 of vertex sets. (A map
f : A→ B between two G-sets is equivariant if f (ga) = gf (a), for all g ∈ G.)
So, we have proved the following.

THEOREM 2.1.1. Suppose �̃ is a connected simplicial graph and G is a
group of automorphisms of �̃ which is simply transitive on Vert(�̃). Let S(v0)
be the set of generators for G constructed above. Then �̃ is G-isomorphic to
the Cayley graph, Cay(G, S(v0)).

Thus, the study of Cayley graphs for G is the same as the study of G-
actions on connected, simplicial graphs such that G is simply transitive on the
vertex set.
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Figure 2.1. Cayley graph of the free group of rank 2.

Example 2.1.2. Suppose S is a set and the group in question is FS, the free
group on S. Then Cay(FS, S) is a tree. (Since each element of FS can be written
uniquely as a reduced word in S ∪ S−1, there is a unique edge path connecting
any given element to 1; hence, Cay(FS, S) contains no circuits.) See Figure 2.1.

Roughly, any Cayley graph arises as a quotient of the above example. (The
reason that this is only roughly true is that there are problems arising from
elements of S of order 1 or 2 in G.) Given a set of generators S for G, we have
G = FS/N for some normal subgroup N. Let ϕ : FS → G be the projection.
Set T = Cay(FS, S) and � = Cay(G, S). The homomorphism ϕ, regarded as a
map of vertex sets, extends to a ϕ-equivariant map T → �. Let ϕ̄ : T/N → �

be the induced map. ϕ̄ is almost an isomorphism. If s ∈ S represents 1 ∈ G
(i.e., if s ∈ N), then each edge in T labeled by s becomes a loop in T/N and
our convention is to omit such loops. If s has order 2 in G (i.e., if s2 ∈ N), we
have edge loops of length 2 in T/N of the form (g, gs, g) and our convention is
to collapse such a loop to a single edge in �.

Word Length

We want to define a metric d : �×�→ [0,∞). Declare each edge to be
isometric to the unit interval. The length of a path in � is then defined in
the obvious manner. Set d(x, y) equal to the length of the shortest path from x
to y. (This procedure works in a much more general context: given any local
metric on a path connected space X, define the intrinsic distance between
two points to be the infimum of the set of lengths of paths which connect
them. It is easy to see that the triangle inequality is valid, i.e., this procedure
defines a metric. For further details, see Appendix I.1 and [37].) G now acts
isometrically on �. Restricting the metric to the vertex set of �, we get
the word metric d : G× G→ N where N denotes the nonnegative integers.
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In other words, d(h, g) is the smallest integer k such that g = hg(s) for a word
s of length k in S ∪ S−1. The distance from a group element g to the identity
element is its word length and is denoted l(g).

2.2. CAYLEY 2-COMPLEXES

If G acts on a connected, simplicial graph and is simply transitive on its vertex
set, then, as in Theorem 2.1.1, the graph is essentially the Cayley graph of
G with respect to some set of generators S. Moreover, S can be read off by
looking at the edges emanating from some base point v0. A Cayley 2-complex
for G is any simply connected, two-dimensional cell complex such that G is
simply transitive on the vertex set. So the 1-skeleton of such a 2-complex is
essentially a Cayley graph for G. We explain below how one can read off a
presentation for G from the set of 2-cells containing a given vertex v0.

Presentations

Let S be a set. Here, a word in S ∪ S−1 means an element s in the free
group FS on S. In other words, s = (s1)ε1 · · · (sk)εk , where si ∈ S, εi ∈ {±1}
and (si+1)εi+1 �= (si)−εi .

DEFINITION 2.2.1. A presentation 〈S | R〉 for a group consists of a set S
and a set R of words in S ∪ S−1. S is the set of generators; R is the set of
relations. The group determined by the presentation is G := FS/N(R), where
N(R) denotes the normal subgroup of FS generated byR.

Suppose H is a group and f : S→ H a function. If s = (s1)ε1 . . . (sk)εk ∈ FS,
then put f (s) := f ((s1)ε1 ) · · · f ((sk)εk ). The group G determined by 〈S | R〉
satisfies the following universal property: given any group H and any function
f : S→ H such that f (r) = 1 for all r ∈ R, there is a unique extension of f
to a homomorphism f̃ : G→ H. Moreover, up to canonical isomorphism, G is
characterized by this property.

The Presentation 2-Complex

Associated with a presentation 〈S | R〉 for a group G, there is a two-
dimensional cell complex X with π1(X) = G. Its 0-skeleton, X0, consists of
a single vertex. Its 1-skeleton, X1, is a bouquet of circles, one for each element
of S. Each circle is assigned a direction and is labeled by the corresponding
element of S. For each word r = (s1)ε1 · · · (sk)εk in R, take a two-dimensional
disk Dr, and subdivide its boundary ∂Dr into k intervals. Cyclically label the
edges by the si which appear in r and orient them according to the εi. These
labeled directed edges determine a (cellular) map from ∂Dr to X1. Use it to
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attach a 2-disk to X1 for each r ∈ R. The resulting CW complex X is the
presentation complex. (See the end of Appendix A.1 for a discussion of CW
complexes.) By van Kampen’s Theorem, π1(X) = G. Its universal cover X̃ is
a Cayley 2-complex for G; however, its 1-skeleton need not be Cay(G, S). The
difference is due entirely to the elements in S of order 2. (This is important
to us since,we are interested in Coxeter groups, in which case all elements of
S have order 2.) Given an element s in S of order 2, there are two edges in X̃
connecting a vertex v with vs, while in Cay(G, S) there is only one edge. Also G
need not act freely on Cay(G, S) since an edge which is labeled by an element
of order 2 has stabilizer a cyclic group of order 2 (which necessarily fixes the
midpoint of the edge). Similarly, G need not act freely on a Cayley 2-complex,
the stabilizer of a 2-cell can be nontrivial. However, such a 2-cell stabilizer
must be finite since it freely permutes the vertices of the 2-cell (in fact,
such a stabilizer must be cyclic or dihedral). Associated to a presentation of
G there is a Cayley 2-complex with 1-skeleton equal to Cay(G, S). We describe
it below.

The Cayley 2-Complex of a Presentation

Given a presentation 〈S |R〉 for G, we define a 2-complex � (=Cay(G,
〈S |R〉)) with G-action. LetR′ denote the subset ofR consisting of the words
which are not of the form s or s2 for some s ∈ S. For each r ∈ R′, let γr be
the closed edge path in � which starts at v0 and which corresponds to the
relation r. Let Dr be a copy of the two-dimensional disk. Regard γr as a map
from the circle, ∂Dr, to �1. Call two closed edge paths equivalent if one is a
reparameterization of the other, i.e., if they differ only by a shift of base point
or change of direction. For the remainder of this section, let us agree that a
circuit in �1 means an equivalence class of a closed edge path. Let Cr denote
the circuit represented by γr. G acts on {Cr}r∈R′ . The stabilizer of a circuit can
be nontrivial. (If the circuit has length m, then its stabilizer is a subgroup of
the group of combinatorial symmetries of an m-gon.) Let Gr be the stabilizer
of Cr. Gr acts on ∂Dr in a standard fashion and since Dr is the cone on ∂Dr, it
also acts on Dr. (The “standard action” of a dihedral group on a 2-disk will be
discussed in detail in 3.1.)

The 1-skeleton of � is defined to be the Cayley graph, Cay(G, S). For
each r ∈ R′, attach a 2-cell to each circuit in the G-orbit of Cr. More
precisely, equivariantly attach G×Gr Dr to the G-orbit of Cr;� is the resulting
2-complex. (G×H X is the twisted product, defined as follows: if H acts on
X, G×H X is the quotient space of G× X via the diagonal action defined by
h · (g, x) := (gh−1, hx). The natural left G-action on G× X descends to a left
G-action on the twisted product.) G acts on � and is simply transitive on
Vert(�). We will show in Proposition 2.2.3 below that � is simply connected.
So � is a Cayley 2-complex.
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Examples 2.2.2. (i) If S = {a, b} and R = {aba−1b−1}, then G = C∞ × C∞,
the product of two infinite cyclic groups. G can be identified with the integer
lattice in R2 and Cay(G, S) with the grid consisting of the union of all
horizontal and vertical lines through points with integral coordinates. The
complex � is the cellulation of R2 obtained by filling in the squares. In this
case, � is the same as X̃ (the universal cover of the presentation complex).

(ii) Suppose S is a singleton, say, S = {a} and R = {am}, for some m > 2.
Then G is cyclic of order m, X is the result of gluing a 2-disk onto a
circle via a degree-m map ∂D2 → S1 and X̃ consists of m-copies of a 2-disk
with their boundaries identified. Their common boundary is the single circuit
corresponding to the relation r = am. On the other hand, the 2-complex � is
the single 2-disk Dr (an m-gon) with the cyclic group acting by rotation.

PROPOSITION 2.2.3. � is simply connected.

Proof. Let p : �̃→ � be the universal covering. It suffices to show that the
G-action on � lifts to a G-action on �̃. Indeed, suppose the G-action lifts.
Since G is simply transitive on Vert(�), it must also be simply transitive
on Vert(�̃). This means that p is a bijection on vertex sets and hence, that
the covering map p : �̃→ � is an isomorphism and therefore � is simply
connected. So, we need to show that we can lift the G-action. First we lift the
elements in S to �̃. Let v0 ∈ Vert(�) be the vertex corresponding to 1 ∈ G.
Choose ṽ0 ∈ Vert(�̃) ∈ p−1(v0). Given s ∈ S, let e be the edge in � emanating
from v0 which is labeled by s and let ẽ be its lift in �̃ with endpoint ṽ0. Let
v1 and ṽ1 be the other endpoints of e and ẽ, respectively. Any lift of s takes
ṽ0 to a lift of v1 and the lift of s is uniquely determined by the choice of lift
of v1. Let s̃ : �̃→ �̃ be the lift of s which takes ṽ0 to ṽ1. If s2 = 1, then s̃2 is
the identity map on �̃ (since it is a lift of the identity and fixes a vertex). Let
r = (s1)ε1 · · · (sk)εk ∈ R′ and Dr a corresponding 2-cell in � which contains
v0. Let D̃r be the lift in �̃ which contains ṽ0. The corresponding closed edge
path γr starting at v0 lifts to a closed edge path γ̃r going around ∂D̃r with
edge labels corresponding to the word (s̃1)ε1 · · · (s̃k)εk , so this element gives the
identity map on �̃. It follows from the characteristic property of presentations
that the function S→ Aut(�̃) defined by s→ s̃ extends to a homomorphism
G→ Aut(�̃) giving the desired lift of the G-action to �̃. �

Reading off a Presentation

Suppose � is a Cayley 2-complex for G. Choose a base point v0 ∈ Vert(�).
We can read off a presentation 〈S | R〉 from the set of 1- and 2-cells containing
v0, as follows. The set S of generators is chosen by the procedure explained in
2.1: for each edge e emanating from v0, let se ∈ G be the element taking v0 to
the other endpoint of e, S is the set of all such se. If s ∈ S stabilizes its edge,
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put s2 intoR. In other words inR are given by the procedure indicated earlier.
For each 2-cell c containing v0, we get a closed edge path γc starting at v0 and
going around c. Cyclically reading the labels on the edges, we get a word rc in
S ∪ S−1. The definition of R is completed by putting all such rc into R. The
corresponding group element g(rc) ∈ G takes v0 to itself. Since G acts freely
on Vert(�), g(rc) = 1. Thus, each rc is a relation rc in G.

PROPOSITION 2.2.4. Suppose � is a Cayley 2-complex for G and 〈S | R〉 is
the associated presentation. Then 〈S | R〉 is a presentation for G.

Proof. Let G̃ be the group defined by 〈S | R〉 . Since each element of R is a
relation in G, we have a homomorphism ρ : G̃→ G and since S generates G,
ρ is onto. G̃ acts on � via ρ. Let g̃ ∈ Ker ρ. Choose a word s in S ∪ S−1 which
represents g̃ and let γ be the corresponding closed edge path in � based at v0.

It is a classical result in topology that the fundamental group of a cell
complex can be defined combinatorially. (This result is attributed to Tietze
in [98, p.301].) In particular, two closed edge paths are homotopic if and only
if one can be obtained from the other by a sequence of moves, each of which
replaces a segment in the boundary of a 2-cell by the complementary segment.
(See, for example, [10, pp.131–135].) Since � is simply connected, γ is null
homotopic. Since each 2-cell of� is a translate of a 2-cell corresponding to an
element ofR, this implies that g̃ (= g̃(s)) lies in the normal subgroup generated
byR, i.e., g̃ = 1. So Ker ρ is trivial and ρ is an isomorphism. �

2.3. BACKGROUND ON ASPHERICAL SPACES

A path connected space X is aspherical if its homotopy groups, πi(X), vanish
for all i > 1. So, an aspherical space has at most one nontrivial homotopy
group—its fundamental group. A basic result of covering space theory (for
example, in [197]) states that if X admits a universal covering space X̃, then
asphericity is equivalent to the condition that πi(X̃) = 0 for all i (that is to
say, X̃ is weakly contractible). If X is homotopy equivalent to a CW complex
(and we shall assume this throughout this section), a well-known theorem of
J. H. C. Whitehead [301] (see [153, pp. 346–348] for a proof) asserts that
if X̃ is weakly contractible, then it is contractible. So, for spaces homotopy
equivalent to CW complexes, the condition that X be aspherical is equivalent
to the condition that its universal cover be contractible. (For more on CW
complexes, see the end of Appendix A.1.)

For any group π there is a standard construction (in fact, several standard
constructions) of an aspherical CW complex with fundamental group π . One
such construction starts with the presentation complex defined in the previous
section and then attachs cells of dimension �3 to kill the higher homotopy
groups. (See [153, p. 365].) This complex, or any other homotopy equivalent
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to it, is denoted Bπ and called a classifying space for π . (It is also called
an “Eilenberg-MacLane space” for π or a “K(π , 1)-complex.”) The universal
cover of Bπ is denoted Eπ and called the universal space for π . A classifying
space Bπ has the following universal property. Suppose we are given a base
point x0 ∈ Bπ and an identification of π1(Bπ , x0) with π . Let Y be another CW
complex with base point y0 and ϕ : π1(Y , y0)→ π a homomorphism. Then
there is a map f : (Y , y0)→ (Bπ , x0) such that the induced homomorphism on
fundamental groups is ϕ; moreover, f is unique up to homotopy (relative to the
base point). (This is an easy exercise in obstruction theory.) It follows from this
universal property that the complex Bπ is unique up to a homotopy equivalence
inducing the identity map on π . In particular, any aspherical CW complex with
fundamental group π is homotopy equivalent to Bπ .

Next we give some examples. (For the remainder of this section, all spaces
are path connected.)

Some Examples of Aspherical Manifolds

Dimension 1. The only (connected) closed 1-manifold is the circle S1. Its
universal cover is the real line R1, which is contractible. So S1 is aspherical.

Dimension 2. Suppose X is a closed orientable surface of genus g > 0. By the
Uniformization Theorem of Riemann and Poincaré, X can be given a
Riemannian metric so that its universal cover X̃ is isometrically identified with
either the Euclidean plane (if g = 1) or the hyperbolic plane (if g > 1). Since
both planes are contractible, X is aspherical. Similarly, recalling that any closed
nonorientable surface X can be written as a connected sum of projective planes,
we see that a nonorientable X is aspherical if and only if this connected sum
decomposition has more than one term. The two remaining closed surfaces, the
2-sphere and the projective plane are not aspherical since they have π2 = Z.
In summary, a closed surface is aspherical if and only if its Euler characteristic
is � 0.

Dimension 3. Any closed orientable 3-manifold has a unique connected
sum decomposition into 3-manifolds which cannot be further decomposed as
nontrivial connected sums. Such an indecomposable 3-manifold is said to be
prime. The 2-spheres along which we take connected sums in this decomposi-
tion are nontrivial in π2 (provided they are not the boundaries of homotopy
balls). Hence, if there are at least two terms in the decomposition which
are not homotopy spheres, then the 3-manifold will not be aspherical. (By
Perelman’s proof [237, 239] of the Poincaré Conjecture, fake homotopy 3-balls
or 3-spheres do not exist.) On the other hand, prime 3-manifolds with infinite
fundamental group generally are aspherical, the one orientable exception being
S2 × S1. (This follows from Papakyriakopoulos’ Sphere Theorem; see [267] or
the original paper [232].)
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Tori. The n-dimensional torus Tn is aspherical since its universal cover is
n-dimensional Euclidean space En. The same is true for all complete Euclidean
manifolds (called flat manifolds) as well as for all complete affine manifolds.

Hyperbolic manifolds. The universal cover of a complete hyperbolic
n-manifold Xn can be identified with hyperbolic n-space Hn. (This is
essentially a definition.) In other words, Xn = Hn/	 where 	 is a discrete
torsion-free subgroup of Isom(Hn) (the isometry group of Hn). Since Hn is
contractible, Xn is aspherical.

We will say more about Euclidean and hyperbolic manifolds in 6.2 and 6.4.

Lie groups. Suppose G is a Lie group, K a maximal compact subgroup and 	
a torsion-free discrete subgroup of G. Then G/K is diffeomorphic to Euclidean
space and 	 acts freely on G/K. It follows that X = 	\G/K is an aspherical
manifold (its universal cover is G/K). Complete hyperbolic manifolds and
other locally symmetric spaces are examples of this type and so are complete
affine manifolds. By taking G to be a connected nilpotent or solvable Lie group
we get, respectively, nil-manifolds and solv-manifolds.

Manifolds of nonpositive sectional curvature. If Xn is a complete Riemannian
manifold of nonpositive sectional curvature, then it is aspherical. The reason
is the Cartan-Hadamard Theorem which asserts that for any x ∈ Xn, the
exponential map, exp : TxXn → Xn, is a covering projection. Hence, the
universal cover of Xn is is diffeomorphic to TxXn (∼= Rn).

Some Examples of Finite Aspherical CW Complexes

Here we are concerned with examples where Bπ is a finite complex (or at least
finite dimensional).

Dimension 1. Suppose X is a (connected) graph. Its universal cover X̃ is a tree
which is contractible. Hence, any graph is aspherical. The fundamental group
of a graph is a free group.

Dimension 2. The presentation 2-complex is sometimes aspherical. For
example, a theorem of R. Lyndon [195] asserts that if π is a finitely generated
1-relator group and the relation cannot be written as a proper power of another
word, then the presentation 2-complex for π is aspherical. Another large
class of groups for which this holds are groups with presentations as “small
cancellation groups.” (See R. Strebel’s article in [138, pp. 227–273].)

Nonpositively curved polyhedra. Our fund of examples of aspheri-
cal complexes was greatly increased in 1987 with the appearance of
Gromov’s landmark paper [147]. He described several different constructions
of polyhedra with piecewise Euclidean metrics which were nonpositively



August 2, 2007 Time: 12:44pm chapter2.tex

24 CHAPTER TWO

curved in the the sense of Aleksandrov. Moreover, he proved such polyhedra
were aspherical. He showed some of the main constructions of this book
could be explained in terms of nonpositive curvature (see 1.2 and Chapter 12).
Gromov developed two other techniques for constructing nonpositively curved
polyhedra. These go under the names “branched covers” and “hyperboliza-
tion.” For example, he showed that a large class of examples of aspherical
manifolds can be constructed by taking branched covers of an n-torus along a
union of totally geodesic codimension-two subtori, [147, pp. 125–126]. The
term “hyperbolization” refers to constructions for functorially converting a
cell complex into a nonpositively curved polyhedron with the same local
structure (but different global topology). (In 12.8 we discuss a technique of
“relative hyperbolization” using a version of the reflection group trick.) For
more about the branched covering space techniques, see [54]. For expositions
of the hyperbolization techniques of [147, pp.114–117], see [59, 83, 86, 236].
In the intervening years there has been a great deal of work in this area.
A lot of it can be found in the book of Bridson and Haefliger [37]. We
discuss the general theory of nonpositively curved polyhedra in Appendix I
and applications of this theory to the reflection group examples in Chapter 12.
For other expositions of the general theory of nonpositively curved polyhedra
and spaces, see [1, 14, 45, 78, 90] and Ballman’s article [138, pp.189–201].

Word hyperbolic groups. In [147] Gromov considered the notion of what it
means for a metric space to be “negatively curved in the large” or “coarsely
negatively curved” or in Gromov’s terminology “hyperbolic.” When applied
to the word metric on a group this leads to the notion of a “word hyperbolic
group,” a notion which had been discovered earlier, independently by Rips
and Cooper. For example, the fundamental group of any closed Riemannian
manifold of strictly negatve sectional curvature is word hyperbolic. Word
hyperbolicity is independent of the choice of generating set. Rips proved that,
given a word hyperbolic group π , there is a contractible simplicial complex R
on which π acts simplicially with all cell stabilizers finite and with compact
quotient. R is called a “Rips complex” for π . It follows that, when π is torsion-
free, R/π is a finite model for Bπ . (For background on word hyperbolic groups,
see 12.5, as well as, [37, 144, 147].)

The Universal Space for Proper G-Actions

The action of group of deck transformations on a covering space is proper
and free. Conversely, if a group G acts freely and properly on a space X, then
X→ X/G is a covering projection and G is the group of deck transformations.
(The notion of a “proper” action is given in Definition 5.1.5. In the context of
cellular actions on CW complexes it means simply that the stabilizer of each
cell is finite.) As was first observed by P. A. Smith, a finite cyclic group Cm,
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m > 1, cannot act freely on a finite-dimensional, contractible CW complex (or
even an acyclic one). The reason is that the cohomology of BCm is nonzero
in arbitrarily high dimensions. It follows that if G has nontrivial torsion, then
its classifying space BG cannot be finite dimensional (since BCm is a covering
space of it). On the other hand, there are many natural examples of groups
with torsion acting properly on contractible manifolds or spaces, e.g., discrete
groups of isometries of symmetric spaces.

DEFINITION 2.3.1. Let G be a discrete group. A CW complex X together
with a cellular, proper G-action is a universal space for proper G-actions if,
for each finite subgroup F, its fixed point set XF is contractible.

We note some consequences of this defintion. Since the action is proper,
XF = ∅ whenever F is infinite. By taking F to be the trivial subgroup, we see
that X must be contractible. If G is torsion-free, then EG is a universal space
for proper actions.

The notion in Definition 2.3.1 was introduced in [288]. In the same paper
it is proved that a universal space for proper G-actions always exists and
is unique up to G-homotopy equivalence. Such a universal space is denoted
EG. Its universal property is the following: given a CW complex Y with a
proper, cellular action of G, there is a G-equivariant map Y → EG, unique
up to G-homotopy. An immediate consequence is the uniqueness of EG up to
G-homotopy equivalence.
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Chapter Three

COXETER GROUPS

Given a group W and a set S of involutory generators, when does (W, S) deserve
to be called an “abstract reflection group” (or a “Coxeter system”)? In this
chapter we give the two answers alluded to in 1.1. The first is that for each
s ∈ S its fixed set separates Cay(W, S) (see 3.2). The second is that W has a
presentation of a certain form (see 3.3). The main result, Theorem 3.3.4, asserts
that these answers are equivalent. Along the way we find three combinatorial
conditions (D), (E), and (F) on (W, S), each of which is equivalent to it being
a Coxeter system. This line of reasoning culminates with Tits’ solution of the
word problem for Coxeter groups, which we explain in 3.4.

3.1. DIHEDRAL GROUPS

A Coxeter group with one generator is cyclic of order 2. The Coxeter groups
with two generators are the dihedral groups. They are key to understanding
general Coxeter groups.

DEFINITION 3.1.1. A dihedral group is a group generated by two elements
of order 2.

Example 3.1.2. (Finite dihedral groups). Given a line L in R2, let rL denote
orthogonal reflection across L. If L and L′ are two lines through the origin
in R2 and θ is the angle between them, then rL ◦ rL′ is rotation through 2θ .
So, if θ = π/m, where m is an integer �2, then rL ◦ rL′ is rotation through
2π/m. Consequently, rL ◦ rL′ has order m. In this case we denote the dihedral
subgroup of O(2) generated by rL and rL′ by Dm. (Here O(2) means the group
of orthogonal transformations of R2.) See Figure 3.1. We shall show below
that Dm is finite of order 2m.

Example 3.1.3. (The infinite dihedral group). This group is generated by
two isometric affine transformations of the real line. Let r and r′ denote
the reflections about the points 0 and 1, respectively (that is, r(t) = −t and
r′(t) = 2− t). Then r′ ◦ r is translation by 2 (and hence, has infinite order).
D∞ denotes the subgroup of Isom(R) generated by r and r′. See Figure 3.2.
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r
L

r
L´

π/m

Figure 3.1. The dihedral group D3.

r r´

-1 0 1

Figure 3.2. The infinite dihedral group D∞.

Example 3.1.4. For m a positive integer � 2 or for m = ∞, let Cm denote the
cyclic group of order m (written multiplicatively). Let π be a generator. Regard
C2 as {±1}. Define an action of C2 on Cm by ε · x = xε, where ε = ±1. Form
the semidirect product Gm = Cm � C2. In other words, Gm consists of all pairs
(x, ε) ∈ Cm × C2 and multiplication is defined by

(x, ε) · (x′, ε′) = (xε
′
x, εε′).

Identify π with (π , 1) and put σ = (1,−1), τ = (π ,−1). Thus, Cm is a
normal subgroup of Gm and σ , τ are elements of order 2 which generate Gm.
Moreover, the order of Gm is 2m (if m �= ∞) or∞ (if m = ∞).

The next lemma shows that a dihedral group is characterized by the order
m of the product of the two generators; so, for each m there is exactly one
dihedral group up to isomorphism.

LEMMA 3.1.5. ([29, Prop. 2, p. 2]). Suppose that W is a dihedral group
generated by distinct elements s and t.

(i) The subgroup P of W generated by p = st is normal and W is the
semidirect product, P� C2, where C2 = {1, s}. Moreover,
[W : P] = 2 (where [W : P] denotes the index of P in W).

(ii) Let m be the order of p and let Gm be the group defined in
Example 3.1.4. Then m � 2 and Gm

∼= W where the isomorphism is
defined by σ → s, τ → t.
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Figure 3.3. The Cayley 2-complex of D3.

Proof. (i) We have sps−1 = ssts = ts = p−1 and tpt−1 = tstt = ts = p−1, so
P is normal. Since C2P contains s and t (= sp), W = C2P = P ∪ sP. So,
[W : P] � 2. Suppose W = P. Then W is abelian. So, p2 = s2t2 = 1 and hence,
W is cyclic of order 2, contradicting the hypothesis that it contains at least 3
elements, 1, s and t. Therefore, [W : P] = 2.

(ii) Since s �= t, we have p �= 1. So, m � 2. Since Card(P) = m and since
[W : P] = 2, Card(W) = 2m. There is an isomorphism ϕ′ : Cm → P sending
the generator π to p and an isomorphism ϕ′′ : {±1} → {1, s} sending −1 to
s. These fit together to define an isomorphism ϕ : Gm → W, where Gm =
Cm � C2. �

Example 3.1.6. Let W be the group defined by the presentation 〈S | R〉 with
generating set S = {s, t} and with set of relations R = {s2, t2, (st)m}. (When
m = ∞, we omit the relation (st)m.) By the universal property of a group
defined by a presentation, there is a surjection W → Dm taking S onto the set of
two generating reflections for Dm. It follows that s and t are distinct involutions
in W and that st has order m. Hence, W is a dihedral group and by the previous
lemma, W → Dm is an isomorphism.

Example 3.1.7. (A Cayley 2-complex for Dm). Let Dm be the dihedral group
of order 2m and s, t its two generators. As in Section 2.2, we have the Cayley
2-complex of the presentation in Example 3.1.6. For m �= ∞, the Cayley 2-
complex of Dm is a 2m-gon (see Figure 3.3). The Cayley graph of Dm is the
boundary of the polygon (that is, the subdivision of a circle into 2m edges).
For m = ∞, the Cayley 2-complex and the Cayley graph of D∞ coincide and
they are isomorphic to the the real line subdivided into intervals of length 1.
In both cases the edges of the Cayley graph are labeled alternately by the
generators s and t.
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LEMMA 3.1.8. Suppose Dm is the dihedral group of order 2m on generators
s, t. Then s and t are conjugate in Dm if and only if m is odd.

Proof. First, suppose m is odd. Put

r := st · · · s︸ ︷︷ ︸
m terms

.

Then r = r−1 and

rsrt = st · · · st︸ ︷︷ ︸
2m terms

= (st)m = 1.

So r conjugates s to t.
Next, suppose m is even or ∞. Define a function f : {s, t} → {±1} by

s→−1 and t→+1. Extend this to a function on the set of words in {s, t}.
This function takes the relation (st)m to (−1)m = +1. Hence, f extends to a
homomorphism f̃ from Dm to the abelian group {±1}. Since f̃ (s) �= f̃ (t), s and
t are not conjugate. �

There is a more geometric version of the argument in the first paragraph
of the above proof. As in Example 3.1.2, represent Dm as a subgroup of O(2)
so that s and t are reflections across lines Ls and Lt making an angle of π/m.
Let r be the element defined above. Since m is odd, r is a reflection. It maps
a fundamental sector bounded by the lines Ls and Lt to the antipodal sector
bounded by the same lines. Since r is not a rotation, it must interchange these
lines, i.e., r(Ls) = Lt. Since the reflection across the line r(Ls) is rsr−1, we get
rsr = t.

Minimal Words in Dihedral Groups

Let � be the Cayley graph of Dm. An edge path (without backtracking) in �
starting at 1 corresponds to an alternating word in {s, t}. Suppose m �= ∞. Since
� is a circle with 2m vertices, we see that if such a word has length� m, then it
corresponds to an edge path of minimal length. Moreover, if its length is < m,
then it is the unique edge path of minimum length connecting its endpoints.
Hence, the maximum length of any element w ∈ Dm is m and if l(w) < m, it
is represented by a unique word of minimum length. There is one element of
Dm of length m corresponding to the vertex antipodal to 1. It is represented
by two minimal words: the alternating words (s, t, . . . ) and (t, s, . . . ) of
length m.

If m = ∞, then � is isomorphic to the real line and there is a unique edge
path (without backtracking) between any two vertices. Hence, each element of
D∞ is represented by a unique minimal word.
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3.2. REFLECTION SYSTEMS

As we explained in Section 1.1, there are two equivalent notions of an abstract
reflection group. The first involves separation properties of a set of generating
involutions on the corresponding Cayley graph. We explain this idea below.

DEFINITION 3.2.1. A prereflection system for a group W consists of a subset
R of W, an action of W on a connected simplicial graph � and a base point
v0 ∈ Vert(�) such that

(a) Each element of R is an involution.

(b) R is closed under conjugation: for any w ∈ W and r ∈ R, wrw−1 ∈ R.

(c) For each edge of �, there is a unique element of R which
interchanges its endpoints (we say the element of R flips the edge)
and each r ∈ R flips at least one edge.

(d) R generates W.

An element in R is a prereflection.

If (v0, v1, . . . , vk) is an edge path in � and ri ∈ R is the unique involution
which flips the edge between vi−1 and vi, then rivi−1 = vi and therefore,
rk . . . r1v0 = vk. So, as a consequence of the connectedness of �, we get the
following.

LEMMA 3.2.2. Suppose a W-action on a connected simplicial graph � is
part of a prereflection system. Then W is transitive on Vert(�).

Given a base point v0 ∈ Vert(�), let S (= S(v0)) be the set of prereflections
that flip an edge containing v0.

DEFINITION 3.2.3. Suppose W is a group and S is a set of elements of order
two which generate W. Then (W, S) is a pre-Coxeter system. (The reason for
this terminology will become clearer in the next section.)

Example 3.2.4. Suppose (W, S) is a pre-Coxeter system and R is the set of all
elements of W that are conjugate to an element of S. Then � = Cay(W, S) is a
prereflection system. (The base point is the vertex corresponding to the identity
element.) In this example W acts freely on Vert(�) (a requirement which need
not be satisfied by a general prereflection system).

Suppose (�, v0) is a prereflection system for W and S = S(v0). Note that R
is the set of all elements of W which are conjugate to an element of S. Indeed,
suppose e is an edge of � and that r is the prereflection which flips it. Since
W acts transitively on Vert(�), there is a element w ∈ W such that wv0 is an
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endpoint of e. Thus, w−1e = {v0, sv0}, for some s ∈ S, and e = {wv0, wsv0}. (As
usual, we are identifying an edge with its vertex set.) Since s flips {v0, sv0}, the
involution wsw−1 flips e and since r is the unique such involution, r = wsw−1.

Next suppose s = (s1, . . . , sk) is a word in S. For 0 � i � k, define elements
wi ∈ W by w0 = 1 and wi = s1 · · · si. For 1 � i � k, define elements ri ∈ R by

ri := wi−1siw
−1
i−1. (3.1)

Set

�(s) := (r1, . . . , rk). (3.2)

Note that

ri · · · r1 = wi. (3.3)

The word s = (s1, . . . , sk) defines an edge path in� starting at the base point
v0. To see this, consider the sequence of vertices (v0, . . . , vk), where the vertex
vi is defined by vi = wiv0. Since v0 is adjacent to siv0, wi−1v0 is adjacent to
wi−1siv0, i.e., vi−1 is adjacent to vi. Thus, (v0, . . . , vk) is an edge path. Observe
that ri is the prereflection which flips the edge {vi−1, vi}. Conversely, given an
edge path (v0, . . . , vk) beginning at v0, we can recover the word s = (s1, . . . , sk)
by reversing the procedure: if ri denotes the prereflection which flips {vi−1, vi},
set wi = ri · · · r1 and define si by si = w−1

i−1riwi−1. This establishes a one-to-one
correspondence between the set of words in S and the set of edge paths starting
at v0.

LEMMA 3.2.5. S generates W.

Proof. Let W ′ = 〈S〉 be the subgroup of W generated by S. Since R generates
W, it suffices to show that R ⊂ W ′. Let r ∈ R and let e be an edge that is
flipped by r. Choose an edge path starting at v0 so that its last edge is e. If
s = (s1, . . . , sk) is the corresponding word in S and �(s) = (r1, . . . , rk), then
r = rk. Hence, r = (s1 · · · sk−1)sk(sk−1 · · · s1) ∈ W ′. �

The choice of the base point v0 in a prereflection system gives us a
distinguished set S of generators for W. As in Section 2.1, given w ∈ W,
l(w) is its word length with respect to S. Given a word s = (s1, . . . , sk) in S,
w(s) = s1 · · · sk is its value in W. We say that s is a reduced expression if it is a
word of minimum length for w(s), i.e., if l(w(s)) = k.

LEMMA 3.2.6. Suppose s = (s1, . . . , sk) is a word in S, that w = s1 · · · sk is its
value in W, and that�(s) = (r1, . . . , rk) is as defined by (3.2). Suppose further
that ri = rj for some i < j. If s′ is the subword of s obtained by deleting the
letters si and sj, then the edge paths corresponding to s and s′ have the same
endpoints. Moreover, w = s1 · · · ŝi · · · ŝj · · · sk.

Proof. Let (v0, w1v0, . . . , wkv0) be the edge path corresponding to s. Let
r = ri = rj. Then r interchanges the vertices wi−1v0 and wiv0 as well as the
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Figure 3.4. The Deletion Condition (D).

vertices wj−1v0 and wjv0. Hence, it maps the portion of the edge path from
wiv0 to wj−1v0 to an edge path from wi−1v0 to wjv0. If we replace the piece
of the original edge path between these vertices by the transformed piece, we
obtain an edge path with two fewer edges and with the same endpoints. (See
Figure 3.4.) The corresponding word in S is s′. To prove the last sentence of
the lemma we need the following algebraic version of the above argument.
The condition ri = rj reads, s1 · · · si−1sisi−1 · · · s1 = s1 · · · sj−1sjsj−1 · · · s1. So,
si · · · sj = si+1 · · · sj−1. Hence, we can replace the subword (si, . . . , sj) of s by
(si+1, . . . , sj−1). �

COROLLARY 3.2.7. Suppose the word s = (s1, . . . , sk) corresponds to an
edge path of minimum length from v0 to a vertex v (= vk). Then, in the sequence
�(s) = (r1, . . . , rk), no element of R occurs more than once.

For a given r ∈ R, let �r denote the set of midpoints of those edges of �
which are flipped by r. (�r is contained in the fixed point set of r.) Call �r the
wall corresponding to r. Note that the edge path from v0 to vk corresponding
to a word s crosses the wall �r if and only r occurs in the sequence �(s). The
argument in the proof of Lemma 3.2.6 shows that, if the edge path crosses �r

more than once, then we can obtain a new edge path, with the same endpoints,
which crosses �r two fewer times.

LEMMA 3.2.8. For each r ∈ R, �−�r has either one or two connected
components. If there are two components, they are interchanged by r.

Proof. Since r is conjugate to an element of S, we can write r as wsw−1

for some w ∈ W and s ∈ S. Then w�s = �wsw−1 = �r and w maps �−�s
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homeomorphically onto �−�r. So it suffices to prove the lemma for s. Let
v be a vertex of �. We claim that either v or sv lies in the same component
of �−�s as v0. Choose an edge path of minimum length from v0 to v
and let s = (s1, . . . , sk) be the corresponding word. If s does not occur in
the sequence �(s) = (r1, . . . , rk), then the edge path does not cross �s and
v and v0 lie in the same component. Otherwise, s occurs exactly once in the
sequence, say s = ri. Consider the word s′ = (s, s1, . . . , sk). It defines an edge
path from v0 to sv. The corresponding sequence of elements in R is given by
�(s′) = (s, r′1, . . . , r′k), where r′j = srjs. It follows that s occurs exactly twice in
this sequence: as the first element and as r′i (= ri) for some i. By Lemma 3.2.6,
we can obtain a shorter word s′′ = (s1, . . . , ŝi, . . . , sk) from v0 to sv by deleting
both occurrences. Since this edge path does not cross �s, v0 and sv lie in the
same component of �−�s. �

Given a word s and an element r ∈ R, let n(r, s) denote the number of times
r occurs in the sequence �(s), defined by (3.2). In other words, n(r, s) is the
number of times the corresponding edge path crosses the wall �r. For the
reader who has followed the proofs of Lemmas 3.2.6 and 3.2.8, the following
lemma should be clear.

LEMMA 3.2.9. Given a prereflection system (�, v0) and an element r ∈ R,
the following conditions are equivalent.

(i) �r separates �.

(ii) For any word s in S corresponding to an edge path from v0 to a vertex
v, the number (−1)n(r,s) depends only on the endpoint v. (In fact, this
number is +1 if v0 and v lie in the same component of �−�r and
−1 if they lie in different components.)

DEFINITION 3.2.10. A prereflection system (�, v0) for W is a reflection
system if, for each s ∈ S (=S(v0)), �−�s has two components. (It follows
that for each r ∈ R, �r separates �.) If (�, v0) is a reflection system, then the
elements of R are called reflections and S is the set of fundamental reflections.

DEFINITION 3.2.11. The closure of a component of �−�r is a half-space
bounded by �r. If it contains v0, it is a positive half-space.

Suppose (�, v0) is a reflection system for W. The crucial consequence of this
hypothesis is that v0 and v lie on the same side of �r if and only if any edge
path from v0 to v crosses �r an even number of times. The next lemma shows
that this implies that W acts freely on Vert(�) and hence, as was pointed out in
2.1, that � is isomorphic to Cay(W, S). In light of this, we will sometimes call
(W, S) a “reflection system” if its Cayley graph is.
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Figure 3.5. The Exchange Condition (E).

LEMMA 3.2.12. Suppose (�, v0) is a reflection system for W. Then W acts
freely on Vert(�).

Proof. Suppose wv0 = v0 for some w �= 1. By Lemma 3.2.5, we can express
w as a word in S. Choose such a word, w = s1 · · · sk, of minimum length and
consider the corresponding edge path from v0 to itself. The first wall crossed by
this path is �s1 . Since all walls are crossed an even number of times, the path
must cross this wall again. But then, by Lemma 3.2.6, we can find a shorter
word for w, contradicting the assumption that our original word had minimum
length. �

COROLLARY 3.2.13. If � is a reflection system for W with fundamental set
of generators S, then � is isomorphic to the Cayley graph Cay(W, S).

LEMMA 3.2.14. Suppose Cay (W, S) is a reflection system. Let s =
(s1, . . . , sk) be a word for w = w(s). Then s is a reduced expression if and
only if the elements of the sequence �(s) = (r1, . . . , rk) are all distinct. If this
is the case, then {r1, . . . , rk} is the set R(1, w) consisting of those elements
r ∈ R such that the wall �r separates v0 from wv0.

Proof. If l(w) = k, then, by Corollary 3.2.7, the elements in �(s) are distinct.
For the converse, first note that every element of R(1, w) must occur in the
sequence �(s). Hence, k � l(w) � Card(R(1, w)). If the elements of �(s) are
distinct, then, by Lemma 3.2.9, Card(R(1, w)) � k and so, the above inequali-
ties are equalities. In particular, since l(w) = k, s is a reduced expression. �
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Figure 3.6. The Folding Condition (F).

Given a pre-Coxeter system (W, S), we next discuss three equivalent
conditions, (D), (E), and (F), on words in S. (Condition (D) is called the
“Deletion Condition,” (E) is the “Exchange Condition,” and (F) is the “Folding
Condition.”) We will see that each of these conditions is implied by the
condition that Cay(W, S) is a reflection system. Here they are.

• (D) If s = (s1, . . . , sk) is a word in S with k > l(w(s)), then there are
indices i < j so that the subword

s′ = (s1, . . . , ŝi, . . . , ŝj, . . . sk)

is also an expression for w(s).

• (E) Given a reduced expression s = (s1, . . . , sk) for w ∈ W and an
element s ∈ S, either l(sw) = k + 1 or else there is an index i such that

w = ss1 · · · ŝi · · · sk.

• (F) Suppose w ∈ W and s, t ∈ S are such that l(sw) = l(w)+ 1 and
l(wt) = l(w)+ 1. Then either l(swt) = l(w)+ 2 or swt = w.

Remark. In regard to condition (E), note that, for a general pre-Coxeter system
(W, S), there are only three possibilities:

(a) l(sw) = l(w)+ 1 (which implies that a reduced expression for sw can
be obtained by putting an s in front of any reduced expression for w),

(b) l(sw) = l(w)− 1 (which implies that w has a reduced expression
beginning with s), or

(c) l(sw) = l(w).
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The meaning of (E) is that possibility (c) does not occur and that in case (b),
we can modify an arbitrary reduced expression of w to get one beginning with
s by “exchanging” one of its letters for an s in front.

Remark 3.2.15. Condition (F) implies that if w ∈ W and s, t ∈ S are such
that l(swt) = l(w) and l(sw) = l(wt), then sw = wt. If l(sw) = l(wt) = l(w)+ 1,
this is immediate from (F). If l(sw) = l(wt) = l(w)− 1, put u := sw. Then
l(sut) = l(wt) = l(u) and l(ut) = l(swt) = l(w) = l(u)+ 1. So, we can apply
(F) to s, t and u to get su = ut and consequently sw = u = wt.

THEOREM 3.2.16. Given a pre-Coxeter system (W, S), conditions (D), (E),
and (F) are equivalent.

Proof. (D) =⇒ (E). This implication is obvious. Suppose s = (s1, . . . , sk) is a
reduced expression of w and s ∈ S is such that l(sw) � k. Since (s, s1, . . . , sk)
is not reduced, Condition (D) says that we can find a shorter word for sw
by deleting two letters. Since s is reduced, both letters cannot belong to s,
so one of the letters must be the initial s. Thus, sw = ŝs1 · · · ŝi · · · sk and so
w = ss1 · · · ŝi · · · sk. In other words, we have exchanged a letter of s for an s in
front.

(E) =⇒ (F). This implication is also easy. Suppose that s = (s1, . . . , sk) is
a reduced expression of w, that s, t ∈ S are such that l(sw) = k + 1 = l(wt)
and that l(swt) < k + 2. Applying Condition (E) to the word (s1, . . . , sk, t)
and the element s, we see that a letter can be exchanged for an s in front.
The exchanged letter cannot be part of s, because this would contradict the
assumption that l(sw) = k + 1. So, the exchanged letter must be the final t. This
yields ss1 · · · sk = s1 · · · skt, which can be rewritten as sw = wt or swt = w.

(F) =⇒ (D). Suppose the word s = (s1, . . . , sk) is not reduced. Necessarily,
k � 2. We must show that we can delete two letters from s while leaving its
value unchanged. The proof is by induction on k. We may assume that the
words (s1, . . . , sk−1) and (s2, . . . , sk) are both reduced (otherwise we are done
by induction). Let w = s2 · · · sk−1. Apply Condition (F) with s = s1 and t = sk.
This yields s1wsk = w, i.e., (s1, . . . , sk) can be shortened by deleting its first
and last letters. �

THEOREM 3.2.17. Suppose Cay(W, S) is a reflection system. Then (the
equivalent) conditions (D), (E) and (F) hold.

Proof. Let s = (s1, . . . , sk) be a word for w (=w(s)) and let�(s) = (r1, . . . , rk).
If s is not reduced, then ri = rj for some i < j (Lemma 3.2.14). By
Lemma 3.2.6, we can obtain another word s′ for w by deleting si and sj, i.e.,
(D) holds. �
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Remark 3.2.18. Suppose (D) holds for (W, S). Let s be a word for w. Then
the length of s is congruent to l(w) modulo 2. It follows that the function
ε : W → {±1} defined by w→ (−1)l(w) is a homomorphism.

3.3. COXETER SYSTEMS

The second notion of an abstract reflection group involves a presentation of the
type explained below.

DEFINITION 3.3.1. A Coxeter matrix M = (mst) on a set S is an S× S
symmetric matrix with entries in N ∪ {∞} such that

mst =
{

1 if s = t;

� 2 otherwise.

One can associate to M a presentation for a group W̃ as follows. For each
s ∈ S, introduce a symbol s̃. Let I = {(s, t) ∈ S× S | mst �= ∞}. The set of
generators for W̃ is S̃ = {s̃}s∈S and the setR of relations is

R = {(s̃t̃)mst}(s,t)∈I .

Given any pre-Coxeter system (W, S), we have a Coxeter matrix M on S,
defined by the formula, mst = m(s, t), where m(s, t) denotes the order of st.

DEFINITION 3.3.2. A pre-Coxeter system (W, S) is a Coxeter system if the
epimorphism W̃ → W, defined by s̃→ s, is an isomorphism. If this is the case,
then W is a Coxeter group and S is a fundamental set of generators.

In other words, (W, S) is a Coxeter system if W is isomorphic to the group
defined by the presentation associated to its Coxeter matrix. The following
basic lemma will be needed in Section 18.1.

LEMMA 3.3.3. ([29, p. 5]). Suppose (W, S) is a Coxeter system. Define an
equivalence relation ∼ on S by s ∼ s′ if and only if there is a sequence of
elements of S, s = s0, s1, . . . , sn = s′ such that for any two adjacent elements
in the sequence m(si, si+1) is an odd integer. Then s and s′ are conjugate in W
if and only if s ∼ s′.

Proof. By Lemma 3.1.8, two fundamental generators for the dihedral group
Dm are conjugate if and only if m is odd. So, if s ∼ s′, then s and s′ are
conjugate.

Conversely, given s∈S, define fs : S→ {±1} by fs(t) = −1 if and only if
s ∼ t. We see that all the defining relations of W are sent to +1; so, fs extends
to a homomorphism f̃s : W → {±1}. Since f̃ s is a homomorphism, if s is
conjugate to s′, then fs(s′) = fs(s) = −1, i.e., s and s′ are equivalent. �
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The next theorem is the main result of this chapter. Its proof will not be
completed until the end of the next section.

THEOREM 3.3.4. The following conditions on a pre-Coxeter system (W, S)
are equivalent.

(i) (W, S) is a Coxeter system.

(ii) Cay(W, S) is a reflection system.

(iii) (W, S) satisfies the Exchange Condition (E).

Remark. Suppose (W, S) is a pre-Coxeter system. For each set {s, t} of two
elements in S, let W{s,t} denote dihedral subgroup which they generate. Let
� := Cay(W, S) and let 	 be the 2-complex formed by gluing a 2m-gon,
m = m(s, t), onto � for each coset of W{s,t} in W with m(s, t) �= ∞. How
do we interpret Theorem 3.3.4 in light of the results of Sections 2.1 and
2.2? Condition (ii) means that for each s ∈ S the fixed set of s separates �
(and hence, also 	) . Condition (i) means that 	 is simply connected. The
equivalence of these two conditions is by no means geometrically obvious.

As in the previous section, given a word s in S and an element r ∈ R, let
n(r, s) denote the number of times r occurs in the sequence �(s) (in other
words, n(r, s) is the number of times the corresponding edge path between 1
and w(s) in the Cayley graph crosses the wall corresponding to r). The proof
of Theorem 3.3.4 depends on the following.

LEMMA 3.3.5. Suppose (W, S) is a Coxeter system.

(i) For any word s with w = w(s) and any element r ∈ R, the number
(−1)n(r,s) depends only on w. We denote this number η(r, w) ∈ {±1}.

(ii) There is a homomorphism, w→ φw from W to the group of
permutations of the set R× {±1}, where the permutation φw

is defined by the formula

φw(r, ε) = (wrw−1, η(r, w−1)ε).

Before proving this, let us discuss the geometric idea behind it. Suppose �
(:= Cay(W, S)). is a reflection system (where the identity element 1 is the base
vertex). Then each wall �r separates � into two half-spaces: the positive one,
�r(+1), which contains the vertex 1 and the negative one,�r(−1), which does
not contain it. The number (−1)n(r,s) is+1 if 1 and w lie on the same side of�r

and it is −1 if they lie on opposite sides. The set of half-spaces is indexed by
R× {±1}. The group W acts on the set of half-spaces. How do we describe the
induced action on the set of indices? For a given w ∈ W, since the reflection
across the wall w�r is wrw−1, w maps the half-space �r(+1) to �wrw−1

(ε),
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where ε ∈ {±1}. The only question is to decide the sign of ε. The condition
ε = +1 means that w�r(+1) = �wrw−1

(+1) and this holds if and only if w and
1 are on the same side of �wrw−1

, i.e., if and only if 1 and w−1 are on the same
side of �r. So, ε is determined by whether or not 1 and w−1 are on the same
side of �r: it is +1 if they are and −1 if they are not.

Proof of Lemma 3.3.5. For each s ∈ S define φs : R× {±1} → R× {±1} by

φs(r, ε) = (srs, ε(−1)δ(s,r)),

where δ(s, r) is the Kronecker delta. It is clear that (φs)2 is the identity
map; hence, φs is a bijection. Let s = (s1, . . . , sk). Put v = sk · · · s1 and φs =
φsk ◦ · · · ◦ φs1 . We claim that

φs(r, ε) = (vrv−1, ε(−1)n(s,r)).

The proof is by induction on k. The case k = 1 is trivial. Suppose k > 1, set
s′ = (s1, . . . , sk−1), u = sk−1 · · · s1, and suppose, by induction, that the claim
holds for s′. Then

φs(r, ε)=φsk (uru−1, ε(−1)n(s′,r))

= (vrv−1, ε(−1)n(s′,r)+δ(sk ,uru−1)).

Put �(s) = (r1, . . . , rk). Since rk = (s1 · · · sk−1)sk(sk−1 · · · s1) = u−1sku, we
have �(s) = (�(s′), u−1sku). Hence, n(s, r) = n(s′, r)+ δ(u−1sku, r), proving
the claim.

Next we claim that the map s→ φs descends to a homomorphism from
W to the group of permutations of R× {±1}. To check this, we need only
show that the map s→ φs takes each relation to the identity permutation.
We have already noted that (φs)2 = 1, so this is true for the relations of the
form s2 = 1. The other relations have the form (st)m = 1, where s, t ∈ S and
m = m(s, t) is the order of st. To see that (φs ◦ φt)m = 1, all we need to check
is that if s = (s, t, . . . ) is the alternating word of length 2m, then n(s, r) is
even for all r ∈ R. If r is not in the dihedral group 〈s, t〉, then n(s, r) = 0. If
r ∈ 〈s, t〉, then it follows from our analysis of dihedral groups in Section 3.1
that n(s, r) = 2. This establishes assertion (ii) of the lemma. Since the formula
for φw depends only on w (and not on the word representing it), we have also
established (i). �

Let R̂w denote the set of r ∈ R such that η(r, w) = −1. We can now prove
the implication (i) =⇒ (ii) of Theorem 3.3.4. We state this as follows.

PROPOSITION 3.3.6. If (W, S) is a Coxeter system, then � := Cay(W, S) is
a reflection system. Moreover, given r ∈ R, the vertices 1 and w lie on opposite
sides of �r if and only if r ∈ R̂w (and so R̂w is the set R(1, w) defined in 3.2).
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Proof. If s is a word for w, then, by the previous lemma, each element of
R̂w occurs an odd number of times in �(s). In other words, for each r ∈ R̂w,
any edge path in � from 1 to w must cross �r an odd number of times and
consequently 1 and w lie on opposite sides. Similarly, if r /∈ R̂w, then there is
an edge path connecting 1 to w which does not cross �r. �

3.4. THE WORD PROBLEM

Suppose 〈S | R〉 is a presentation for a group G. The word problem for 〈S | R〉
is the following question: given a word s in S ∪ S−1, is there an algorithm for
determining if its value g(s) is the identity element of G?

In this section we give Tits’ solution (in [283]) to the word problem for
Coxeter groups. Suppose (W, S) is a pre-Coxeter system and M = (mst) the
associated Coxeter matrix.

DEFINITION 3.4.1. An elementary M-operation on a word in S is one of the
following two types of operations:

(i) Delete a subword of the form (s, s)

(ii) Replace an alternating subword of the form (s, t, . . . ) of length mst by
the alternating word (t, s, . . . ), of the same length mst.

A word is M-reduced if it cannot be shortened by a sequence of elementary
M-operations.

THEOREM 3.4.2. (Tits [283].) Suppose (W, S) satisfies the Exchange Condi-
tion (or equivalently, Condition (D) or (F)). Then

(i) A word s is a reduced expression if and only if it is M-reduced.

(ii) Two reduced expressions s and t represent the same element of W if
and only if one can be transformed into the other by a sequence of
elementary M-operations of type (II).

Proof. We first prove (ii). Suppose that s = (s1, . . . , sk) and t = (t1, . . . , tk) are
two reduced expressions for an element w ∈ W. The proof is by induction on
k = l(w). If k = 1, then the two words are the same and we are done. Suppose
k > 1. To simplify notation, set s = s1 and t = t1. There are two cases to
consider. The first case is where s = t. Then (s2, . . . , sk) and (t2, . . . , tk) are
two reduced words for the same element sw. By induction, we can transform
one into the other by a sequence of type (II) operations. This takes care of the
first case. The second case is where s �= t. Put m = m(s, t). We claim that m is
finite and that we can find a third reduced expression u for w which begins with
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an alternating word (s, t, . . . ) of length m. Assuming this claim for the moment,
let u′ be the word obtained from u by the type (II) operation which replaces the
initial segment of u by the alternating word (t, s, . . . ) beginning with t. Then
we can transform s into t by a sequence of moves indicated schematically as
follows:

s→ u→ u′ → t ,

where the first and third arrows represent sequences of moves guaranteed by
the first case (s and u begin with the same letter as do u′ and t) and the second
arrow is the elementary M-operation of type (II).

It remains to prove the claim. Since l(tw) < l(w), the Exchange Condition
implies that we can find another reduced expression for w by exchanging a
letter of (s, s2, . . . , sk), for a t in front. The exchanged letter cannot be the first s
(since t �= s). Hence, we obtain a reduced expression beginning with (t, s). This
process can be continued. For any integer q � 2, let sq be the alternating word
in s and t of length q with final letter s. Thus, sq begins either with s (if q is
odd) or t (if q is even). We will show that for any q � m, we can find a reduced
word for w that begins with sq. Suppose, by induction, that we have such a
word s′ beginning with sq−1. Let s′ be the element of {s, t} with which sq−1

does not begin. Since l(s′w) < l(w), the Exchange Condition says that we can
find another reduced expression by exchanging a letter of s′ for an s′ in front.
The exchanged letter cannot belong to the initial segment sq−1, since in the
dihedral group of order 2m, a reduced expression for an element of length �= m
is unique. (See the discussion at the end of 3.1.) So w has a reduced expression
beginning with sq. Since this works for any q � m and since q is bounded above
by l(w), we must have m <∞. Thus, w has a reduced expression beginning
with sm. This reduced expression is either u (if m is odd) or u′ (if m is even).
We can replace sm by the other alternating word of length m (also a reduced
expression of w(sm)) to obtain the other one. This proves the claim.

Finally, we prove the first statement in the theorem. One direction is obvious:
if s is reduced, it is M-reduced. So, suppose that s = (s1, . . . , sk) is M-reduced.
We will show by induction on k that it is a reduced expression. This is
clear for k = 1. Suppose k > 1. By induction, the word s′ = (s2, . . . , sk) is
reduced. Suppose s is not reduced. Set w = s1 · · · sk and w′ = s2 · · · sk. Since
l(s1w′) = l(w) � k − 1, the Exchange Condition implies that w′ has another
reduced expression, call it s′′, beginning with s1. By statement (ii), s′ can be
transformed to s′′ by a sequence of M-operations of type (II). Thus, s can be
transformed by a sequence of M-operations to a word beginning with (s1, s1),
contradicting the assumption that it is M-reduced. So, s must be a reduced
expression. �

We can now complete the proof of the main result of this chapter.
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Proof of Theorem 3.3.4. We want to show that the following conditions on a
pre-Coxeter system (W, S) are equivalent.

(i) (W, S) is a Coxeter system.

(ii) Cay(W, S) is a reflection system.

(iii) (W, S) satisfies the Exchange Condition.

The implications (i) =⇒ (ii) and (ii) =⇒ (iii) were proved in Proposition 3.3.6
and Theorem 3.2.17, respectively. So it remains to prove that (iii) =⇒ (i).
Suppose, as in the beginning of Section 3.3, that (W, S) is a pre-Coxeter system,
that (W̃, S̃) is the Coxeter system associated to the Coxeter matrix of (W, S), and
that p : W̃ → W is the natural surjection. We must show that p is injective. Let
w̃ ∈ Ker(p) and let s̃ = (s̃1, . . . , s̃k) be a reduced expression for w̃. Then s̃ is M-
reduced. Let s = (s1, . . . , sk) be the corresponding word in S. Since (W, S) and
(W̃, S̃) have the same Coxeter matrices, the notion of M-operations on words
in S and S̃ coincide and so, s is also M-reduced. But since s represents the
identity element in W, it must be the empty word. Consequently, s̃ is also the
empty word, i.e., w̃ = 1. �

3.5. COXETER DIAGRAMS

There is a well-known method, due to Coxeter, of encoding the information
in a Coxeter matrix (see Definition 3.3.1) into a graph with edges labeled by
integers >3 or the symbol∞.

DEFINITION 3.5.1. Suppose that M = (mij) is a Coxeter matrix on a set I.
We associate to M a graph 
 (= 
M) called its Coxeter graph. The vertex set
of 
 is I. Distinct vertices i and j are connected by an edge if and only if
mij � 3. The edge {i, j} is labeled by mij if mij � 4. (If mij = 3, the edge is left
unlabeled.) The graph 
 together with the labeling of its edges is called the
Coxeter diagram associated to M. The vertices of 
 are often called the nodes
of the diagram.

Example 3.5.2. The Coxeter diagram of Dm, the dihedral group of order 2m,

is
m◦−−−◦. (If m = 2, there is no edge; if m = 3, the edge is not labeled.)

Other examples of diagrams of some classical geometric reflection groups
can be found in Tables 6.1 and 6.2 of Section 6.9.

The Coxeter diagram obviously carries the same information as its Coxeter
matrix. There are other possible ways to encode the same information in a
labeled graph. For example, one could connect s and t by an edge labeled by
mst whenever mst <∞ and not connect them when mst = ∞. In fact, later (in
Example 7.1.6) we will want to make use of precisely this labeled graph.
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DEFINITION 3.5.3. A Coxeter system (W, S) is irreducible if its Coxeter
graph is connected.

Another way to express the condition in the above definition is that S cannot be
partitioned into two nonempty disjoint subsets S′ and S′′ such that each element
in S′ commutes with each element of S′′.

Given a subset T ⊂ S, let 
T denote the full subgraph of 
 spanned by T .
T is an irreducible component of S (or simply a component) if 
T is a
connected component of 
. The main advantage of using the Coxeter diagram
is that it makes transparent when W decomposes as a direct product. (See
Proposition 4.1.7 in the next chapter.)

NOTES

This chapter is a reworking of basic material in [29, Chapter IV]. Other references
include [43, 163, 248, 298].

3.1. Much of the material in this section is taken from [29, Chapter IV, §1.2].

3.2. Elsewhere in the literature a “reduced expression” for an element of W is often
called a “reduced decomposition.”

3.4. The proof of Theorem 3.4.2 is taken from [43].
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Chapter Four

MORE COMBINATORIAL THEORY

OF COXETER GROUPS

Except in Section 4.8, (W, S) is a Coxeter system. A special subgroup of W is
one that is generated by a subset of S. In 4.1 we show, among other things, that
special subgroups are Coxeter groups (Theorem 4.1.6). In 4.3 we show there
is a unique element of minimum length in each coset of a special subgroup.
This allows us to discuss, in 4.5, certain “convex subsets” of W such as “half-
spaces” and “sectors.” In 4.6 we prove that each finite Coxeter group has a
unique element of longest length. We use this in proving an important result,
Lemma 4.7.2: for any given w ∈ W, the set of letters with which a reduced
expression for w can end generates a finite special subgroup. In 4.9 we prove
that any subgroup of W that is generated by reflections is itself a Coxeter group.
In 4.10 we prove a theorem of Deodhar describing normalizers of special
subgroups.

4.1. SPECIAL SUBGROUPS IN COXETER GROUPS

We begin with a simple consequence of Theorem 3.4.2: for any w ∈ W, the
set of letters that can occur in a reduced expression for it is independent of the
choice of reduced expression. We state this as the following.

PROPOSITION 4.1.1. For each w ∈ W, there is a subset S(w) ⊂ S so that for
any reduced expression (s1, . . . , sk) for w, S(w) = {s1, . . . , sk}.

Proof. The elementary M-operations of type (II) in Definition 3.4.1 do not
change the set of letters in a reduced expression; so the proposition follows
from Theorem 3.4.2. �

Recall that, for each T ⊂ S, WT denotes the subgroup generated by T . WT is
a special subgroup of W.

COROLLARY 4.1.2. For each T ⊂ S, WT consists of those elements w ∈ W
such that S(w) ⊂ T.
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Proof. If (s1, . . . , sk) is a reduced expression for w, then (sk, . . . , s1) is a
reduced expression for w−1. Hence,

S(w−1) = S(w). (4.1)

Given reduced expressions for v and w, we can concatenate them to get a
word for vw. Although this word might not be reduced, by using the Deletion
Condition, we can get a reduced expression by simply deleting letters. It
follows that

S(vw) ⊂ S(v) ∪ S(w). (4.2)

Let X = {w ∈ W | S(w) ⊂ T}. Clearly, X is contained in WT . It follows from
(4.1) and (4.2) that X is actually a subgroup of WT . Since T ⊂ X and WT is the
subgroup generated by T , WT ⊂ X. Hence, WT = X. �

COROLLARY 4.1.3. For each T ⊂ S, WT ∩ S = T.

COROLLARY 4.1.4. S is a minimal set of generators for W.

COROLLARY 4.1.5. For each T ⊂ S and each w ∈ WT, the length of w with
respect to T (denoted lT (w)) is equal to the length of w with respect to S
(denoted lS(w)).

Proof. Suppose (s1, . . . , sk) is a reduced expression for w ∈ WT . By Proposi-
tion 4.1.1, each si lies in T . Hence, lT (w) = k = lS(w). �

THEOREM 4.1.6

(i) For each T ⊂ S, (WT , T) is a Coxeter system.

(ii) Let (Ti)i∈I be a family of subsets of S. If T =⋂
i∈I Ti, then

WT =
⋂
i∈I

WTi .

(iii) Let T , T ′ be subsets of S and w, w′ elements of W. Then wWT ⊂ w′WT ′

(resp. wWT = w′WT ′) if and only if w−1w′ ∈ WT ′ and T ⊂ T ′ (resp.
T = T ′).

Proof. (i) (WT , T) is a pre-Coxeter system. Let t ∈ T and w ∈ WT be such that
lT (tw) ≤ lT (w). By the previous corollary, lS(tw) ≤ lS(w). Let t = (t1, . . . , tk),
ti ∈ T , be a reduced expression for w. Since (W, S) satisfies the Exchange
Condition, a letter of t can be exchanged for a t in front. Hence, (WT , T)
satisfies the Exchange Condition; so, by Theorem 3.3.4, it is a Coxeter system.

Assertions (ii) and (iii) follow from Corollary 4.1.2. �
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The next proposition is an immediate consequence of Corollary 4.1.3 and
the fact that mst = 2 means s and t commute.

PROPOSITION 4.1.7. Suppose S can be partitioned into two nonempty dis-
joint subsets S′ and S′′ such that mst = 2 for all s ∈ S′ and t ∈ S′′. Then
W = WS′ ×WS′′ .

4.2. REFLECTIONS

As in 3.2, R denotes the set of elements of W which are conjugate to an element
of S and as 2.1,� = Cay(W, S) is the Cayley graph. For each r ∈ R,�r denotes
the fixed set of r on �. For each pair (u, v) ∈ W ×W, let R(u, v) denote the set
of r ∈ R such that �r separates u from v.

LEMMA 4.2.1. Suppose u, v ∈ W. Then

(i) R(u, uv) = uR(1, v)u−1,

(ii) R(1, uv) is the symmetric difference of R(1, u) and R(u, uv),

(iii) l(u) = Card(R(1, u)), and

(iv) d(u, v) = Card(R(u, v)), where d(, ) is the word metric.

Proof. �r separates u and uv, if and only if u−1�r (= �u−1ru) separates 1
and v. Hence, r ∈ R(u, uv) if and only if u−1ru ∈ R(1, v). This proves (i). If
�r separates 1 from uv, then either it separates 1 from u or it separates u from
uv. If it does both, then u lies on the negative side of �r and uv lies on the
opposite side from u, i.e., uv is on the positive side. This proves (ii). Property
(iii) follows from Lemma 3.2.14. Since d(u, v) = d(1, u−1v) = l(u−1v), (iv)
follows from (ii) and (iii). �

LEMMA 4.2.2. Given a reflection r ∈ R and an element w ∈ W, r ∈ R(1, w)
if and only if l(w) > l(rw).

Proof. Suppose s = (s1, . . . , sk) is a reduced expression for w. The correspond-
ing edge path from 1 to w is (1, w1, . . . , wk = w). Let �(s) = (r1, . . . , rk) be as
defined by (2). First, suppose r ∈ R(1, w). Then the edge path crosses �r, so
r = ri for some index i. Now reflect the portion of the edge path from wi to
w = wk about �r to obtain an edge path from rwi = wi−1 to rw and adjoin
this new path to the original path from 1 to wi−1. This gives an edge path
(1, . . . , wi−1, rwi+1, . . . , rwk) of length k − 1 from 1 to rw. (The corresponding
word is (s1, . . . , ŝi, . . . , sk).) Hence, l(rw) < l(w). The other case is where
r /∈ R(1, w), so that 1 and w are in the same half-space bounded by �r. Since
r interchanges the half-spaces, rw belongs to the negative half-space, i.e.,
r ∈ R(1, rw). The first case applied to rw gives l(w) < l(rw). �
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The next lemma shows that the two possible definitions of a “reflection” in
a special subgroup coincide.

LEMMA 4.2.3. Suppose T is a subset of S. If r ∈ R ∩WT, then there is an
element w ∈ WT such that w−1rw ∈ T.

Proof. Suppose s = (s1, . . . , sk) is a reduced expression for r. For 1 � i � k,
put wi := s1 · · · si. As in formula (1) of Section 3.2, put ri := wi−1siw

−1
i−1. By

Corollary 4.1.2, each si belongs to T . Since l(r) > 0 = l(r2), Lemma 4.2.2
implies r ∈ R(1, r). So, the gallery from 1 to r must cross the wall correspond-
ing to r, i.e., ri = r for some i. Hence, for w = wi−1, w−1rw = si ∈ T . �

4.3. THE SHORTEST ELEMENT IN A SPECIAL COSET

LEMMA 4.3.1. Suppose T and T ′ are subsets of S and that w is an element
of minimum length in the double coset WTwWT ′ . Then any element w′ in this
double coset can be written in the form w′ = awa′, where a ∈ WT, a′ ∈ WT ′ ,
and l(w′) = l(a)+ l(w)+ l(a′). In particular, there is a unique element of
minimum length in each such double coset.

Proof. Write w′ as bwb′, where b ∈ WT , b′ ∈ WT ′ . Let s, u, and s′ be reduced
expressions for b, w, and b′, respectively. The concatenation of these words,
denoted sus′, is a word representing w′. It might not be reduced. If not, then,
by the Deletion Condition, we can shorten it by deleting two letters at a time.
Neither of the deleted letters can be in u, since w is the shortest element
in its double coset. Hence, one of the deleted letters must occur in s and
the other in s′. After carrying out this process as far as possible, we get a
reduced expression for w′ of the form tut′ where t and t′ are words obtained
by deleting letters from s and s′, respectively. Setting a = w(t) and a′ = w(t′),
we get w′ = awa′ with l(w′) = l(a)+ l(w)+ l(a′). If w′ were another element
of minimum length in WTwW ′T , then writing w′ = awa′ as above, we get
l(w) = l(w′) = l(a)+ l(w)+ l(a′). Consequently, l(a) = 0 = l(a′), a = 1 = a′,
and w′ = w. �
DEFINITION 4.3.2. Suppose T , T ′ are subsets of S. An element w ∈ W is
(T , T ′)-reduced if it is the shortest element in its double coset WTwW ′T .

LEMMA 4.3.3. ([29, Ex. 3, pp. 31–32]). Suppose T ⊂ S.

(i) Any element w′ ∈ W can be written uniquely in the form w′ = aw,
where a ∈ WT and w is (T ,∅)-reduced.

(ii) An element w is (T ,∅)-reduced if and only if for each t ∈ T,
l(tw) = l(w)+ 1.

Similar statements hold for left cosets of WT and (∅, T)-reduced elements.
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Proof. By Lemma 4.3.1, w′ can be written as aw and since w is the unique
element of minimum length in WTw′, this expression is unique. This proves
(i). To prove (ii), first note that if w is (T ,∅)-reduced, then l(tw) = l(w)+ l(t) =
l(w)+ 1, for all t ∈ T . Conversely, suppose w satisfies the condition in (ii). By
(i), we can write w as au, where a ∈ WT and u is (T ,∅)-reduced. Since l(w) =
l(a)+ l(u) and l(tw) = l(ta)+ l(u), the condition in (ii) gives l(ta) = l(a)+ 1
for all t ∈ T . But this is only possible if a = 1. (If a �= 1, then the first letter of
any reduced expression for a must be an element T .) Hence, w = u is (T ,∅)-
reduced. �

4.4. ANOTHER CHARACTERIZATION OF COXETER GROUPS

Suppose (W, S) is a Coxeter system. For each s ∈ S, put

As := {w ∈ W | l(sw) > l(w). (4.3)

As is a fundamental half-space of W. A translate wAs of As is also a half-space;
sAs is the opposite half-space to As. Note that As is the set of elements of W
which are ({s},∅)-reduced.

Remark 4.4.1. Suppose r ∈ R. Then r = wsw−1 for some s ∈ S. Note that

(i) wAs is the vertex set of the half-space of the Cayley graph � bounded
by �r and containing the vertex w.

(ii) rwAs = wsAs is the vertex set of the opposite half-space.

(iii) wAs is the vertex set of the positive side of �r if and only if
η(r, w) = +1. If this is the case, then wAs = {u ∈ W | l(u) < l(ru)}
(cf. Lemma 4.2.2). (The number η(r, w) ∈ {±1} was defined in
Lemma 3.3.5.)

(iv) Elements u and ru in W are connected by an edge if and only if
r = utu−1 for some t ∈ S.

A gallery in a pre-Coxeter system (W, S) means an edge path in the Cayley
graph of (W, S), that is, a sequence γ = (w0, w1, . . . , wk) of adjacent elements.
The elements w0 and wk are, respectively, the initial and final elements of
the γ . The other wi are its intermediate elements. The type of γ is the word
s = (s1, . . . , sk), defined by wi = wi−1si. γ is a minimal gallery (or a geodesic
gallery) if it corresponds to a geodesic edge path in �, i.e., if its type s is a
reduced expression.

Given a gallery α = (w0, . . . , wk) from u (= w0) to v (= wk) and another
one β = (w′0, . . . , w′l) from v to w, we can concatenate them to form a gallery
αβ := (w0, . . . , wk, w′1, . . . , w′l) from u to w. The following result is another
useful characterization of Coxeter systems.
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PROPOSITION 4.4.2. ([29, Prop. 6, p. 11]). Suppose (W, S) is a pre-Coxeter
system and that {Ps}s∈S is a family of subsets of W satisfying the following
conditions:

(A) 1 ∈ Ps for all s ∈ S.

(B) Ps ∩ sPs = ∅ for all s ∈ S.

(C) Suppose w ∈ W and s, t ∈ S. If w ∈ Ps and wt /∈ Ps, then sw = wt.

Then (W, S) is a Coxeter system and Ps = As.

Note that when Ps = As, condition (C) is equivalent to the Folding Condition
(F) of 3.2.

Proof. Suppose s ∈ S and w ∈ W. There are two possibilities:

(a) w /∈ Ps. Let s1 · · · sk be a reduced expression for w and let (w0, w1,
. . . , wk) be the corresponding gallery where w0 := 1 and
wi := s1 · · · si = wi−1si, for 1 � i � k. Since w0 ∈ Ps (by (A)) and
wk /∈ Ps, there is an integer i between 1 and k such that wi−1 ∈ Ps and
wi /∈ Ps. Apply (C) with w = wi−1 and t = si to get swi−1 = wi−1si.
This gives the formula from the Exchange Condition:
sw = w1 · · ·wi−1wi+1 · · ·wk and l(sw) < l(w).

(b) w ∈ Ps. Let w′ = sw. By (B), w′ /∈ Ps; so, by (a),
l(sw) = l(w′) > l(sw′) = l(w).

Hence, the Exchange Condition holds. So, by Theorem 3.3.4, (W, S) is a
Coxeter system. �

4.5. CONVEX SUBSETS OF W

DEFINITION 4.5.1. Given a subset T of S, let

AT := {w ∈ W | w is (T ,∅)-reduced}.
AT is called the fundamental T-sector. For a given v ∈ W, the subset vAT is the
T-sector based at v. As in (4.3), if T is a singleton {s}, write As instead of A{s}.

By Lemma 4.3.3 (i), AT is a set of representatives for the set of right
cosets WT\W. Similarly, the set BT of (∅, T)-reduced elements is a set of
representatives for the left cosets W/WT . By Lemma 4.3.3 (ii), BT = (AT )−1.
It follows from the same lemma that the sector AT is the intersection of the
half-spaces As, s ∈ T .

DEFINITION 4.5.2. By Lemma 4.3.3, any w ∈ W can be written uniquely in
the form w = au, with a ∈ WT and u ∈ AT . The fundamental T-retraction is the
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map pT : W → AT defined by w→ u. The retraction onto the T-sector based
at v is the map vpTv−1 : W → vAT which sends w to vpT (v−1w).

Given elements u, w ∈ W and a reflection r such that r /∈ R(u, w), a half-
space bounded by the wall �r either contains both u and w or neither of them.
Let D(u, w) ⊂ W denote the intersection of all half-spaces which contain both
u and w. An important property of D(u, w) is described in the next lemma.

LEMMA 4.5.3. Suppose u, w ∈ W and v ∈ D(u, w). If α is a minimal gallery
from u to v and β is a minimal gallery from v to w, then αβ is a minimal gallery
from u to w. It follows that D(u, w) is the set of all elements of W that can occur
as the intermediate elements of some minimal gallery from u to w.

Proof. If r ∈ R(u, w), then exactly one of the following possibilities holds: �r

separates u and v or�r separates v and w. In other words, R(u, w) is the disjoint
union of R(u, v) and R(v, w). The lemma follows. �

DEFINITION 4.5.4. A subset U of W is connected if any two elements of
U can be connected by a gallery in U (i.e., the intermediate elements of the
gallery lie in U).

DEFINITION 4.5.5. A subset U of W is convex if, for any minimal gallery γ
with endpoints in U, the intermediate elements of γ lie in U. The subset U is
starlike (with respect to the element 1) if 1 ∈ U and if, for any minimal gallery
with initial element 1 and with final element in U, the intermediate elements
are also in U. An element u ∈ U is extreme if no minimal gallery in U with
initial element 1 can contain u as an intermediate element. (In other words, if
u is an element of such a gallery, then it must be the final element.)

Example 4.5.6. Suppose S is finite. Order the elements of W as w1, . . . ,
wn . . . , in such a fashion that l(wk) � l(wk+1) for all k � 1. For n � 0, set

Un := {w1, . . . , wn}.
Then 1 ∈ Un (since w1 = 1) and each Un is starlike with respect to 1.

LEMMA 4.5.7. A subset of W is convex if and only if it is an intersection of
half-spaces.

Proof. It follows from the discussion in 3.2 that any intersection of half-spaces
is convex. Conversely, suppose U is a convex subset of W. Let D denote the
intersection of all half-spaces that contain U. We claim D = U. Suppose to
the contrary that v ∈ D− U. Take a gallery of minimum length from v to a
chamber in U. The first wall �r that it crosses must separate v from U, a
contradiction. �
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Example 4.5.8. Any sector is a convex subset of W.
For each T ⊂ S, put

�(T) := �−
⋃

r∈R∩WT

�r. (4.4)

Example 4.5.8 can then be restated as follows.

LEMMA 4.5.9. AT is the set of vertices in the connected component of �(T)
that contains the identity vertex.

Parabolic Subgroups

A subgroup of W is parabolic if it is conjugate to some special subgroup.

PROPOSITION 4.5.10. Suppose special subgroups WT and WU are conju-
gate. Then T and U are conjugate subsets of S.

Proof. Suppose wWTw−1 = WU . By Lemma 4.2.3, conjugation by w maps
R ∩WT to R ∩WU; hence, it takes the connected components of �(T) to the
connected components of �(U). In particular, w maps the component of �(T)
containing 1 to a component of �(U), i.e., wAT = uAU for some u ∈ WU . So
v := uw−1 takes AT to AU .

Suppose �(U)o is a component of �(U). Call an edge of � a boundary
edge of �(U)o if one of its endpoints lies in �(U)o and the other does
not. We will also say that it is a boundary edge of the sector uAU , where
uAU := Vert(�(U)o). The element v takes the boundary edges of AT to the
boundary edges of AU . It is not hard to see that, in the case of AT , the midpoints
of these boundary edges are indexed by elements of T and in the case of AU by
elements of U. Hence, vTv−1 = U. �

Exercise 4.5.11. Prove the assertion in the previous proof: the midpoints of
the boundary edges of AT are indexed by elements of T .

Let G := wWTw−1 be a parabolic subgroup. Its rank is defined by

rk(G) := Card(T). (4.5)

This is well defined by Proposition 4.5.10.

4.6. THE ELEMENT OF LONGEST LENGTH

LEMMA 4.6.1. ([29, Ex. 22, p. 40]). Let (W, S) be a Coxeter system. The
following conditions on an element w0 ∈ W are equivalent.

(a) For each u ∈ W, l(w0) = l(u)+ l(u−1w0).

(b) For each r ∈ R, l(w0) > l(rw0).
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Moreover, w0 exists if and only if W is finite. If w0 satisfies either (a) or (b),
then

(i) w0 is unique,

(ii) l(w0) = Card(R),

(iii) w0 is an involution, and

(iv) w0Sw0 = S.

The element w0 is called the element of longest length.

Proof. Condition (a) obviously implies (b). By Lemma 4.2.2, condition (b)
means that R(1, w0) = R. (So condition (b) entails Card(R) <∞ and since
S ⊂ R, Card(S) <∞.) It follows from Lemma 4.2.1 (ii) that R is the disjoint
union of R(1, u) and R(u, w0) and from the other assertions of the same
lemma that l(w0) = Card(R(1, u))+ Card(R(u, w0)) = l(u)+ l(u−1w0). Hence,
(b) implies (a).

Since the length of any element in W is bounded by l(w0), if w0 exists, W is
finite. Conversely, suppose W is finite and v is an element of maximum length.
Since w→ (−1)l(w) is a homomorphism from W to {±1} and since, for any
r ∈ R, (−1)l(r) = −1,

l(rv) ≡ l(r)+ l(v) ≡ 1+ l(v) mod 2,

so rv cannot have the same length as v. Hence, l(rv) < l(v), i.e., v satisfies (b).
So, if W is finite, w0 := v exists.

Suppose that w0 and v are two elements satisfying (a). Then

l(w0) = l(v)+ l(v−1w0),

l(v) = l(w0)+ l(w−1
0 v).

Because any element and its inverse have the same length, l(v−1w0) = l(w−1
0 v).

The above equations then imply that l(v−1w0) = 0, i.e., w0 = v. This proves
(i). Property (ii) follows from (b) and Lemma 4.2.1 (iii). If W is finite, then,
since w−1

0 is also an element of maximum length, it follows from the previous
argument and (i) that w−1

0 = w0. This proves (iii). If s ∈ S, then, since l(w0)
is maximum, l(sw0) = l(w0)− 1. Rewriting (a) as, l(u−1w0) = l(w0)− l(u),
and applying it to the case u = sw0, we obtain l(w0sw0) = l(w0)− l(sw0) = 1.
Since w0sw0 has length 1, it belongs to S, proving (iv). �

LEMMA 4.6.2. Suppose there is an element w0 ∈ W so that l(sw0) < l(w0)
for all s ∈ S. Then W is finite and w0 is the element of longest length.

Proof. Given a (possibly infinite) sequence s = (s1, . . . , si, . . . ) of elements
in S, let si = (si, . . . , s1) be an initial subsequence written in reverse order.
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Assume each si is a reduced expression. Suppose l(sw0) < l(w0) for all s ∈ S.
We claim that it is a consequence of the Exchange Condition that w0 has a
reduced expression beginning with si. The argument is similar to the proof of
Theorem 3.4.2. It is clear for s1. Suppose by induction that w0 has a reduced
expression beginning with si−1. Since l(siw0) < l(w0), the Exchange Condition
implies that we can find another reduced expression by exchanging a letter
for an si in front. The exchanged letter cannot be in the initial string because
otherwise we could cancel the final parts to obtain, si · · · sj+1 = si−1 · · · sj for
some j < i, contradicting the assumption that si is a reduced expression. This
proves the claim. Hence, condition (a) of Lemma 4.6.1 holds; so, W finite and
w0 is the element of longest length. �

4.7. THE LETTERS WITH WHICH A REDUCED
EXPRESSION CAN END

DEFINITION 4.7.1. Given w ∈ W, define a subset In(w) of S by

In(w) := {s ∈ S | l(ws) < l(w)}.
Also, set

Out(w) := S− In(w).

By the Exchange Condition (applied to the element w−1 and the letter s),
In(w) is the set of letters with which a reduced expression for w can end.

The following lemma will play a key role in Chapters 7, 8, 9, 10, and 15.

LEMMA 4.7.2. For any w ∈ W, the special subgroup WIn(w) is finite.

Proof. By Lemma 4.3.1, w can be written uniquely in the form w = aw0,
where a is (∅, In(w))-reduced and where for any u ∈ WIn(w), l(au) = l(a)+ l(u).
For any s ∈ In(w),

l(w) = l(a)+ l(w0),

l(ws) = l(aw0s) = l(a)+ l(w0s).

Since l(ws) = l(w)− 1, the above equations give l(w0s) = l(w0)− 1 for all
s ∈ In(w). By Lemma 4.6.2 (applied to w−1

0 ), this implies that WIn(w) is finite
and that w0 is its element of longest length. �

LEMMA 4.7.3

(i) w is the longest element in wWIn(w). In other words, for any
u ∈ WIn(w), l(wu) = l(w)− l(u).

(ii) w is the shortest element in wWOut(w). In other words, for any
u ∈ WOut(w), l(wu) = l(w)+ l(u).
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Proof. The first assertion is implied by the proof of the previous lemma.
For the second, note that it follows from the definition of Out(w) that for
any s ∈ Out(w), l(ws) > l(w). Hence, by Lemma 4.3.3 (ii), w is (∅, Out(w))-
reduced. �

DEFINITION 4.7.4. Given a subset T of S, define a subset of WT of W by

WT := {w ∈ W | In(w) = T}.

For example, W∅ = {1}. Lemma 4.7.2 shows that if WT is nonempty, then
WT is finite. In Chapters 8 and 10 we will need the following.

LEMMA 4.7.5. ([77, Lemma 1.10, p. 301]). Suppose WT is a singleton. Then
WT is finite and W splits as a direct product

W = WT ×WS−T .

To prove this we need the following.

LEMMA 4.7.6. ([77, Lemma 1.9, p. 300]). Suppose T ⊂ S is such that WT is
finite and that wT ∈ WT is its element of longest length. Let s ∈ S− T, Then
swT = wTs if and only if mst = 2 for all t ∈ T.

Proof. If mst = 2, then s and t commute. Hence, if mst = 2 for all t ∈ T , then
s and wT commute.

Conversely, suppose s and wT commute. Since l(wTs) = l(wT )+ 1, s ∈
In(wTs). Since wTs = swT , T ⊂ In(wTs). Therefore, In(wTs) = T ∪ {s}. We
want to show that mst = 2 for all t ∈ T . Suppose, to the contrary, that mst > 2
for some t ∈ T . Consider the dihedral subgroup W{s,t}. Since {s, t} ⊂ In(wTs),
W{s,t} ⊂ WIn(wT s). By Lemma 4.6.1 (i), l(wTsu) = l(wTs)− l(u) for any u ∈
W{s,t}. Since mst > 2, the element u := sts has length 3. So, l((wTs)(sts)) =
l(wTs)− 3. On the other hand, l((wTs)(sts)) = l(wTts) = l(wTt)+ 1 = l(wT ) =
l(wTs)− 1; a contradiction. �

Proof of Lemma 4.7.5. By Lemma 4.7.2, WT is finite. Let wT be its element
of longest length. By Lemma 4.6.1 (ii), wT ∈ WT and since WT is a singleton,
this singleton is {wT}. We will show that wT commutes with each element s ∈
S− T . Let s ∈ S− T . Clearly, T ⊂ In(swT ) ⊂ {s} ∪ T and since swT /∈ WT ,
we must have In(swT ) = {s} ∪ T . Thus, l(s(wTs)) = l((swT )s) = l(swT )− 1 =
l((swT )−1)− 1 = l(wTs)− 1. In other words, wTs does not lie in the half-space
As. Since wT ∈ As, the Folding Condition (F) implies that swT = wTs. Then,
by Lemma 4.7.6, mst = 2 for all t ∈ T . If T �= ∅, this means that (W, S) is
reducible and that W splits as W = WT ×WS−T . �
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4.8. A LEMMA OF TITS

In this section (W, S) is required only to be a pre-Coxeter system. We will state
and prove a lemma of Tits [282] which will be needed in the next section and
again in Appendix D.

Suppose a group G acts on a set �. A subset B of � is prefundamental for
G, if for any g ∈ G, gB ∩ B �= ∅ =⇒ g = 1.

As usual, for each s ∈ S, W{s} is the subgroup of order two generated by s
and for each pair of distinct elements s, t ∈ S, W{s,t} is the dihedral subgroup
generated by {s, t}. Suppose W acts on a set � and that for each s ∈ S we are
given a subset Bs of � which is prefundamental for W{s}. Finally, suppose that
B :=⋂

s∈S Bs is nonempty. Consider the following property of (W, S, {Bs}s∈S):

(P) For any w ∈ W and s ∈ S, either wB ⊂ Bs or wB ⊂ sBs. Moreover, in
the second case, l(sw) = l(w)− 1.

(l(w) denotes word length with respect to S.)

Remark 4.8.1. Property (P) implies that B is prefundamental for W. (Proof:
Suppose, to the contrary, that wB ∩ B �= ∅ for some w �= 1. Then for some
s ∈ S, w = sw′ with l(w′) = l(w)− 1. Since wB �⊂ sBs, w′B = swB �⊂ Bs. So,
by (P) applied to w′, w′B ⊂ sBs and l(w) = l(sw′) = l(w′)− 1, a contradiction.)

Remark 4.8.2. Property (P) is not enough to guarantee that a pre-Coxeter
system (W, S) is a Coxeter system. For example, if � = W, B = {1} and Bs =
{w ∈ W | l(sw) < l(w)}, then (P) holds whenever l(sw) = l(w)± 1. Moreover,
this condition holds whenever the function ε : W → {±1} defined by ε(w) :=
(−1)l(w) is a homomorphism or equivalently, if every element in the kernel
of W̃ → W has even length (where W̃ is the Coxeter group associated to the
Coxeter matrix of (W, S)). Nontrivial examples of this are easily constructed.
For example, let W̃ be a finite Coxeter group of rank > 2 in which the element
w0 of longest length is central and of even length (e.g., when the Coxeter
diagram of W̃ is Bn from Table 6.1 in Section 6.9, with n even). Putting
W := W̃/〈w0〉, we have that ε : W → {±1} is a homomorphism.

To guarantee (W, S) is a Coxeter system we must add something like
Condition (C) in Proposition 4.4.2, say,

(C′) Suppose w ∈ W and s, t ∈ S. If wB ⊂ Bs and wtB �⊂ Bs, then sw = wt.

If Property (P) and Condition (C′) both hold, then it follows from Proposi-
tion 4.4.2 and Remark 4.8.1 that (W, S) is a Coxeter system.

LEMMA 4.8.3. (Tits [282, Lemma 1]). With notation as above, suppose that,
for each pair of distinct elements s, t ∈ S, (W{s,t}, {s, t}, {Bs, Bt}) satisfies (P).
Then (W, S, {Bs}s∈S) satisfies (P).



July 9, 2007 Time: 03:26pm chapter4.tex

56 CHAPTER FOUR

Let (Pn) denote the statement of property (P) for all w with l(w) = n. Let
(Qn) denote the following property:

(Qn) For any w ∈ W, with l(w) = n, and any two distinct elements s, t ∈
S, there exists u ∈ W{s,t} such that wB ⊂ u(Bs ∩ Bt) and l(w) = l′(u)+
l(u−1w).

(l′(u) denotes word length with respect to {s, t}.)
We shall prove Lemma 4.8.3 by establishing (P) for (W, S, {Bs}s∈S) by using

the inductive scheme

((Pn) and (Qn)) =⇒ (Pn+1) and ((Pn+1) and (Qn)) =⇒ (Qn+1).

(P0) and (Q0) hold trivially.

Proof that ((Pn) and (Qn)) =⇒ (Pn+1). Suppose l(w) = n+ 1 and s ∈ S.
Then there exists t ∈ S with w = tw′ and l(w′) = n. If s = t, then (Pn) applied
to w′ shows that w′B ⊂ Bs; hence, wB ⊂ sBs and l(sw) = l(w′) = l(w)− 1. So,
suppose s �= t. Applying (Qn) to w′, there exists u ∈ W{s,t} such that w′B ⊂
u(Bs ∩ Bt) and l(u−1w′) = l(w′)− l′(u). Put v = tu ∈ W{s,t}. By hypothesis, (P)
holds for (W{s,t}, {s, t}, {Bs, Bt}). Hence, either

(a) tu(Bs ∩ Bt) ⊂ Bs, in which case, wB ⊂ Bs or

(b) tu(Bs ∩ Bt) ⊂ sBs, in which case, wB ⊂ sBs.

Moreover, in case (b), l′(stu) = l′(tu)− 1 and hence,

l(sw) = l(stw′) = l((stu)(u−1w′)) � l′(stu)+ l(u−1w′)

= l′(tu)+ l(u−1w′)− 1 = l′(tu)+ l(w′)− l′(u)− 1 � l(w)− 1.

But this implies l(sw) = l(w)− 1. �

Proof that ((Pn+1) and (Qn)) =⇒ (Qn+1). Suppose l(w) = n+ 1 and s, t are
distinct elements of S. If wB ⊂ (Bs ∩ Bt), then (Qn+1) holds with u = 1. To fix
ideas, suppose s is the given element of {s, t} and that wB �⊂ Bs. By (Pn+1),
wB ⊂ sBs and l(sw) = n. Applying (Qn) to sw, there exist v ∈ W{s,t} such that
swB ⊂ v(Bs ∩ Bt) and l(sw) = l′(v)+ l(v−1sw). Hence, wB ⊂ sv(Bs ∩ Bt) and

l(w) = 1+ l(sw) = 1+ l′(v)+ l(v−1sw)

� l′(sv)+ l((sv)−1w) � l(w).

So the inequalities must be equalities and (Qn+1) holds with u = sv. �
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4.9. SUBGROUPS GENERATED BY REFLECTIONS

As usual, (W, S) is a Coxeter system, � := Cay(W, S), and R is the set of
reflections in W. Suppose we are given a subset X of R. Let W ′ := 〈X〉 be
the subgroup generated by X. We want to prove that W ′ is a Coxeter group and
determine a fundamental set of generators for it. Put R′ := R ∩W ′ and

Z(X) := �−
⋃
r∈R′

�r. (4.6)

W ′ acts on Z(X). Let us call the vertex set of a path component of Z(X) a
chamber for W ′ on �. Such a chamber is a subset of W. Given a chamber
D and a reflection r ∈ R′, one of the two components of �−�r contains D.
Denote the vertex set of this component by Ar(D). It is a half-space of W. Since
D is the intersection of the Ar(D), it is a convex subset of W (Definition 4.5.5).

DEFINITION 4.9.1. Suppose D is a chamber for W ′ on �. An element r ∈ R′

is a boundary reflection of D if there is a vertex w ∈ D such that {w, rw} is a
boundary edge (i.e., an edge of� such that rw /∈ D). Let S′(D) denote the set of
boundary reflections for D. Chambers D1, D2 are called adjacent if D2 = rD1

for some boundary reflection r of D1.

Clearly,

D =
⋂

r∈S′(D)

Ar(D). (4.7)

The proof of Lemma 3.2.5 shows that S′(D) generates W ′. Our goal in this
section is to prove the following.

THEOREM 4.9.2. (Compare [94, 107].) Property (P) of the previous section
holds for (W ′, S′(D), {As(D)}s∈S′(D)). Hence, (W ′, S′(D)) is a Coxeter system.

(S′(D) can be infinite.)
To simplify notation, write As instead of As(D).

COMPLEMENT 4.9.3. Suppose we are given two half-spaces As, At of W
corresponding to a random choice of two distinct reflections s, t ∈ R. Let W ′ be
the dihedral subgroup generated by {s, t} and m (:= m(s, t)) the order of st. We
want to analyze when As ∩ At is prefundamental for W ′. We discuss the cases
m = ∞ and m �= ∞ separately.

Case 1. m = ∞. In this case one can show that the picture for the possible
intersections of As and At is exactly the same as for the standard action of the
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infinite dihedral group D∞ on the real line (Example 3.1.3). In other words,
there are three possibilities:

(a) As ∩ At = ∅,
(b) As ⊂ At or At ⊂ As,

(c) neither (a) nor (b).

(P) fails if (a) or (b) holds. On the other hand, if (c) is true, then (P) holds.
(The proofs of the two previous statements are left as exercises for the reader;
to prove the second, one argues by induction on the word length of v ∈ W ′.)
Hence, in case (c), As ∩ At is prefundamental for W ′ and the vertex set of any
component of Z({s, t}) has the form v(As ∩ At) for some v ∈ W ′.

Case 2. m �= ∞. Once again one can show that the possible patterns of
intersection are the same as in the picture of the standard orthogonal linear
action of the dihedral group Dm on R2 (Example 3.1.2). Thus, if As ∩ At is
prefundamental for W ′, then As ∩ At is a component of Z({s, t}) and (P) holds.
Suppose it is not prefundamental. Then we can find a half-space Ar ⊂ W,
corresponding to a reflection r ∈ W ′ (r is conjugate to s or t), so that As ∩ Ar

is prefundamental for W ′ and As ∩ Ar ⊂ As ∩ At. Thus, �r separates As ∩ At

and so (P) fails for either s or t. Moreover, there is another chamber for W ′

of the form u(As ∩ Ar), u ∈ W ′, so that u(As ∩ At) ⊂ As ∩ At) and so that t is a
boundary reflection for it.

Proof of Theorem 4.9.2. According to Tits’ Lemma 4.8.3 we need to show
that for any two elements s, t ∈ S′(D), given s′ ∈ {s, t} and v ∈ W ′{s,t}, either (a)
v(As ∩ At) ⊂ As′ or (b) v(As ∩ At) ⊂ s′As′ and l′(s′v) = l′(v)− 1. (As before,
l′( ) is the word length in the dihedral group W ′{s,t}.) To fix ideas, suppose
s′ = s.

First suppose m(s, t) = ∞. Since As ∩ At ⊃ D �= ∅ and since s and t are
boundary reflections for D, possibilities (a) and (b) in Case 1 of Comple-
ment 4.9.3 are excluded. So, we are left with possibility (c) and the discussion
in Complement 4.9.3 shows that the assertion in the previous paragraph
is true.

So, suppose m(s, t) �= ∞. Since s is a boundary reflection for D, there is
w ∈ D such that sw /∈ As and {w, sw} is an edge of �. By the discussion in
Case 2 of Complement 4.9.3, there is a half-space Ar, for some reflection
r ∈ W ′{s,t}, such that As ∩ Ar ⊂ As ∩ At and As ∩ Ar is prefundamental for W ′{s,t}.
If Ar = At, we are done. So, suppose not. First we claim that the element w lies
in As ∩ Ar. Indeed, it cannot lie in any other nontrivial translate u(As ∩ Ar) ⊂
As ∩ At because such a translate does not have s as a boundary reflection.
Since w ∈ As ∩ Ar and since D is convex, D ⊂ As ∩ Ar. Similarly, since t is
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a boundary reflection of D, there is a w′ ∈ D such that tw /∈ At and {w, tw}
is an edge of �. Arguing as before, we see that w′ ∈ u(As ∩ Ar) where, as in
Case 2 of Complement 4.9.3, u ∈ W ′{s,t} is such that t is a boundary reflection
of u(As ∩ Ar). Hence, D ⊂ u(As ∩ Ar). This implies D also lies in rAr, a
contradiction. �

We continue to suppose that D is a chamber for W ′ on �. Let D′ be an
adjacent chamber to D. Recall that this means that D′ = sD for some boundary
reflection s ∈ S′(D). We claim the boundary reflection s is determined by
{D, D′}. Indeed, suppose that D′ = tD for some other element t ∈ S′(D) distinct
from s. Then stD = D, contradicting the fact from the proof of Theorem 4.9.2
that As(D) ∩ At(D) is prefundamental for the dihedral group W ′{s,t}. Thus, s = t.

Define a graph �′ by declaring its vertex set to be π0(Z(X)) and connecting
two vertices by an edge if and only if the corresponding chambers are adjacent.
Since each s ∈ S′(D) separates �′, (�′, [D]) is a reflection system in the sense
of Definition 3.2.10. (Here [D] denotes the vertex of �′ corresponding to D.)
Theorem 3.3.4 then provides a different proof that (W ′, S′(D)) is a Coxeter
system. Moreover, �′ ∼= Cay(W ′, S′(D)).

The techniques in the proof of Theorem 4.9.2 can also be used to answer the
following.

Question. Suppose D is an arbitrary convex set in W, S′(D) is the corres-
ponding set of boundary reflections and W ′ := 〈S′(D)〉. When is (W ′, S′(D)) a
Coxeter system?

By Remark 4.8.1 (ii) and Tits’ Lemma, (W ′, S′(D)) is a Coxeter system if
and only if Property (P) holds for (W ′{s,t}, {s, t}, {As(D), At}) for every pair of
distinct elements s, t ∈ S′(D). The argument in the proof of Theorem 4.9.2
(using Case 1 of Complement 4.9.3) shows that if m(s, t) = ∞, then Property
(P) automatically holds. So, we have proved the following.

THEOREM 4.9.4. Suppose D is a convex set in W. Let S′(D) be
the corresponding set of boundary reflections and W ′ := 〈S′(D)〉. Then
(W ′, S′(D)) is a Coxeter system if and only if Property (P) holds for
(W ′{s,t}, {s, t}, {As(D), At(D)}) for all s �= t in S′(D) with m(s, t) �= ∞.

4.10. NORMALIZERS OF SPECIAL SUBGROUPS

In this section we explain a result of Deodhar which gives a description of the
normalizers of special subgroups. It will be needed later in Section 12.7.

Given T ⊂ S, let AT be the fundamental T-sector in W (Definition 4.5.1) and
let N(WT ) be the normalizer of the special subgroup WT . Define a subgroup

GT := {w ∈ W | wAT = AT} (4.8)
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LEMMA 4.10.1

(i) GT normalizes WT.

(ii) Each w ∈ GT is (T , T)-reduced (Definition 4.3.2).

(iii) WT ∩ GT = {1}.
(iv) For any w ∈ N(WT ), there exists a unique element u ∈ WT such that

wAT = uAT.

Proof. (i) Since GT maps AT to itself, it must map the set of boundary
reflections to itself. That is to say, each element of GT conjugates T
to itself.

(ii) By definition, AT is the set of (T ,∅)-reduced elements in W. Since
1 ∈ AT , w = w · 1 is in AT for any w ∈ GT . So, w is (T ,∅)-reduced. Similarly,
w−1 ∈ AT ; so, w is (∅, T)-reduced.

(iii) This follows from (ii).
(iv) For any w ∈ W, wAT is a sector for wWTw−1. Since w ∈ N(WT ), wAT

is a sector for wWTw−1 = WT . But any such sector has the form uAT for some
unique u ∈ WT . �

PROPOSITION 4.10.2. ([38, Prop. 2.1] or [181, Prop. 3.1.9]).

N(WT ) = WT � GT .

Proof. We define a projection p : N(WT )→ GT . By Lemma 4.10.1 (iv), for
any w ∈ N(WT ), there is a unique u ∈ WT with wAT = uAT . Put p(w) :=
u−1w. One checks easily that this is a well-defined homomorphism with
kernel WT . �

DEFINITION 4.10.3. Suppose T ⊂ S and s ∈ S− T . Let U be the irreducible
component of T ∪ {s} containing s (i.e., 
U , the Coxeter diagram of WU , is the
component of 
T∪{s} containing s). If WU is finite, define

ν(T , s) := wU−{s}wU ,

where wU−{s} and wU are the elements of longest length in WU−{s} and WU ,
respectively. When WU is infinite, ν(T , s) is not defined.

LEMMA 4.10.4. Suppose ν(T , s) is defined. Then ν(T , s)−1AT = AT ′ for some
T ′ = (T ∪ {s})− {t}, t ∈ U.
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Proof. Conjugation by wU−{s} stabilizes T , permuting the elements of U − {s}
and fixing the elements of T − U. Moreover, for each t ∈ U − {s}, At and
wU−{s}At are opposite half-spaces. Similarly, conjugation by wU stabilizes
T ∪ {s}, permuting U and fixing T − U. Put t := wUswU . (Recall that elements
of longest length are involutions.) Since conjugation by wU stabilizes U, t ∈ U.
Setting ν = ν(T , s), we have ν−1Tν = wU(wU−{s}TwU−{s})wU = wUTwU = T ′,
where T ′ := (T ∪ {s}) ∪ {t}. Moreover, for any t ∈ T , ν−1 maps At to a positive
half-space indexed by an element of T ′. Hence, ν−1 takes AT to AT ′ . �

Define a directed labeled graphϒ : its vertices are the subsets of S; there is an
edge from T to T ′ labeled s whenever ν(T , s) is defined and ν(T , s)−1AT = AT ′ .
Write T

s→T ′ to mean there is an edge from T to T ′ labeled s. The proof of the
next proposition is left as an exercise for the reader.

PROPOSITION 4.10.5. (See [181, Prop. 3.1.2]). If T
s→T ′ is an edge of ϒ ,

then so is T ′
t→T, where either {t} = T − T ′ or T = T ′ and t = s.

The next theorem, due to Deodhar (and Howlett [158, Lemma 4] in the case
where W is finite), can be used to give generators and relations for the subgroup
GT of N(WT ) (as in [38]). For a proof we refer the reader to [93, Prop. 5.5] or
[38, Prop. 2.3].

THEOREM 4.10.6. (Deodhar [93]). Let T , T ′ ⊂ S and w ∈ W be such that
w−1AT = AT ′ . Then there is a directed path

T = T0
s0→T1

s1→· · · sk→Tk+1 = T ′

in ϒ such that w = ν(T0, s0) · · · ν(Tk, sk). Moreover,

l(w) =
k∑

i=0

l(ν(Ti, si)).

NOTES

4.1. The results in this section are taken from [29, pp. 12–13]. Paris [233] has proved a
converse to Proposition 4.1.7.

4.4. In much of the literature, e.g., in [51, 248, 298], the subspaces wAs are called
“roots” rather than “half-spaces” (as in Definition 4.5.1). (In standard terminology a
root is a certain vector in the “canonical representation” of Appendix D which defines
a linear reflection and a linear half-space in its dual representation space. These linear
half-spaces carry the same combinatorial information as do the half-spaces in the sense
of 4.5.1.)

4.7. In [26, p. 17] the subset In(w) of S is denoted DR(w) and called the right descent
set of w. These subsets play an important role in [26]. In the same book the subset WT

of W is denoted DT and called a set of descent classes.
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4.8. The proof of Tits’ Lemma 4.8.3 can also be found in [29, pp. 98–99]. In [282],
Tits actually proves a more general lemma. Instead of considering groups generated by
involutions, he deals with a group G which is generated by a family of subgroups {Gi}
(rather than just groups of order 2).

4.10. The proofs in [38, 94, 181] of the results in this section all make use of the
“canonical representation” of W and the notions of “roots” and “root systems” as
defined in Appendix D.3. Here we have, instead, framed things in terms of half-spaces
and sectors.
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THE BASIC CONSTRUCTION

Given a Coxeter system (W, S), a space X and a family of subspaces (Xs)s∈S,
there is a classical construction of a space U(W, X) with W-action. U(W, X)
is constructed by pasting together copies of X, one for each element of W.
The purpose of this chapter is to give the details of this construction. More
generally, in 5.1 we describe the construction for an arbitrary group G together
with a family of subgroups. This greater generality will not be needed until
Chapter 18 when it will be used in the discussion of geometric realizations of
buildings.

5.1. THE SPACE U

A mirror structure on a space X consists of an index set S and a family of
closed subspaces (Xs)s∈S. The subspaces Xs are the mirrors of X. The space X
together with a mirror structure is a mirrored space over S. X is a mirrored CW
complex if it is a CW complex and the Xs are subcomplexes. (The notion of
a “CW complex” is explained at the end of Appendix A.1.) When S is infinite
we also will assume that (Xs)s∈S is a locally finite family, i.e., that each point
has a neighborhood which intersects only finitely many of the Xs. For each
x ∈ X, put

S(x) := {s ∈ S | x ∈ Xs}. (5.1)

For each nonempty subset T of S, let XT (resp. XT ) denote the intersection
(resp. union) of the mirrors indexed by T , that is,

XT :=
⋂
t∈T

Xt (5.2)

and

XT :=
⋃
t∈T

Xt. (5.3)

Also, for T = ∅, put X∅ = X and X∅ = ∅. We shall sometimes call XT a coface
of X. (The reason for this terminology will become clearer in Chapter 7.)
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DEFINITION 5.1.1. Suppose (Xs)s∈S is a mirror structure on X. Associated
to the mirror structure there is an abstract simplicial complex N(X), called its
nerve, defined as follows. The vertex set of N(X) is the set of s ∈ S such that
Xs �= ∅. A nonempty subset T of S is a simplex of N(X) if and only if XT �= ∅.
(The notion of an “abstract simplicial complex” is explained in Appendix A.2.)

A family of groups over a set S consists of a group G, a subgroup B ⊂ G and
a family (Gs)s∈S of subgroups of such that each Gs contains B. Put G∅ := B and
for each nonempty subset T of S, let GT denote the subgroup of G generated by
{Gs}s∈T . Also, suppose G is a topological group and B is an open subgroup so
that G/B has the discrete topology. (Except in Chapter 18, B will be the trivial
subgroup so that G will be discrete.)

Example 5.1.2. Suppose (W, S) is a pre-Coxeter system (i.e., as in Defini-
tion 3.2.3 W is a group and S is a set of involutions which generate W). For each
s ∈ S, let Ws denote the subgroup of order two generated by s. Then (Ws)s∈S is
a family of subgroups as above. (Here B = W∅ := {1}.)

Suppose X is a mirrored space over S and (Gs)s∈S is a family of subgroups of
G over S. Define an equivalence relation ∼ on G× X by (h, x) ∼ (g, y) if and
only if x = y and h−1g ∈ GS(x) (where S(x) is defined by (5.1)). Give G/B× X
the product topology and let U(G, X) denote the quotient space:

U(G, X) := (G/B× X)/ ∼ . (5.4)

The image of (gB, x) in U(G, X) is denoted [g, x].
The natural G-action on G/B× X is compatible with the equivalence

relation; hence, it descends to an action on U(G, X). The map i : X→ U(G, X)
defined by x→ [1, x] is an embedding. We identify X with its image under i
and call it the fundamental chamber. For any g ∈ G, the image of gB× X in
U(G, X) is denoted gX and is called a chamber of U(G, X). Since the stabilizer
of X, the set of chambers is identified with G/B. The orbit space of the
G-action on G/B× X is X and the orbit projection is projection onto the second
factor, G/B× X→ X. This descends to a projection map p : U(G, X)→ X.
Since p ◦ i = idX , p is a retraction. It is easy to see that p is an open mapping.
Since the orbit relation on G× X is coarser than the equivalence relation ∼ ,
p induces a continuous bijection p̄ : U(G, X)/G→ X. Since p is open so is p̄.
So, p̄ is a homeomorphism.

DEFINITION 5.1.3. Suppose G acts on a space Y . A closed subset C ⊂ Y is
a fundamental domain for G on Y if each G-orbit intersects C and if for each
point x in the interior of C, Gx ∩ C = {x}. C is a strict fundamental domain if
it intersects each G-orbit in exactly one point.
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The preceding discussion shows that X is a strict fundamental domain for G
on U(G, X).

Notation

For any coset a = gB ∈ G/B, let aX := gX. For any subset A of G/B, define a
subspace AX of U(W, X) to be the corresponding union of chambers:

AX :=
⋃
a∈A

aX.

Given a point x ∈ X, set

Cx :=
⋃

s/∈S(x)

Xs and Vx := X − Cx. (5.5)

Since (Xs)s∈S is a locally finite family of closed subspaces of X, each Cx is
closed and each Vx is open. Consequently, GS(x)Vx is an open neighborhood of
[1, x] in U(G, X).

LEMMA 5.1.4. U(G, X) is connected if the following three conditions hold:

(a) The family of subgroups (Gs)s∈S generates G.

(b) X is connected.

(c) Xs �= ∅ for all s ∈ S.

Conversely, if U(G, X) is connected, then (a) and (b) hold.

Proof. Suppose (a), (b), and (c) hold. Since U(G, X) has the quotient topology,
a subset of U(G, X) is open (resp. closed) if and only if its intersection with
each chamber gX is open (resp. closed). Since X is connected, it follows that
any subset of U(G, X) which is both open and closed is a union of chambers,
i.e., it has the form AX for some A ⊂ G/B. Suppose we can find a proper
nonempty subset A of G/B so that AX is open and closed in U(G, X). Let H
be the inverse image of A in G. If Xs �= ∅ and x ∈ Xs, then for any gs ∈ Gs and
hB ∈ A, any open neighborhood of [hgs, x] must intersect hX as well as hgsX.
Thus, HGs ⊂ H. It follows that H must be the subgroup Ĝ of G generated by
the Gs, s ∈ S. So, if Ĝ = G (condition (a)), then AX = U(G, X), i.e., U(G, X) is
connected.

Conversely, suppose U(G, X) is connected. Since the orbit map
p : U(G, X)→ X is a retraction, X is also connected, i.e., (b) holds. Since Ĝ
contains all the isotropy subgroups GS(x), x ∈ X, it follows that ĜX is open in
U(G, X). It is clearly closed. Hence, Ĝ = G, i.e., (a) holds. �

DEFINITION 5.1.5. Suppose G is discrete. A G-action on a Hausdorff
space Y is proper (or “properly discontinuous”) if the following three
conditions hold.
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(i) Y/G is Hausdorff.

(ii) For each y ∈ Y , the isotropy subgroup Gy is finite.
(Gy = {g ∈ G | gy = y}.)

(iii) Each y ∈ Y has a Gy-stable neighborhood Uy such that gUy ∩ Uy = ∅
for all g ∈ G− Gy.

DEFINITION 5.1.6. A mirror structure on X is G-finite (with respect to a
family of subgroups for G) if XT = ∅ for any subset T ⊂ S such that GT/B
is infinite.

LEMMA 5.1.7. Suppose G is discrete. The G-action on U(G, X) is proper if
and only if the following two conditions hold.

(a) X is Hausdorff.

(b) The mirror structure is G-finite.

Proof. If G acts properly on U(G, X), then (a) and (b) follow from conditions
(i) and (ii) of Definition 5.1.5. Conversely, conditions (a) and (b) obviously
imply conditions (i) and (ii) of Definition 5.1.5. It suffices to establish
condition (iii) at [1, x] ∈ U(G, X) for an arbitrary x ∈ X. Let Vx be the
open neighborhood defined by (5.5). Then Ux := GS(x)Vx is an open GS(x)-
stable neighborhood of [1, x] in U(G, X) and clearly gUx ∩ Ux = ∅ for all
g∈G− GS(x). �

5.2. THE CASE OF A PRE-COXETER SYSTEM

Suppose (W, S) is a pre-Coxeter system. As in Example 5.1.2, this gives a
family of subgroups indexed by S.

DEFINITION 5.2.1. Given a space Z, the cone on Z, denoted by Cone(Z),
is the space formed from Z × [0, 1] by identifying Z × 0 to a point. (This
definition is repeated in Appendix A.4.)

Example 5.2.2. Suppose X = Cone(S), the cone on the set of generators S.
Define a mirror structure on Cone(S) by putting Cone(S)s equal to the point
(s, 1). Then U(W, Cone(S)) is the Cayley graph of (W, S). (The segment
s× [0, 1] in Cone(S) is a “half edge.”) The inverse image of this segment in
U(W, Cone(S)) is the union of all edges labeled s in the Cayley graph.

Definition 4.5.4 works for pre-Coxeter systems as well as Coxeter systems:
a subset A of W is connected if it is the vertex set of a connected subgraph of
the Cayley graph Cay(W, S).



July 24, 2007 Time: 02:02pm chapter5.tex

THE BASIC CONSTRUCTION 67

LEMMA 5.2.3. Suppose X is connected (resp. path connected) and Xs �= ∅
for each s ∈ S. Given a subset A of W, AX is connected (resp. path connected)
if and only if A is connected.

Proof. As in the proof of Lemma 5.1.4 a subset of AX that is both open and
closed must be of the form BX for some B ⊂ A. Let B be a proper nonempty
subset of A such that BX is open and closed in AX. Let B̌ = A− B. Suppose that
A is connected. Without loss of generality, we can suppose there are elements
b ∈ B and b̌ ∈ B̌ which are connected by an edge in the Cayley graph. If s is
the label on the edge, then bXs = b̌Xs lies in BX ∩ B̌X. Since Xs �= ∅, BX and
B̌X cannot be disjoint. So AX is connected. Conversely, if AX is connected,
then the above analysis shows that A cannot be partitioned into disjoint subsets
B and B̌ with the property that no element of B can be connected by an edge
to an element of B̌. But this means that A is connected. When “connected”
is replaced by “path connected” the argument is even easier and is left for
the reader. �

The special case A = W of the above lemma is the following.

COROLLARY 5.2.4. U(W, X) is connected (resp. path connected) if the
following two conditions hold:

(a) X is connected (resp. path connected) and

(b) Xs is nonempty for each s ∈ S.

Remark. If (W, S) is only required to be a pre-Coxeter system, then it is not
true that condition (b) is necessary for U(W, X) to be path connected. For
example, suppose W = C2 × C2 and S = {s, t, st} is the set of its nontrivial
elements. Then Cay(W, S) is the 1-skeleton of a tetrahedron. If we remove the
interiors of the two edges labeled st, we get a U(W, X), where X is the cone
on {s, t}. U(W, X) is connected (it is a square) and Xst = ∅. On the other hand,
in Section 8.2 we will show that when (W, S) is a Coxeter system, conditions
(a) and (b) are necessary for U(W, X) to be path connected (Corollary 8.2.3).

To simplify notation we often shorten U(W, X) to U when the mirrored space
X is understood.

The next lemma gives a universal property of the construction. Its proof is
immediate.

LEMMA 5.2.5. (Vinberg [290]). Suppose that Y is any space with W-action.
For each s ∈ S, let Ys denote the fixed point set of s on Y. Let f : X→ Y
be any map such that f (Xs) ⊂ Ys. Then there is a unique extension of f to a
W-equivariant map f̃ : U → Y, given by the formula f̃ ([w, x]) = wf (x).
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(In this lemma as well as in the rest of the book a map between topological
spaces means a continuous map.)

Reflection Groups

In the following chapters we shall often be proving results of the following
nature: if a group W acts on a space Y and if W is generated by some sort of
“reflections,” then W is a Coxeter group and its action on Y arises by applying
our basic construction to some fundamental domain X. In light of this and the
results of Chapter 3, we make the following definition.

DEFINITION 5.2.6. The action of a discrete group Ŵ on a space Y is a
reflection group if there is a Coxeter system (W, S) and a subspace X ⊂ Y such
that

(a) Ŵ = W.

(b) If a mirror structure on X is defined by setting Xs equal to the
intersection of X with the fixed set of s on Y , then the map
U(W, X)→ Y , induced by the inclusion of X in Y , is a
homeomorphism.

The isotropy subgroup at a point [w, x] in U(W, X) is wWS(x)w−1. Suppose
(W, S) is a Coxeter system. Since WS(x) is a special subgroup, this means that
each isotropy subgroup is a parabolic subgroup (defined in 4.5).

Example 5.2.7. (The Coxeter complex.) Suppose (W, S) is a Coxeter system,
that � is a simplex of dimension Card(S)− 1 and that the codimension-one
faces of � are indexed by the elements of S. The set of codimension-one
faces {�s}s∈S is a mirror structure on �. The space U(W,�) is naturally a
simplicial complex, called the Coxeter complex of (W, S). We shall see in
Chapter 6 that, when W is finite, U(W,�) is homeomorphic to a sphere. (See,
in particular, Theorems 6.4.3 and 6.12.9 and Lemma 6.3.3.) On the other hand,
if W is infinite, then it is proved in [255] that U(W,�) is contractible. (This
also follows from the results in Chapters 8 and 9.) Since �T is a nonempty
simplex for each proper subset of S, each proper parabolic subgroup occurs as
an isotropy subgroup at some point of U(W,�).

5.3. SECTORS IN U

Throughout this section, (W, S) is a Coxeter system, X is a mirrored space over
S, and U = U(W, X).

As in Proposition 4.1.1, for any w ∈ W, S(w) denotes the set of letters in S
which occur in any reduced expression for w. The next lemma shows that any
two chambers of U intersect in a common coface (possibly an empty coface).
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LEMMA 5.3.1. For any w ∈ W, X ∩ wX = XS(w). Hence, for any two elements
of v, w ∈ W, vX ∩ wX = vXS(v−1w) = wXS(v−1w).

Proof. It suffices to prove the first sentence (since it implies the second).
Suppose x ∈ X ∩ wX. Then w ∈ WS(x) and, by Corollary 4.1.2, S(w) ⊂ S(x),
i.e., x ∈ XS(w). Thus, X ∩ wX ⊂ XS(w). Conversely, suppose x ∈ XS(w). Let
(s1, . . . , sk) be a reduced expression for w. So S(w) = {s1, . . . , sk} and x ∈ Xsi

for each si. Thus, each si fixes x and consequently so does w. Therefore,
x ∈ X ∩ wX, i.e., XS(w) ⊂ X ∩ wX. �

DEFINITION 5.3.2. A sector (or half-space) of U(W, X) is a union of cham-
bers of the form AX where A ⊂ W is a sector (or half-space) of W.

For each r ∈ R, the fixed point set of r on U is denoted U r and called a
wall of U . If r = wsw−1, s ∈ S, then wAs and rwAs are the two half-spaces into
which r separates W. (Recall As := A{s}.) If uX and ruX are adjacent chambers
in these half-spaces, then, by Remark 4.4.1 (iv), r = utu−1 for some t ∈ S. It
follows that wAsX ∩ rwAsX = U r.

The next three results concern the following situation: a subset T of S is
given, AT is the fundamental T-sector in W (cf. Definition 4.5.1) and X̂ = ATX.
Define a mirror structure (over T) on X̂ by putting X̂t = U t ∩ X̂. As before, for
x̂ ∈ X̂, set T(x̂) = {t ∈ T | x̂ ∈ X̂t}.
LEMMA 5.3.3

(i) WTX̂ = U .

(ii) If x̂, ŷ ∈ X̂ are such that wx̂ = ŷ for some w ∈ WT, then x̂ = ŷ and
x̂ ∈ WT(x̂).

Thus, X̂ is a strict fundamental domain for the WT-action on U (that is, it
intersects each WT-orbit in exactly one point).

Proof. Since AT is the set of (T ,∅)-reduced elements, it is a set of coset
representatives for WT\W. This proves (i). The proof of (ii) is by induction on
l(w). Suppose l(w) = 1. This means w = t for some t ∈ T . If tx̂ = ŷ, then ŷ lies
in X̂ ∩ tX̂ ⊂ U t, so t fixes ŷ, and consequently x̂ = ŷ. Next, suppose l(w) > 1
and (t1, . . . , tk) is a reduced expression for w. Put w′ = t1w = t2 · · · tk. Apply
t1 to the equation wx̂ = ŷ, to obtain

w′x̂ = t1ŷ. (5.6)

Since l(t1w′) > l(w′), w′X̂ is on the positive side of U t1 . Since t1X̂ is on the
negative side, (5.6) implies that w′x̂ = t1ŷ ∈ X̂ ∩ t1X̂ ⊂ U t1 , so t1 fixes ŷ and
(5.6) can be rewritten as w′x̂ = ŷ. By induction, x̂ = ŷ and w′ ∈ WT(x̂). So,
w = t1w′ is also in WT(x̂) and the lemma is proved. �
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Applying the basic construction to the mirror structure on X̂, we obtain
Û = U(WT , X̂). Letting U stand for U(W, X), we have, by Lemma 5.2.5, that
the inclusion ι : X̂→ U induces a WT -equivariant map ι̃ : Û → U .

COROLLARY 5.3.4. ι̃ : Û → U is a homeomorphism.

Proof. By Lemma 5.3.3, ι̃ is a continuous bijection. Û has the quotient
topology from WT × AT × X and U has the quotient topology from W × X.
It follows that ι̃ is an open map and hence, a homeomorphism. �

COROLLARY 5.3.5. Let pT : W → AT be the fundamental retraction, de-
fined in 4.5.2, which sends w to its (T ,∅)-reduced representative in WTw.
Then pT descends to a retraction of spaces, U → ATX. (This map will also
be denoted by pT .)

Proof. We have the orbit projection Û → X̂ = ATX defined by [u, x̂]→ x̂.
Conjugating by the WT -equivariant homeomorphism ι̃, we get a retraction
U → ATX defined by [w, x]→ [pT (w), x]. �

We will need the following lemma in Chapter 13.

LEMMA 5.3.6. The intersection of two parabolic subgroups of W is a
parabolic subgroup.

Proof. Given subsets T , U of S and an element w ∈ W, it suffices to prove
that wWTw−1 ∩WU is a parabolic subgroup. Consider the action of W on
the Coxeter complex U(W,�) of Example 5.2.7. We can assume that T is
a proper subset of S (otherwise there is nothing to prove). Hence, there is
a point x ∈ U(W,�) with isotropy subgroup wWTw−1. By Corollary 5.3.4,
we can identify the WU-spaces U(W,�) and Û (:= U(WU , AU�)). As we
observed in the paragraph preceding Example 5.2.7, any isotropy subgroup of
the WU-action is a parabolic subgroup of WU (afortiori a parabolic subgroup
of W). But the isotropy subgroup at x is wWTw−1 ∩WU . �

Remark. The above proof shows that the parabolic subgroup wWTw−1 ∩WU

can be explicitly described as follows. By Lemma 4.3.3, we can write w
uniquely in the form w = ua where u ∈ WU and a ∈ AU . Set U′ := aTa−1 ∩ U.
The intersection in question is then uWU′u−1.

NOTES

The basic construction gives a case where a G-space can be recovered from its orbit
space and isotropy subgroup data. However, it ignores all the aspects of covering space
theory that can enter into such an undertaking.
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For reflection groups the basic construction is classical. In this case, the construction
was emphasized in [180] and by Vinberg in [290]. Its importance was also emphasized
in [71]. The construction was discussed by Tits in [285] in the full generality of 5.1.
Tits’ motivation was to use it to define the geometric realization of buildings with
chamber-transitive automorphism groups. The construction was also used in [57] to
define “buildinglike” complexes for Artin groups. In [37, pp. 381–387], Bridson and
Haefliger also call this “the basic construction.” (Actually, their definitions are slightly
more general than those in 5.1. They replace the mirrored space X and its the nerve,
N(X), by a “stratified space” over a poset P . The family of subgroups (Gs)s∈S is
replaced by a “simple complex of groups” over P . (This last notion is explained in
Appendix E.2.) Bridson and Haefliger show that any action of a discrete group G on
a space Y with a strict fundamental domain can be recovered from their more general
version of the basic construction.

5.1. Definition 5.1.1 (the “nerve of a mirror structure”) will be used in Section 7.1.
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Chapter Six

GEOMETRIC REFLECTION GROUPS

This chapter deals with the classical theory of reflection groups on the three
geometries of constant curvature: the n-sphere, Euclidean n-space, and hyper-
bolic n-space. Let Xn stand for one of these. The main result, Theorem 6.4.3,
states that, if Pn is a convex polytope in Xn with all dihedral angles integral
submultiples of π , then the group W generated by the isometric reflections
across the codimension one faces of Pn is (1) a Coxeter group and (2) a discrete
subgroup of isometries of Xn; moreover, Xn ∼= U(W, Pn). In the spherical case,
Pn is a spherical simplex and W is finite (Lemma 6.3.3). Conversely, every
Coxeter system (W, S) with W finite, essentially has a unique representation of
this form (Theorem 6.12.9). In the Euclidean case, Pn is a product of simplices
(Lemma 6.3.10). In Section 6.5 on “polygon groups,” we discuss the two-
dimensional examples. In 6.8, and 6.9 and Appendix C, we determine all such
geometric reflection groups in the case where the polytope is a simplex, getting
the standard lists of possibilities for spherical and Euclidean reflection groups
(Table 6.1). In the case of hyperbolic n-space, these simplicial examples exist
only in dimensions �4: there are an infinite number of hyperbolic triangle
groups, nine hyperbolic tetrahedral groups and five more with fundamental
chamber a hyperbolic 4-simplex (Table 6.2). Section 6.10 deals with reflection
groups on hyperbolic 3-space, in which case is a beautiful result of Andreev
(Theorem 6.10.2), giving a complete classification. It says that the combinato-
rial type of P3 can be that of any simple polytope and that any assignment of
dihedral angles to the edges is possible, subject to a few obviously necessary
inequalities. These inequalities have a topological interpretation: they mean
that any quotient of U(W, P3) by a torsion-free subgroup of finite index is an
aspherical and atoroidal 3-manifold (see Remark 6.10.4). Andreev’s Theorem
provided the first major evidence for Thurston’s Geometrization Conjecture.
In 6.11, we state Vinberg’s Theorem (6.11.8) that cocompact hyperbolic
reflection groups do not exist in dimensions �30. In 6.12, we discuss the
canonical linear representation of any Coxeter system. Its definition is moti-
vated by the geometric examples. The dual of this representation is even more
important. We call it the “geometric representation” and discuss it further in
Appendix D.
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6.1. LINEAR REFLECTIONS

DEFINITION 6.1.1. A linear reflection on a vector space V is a linear
automorphism r : V → V such that r2 = 1 and such the fixed subspace of r
is a hyperplane.

Suppose r : V → V is a linear reflection. Let H be the fixed hyperplane.
Choose a (−1)-eigenvector e (the (−1)-eigenspace of r is one dimensional)
and a linear form α on V with kernel H. Then r can be defined by the following
formula:

r(v) = v− 2α(v)

α(e)
e. (6.1)

Conversely, if α is a linear form on V and e ∈ V is any vector such that
α(e) �= 0, then the linear transformation r defined by (6.1) is a reflection.

6.2. SPACES OF CONSTANT CURVATURE

In each dimension n � 2, there are three simply connected, complete Rie-
mannian manifolds of constant sectional curvature: Sn (the n-sphere), En

(Euclidean n-space), and Hn (hyperbolic n-space). Sn is positively curved,
En is flat (curvature 0), and Hn is negatively curved. By scaling the metric
appropriately we may assume that Sn has curvature +1 and that Hn has
curvature −1.

One of the main features of these spaces, important in the study of reflection
groups, is that each admits many totally geodesic codimension one subspaces
which we shall call “hyperplanes.” Each such hyperplane separates the ambient
space into two geodesically convex “half-spaces” and for each such hyperplane
there is an isometric “reflection” which fixes the hyperplane and interchanges
the the two half-spaces.

The standard models for these spaces are very well known (see, for example,
[2], [37], [279], or [304]). We shall briefly review them below. Since the
hyperbolic case is less well-known than the spherical and Euclidean cases,
we discuss it in slightly more detail.

Euclidean n-Space En

Rn denotes the vector space of all real-valued functions on {1, . . . , n}. Write
x = (x1, . . . , xn) ∈ Rn for the function that sends i to xi. Let ei : {1, . . . , n} → R
denote the Kronecker delta function δij. Then {ei}1�i�n is the standard basis
for Rn. The standard inner product 〈 , 〉 on Rn is defined by

〈x, y〉 =
n∑

i=1

xiyi. (6.2)
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This inner product is part of the structure of Rn. En is the affine space
associated to Rn. (Affine spaces are discussed in Appendix A.1.) Thus, Rn acts
simply transitively on En. The action of a vector v ∈ Rn on En is translation
by v. So, En is essentially the same as Rn except that there is no longer a
distinguished point of En (as the origin is a distinguished vector in Rn). By
definition, the tangent space of En (at any point x ∈ En), is Rn equipped with
its standard inner product given by (6.2). So, En is a Riemannian manifold. It
has constant sectional curvature 0.

By a hyperplane or half-space in En we mean, respectively, an affine
hyperplane or an affine half-space. The “official” definition of a convex
polytope in En is given as Definition A.1.1 of Appendix A.1. Briefly, it is a
compact intersection of a finite number of half-spaces.

Suppose H is a hyperplane in En, x0 ∈ H and u ∈ Rn is a unit vector
orthogonal to H. Then the orthogonal reflection rH across H is given by the
formula

rH(x) = x− 2〈u, x− x0〉u, (6.3)

where, of course, x− x0 means the vector in Rn which translates the point
x0 ∈ En to x ∈ En (It is easy to see that the affine map rH : En → En depends
only on the hyperplane H and not on the choices of x0 and u.)

The group of affine automorphisms of En is Rn � GL(n). (In the semidirect
product the action of GL(n) on Rn is via the standard representation.) Here Rn

is the group of translations of En. The component in GL(n) is the linear part of
the automorphism. The subgroup Rn � O(n) is the group of isometries of En.
(O(n) is the group of linear isometries of Rn.) For example, the linear part of
the reflection rH defined by (6.3) is the linear reflection v→ v− 2〈u, v〉u.

We can identify En with an affine hyperplane in Rn+1; for the sake of
definiteness, say with the affine hyperplane xn+1 = 1. We can think of this as
identifying En with the complement of the “hyperplane at infinity” (defined by
xn+1 = 0) in real projective space RPn. The group of affine automorphisms of
En is then identified with a subgroup of PGL(n+ 1,R), the group of projective
transformations of RPn. (PGL(n+ 1,R) is the quotient of GL(n+ 1,R) by the
group of scalar multiples of the identity matrix.) The subgroup which fixes the
hyperplane at infinity can be identified with the image of the set of matrices of
the form




a11 . . . a1n b1

...
. . .

...
...

an1 . . . ann bn

0 . . . 0 1



.
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Multiplication by such a matrix is the affine transformation x→ Ax+ b where
we are identifying A ∈ GL(n,R), x ∈ En and b ∈ Rn with the matrices:

A =




a11 . . . a1n 0
...

. . .
...

...

an1 . . . ann 0

0 . . . 0 1




, x =




x1

...

xn

1




, b =




b1

...

bn

1



.

This is an isometry of En if and only if A ∈ O(n).

The n-Sphere

Sn is the quadratic hypersurface in Rn+1 defined by 〈x, x〉 = 1. The tangent
space of Sn at a point x ∈ Sn is denoted TxS

n. It is naturally identified with x⊥,
the subspace of Rn+1 orthogonal to x. The inner product on Rn+1 induces an
inner product on TxS

n and hence, a Riemannian metric on Sn. It turns out that
this metric has constant sectional curvature 1.

A hyperplane in Sn is its intersection with a linear hyperplane in Rn+1. A
half-space in Sn is its intersection with a linear half-space of Rn+1. In other
words, a hyperplane in Sn is a great subsphere and a half-space in Sn is a
hemisphere.

In Appendix A.1 we define a convex polyhedral cone in Rn+1 to be the
intersection of a finite number of linear half-spaces (Definition A.1.8). The
polyhedral cone is essential if it contains no line. A convex polytope in Sn is
the intersection of Sn with an essential convex polyhedral cone in Rn+1.

Suppose H is a hyperplane in Sn and u is a unit vector in Rn+1 orthogonal to
H. The spherical reflection rH of Sn across H is given by the formula

rH(x) = x− 2〈u, x〉u. (6.4)

rH is an isometry of Sn. Its fixed set is H. It follows that H is a totally geodesic
submanifold of codimension one in Sn.

The group O(n+ 1) of linear automorphisms of Rn+1 which preserve the
standard inner product defined by (6.2), stabilizes Sn and acts on it via
isometries. In fact, it is the full group of isometries of Sn.

Hyperbolic n-Space Hn

A symmetric bilinear form on an (n+ k)-dimensional real vector space is type
(n, k) if it has n positive eigenvalues and k negative eigenvalues. A positive
semidefinite form on a (n+ 1)-dimensional vector space with precisely one
eigenvalue 0 is said to be of corank 1.
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xn+1

Figure 6.1. The hyperbolic plane in R2,1.

Let Rn,1 denote an (n+ 1)-dimensional real vector space equipped with the
symmetric bilinear form 〈 , 〉 of type (n, 1) defined by

〈x, y〉 = x1y1 + · · · + xnyn − xn+1yn+1, (6.5)

where x = (x1, . . . , xn+1), y = (y1, . . . , yn+1). Rn,1 is Minkowski space.
A (k+ 1)-dimensional subspace V of Rn,1 is spacelike, timelike, or lightlike
as the restriction of the bilinear form to V is, respectively, positive definite,
type (k, 1), or positive semidefinite of corank 1.

The quadratic hypersurface defined by 〈x, x〉 = −1 is a hyperboloid of
two sheets. The sheet defined by xn+1 > 0 is (the quadratic form model of)
hyperbolic n-space Hn.

Given x ∈ Hn, TxH
n, the tangent space at x, is naturally identified with x⊥,

the subspace of Rn,1 orthogonal to x. Since x is timelike, x⊥ is spacelike, i.e.,
the restriction of the bilinear form to TxH

n is positive definite. Thus, Hn is
naturally a Riemannian manifold. It turns out that it has constant sectional
curvature −1.

A nonzero linear subspace of Rn,1 has nonempty intersection with Hn if
and only if it is timelike. A hyperplane in Hn is the intersection of Hn with a
timelike linear hyperplane of Rn,1. It is a submanifold ofHn isometric toHn−1.
Similarly, a half-space of Hn is the intersection of Hn and a linear half-space
of Rn,1 bounded by a timelike hyperplane.

The positive light cone in Minkowski space is the set of x ∈ Rn,1 such that
〈x, x〉 � 0 and xn+1 � 0. A convex polytope in Hn is its intersection with a
convex polyhedral cone C ⊂ Rn,1 such that C − 0 is contained in the interior
of the positive light cone.

Suppose H is a hyperplane in Hn and u is a unit spacelike vector orthogonal
to H. The hyperbolic reflection rH ofHn across H is the restriction toHn of the
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orthogonal reflection of Rn,1 defined by

rH(x) = x− 2〈u, x〉u . (6.6)

This is an isometry of Hn. Its fixed point set is H; so, H is a totally geodesic
submanifold of codimension one in Hn. Similar considerations show that if V
is any timelike linear subspace of dimension k + 1, then V ∩Hn is a totally
geodesic subspace isometric to Hk.

The group O(n, 1) of isometries of the bilinear form on Rn,1 has four
connected components. There is a subgroup of index two, O+(n, 1), which
preserves the sheets of the hyperboloid. This subgroup acts onHn as a group of
isometries. It is easily seen that O+(n, 1) is transitive onHn and that its isotropy
subgroup at x is the full group of isometries of the restriction of the bilinear
form to TxH

n, i.e., it is isomorphic to O(n). It follows that O+(n, 1) is the full
group of isometries of Hn.

The model of hyperbolic n-space discussed above is usually called the
quadratic form model. There are several other models of Hn (see [279]). One
of the most useful is the Poincaré disk model. In dimension 2, points of H2

correspond to points in the interior of the unit disk and geodesics are circular
arcs which meet the boundary orthogonally. A picture of a tessellation of H2

in the Poincaré disk model can be found as Figure 6.2 of Section 6.5.

The Notation Xn

In what follows we will use Xn to stand for En, Sn, or Hn and Isom(Xn) for
its isometry group. A reflection across a hyperplane is called a geometric
reflection. We leave as an exercise for the reader to prove the following well-
known facts.

• Every element of Isom(Xn) can be written as a product of reflections.

• Isom(Xn) acts transitively on Xn.

• For each x ∈ Xn, the isotropy subgroup of Isom(Xn) at x acts on TxX
n

and this gives an identification of the isotropy subgroup with the group
of linear isometries of TxX

n, i.e., with O(n).

For use in Section 6.4, we want to define the notion of a “polyhedral cone in
Xn.” Basically, this should mean the image of a linear polyhedral cone in TxX

n

under the exponential map exp : TxX
n → Xn. Given x ∈ Xn and r ∈ (0,∞),

the open polyhedral cone of radius r at a vertex x is the intersection of an open
ball of radius r about x with a finite number of half-spaces in Xn such that
each bounding hyperplane passes through x. IfXn = Sn, we further require that
r < π . The tangent cone of such a polyhedral cone Cn is the linear polyhedral
cone Cx ⊂ TxX

n consisting of all tangent vectors that point into Cn. The link
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of x in Cn is the (n− 1)-dimensional spherical polytope formed by intersecting
Cx and the unit sphere in TxX

n. Cn is a simplicial cone if this link is a simplex.

6.3. POLYTOPES WITH NONOBTUSE DIHEDRAL ANGLES

Suppose H1 and H2 are hyperplanes in Xn bounding half-spaces E1 and E2 and
E1 ∩ E2 �= ∅. Let u1 and u2 be the inward-pointing unit normals at a point
x ∈ H1 ∩ H2. Then θ := cos−1〈u1, u2〉 is the exterior dihedral angle along
H1 ∩ H2. The supplementary angle π − θ is the dihedral angle.

DEFINITION 6.3.1. Suppose that {E1, . . . , Ek} is a family of half-spaces inXn

with nonempty intersection and that H1, . . . , Hk are the bounding hyperplanes.
The family {E1, . . . , Ek} has nonobtuse dihedral angles if for every two distinct
indices i and j either (a) Hi ∩ Hj = ∅ or (b) Hi ∩ Hj �= ∅ and the dihedral angle
along Hi ∩ Hj is � π/2. If all the dihedral angles are π/2, then the family is
right angled. (In the spherical case condition (a) is vacuous. In the Euclidean
case, the hyperplanes Hi and Hj do not intersect if and only if they are parallel.)

Let Pn ⊂ Xn be a convex polytope and F1, . . . , Fk its codimension-one faces.
For 1 � i � k, let Hi be the hyperplane determined by Fi and Ei the half-space
bounded by Hi which contains Pn. The polytope Pn has nonobtuse dihedral
angles if the family {E1, . . . , Ek} has this property. Similarly, Pn is right angled
if {E1, . . . , Ek} is right angled.

Remark. The previous definition does not only refer to the dihedral angles
along the codimension-two faces of Pn. It does not rule out the possibility
that the subspace Hi ∩ Hj is nonempty but only contains a face of Pn of
codimension >2 (possibly the empty face). In fact, this situation does not
occur. This is a consequence of the following result of Andreev (which we
shall not prove here).

PROPOSITION 6.3.2. (Andreev [9].) Suppose that Pn ⊂ Xn is a convex
polytope and that the dihedral angles along all codimension-two faces of Pn

are �π/2. Then the hyperplanes of any two nonadjacent codimension-one
faces do not intersect. Hence, Pn has nonobtuse dihedral angles.

LEMMA 6.3.3. Suppose Pn ⊂ Sn is a convex spherical polytope with nonob-
tuse dihedral angles. Then Pn is a spherical simplex.

COROLLARY 6.3.4. Suppose Cn+1 ⊂ Rn+1 is an essential polyhedral cone
with nonobtuse dihedral angles. Then Cn+1 is a simplicial cone.

Lemma 6.3.3 is a consequence of the following result from linear algebra.
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LEMMA 6.3.5. ([29, p. 82].) Suppose that B is a positive semidefinite
symmetric bilinear form on Rn. Let u1, . . . , uk be vectors in Rn such that
B(ui, uj) � 0 for i �= j.

(i) Suppose v =∑
ciui, ci ∈ R, is a linear combination of the ui such

that B(v, v) = 0. Then

B
(∑
|ci|ui,

∑
|ci|ui

)
= 0.

(ii) If B is nondegenerate and if there is a linear form f such that
f (ui) > 0 for all i, then the vectors u1, . . . , uk are linearly
independent.

Proof. Since B(ui, uj) � 0 for all i �= j, we get

B

(∑
|ci|ui,

∑
i

|ci|ui

)
� B

(∑
ciui,

∑
ciui

)
;

hence, (i).
Suppose B is nondegenerate and

∑
ciui = 0 is a linear relation. Using

(i) (and the nondegeneracy of B), we get
∑ |ci|ui = 0. So, if f is any linear

form on Rn, then
∑ |ci|f (ui) = 0. If, in addition, f (ui) > 0, then each ci = 0,

proving (ii). �

Proof of Lemma 6.3.3. Suppose Pn ⊂ Sn is a convex polytope and F1, . . . , Fk

its codimension-one faces. Let ui ∈ Rn+1 be the inward-pointing unit vector
normal to Fi. Choose a point x in the interior of Pn and consider the linear
form f on Rn+1 defined by f (v) = 〈v, x〉. Since x lies on the positive side of
the half-space determined by ui, f (ui) = 〈ui, x〉 > 0 for i = 1, . . . , k. So, by
Lemma 6.3.5, the vectors u1, . . . , uk are linearly independent. Consequently,
k = n+ 1, {ui}1�i�n+1 is a basis for Rn+1 and Pn is a spherical simplex. �

Later we will need Lemma 6.3.7 below. Its proof is along the same lines as
that of Lemma 6.3.5. Before stating it we first recall a definition from matrix
theory.

DEFINITION 6.3.6. An n× n matrix (aij) is decomposable if there is a
nontrivial partition of the index set as {1, . . . , n} = I ∪ J, so that aij = aji = 0
whenever i ∈ I, j ∈ J. Otherwise, it is indecomposable.

LEMMA 6.3.7. ([29, p.83].) Suppose that A = (aij) is an indecomposable,
symmetric, positive semidefinite n× n matrix and that aij � 0 for all i �= j.
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(i) If A is degenerate, then its corank is 1 (i.e., its kernel is dimension 1).
Moreover, its kernel is spanned by a vector with all coordinates >0.

(ii) The smallest eigenvalue of A has multiplicity 1 and this eigenvalue
has an eigenvector with all coordinates >0. (This statement is true
independently of whether A is degenerate or nondegenerate.)

Proof. (i) Associated to A there is a quadratic form q on Rn defined by
q(x) = xtAx. Let N be the null space of q (= Ker A) and suppose

∑
cjej is a

nonzero vector in N. By Lemma 6.3.5 (i),
∑ |cj|ej is also in N, i.e.,

∑
j

aij|cj| = 0. (6.7)

Now let I denote the set of j ∈ {1, . . . , n} such that cj �= 0. Suppose I is a
proper subset of {1, . . . , n} and fix an index i not in I. If j ∈ I, then
aij|cj| � 0 (since j �= i). If j /∈ I, then aij|cj| = 0 (since |cj| = 0). So, each
term in the sum on the left-hand side of (6.7) is nonpositive. Therefore, all
terms are 0. In particular, aij = 0 for all i /∈ I and j ∈ I. Thus, A is decom-
posable whenever I �= {1, . . . , n}. Since, by hypothesis, A is indecomposable
I = {1, . . . , n}. In other words, all coordinates of a nonzero vector in N are
nonzero. This is obviously impossible if dim N � 2. So dim N = 1. Moreover,
if v is a nonzero vector in N, then we can assume all its coordinates are > 0
(since we can replace v =∑

cjej by
∑ |cj|ej).

(ii) Let λ � 0 be the smallest eigenvalue of A. The preceding argument
applies to the matrix A− λI. �

DEFINITION 6.3.8. An n-dimensional polytope Pn is simple if the link of
each vertex is an (n− 1)-simplex. (See Appendix A.6 for the definition of
“link.”) Equivalently, Pn is simple if exactly n codimension-one faces meet
at each vertex.

For example, a cube is simple; an octahedron is not. The next result is also
an immediate corollary of Lemma 6.3.3.

PROPOSITION 6.3.9. Suppose Pn is a convex polytope with nonobtuse
dihedral angles in a space of constant curvature Xn. Then Pn is simple.

A convex subset C ⊂ En is reducible if it is congruent to one of the form
C′ × C′′, where C′ ⊂ Em, C′′ ⊂ En−m and neither C′ nor C′′ is a point. C is
irreducible if it is not reducible.

Suppose a convex subset C ⊂ En has a finite number of supporting hyper-
planes Hi, i ∈ I. Then C is reducible if and only if there is a nontrivial partition
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of the index set, I = I′ ∪ I′′, so that Hi and Hj intersect orthogonally whenever
i ∈ I′ and j ∈ I′′.

LEMMA 6.3.10. Suppose Pn ⊂ En is an irreducible convex polytope with
nonobtuse dihedral angles. Then Pn is an n-simplex.

Proof. Let u1, . . . , uk be the inward-pointing unit vectors normal to the
codimension-one faces of Pn and let U := (〈ui, uj〉) be the matrix of inner
products of the ui. It is a k × k positive semidefinite symmetric matrix
(called the “Gram matrix” in Section 6.8). Since Pn is irreducible, U is
indecomposable. By Lemma 6.3.7 there are only two possibilities. The first
is that U is positive definite, in which case k = n, {u1, . . . , un} is a basis for
Rn and Pn is a simplicial cone. This case is impossible since, by definition,
a polytope is compact. The second possibility is that k = n+ 1 and U has
corank 1. After picking an origin for En (i.e., an identification with Rn), this
means that Pn is defined by inequalities: 〈ui, x〉 � ci, for some real numbers ci,
i = 1, . . . , n+ 1. That is to say, Pn is a simplex. �

COROLLARY 6.3.11. (Coxeter [67].) Suppose a convex set Pn ⊂ En is the
intersection of a finite number of half-spaces and that the dihedral angle
along any codimension-two face of Pn is nonobtuse. Then Pn is congruent
to a product of convex sets of the following three types: (i) a simplex, (ii) a
simplicial cone, (iii) a Euclidean subspace. In particular, if Pn is compact (so
that it is a polytope), then it is a product of simplices.

6.4. THE DEVELOPING MAP

Geometric Structures on Manifolds

As before, Xn stands for Sn, En, or Hn and Isom(Xn) is its group of isometries.
An Xn-structure on a manifold Mn is an atlas of charts {ψi : Ui → Xn}i∈I ,
where {Ui} is an open cover of Mn, each ψi is a homeomorphism onto its
image and each overlap map

ψiψ
−1
j : ψj(Ui ∩ Uj)→ ψi(Ui ∩ Uj)

is the restriction of an isometry in Isom(Xn). The Riemannian metric on Xn

induces one on Mn so that each chart ψi is an isometry onto its image. An
Xn-structure on Mn is essentially the same thing as a Riemannian metric of
constant sectional curvature +1, 0 or −1 as Xn is, respectively, Sn, En, or Hn.

As explained in [279, §3.3 and §3.4], an Xn-structure on Mn induces one on
its universal cover M̃n. Furthermore, there is a “developing map” D : M̃n→Xn.
(The condition that is needed for the developing map to be defined is that
Isom(Xn) acts transitively and real-analytically on the manifold Xn. This is
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certainly true in our case, when Xn is a space of constant curvature.) The
Xn-manifold Mn is complete if D : M̃n → Xn is a homeomorphism.

Suppose Pn ⊂ Xn is a convex polytope with codimension-one faces (Fi)i∈I .
For each i ∈ I, let ri denote the isometric reflection ofXn across the hyperplane
supported by Fi. Let W be the subgroup of Isom(Xn) generated by {ri}i∈I . We
want to determine when Pn is a fundamental domain for the W-action on Xn

and when W is a discrete subgroup of Isom(Xn). One obvious condition must
hold: if the hyperplanes supported by Fi and Fj intersect, then the subgroup
Wij generated by ri and rj must be finite and the sector bounded by these
hyperplanes which contains Pn must be a fundamental domain for the Wij-
action. As in Example 3.1.2, the condition that the sector be a fundamental
domain implies that the dihedral angle between these hyperplanes is an
integral submultiple of π . Since this forces all the dihedral angles of Pn to
be nonobtuse (because π/m � π/2 if m � 2), the polytope Pn must be simple
(Proposition 6.3.9). If Pn is simple, and if, for i �= j, the intersection Fi ∩ Fj is
nonempty, then this intersection is a face Fij of codimension two. So suppose
Pn is simple and that whenever Fi ∩ Fj �= ∅, the dihedral angle along Fij is of
the form π/mij, for some integer mij � 2. If Fi ∩ Fj = ∅, set mij = ∞. (Also,
set mij = 1 when i = j.)

The matrix (mij) is the Coxeter matrix of the pre-Coxeter system (W, {ri}i∈I)
(cf. Definition 3.3.1). Let (W, S) be the corresponding Coxeter system, with
generating set S = {si}i∈I . In view of Example 3.1.2, the order of rirj is mij;
so the function si → ri extends to a homomorphism φ : W → W. There is a
tautological mirror structure on Pn: the mirror corresponding to i is Fi. So,
the basic construction of 5.1 gives the space U(W, Pn). As in Lemma 5.2.5,
the inclusion ι : Pn → Xn induces a φ-equivariant map ι̃ : U(W, Pn)→ Xn,
defined by [w, x]→ φ(w)x. We want to prove that ι̃ is a homeomorphism.

Example 6.4.1. (One-dimensional Euclidean space.) Let I be an interval in
E1 and let r1 and r2 be the reflections across its endpoints. Set m12 = ∞.
The group W generated by r1 and r2 is the infinite dihedral group D∞ of
Example 3.1.3. W is also infinite dihedral and φ : W → W is an isomorphism.
The map ι̃ : U(W, I)→ E1 is obviously a homeomorphism.

Example 6.4.2. (One-dimensional sphere.) Suppose I is a circular arc of
length π/m and that r1 and r2 are the orthogonal reflections of S1 across the
endpoints of I. This example is somewhat exceptional in that although the
endpoints of I do not intersect, we nevertheless want to define m12 to be m
(instead of ∞). The group W generated by r1 and r2 is the dihedral group
Dm of Example 3.1.2. By Lemma 3.1.5, φ : W → W is an isomorphism and
ι̃ : U(W, I)→ S1 is a homeomorphism.

The next result is the main theorem in this chapter.
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THEOREM 6.4.3. Suppose Pn is a simple convex polytope in Xn, n � 2, with
dihedral angles of the form π/mij, and with mij ∈ N whenever Fi ∩ Fj �= ∅. If
Fi ∩ Fj = ∅, put mij = ∞. Let W be the Coxeter group defined by the Coxeter
matrix (mij). Then the natural map ι̃ : U(W, Pn)→ Xn is a homeomorphism.
This implies

(i) φ : W → W is an isomorphism.

(ii) W acts properly on Xn.

(iii) Pn is a strict fundamental domain for the W-action on Xn (as in
Definition 5.1.3).

Proof. The proof is by induction on the dimension n. Let (sn) stand for the
statement of the theorem in the case where Xn = Sn and Pn is a spherical
simplex σ n. Let (cn) stand for the statement of the theorem with Pn replaced by
an open simplicial cone Cn (of some radius) in Xn and with Xn replaced by the
open ball (of the same radius) in Xn about the vertex of Cn. Finally, (tn) stands
for the theorem. The structure of the argument is

(sn) =⇒ (cn+1) =⇒ (tn+1).

Since, by Example 6.4.2, (s1) and (c2) hold, establishing these implications
will constitute a proof.

(sn) =⇒ (cn+1). Suppose that Cn+1 ⊂ Xn+1 is a simplicial cone of radius r
with nonobtuse dihedral angles of the form π/mij. Let σ n be its intersection
with Sn. The Coxeter group W associated to Cn+1 is the same as the one
assoicated to σ n. Suppose that (sn) is true. Then φ : W → W is an isomorphism
and U(W, σ n) is homeomorphic to Sn. Since Sn is compact, so is U(W, σ n).
Hence, W is finite. We know that: (1) Cn+1 is the cone on σ n, (2) U(W, Cn+1) is
the cone on U(W, σ n) and (3) an open ball in Xn+1 is the cone on Sn. It follows
that ι̃ takes U(W, Cn+1) homeomorphically onto the open ball. The same
argument works even if the polyhedral cone is not essential, i.e., if Cn+1 stands
for the intersection of k half-spaces, k < n+ 1, in general position in Xn+1

with a ball about some point in the intersection of supporting hyperplanes.
(cn+1) =⇒ (tn+1). Let W, W, and Pn+1 be as in the statement of the

theorem. We first show that (cn+1) implies U(W, Pn+1) has an Xn+1-structure
so that ι̃ : U(W, Pn+1)→ Xn+1 is a local isometry. Given x ∈ Pn+1, let S(x)
denote the set of reflections si across the codimension one faces Fi which
contain x. By Theorem 4.1.6 (i), (WS(x), S(x)) is a Coxeter system. Let rx denote
the distance to the nearest face of Pn+1 which does not contain x and let Cx

(resp. Bx) be an open conical neighborhood (resp. ball) of radius rx about x
in Pn+1 (resp. Xn+1). An open neighborhood of [1, x] in U(W, Pn+1) has the
form U(WS(x), Cx). By (cn+1), ι̃ maps this neighborhood homeomorphically
onto Bx. By equivariance, it maps the w-translate of such a neighborhood
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homeomorphically onto φ(w)(Bx). This defines an atlas on U(W, Pn+1). The
atlas gives U(W, Pn+1), first of all, the structure of a smooth manifold and
secondly, an Xn+1-structure.

The Xn+1-structure induces a Riemannian metric (of constant curvature)
on Mn+1 := U(W, Pn+1). Since W acts isometrically on Mn+1 and since the
quotient space Mn+1/W (= Pn+1) is compact, a standard argument shows
that Mn+1 is metrically complete. It is well known (cf. [279, Prop. 3.4.15])
that this is equivalent to the condition that the Xn+1-structure is complete.
In other words, the developing map D : M̃n+1 → Xn+1 is a covering pro-
jection. By Lemma 5.2.3, U(W, Pn+1) is connected. Since the developing
map is locally given by ι̃ : U(W, Pn+1)→ Xn+1 and since ι̃ is globally
defined, ι̃ must be covered by D, i.e., ι̃ is also a covering projection. Since
Xn+1 is simply connected, M̃n+1 = Mn+1 (= U(W, Pn+1)), D = ι̃ and ι̃ is a
homeomorphism. �

DEFINITION 6.4.4. A geometric reflection group is the action of a group W
on Xn, which, as in Theorem 6.4.3, is generated by the reflections across the
faces of a simple convex polytope with dihedral angles integral submultiples
of π . The reflection group is spherical, Euclidean, or hyperbolic as Xn is,
respectively, Sn, En, or Hn.

Remarks 6.4.5

(a) Theorem 6.4.3 (ii) implies that W is a discrete subgroup of Isom(Xn).

(b) Part (iii) of the same theorem implies that, Xn is tiled by congruent
copies of Pn.

(c) Since the orbit space of a reflection is a half-space, each point in the
relative interior of a codimension-one face of the convex polytope Pn

has a neighborhood which is isomorphic to an open subset of the
orbit space of a reflection. The hypothesis of Theorem 6.4.3 is that
the dihedral angles of Pn are integral submultiples of π , in other
words, each point in the relative interior of a codimension-two face
has a neighborhood isomorphic to an open subset of the orbit space of
a linear action of a finite dihedral group on Rn. (See Examples 3.1.2
and 6.4.2.) The conclusion of the theorem implies that, globally, Pn is
the orbit space of a group action on a smooth manifold. In particular,
Pn can be given the structure of a smooth “orbifold.” This means
that it is locally isomorphic to an orbit space of a finite group on Rn.
(See [279] and [149].) In other words, the hypothesis is that Pn is an
orbifold at points in the complement of the strata of codimension �3
and the conclusion is that it is everywhere an orbifold.
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(d) The previous remark is a special case of the important general
principle “codimension-two conditions suffice,” explained in [280,
Theorem 4.1, p. 532]. Although we will not define all the relevant
terms, this principle states that if Xn is a Xn-cone manifold and if Xn

is an orbifold at points in the complement of the strata of codimension
�3, then it is an orbifold. The proof of this principle is similar
to that of Theorem 6.4.3—it is proved by induction on dimension.

(e) In the statement of Theorem 6.4.3 we can regard Pn as an orbifold,
U(W, Pn) as an “orbifoldal covering space” and ι̃ : U(W, Pn)→ Xn

as the developing map. Except in the case Xn = S1 of Example 6.4.2,
U(W, Pn) (= Xn) is simply connected, i.e., it is the universal orbifoldal
covering of Pn. (This follows from the proof of Theorem 6.4.3.
It also follows from Theorem 9.1.3 in Chapter 9.)

(f) There are a couple of remarkable features to the proof of
Theorem 6.4.3. First of all, we have managed to prove that W is a
Coxeter group, seemingly without using any of the separation
properties developed in Chapters 3 and 4. (The one exception
is the use of Theorem 4.1.6 in showing that WS(x) is a Coxeter
group but, in fact, the use of this theorem could have been avoided.)
Second, we have proved that the space U(W, Pn) is a manifold. A
priori, neither fact is obvious. The second fact followed once we had
used the inductive argument to show U(W, Pn)→ Xn was a covering
projection. As for the first fact, the point is that if we replace W
by a quotient W ′, then the existence of a homomorphism W ′ → W is
no longer guaranteed. In fact, if the kernel of W → W ′ is nontrivial,
no such homomorphism can exist (because either U(W ′, Pn)
is not locally isometric to Xn or because it is not simply connected).

6.5. POLYGON GROUPS

The exterior angles in a Euclidean polygon sum to 2π . So, if P2 is an m-gon in
E2 with interior angles α1, . . . , αm, then

∑
(π − αi) = 2π or equivalently;

m∑
i=1

αi = (m− 2)π. (6.8)

More generally, if X2
ε stands for S2, E2, or H2 as ε = 1, 0, or −1, respectively,

and P2 is an m-gon in X2
ε , then the Gauss–Bonnet Theorem asserts that

εArea(P2)+
∑

(π − αi) = 2π. (6.9)

Hence,
∑
αi is >, =, or < (m− 2)π , as X2

ε is, respectively, S2, E2, or H2.
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In the spherical case, the αi satisfy some additional inequalities, namely,
any exterior angle must be less than the sum of all the others. (To see this,
consider the “polar dual” of P2 ⊂ S2. It is the boundary of another spherical
polygon with vertices the inward-pointing unit vectors normal to the edges of
P2. The triangle inequalities on the vertices in the resulting metric on S1 are
the inequalities in question.) Conversely, given a combinatorial m-gon and any
assignment of angles αi ∈ (0,π ) to its vertices, we can realize it as a convex
polygon in some Xn

ε with the prescribed interior angles, where ε is determined
by the sum of the αi as above and where, in the spherical case when ε = 1, the
exterior angles π − αi satisfy the additional inequalities mentioned above.

In this section we consider convex m-gons P2 ⊂ Xn
ε with vertices v1, . . . , vm

where the angle αi at vi is of the form αi = π/mi, for an integer mi � 2.

Example 6.5.1. (Spherical triangle groups.) Suppose P2 is a spherical poly-
gon. Since each αi � π/2, the condition

∑
αi > (m− 2)π forces m < 4, i.e.,

P2 must be a triangle. (This also follows from Lemma 6.3.3.) What are
the possibilities for αi? The inequality π/m1 + π/m2 + π/m3 > π can be
rewritten as

1

m1
+ 1

m2
+ 1

m3
> 1. (6.10)

Supposing that m1 � m2 � m3, it is easy to see that the only triples
(m1, m2, m3) of integers�2 satisfying (6.10) are (2, 3, 3), (2, 3, 4), (2, 3, 5), and
(2, 2, n), for n an integer �2. By Theorem 6.4.3, each such triple corresponds
to a spherical reflection group. The Coxeter groups corresponding to the first
three triples are the symmetry groups of the Platonic solids. (See Appendix B.)
The triple (2, 3, 3) gives the symmetry group of the tetrahedron, (2, 3, 4) the
symmetry group of the cube (or octahedron), and (2, 3, 5) the symmetry group
of the dodecahedron (or icosahedron). The Coxeter system corresponding to

(2, 2, n) is reducible; its diagram is ◦ n◦−−−◦; the group is C2 × Dn.

Example 6.5.2. (Two-dimensional Euclidean groups.)
∑
αi = (m− 2)π

forces m � 4. If m = 4, there is only one possibility for the mi, namely, m1 =
m2 = m3 = m4 = 2, in which case, P2 is a rectangle and we get a standard
rectangular tiling of E2. The corresponding Coxeter group is D∞ × D∞. If
m = 3, the relevant equation is

1

m1
+ 1

m2
+ 1

m3
= 1. (6.11)

There are only three triples (m1, m2, m3) of integers � 2 with m1 � m2 � m3

that satisfy this equation: (2, 3, 6), (2, 4, 4), and (3, 3, 3). The corresponding
reflection groups are the Euclidean triangle groups.
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Figure 6.2. Tessellation by right-angled pentagons.

Example 6.5.3. (Hyperbolic polygon groups.) Given any assignment of angles
of the form π/mi to the vertices of a combinatorial m-gon so that

m∑
i=1

1

mi
< m− 2,

we can find a convex realization of it in H2. By Theorem 6.4.3, this yields a
corresponding reflection group on H2. (See [278, Chapter 5: orbifolds].) For
example, given a right-angled pentagon in H2, one gets a group generated
by the reflections across its edges. The corresponding tessellation of H2 in
the Poincaré disk model is illustrated in Figure 6.2. The dual tessellation by
squares is marked with dotted lines. Since a hyperbolic (or spherical) triangle
is determined, up to congruence, by its angles, when m = 3 we get a discrete
subgroup of Isom(H2), well defined up to conjugation. If m > 3, there is a
continuous family (moduli) of hyperbolic polygons with the same angles and
hence, a moduli space of representations of the Coxeter group.

The conclusion to be drawn from these examples is that any assignment of
angles of the form π/mi to the vertices of an m-gon can be realized by a convex
polygon in a two-dimensional space X2 of constant curvature; moreover, apart
from a few exceptional cases, X2 = H2.

6.6. FINITE LINEAR GROUPS GENERATED BY REFLECTIONS

We have postponed our discussion of finite groups generated by linear reflec-
tions long enough. This classical situation provides much of the motivation for
the previous material and terminology in Chapters 3, 4, and 5. In short, the
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main result of this section is that every finite linear group that is generated
by reflections is isomorphic to the orthogonal linear group associated to a
spherical reflection group (defined in the previous section). We start with the
following elementary lemma.

LEMMA 6.6.1. Any representation of a finite group G on a finite-dimensional
real vector space V admits a G-invariant, positive definite, symmetric bilinear
form (i.e., a G-invariant inner product).

Proof. The space of positive definite bilinear forms on a vector space is
convex. This means that any convex linear combination of positive definite
forms is again positive definite. So, we can choose a positive definite form on
V and average it over G to obtain a G-invariant one. �

So, given a finite group G of linear automorphisms of an n-dimensional real
vector space V , we can choose a G-invariant inner product. V is then isometric
to Rn by an isometry which takes G to a subgroup of O(n). Hence, we can
assume that any finite linear group is a subgroup of O(n).

COROLLARY 6.6.2. Any representation of a finite group G on a finite-
dimensional real vector space V is semisimple (i.e., any G-stable subspace
of V is a direct summand).

Proof. Suppose U ⊂ V is a G-stable subspace. Then its orthogonal comple-
ment U⊥ is also G-stable and V = U ⊕ U⊥. �

Now suppose W is a finite group generated by linear reflections on a finite
dimensional vector space V . The W-action is essential if no nonzero vector
is fixed by W. As above, we can assume that V = Rn and that the reflections
are orthogonal. If VW denotes the subspace fixed by W and V ′ its orthogonal
complement, then W acts as a group generated by reflections on V ′ and the
action is essential. Let R denote the set of all reflections in W. For each r ∈ R,
let Hr be the hyperplane fixed by r. Such a fixed hyperplane is a wall of the
W-action. Since the W-action is orthogonal, r is uniquely determined by its
fixed hyperplane Hr. We note that if r ∈ R and w ∈ W, then wrw−1 is also a
reflection with fixed hyperplane Hwrw−1 = wHr. In particular, this shows that
the union of the reflecting hyperplanes is a W-stable subset of Rn. Consider
the set of points in Rn which do not lie in any reflecting hyperplane of W:

Rn
(1) := Rn −

⋃
r∈R

Hr .

Rn
(1) is the complement in Rn of the “strata” of codimension �1. An open

chamber for W is a connected component of this complement. A chamber is
the closure of an open chamber. Such a chamber is clearly a polyhedral cone. A
mirror of a chamber C is a codimension one face of C. A hyperplane spanned
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by a mirror of C a wall of C. Two chambers are adjacent if they intersect in
a common codimension one face. A gallery is a finite sequence of adjacent
chambers. Since Rn

(1) is a W-stable subset, W acts on the set C of chambers
in Rn. The action clearly preserves adjacency. As we shall see below, all this
terminology is consistent with that introduced earlier in 3.2, 4.5, and 5.1.

Fix a chamber C and call it the fundamental chamber. Let S be the subset
of R consisting of those reflections s such that Hs is a wall of C. In the
next theorem we list the basic properties of finite linear groups generated by
reflections.

THEOREM 6.6.3. Let W be a finite group generated by linear reflections on
a finite-dimensional vector space V. Then, with the notation above:

(i) (W, S) is a Coxeter system.

(ii) W acts simply transitively on the set C of chambers.

(iii) If the W-action is essential, then C is a simplicial cone
(so Card S = n).

(iv) The natural map U(W, C)→ Rn, induced by the inclusion C ↪→ Rn,
is a homeomorphism. (Here C has the tautological mirror structure
indexed by S and U(W, C) is the basic construction of Chapter 5.)

To prove this we need to introduce some notation and establish a sequence
of lemmas.

Let � be the simplicial graph with vertex set C and with two vertices
C, C′ ∈ C connected by an edge if and only if the chambers are adjacent. A
gallery of chambers gives an edge path in �. (This agrees with the use of the
term “gallery” in 4.5.)

LEMMA 6.6.4. � is connected.

Proof. The point is that the complement of a union of subspaces of codimen-
sion�2 inRn is connected. SupposeRn

(2) denotes the complement of the union
of all subspaces of the form Hs ∩ Hs′ , with s �= s′. In other words, Rn

(2) is
the complement of the strata of codimension �2. Given C, C′ ∈ C, choose a
piecewise linear path from a point in the interior of C to a point in the interior
of C′. If the path is in general position with respect to fixed hyperplanes, then
it misses the strata of codimension �2, i.e., its image lies in Rn

(2). Any path
in general position crosses a sequence of adjacent chambers. So, it defines
a gallery, that is, an edge path in �. Since any (piecewise linear or smooth)
path can be approximated by one in general position, we get an edge path in �
from C to C′. �
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LEMMA 6.6.5. The set of reflections R ⊂ W and the graph � (together
with the basepoint C) are the data for a prereflection system for W (Defini-
tion 3.2.1).

Proof. � is connected by the previous lemma. As we previously remarked,
each reflection in W is determined by its fixed hyperplane. It follows that
if C′, C′′ are two adjacent vertices in �, then there is a unique r ∈ R which
interchanges them. �

COROLLARY 6.6.6. With hypotheses as above, the following statements are
true.

(i) W acts transitively on C.

(ii) Every element in R is conjugate to one in S.

(iii) S generates W.

Proof. Statement (i) follows from Lemma 6.6.4. Statements (ii) and (iii) follow
from Lemma 6.6.5 and the properties of prereflection systems developed in 3.2,
e.g., in Lemma 3.2.5. �

LEMMA 6.6.7

(i) (�, C) is a reflection system in the sense of Definition 3.2.10.

(ii) (W, S) is a Coxeter system.

Proof. (i) To show that the prereflection system (�, C) is a reflection system
we must show that for each r ∈ R, the fixed set �r separates �. The
hyperplane Hr fixed by a reflection r separates Rn into two components. It
follows that �−�r has two components. (Any edge path in � can be lifted
to a path in Rn between the chambers corresponding to its endpoints; these
chambers lie on opposite sides of Hr if and only if the lifted path crosses Hr an
odd number of times or equivalently, if the edge path in � crosses �r an odd
number of times.)

(ii) By Lemma 3.2.12, W acts freely on Vert(�) and hence, by Theo-
rem 2.1.1, � is isomorphic to Cay(W, S). By Theorem 3.3.4, (i) =⇒ (ii). �

For each s ∈ S, let Cs be the mirror corresponding to s (i.e., Cs = C ∩ Hs).
As in formula (5.1) of Section 5.1, put S(x) := {s ∈ S | x ∈ Cs}.

LEMMA 6.6.8. (Compare [29, p. 80].) Suppose x, y ∈ C and w ∈ W are such
that wx = y. Then x = y and w ∈ WS(x).
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Proof. The proof is by induction on the length k of w. The case k = 0 is
trivial. If k � 1, then there is a wall H of C such that w = sHw′, where sH ∈ S
is orthogonal reflection across H and where l(w′) = k − 1. Since l(sHw) <
l(w), C and wC lie on opposite sides of H (Lemma 4.2.2). Hence, y ∈ H.
Therefore, y = sHy = sH(wx) = w′x. So, by the inductive hypothesis, x = y
and w′ ∈ WS(x). Since we also have sH ∈ S(x), this gives w ∈ WS(x). �

COROLLARY 6.6.9. C is a strict fundamental domain for W on Rn (Defini-
tion 5.1.3). In other words, C intersects each W-orbit in exactly one point.

Proof. By Corollary 6.6.6 (i), WC = Rn, i.e., C intersects each W-orbit on Rn.
By the previous lemma, such an intersection is a singleton. �

Proof of Theorem 6.6.3. Statement (i) is Lemma 6.6.7 (ii). By Corollary 6.6.6
and Lemma 3.2.12, W acts simply transitively on C, which is statement (ii).

(iii) Suppose H and H′ are walls of C and s, s′ ∈ S are the corresponding
reflections. The dihedral group 〈s, s′〉 acts on the 2-dimensional Euclidean
space E = (H ∩ H′)⊥ and the image of C in E under orthogonal projection
is a fundamental sector. It follows that the dihedral angle of C along Hs ∩ Hs′

is π/mss′ , which is �π/2. So, by Corollary 6.3.4, C is a simplicial cone.
(iv) Let f : U(W, C)→ Rn be the natural W-equivariant map defined by

[w, x]→ wx. Since WC = Rn, f is onto. It is injective by Lemma 6.6.8. It is
immediate from the definitions in Chapter 5 that f is an open map; hence, a
homeomorphism. �

COMPLEMENT 6.6.10. (On fundamental domains.) Suppose G is a discrete
group of isometries of a metric space Y and x0 is a point in Y . The Dirichlet
domain centered at x0 is the set of points x ∈ Y such that the distance from x0

to x is no greater than the distance from x0 to any other point in the G-orbit
of x. Obviously, a Dirichlet domain is a fundamental domain for G on Y (as in
Definition 5.1.3); however, there is no reason for it to be a strict fundamental
domain. The Dirichlet domain depends on the choice of x0. In general, any
movement of the point x0 can produce a nontrivial variation of the Dirichlet
domain.

Suppose, as above, C is a chamber for a finite reflection group W on Rn

and that x0 is a point in the interior of C. Since C is contained in the positive
half-space bounded by Hs for any s ∈ S, a simple geometric argument shows

d(sx, x0) � d(x, x0).

For any w ∈ W, one can then argue by induction on l(w) that

d(wx, x0) � d(x, x0);
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hence, C is the Dirichlet domain centered at x0. This shows that these
fundamental domains have the following properties which are special to
reflection groups:

• Different choices for x0 in the interior of C give the same Dirichlet
domain, namely, C itself.

• Chambers are intrinsically defined (a chamber is the closure of a
component of the hyperplane complement in Rn).

• Each chamber is a strict fundamental domain for W on Rn (and each
such chamber is homeomorphic to the orbit space, Rn/W).

6.7. EXAMPLES OF FINITE REFLECTION GROUPS

Notation in this section comes from Table 6.1 in Section 6.9, where the
diagrams of all irreducible, spherical reflection groups are listed.

Example 6.7.1. (The symmetric group, type An−1.) The group Sn of all
permutations of {1, . . . , n} is the symmetric group on n letters. It acts ortho-
gonally on Rn by permutation of coordinates. The transposition (ij) acts as
orthogonal reflection across the linear hyperplane Ĥij defined by xi = xj. The
(nonessential) polyhedral cone Ĉ in Rn defined by x1 � · · · � xn is clearly a
fundamental domain for Sn on Rn. Let D be the diagonal line, x1 = · · · = xn,
and V the orthogonal hyperplane defined by

∑
xi = 0. Since Sn fixes D, it acts

on the orthogonal complement, D⊥ = V . Let p : Rn → V be the orthogonal
projection. The reflecting hyperplanes in V are denoted by Hij = p(Ĥij). The
simplicial cone C = p(Ĉ) ⊂ V is a fundamental domain. The walls of C are
the hyperplanes Hi,i+1, i = 1, . . . , n− 1. Let si be the reflection across Hi,i+1

and set S = {s1, . . . , sn−1}. By Theorem 6.6.3, (Sn, S) is a Coxeter system.
What is its associated Coxeter matrix? The product of the transpositions (12)

and (23) is the 3-cycle (123). It follows that sisi+1 has order 3. On the other
hand, if |i− j| > 1, then si and sj correspond to the commuting transpositions
(i, i+ 1) and (j, j+ 1) and so, sisj has order 2. Thus,

mij =




1 if i = j,

2 if |i− j| > 1,

3 if |i− j| = 1.

Hence, the diagram of Sn is An−1: ◦−−−◦ · · · · · · ◦−−−◦ .

Example 6.7.2. (The n-octahedral group, type Bn.) Let V = Rn. By a simple
sign change we will mean an orthogonal reflection of Rn which, for some i,
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sends ei to −ei and which fixes the other ej. (This is an orthogonal reflection
across the coordinate hyperplane xi = 0.) The n-octahedral group Gn is
the subgroup of O(n) generated by all sign changes and permutations of
coordinates. (This group is also discussed in Example A.1.7 of Appendix A.)
Since the simple sign changes and transpositions act as reflections on Rn, Gn is
generated by reflections. It is not hard to see that Gn is the semidirect product

Gn = (C2)n � Sn,

where Sn acts on (C2)n by permuting the factors. So, Gn is a group of order
2nn!. A fundamental domain for the Gn-action is the simplicial cone C defined
by x1 � · · · � xn � 0. For 1 � i � n− 1, let si denote orthogonal reflection
across the hyperplane xi = xi+1 and let sn be reflection across xn = 0. Put
S := {s1, . . . , sn}. By Theorem 6.6.3, (Gn, S) is a Coxeter system. We note that
{s1, . . . , sn−1} is the usual set of generators for Sn. So, the Coxeter subdiagram
determined by {s1, . . . , sn−1} is An−1. It remains to determine the order of sisn.

The inward-pointing unit normal vector ui to the wall xi = xi+1 is given by
ui = 1√

2
(ei − ei+1). The inward-pointing unit normal to xn = 0 is en. Hence,

〈en, ui〉 = 0 for i � n− 2, while 〈en, un−1〉 = −1√
2
= − cos(π/4). It follows that

sn commutes with si for i � n− 2 and that the order of snsn−1 is 4. So its
Coxeter matrix is given by

mij =




1 if i = j,

2 if |i− j| > 1,

3 if |i− j| = 1 and i, j �= n,

4 if {i, j} = {n− 1, n},

and its Coxeter diagram is type Bn: ◦−−−◦ · · · · · · 4◦−−−◦ .

Example 6.7.3. (The group of type Dn.) Let Gn be as in the previous example
and let Hn ⊂ Gn be the subgroup of index two consisting of all permutations
of coordinates and even sign changes. Thus,

Hn = (C2)n−1 � Sn,

where (C2)n−1 denotes the diagonal matrices with ±1 as diagonal entries
and with an even number of −1’s. This group is generated by the reflections
corresponding to the transpositions (i.e., the reflections ei − ej → ej − ei, i �= j)
and the reflections ei + ej →−(ei + ej). The second type of reflection has the
effect of transposing xi and xj and multiplying both by −1. A fundamental
simplicial cone C is defined by the inequalities

x1 � · · · � xn−1 � xn and xn−1 � −xn.
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Then S = {s1, . . . , sn}, where the first n− 1 reflections are exactly the same
as those for An−1 (or for Bn), that is, for i = 1, . . . , n− 1, si is reflection
across xi = xi+1. However, sn is reflection across xn−1 = −xn. The first n− 1
generators give a subgroup of type An−1. So it remains to see how sn interacts
with the other fundamental generators. The inward-pointing unit normals for
the walls corresponding to sn−2, sn−1, and sn are, respectively,

un−2 = 1√
2

(en−2 − en−1),

un−1 = 1√
2

(en−1 − en),

un = 1√
2

(en−1 + en).

Calculation gives 〈un−1, un〉 = 0 and 〈un−2, un〉 = −1/2. It is also clear that
〈ui, un〉 = 0 for i < n− 2. Hence,

mni =
{

2 if i �= n− 2, n,

3 if i = n− 3.

and the Coxeter diagram of Hn is type Dn. (See Table 6.1 of Section 6.9.)

Regular Polytopes

A classical source of examples of spherical reflection groups comes from the
theory of regular polytopes. In the next few paragraphs, we briefly sketch this
connection. More details will be given in Appendix B.

By a chamber for a convex polytope Pn we mean a maximal chain of proper
faces of P, F0 < F1 · · · < Fn−1 where dim Fi = i. Two chambers are adjacent
if the chains are the same except for one face. They are i-adjacent if the
face in which they differ is of dimension i. As explained in Appendix A.3,
a chamber in the above sense corresponds to a top-dimensional simplex in the
barycentric subdivision of ∂P. (The barycenters of the Fi span the (n− 1)-
simplex.) Moreover, two chambers are adjacent in the above sense if and only
if the corresponding simplices are adjacent in the usual sense that they share a
codimension-one face.

Given a polytope Pn ⊂ En, let Isom(P) denote its symmetry group. Isom(P)
is finite (since an element g ∈ Isom(P) is determined by its action on Vert(P)).
The polytope Pn is regular if Isom(P) acts transitively on the set of chambers
of Pn. (As shown in Lemma B.1.3 of Appendix B, this action on the set of
chambers is necessarily free.)

Suppose P is regular. Taking its center as the origin, we get an identification
of En with the vector space Rn and Isom(P) with a subgroup of O(n). We
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can radially project ∂P onto Sn−1, obtaining a cellulation of Sn−1 by spherical
polytopes. Fix a chamber for P and let σ denote the image in Sn−1 of the
corresponding simplex of the barycentric subdivision of ∂P. For 0� i� n− 1,
let σi be the codimension-one face of σ which is opposite to the vertex
corresponding to the barycenter of the face of dimension i in the chain. Let
si be the unique element of Isom(P) which maps the given chamber to the
i-adjacent one. Since si fixes the barycenters of the faces in the chain which
are not of dimension i, it must fix σi. Hence, it must be reflection across σi. It
follows that Isom(P) is a group generated by spherical reflections on Sn−1, that
σ is a fundamental simplex and that S = {s0, . . . , sn−1} is the corresponding
fundamental set of generators.

As is explained in Appendix B, the Coxeter diagram of (Isom(P), S) is a
straight line. More precisely, if |i− j| � 2, then si and sj commute, while if
|i− j| = 1 then mij, the order of sisj, is �3. Let mi denote the order of sisi+1.
The n-tuple (m1, . . . , mn−1) is called the Schläfli symbol of P. (A different but
equivalent definition of the Schläfli symbol is given in B.2.)

Two polytopes P and Q are dual if their face posets are anti-isomorphic.
Thus, dual polytopes have isomorphic barycentric subdivisions. (This is
discussed more fully in Appendix A.) In Appendix B we will see that regular
polytopes P and Q are dual if and only if the Schläfli symbol of P is the Schläfli
symbol of Q in reverse order. This is, of course, consistent with the obvious fact
that dual regular polytopes have isomorphic symmetry groups.

In each dimension n > 1, we always have at least three regular polytopes:

• The n-simplex �n of Example A.1.4 with Schläfli symbol (3, . . . , 3).
Its symmetry group is the symmetric group Sn+1 with diagram of type
An. (See Example 6.7.1 above.) It is self-dual.

• The n-cube �n of Example A.1.5 with Schläfli symbol (4, 3, . . . , 3).

• The n-octahedron of Example A.1.7 with Schläfli symbol (3, . . . , 3, 4).
The n-octahedron and the n-cube are dual polytopes and therefore,
have the same symmetry group (the n-octahedral group) with diagram
of type Bn. (The two-dimensional octahedron and the two-dimensional
cube are both squares.)

It turns out the only further examples of regular polytopes occur in dimensions
2, 3, and 4. In dimension 2 we have the regular polygons. The Schläfli
symbol of an m-gon is (m); its symmetry group is the dihedral group Dm.
(See Example 3.1.2.) In dimension 3 we have the dodecahedron and the
icosahedron with Schläfli symbols (5, 3) and (3, 5), respectively. They are

dual to one another. Their Coxeter diagram is type H3:
5◦−−−◦−−−◦ . The

corresponding symmetry group was mentioned previously in Example 6.5.1.
In dimension 4 there are three exotic polytopes and since two of them are
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dual, two new diagrams, types F4: ◦−−− 4◦−−−◦−−−◦ and H4:
5◦−−−◦−−−◦−−−◦.

These four-dimensional polytopes are called “the 24-cell,” “the 120-cell,” and
“the 600-cell,” and they have Schläfli symbols (3, 4, 3), (5, 3, 3), and (3, 3, 5),
respectively. (See [69] for a detailed discussion of these polytopes.) The 24-cell
has 24 octahedra as its three-dimensional faces. It is self-dual. The 120-cell
and the 600-cell are dual to one another. The 120-cell has 120 dodecahedra
as its three-dimensional faces; the 600-cell has 600 tetrahedra as its three-
dimensional faces.

6.8. GEOMETRIC SIMPLICES: THE GRAM MATRIX
AND THE COSINE MATRIX

Spherical Simplices

Suppose σ ⊂ Sn ⊂ Rn+1 is a spherical n-simplex. It has n+ 1 faces of
codimension one. Index them by {0, 1, . . . , n}. So {σi}0�i�n is the set of
codimension-one faces of σ . Let ui ∈ Rn+1 be the inward-pointing unit vector
normal to σi. The condition that the ui is inward pointing means that σ and ui

lie on the same side of the hyperplane 〈ui, x〉 = 0. Thus, σ is the locus of points
x ∈ Sn satisfying

〈ui, x〉 � 0 for 0 � i � n.

The Gram matrix of σ is the (n+ 1)× (n+ 1) matrix cij(σ ) defined by

cij(σ ) := 〈ui, uj〉, 0 � i, j � n. (6.12)

In other words, if U is the (n+ 1)× (n+ 1) matrix with column vectors
u0, . . . , un, then (cij(σ )) is the matrix UtU. (Ut is the transpose of U.) It follows
that (cij(σ )) is symmetric and positive definite and all diagonal entries are 1.
(The reason it is positive definite is that U is nonsingular. This, in turn, is
because {u0, . . . , un} is a basis for Rn+1.) For i �= j, the dihedral angle θij

between σi and σj is given by

θij = π − cos−1(〈ui, uj〉) ( = cos−1(−〈ui, uj〉)). (6.13)

(By convention, when i = j, put θii = π .)

LEMMA 6.8.1. A spherical simplex is determined, up to isometry, by its Gram
matrix (or, in view of (6.13), by its dihedral angles).

Proof. Suppose σ and σ ′ are spherical n-simplices with the same Gram matrix.
In other words, if ui (resp. u′i) is the inward-pointing unit normal vector to σi

(resp. σ ′i ), then

〈ui, uj〉 = 〈u′i, u′j〉. (6.14)



August 16, 2007 Time: 09:28am chapter6.tex

GEOMETRIC REFLECTION GROUPS 97

Since {u0, . . . , un} and {u′0, . . . , u′n} are bases for Rn+1, there is a unique linear
automorphism g of Rn+1 determined by gui = u′i, for 0 � i � n. This means
that g takes the set of defining half-spaces for σ to the set of defining half-
spaces for σ ′. By (6.14), 〈gui, guj〉 = 〈u′i, u′j〉 = 〈ui, uj〉. Since the ui form a
basis of Rn+1, g is an isometry. �

Next, we address the question of finding a spherical simplex with prescribed
dihedral angles. Suppose that for each unordered pair of distinct integers
i, j ∈ {0, . . . , n}we are given numbers θij ∈ (0,π ) (with θij = θji). When is there
a spherical simplex σ such that the dihedral angle along σi ∩ σj is θij? If such
a σ exists, we will say that σ has dihedral angles prescribed by (θij). Its Gram
matrix would be the matrix (cij(θ )) defined by

cij(θ ) =
{

1 if i = j,

− cos θij if i �= j.
(6.15)

PROPOSITION 6.8.2. Suppose that, as above, we are given numbers θij ∈
(0,π ), for 0 � i, j � n and i �= j. Then there is a spherical simplex σ with
dihedral angles prescribed by (θij) if and only if the matrix (cij(θ )), defined
by (6.15), is positive definite.

Proof. Given any positive definite symmetric matrix A, we can find a nonsin-
gular matrix U such that UtU = A. (For example, we could take U to be the
square root of A.) Supposing A = (cij(θ )) to be positive definite, we apply this
observation to get a matrix U. Let u0, . . . , un be its column vectors. Since the
diagonal entries of A are all 1, the ui are unit vectors. The half-spaces ui � 0
have nonempty intersection (as does any collection of half-spaces defined by
linearly independent ui) and hence, these half-spaces define a spherical simplex
σ with Gram matrix A. The implication in the other direction (that a Gram
matrix of a spherical simplex is positive definite) was explained in the first
paragraph of this section. �

Hyperbolic Simplices

The discussion of Gram matrices of hyperbolic simplices is similar to the
spherical case. Suppose σ ⊂ Hn is a hyperbolic n-simplex and that u0, . . . , un

are its unit inward-pointing normals. (The ui are unit spacelike vectors inRn,1.)
The Gram matrix (cij(σ )) is defined exactly as before by (6.12). Let J be the
(n+ 1)× (n+ 1) diagonal matrix with diagonal entries (1, . . . , 1,−1) and let
U be the (n+ 1)× (n+ 1) matrix with column vectors u0, . . . , un. Then cij(σ )
is the matrix UtJU. It follows that it is symmetric, nondegenerate of type (n, 1)
and that all its diagonal entries are 1. (As before, it is type (n, 1) because the ui

form a basis for Rn,1.) We omit the proof of the next lemma since it is virtually
identical to that of Lemma 6.8.1.
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LEMMA 6.8.3. A hyperbolic simplex is determined, up to isometry, by its
Gram matrix (or, in view of (6.13), by its dihedral angles).

There is one further condition that the Gram matrix of a hyperbolic simplex
always satisfies. We discuss it below. The kth-principal submatrix of a square
matrix A is the matrix obtained by deleting the kth row and kth column of A.
Suppose that A = (〈ui, uj〉) is the Gram matrix of a hyperbolic simplex σ and
let A(k) be the kth-principal submatrix. Let vk ∈ Hn denote the vertex opposite
to σk and let Lk be the line through the origin in Rn,1 determined by vk, i.e.,

Lk :=
⋂
i�=k

u⊥i . (6.16)

Since Lk is timelike, its orthogonal complement L⊥k is spacelike. Since {ui}i�=k

spans L⊥k , the matrix of A(k) of inner products of the {ui}i�=k is positive definite.
A slightly different way to say this is that A(k) is the Gram matrix for the
spherical (n− 1)-simplex Lk(vk, σ ). ( The definition of Lk(vk, σ ), the “link”
of vk in σ , is given at the end of 6.2 and in more detail in Appendix A.6.)
Thus, every principal submatrix of the Gram matrix of a hyperbolic simplex is
positive definite.

As in the spherical case, suppose that for each pair of distinct integers
i, j ∈ {0, . . . , n} we are given numbers θij ∈ (0,π ). When is there a hyperbolic
simplex σ such that the dihedral angle along σi ∩ σj is θij? If such a simplex
exists, its Gram matrix would be the matrix (cij(θ )) defined by (6.15).

PROPOSITION 6.8.4. Suppose, as above, we are given numbers θij ∈ (0,π ),
for 0 � i, j � n and i �= j and let (cij(θ )) be the matrix defined by (6.15). Then
there is a hyperbolic simplex σ with dihedral angles prescribed by (θij) if and
only if

• the matrix (cij(θ )) is type (n, 1) and

• each principal submatrix of (cij(θ )) is positive definite.

Proof. Since any two nondegenerate bilinear forms of the same type are
equivalent over R, given any nonsingular symmetric matrix A of type (n, 1),
there is a nonsingular matrix U with UtJU = A. Apply this observation to
the matrix A = (cij(θ )) to get U. Let u0, . . . , un be its column vectors. Since
〈ui, ui〉 = cii(θ ) = 1, each ui is spacelike. It follows that the simplicial cone
in Rn,1 defined by the inequalities 〈ui, x〉 � 0, for 0 � i � n, intersects either
the positive or the negative light cone. If it intersects the negative light cone,
then replace each ui by −ui. Since the principal submatrix A(k) is positive
definite, the hyperplane spanned by {ui}i�=k is spacelike. Hence, its orthogonal
complement Lk, defined by (6.16), is timelike and the intersection Rk of Lk with
the positive light cone is an extremal ray of the simplicial cone. Since each
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extremal ray of the simplicial cone lies inside the positive light cone, the entire
simplicial cone lies inside the positive light cone and hence, its intersection
with Hn is a hyperbolic simplex. �

Euclidean Simplices

The analysis of Gram matrices of Euclidean simplices is a bit more compli-
cated than in the spherical and hyperbolic cases.

Suppose σ is a Euclidean n-simplex in En, that σ0, . . . , σn are its
codimension-one faces, that ui ∈ Rn is the inward-pointing unit vector normal
to σi, that vi is the vertex of σ opposite to σi and that Hi is the affine hyperplane
spanned by σi. After choosing a basepoint, we can identify En with Rn.

LEMMA 6.8.5. The vectors u0, . . . , un determine σ up to translation and
homothety.

Proof. After changing σ by a translation, we may assume that the vertex v0 is
the origin in Rn. Then σ is defined by the inequalities

〈ui, x〉 � 0, i = 1, . . . , n, (6.17)

〈u0, x〉 � −d, (6.18)

where d is the distance from the hyperplane H0 to the origin. After scaling by
1/d, we can put σ in a “standard form” where d = 1. �

Since the ui span Rn and since there are n+ 1 such vectors, there is a
nontrivial linear relation of the form

c0u0 + · · · + cnun = 0, (6.19)

and this relation is unique up to multiplication by a scalar.

LEMMA 6.8.6. The coefficients ci in the relation (6.19) are all nonzero and
all have the same sign (which we could take to be positive).

Proof. Suppose σ is defined by the inequalities in (6.17) and (6.18). For
1 � i, j � n and i �= j, 〈uj, vi〉 = 0 and 〈u0, vi〉 = −d. Take the inner product
of both sides of the relation (6.19) with vi to obtain

−c0d + ci〈ui, vi〉 = 0 (6.20)

or
〈ui, vi〉

d
= c0

ci
.

Since 〈ui, vi〉 > 0, c0 and ci are both nonzero and both have the same sign. �

Remark. We can take ci to be the (n− 1)-dimensional volume of the face σi.
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LEMMA 6.8.7. Suppose {u0, . . . , un} is a set of n+ 1 unit vectors spanning
Rn. Then {u0, . . . , un} is the set of inward-pointing unit normal vectors to a
Euclidean simplex if and only if the nontrivial linear relation c0u0 + · · · + cnun

satisfies the conclusion of Lemma 6.8.6 (that is, the coefficients ci can all be
taken to be positive).

Proof. Suppose {u0, . . . , un} satisfies the conclusion of Lemma 6.8.6. Fix a
positive number d, let C be the convex cone inRn defined by the inequalities in
(6.17), and let σ be the convex subset of C defined by adjoining the inequality
(6.18). Since the coefficients ci are all nonzero, the vectors u1, . . . , un are
linearly independent. So C is a simplicial cone. We must show that σ is a
simplex. Let Ri be the extremal ray of C opposite the face defined by 〈ui, x〉 = 0
and let Li be the line spanned by Ri. Let vi be the unique point on Li satisfying
〈u0, vi〉 = −d. Then σ is a simplex if and only if each vi ∈ Ri. In other words,
we must show that 〈ui, vi〉 > 0, for all 0 � i � n. By (6.20),

〈ui, vi〉 = c0d

ci
.

So if c0 and ci have the same sign, 〈ui, vi〉 is positive. �

The Gram matrix of σ is defined, just as before, by (6.12): it is the matrix
(〈ui, uj〉)0�i,j�n. In other words, it is the matrix A = UtU where U is the
n× (n+ 1) matrix with the ui as column vectors. Since the vectors ui span
Rn, A has rank n. Therefore, A is positive semidefinite of corank one. A final
observation is that the one-dimensional null space of A is spanned by the
column vector

v =




c0

...

cn




where the ci are the coefficients in the relation (6.19). The reason is that (6.19)
can be rewritten as the equation, Uv = 0; hence, vtAv = vtUtUv = 0.

We can now give the necessary and sufficient conditions for the existence of
a Euclidean simplex with prescribed dihedral angles.

PROPOSITION 6.8.8. As before, suppose we are given numbers θij ∈ (0,π ),
for 0 � i, j � n and i �= j. Let (cij(θ )) be the matrix defined by (6.15). Then
there is a Euclidean simplex σ with dihedral angles along its codimension two
faces σi ∩ σj as prescribed by the θij if and only if

(a) the matrix (cij(θ )) is positive semidefinite of corank 1 and

(b) the null space of (cij(θ )) is spanned by a vector v with positive
coordinates c0, . . . , cn.
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Proof. Let A be the positive semidefinite matrix (cij(θ )) and let U be its square
root. Then A and U have the same null space, namely, the line spanned by v. Let
u0, . . . , un be the column vectors of U. We regard U as a linear transformation
Rn+1 → Rn+1 taking ei to ui. Since the kernel of U is the line spanned by v,
the image of U is the hyperplane H orthogonal to v. So, the ui are unit vectors
in the Euclidean space H satisfying the linear relation (6.19) with positive
coefficients ci. Hence, by Lemma 6.8.7, there is a simplex σ in H with unit
inward-pointing normal vectors u0, . . . , un. �

Remarks 6.8.9

(i) If the θij are all nonobtuse, then, by Lemma 6.3.7, condition (b) of
Proposition 6.8.8 is automatic.

(ii) Any principal submatrix of a positive semidefinite matrix A is either
positive semidefinite or positive definite. If condition (b) holds for a
positive semidefinite matrix A, then each principal submatrix is
automatically positive definite. For example, suppose to the contrary
that v1 is a nonzero vector in the nullspace of A(k) and w ∈ Rn+1 is the
vector obtained from v1 by inserting a 0 as the kth coordinate, then
wtAw = vt

1A(k)v1 = 0. So, w is in the null space of A. Since the kth

coordinate of w is 0, this contradicts (b).

Exercise 6.8.10. Suppose n = 2, that we are given numbers, θ01, θ02, θ12 ∈
(0,π ), that a = θ01 + θ02 + θ12 is the angle sum and that A = (cij(θ )) is the
3× 3 matrix defined by (6.15). Show that det A is > 0, = 0 or < 0 as a is
> π , = π or < π , respectively. Deduce that in these three cases we have,
respectively, a spherical, Euclidean or hyperbolic triangle with angles as
prescribed by the θij.

The Cosine Matrix

Suppose M = (mij) is a Coxeter matrix on a set I.

DEFINITION 6.8.11. The cosine matrix associated to a Coxeter matrix M is
the I × I matrix (cij) defined by

cij = − cos(π/mij). (6.21)

When mij = ∞ we interpret π/∞ to be 0 and − cos(π/∞) = − cos(0) = −1.
(Note all diagonal entries of (cij) are − cos(π/1) = 1.)

Combining Theorem 6.4.3, Propositions 6.8.2, 6.8.4, 6.8.8, and Remark
6.8.9, we have the following.
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THEOREM 6.8.12. Let M = (mij) be a Coxeter matrix over I, W the associ-
ated Coxeter group, and C = (cij) the associated cosine matrix. Suppose that
no mij is∞. Then

(i) W can be represented as a spherical reflection group generated by
the reflections across the faces of a spherical simplex (with Gram
matrix C) if and only if C is positive definite.

(ii) Suppose, in addition, that M is irreducible. Then W can be
represented as a Euclidean reflection group generated by the
reflections across the faces of a Euclidean simplex (with Gram matrix
C) if and only if C is positive semidefinite of corank 1.

(iii) W can be represented as a hyperbolic reflection group generated by
the reflections across the faces of a hyperbolic simplex (with Gram
matrix C) if and only if C is nondegenerate of type (n, 1) and each
principal submatrix is positive definite.

6.9. SIMPLICIAL COXETER GROUPS: LANNÉR’S THEOREM

By Theorem 6.8.12, if the cosine matrix of a Coxeter diagram is positive def-
inite, the corresponding Coxeter group is finite (since it is a discrete subgroup
of isometries of a sphere). We shall see in Section 6.12 (Theorem 6.12.9), that,
conversely, if a Coxeter group is finite, then the cosine matrix of its Coxeter
matrix is positive definite.

Let �n stand for the n-simplex. Index its codimension-one faces by the
set I = {0, 1, . . . , n}. The set {�i}i∈I of its codimension-one faces is a mirror
structure as in 5.1. In this section we describe results of Lannér [184]
classifying those Coxeter groups W which can act as proper reflection groups
on a simply connected space with fundamental chamber a simplex. In other
words, Lannér determined which W act properly on U(W,�n). Such a W is a
simplicial Coxeter group. As we shall see in Proposition 6.9.1, it turns out that
any such W is a geometric reflection group generated by reflections across the
faces of an n-simplex in either Sn, En, or Hn.

Suppose W is the Coxeter group defined by an I × I Coxeter matrix
(mij) and C is the associated cosine matrix. By Lemma 5.1.7, W acts
properly on U(W,�n) if and only if the mirror structure on �n is W-finite
(Definition 5.1.6). By the remarks in the first paragraph of this section, this is
the case if and only if each principal submatrix of C is positive definite. So,
the problem is reduced to finding all Coxeter diagrams � with the property
that every proper subdiagram is positive definite. We first note that if � has
this property and it is not connected, then each of its connected components is
positive definite. It follows that there are only three possibilities depending on
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the determinant of the cosine matrix C:

(i) If det C > 0, then C is positive definite.

(ii) If det C = 0, then � is connected and C is positive semidefinite of
corank 1.

(iii) If det C < 0, then � is connected and C is type (n, 1).

Theorem 6.8.12 implies the first sentence of the following theorem; the second
sentence will be proved in Appendix C.

THEOREM 6.9.1. (Lannér [184].) Any simplicial Coxeter group can be
represented as a geometric reflection group with fundamental chamber an n-
simplex in either Sn, En, or Hn. The (irreducible) spherical and Euclidean
diagrams are given in Table 6.1, the hyperbolic diagrams in Table 6.2.

6.10. THREE-DIMENSIONAL HYPERBOLIC REFLECTION
GROUPS: ANDREEV’S THEOREM

Let us review the situation so far. A geometric reflection group on Sn, En,
or Hn is determined by its fundamental chamber. This chamber is a convex
polytope with dihedral angles integral submultiples of π and any such polytope
gives a reflection group (Theorem 6.4.3). In the spherical case the fundamental
polytope must be a simplex and in the Euclidean case it must be a a product
of simplices (Corollary 6.3.11). In the hyperbolic case all we know so far is
that the polytope must be simple. In the converse direction, if the fundamental
chamber is a simplex (i.e., if the reflection group is simplicial), then we have
a complete classification in all three cases (Theorem 6.9.1). There is nothing
more to said in the spherical and Euclidean cases. In the hyperbolic case we
know what happens in dimension 2: the fundamental polygon can be an m-
gon for any m � 3 and almost any assignment of angles can be realized by
a hyperbolic polygon (there are a few exceptions when m = 3 or 4). What
happens in dimension n � 3?

In dimension 3, there is a beautiful theorem due to Andreev [7], which gives
a complete answer. Roughly speaking, it says that, given a simple polytope
P3, for it to be the fundamental polytope of a hyperbolic reflection group, (a)
there is no restriction on its combinatorial type and (b) subject to the condition
that the mirror structure be W-finite, almost any assignment of dihedral angles
to the edges of P3 can be realized (provided a few simple inequalities hold).
Moreover, in contrast to the picture in dimension 2, the three-dimensional
hyperbolic polytope is uniquely determined, up to isometry, by its dihedral
angles—the moduli space is a point.

This situation reflects the nature of the relationship between geometry and
topology in dimensions 2 and 3. A closed 2-manifold admits a hyperbolic
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Spherical Diagrams Euclidean Diagrams

I2 (p) p

H3
5

H4
5

F4
4

ωA1
∼

4 4B2
∼

6G2
∼

4F4
∼

E6
∼

E7
∼

E8
∼

E6

E7

E8

An

Bn
4

Dn

An
∼

4Bn
∼

4 4Cn
∼

Dn
∼

Table 6.1. Irreducible spherical and Euclidean diagrams.

structure if and only if its Euler characteristic is< 0 and there is a moduli space
of such hyperbolic structures. In dimension 3 we have the famous Geometriza-
tion Conjecture of Thurston [276] (now a theorem of Perelman [237, 239,
238]). Roughly, it says that a closed 3-manifold M3 admits a hyperbolic struc-
ture if and only if it satisfies certain simple topological conditions. Moreover,
in contrast to the situation in dimension 2, the hyperbolic structure on M3 is
uniquely determined, up to isometry, by π1(M3). (This is a consequence of the
Mostow Rigidity Theorem [220], which is not true in dimension 2.)
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Hyperbolic Simplicial Diagrams

n = 2

with (p-1 + q-1 + r-1) < 1
p q

r

n = 3
5

5 4

5 5

5

4

4 5 4

5 4

5 5

n = 4

5

5

5

5

4

5 4

Table 6.2. Hyperbolic diagrams.

As one might expect, Andreev’s inequalities on the dihedral angles of
P3 precisely correspond to the topological restrictions on M3 in Thurston’s
Geometrization Conjecture. Thus, Andreev’s Theorem is a special case of (an
orbifoldal version of) the Geometrization Conjecture.

CONJECTURE 6.10.1. (Thurston’s Geometrization Conjecture.) A closed
3-manifold M3 admits a hyperbolic structure if and only if it satisfies the
following two conditions:

(a) Every embedded 2-sphere bounds a 3-ball in M3.

(b) There is no incompressible torus in M3 (i.e., M3 is “atoroidal”).

(An incompressible torus is an embedded T2 in M3 such that the inclusion
induces an injection π1(T2) ↪→ π1(M3).)

Conditions (a) and (b) imply conditions (a)′ and (b)′ below on the algebraic
topology of M3. (In fact, since the Poincaré Conjecture is true, (a) and (a)′ are
equivalent.)

(a)′ π2(M3) = 0.

(b)′ Z× Z �⊂ π1(M3).
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(When the fundamental group of M3 is infinite, (a)′ means that M3 is
aspherical.)

Here is the statement of Andreev’s Theorem.

THEOREM 6.10.2. (Andreev [7].) Suppose P3 is (the combinatorial type
of) a simple polytope, different from a tetrahedron. Let E be its edge set
and θ : E→ (0,π/2] any function. Then (P3, θ ) can be realized as a convex
polytope in H3 with dihedral angles as prescribed by θ if and only if the
following conditions hold:

(i) At each vertex, the angles at the three edges e1, e2, e3 which meet
there satisfy θ (e1)+ θ (e2)+ θ (e3) > π .

(ii) If three faces intersect pairwise but do not have a common vertex,
then the angles at the three edges of intersection satisfy
θ (e1)+ θ (e2)+ θ (e3) < π .

(iii) Four faces cannot intersect cyclically with all four angles = π/2
unless two of the opposite faces also intersect.

(iv) If P3 is a triangular prism, then the angles along the base and top
cannot all be π/2.

Moreover, when (P3, θ ) is realizable, it is unique up to an isometry of H3.

COROLLARY 6.10.3. Suppose that P3 is (the combinatorial type of) a simple
polytope, different from a tetrahedron, that {Fi}i∈I is its set of codimension-
one faces and that eij denotes the edge Fi ∩ Fj (when Fi ∩ Fj �= ∅). Given
an angle assignment θ : E→ (0,π/2], with θ (eij) = π/mij and mij an inte-
ger �2, then (P3, θ ) is the fundamental polytope of a hyperbolic reflection
group W ⊂ Isom(H3) if and only if the θ (eij) satisfy Andreev’s Conditions in
Theorem 6.10.2. Moreover, W is unique up to conjugation in Isom(H3).

Remark 6.10.4. In the case where all the dihedral angles are integral submul-
tiples of π , the conditions in Andreev’s Theorem have interesting topological
interpretations. Condition (i) means that the link of each vertex in P3 can
be given the structure of a spherical triangle. In view of Example 6.5.1, this
means that the group generated by the reflections across the three faces, which
meet at a given vertex, is finite. In other words, Condition (i) is the condition
that P3 can be given the structure of a three-dimensional orbifold (i.e., it has
local models of the form R3/G, where G is a finite group acting on R3. (See
Remarks 6.4.5 (c).)

Condition (ii) is the main condition of Theorem 6.10.2. It means that
P3 has no spherical suborbifold which does not bound (the quotient of) a
3-ball and that it has no suborbifold corresponding to a Euclidean triangle
group (Example 6.5.2). To be specific, suppose we have three edges as in
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Condition (ii). Then we can find an embedding � ↪→ P3 of a triangle � so
that the edges of � are mapped to the three faces of P3 and the vertices to
the edges e1, e2, e3. Let W ′ denote the special subgroup generated by the three
faces of P3. If θ (e1)+ θ (e2)+ θ (e3) > π , then W ′ is finite and U(W ′,�) = S2.
Moreover, since � divides P3 into two pieces, neither of which is a conical
neighborhood of a vertex, U(W ′,�) divides U(W, P3) into two pieces neither
of which is a 3-ball. So, π2(U(W, P3)) = H2(U(W, P3)) �= 0, i.e., P3 is not
aspherical as an orbifold. Similarly, if θ (e1)+ θ (e2)+ θ (e3) = π , then W ′ is
a Euclidean triangle group and Z× Z ⊂ W ′; so W cannot be a discrete group
of isometries of H3. Condition (iii) is similar. It just means that the two-
dimensional Euclidean 4-gon group with all angles π/2 (that is, D∞ × D∞)
is not a special subgroup of W. If Condition (iv) fails, then W = W ′ × D∞,
where W ′ is a triangle group. If W ′ is infinite, this means that W contains a
subgroup ∼= Z× Z, which is incompatible with U(W, P3) being H3. (If W ′ is
a hyperbolic triangle group, then U(W, P3) looks like H2 × R.)

The last sentence of Theorem 6.10.2 (uniqueness) follows from the follow-
ing rigidity result.

PROPOSITION 6.10.5. A simple convex polytope P3 ⊂ H3 is determined up
to isometry by its dihedral angles.

The first step in proving this is to note that the angles of each two-
dimensional face of P3 are determined by its dihedral angles. Indeed, since
P is simple, the link of each vertex is a spherical triangle. Each angle of such a
spherical triangle is the corresponding dihedral angle of P. A spherical triangle
is determined by its angles. (This is not true for spherical m-gons, if m > 3.)
So, the edge lengths of such a spherical triangle are determined by the dihedral
angles. But these edge lengths are the face angles at the given vertex (which
has the spherical triangle as its link).

The second step is to show that the two-dimensional faces of P3 are
determined, up to congruence, by the face angles. Of course, it is not true that
a hyperbolic m-gon is determined by its angles if m > 3; however, we have
the following lemma of Cauchy (who proved it in the spherical case). A proof
which works equally well in the hyperbolic case can be found in [20, Theorem
18.7.6, p. 298, vol. II].

LEMMA 6.10.6. (Cauchy’s Geometric Lemma.) Suppose F and F′ are two
hyperbolic m-gons with the same angles. Label each edge of F either +, 0, or
− as its length is >,=, or < the length of the corresponding edge of F′. Then
either all edges of F are labeled by 0 (and F is congruent to F′) or there are at
least four changes of sign as we go around ∂F.
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A second, purely topological, lemma of Cauchy asserts that it is impossible
to have a cellulation of S2 by polygons with such a (nontrivial) labeling of
edges. (These two lemmas are the key steps in Cauchy’s proof of his famous
Rigidity Theorem for convex polytopes in E3.) A proof of this second lemma
of Cauchy can be found in [20, Section 12.8, pp. 52–54, vol. II]. It is a simple
counting argument using the fact that the Euler characteristic of S2 is 2.

LEMMA 6.10.7. (Cauchy’s Topological Lemma.) Suppose we are given a
cellulation of S2, combinatorially equivalent to the boundary complex of a
three-dimensional polytope and that each edge of this cellulation is labeled by
an element of {+, 0,−} in such a fashion that for any 2-cell either all its edges
are labeled 0 or there are at least four sign changes. Then, in fact, all edges of
the cellulation are labeled 0.

Proof of Proposition 6.10.5. The dihedral angles of P3 determine the angles in
the link of each vertex. Since P3 is simple, each such link is a spherical triangle
and hence, is determined by up to congruence by its angles. The edge lengths
of the spherical triangles are angles of the faces of P3. So Lemmas 6.10.6
and 6.10.7 show that the dihedral angles of P3 determine its faces. But P3 is
obviously determined, up to an element of Isom(H3), by the knowledge of the
isometry types of its faces together with its dihedral angles. �

Remarks 6.10.8

(i) The above argument shows that a convex polytope in H3 is
determined by its face angles (whether or not it is simple). See [246,
Theorem 4.1].

(ii) A simple argument by induction on dimension shows that
Proposition 6.10.5 remains valid in all dimensions �3.

A Dimension Count

Next, we do a simple dimension count which indicates why Andreev’s Theo-
rem is true. The point is that the dimension of the space of isometry classes of
three-dimensional, hyperbolic, simple polytopes of a given combinatorial type
is the same as the dimension of the Euclidean space of all real-valued functions
on the edge set.

DEFINITION 6.10.9. The de Sitter sphere Sn−1,1 is the n-dimensional hyper-
surface in Rn,1 consisting of all spacelike vectors of length 1:

Sn−1,1 = {u ∈ Rn,1 | 〈u, u〉 = 1}.

Suppose P is a simple polytope in H3 and F is its set of (two-dimensional)
faces. For each F ∈ F let uF ∈ S2,1 be the inward-pointing unit vector normal
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to F. The (uF)F∈F determine P (since P is the intersection of the half-spaces
determined by the uF). The assumption that P is simple means that the
hyperbolic hyperplanes normal to the uF intersect in general position. So a
slight perturbation of the uF will not change the combinatorial type of P. That
is to say, the set of F-tuples (uF) which define a polytope combinatorially
equivalent to P is an open subset Y of (S2,1)F . If we change P by an element g ∈
Isom(H3) = O+(3, 1), then uF is changed to guF. Since the set of unit normals
to the faces of P spans R3,1, the group O+(3, 1) acts freely on Y . We can
identify the space of isometry classes of hyperbolic polytopes combinatorially
equivalent to P with the smooth manifold Y/O+(3, 1). If f = Card(F) denotes
the number of faces of P, we see that the dimension of this manifold is
f dim(S2,1)− dim(O+(3, 1)) = 3f − 6.

Let C(P) denote the manifold of isometry classes of hyperbolic polytopes
which (a) are combinatorially equivalent to P and (b) have all dihedral angles
< π/2. As explained above, we have

dim C(P) = 3f − 6. (6.22)

Let C̃(P) denote the slightly larger space where the dihedral angles are allowed
to take π/2 as a value. Let

� : C̃(P)→ (0,π/2]E

be the map which sends a hyperbolic polytope Q to the E-tuple (θ (e))e∈E,
where E is the edge set of P and θ (e) is the dihedral angle of Q along e. Let
Ṽ ⊂ (0,π/2]E be the open convex subset defined by Andreev’s inequalities in
Theorem 6.10.2 and let V = Ṽ ∩ (0,π/2)E. The previous explanation of the ne-
cessity of Andreev’s inequalities shows that the image of � is contained in Ṽ .
Andreev’s Theorem is equivalent to the statement that � : C̃(P)→ Ṽ is a
homeomorphism. Proposition 6.10.5 shows it is injective.

Let f , e, and v denote, respectively, the number of faces, edges, and vertices
of P. By (6.22), C(P) is a manifold of dimension 3f − 6 while V is a manifold
of dimension e (it is a open convex subset of e-dimensional Euclidean space).
Since χ (S2) = 2, f − e+ v = 2; hence, 3f − 6 = 3e− 3v. Since three edges
meet at each vertex, 3v = 2e and therefore 3f − 6 = 3e− 3v = e. So the
manifolds C(P) and V have the same dimension.

Since � is a continuous injection, it follows from invariance of domain that
its image is an open subset U of V . (Alternatively, one could write down a
formula for� in local coordinates, see that it is differentiable with nonsingular
derivative at each point and conclude by the Inverse Function Theorem that it
is a local diffeomorphism onto an open subset of V .)

To complete the proof of Theorem 6.10.2 it remains to show U = V . This
amounts to showing that U �= ∅ and that ∂U = ∂V . (Here ∂U means the
frontier of U, i.e., ∂U := U − U.) We will not prove either of these facts,
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both of which require geometric arguments, but instead refer the reader to
[7] or [278].

Remark 6.10.10. (The dimension count when n > 3.) The above dimension
count does not work in dimensions>3. As before, Pn is a simple n-polytope, fi
is the number of its i-dimensional faces, and C(P) is the space of isometry
classes of convex hyperbolic polytopes of the same combinatorial type as
P. Calculating as before, we have dim C(P) = nfn−1 − dim O+(n, 1), where
dim O+(n, 1) = (n+1

2

)
. By Remarks 6.10.8 (ii), the map θ : C(P)→ [0,π )fn−2

which assigns to each polytope its dihedral angles is an injection for n �3.
Hence, dim C(P) is � the dimension of the range. That is to say,

nfn−1 −
(

n+ 1

2

)
� fn−2. (6.23)

This inequality is precisely the Lower Bound Theorem from combinatorics,
proved by Barnette [16]. Moreover, as shown in [39, §19], for n > 3, equality
holds in (6.23) if and only if Pn is a “truncation polytope,” i.e., if it is
obtained from an n-simplex by successively truncating vertices. For example,
if we truncate a vertex of a simplex, we obtain a simplicial prism (see
Example 6.11.2 below). Since the dimension count works for truncation
polytopes, it might be a reasonable project to determine all possible hyperbolic
reflection groups with fundamental domain a truncation polytope. This would
almost certainly add to the store of examples discussed in the next section.
(This remark is taken from [58, Section 6].)

6.11. HIGHER-DIMENSIONAL HYPERBOLIC REFLECTION
GROUPS: VINBERG’S THEOREM

The main result of this section is that cocompact hyperbolic reflection groups
do not exist in arbitrarily high dimensions (Theorem 6.11.8). In the right-
angled case they do not exist in dimensions >4. We give the proof as Corol-
lary 6.11.7 below. In small dimensions �4 no general picture of hyperbolic
reflection group has emerged. As of 1985 the highest dimension of any known
cocompact example was known to exist was 7 [291, p. 64].

Some Isolated Examples

The four-dimensional simplicial examples are listed in Table 6.2. The nonsim-
plicial examples are surveyed in Vinberg’s paper [291]. We discuss some of
these in the next three examples.

Example 6.11.1. (The right-angled 120-cell.) Consider the four-dimensional

simplicial hyperbolic group W with diagram,
5◦−−−◦−−−◦−−− 4◦−−−◦. Number
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the nodes of this diagram from left to right as s0, s1, . . . , s4. Let vi denote the
vertex of the fundamental simplex opposite to the face fixed by si. The isotropy
subgroup at v4 has diagram H4. It is the symmetry group of a regular 120-
cell. (See Appendix B.2.) It follows that the union of the translates of the
fundamental simplex under the isotropy subgroup at v4 is a regular 120-cell
P4 in H4. Since the label on the furthest edge on the right of this diagram is 4,
each dihedral angle is π/2. By Theorem 6.4.3, we get a hyperbolic reflection
group WP4 with fundamental chamber P4. It is a subgroup of index (120)2

in W. (This is the order of the Coxeter group of type H4, the isotropy subgroup
at v4.)

Example 6.11.2. (Simplicial prisms.) Suppose (W, S) is a Coxeter system with
all mst �= ∞, with cosine matrix of type (n,1), with one principal minor of type
(n− 1,1) and with all other principal minors positive definite. We can realize
W as a reflection group on Hn across the mirrors of an n-simplex with one
missing vertex (which is “outside the sphere at infinity”). Suppose u0, . . . , un

are inward-pointing unit normals to the mirrors such that Span(u1, . . . , un) is
timelike (i.e., the 0th-principal minor is type (n-1, 1)). Let v be the inward-
pointing unit vector orthogonal to Span(u1, . . . , un). Then u0, . . . , un, v are
the inward-pointing normal vectors to a hyperbolic polytope combinatorially
equivalent to the product of an (n-1)-simplex and an interval. (We have
introduced a new face by “truncating” the missing vertex.) The “top” and
“bottom” faces of this prism do not intersect; they have unit normals u0 and
v, respectively. The new bottom face (orthogonal to v) intersects all the other
mirrors, except the top one, orthogonally. What is an example of such a Coxeter
system with the properties in the first sentence of this paragraph? For n = 5,

the diagram
5◦−−−◦−−−◦−−−◦−−− 4◦−−−◦ does the job. Other examples of such

diagrams can be found in [291, p. 61]. All such examples are classified in [169].

Example 6.11.3. (Doubling along a face.) Suppose the polytope Pn is a
fundamental chamber for a hyperbolic reflection group W on Hn. Let F
be a codimension-one face such that the dihedral angle between it and all
other faces which it intersects is π/2. Let s be the reflection across F. Put
D(P) := P ∪ s(P). D(P) is the convex polytope formed by gluing together two
copies of P along F. All its dihedral angles are identified with dihedral angles
in P; hence, they are all integral submultiples of π . It follows that the reflectons
across the faces of D(P) generate a Coxeter group W ′ which has index 2 in
W. For example, if P2 is a right-angled m-gon in H2, then D(P2) is a right-
angled (2m− 4)-gon. As another example, if P4 is the regular 120-cell of
Example 6.11.1, then D(P4) is another right-angled polytope in H4 with 226
three-dimensional faces. If P has two or more disjoint faces with this property
than we can obtain an infinite number of different examples by iterating this
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process. This method can be used to produce infinite families of cocompact
examples in dimensions �6 (see [4, 291]).

The h-Polynomial of a Simple Polytope

Given an n-dimensional simple polytope Pn, denote by fi(P), or simply fi, the
number of i-faces of P. The (n+ 1)-tuple (f0, . . . , fn) is the f -vector of P. Define
a degree n-polynomial h(t), called the h-polynomial of P by

h(t) =
n∑

i=0

hit
i :=

n∑
i=0

fi(t − 1)i. (6.24)

The (n+ 1)-tuple of coefficients (h0, . . . , hn) is the h-vector. The h-vector and
the f -vector obviously carry the same information; however, certain relations
which the fi satisfy are simpler when expressed in terms of the hi. The most
important of these relations are stated in the following lemma.

LEMMA 6.11.4. (See [39]). Suppose (h0, . . . , hn) is the h-vector of a simple
polytope Pn. Then for 0 � i � n,

(i) hi = hn−i and

(ii) hi � 0.

The demonstration of the above relations in [39] goes as follows. Suppose
Pn ⊂ Rn. Choose a linear function λ : Rn → Rwhich is “generic” with respect
to Pn in the sense that no edge of Pn is contained in a level set of λ. Then, on
each edge of Pn, λ is either monotone increasing or monotone decreasing. This
defines an orientation on each edge which we indicate by an arrow. Since Pn is
simple exactly n edges are incident to any given vertex v. Define the index of λ
at v to be the number of edges incident to v where the arrow points towards v.
Let gi be the number of vertices of index i. It is proved in [39, §18] that
gi = hi. In particular, the integer gi is independent of the choice of the linear
function λ. Given this, formulas (i) and (ii) in Lemma 6.11.4 are now obvious.
If we replace λ by −λ, then the index at any given vertex is changed from
i to n− i; hence, formula (i). By definition each gi is a nonnegative integer;
hence, (ii).

Remark. We will return to the h-polynomial in 17.4. There, we will use a
slightly different definition than (6.24). Instead, we will define h(t) in terms
of the f -vector of the simplicial complex dual to ∂P. This leads to formula
(17.16), which is equivalent to (6.24).

Next we estimate the average number A2 of vertices in a 2-dimensional
face of Pn. Since Pn is simple, each vertex is contained in exactly

(n
2

)
two-dimensional faces. So the total number of pairs of the form (F, v), where
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F is a 2-face and v is a vertex of F, is f0
(n

2

)
. So A2 is this number divided by the

total number of 2-faces, i.e.,

A2 = f0
f2

(
n

2

)
. (6.25)

From (17.16) we get

fi =
n∑

p=0

(
p

i

)
hp. (6.26)

Set m = [ n
2 ]. Taking into account formula (ii) of Lemma 6.11.4, we only need

to know the hp for p at or below the middle dimension. So, set

ĥp =




hp if p <
n

2
,

1

2
hp if p = n

2
.

Then (6.26) can be rewritten as

fi =
m∑

p=0

[(
n− p

i

)
+

(
p

i

)]
ĥp. (6.27)

In particular, for i = 0 and i = 2, we have

f0 = 2
m∑

p=0

ĥp (6.28)

and

f2 =
m∑

p=0

[(
n− p

2

)
+

(
p

2

)]
ĥp. (6.29)

Next, we claim that the coefficients in (6.29) are decreasing. Indeed,

[(
n− (p− 1)

2

)
+

(
p− 1

2

)]
−

[(
n− p

2

)
+

(
p

2

)]

=
[(

n− (p− 1)

2

)
−

(
n− p

2

)]
−

[(
p

2

)
−

(
p− 1

2

)]

= (n− p)− (p− 1) = n− 2p+ 1 > 0,
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where the final inequality is because p � m. So the smallest coefficient in
(6.29) occurs for p = m. Thus,

f2 >

[(
n− m

2

)
+

(
m

2

)] m∑
p=0

ĥp. (6.30)

Substituting (6.28) and (6.30) into (6.25), we get

A2 <
2
(n

2

)
[(n−m

2

)+ (m
2

)] . (6.31)

LEMMA 6.11.5. The right-hand side of (6.31) is




4(n− 1)

n− 2
, if n is even,

4n

n− 1
, if n is odd.

Hence, if n > 4, then A2 < 5.

Proof. If n = 2m, then the right hand side of (6.31) is

2
(n

2

)
2
(m

2

) = 2m(2m− 1)

m(m− 1)
= 4(2m− 1)

2(m− 1)
= 4(n− 1)

n− 2
.

If n = 2m+ 1, it is

2
(n

2

)
[(m+1

2

)+ (m
2

)] = 2(2m+ 1)(2m)

(m+ 1)m+ m(m− 1)

= 4m(2m+ 1)

2m2
= 4(2m+ 1)

2m
= 4n

n− 1
.

To prove the last sentence of the lemma, note that in both cases these are strictly
decreasing functions of n (for n > 2). Moreover, when n = 5, 4n

n−1 = 5, and

when n = 6, 4(n−1)
n−2 = 5. �

The idea of using the h-polynomial to make this estimate (and similar ones)
is due to Nikhulin.

COROLLARY 6.11.6. For n > 4, any simple polytope Pn must have a two-
dimensional face which is either a triangle or a quadrilateral.
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Hyperbolic Reflection Groups Do not Exist
in Arbitrarily High Dimensions

COROLLARY 6.11.7. (Vinberg.) There do not exist right-angled convex
(compact) polytopes in hyperbolic space of dimension >4.

Proof. If Pn ⊂ Hn is right angled, then at any vertex the set of inward-pointing
tangent vectors is isometric to the simplicial cone in Rn defined by xi � 0, for
1 � i � n. (In other words, the picture looks like the arrangement of coordinate
hyperplanes in Rn.) It follows that the angles of any 2-face are all π/2. But
right-angled m-gons in the hyperbolic plane exist if and only if m > 4 (see
Example 6.5.3). �

This corollary shows that there are no (cocompact) right-angled hyperbolic
reflections groups in dimensions > 4.

Remark. On the other hand, both the dodecahedron and the 120-cell obviously
have A2 = 5. Moreover, both of these polytopes have right-angled hyperbolic
versions. Thus, neither Corollary 6.11.6 nor 6.11.7 holds for n = 3 or 4.

Using a slightly more complicated version of this argument, Vinberg proved
the following.

THEOREM 6.11.8. (Vinberg [291].) Suppose Pn ⊂ Hn is a convex (compact)
polytope with all dihedral angles integral submultiples of π . Then n < 30. In
other words, hyperbolic reflection groups do not exist in dimensions �30.

6.12. THE CANONICAL REPRESENTATION

DEFINITION 6.12.1. Suppose V is a vector space over a field k. A linear
endomorphism r : V → V is a pseudoreflection if 1− r is of rank 1.

Of course, any reflection on a real vector space is a pseudoreflection. For
another example, if k = C, V = Cn and λ �= 1 is a complex number, then the
endomorphism r : Cn → Cn defined by r(e1) = λe1 and r(ei) = ei, for i > 1,
is a pseudoreflection.

LEMMA 6.12.2. ([29, p. 70].) Let ρ be an irreducible linear representation of
a group G on a finite-dimensional vector space V. Suppose there is an element
r ∈ G such that ρ(r) is a pseudoreflection.

(i) If u : V → V is a linear endomorphism which commutes with ρ(G),
then u is a homothety (i.e., u = c · 1, for some constant c in the
field k).
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(ii) Any nonzero G-invariant bilinear form on V is nondegenerate.
Moreover, any such form is either symmetric or skew-symmetric.

(iii) Any two such G-invariant bilinear forms are proportional.

Proof. Let D = Im(1− ρ(r)). Then dim(D) = 1. If x = (1− ρ(r))(y) ∈ D,
then, since u commutes with 1− ρ(r), u(x) = (1− ρ(r))(u(y)) ∈ D. Thus,
u(D) ⊂ D. Since any endomorphism of a one-dimensional vector space is
a homothety, u|D = (c · 1)|D, for some scalar c. Since ρ is irreducible and
since u− c · 1 commutes with ρ(G), the endomorphism u− c · 1 is either an
automorphism or the zero map. Since D is contained in its kernel, it is the zero
map, i.e., u = c · 1. This proves (i).

Suppose B is a nonzero G-invariant bilinear form. Then

N := {x ∈ V | B(x, y) = 0, for all y ∈ V}
is a proper ρ(G)-stable subspace; hence, 0. Similarly,

N ′ := {y ∈ V | B(x, y) = 0, for all x ∈ V} = 0.

This proves the first sentence of (ii). Let B′ be another nonzero G-invariant
form. Since V is finite dimensional, the nondegenerate form B induces an
isomorphism from V to its dual space. It follows that any bilinear form B′

can be written as B′(x, y) = B(u(x), y) for some linear endomorphism u. Since
B and B′ are both G-invariant, u commutes with ρ(G). By (i), u = c · 1. Hence,
B′(x, y) = B(cx, y) = cB(x, y). This proves (iii). To prove the second sentence
of (ii), we apply (iii) to the case where B′ is defined by B′(x, y) = B(y, x).
This yields B(y, x) = cB(x, y) = c2B(y, x). So c2 = 1, c = ±1 and B is either
symmetric or skew-symmetric. �

As in Definition 3.3.1, let M = (mij) be a Coxeter matrix on a set I. For each
i ∈ I, introduce a symbol si, set S = {si}i∈I , and let W be the group defined by
the presentation 〈S | R〉 associated to M. We will see below in Corollary 6.12.6
that (W, S) is, in fact, a Coxeter system. (This is not a tautology.)

As in 6.8, the cosine matrix (cij) associated to M is defined by (6.21). Let RI

be a real vector space of dimension Card(I) with basis {ei}i∈I . Let BM( , ) be the
symmetric bilinear form on RI associated to the cosine matrix:

BM(ei, ej) = cij. (6.32)

We are going to define a linear representation ρ : W → GL(RI) so that the
form BM will be ρ(W)-invariant. In other words, the image of ρ will lie in
O(BM), the isometry group of the form.

For each i ∈ I, let Hi be the hyperplane in RI defined by

Hi := {x | BM(ei, x) = 0}
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and ρi : RI → RI the linear reflection

ρi(x) := x− 2BM(ei, x)ei . (6.33)

LEMMA 6.12.3. The order of ρiρj is mij.

Proof. Let Wij = 〈ρi, ρj〉 be the dihedral group generated by ρi and ρj. The
subspace Eij of RI spanned by ei and ej is Wij-stable. To simplify notation, set
m = mij. The restriction of the bilinear form BM to Eij is given by the matrix




1 − cos
π

m

− cos
π

m
1




which is positive definite for m �= ∞. For m = ∞,we get
(

1 −1

−1 1

)

which is positive semidefinite with kernel the line spanned by the vector
ei + ej. We consider the two cases separately.

Suppose m = ∞. Let u = ei + ej. Then

(ρiρj)(ei) = ρi(ei + 2ej) = 3ei + 2ej = 2u+ ei.

Hence, for all n ∈ Z,

(ρiρj)
n(ei) = 2nu+ ei.

which shows ρiρj has infinite order.
Suppose m �= ∞. Since BM is positive definite on Eij, we can identify Eij

with R2. Let Li (resp. Lj) be the line in Eij orthogonal to ei (resp. ej). The
restriction of ρi (resp. ρj) to Eij is orthogonal reflection across Li (resp. Lj), the
lines Li and Lj make an angle of π/m and the action of Wij on Eij is equivalent to
the standard action, defined in Example 3.1.2, of the dihedral group Dm on R2.
In particular, the restriction of (ρiρj) to Eij is a rotation through 2π/m. Since
BM is positive definite on Eij, RI decomposes as a Wij representation as a direct
sum of Eij and its orthogonal complement (with respect to BM). Moreover, Wij

fixes this orthogonal complement. So, the order of ρiρj is m. �

COROLLARY 6.12.4. The map S→ GL(RI) defined by si → ρi extends to a
homomorphism ρ : W → GL(RI).

Proof. We must check that the relations in R are sent to the identity element
of GL(RI). The relation s2

i goes to ρ2
i which equals 1, since ρi is a reflec-

tion. The relation (sisj)mij is sent to (ρiρj)mij , which is also equal to 1, by
Lemma 6.12.3. �
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DEFINITION 6.12.5. The homomorphism ρ : W → GL(RI) of Corollary
6.12.4 is called the canonical representation.

The next result shows that there is a Coxeter system for any given Coxeter
matrix M.

COROLLARY 6.12.6. Suppose M is a Coxeter matrix and W is the group
with generating set S defined by the presentation associated to M.

(i) For each i ∈ I, si has order 2.

(ii) The si, i ∈ I, are distinct.

(iii) sisj has order mij.

Hence, (W, S) is a Coxeter system.

Proof. The representation ρ takes the si to the distinct reflections ρi onRI . This
proves (i) and (ii). By Lemma 6.12.3, the order of ρiρj is mij. Hence, this is also
the order of sisj, proving (iii). It follows that (W, S) is a pre-Coxeter system
and that M is its associated matrix (defined in 3.3). So (W, S) is a Coxeter
system. �

PROPOSITION 6.12.7. ([29, Prop. 7, p. 102].) Suppose the Coxeter system
(W, S) is irreducible (Definition 3.5.3). Consider the canonical representation
on E = RI . Let E0 be the kernel of the bilinear form BM (i.e., E0 = {x ∈ E |
BM(x, y) = 0 ∀y ∈ E}). Then W acts trivially on E0 and every proper W-
stable subspace of E is contained in E0.

Proof. It follows from equation (6.33) that each generator ρi acts trivially on
E0; hence, W fixes E0. Let E′ be a W-stable subspace of E. Suppose that some
basis vector ei lies in E′. If j ∈ I is another index such that mij �= 2, then from
(6.33) we see that the coefficient of ej in ρj(ei) is nonzero; hence, ej is also
in E′. Since (W, S) is irreducible, it follows that each basis vector must lie in
E′. The conclusion is that if any basis vector lies in E′, then they all do. So
if E′ is a proper subspace it cannot contain any ei. Now consider E as a 〈ρi〉-
representation, where 〈ρi〉 denotes the cyclic group of order 2 generated by
ρi. It decomposes as the direct sum of the ±1 eigenspaces of ρi, i.e., as the
direct sum of line generated by ei and the hyperplane Hi which is orthogonal
to ei (with respect to BM). Since ei /∈ E′, E′ ⊂ Hi for all i ∈ I. That is to say,
E′ ⊂ ∩Hi = E0. �

COROLLARY 6.12.8. Suppose (W, S) is irreducible.

(i) If BM is nondegenerate, then the canonical representation on E is
irreducible (i.e., there is no nontrivial proper W-stable subspace
of E).
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(ii) If BM is degenerate, then the canonical representation is not
semisimple (i.e., E has a nontrivial W-stable subspace which is
not a direct summand).

Proof. Statement (i) follows immediately from Proposition 6.12.7, since if BM

is nondegenerate, then E0 = 0. As for (ii), if BM is degenerate, then E0 �= 0
and by Proposition 6.12.7, E does not contain any W-stable complementary
subspace. �

A Finiteness Criterion

The following classical result gives a necessary and sufficient condition for
a Coxeter group to be finite. It is important for the classification results in
Appendix C.

THEOREM 6.12.9. Suppose M = (mij) is a Coxeter matrix on a set I, that
(cij) is its associated cosine matrix defined by (6.21) and that (W, S) is its
associated Coxeter system. Then the following statements are equivalent:

(i) W is a reflection group on Sn, n = Card(I)− 1, so that the elements
of S are represented as the reflections across the codimension-one
faces of a spherical simplex σ .

(ii) (cij) is positive definite.

(iii) W is finite.

Proof. We first establish the equivalence of (i) and (ii). By Theorem 6.4.3,
(i) is equivalent to the existence of a spherical simplex with dihedral angles
of the form π/mij and by Proposition 6.8.2, this is equivalent to the positive
definiteness of (cij). Hence, (i) ⇔ (ii). Obviously, (i) ⇒ (iii). It remains to
show that (iii) ⇒ (ii). So, suppose W is finite. Without loss of generality we
can assume that (W, S) is irreducible. (For when (W, S) is reducible, its cosine
matrix is positive definite if and only if the cosine matrix of each factor is
positive definite.) Consider the canonical representation of W on E. Since W
is finite, Corollary 6.6.2 implies that E is semisimple. So by Corollary 6.12.8,
the bilinear form BM is nondegenerate and the representation E is irreducible.
By Lemma 6.6.1, E admits a W-invariant inner product, let us call it B′. By
Lemma 6.12.2, BM is proportional to B′. So, BM is either positive definite or
negative definite. Since BM(ei, ei) = cii = 1, the possibility of being negative
definite is excluded. �

The Dual of the Canonical Representation
(or the Geometric Representation)

In Appendix D we will establish the following result of Tits.
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THEOREM 6.12.10. ([29, Corollary 2, p. 97].) ρ∗ : W → GL((RI)∗), the
dual of the canonical representation, is faithful.

COROLLARY 6.12.11. ρ is faithful.

COROLLARY 6.12.12. Every finitely generated Coxeter group is virtually
torsion-free (i.e., contains a torsion-free subgroup of finite index).

Proof. Selberg’s Lemma (see [254]) asserts that every finitely generated
subgroup of GL(n,R) is virtually torsion-free. �

NOTES

The treatment in 6.4 is based on [279]. Section 6.10 is largely based on an unpublished
manuscript [278] of Thurston continuing [279]. Sections 6.3 and 6.12 come from [29].
Sections 6.9 and 6.11 are based on their treatments in [291].

6.9. In [29, Ex. 12c), p.141] a hyperbolic simplicial Coxeter group is called a Coxeter
group of “compact hyperbolic type.” If its fundamental simplex is not required to
be compact but is still required to have finite volume (possibly with ideal vertices),
then it is said to be of “hyperbolic type.” (A list of the diagrams of the hyperbolic
groups of with a fundamental simplex of finite volume can be found in [163, §6.9].)
Similar terminology is still widely used, particularly by people working on the theory
of buildings. This terminology is misleading. It gives the false impression that the
fundamental chamber of a hyperbolic reflection group is always a simplex, completely
ignoring the polygonal reflection groups of Example 6.5.3 as well as the 3-dimensional
examples of 6.10. The situation is particularly egregious when a result such as
Theorem 6.8.12 is presented in [180] as giving a “classification of hyberbolic reflection
groups.”

6.10. By the early 1970’s the following general picture of closed 3-manifolds had
emerged. Kneser had proved in 1928 that every closed 3-manifold M3 had unique
decomposition as a connected sum: M3 = M1# · · · #Mk such that each of summands
Mi could not be further decomposed. Such a summand is called prime. Moreover, apart
from a few exceptional cases (only S2 × S1 in the orientable case), every prime M3

was either aspherical or had finite fundamental group. Using Waldhausen’s ideas, Jaco
and Shalen and independently, Johannson, proved that every prime (or irreducible)
3-manifold can be canonically decomposed along incompressible tori into pieces
N1, . . .Nm such that each Nj is a manifold with boundary, each component of the
boundary is a torus and each Nj is either Seifert fibered (i.e., essentailly an S1-bundle)
or simple, which means that it is atoroidal (i.e., any incompressible torus is parallel
to the boundary). This is called the JSJ decomposition of the 3-manifold. Around
1976 Thurston conjectured that the interior of each simple piece in this decomposition
could be given the structure of a hyperbolic manifold of finite volume. In particular,
a closed 3-manifold is aspherical and atoroidal if and only if it admits a hyperbolic
structure. The Geometrization Conjecture was a further generalization. First, Thurston
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showed that there are exactly eight 3-dimensional geometries in the following sense:
a Lie group G and a compact subgroup K such that (a) G/K is a simply connected
3-manifold, (b) G admits a discrete subgroup � such that �\G/K has finite volume,
and (c) G is maximal with respect to these properties. Three of these geometries yield
the constant curvature spaces, S3, E3, and H3. The other five all have Siefert fibered
structures. The full statement of the Geometrization Conjecture (6.10.1) is that the
interior of each piece in the JSJ decomposition has a geometric structure. In particular,
this means that if the fundamental group of M3 is finite then it is covered by S3.
So, the Geometrization Conjecture implies the Poincaré Conjecture. (See 10.3.) The
Geometrization Conjecture now should be called Perelman’s Theorem.

The Mostow Rigidity Theorem [220] was a milestone of twentieth-century mathe-
matics. Suppose Y is a locally symmetric, closed Riemannian manifold with no local
factor locally isometric to either (a) Euclidean space, (b) a compact symmetric space, or
(c) the hyperbolic plane. Then Y is determined up to isometry (and homotheties of the
local factors) by its fundamental group. More precisely, the Rigidity Theorem states that
if Y ′ is another such locally symmetric space, then any isomorphism π1(Y)→ π1(Y ′) is
induced by an isometry Y → Y ′. The theorem is definitely false in the presence of local
En or H2 factors. Indeed, the n-torus has many different flat metrics (a moduli space of
them) and the same is true for hyperbolic metrics on any closed surface of genus > 1.
Here is another way to state the same result. Suppose G is a semisimple Lie group of
noncompact type, K a maximal compact subgoup and � ⊂ G a torsion-free uniform
lattice. (This means that � is a cocompact discrete subgroup of G.) Suppose further that
(�, G, K) has no factor isometric to one of the form (�′, G′, K ′), where G′ = O+(2, 1),
K = O(2) and �′ is a surface group. (However, factors where �′ is an irreducible
lattice in a product of more than one copy of O+(2, 1) are allowed.) The theorem says
that if (�1, G1, K1) and (�2, G2, K2) are two such (where the Gi are normalized to be
centerless), then any isomorphism �1 → �2 extends to an isomorphism G1 → G2. For
example, the Rigidity Theorem means that if two closed hyperbolic n-manifolds, n �3,
have isomorphic fundamental groups, then they are isometric. The Rigidity Theorem is
valid for locally symmetric orbifolds (i.e., the lattice � does not have to be torsion-free).
It is also valid in the cofinite volume case as well (i.e., for non-uniform lattices). If the
rank is�2, this follows from Margulis’ “Super Rigidity Theorem.” In the rank one case
(e.g. for hyperbolic manifolds) it was proved by Prasad, provided one assumes that the
isomorphism �1 → �2 “preserves the peripheral structure” (i.e., maps the fundamental
group of the cusps to themselves). This last point is important to the Geometrization
Conjecture. It means that the hyperbolic pieces in the JSJ decomposition have a unique
hyperbolic structure. So, the Geometrization Conjecture means that geometric pieces
in the decomposition are unique up to isometry.

6.11. We have avoided discussing hyperbolic reflection groups of finite covolume in
6.9, 6.10, and 6.11. In fact, there are some beautiful examples of these. One should
have the following picture in mind. The fundamental polytope Pn has finite volume
and one or more ideal vertices lying on the sphere at infinity. Its combinatorial type
is the same as that of a compact polytope. The special subgroup generated by the
reflecting hyperplanes through an ideal vertex is a Euclidean reflection group. (This
is because a “horosphere” at an ideal point is isometric to Euclidean space.) For
example, in the three-dimensional case the isotropy subgroup at an ideal vertex can
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be a Euclidean triangle group (Example 6.5.2) or D∞ × D∞. This last case shows that
the three-dimensional polytope need not be simple; the link of an ideal vertex can be
a square. More generally, the link of an ideal vertex in Pn can be a product simplices
(Corollary 6.3.11 and Theorem 6.8.12 (ii)). Using Tables 6.1 and 6.2, it is easy to find all
hyperbolic Coxeter groups with fundamental polytope a simplex with one or more ideal
vertices (one allows some of the principal minors to be semidefinite rather than positive
definite). The diagrams can be found in the exercises of [29, Ch.V, §4, Ex. 15–17]. There
are 11 such three-dimensional examples and 3 more in dimension 9 (all coming from the
Euclidean reflection group Ẽ8. Interesting nonsimplicial examples include the regular
right-angled three-dimensional octahedron with all its vertices ideal and the regular
right-angled 24-cell with all its vertices ideal. In dimension 3, there is also a complete
classification, once again due to Andreev [8]. Just as in Theorem 6.10.2 it says an
assignment of dihedral angles is possible if and only if the obvious necessary conditions
are satisfied (the previous conditions plus the condition that special subgroups which are
Euclidean reflection groups can occur only at the ideal vertices.) Using the construction
in Example 6.11.3, Allcock [4] has shown that there exist infinite families of such ideal
polytopes in all dimensions through 19. On the other hand, Prokhorov [241] has proved
there are no such examples with cofinite volume in dimensions >992.

6.12. Serre [255, p. 99] says that Selberg’s Lemma (used in the proof of Corol-
lary 6.12.12) follows from a classical argument due to Minkowski [217].
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Chapter Seven

THE COMPLEX �

As we mentioned in 1.1, associated to any Coxeter system (W, S) there is a
cell complex � equipped with a proper, cocompact W-action. It is the natural
geometric object associated to (W, S). In this chapter we define� and describe
some of its basic properties. In Section 8.2 of the next chapter we will prove
that � is contractible and in 12.3, that its natural piecewise Euclidean metric
is CAT(0).

Several other important notions are explained in this chapter. In 7.1 we
define the nerve L of (W, S): it is a certain simplicial complex with vertex set S.
In 7.3 we define a Coxeter polytope: it is the convex hull of a generic orbit of
a finite Coxeter group acting on Rn. � can be cellulated so that each cell is a
Coxeter polytope and so that there is one W-orbit of n-cells for each (n− 1)-
simplex in L and so that the link of each 0-cell is L. In 7.5 we determine the
fixed point set of any finite special subgroup on �.

7.1. THE NERVE OF A COXETER SYSTEM

DEFINITION 7.1.1. A subset T of S is spherical if WT is a finite subgroup
of W. If this is the case, we say that the special subgroup WT is spherical.

By Theorem 4.1.6, for any subset T of S, (WT , T) is a Coxeter system. By
Theorem 6.12.9, if T is spherical, then WT can be represented as a geometric
reflection group on the unit sphere in RT . (This is the explanation for the
“spherical” terminology.) Denote by S(W, S) (or simply S) the set of all
spherical subsets of S. S is partialy ordered by inclusion. Let S (k) denote the
set of spherical subsets of cardinality k.

The poset S>∅ of all nonempty spherical subsets is an abstract simplicial
complex. (This just means that if T ∈ S>∅ and ∅ �= T ′ ⊂ T , then T ′ ∈ S>∅;
cf. Definition A.2.6.) We will also denote this simplicial complex L(W, S) (or
simply L) and call it the nerve of (W, S). In other words, the vertex set of L
is S and a nonempty set T of vertices spans a simplex σT if and only if T is
spherical. Thus, S (k) is the set of (k − 1)-simplices in L. (See Appendix A.2
for a further discussion of posets and simplicial complexes.)
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Example 7.1.2. If W is finite, then S is the power set of S and L is the full
simplex on S. (Compare Example A.2.4.)

Example 7.1.3. If W is the infinite dihedral group D∞, then L(W, S) consists
of two points (i.e., L = S0).

Example 7.1.4. (The nerve of a geometric reflection group). As in Chapter 6,
suppose W is a geometric reflection group (cf. Definition 6.4.4) generated by
the set S of reflections across the codimension-one faces of a simple convex
polytope Pn in En or Hn. Then (W, S) is a Coxeter system and S is naturally
bijective with the set of codimension-one faces of P. Since P is simple, the
boundary of its dual polytope ∂P∗ is a simplicial complex (whose vertex
set can be identified with S). It turns out that the nerve L of the Coxeter
system can be identified with ∂P∗. To understand this, consider the poset
F(P) of nonempty faces of P as in Example A.2.3. For each F ∈ F(P), let
S(F) ⊂ S be the set of reflections across codimension one faces which contain
F. Since W acts properly, each isotropy subgroup is finite, i.e., each S(F) is
a spherical subset of S. Thus, F(P)op ⊂ S (where F(P)op denotes the dual
poset of F(P)). (A discussion of dual polytopes is given in Appendix A.2.)
So, F(∂P∗) = F(∂P)op is a subset of S>∅, i.e., ∂P∗ is a subcomplex L. (See
Lemma 7.1.9 below.) The opposite inclusion L ⊂ ∂P∗ follows from [290]. We
shall give a different argument in the next chapter (Corollary 8.2.10).

Example 7.1.5. Suppose (W, S) decomposes as

(W, S) = (W1 ×W2, S1 ∪ S2)

where the elements of S1 commute with those of S2. A subset T = T1 ∪ T2,
with Ti ⊂ Si, is spherical if and only if T1 and T2 are both spherical. Hence,

S(W, S) ∼= S(W1, S1)× S(W2, S2) .

Similarly, the simplicial complex L(W, S) decomposes as the join

L(W, S) = L(W1, S1) ∗ L(W2, S2) .

(See Appendix A.4 for the definition of the join of two simplicial complexes.)

Example 7.1.6. (The Coxeter system associated to a labeled simplicial
graph). Suppose ϒ is a simplicial graph with vertex set S and that the edges
of ϒ are labeled by integers �2. This gives the data for a Coxeter matrix
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(mst) over S:

mst =




1 if s = t,

the label on {s, t} if {s, t} is an edge,

∞ otherwise.

As in the beginning of Section 3.3, associated to the matrix (mst) there is a
Coxeter system (W, S). Note that the 1-skeleton of L(W, S) is ϒ .

Example 7.1.7. (The right-angled Coxeter system associated to a graph.)
Suppose, as above, that ϒ is a simplicial graph. Put the label 2 on each edge
by default. Then there is an associated right-angled Coxeter system (W, S) such
that the 1-skeleton of L(W, S) is ϒ . As in Example A.3.8, L(W, S) is the flag
complex determined by ϒ . (The official definition of a “flag complex” is given
as Definition A.3.5. We repeat it here. A simplicial complex L is a flag complex
if a finite, nonempty set of vertices T spans a simplex of L if and only if any
two elements of T are connected by an edge.)

LEMMA 7.1.8. If (W, S) is right angled, then L(W, S) is a flag complex.

Proof. Suppose T is a subset of S such that any two elements of T are
connected by an edge in L. Since (W, S) is right angled, this implies that
WT
∼= (C2)Card(T). Since this group is finite, T is spherical, i.e., σT ∈ L. So

L is a flag complex. �

The Poset of Spherical Cosets

A spherical coset is a coset of a spherical special subgroup in W. The set of all
spherical cosets is denoted WS, i.e.,

WS =
⋃
T∈S

W/WT . (7.1)

It is partially ordered by inclusion.
By Theorem 4.1.6 (iii), wWT = w′WT ′ if and only if T = T ′ and w−1w′ ∈

WT ′ . It follows that the union in (7.1) is a disjoint union. It also follows that
there is well-defined projection map WS → S given by wWT → T . A section
S ↪→ WS of the projection is defined by T → WT . W acts naturally on the
poset WS and the quotient poset is S.

The Nerve of a Mirrored Space

After recalling the definitions of the “nerve of a mirrored space” in Def-
inition 5.1.1 and of “W-finite” in Definition 5.1.6, the following lemma is
immediate.
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LEMMA 7.1.9. A mirror structure (Xs)s∈S on a space X is W-finite if and only
if N(X) ⊂ L(W, S).

7.2. GEOMETRIC REALIZATIONS

As we will explain in more detail in Appendix A.2, associated to any poset P
there is an abstract simplicial complex Flag(P) consisting of all finite chains
in P . (A chain is a nonempty totally ordered subset of P .) The topological
space corresponding to Flag(P) is denoted |P| and called the geometric
realization of P . Since a simplex in Flag(P) is a chain in P , the vertex set
of any simplex is totally ordered. In particular, each simplex in Flag(P) has a
minimum vertex as well as a maximum one.

Remark 7.2.1. If P is the poset of cells in a convex cell complex �, then
the simplicial complex Flag(P) is the barycentric subdivision of �. (See
Example A.4.6.)

The next lemma is one of the underpinnings for most of the examples
constructed in Chapters 8, 10 and 11. It implies that the condition of being the
nerve of Coxeter system imposes no conditions on the topology of a simplicial
complex: it can be any polyhedron.

LEMMA 7.2.2. ([71, Lemma 11.3, p. 313].) Suppose � is a convex cell
complex. Then there is a right-angled Coxeter system (W, S) with nerve
the barycentric subdivision of �. (Barycentric subdivisions are defined in
Appendix A.3.)

Proof. Let b� be the barycentric subdivision of � and let S = Vert(b�). As
in Example 7.1.7, the 1-skeleton of b� gives the data for a presentation of a
right-angled Coxeter system (W, S). Flag complexes are determined by their
1-skeletons (Appendix A.3). The proof of Lemma 7.1.8 shows that L(W, S) is
flag complex determined by the 1-skeleton of b�. Since b� is a flag complex
(associated to the poset of cells of �), it coincides with L(W, S). �

Here we are dealing with two posets, S and WS. The geometric realization
of S is denoted K(W, S) (or simply K). The geometric realization of WS
is denoted �(W, S) (or simply �). The simplicial complex � is one of the
fundamental objects of study in this book.

The projection WS → S induces a simplicial projection π : �→ K. Sim-
ilarly, the inclusion S ↪→ WS induces an inclusion ι : K ↪→ �. We identify
K with its image under ι. The W-action on WS induces a W-action on �. K,
as well as any one of its translates by an element of W, is called a chamber
of �.

LEMMA 7.2.3. Any simplex of � is a translate of a simplex of K.
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Proof. By Theorem 4.1.6 (iii), wWT ⊂ w′WT ′ if and only if T ⊂ T ′ and
wWT ′ = w′WT ′ . It follows that if w0WT0 ⊂ · · · ⊂ wkWTk , then T0 ⊂ · · · ⊂ Tk

and that wiWTi = w0WTi for all 0 � i � k. In other words, the corresponding
simplex in � is the translate by w0 of the simplex in K corresponding to
T0 ⊂ · · · ⊂ Tk. �

K is the cone on the barycentric subdivision of L. (By Remark 7.2.1, the
simplicial complex Flag(S>∅) is the barycentric subdivision of L; the empty
set provides the cone point.) For each s ∈ S let

Ks := |S�{s}|,
i.e., Ks is the union of the (closed) simplices in K with minimum vertex
{s}. (In other words, Ks is the closed star of the vertex corresponding to s
in the barycentric subdivision of L.) The family (Ks)s∈S is a mirror structure
on K. (“Mirror structures” are defined at the beginning of 5.1.) The isotropy
subgroup at an interior point of a simplex (T0 ⊂ · · · ⊂ Tk) is WT0 . Thus, ι(Ks)
is contained in the fixed set of s on �. By Lemma 5.2.5, ι : K → � induces
a W-equivariant map ι̃ : U(W, K)→ �. By Lemma 7.2.3, ι̃ is a bijection. It is
clear from the definitions that U(W, K) and � have the same topology. So, we
have proved the following theorem.

THEOREM 7.2.4. ι̃ : U(W, K)→ � is a W-equivariant homeomorphism.

For use in Section 8.1 we record the following.

LEMMA 7.2.5

(i) K is contractible.

(ii) For each spherical subset T, the coface KT (=⋂
s∈T Ks) is

contractible.

(iii) For each nonempty spherical subset T, the union of mirrors KT is
contractible. (Recall KT =⋃

s∈T Ks .)

Proof. K = |S| is contractible because it is a cone. (The simplest explanation
for the fact that it is a cone is that the poset S has a minimum element, namely
∅.) Similarly, KT = |S�T | is a cone since T is the minimum element of S�T .
This takes care of assertions (i) and (ii).

There are two ways to prove assertion (iii). The first is to say that, by asser-
tion (ii), KT is a union of a finite number of contractible pieces, namely, the Ks,
s ∈ T , and that the intersection of any subcollection of the Ks is contractible. It
follows from van Kampen’s Theorem that KT is simply connected and by the
Acyclic Covering Lemma (Lemma E.3.3 of Appendix E.3) that KT is acyclic.
So, by the Hurewicz Theorem, πi(KT ) is trivial for all i (that is to say, KT is
weakly contractible). Since KT is a CW complex, a well-known theorem of
J.H.C. Whitehead implies that it is contractible.
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The second method for proving (iii) is more direct. |S>∅| is the barycentric
subdivision bL of L. For any T ∈ S>∅, σT is a simplex of L, so its barycentric
subdivision bσT is a subcomplex of bL. KT is the union of the closed stars in
bL of the vertices s, s ∈ T . In other words, KT is the first derived neighborhood
of bσT in bL. We claim that there is a simplicial deformation retraction
r : KT → bσT . Since bσT is contractible, this gives the result. The retraction
is defined as follows. A vertex of KT lies in Ks for some s ∈ T . A vertex of Ks

corresponds to some spherical subset T ′, with s ∈ T ′. Hence, if T ′ corresponds
to a vertex of KT , we can consider the spherical subset T ′ ∩ T . This intersection
is nonempty since s ∈ T ′ ∩ T for some s ∈ T ′. Hence, T ′ ∩ T corresponds to
a vertex of bσT and the map T ′ → T ′ ∩ T defines the simplicial retraction
r : KT → bσT . The map r collapses a simplex of the form {T ′0, . . . , T ′k} to its
face {T ′0 ∩ T , . . . , T ′k ∩ T}. In the geometric realization of this simplex we have
the line segment from any point x to its image under r. Therefore, the straight
line homotopy ht(x) = (1− t)x+ tr(x) is a well-defined homotopy from
id to r. �

7.3. A CELL STRUCTURE ON �

For any poset P there are two decompositions of |P| into closed subspaces.
Both decompositions are indexed by P . For the first decomposition take the
geometric realizations of the subposets P�p, p ∈ P . |P�p| is a face of |P|. For
the second decomposition take the geometric realizations of the subposetsP�p,
p ∈ P . |P�p| is a coface of |P|. (All this is explained further in Appendix A.5.)

For example, if P is the poset of cells in a regular cell complex �, then the
faces of |P| are the cells of �. A cell p is the union of all simplices in the
barycentric subdivision with maximum vertex p. If P is the poset of cells in a
PL cellulation of a manifold, then the cofaces are the dual cells.

The principal result of this section is that in the case of the poset WS, the
faces are cells. We begin by considering the case where the Coxeter group is
finite.

Coxeter Polytopes

In this subsection we suppose W is finite. As in 6.12, consider the canonical
representation of W on RS (RS ∼= Rn, n = Card(S)). Choose a point x in the
interior of the fundamental chamber; such an x is called a generic point (x is
determined by specifying its distance to each of the bounding hyperplanes, i.e.,
by specifying an element of (0,∞)S.)

DEFINITION 7.3.1. The Coxeter polytope (or the Coxeter cell) associated to
(W, S) is the convex polytope CW (or simply C) defined as the convex hull of
Wx (a generic W-orbit).
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Figure 7.1. Permutohedron.

Examples 7.3.2

(i) If W = C2, the cyclic group of order 2, then C is the interval [−x, x].

(ii) If W = Dm is the dihedral group of order 2m, then C is a 2m-gon. (It
is a regular 2m-gon if x is equidistant from the two rays which bound
the fundamental sector containing x.)

(iii) If (W, S) is reducible and decomposes as W = W1 ×W2, then CW

decomposes as CW = CW1 × CW2 . In particular, if W = (C2)n, then C
is a product of intervals (and if x is equidistant from the bounding
hyperplanes, then C is a regular n-cube).

(iv) If W is the symmetric group on n+ 1 letters (the group associated to
the Coxeter diagram An), then C is the n-dimensional permutahedron.
The picture for n = 3 is given in Figure 7.1 above.

LEMMA 7.3.3. ([56, Lemma 2.1.3, p. 117].) Suppose W is finite and that
C is its associated Coxeter polytope. Let F(C) be its face poset. Then the
correspondence w→ wx induces an isomorphism of posets, WS ∼= F(C). (In
other words, a subset of W corresponds to the vertex set of a face of C if and
only if it is a coset of a special subgroup of W.)

Proof. As in Definition A.1.8, let K ⊂ Rn be a fundamental simplicial cone
for W on Rn and let x ∈ int(K). For each s ∈ S, let es be the vector on the
extremal ray of K which is opposite to the face fixed by s. Let ϕ be the linear
form on Rn defined by v→ 〈v, es〉. Put c = 〈x, es〉. We claim that c is the
maximum value of ϕ on K. By Complements 6.6.10, K is a Dirichlet domain
for W on Rn, i.e., any point of K is at least as close to x as it is to any other
point in the orbit of x. In particular, |wx− es|2 � |x− es|2 for all w ∈ W. This
implies 〈wx, es〉 � 〈x, es〉 for all w ∈ W; hence, the maximum value of ϕ on C
is attained at x. Let T = S− {s}. The affine hyperlane ϕ(v) = c contains the
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orbit of x under WT and is spanned by this orbit. It follows that ϕ(v) = c is a
supporting hyperplane of C and that the convex hull of WTx is a codimension
one face of C. Letting s vary over S we obtain all the supporting hyperplanes of
C containing the vertex x. Replacing x by wx and es by wes, we get a description
of all the supporting hyperplanes of C. The lemma follows. �

Lemma 7.3.3 means that when W is finite we can identify the simplicial
complex �(W, S) with the barycentric subdivision of the associated Coxeter
polytope, that is,�(W, S) is topologically a cell. (It follows from Lemma 7.3.3
that the combinatorial type of C does not depend on the choice of the generic
point x.)

The General Case

We return to the case where W can be infinite. Since the poset (WS)�wWT is
isomorphic to WT (S�T ), the face corresponding to S�wWT is isomorphic to the
barycentric subdivision of a Coxeter cell of type WT . So we can put a cell
structure on �, coarser than its simplicial structure, by identifying each such
barycentric subdivision with the corresponding Coxeter cell.

Let us review what this means. The 0-cells (or vertices) of � correspond to
the cosets of W∅, i.e., they correspond to the elements of W. A subset of W
corresponds to the vertex set of a cell of � if and only if it is a spherical coset
of the form wWT . The cell is a Coxeter polytope of type WT ; its dimension
is Card(T). With this cell structure, the 0-skeleton of � is W, its 1-skeleton
is the Cayley graph of (W, S) discussed in Section 2.1, and its 2-skeleton is
Cay(W, 〈S | R〉) (the Cayley 2-complex of (W, S) discussed in Section 2.2).
We summarize the preceding discussion in the following proposition.

PROPOSITION 7.3.4. There is a natural cell structure on � so that

• its vertex set is W, its 1-skeleton is the Cayley graph, Cay(W, S), and its
2-skeleton is a Cayley 2-complex,

• each cell is a Coxeter polytope,

• the link of each vertex is isomorphic to L(W, S),

• a subset of W is the vertex set of a cell if and only if it is a spherical
coset,

• the poset of cells in � is WS.

Remark. There are many Coxeter systems (W, S). Almost none of them
arise as geometric reflection groups on En or Hn. To convince oneself that
there are are many Coxeter systems, consider Lemma 7.2.2: the simplicial
complex L(W, S) can have arbitrary topological type. To see that there are
very few geometric reflection groups, consider the classification of Euclidean
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reflection groups (Theorem C.1.3 of Appendix C) and Vinberg’s Theorem
(Theorem 6.11.8) as well as Corollary 6.11.7 of Section 6.11. On the other
hand, the cell complex � is always defined. For many reasons, it should be
considered a satisfactory replacement for the constant curvature spaceXn = En

or Hn. For example, W acts on it properly and cocompactly as a reflection
group. In Section 8.2 (Theorem 8.2.13), we will prove that � is contractible.
Of course, the fundamental chamber K need not be a convex polytope (or even
a topological disk) and � need not be a manifold. A feature of Xn which is
preserved in� is the cellullation ofXn by dual cells to the cofaces of chambers.
In Xn such dual cells are Coxeter polytopes and they give the cell structure on
�. (See Example 7.4.3 below.) As we shall see in Chapter 12, there is a natural
piecewise Euclidean metric on � and it is nonpositively curved in the sense of
Aleksandrov [1] and Gromov [147].

LEMMA 7.3.5. � is simply connected.

Proof. This follows from two standard facts:

• The fundamental group of any cell complex is isomorphic to the
fundamental group of its 2-skeleton (since any map of a 1-sphere or
2-disk to the cell complex can be homotoped into its 2-skeleton).

• The Cayley 2-complex of a presentation, Cay(G, 〈S | R〉) of any
presentation is simply connected (by Proposition 2.2.3).

Since Cay(W, 〈S | R〉) is the 2-skeleton of �, π1(�) = 1. �

Examples 7.3.6. If (W, S) is right angled, then each cell of � is a cube and �
can be identified with the cubical complex P̃L of Section 1.2. By Lemma 7.2.2,
L can have the topological type of an arbitrary polyhedron. Hence, for any cell
complex �, there is a right-angled (W, S) such that the link L of each vertex of
�(W, S) is isomorphic to the barycentric subdivision of �.

The following proposition is a corollary of assertion in Proposition 7.3.4 that
the link of every vertex of � is isomorphic to L.

PROPOSITION 7.3.7. Suppose L is a triangulation of Sn−1, then � is a
topological n-manifold.

Remark. In Corollary 7.5.3 as well as in Theorem 10.6.1 of Section 10.6, we
will see that if, in addition, L is a PL manifold, then

(i) � is a PL manifold and

(ii) for each T ∈ S, the fixed set of WT on �, denoted by �WT , is a PL
submanifold of codimension Card(T).
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Next consider the cofaces of K. Since S = S�∅, K = |S| is itself a coface
(the maximum coface). The other cofaces are intersections of mirrors:

|S�T | = KT =
⋂
s∈S

Ks.

(The use “face” and “coface” here, agrees with the terminology in Section 5.1.)
The cofaces of � are translates of the cofaces of K. In particular, maximal
cofaces of � are chambers.

7.4. EXAMPLES

Example 7.4.1. (dim� = 1.) Suppose Card(S) = k and that mst = ∞ for all
s �= t. Then the nerve L is the disjoint union of k points, the chamber K is the
the cone on L, each Coxeter cell is an interval, W is the free product of k copies
of C2 and � is a regular k-valent tree. (Its edges are the Coxeter 1-cells.)

Example 7.4.2. (dim� = 2.) Suppose ϒ is a simplicial graph with vertex set
S and as in Example 7.1.6, suppose each edge is labeled by an integer �2.
Let (W, S) be the associated Coxeter system and let L be its nerve. When is
L = ϒ? A necessary and sufficient condition is that there are no spherical
subsets of cardinality 3. It follows from Example 6.5.1, equation (6.10), that
this is equivalent to the following condition on the 3-circuits in ϒ : if m1, m2,
and m3 are the labels on the edges of any 3-circuit in ϒ , then

1

m1
+ 1

m2
+ 1

m3
� 1.

(This condition holds vacuously if ϒ does not contain any 3-circuits.) If the
condition holds, then dim� = 2 and the link of each vertex is ϒ . There is
one orbit of Coxeter 2-cells for each edge of ϒ and such a cell is a 2me-
gon where me is the label on the edge. In particular, if all edges are labeled
by the same integer m, then all 2-cells are 2m-gons. Moreover, the above
condition is nonvacuous only for m = 2 (in which case it means that there
are no 3-circuits). Such 2-complexes (where all 2-cells are isomorphic to
the same polygon and where the links of any two vertices are isomorphic)
can be thought of as generalizations of the Platonic solids or of the regular
tessellations of E2 andH2 by polygons. There is a fairly extensive literature on
such complexes; for example, [14, 18, 150, 152, 275] and [37, pp. 393–396].
We will return to the discussion of these examples in Section 12.6. (See, in
particular, Proposition 12.6.4 and Corollary 12.6.5.)

Example 7.4.3. (Geometric reflection groups.) As in Chapter 6, suppose
(W, S) arises as a group generated by reflections across the faces of a convex



July 3, 2007 Time: 04:03pm chapter7.tex

THE COMPLEX � 133

polytope Pn in En or Hn. As explained in Example 7.1.4, L(W, S) can be
identified the boundary complex of the dual polytope to Pn and K ∼= Pn.
For example, if Pn is a cube in En, then L is the boundary complex of
an n-octahedron. (The relevant definitions can be found in Appendix A;
the “n-cube” and “n-octahedron” are defined in Examples A.1.5 and A.1.7,
respectively, and the “dual polytope” in Appendix A.2.) The cell structure on
� given in 7.3 is dual to the tessellation of En or Hn by copies of Pn. For
example, suppose W is the group generated by reflections across the edges of
a right-angled pentagon in H2. Then � is the dual complex to the tessellation
of H2 by pentagons. It is pictured in Figure 6.2 of Section 6.5.

Example 7.4.4. (Products.) Suppose, as in Example 7.1.5, that W decom-
poses as (W, S) = (W1 ×W2, S1 ∪ S2). Then S = S(W1, S1)× S(W2, S2). By
Examples 7.3.2 (iii), � = �(W1, S1)×�(W2, S2). (Here S = S(W, S) and
� = �(W, S).)

Example 7.4.5. (Octahedral links in the right-angled case.) As in Exam-
ples 7.1.4 and 7.4.1, if L = S0, then W = D∞ and � is the real line cellulated
by intervals of the same length. By the previous example, if W is the n-fold
product D∞ × · · · × D∞, then L is the n-fold join S0 ∗ · · · ∗ S0 (i.e., L is the
boundary complex of an n-octahedron) and � = R× · · ·R = Rn, cellulated
by n-cubes.

7.5. FIXED POSETS AND FIXED SUBSPACES

Given a spherical special subgroup WT , we analyze the fixed set of its action
on the poset WS. Of course, this will also provide information about its fixed
point set on the cell complex �. Given T ∈ S, let F(T) denote the fixed poset
of WT on WS, i.e.,

F(T) :={wWU | WTwWU = wWU}.
= {wWU | WT ⊂ wWUw−1}.

F(T) indexes the set of Coxeter cells in � stabilized by WT . Denote the mini-
mal elements of F(T) by Fmin(T), i.e., Fmin(T) := {wWU | WT = wWUw−1}.

LEMMA 7.5.1. Suppose T ∈ S and α := wWU ∈ F(T). Then

(i) F(T)�α is isomorphic to the poset of faces of a convex cell of
dimension Card(U)− Card(T).

(ii) F(T)>α is isomorphic to S>U.
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Proof. When T = ∅, F(∅) = WS. By Theorem 4.1.6, (WS)�α ∼= WU(S�U)
and (WS)>α ∼= S>U . By Lemma 7.3.3, WU(S�U) is isomorphic to the poset
of faces for a Coxeter polytope of type WU . So, (i) and (ii) hold for T = ∅.

In the general case, set H := w−1WTw. H is a subgroup of WU . It fixes
a linear subspace of RU of codimension Card(T). The intersection of this
subspace with the Coxeter polytope for WU is a convex polytope of dimension
Card(U)− Card(T). This proves (i). If α is fixed by WT , then so is any larger
spherical coset. Hence, F(T)>α = WS>α ∼= S>U , so (ii) holds. �

It follows that F(T) is an “abstract convex cell complex” as in Defini-
tion A.2.12. Fix(WT ,�) denotes the corresponding cell complex. For α ∈
F(T), let cα be the corresponding cell in Fix(WT ,�). Note that if α ∈ Fmin(T),
then cα is a vertex in this cell structure on Fix(WT ,�).

COROLLARY 7.5.2. For any T ∈ S and α = wWU ∈ Fmin(T), the link of cα
in Fix(WT ,�) is isomorphic to Lk(σU , L) (where σU denotes the simplex of L
corresponding to U).

Proof. For both links the abstract simplicial complex is S>U . �

COROLLARY 7.5.3. Suppose T ∈ S (k).

(i) If � is a pseudomanifold of dimension n, then Fix(WT ,�) is a
pseudomanifold of dimension (n− k).

(ii) If � is a homology n-manifold, then Fix(WT ,�) is a homology
(n− k)-manifold.

(iii) If � is a PL n-manifold, then Fix(WT ,�) is a PL (n− k)-manifold.

The notion of a “pseudomanifold” is defined in 13.3, “homology manifolds”
and “PL manifolds” in 10.4; see Definitions 10.4.1 and 10.4.8, respectively.
The point of the corollary is that if � is a cell complex which has one of these
properties, then the link of any cell in � also has this property. (For further
discussion, see Theorem 10.6.1.)

LEMMA 7.5.4. Suppose x ∈ Fix(WT ,�). Then there is a neighborhood of x in
� which is WT-equivariantly homeomorphic to one of the form F × V, where F
is a neighborhood of x in Fix(WT ,�) and V is a neighborhood of the origin in
the canonical representation of WT onRT . Moreover, if x belongs to the relative
interior of the Coxeter cell corresponding to an element wWU ∈ F(T), then F is
homeomorphic to a neighborhood of the cone point in Cone(Sm−1 ∗ Lk(σU , L)),
where m = Card(U)− Card(T) and σU is the simplex of L corresponding to U.

Proof. Suppose x ∈ int(C), where C is the Coxeter polytope corresponding to
wWU ∈ F(T). WT acts on C via WT ⊂ wWUw−1. If m = Card(U)− Card(T),
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then Fix(WT , int(C)) ∼= Rm. So a neighborhood of x ∈ Fix(WT ,�) is home-
omorphic to Cone(Sm−1 ∗ Lk(σU , L)). Moreover, int(C) is WT -equivariantly
homeomorphic to Rm−1 × RT . The lemma follows. �

NOTES

7.1, 7.2. As we explained in 1.1, a major theme of this book is that Coxeter
groups are a good source of examples in geometric group theory. The basic method
underlying the construction of such examples is that of Examples 7.1.6, 7.1.7, and
Lemma 7.2.2. One starts with simplicial complex L. Possibly after replacing L by its
barycentric subdivision, we can assume that L is a flag complex (Lemma 7.2.2). As in
Example 7.1.7, associated to the 1-skeleton L1 there is a right-angled Coxeter group
with nerve L. Various topological properties of L are then reflected in � (as well as
in W).

7.3. In 7.2 we defined � to be a certain simplicial complex (the geometric realization
of the poset of spherical cosets). This simplicial complex was first described in [71].
The cellulation in 7.3 of � by Coxeter polytopes was first explained in Moussong’s
thesis [221], where it was used to prove that � is CAT(0). (See Chapter 12.) For these
reasons,� is sometimes called the “Davis-Moussong complex.” More recently, this has
been shortened to the “Davis complex.”

7.5. The material in this section will be used in Chapter 13.
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Chapter Eight

THE ALGEBRAIC TOPOLOGY OF U AND OF �

As in Chapter 5, (W, S) is a Coxeter system, X is a mirrored space over
S, and U (= U(W, X)) is the result of applying the basic construction to
these data. The two main results of this chapter are formulas for the homol-
ogy of U (Theorem 8.1.2) and for its cohomology with compact supports
(Theorem 8.3.1). The two formulas are similar in appearance and in their
proofs. (Of course, they give completely different answers whenever W is
infinite.) We will give alternative proofs in Chapter 15.

The most important applications of these formulas are to the case where U is
the complex� of Chapter 7. In 8.2 we give necessary and sufficient conditions
on X for U to be acyclic. Using this, we prove, in Theorem 8.2.13, that �
is contractible. Our formula for cohomology with compact supports gives a
calculation of H∗c (�) in terms of the cohomology of the “punctured nerves”
L− σT (Corollary 8.5.3). Here L is the nerve of (W, S) and σT ranges over
the simplices of L (including the empty simplex). Since H∗c (�) = H∗(W;ZW),
this gives a calculation of the cohomology of W with coefficients in its group
ring. We give several applications of this in 8.5. First of all, in Corollary 8.5.5,
we get a formula for the virtual cohomological dimension (= vcd) of W. By
definition, this is the cohomological dimension of a torsion-free, finite index
subgroup � ⊂ W. Appropriate choices of L yield examples of � which have
different cohomological dimension over Z than over Q, as well as, examples
which show that cohomological dimension is not additive for direct products.
If vcd(W) = 1, then W is virtually free. In 8.8, we use our calculation of
H∗c (W;ZW) to characterize when W is virtually free: it is if and only if its
nerve L decomposes as a “tree of simplices.” Further applications of these
formulas will be given in later chapters. For example, in 10.9, we will use the
formula for H∗c (W;ZW) to characterize when W is a virtual Poincaré duality
group. In the last section of this chapter, we use similar techniques to get a
formula for the cohomology with compact supports of the fixed point set of any
spherical special subgroup on �. This gives a calculation of the cohomology
of the normalizer of such a special subgroup with coefficients in its group ring.
We will need this computation in Chapter 13.

Throughout this chapter, except in 8.4, we assume X is a mirrored CW
complex (i.e., X is a CW complex and the Xs are subcomplexes). Then U
is also a CW complex. Also, except in 8.4, C∗(Y) will denote the cellular
chain complex of a CW-complex Y and H∗(Y) its homology; similarly, C∗c (Y)
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will mean the finitely supported cellular cochains and H∗c (Y) the cohomology
of this complex. Ck(Y) can be identified with the free abelian group on the
set of k-cells of Y and Ck

c(Y) with the set of finitely supported functions on
this set. The reason for the assumption that X is a mirrored CW complex is that
the proofs of our formulas are technically much easier with cellular chains and
cochains. We indicate how to deal with a general X in 8.4.

8.1. THE HOMOLOGY OF U

Symmetrization and Alternation

For each spherical subset T of S, define elements ãT and h̃T in the group ring
ZWT ⊂ ZW by

ãT :=
∑

w∈WT

w and h̃T :=
∑

w∈WT

(−1)l(w)w (8.1)

called, respectively, symmetrization and alternation with respect to T . (In
this section, where we calculate homology, we will only use alternation;
symmetrization is more useful for calculations in cohomology.) Our first goal
is to show that h̃T induces a homomorphism H∗(X, XT )→ H∗(WTX), where,
as usual,

XT :=
⋃
s∈T

Xs and WTX :=
⋃

u∈WT

uX.

Multiplication by h̃T defines a homomorphism h̃T : Cm(X)→ Cm(WTX).
We claim h̃T vanishes on the subgroup Cm(XT ). To see this, suppose e is
an m-cell in XT . Then e lies in Xs for some s ∈ T . For any u ∈ WT , the
coset uW{s} contains two elements u and us. Both elements act the same
way on e. However, in h̃T the coefficient of one is +1 and of the other
−1. So, h̃Te = 0 and hence h̃T vanishes on Cm(XT ). Therefore, it induces a
chain map φ : C∗(X, XT )→ C∗(WTX) and a corresponding map on homology
φ∗ : H∗(X, XT )→ H∗(WTX). (Recall C∗(X, XT ) := C∗(X)/C∗(XT ).)

Similarly, for any w ∈ W, we have a map

ρw : H∗(X, XT )→ H∗(wWTX), (8.2)

defined as the composition of φ∗ and the map induced by translation by w.

An Increasing Union of Chambers

As in Example 4.5.6, order the elements of W: w1, . . . , wn, . . . , so that l(wk) �
l(wk+1). For n � 1, set

Un = {w1, . . . , wn}
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and

Pn = UnX :=
⋃

w∈Un

wnX.

Recall Definition 4.7.1: In(w) = {s ∈ S | l(ws) < l(w)}. So In(w) indexes the
set of mirrors of the chamber wX with the property that the adjacent chamber
across the mirror is closer to the base chamber X than is wX. The next lemma
explains how the nth chamber intersects the union of the previous ones. It says
that this intersection has the form XT , where T is the spherical subset In(wn).
This is the key to all the calculations in this chapter and the next.

LEMMA 8.1.1. (Compare [255, Lemma 4, p. 108] and [71, Lemma 8.2].) For
each n � 2,

wnX ∩ Pn−1 = wnXIn(wn).

Proof. To simplify notation, set w = wn. If s ∈ In(w), then ws ∈ Un−1 so
wXs = wsXs ⊂ wsX ⊂ Pn−1. Hence, wXIn(w) ⊂ wX ∩ Pn−1. For the opposite
inclusion, suppose v = wi for some i < n and consider the intersection, wX ∩
vX. By Lemma 5.3.1, this intersection has the form wXT , where T = S(v−1w) is
the set of letters appearing in a minimal gallery from v to w. By Lemma 4.3.1,
there is a unique element of minimum length in wWT . This element is not
w since l(v) ≤ l(w). By Lemma 4.3.3, this implies that l(ws) < l(w) for some
s ∈ T . In other words, T ∩ In(w) �= ∅. Hence, XT ⊂ Xs for some s ∈ In(w) and
since Xs ⊂ XIn(w), we get wX ∩ Pn−1 ⊂ wXIn(w). �

The main result of this section is the following.

THEOREM 8.1.2. ([73, Theorem A].)

H∗(U) ∼=
⊕
w∈W

H∗(X, XIn(w)).

This follows almost immediately from the next lemma.

LEMMA 8.1.3

H∗(Pn) ∼=
i=n⊕
i=1

H∗(X, XIn(wi)).

Proof. We will use the exact sequence in homology of the pair (Pn, Pn−1),
n > 1. There is an excision

H∗(Pn, Pn−1) ∼= H∗(wnX, wnXIn(wn)), (8.3)

where we have excised the open subset Pn − wnX. Simplifying notation as
before, set w = wn and T = In(w). The right-hand side of (8.3) is isomorphic
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to H∗(X, XT ). So, the exact sequence of the pair (Pn, Pn−1) can be rewritten as

−→ H∗(Pn−1) −→ H∗(Pn)
f−→ H∗(X, XT ) −→ (8.4)

where f is the composition of the map to H∗(Pn, Pn−1), the excision (8.3), and
the isomorphism induced by translation by w−1. We want to define a map g
which splits f . Basically, g is the map ρw defined in (8.2). However, the range
of ρw is the homology of wWTX while we want it to land in the homology
of Pn. So, we need to verify that wWTX ⊂ Pn. This follows from two facts:
(1) T := In(wn) is spherical (Lemma 4.7.2) and (2) w = wn is the element of
longest length in the coset wWT (Lemma 4.7.3 (i)). Therefore, the index of any
element of wWT is � n. So, define g to be the composition of ρw with the map
on homology induced by the inclusion wWTX ↪→ Pn. It is then easy to see that
f ◦ g is the identity map of H∗(X, XT ). Hence, the exact sequence (8.4) is split
short exact. Thus,

H∗(Pn) ∼= H∗(Pn−1)⊕ H∗(X, XIn(wn)). (8.5)

When n = 1, we have w1 = 1, In(w1) = ∅ and XIn(w1) = ∅; hence, (8.5)
becomes

H∗(P1) = H∗(X, XIn(w1)) = H∗(X,∅) = H∗(X).

Combining this with the equations in (8.5), we get the formula of the
lemma. �

Proof of Theorem 8.1.2. Since U is the increasing union of the Pn, H∗(U) is
the direct limit of the H∗(Pn). So, Lemma 8.1.3 implies the theorem. �

There is also a relative version of Theorem 8.1.2. Suppose Y is a subcomplex
of X. Give Y the induced mirror structure and write U(X) and U(Y) for U(W, X)
and U(W, Y), respectively.

THEOREM 8.1.4

H∗(U(X),U(Y)) ∼=
⊕
w∈W

H∗(X, XIn(w) ∪ Y).

Proof. The proof is similar to that of Theorem 8.1.2. Write Pn(X) and Pn(Y)
for the union of the first n chambers in U(X) and U(Y), respectively. Consider
the exact sequence of the triple (Pn(X), Pn−1(X) ∪ wY , Pn(Y)), where w := wn.
We have excisions H∗(Pn−1(X) ∪ wY , Pn(Y)) ∼= H∗(Pn−1(X), Pn−1(Y)) and
H∗(Pn(X), Pn−1(X) ∪ wY) ∼= H∗(X, XT ∪ Y), where T := In(w). This gives a
decomposition of H∗(Pn(X), Pn(Y)) analogous to the one in Lemma 8.1.3,
which immediately implies the result. �
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COROLLARY 8.1.5. Suppose that the homology of (X, Y) vanishes in all
dimensions. Then

H∗(U(X),U(Y)) ∼=
⊕
w∈W

H∗−1(XIn(w), Y In(w)).

Proof. By the previous theorem, H∗(U(X),U(Y)) is a direct sum of terms of
the form H∗(X, XT ∪ Y), where T = In(w) for some w ∈ W. Since H∗(X, Y) =
0, the exact sequence of the triple (X, XT ∪ Y , Y) gives H∗(X, XT ∪ Y) ∼=
H∗−1(XT ∪ Y , Y). This last term excises to H∗−1(XT , YT ). �

Recall Definition 4.7.4: for each spherical subset T ∈ S,

WT = {w ∈ W | In(w) = T}.
In other words, WT is the set of elements of W which can end precisely with
the letters in T . Let ZWT denote the free abelian group on WT .

Obviously, W is the disjoint union of the WT , T ∈ S. So, collecting the terms
on the right-hand side of the formula in Theorem 8.1.2, one can rewrite it as
follows.

THEOREM 8.1.6. ([73, Theorem A′].)

H∗(U) ∼=
⊕
T∈S

H∗(X, XT )⊗ ZWT .

One problem with Theorems 8.1.2 and 8.1.4 is that they do not give an
algebraic description of the action of W on H∗(U). We will say more about
this in 15.3 (in particular, Theorem 15.3.4).

8.2. ACYCLICITY CONDITIONS

H∗(Y) denotes the reduced homology of a space Y .

Convention. The reduced homology of the empty set is defined to be zero in
dimensions � 0 and to be Z in dimension −1.

X is acyclic if Hi(X) = 0 for all i. Similarly, X is m-acyclic (m an integer) if
Hi(X) = 0 for−1 � i � m. (N.B. The empty set is not m-acyclic for m � −1.)
A pair (X, Y) is m-acyclic if Hi(X, Y) = 0 for 0 � i � m. The following is a
simple corollary of Theorem 8.1.2.

COROLLARY 8.2.1. U is acyclic if and only if X is acyclic and XT is acyclic
for each nonempty spherical subset T.

Proof. By Lemma 4.7.2, for each w ∈ W, In(w) is a spherical subset of S.
Moreover, In(w) = ∅ only when w = 1. Conversely, any spherical subset T
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occurs as In(w) for some w (for example, for w the element of longest length
in WT ). By the formula in Theorem 8.1.2, Hi(U) = 0 if and only if Hi(X) = 0
and Hi(X, XT ) = 0 for all T ∈ S>∅. When X is acyclic, it follows from the exact
sequence of the pair (X, XT ) that the acyclicity of (X, XT ) is equivalent to the
acyclicity of XT . �

Essentially the same argument gives the following result.

COROLLARY 8.2.2. (Compare [71, Theorem 10.1].) U is m-acyclic if and
only if (X, XT ) is m-acyclic for each spherical subset T.

The special case m = 0 gives the following.

COROLLARY 8.2.3. (Compare Corollary 5.2.4.) U is path connected if and
only if the following two conditions hold:

(a) X is path connected and

(b) each Xs is nonempty.

Proof. In Corollary 5.2.4 we proved that (a) and (b) imply that U is path
connected. Conversely, suppose U is path connected, i.e., 0-acyclic. By the
previous corollary, X is 0-acyclic as is (X, Xs) for each s ∈ S. The exact
sequence of the pair shows that Xs is (−1)-acyclic, i.e., nonempty. �

DEFINITION 8.2.4. A space Y has the same homology as Sn if its reduced
homology is concentrated in dimension n and is isomorphic to Z in that
dimension, i.e., if

Hi(Y) ∼=
{

0 if i �= n,

Z if i = n.

(A space has the same homology as S−1 if and only if it is empty.) Similarly,
a pair of spaces (Y , Y ′) has the same homology as (Dn, Sn−1) if H∗(Y , Y ′) is
concentrated in dimension n and is isomorphic to Z in that dimension.

Here is a related corollary to Theorem 8.1.2 for spaces with the same
homology as Sn.

COROLLARY 8.2.5. U has the same homology as Sn if and only if there is a
spherical subset T ∈ S satisfying the following three conditions:

(a) W decomposes as W = WT ×WS−T .

(b) For all T ′ ∈ S with T ′ �= T, (X, XT ′) is acyclic.

(c) (X, XT ) has the same homology as (Dn, Sn−1). (When T = ∅ we
interpret this to mean that X has the same homology as Sn.)

Moreover, the spherical subset T is unique.
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Proof. First suppose U has the same homology as Sn. Then, in Theorem 8.1.2,
the sum on the right-hand side of the formula for Hn(U) can have only
one nonzero term and it must have the form Hn(X, XIn(w)) ∼= Z, for a unique
element w. Put T = In(w). Since w is unique, Lemma 4.7.5 implies that
W = WT ×WS−T . Conditions (b) and (c) are immediate. The argument in the
converse direction is routine. �

Remark 8.2.6. (Finitely generated homology.) Corollary 8.2.5 can be gener-
alized to the case where H∗(U) is finitely generated. First note that any Coxeter
group decomposes as WF ×WS−F , where F is the union of the spherical
components in the diagram of W (so WF is finite). Suppose H∗(U) is finitely
generated. By the formula in Theorem 8.1.6, H∗(X, XT ) can be nonzero only
for those T ∈ S such that WT a finite set. It follows from [26, Exercises 17 and
23 (c), pp. 58–59] that if WT is finite, then T ⊂ F. (This is a generalization
of Lemma 4.7.5.) Hence, for every T ∈ S such that H∗(X, XT ) �= 0, we have
T ⊂ F. X has a mirror structure over F by restriction to the mirrors indexed
by F. Put U ′ = U(WF, X). By our formula, the inclusion U ′ ↪→ U induces
an isomorphism on homology. If X is a finite complex, then so is U ′. In
other words, when X is a finite complex and H∗(U) is finitely generated, the
homology is carried by a finite complex stable under the action of a finite
factor. (In fact, as in Remark 8.2.17 below, one sees that U “homologically
resembles” the product action on U ′ ×�′′, where �′′ := �(WS−F, S− F).)

Next we want to translate the condition in Corollary 8.2.2 into one that is
more useful. This condition is expressed in terms of the cofaces XT of X.

THEOREM 8.2.7. (Compare [71, Theorem 10.1].) U is m-acyclic if and only
if the following two conditions hold:

(a) X is m-acyclic.

(b) For each k � m+ 1 and each spherical subset T ∈ S (k), the coface
XT is (m− k)-acyclic.

Before beginning the proof, we state three corollaries to Theorem 8.2.7. The
first is the following alternative version of Corollary 8.2.1.

COROLLARY 8.2.8. U is acyclic if and only if XT is acyclic for each T ∈ S.
(Recall that X∅ = X.)

According to Lemma 7.1.9, a mirror structure on X is W-finite if and only
if its nerve N(X) is a subcomplex of L(W, S). In the case where U is acyclic,
Corollary 8.2.8 gives the opposite inclusion. (The point being that the empty
set is not acyclic.) We restate this as follows.
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COROLLARY 8.2.9. If U(W, X) is acyclic, then L(W, S) ⊂ N(X). If, in addi-
tion, the W-action on U(W, X) is proper, then N(X) = L(W, S).

A special case of this is the following result discussed earlier in Exam-
ple 7.1.4.

COROLLARY 8.2.10. Suppose W is a geometric reflection group (Defini-
tion 6.4.4) generated by the set S of reflections across the codimension-one
faces of a convex polytope Pn in En or Hn. Let P∗ be the dual polytope. Then
L(W, S) = ∂P∗.

Before attempting the proof of Theorem 8.2.7, consider the special case
m = 1 where the proof is easier to understand. (The case m = 0 was already
taken care of in Corollary 8.2.3.)

PROPOSITION 8.2.11. U is 1-acyclic if and only if the following three
conditions hold:

(a) X is 1-acyclic.

(b) For each s ∈ S, the mirror Xs is nonempty and path connected.

(c) For each {s, t} ∈ S (2), Xs ∩ Xt is nonempty.

Proof. First suppose that U is 1-acyclic. Theorem 8.1.2 gives

(a)′ X is 1-acyclic.

(b)′ For each s ∈ S, (X, Xs) is 1-acyclic.

(c)′ For each {s, t} ∈ S (2), (X, X{s,t}) is 1-acyclic.

Together with the exact sequence of the pair (X, Xs) conditions (a)′ and (b)′

imply that H0(Xs) = Z, i.e., that Xs is nonempty and path connected. Similarly,
conditions (a)′ and (c)′ imply that H0(X{s,t}) = Z. Now apply the Mayer–
Vietoris sequence to X{s,t} = Xs ∪ Xt:

H0(X{s,t}) −→ H0(Xs)⊕ H0(Xt) −→ H0(X{s,t})

(The intersection of Xs and Xt is X{s,t}.) Since we already know H0(Xs)⊕
H0(Xt) = Z⊕ Z and H0(X{s,t}) = Z, we must have H0(X{s,t}) �= 0, i.e., Xs ∩
Xt �= ∅. Thus, if U is 1-acyclic, conditions (a), (b), and (c) hold.

Conversely, suppose the three conditions hold. Then for each nonempty
spherical subset T , XT is nonempty and path connected. (The reason is that
it is a union of path connected subspaces Xs, s ∈ T , any two of which have
nonempty intersection.) Thus, H0(XT ) = Z. Since X is 1-acyclic (condition
(a)), the exact sequence of the pair shows that (X, XT ) is 1-acylic. So, U is
1-acyclic by Corollary 8.2.2. �
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Theorem 8.2.7 follows from Corollary 8.2.2 and the next lemma, the
proof of which is based on a version of the Acyclic Covering Lemma from
Appendix E.3.

LEMMA 8.2.12. The following two conditions on the mirrored CW complex
X are equivalent.

(a) (X, XT ) is m-acyclic for all T ∈ S.

(b) X is m-acyclic and XT is (m− Card(T))-acyclic for all spherical
subsets T with Card(T) � m+ 1.

Proof. Condition (a) is equivalent to the condition that X is m-acyclic and XT

is (m− 1)-acyclic for all T ∈ S.
(b) =⇒ (a). Suppose (b) holds. Let T ∈ S>∅. Consider the cover of XT by

the mirrors, {Xs}s∈T . For any U ⊂ T with Card(U) � m+ 1, the intersection⋂
s∈U Xs is (m− Card(U))-acyclic. In particular, such an intersection is non-

empty. So, the nerve of the cover has m-skeleton equal to the m-skeleton of the
simplex on T . Lemma E.3.4 implies that in dimensions � m− 1, the reduced
homology of XT is isomorphic to the reduced homology of this nerve, i.e.,
it is 0. So, XT is (m− 1)-acyclic.

(a) =⇒ (b). Suppose (b) does not hold. Let U ∈ S>∅ be a counterexample
to (b) with minimum number of elements. So, the reduced homology of XU is
nonzero in some dimension i with i � m− Card(U). Let i be the minimum
such dimension. (If XU = ∅, then H−1(XU) �= 0.) By Lemma E.3.5 applied
to the covering {Xs}s∈U of XU , Hi+Card(U)−1(XU) �= 0. So, XU is not (m− 1)-
acyclic. �

� is Contractible

We are now in position to prove one of our main results.

THEOREM 8.2.13. � is contractible.

Proof. By Theorem 7.2.4, � = U(W, K). By Lemma 7.2.5, each KT is acyclic
(in fact, each KT is a cone and hence is contractible). So, by Corollary 8.2.8,
� is acyclic. By Lemma 7.3.5, � is simply connected. So, by the Hurewicz
Theorem, it is weakly contractible. Since � is a cell complex, this implies that
it is contractible. �

Remark 8.2.14. Here is a slightly different version of the proof. � is an
increasing union of contractible fundamental domains. Ordering them as
before, Pn is obtained from Pn−1 by gluing on a copy of K along a subspace
of the form KT , T ∈ S. Each KT is contractible, since it is a union of
contractible subcomplexes ({Ks}s∈T ) and the intersection of any subcollection
is contractible. So, Pn is formed from Pn−1 by gluing on a contractible space
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along a contractible subspace. Hence, each Pn is contractible and therefore,
� is contractible.

Homology of a Sphere

Just as Corollary 8.2.2 implies Theorem 8.2.7, there is a version of Corol-
lary 8.2.5 which can be stated in terms of the cofaces of X. We deal first with
the case where W is finite.

LEMMA 8.2.15. Suppose (W, S) is spherical, that U(W, X) has the same
homology as Sn and that (X, XS) has the same homology as (Dn, Sn−1). Then

(i) For any proper subset U of S, XU is acyclic.

(ii) Card(S) � n+ 1 and XS has the same homology as Sn−Card(S). (When
Card(S) = n+ 1 this means XS = ∅.)

Proof. Since (X, XS) has the same homology as (Dn, Sn−1), the unique spherical
subset T of Corollary 8.2.5 is S itself. By the same corollary, X is acyclic,
XU is acyclic for all U � S, and XS has the same homology as Sn−1. Given
U � S, consider the covering of XU by the mirrors indexed by U. Since XU

is acyclic, induction and the Acyclic Covering Lemma imply, as before, that
XT ′ is acyclic (and nonempty) for all T ′ ⊂ U. In particular, XU is acyclic. Next
consider the covering of XS by the mirrors of X. Since XU is nonempty for
each proper subset U of S, the nerve of this covering contains ∂� where �
is the full simplex on S. Since XS has the homology of Sn−1, Lemma E.3.5
implies (ii). �

The general version of Corollary 8.2.5 is the following.

THEOREM 8.2.16. Suppose U has the same homology as Sn and T is the
unique spherical subset satisfying the three conditions of Corollary 8.2.5. Let
U be a subset of T and V a spherical subset of S− T. Then

(i) If U is a proper subset of T, then XU∪V is acyclic.

(ii) Card(T) � n+ 1 and XT∪V has the same homology as Sn−Card(T).
(When Card(T) = n+ 1, this means XT = ∅.)

Proof. Put Y := U(WS−T , X). Y has a natural mirror structure over T , defined
by Yt := U(WS−T , Xt). For any U ⊂ T , we have YU = U(WS−T , XU). Theo-
rem 8.1.4 applied to (Y , YU) yields

H∗(Y , YU) ∼=
⊕

w∈WS−T

H∗(X, XIn(w) ∪ XU).

If U �= T , every term on the right-hand side vanishes. Hence, for U �= T ,
(Y , YU) is acyclic.
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Consider the WT -space U(WT , Y). By Corollary 5.3.4, it can be identified
with U (= U(W, X)). So, U(WT , Y) has the same homology of Sn. By Corollary
8.2.5, there is a unique subset U of T such that (Y , YU) has the same
homology as (Dn, Sn−1). By the previous paragraph, the only possibility is
U = T . Hence, we can apply the previous lemma to U(WT , Y) to conclude

(i)′ If U �= T , then YU is acyclic.

(ii)′ Card(T) � n+ 1 and YT has the same homology as Sn−Card(T).

We also have YU = U(WS−T , XU). So, when U �= T , Corollary 8.2.8 states that
(XU)V (= XU∪V ) is acyclic, i.e., (i) holds. Since (X, XT ) has the same homology
as (Dn, Sn−1), statement (i) and the Acyclic Covering Lemma imply that XT , as
well as, each XT∪V have the same homology as Sn−Card(T). �

Remark 8.2.17. What does a geometric action of a finite Coxeter group WT on
the unit sphere Sn inRn+1 look like? Put m = Card(T)− 1. If n = m, the linear
action on Rn+1 is essential and the fundamental chamber K′ ⊂ Sn is a simplex
�m. If n > m, then the fixed subsphere of WT has dimension n− m− 1 and K′

is the join, Sn−m−1 ∗�m. (See Appendix A.4 for the definition of a “join.”)
In other words, K′ is a suspended simplex (an (n− m)-fold suspension).
Suppose �′′ = �(WS−T , S− T) and K′′ = K(WS−T , S− T). The meaning of
Theorem 8.2.16 is that if U has the same homology as Sn, then W splits as
a product WT ×WS−T and the action “homologically resembles” the product
action of WT ×WS−T on Sn ×�′′ in that the cofaces of X have the same
homology as those of K′ × K′′.

8.3. COHOMOLOGY WITH COMPACT SUPPORTS

In this section X is a finite CW complex and its mirror structure is W-finite
(Definition 5.1.6). Recall Definition 4.7.1: Out(w) is the complement of In(w)
in S. Out(w) indexes the set of mirrors of wX such that the adjacent chamber
across the mirror is farther away from the base chamber X than is wX. Our goal
is to prove the following theorem of [77]. (Our proof is from [89].)

THEOREM 8.3.1

H∗c (U) ∼=
⊕
w∈W

H∗(X, XOut(w)).

A corollary of this and the Universal Coefficient Theorem is the correspond-
ing result for locally finite homology. (See Appendix G.2.)

THEOREM 8.3.2

Hlf
∗ (U) ∼=

∏
w∈W

H∗(X, XOut(w)).
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wX

X

wX Out(w)

wX In(w)

Figure 8.1. wXIn(w) and wXOut(w).

Let us start the proof of Theorem 8.3.1. It is fairly similar to the proof
of Theorem 8.1.2. In outline it goes as follows. For any subset U of W,
let Ǔ denote the complementary subset, Ǔ = W − U. As in 8.1, order the
elements of W compatibly with word length and set Un = {w1, . . . , wn}. Then
U1X ⊂ · · · ⊂ UnX ⊂ · · · is an exhaustive sequence of compact subsets of
U and Ǔ1X ⊃ · · · ⊃ ǓnX ⊃ · · · is essentially the inverse sequence of their
complements in U . Hence,

H∗c (U) = lim−→H∗(U , ǓnX). (8.6)

(In 8.1 we wrote Pn instead of UnX.) Consider the exact sequence in cohomol-
ogy of the triple (U , Ǔn−1X, ǓnX):

→ H∗(U , Ǔn−1X)→ H∗(U , ǓnX)→ H∗(Ǔn−1X, ǓnX)→ .

As in equation (8.3), we have an excision:

H∗(Ǔn−1X, ǓnX) ∼= H∗(wnX, wnXOut(wn)). (8.7)

We will show that the exact sequence of the triple splits and hence, that

H∗(U , ǓnX) ∼= H∗(U , Ǔn−1X)⊕ H∗(X, XOut(wn)). (8.8)

From this we conclude that

H∗(U , ǓnX) ∼=
i=n⊕
i=1

H∗(X, XOut(wi)), (8.9)

which implies the theorem.
Here are the details. First, recall some definitions from 4.5. In Defini-

tion 4.5.1, for each T ⊂ S, we defined the notion of the “fundamental T-
sector” AT ⊂ W and a retraction pT : W → AT . (AT is the set of (T ,∅)-reduced
elements and pT sends u to the shortest element in the coset WTu.) We also
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have the notion of a “starlike” subset of W and an “extreme element” in such a
subset (Definition 4.5.5).

For each w ∈ W, put T = In(w) and define pw : W → wAT by

pw(u) = wpT (w−1u). (8.10)

LEMMA 8.3.3

(i) For each w ∈ W, p−1
w (w) = wWT.

(ii) Suppose that U ⊂ W is starlike (with respect to 1) and that w is an
extreme element of U. Then pw(Ǔ) = w(AT − 1).

(Here Ǔ = W − U and T = In(w).)

Proof Assertion (i) follows from the fact that p−1
T (1) = WT . By Lemma 4.7.3

(i), w is the unique element of longest length in wWT and by Lemma 4.6.1,
given any minimal gallery γ in WT connecting 1 to the element wT of longest
length, there is a minimal gallery from 1 to w with terminal segment γ . Hence,
wWT ⊂ U. So, by (i), p−1

w (w) ∩ Ǔ = ∅, which is equivalent to (ii). �

In Corollary 5.3.5 we showed that pT : W → AT induces a retraction U →
ATX of spaces, also denoted pT . Furthermore, pT can be identified with the
orbit projection U → U/WT . Similarly, pw : W → wAT induces a topological
retraction pw : U → wATX defined by pw = w ◦ pT ◦ w−1. (Here w stands for
the map U → U given by translation by w.) For each T ⊂ S, the inclusion of
pairs (X, XS−T )→ (ATX, (AT − 1)X) is an excision,

H∗(ATX, (AT − 1)X) ∼= H∗(X, XS−T ) (8.11)

(where we have excised ATX − X).
For the remainder of the proof of Theorem 8.3.1, we take the hypotheses of

Lemma 8.3.3 (ii): U ⊂ W is a starlike subset, w ∈ U is an extreme element, and
T = In(w). Set V = U − w. Consider the sequence of the triple (U , V̌X, ǓX):

−→ H∗(U , V̌X) −→ H∗(U , ǓX) −→ H∗(V̌X, ǓX) · · · .
The inclusion (wX, wXS−T )→ (V̌X, ǓX) is an excision,

H∗(V̌X, ǓX) ∼= H∗(wX, wXS−T ). (8.12)

Hence, the exact sequence of the triple can be rewritten as

−→ H∗(U , V̌X) −→ H∗(U , ǓX)
f−→ H∗(wX, wXS−T ) · · ·

where f is the composition of the map from the sequence of the triple with the
excision (8.12).
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Next, we want to define a splitting of f , i.e., a map g : H∗(wX, wXS−T )→
H∗(U , ǓX) so that f ◦ g = id. Let

qw : C∗(U)→ C∗(wATX, w(AT − 1)X) (8.13)

be the composition of the maps induced by pw with the inclusion (wATX,∅)→
(wATX, w(AT − 1)X). By Lemma 8.3.3 (ii), qw takes C∗(ǓX) to 0. Hence, we
get an induced map πw : C∗(wATX, w(AT − 1)X)→ C∗(U , ǓX).Define g to be
the composition of the excision (8.11) with the map on cohomology induced
by πw. It is routine to unwind these definitions and check that f ◦ g = id.
Therefore,

H∗(U , ǓX) ∼= H∗(U , V̌X)⊕ H∗(wX, wXS−T ), (8.14)

which is the same as (8.8) in the case U = Un, w = wn, and V = Un−1.

Completion of the proof of Theorem 8.3.1. We have proved (8.14) and
therefore, (8.9). Since H∗c (U) = lim−→H∗(U , ǓnX), the theorem follows. �

Remark 8.3.4 In (8.13) we defined qw : C∗(U)→ C∗(wATX, w(AT − 1)X).
Composing this with translation by w−1 and the excision (8.11), we get a chain
map, C∗(U)→ C∗(X, XOut(w)) and its dual

λw : C∗(X, XOut(w))→ C∗(U). (8.15)

As in the sentence following (8.13), the image of λw lies in C∗(wWTX) and
hence in the finitely supported cochains C∗c (U). The proof shows that the
isomorphism in Theorem 8.3.1 is induced by the map of cochain complexes

⊕λw : C∗c (U)→
⊕
w∈W

C∗(X, XOut(w)).

Just as in Theorem 8.1.6, we can rewrite Theorem 8.3.1 in terms of the free
abelian groups ZWT , as follows.

THEOREM 8.3.5

H∗c (U) ∼=
⊕
T∈S
ZWT ⊗ H∗(X, XS−T ).

There is a relative version of Theorem 8.3.1. As in Theorem 8.1.4, suppose
Y is a subcomplex of X; give Y the induced mirror structure and write U(X)
and U(Y) for U(W, X) and U(W, Y), respectively.

THEOREM 8.3.6. (Compare Theorem 8.1.4.)

H∗c (U(X),U(Y)) ∼=
⊕
w∈W

H∗(X, XOut(w) ∪ Y).
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Proof. As in (8.6),

H∗c (U(X),U(Y)) = lim−→H∗(U(X),U(Y) ∪ ǓnX).

We use the exact sequence of the triple (U(X),U(Y) ∪ Ǔn−1X,U(Y) ∪ ǓnX) in
cohomology together with the excision

H∗(U(Y) ∪ Ǔn−1X,U(Y) ∪ ǓnX) ∼= H∗(X, Y ∪ XOut(wn))

to get, as in (8.9),

H∗(U(X),U(Y) ∪ ǓnX) =
i=n⊕
i=1

H∗(X, Y ∪ XOut(wi)).

The theorem follows. �
The proof of the following corollary is left as an exercise for the reader.

COROLLARY 8.3.7. (Compare Corollary 8.1.5.) Suppose (X, Y) is acyclic.
Then

H∗c (U(X),U(Y)) ∼=
⊕
w∈W

H∗−1(XOut(w), YOut(w))

∼=
⊕
T∈S
ZWT ⊗ H∗−1(XS−T , YS−T ).

8.4. THE CASE WHERE X IS A GENERAL SPACE

In this section we weaken the assumption that X is a mirrored CW complex
and only assume that it is a mirrored space. Do the formulas in 8.1 and 8.3
remain valid for singular homology and for compactly supported singular
cohomology? The crucial ingredient needed to make the earlier arguments is
that excision holds for certain subspaces in X. In order to give a condition
which guarantees this, we define the notion of a “mirrored subspace” of X.
It plays the role of a subcomplex. Recall from 5.1 that a coface of X is any
intersection of the form XT =

⋃
t∈T Xt. A mirrored subspace of X is any union

of cofaces.
A pair of spaces (A, B), with B a closed in A, is a collared pair if there

is an open neighborhood of B in A which deformation retracts onto B. For
example, if B is any subcomplex of a CW complex A, then (A, B) is collared.
If (A, B) is collared and C ⊂ B, then the inclusion (A− C, B− C) ↪→ (A, B)
is an excision, i.e., H∗(A− C, B− C) ∼= H∗(A, B) (Proof: replace B by a
neighborhood U which deformation retracts onto it and then excise C.) A
mirrored space X satisfies the Collared Condition if any pair (A, B) of mirrored
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subspaces in X is collared. In practice this will be used as follows: if V ⊂ B is
such that A− V is a mirrored subspace of X, then (A− V , B− V) ↪→ (A, B) is
an excision.

In this section only, chains, cochains, homology, and cohomology of a space
will mean the singular versions. Assume for the remainder of the section that
the mirrored space X satisfies the Collared Condition. We will show this is
enough to guarantee that the singular versions of the previous formulas in
homology and cohomology hold.

The first place we encounter a problem is in the definition of the alternation
map at the chain level. Given T ∈ S, the element h̃T ∈ ZWT from (8.1) induces
a map of singular chains C∗(X)→ C∗(U); however, it is not true that this
map vanishes on C∗(XT ). The problem is that although h̃T does vanish on any
singular simplex whose image is contained in Xt, t ∈ T , this does not imply
that it vanishes on any singular simplex whose image lies in XT (the union of
the Xt). However, the next lemma shows that alternation does work the level of
homology.

LEMMA 8.4.1. Given T ∈ S, multiplication by h̃T ∈ ZWT induces a well-
defined map H∗(X, XT )→ H∗(WTX).

Proof. The proof uses some standard ideas in singular homology theory.
(For example, the same arguments are used in the proof of Mayer-Vietoris
sequence.) For each t ∈ T , let Ut be an open neighborhood of Xt in XT

which deformation retracts back onto it. Consider the open cover {Ut}t∈T of
XT . Let C′k(XT ) denote the subgroup of Ck(XT ) generated by those singular
simplices σ : �k → XT whose image is contained in some Ut. It is standard
(cf. [153, pp. 119–124]) that the inclusion C′∗(X

T ) ↪→ C∗(XT ) is a chain
homotopy equivalence. Let C′′k (XT ) ⊂ C′k(XT ) be the subgroup generated by
those σ : �k → XT whose image is contained in some Xt. Since Ut is homo-
topy equivalent to Xt, C′′∗(X

T ) is chain homotopy equivalent to C′∗(X
T ). So,

C∗(X, XT ) := C∗(X)/C∗(XT ) is chain homotopy equivalent to C∗(X)/C′′∗(X
T ).

The alternation map vanishes on C′′∗(X
T ) (by the argument in the beginning of

8.1); hence, the lemma. �

The proof of Theorem 8.1.2 proceeds as before. The Collared Condition
gives us the excision (8.3): H∗(Pn, Pn−1) ∼= H∗(wnX, wnXIn(wn)). The results of
8.2 also remain valid. The reason is that the Collared Condition is enough to
insure that Mayer-Vietoris sequences and spectral sequences hold for mirrored
subspaces of X.

What about the results in 8.3 on compactly supported cohomology? Assume,
as before, that X is compact with a W-finite mirror structure (so that U is locally
compact). The cohomology of U with compact supports is defined by

H∗c (U) := lim−→H∗(U ,U − C),
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where the direct limit is taken over some cofinal system of compact sub-
sets C ⊂ U . (See (G.8) in Appendix G.2.) Again we have (8.6): H∗c (U) :=
lim−→H∗(U , ǓnX), where the Ǔn := W − Un are the subsets of W defined in
8.3. Since the Collared Condition allows our arguments with excision to work,
Theorems 8.3.1 and 8.3.5 hold for U .

The Local Topology of U
Here are some exercises for the reader.

Exercise 8.4.2. Prove:

(i) U is locally path connected if and only if, X is locally path connected.

(ii) U is locally m-acyclic if and only if for each k � m and T ∈ S (k),
XT is locally (m− k)-acyclic.

(iii) U is locally simply connected if and only if X is locally simply
connected and each mirror Xs is locally path connected.

A path connected and locally path connected space Y admits a universal
covering space if and only if it is semilocally simply connected [197]. Recall
this means that for every point y ∈ Y there is a neighborhood U so that
the homomorphism π1(U, y)→ π1(Y , y), induced by the inclusion, is the
zero map.

Exercise 8.4.3. Assume X is path connected and locally path connected and
that each mirror Xs is nonempty. Then U is semilocally simply connected if
and only if X is semilocally simply connected.

8.5. COHOMOLOGY WITH GROUP RING COEFFICIENTS

In this section we use Theorem 8.3.1 to compute the cohomology of W with
coefficients in the group ring ZW. We then give a number of applications of
this to computations of the virtual cohomological dimension of W.

The Cohomology with Compact Supports of �

With notation as in 7.2, we have� = U(W, K). The next result is a special case
of Theorem 8.3.1.

THEOREM 8.5.1. ([77, Theorem A].)

H∗c (�) ∼=
⊕
w∈W

H∗(K, KOut(w)) =
⊕
T∈S
ZWT ⊗ H∗(K, KS−T ).
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As explained in Appendix F.2 (Lemma F.2.2), H∗c (W;ZW) ∼= H∗c (�), giving
the following.

COROLLARY 8.5.2. ([77, Cor. 4.4, p. 305].)

H∗(W;ZW) ∼=
⊕
w∈W

H∗(K, KOut(w)) =
⊕
T∈S
ZWT ⊗ H∗(K, KS−T ).

Let L be the nerve of (W, S). For each T ∈ S, σT denotes the corresponding
closed simplex in L. (When T = ∅, σT is the empty simplex.) The complement
L− σT is called a punctured nerve. It is proved in Appendix A.5 that L− σT

deformation retracts onto KS−T (Lemma A.5.5). Hence, Corollary 8.5.2 can be
rewritten as follows.

COROLLARY 8.5.3

Hi
c(�) = Hi(W;ZW) ∼=

⊕
T∈S
ZWT ⊗ H

i−1
(L− σT ).

COROLLARY 8.5.4. Given a positive integer m, the following two conditions
are equivalent:

(i) Hi
c(�) vanishes for all i � m.

(ii) H
i−1

(L− σT ) vanishes for all T ∈ S and all i � m.

Virtual Cohomological Dimension of W

One definition of the cohomological dimension of a group � is

cd� := sup{n | Hn(�; M) �= 0 for some Z�-module M}. (8.16)

(See Appendix F.3 or [42, p. 185].) The notion of a group being of “type FP” is
defined in Appendix F.4. It is slightly weaker than the requirement that � have
a finite model for its classifying space. If � is type FP (e.g., if � is a torsion-
free subgroup of finite index in a finitely generated Coxeter group), then there
is a better formula for cd� (cf. Proposition F.4.1 or [42, Prop. 6.7, p. 202]):

cd� = max{n | Hn(�;Z�) �= 0}. (8.17)

Recall that a group virtually has some property if a subgroup of finite
index has the property. For example, a finite group is virtually trivial. Since
Coxeter groups have faithful linear representations, they are virtually torsion-
free (Corollary D.1.4 of Appendix D.1).

If G has nontrivial torsion, then cd G = ∞. For a virtually torsion-free
group G, a more useful notion is its virtual cohomological dimension, denoted
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vcd G: it is the cohomological dimension of any torsion-free subgroup of finite
index. (More explanation is given in Appendix F.3.)

By (8.17), vcd W = max{n | Hn(�;Z�) �= 0} where � is any torsion-free
finite index subgroup of W. Since H∗(�;Z�) = H∗c (�) = H∗(W;ZW), we
can replace Hn(�;Z�) by Hn(W;ZW). So the next result follows from
Corollary 8.5.2.

COROLLARY 8.5.5

vcd W = max{n | Hn−1
(L− σT ) �= 0, for some T ∈ S}.

COROLLARY 8.5.6. W is virtually free if and only if for all T ∈ S,
Hn(L− σT ) vanishes for all n � 1.

Proof. Stallings [266] proved that a virtually torsion-free group (such as
W) is virtually free if and only if its virtual cohomological dimension is 1
(Theorem F.3.3). �

We completely analyze virtually free Coxeter groups in 8.8. In particular,
in that section we describe all simplicial complexes L satisfying the condition
of Corollary 8.5.6 and, in Proposition 8.8.5, we will give a direct proof of the
corollary, without invoking Stallings’ Theorem.

vcdW = 2: The Eilenberg-Ganea Problem

The geometric dimension of a group �, denoted by gd�, is the smallest
possible dimension of a CW model for B�. The Eilenberg-Ganea Problem
asks if there is a group � with cd� = 2 and gd� = 3. (As explained in
Theorem F.3.2, whenever cd� �= 2, the cohomological and geometric dimen-
sions are equal.) As Bestvina pointed out in [22], torsion-free, finite-index
subgroups of certain Coxeter groups are good candidates for counterexamples.
We now explain why.

Let L be a two-dimensional, finite simplicial complex which is acyclic
but not simply connected. (There are many examples of such by
Remark 8.5.7 (i), below.) Assume (W, S) is a Coxeter system with L(W, S) = L.
(By Lemma 7.2.2, we can achieve this by replacing L by its barycentric
subdivision and taking the associated right-angled Coxeter system.) Let � be
any torsion-free subgroup of finite index in W. Since dim L = 2, dim� = 3.
Hence, gd� � 3. Recall that the fundamental chamber K for W on � is the
geometric realization of S. Let ∂K be the geometric realization of S>∅. (∂K is
the barycentric subdivision of L.) U(W, ∂K) is the singular set of � (i.e., it is
the set of points in � with nontrivial isotropy subgroup). By Corollary 8.2.8,
U(W, ∂K) is acyclic. (Indeed, for a nonempty spherical subset T we have
(∂K)T = KT , which is a cone, while for T = ∅, we have (∂K)∅ = ∂K, which is
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acyclic.) Since � acts freely on U(W, ∂K) and dimU(W, ∂K) = 2, cd� � 2.
It turns out that cd� = 2 and hence, vcd W = 2. (This will follow from the
discussion in 8.8, below; in fact, by Proposition 8.8.5 if � is free, then L is
in the class G ′ of simplicial complexes defined in 8.8 and such complexes are
contractible.) It seems quite likely that any such � associated to a nonsimply
connected, acyclic 2 complex L actually is a counterexample to the Eilenberg-
Ganea Problem, that is, gd� = 3 and cd� = 2 (see Remark 8.5.7 (iv)). What
is needed is a suitable invariant to show that gd� > 2.

Remark 8.5.7

(i) (The 2-skeleton of Poincaré’s homology sphere.) Here is a specific
construction of an acyclic 2-complex L. Poincaré’s homology
3-sphere is the 3-manifold formed by identifying opposite faces of a
dodecahedron (with a π/10 twist). Its fundamental group is the
binary icoahedral group (a perfect group of order 120). If we remove
the interior of the dodecahedron, we get an acyclic 2-complex made
from six pentagons. Take its barycentric subdivision to get a
simplicial complex L. Since L is a flag complex, there is an associated
right-angled Coxeter group W with nerve L (Lemma 7.2.2).

(ii) Note that if the complex L is contractible, then U(W, ∂K) is
contractible, so gd� = cd� and we will not get a counterexample.

(iii) The construction of right-angled Coxeter groups with nonsimply
connected acyclic nerves works in any dimension � 2; however, in
higher dimensions it does not provide counterexamples to the
Eilenberg-Ganea Theorem (in Appendix F.3). The reason is that if L
is any acyclic complex, then it is always possible to attach 2- and
3-cells to it to obtain an contractible complex L′. We can assume these
cells are attached via piecewise linear maps and that L′ is triangulated
as a flag complex with L a full subcomplex. If �′ is a torsion-free
subgroup of the Coxeter group W ′ corresponding to L′ and
� = �′ ∩W, then for dim L � 3, gd� � gd�′ � dim L′ = dim L, in
compliance with the Eilenberg-Ganea Theorem.

(iv) On the other hand, if dim L = 2 and π1(L) �= 1, then it is conjectured
that L can never be embedded in a contractible 2-complex. If such an
embedding into a finite contractible 2-complex L′ were possible, we
could attach 1- and 2-cells to L to obtain L′. Since L and L′ both have
Euler characteristic 1, the number of 1-cells attached is equal to the
number of 2-cells. But the Kervaire Conjecture asserts that it is
impossible to kill any nontrivial group G by adding the same number
of generators as relations. Moreover, the Kervaire Conjecture has
been proved for many classes of groups. These are the intuitive
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reasons in [22] for believing that the above constructions actually
give counterexamples to the Eilenberg-Ganea Problem.

(v) In [24] Bestvina and Brady describe an even more convincing
candidate for a counterexample to the Eilenberg-Ganea Problem. This
time the group H is one of the “Bestvina-Brady groups” described in
Section 11.6. It is subgroup of a “right-angled Artin group” instead of
a right-angled Coxeter group. The Artin group is associated to the
same flag triangulation L of the 2-skeleton of Poincaré’s homology
sphere discussed in (i). It is shown in [24] that cd H = 2 and either
gd H = 3 or else Whitehead’s Conjecture on aspherical 2-complexes
is false. (Whitehead’s Conjecture asserts that any connected
subcomplex of an aspherical 2-complex is aspherical.)

(vi) In [34] Brady, Leary, and Nucinkis define the appropriate notions of
“cohomological dimension” and “geometric dimension” for groups G
with torsion. In this context the geometric dimension is the smallest
dimension of any CW model for EG, the universal space for proper
G-actions (Definition 2.3.1). The cohomological version of this
definition involves resolutions of the constant object Z by direct sums
of modules of the form Z(G/F) where F ranges over the finite
subgroups of G. Denote these notions by gd′( ) and cd′( ). There is a
generalization of the Eilenberg-Ganea Theorem: the cohomological
and geometric dimensions coincide except in the case where the
geometric dimension is 3 and the cohomological version is 2. The
main result of [34] is that the Coxeter group examples discussed
above are counterexamples to this version of the Eilenberg-Ganea
Problem for groups with torsion: cd′(W) = 2 and gd′(W) = 3.

More Examples Concerning vcd(W)

We continue to use the method, explained in the Notes to Chapter 7, for
producing examples of right-angled Coxeter systems with various nerves. The
first is a variant of an example of Bestvina-Mess [25].

Example 8.5.8. (Different dimension over Z than Q.) Suppose L is a triangu-
lation of RP2 as a flag complex and (W, S) is the right-angled Coxeter system
with nerve L. What is the cohomology of the punctured nerves L− σT? When
T �= ∅, L− σT is the complement of a simplex inRP2, i.e., it is an open Möbius
band. On the other hand, for T = ∅, L is RP2. Corollary 8.5.3 yields

Hi(W;ZW) ∼=




0 if i = 0, 1,

Z∞ if i = 2,

Z/2 if i = 3.



August 2, 2007 Time: 02:46pm chapter8.tex

ALGEBRAIC TOPOLOGY OF U AND � 157

With rational coeffcients, we have

Hi(W;QW) ∼=
{

0 if i �= 2,

Q∞ if i = 2.

(Here Z∞ means a free abelian group of countably infinite rank andQ∞ means
a rational vector space of countably infinite dimension.) From these formulas
and (8.17) (or from Corollary 8.5.5), we get vcdZW = 3 while vcdQW = 2.

We have the following example of Dranishnikov [104].

Example 8.5.9. (Nonadditivity of cohomological dimension.) RP2 is a Moore
space, i.e., its reduced homology is concentrated in a single dimension (in this
case, dimension 1) and in that dimension it is isomorphic to a given abelian
group (in this case, Z/2). We have a similar construction for any abelian group.
Let L′′ be the result of attaching a 2-disk to S1 by a PL map ∂D2 → S1 of
degree 3. Then L′′ is a Moore space with homology ∼= Z/3 in dimension 1.
Assume L′′ is triangulated as a flag complex; W ′′ is the associated right-angled
Coxeter group and �′′ the associated complex. Exactly as in the previous
example, we calculate

Hi
c(�′′) = Hi(W ′′;ZW ′′) ∼=




0 if i = 0, 1,

Z∞ if i = 2,

Z/3 if i = 3.

Let L′ (= RP2) be as in the previous example and W ′ and �′ the associated
Coxeter group and cell complex. Put W := W ′ ×W ′′ and � := �′ ×�′′. �
is six dimensional. On the other hand, by the Künneth Formula, H6

c (�) ∼=
H3

c (�′)⊗ H3
c (�2) = Z/2⊗ Z/3 = 0, while H5

c (�) �= 0. Hence, by (8.17)

vcd(W ′ ×W ′′) = 5 �= 6 = vcd(W ′)+ vcd(W ′′).

(This answers Problem C2 in Wall’s Problem List [293, p. 376] in the negative.)

8.6. BACKGROUND ON THE ENDS OF A GROUP

Suppose G is a group with a finite set of generators S. As in 2.1, let � be its
Cayley graph. In Appendix G.3 we explain the notion of the set of “ends” of
a noncompact space. In the case of a locally finite graph, such as �, the set of
ends can be described as follows. Let C be the poset of finite subgraphs of �
ordered by inclusion. This gives an inverse system, {�− C}C∈C . So, we can
take path components and then form the inverse limit

Ends(�) := lim←− π0(�− C),
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and define

Ends(G) := Ends(�). (8.18)

By [37, Prop. 8.29, p. 145], Ends(G) is well defined up to a canonical
homeomorphism. (The proposition in [37] states that any quasi-isometry X1 →
X2 of geodesic spaces induces a homeomorphism Ends(X1)→ Ends(X2). We
can apply this because different generating sets for G give quasi-isometric
Cayley graphs. The definition of “quasi-isometry” can be found in 12.5.)
A proof of the following famous result of H. Hopf can be found in
[37, pp.146–147].

THEOREM 8.6.1. (Hopf [157].) Suppose G is a finitely generated group. Let
e(G) denote the number of its ends.

(i) G has either 0, 1, 2, or infinitely many ends.

(ii) e(G) = 0 if and only if G is finite.

(iii) e(G) = 2 if and only if G has an infinite cyclic subgroup of finite
index (i.e., if G is virtually infinitely cyclic).

(iv) If e(G) is infinite, then it is uncountable. Moreover, each point of
Ends(G) is an accumulation point.

A good method for calculating the number of ends of a group is to invoke
the following proposition (basically a restatement of Proposition G.3.3).

PROPOSITION 8.6.2. Suppose an infinite discrete group G acts properly and
cocompactly on a simply connected CW complex X. Then

(i) G is one-ended if and only if H1
c (X) = 0.

(ii) G has two ends if and only if H1
c (X) ∼= Z.

(iii) G has infinitely many ends if and only if the rank of H1
c (X) is infinite.

Proof. The proof uses results from Appendix G.2. Since � is quasi-isometric
to X, e(G) is the rank of He

0(X), the homology of X at infinity in dimension 0.
By the Universal Coefficient Theorem, when finite, He

0(X) and H0
e (X) have the

same rank and if the rank of one is infinite so is the other. (However, when the
rank of H0

e (X) is countable, He
0(X) has uncountable rank.) By Proposition G.2.1

we have an exact sequence:

Z −→ H0
e (X) −→ H1

c (X) −→ H1(X) = 0;

hence, the result. (See also Remark G.3.4.) �
When G in the previous proposition is finitely presented, we can take X to

be a Cayley 2-complex.
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The next result is a famous theorem of Stallings [266]. It characterizes
groups with infinitely many ends in a fashion analogous to parts (ii) and (iii)
of Theorem 8.6.1. A proof of Stallings’ Theorem can be found in [95]. The
notions of “amalgamated product” and “HNN construction” are explained in
Appendix E.1 (Examples E.1.1 and E.1.2, respectively).

THEOREM 8.6.3. (Stallings [266].) Suppose G is a finitely generated group
with more than one end. Then G splits as an amalgamated product or HNN
construction over a finite subgroup.

COMPLEMENT 8.6.4. For a group with more than one end, the question
arises: does the process of splitting over finite subgroups terminate after a finite
number of steps (i.e., is the group “accessible”) or not (is it “inaccessible”)? If
the group is accessible, it can be written as the fundamental group of a finite
graph of groups where each edge group is finite and each vertex group is one
ended. (Graphs of groups are explained in Appendix E.1.) The accessibility
question was answered by Dunwoody. In [105] he showed that every finitely
presented group is accessible and then in [106] he gave examples of finitely
generated groups which were inaccessible. (See [95].)

8.7. THE ENDS OF W

An immediate corollary of Proposition 8.6.2 is the following.

THEOREM 8.7.1. Let (W, S) be a Coxeter system. Then

(i) W is one ended if and only if H1
c (�) = 0,

(ii) W has two ends if and only if H1
c (�) ∼= Z, and

(iii) W has infinitely many ends if and only if the rank of H1
c (�) is infinite.

Applying Theorem 8.5.1 and the homotopy equivalence KS−T ∼ L− σT of
Lemma A.5.5, the above result yields the next three theorems, which give
concrete conditions for deciding the number of ends of W.

THEOREM 8.7.2. W is one ended if and only if, for each T ∈ S, the
punctured nerve L− σT is connected.

Conversely, given a spherical subset T such that L− σT is disconnected
we get an explicit splitting of W over finite subgroups as follows. Suppose
l1, . . . , lk are the components of L− σT . For 1 � i � k let Li denote the closure
of li, Si the vertex set of Li and Ti = Si ∩ T . Define a graph of groups as follows.
The graph � is the cone on {1, . . . , k}; it has edges e1, . . . , ek where ei denotes
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the cone on the vertex i. The group associated to the vertex i is WSi , the group
associated to the cone point is WT and the group associated to ei is WTi . The
fundamental group of this graph of groups is clearly W.

W has two ends if and only if there is a unique T ∈ S such that L− σT

has exactly two components and a unique w ∈ W such that T = In(w). The
following theorem is a special case of Theorem 10.9.2 in Chapter 10. Although
it follows fairly easily from the above remarks and Lemma 4.7.5, we postpone
the details of the proof until we get to Theorem 10.9.2.

THEOREM 8.7.3. W is two ended if and only if (W, S) decomposes as

(W, S) = (W0 ×W1, S0 ∪ S1)

where W1 is finite and W0 is the infinite dihedral group.

In the above case, L(W, S) is the suspension of the simplex on S1. The two
suspension points are the two elements of S0.

Combining Theorems 8.7.2 and 8.7.3 we get the following.

THEOREM 8.7.4. W has infinitely many ends if and only if it is not as in
Theorem 8.7.3 and there is at least one T ∈ S so that the punctured nerve
L− σT is disconnected.

8.8. SPLITTINGS OF COXETER GROUPS

As usual, (W, S) is a Coxeter system and L is its nerve. Suppose L0 is a full
subcomplex of L. (This means that if T is any simplex of L such that its vertices
are in L0, then T ⊂ L0.) Set S0 = Vert(L0) and W0 = WS0 .

Suppose that L0 disconnects L, in other words, that L− L0 has more than
one component. (We allow the possibility that L0 might be empty.) Then we
can write L− L0 as a disjoint union, L− L0 = l1 ∪ l2 where for i = 1, 2, li
is a nonempty union of components of L− L0. For i = 1, 2, let Si denote the
union of S0 with the vertices in li, let Li be the full subcomplex of L spanned
by Si and let Wi = WSi . Clearly, Li is the nerve of (Wi, Si), S1 ∩ S2 = S0 and
L1 ∩ L2 = L0. Moreover, if a vertex s1 ∈ S1 is connected by an edge to a vertex
s2 ∈ S2, then either s1 or s2 lies S0. From this and the standard presentation of
a Coxeter group, we deduce the following.

PROPOSITION 8.8.1. With notation as above, W is the amalgamated product
of W1 and W2 along W0.

If W has more than one end, then, by Theorem 8.7.2, we can choose L0 to be
a (possibly empty) simplex σT of L. Then W0 = WT is finite and we obtain a
splitting of W as an amalgamated product over a finite group. (The existence
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of such a splitting is predicted by Stalling’s Theorem 8.6.3.) This process
can be continued. We can ask if W1 or W2 has more than one end. If, say,
W1 has more than one end, then we can decompose L1 as a union of two
pieces along a simplex and decompose W1 as an amalgamated product along
another spherical special subgroup. Since the number of generators of one of
the components decreases at each step, this process terminates. So we have
proved the following proposition, which we will need in 9.2.

PROPOSITION 8.8.2. Any Coxeter system decomposes as a tree of groups,
where each vertex group is a 0- or 1-ended special subgroup and each edge
group is a finite special subgroup.

(The notion of a graph of spaces is defined in Appendix E.1. A tree of
groups (or spaces) is the special case where the underlying graph is a tree.
To say that a group decomposes as a tree of groups just means that it can
be written as an iterated amalgamated product of vertex groups, amalgamated
along the edge groups.) The proof of the proposition shows that any finite
simplicial complex L can be decomposed as a tree of subcomplexes where the
subcomplex associated to each edge is a simplex (or empty) and for any vertex
v the associated subcomplex Lv satisfies the condition of Theorem 8.7.2, i.e.,
for any simplex σ in Lv, Lv − σ is connected (or empty).

Virtually Free Coxeter Groups

Following [141], define G to be the smallest class of Coxeter groups such that

• each spherical Coxeter group is in G, and

• if W1, W2 ∈ G and if W0 is a common spherical special subgroup of
both, then W1 ∗W0 W2 ∈ G.

Equivalently, W is in G if and only if it has a tree of groups decomposition
where each vertex group is a spherical special subgroup.

Our previous discussion suggests the following: define G ′ to be the smallest
class of finite simplicial complexes such that

• for any n ∈ N, each n-simplex is in G ′, and

• if L1, L2 ∈ G ′ and if L0 is a subcomplex of both which is either empty
or a simplex, then the simplicial complex formed by gluing L1 to L2

along the simplex L0 is in G ′.
Equivalently, L is in G ′ if and only if it can be decomposed as a “tree of
simplices,” i.e., a tree of subcomplexes where the subcomplex associated to
each vertex is a simplex and the subcomplex associated to an edge is a common
face (possibly empty) of the simplices associated to its endpoints.
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Example 8.8.3. Any finite tree is in G ′. We can think of each component of a
simplicial complex in G ′ as being a “thick tree.”

LEMMA 8.8.4. Let L be a finite simplicial complex such that for all simplices
σ � L (including σ = ∅), L− σ is acyclic. Then L is a simplex.

Proof. For each v ∈ Vert(L), let Lk(v) denote its link in L (defined in
Appendix A.6). We claim that Lk(v) also satisfies the hypothesis of the lemma.
To see this, first note the excision H∗(L, L− v) ∼= H∗(Star(v), Lk(v)) where
Star(v) denotes the union of all closed simplices with v as a vertex. We can
assume L �= v (otherwise Lk(v) = ∅). Since L and L− v are both acyclic
and Star(v) is a cone, it follows from the exact sequence of (L, L− v) that
Lk(v) is acyclic. Let σ be a simplex of Lk(v). Then σ corresponds to a
simplex σ ′ of L containing v. (σ ′ is the join of v and σ .) We have another
excision, H∗(L− v, L− σ ′) ∼= H∗−1(Lk(v)− σ ). By induction on the number
of vertices, Lk(v) is a simplex σ . We can identify σ with a simplex of L, namely
the face opposite to v in σ ′. If L = σ ′, we are done. Otherwise, L− σ has a least
two components, contradicting the hypothesis that it is acyclic. �

For any Coxeter system (W, S), it is obvious that W ∈ G if and only if the
nerve of (W, S) is in G ′.

PROPOSITION 8.8.5. The following conditions on a Coxeter group W are
equivalent:

(a) L(W, S) ∈ G ′.
(b) W ∈ G.

(c) W is virtually free.

(d) For all T ∈ S, Hn(L− σT ) vanishes for all n � 1.

Proof. We pointed out before that (a) =⇒ (b). Obviously, (b) =⇒ (c). Also, if
W is virtually free, then vcd W = 1; so (c) =⇒ (d) by Corollary 8.5.6. Suppose
that W is infinite and (d) holds. Since L is not a simplex, there is a T ∈ S such

that H
0
(L− σT ) �= 0 (by Lemma 8.8.4). As in Proposition 8.8.1, this gives a

splitting of W as an amalgamated product of two special subgroups over the
finite special subgroup WT . It follows (by induction on Card(S)) that W ∈ G
and L(W, S) ∈ G ′. So, (d) =⇒ (a). �

In 14.2 we will give another condition equivalent to the conditions in Propo-
sition 8.8.5. (The condition is that W does not contain subgroup isomorphic to
the fundamental group of a closed orientable surface of genus > 0.)
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8.9. COHOMOLOGY OF NORMALIZERS OF SPHERICAL
SPECIAL SUBGROUPS

For any T ∈ S, the vertex set of Lk(σT , L) can be identified with

{U ∈ S>T | Card(U − T) = 1}.
Hence, the vertices of Lk(σT , L) are indexed by the set

V(T) := {a ∈ S− T | T ∪ {a} ∈ S}. (8.19)

For each a ∈ V(T), put ∂aKT := KT∪{a} and for any A ⊂ V(T), put

∂AKT :=
⋃
a∈A

∂aKT . (8.20)

For any T ∈ S, in 7.5, we defined Fmin(T) := {wWT ′ | WT = wWT ′w−1}. Let
F(T) be the set of w ∈ W such that for some T ′ ∈ S the coset wWT ′ ∈ Fmin(T)
and w is the longest element in wWT ′ . (See 4.6 for facts about the longest
element.) For each w ∈ F(T), let Tw denote the corresponding element T ′

of S, i.e., Tw = T ′ = w−1Tw.
As in 8.3, assume X is a finite complex with a W-finite mirror structure. For

each w ∈ F(T), set A(w, T) := V(Tw)− In(w) and

δwXT := ∂A(w,T)XTw , (8.21)

where V(Tw) is defined by (8.19), ∂A(w,T) by (8.20) and In(w) by Defini-
tion 4.7.1. We have the following generalization of Theorem 8.3.1.

THEOREM 8.9.1. ([60, p. 456].) For each T ∈ S,

H∗c (Fix(WT ,U)) ∼=
⊕

w∈F(T)

H∗(XTw , δwXTw ).

Remarks

(i) In the above formula, Tw ranges over all subsets T ′ of S which are
conjugate to T .

(ii) The wXTw , with w ∈ F(T), are cofaces of codimension 0 in
Fix(WT ,�).

(iii) If we order the elements of F(T) by word length, then δwXTw is the
union of cofaces of the form ∂aXTw such that the adjacent coface to
wXTw across w∂aXTw is further from the base (= XT ) than is wXTw .
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Sketch of proof of Theorem 8.9.1. In Remark 8.3.4 we defined, for each w ∈ W,
a map of cochain complexes λw : C∗(X, XOut(w))→ C∗c (U). If w ∈ F(T), then
λw restricts to a map

λT
w : C∗(XTw , δwXTw )→ C∗c (Fix(WT ,U)),

and hence, we get

λT := ⊕λT
w :

⊕
w∈F(T)

C∗(XTw , δwXTw )→ C∗c (Fix(WT ,U)).

An argument similar to the proof of Theorem 8.3.1 shows that λT induces an
isomorphism in cohomology. �

Applying Theorem 8.9.1 to the case U = �, we get the following.

COROLLARY 8.9.2. For each T ∈ S,

H∗c (Fix(WT ,�) ∼=
⊕

w∈F(T)

H∗(KTw , δwKTw ).

N(WT ), the normalizer of WT in W, acts on Fix(WT ,�) properly and co-
compactly. We will prove later (in Theorem 12.3.4 (ii)) that Fix(WT ,�) is
contractible. This is a consequence of Moussong’s Theorem (12.3.3), which
states that the natural piecewise Euclidean metric on � is CAT(0). Hence, we
have the following generalization of Corollary 8.5.2.

COROLLARY 8.9.3. For each T ∈ S,

H∗(N(WT );ZN(WT )) ∼=
⊕

w∈F(T)

H∗(KTw , δwKTw ).

NOTES

8.2. The argument in Remark 8.2.14 is often used to prove some space with group
action is contractible. One shows there is a contractible fundamental domain and that
its translates can be ordered so that the union of the first n of them is formed by gluing
on the nth to the previous ones along a contractible subspace.

8.4. In order to make our arguments with excision work, we assumed that the mirrored
space X satisfied the “Collared Condition.” The following weaker assumption would
suffice: for any two mirrored subspaces X1, X2 of X, the triple (X1 ∪ X2, X1, X2) should
be an “exact triad.” (See [142, p. 98].) This means that (X1, X1 ∩ X2) ↪→ (X1 ∪ X2, X2)
is an excision (and similarly with the roles of X1 and X2 switched).

8.5. The results of this section are from [77]. The complex in Example 8.5.8 will
be discussed again in Example 12.4.1 of Section 12.4, where we consider its “visual
boundary.” For more discussion of the vcd of a Coxeter group, see [22, 97].



August 2, 2007 Time: 02:46pm chapter8.tex

ALGEBRAIC TOPOLOGY OF U AND � 165

8.6. The discussion here is taken from Bridson and Haefliger [37]. The definition of a
“quasi-isometry” can be found there or in Definition 12.5.1.

8.9. This section is taken from [60]. One could give a direct proof of the fact that
Fix(WT ,�) is acyclic for each T ∈ S, without invoking Moussong’s Theorem. The
argument is along the lines laid down in 8.1 and 8.2 (e.g., in the proof of Theorem 8.1.2).
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Chapter Nine

THE FUNDAMENTAL GROUP AND

THE FUNDAMENTAL GROUP AT INFINITY

Section 9.1 deals with π1(U). The universal cover of U can be constructed
as a space of the form Ũ = U(W̃, X̃), where X̃ is the universal cover of the
fundamental chamber X and the Coxeter group W̃ has a fundamental generator
for each component of the inverse image in X̃ of each mirror of X. This
gives a short exact sequence computing π1(U) in terms of π1(X) and W̃
(Theorem 9.1.5).

The main result of 9.2 gives a necessary and sufficient condition for � to
be simply connected at infinity (Theorem 9.2.2). The condition is phrased in
terms of the nerve L and its “punctured” versions, L− σT . The proof of the
theorem is based on some general results from Appendix G.4 on semistability
and the fundamental group at infinity.

9.1. THE FUNDAMENTAL GROUP OF U

When Is U Simply Connected?

We pointed out in the beginning of 5.1 that the projection map p : U → X is a
retraction. This implies the following.

LEMMA 9.1.1. For each nonnegative integer i, p∗ : πi(U)→ πi(X) is onto.

COROLLARY 9.1.2. If U is simply connected, then so is X.

We assume for the rest of this chapter that X is a connected, mirrored CW
complex. One of the main results in this section is the following.

THEOREM 9.1.3. (Compare Proposition 8.2.11.) U is simply connected if
and only if the following three conditions hold:

(a) X is simply connected.

(b) For each s ∈ S, Xs is nonempty and path connected.

(c) For each spherical subset {s, t} ∈ S (2), Xs ∩ Xt is nonempty.
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Proof. Suppose U is simply connected. By Corollary 9.1.2, (a) holds. Since
H1(U) is the abelianization of π1(U), H1(U) = 0. Hence, Proposition 8.2.11
implies that (b) and (c) hold.

Conversely, suppose (a), (b), and (c) hold. Then, as in the proof of
Proposition 8.2.11, for each nonempty spherical subset T , XT is nonempty and
path connected. As in 8.1, U is an increasing union of chambers, P1⊂ · · · ⊂
Pn ⊂ · · · , where P1 = X and Pn is obtained from Pn−1 by gluing on a copy
of X along a subspace of the form XT , T ∈ S>∅. We claim that each Pn is
simply connected. For n = 1, this is condition (a). Assume by induction that
Pn−1 is simply connected. We plan to apply the Seifert–van Kampen Theorem
([253, 168] or [197]) to Pn = Pn−1 ∪ X. Since X is simply connected ((a) again)
and since their intersection Pn−1 ∩ X = XT is path connected, the Seifert–
van Kampen Theorem implies that Pn is simply connected. Since U is the
increasing union of the Pn, π1(U) is trivial. �

There is an alternative argument using covering space theory for the second
implication in the proof of the previous theorem.

Alternative proof of Theorem 9.1.3. Suppose U admits a universal covering
space q : Ũ → U . We will show that if (a), (b), and (c) hold, then q is a
homeomorphism and hence U is simply connected. As usual, identify X with
a chamber of U . Since X is simply connected, q maps each path component
of q−1(X) homeomorphically onto X. Choose such a component and call it
Y . Define c : X→ U to be the inverse of the homeomorphism q|Y . Next we
lift the W-action to Ũ . First we lift the generators. Each s ∈ S has a unique
lift s̃ : Ũ → Ũ fixing a given basepoint in c(Xs). Since s̃2 covers the identity
on U and fixes a basepoint, it is the identity on Ũ , i.e., s̃ is an involution.
Since, by (b), Xs is path connected, s̃ must fix all of c(Xs). So, the definition
of s̃ is independent of the choice of basepoint in c(Xs). Suppose {s, t} ∈ S (2)

(in other words, m(s, t) �= ∞). Since, by (c), X{s,t} (= Xs ∩ Xt) is nonempty,
we can choose the basepoint in X{s,t}. Then s̃t̃ is the unique lift of st fixing
the basepoint. For m = m(s, t), (s̃t̃)m is the lift of the identity which fixes the
basepoint; hence, (s̃t̃)m is the identity on Ũ . This shows that the W-action on
U lifts to a W-action on Ũ (so that the projection map q is W-equivariant).
By the universal property of U in Lemma 5.2.5, c : X→ Ũ extends to a W-
equivariant map c̃ : U → Ũ . Since c is a section of q|Y , c̃ is a section of q.
Therefore, q : Ũ → U is the trivial covering and consequently, U is simply
connected. �

Combining Theorem 9.1.3 and Corollary 8.2.2, we get the next result.

THEOREM 9.1.4. ([71, Cor. 10.3].) Suppose X is a mirrored CW complex.
Then U is contractible if and only if the following two conditions hold:

(a) X is contractible.

(b) For each T ∈ S>∅, XT is acyclic.
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The Universal Cover of U
Let π : X̃→ X be the universal cover. Define a mirror structure on X̃ as
follows. Let S̃ denote the disjoint union over all s ∈ S of the path components
of π−1(Xs), that is,

S̃ =
⋃
s∈S

π0(π−1(Xs)). (9.1)

If a ∈ S̃, then it is a component of π−1(Xs) for some s ∈ S. Let f : S̃→ S be the
function a→ s. This gives a tautological mirror structure on X̃ over S̃, namely,
X̃a := a. If (mst) is the Coxeter matrix for (W, S), define a Coxeter matrix (m̃ab)
on S̃ by

m̃ab =




1 if a = b,

mf (a)f (b) if a ∩ b �= ∅,
∞ otherwise.

(9.2)

Let (W̃, S̃) be the associated Coxeter system. (S̃ can be infinite.) The function
f : S̃→ S induces a homomorphism ϕ : W̃ → W. Put Ũ = U(W̃, X̃) and define
π : Ũ → U by [w̃, x̃]→ [ϕ(w̃), f (x̃)]. The map π is ϕ-equivariant and clearly
is a covering projection. By Theorem 9.1.3, Ũ is the universal cover of U .

Next, we want to describe the group of all lifts of the W-action on U to Ũ .
Let H = π1(X), regarded as the group of deck transformation of X̃. H acts on S̃
and leaves the Coxeter matrix invariant. So there is an induced action of H on
W̃ by automorphisms. With respect to this action, form the semidirect product
W̃ � H . The formula

(w̃, h) · [ṽ, x̃] = [w̃h(ṽ), hx], (9.3)

gives a well-defined action of W̃ � H on Ũ (see Proposition 9.1.7 below).
Clearly, W̃ � H is the group of all lifts of the W-action to Ũ . So, we have
the following generalization of Theorem 9.1.3, a computation of π1(U).

THEOREM 9.1.5. With notation as above, the following sequence is short
exact:

1→ π1(U)→ W̃ � H→ W → 1.

The Semidirect Product Construction

It is worth abstracting the above construction, since it will be needed again in
Chapter 11.
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DEFINITION 9.1.6. Suppose W is a Coxeter system. An automorphism ϕ of
W is a diagram automorphism of (W, S) if ϕ(S) = S.

If ϕ is a diagram automorphism, then it preserves the associated Coxeter
matrix:

mϕ(s)ϕ(t) = mst. (9.4)

Since S generates W, ϕ is determined by ϕ|S. Conversely, any bijection
ϕ : S→ S satisfying (9.4) extends to an automorphism of W (since W is the
group determined by the presentation associated to (mst)). Suppose

• H is a group of diagram automorphisms of (W, S),

• X is a mirrored space over S, and

• H acts on X compatibly with its action on S, i.e., hXs = Xhs for all
h ∈ H.

Put G := W � H and U := U(W, X). G acts on U as follows: given g =
(w, h) ∈ G and [u, x] ∈ U ,

g · [u, x] := [wh(u), hx]. (9.5)

PROPOSITION 9.1.7. The expression for g · [u, x] in (9.5) is well defined and
gives an action of W � H on U(W, X).

Proof. The equivalence relation in the definition of U(W, X) is such that
[uv, x] = [u, x] for all v ∈ WS(x). So, to prove formula (9.5) is well defined,
we must show that when we replace [u, x] by [uv, x] on the left-hand side, the
right-hand side remains unchanged. By the compatibility of the H-actions on S
and X, S(hx) = h(S(x)). Hence, g · [uv, x] = [wh(uv), hx] = [wh(u)h(v), hx] =
[wh(u), hx] = g · [u, x], where the next to last equality holds since
h(v) ∈ WS(hx).

Suppose g1 = (w1, h1) and g2 = (w2, h2). By definition of multiplication in
the semidirect product, g1g2 = (w1h1(w2), h1h2). To prove that (9.5) defines an
action, we must show g1 · (g2 · [u, x]) = (g1g2) · [u, x]. Indeed,

g1 · (g2 · [u, x])= g1 · [w2h2(u), h2x] = [w1h1(w2h2(u)), h1h2x]

= [w1h1(w2)(h1h2)(u), h1h2x] = (g1g2) · [u, x]. �

Example 9.1.8. (The case U = �.) If H is a group of diagram automorphisms
of (W, S), then the H-action on S induces a H-action on the poset of spherical
subsets S and its geometric realization K. Hence, G acts on � = U(W, S).

We record some properties of the semidirect product construction.
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PROPOSITION 9.1.9

(i) U/G ∼= X/H.

(ii) Given x ∈ X, the isotropy subgroup Hx permutes S(x) (defined by
(5.1)). So, Hx is a group of diagram automorphisms of (WS(x), S(x)).
The isotropy subgroup of G at the point [1, x] ∈ U is WS(x) � Hx.

(iii) If W acts properly on U and H acts properly on X, then G acts
properly on U .

(For the meaning of “proper action,” see Definition 5.1.5.)

Proof. (i) U/W ∼= X; hence, U/G ∼= X/H.
(ii) The first two sentences of (ii) are obvious. If (w, h) fixes [1, x], then

(w, h) · [1, x] = [w, hx] = [1, x]. So, h ∈ Hx and w ∈ WS(x).
(iii) Conditions for the W-action on U to be proper are given in Lemma 5.1.7.

So, (iii) follows from (ii). �

9.2. WHEN IS � SIMPLY CONNECTED AT INFINITY?

A neighborhood of infinity in a noncompact space Y is the complement of a
compact subspace. A one-ended space Y is simply connected at infinity if for
every neighborhood of infinity U there is a smaller neighborhood of infinity
V so that every loop in V is null-homotopic in U. The notion of being simply
connected at an end is defined analogously.

Appendix G.4 explains notions related to the “fundamental group at infinity”
of a noncompact space Y . Given a proper ray r : [0,∞)→ Y and an exhaustion
C1 ⊂ C2 · · · of Y by compact subsets, we get an inverse sequence
{π1(Y − Ci, yi)} where the basepoints yi are chosen on the ray r. The ray
determines an end e of Y . Y is semistable at e if the inverse sequence
{π1(Y − Ci)} satisfies the Mittag-Leffler Condition; it is semistable if it is
semistable at each end. (Semistability does not depend on the choices of ray or
compact subsets.) If Y is semistable at e, the inverse limit,

π e
1 (Y) := lim←−π1(Y − Ci),

is well defined up to isomorphism and it vanishes if and only if Y is simply
connected at e (Proposition G.4.3).

As usual, (W, S) is a Coxeter system, L is its nerve and � is the associated
complex. For each spherical subset T , σT is the corresponding (closed) simplex
in L. The goal of this section is to prove the next two theorems.
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THEOREM 9.2.1. ([207, Theorem 1.1].) � is semistable at each of its ends.

Recall Theorem 8.7.2 states that � is one ended if and only if for each
T ∈ S, L− σT is connected. Similarly, we have the following.

THEOREM 9.2.2. ([89]). � is one ended and simply connected at infinity if
and only if for each T ∈ S, L− σT is simply connected.

LEMMA 9.2.3. For any T ∈ S>∅,

(i) KT is contractible, and

(ii) K deformation retracts onto KT.

Proof. Statement (i) is Lemma 7.2.5. Since KT is a subcomplex of K and since
both K and KT are contractible, (ii) follows. �

As in Chapter 8, given a subset U ⊂ W, put

UK :=
⋃
w∈U

wK. (9.6)

For any T ⊂ S, let AT ⊂ W be the fundamental T-sector (Definition 4.5.1).

LEMMA 9.2.4. For any T ⊂ S, (AT − 1)K deformation retracts onto KS−T .

(By Lemma A.5.5 in Appendix A.5, KS−T and L− σT are homotopy equiva-
lent.)

Proof. For the notion of a “starlike” subset of W, see Definition 4.5.5. Put
V1 := {1} ∪ S− T . Then V1 is starlike (with respect to 1). Extend this to an
increasing sequence of finite, starlike subsets V1 ⊂ V2 ⊂ · · · that exhaust AT

so that each Vn − Vn−1 consists of a single extreme element wn. (One way to do
this is to order the elements of AT by word length, w2, w3, . . . , starting with the
elements of length 2.) As in Lemma 8.1.1, wn+1K ∩ VnK = wn+1KIn(wn+1) ∼=
KIn(wn+1). By Lemmas 4.7.2 and 9.2.3, Vn+1K deformation retracts onto VnK
for any n � 1. Hence, ATK deformation retracts onto V1K and (AT − 1)K
deformation retracts onto (V1 − 1)K. Using Lemma 9.2.3 again, we see that
the last space deformation retracts onto KS−T . The above argument works
even when T = ∅. We conclude that (W − 1)K deformation retracts onto KS

(= ∂K). �

As in Chapter 8, for any subset U of W, Ǔ denotes its complement.

LEMMA 9.2.5. ([89, Lemma 3.4].) Suppose U ⊂ W is starlike (with respect
to a base element w0), that w is an extreme element of U, and that V = U − w.
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Set T := In(w−1
0 w). Then

(i) V̌K is homotopy-equivalent to ǓK with wKS−T coned off.

(ii) ǓK retracts onto wKS−T .

Suppose further that W is infinite. Then

(a) π0(ǓK)→ π0(V̌K) is surjective.

(b) If we choose basepoints {pi}1�i�k in each component of wKS−T , then
the pi’s lie in distinct components of ǓK and π1(V̌K) is the quotient
of the free product π1(ǓK, p1) ∗ · · · ∗ π1(ǓK, pk).

Proof. Without loss of generality we can assume w0 = 1.

(i) V̌K = ǓK ∪ wK and ǓK ∩ wK = wKS−T . Since K is contractible,
(i) follows.

(ii) As in Definition 4.5.2, we have the fundamental T-retraction
pT : W → AT (sending u to the shortest element in uWT ) and the
retraction pw : W → wAT onto the T-sector based at w (where,
as in (8.10), pw(u) = wpT (w−1u)). In Corollary 5.3.5, we showed
that pw induces a retraction pw : �→ wATK of topological spaces.
By Lemma 8.3.3 (ii), pw(Ǔ) = w(AT − 1). Hence, pw(ǓK) =
w(AT − 1)K. By Lemma 9.2.4, w(AT − 1)K deformation retracts onto
wKS−T , proving (ii).

Statement (a) follows from (i) and the fact that KS−T �= ∅ (since W is
infinite).

To prove (b), let ϒ1, . . . ,ϒk be the path components of ǓK. Then

KS−T =
i=k⋃
i=1

�i,

where the�i := w−1(wKS−T ∩ ϒi) are disjoint subcomplexes of KS−T . Hence,
π1(V̌K) is the free product of the π1(ǓK, pi) (= π1(ϒi)) with the π1(�i)
killed off. �

As in Example 4.5.6, order the elements of W: w1, w2, . . . , so that l(wn) �
l(wn−1). Put Un := {w1, . . . , wn}. Then U1K ⊂ U2K ⊂ · · · is an exhaustive
sequence of finite subcomplexes of �. By Lemma 9.2.5 (a), each of the bonds
π0(ǓnK)→ π0(Ǔn−1K) is surjective.

We turn to the issue of semistability. Let e be an end of �. By Defini-
tion G.4.1 in Appendix G.4, the cell complex� is semistable at e if and only if
{π1(ǓnK, r(n))} is a semistable inverse sequence of groups (Definition G.1.1).
This means that for m > n the images of the {π1(ǓmK, r(m))} in π1(ǓnK, r(n))
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must stabilize. (Here r : [0,∞)→ � is an appropriately chosen proper ray
whose equivalence class is e.)

Proof of Theorem 9.2.1. First suppose � is one ended. Each of the ǓnK is
path connected and by Lemma 9.2.5 (b) (applied to U = Un, V = Un−1) each
of the bonds π1(ǓnK)→ π1(Ǔn−1K) is an epimorphism. Hence, the inverse
sequence of fundamental groups is semistable.

In the general case we use a result of Mihalik [206, Theorem 1.1] which
states that an amalgamated product of two finitely presented, one ended
groups along a finite subgroup is semistable if and only if both factors in the
amalgamation are semistable. By Proposition 8.8.2, W can be decomposed as
a tree of groups where the vertex groups are 0- or 1-ended special subgroups
and the edge groups are finite special subgroups. So, the general case follows
from the one ended case. �

Proof of Theorem 9.2.2. By Lemma A.5.5, for a given T ∈ S, L− σT is
simply connected if and only if KS−T is simply connected. Suppose first
KS−T is simply connected for all T ∈ S. By Lemma 9.2.4, Ǔ1K deformation
retracts onto KS, so π1(Ǔ1K) is trivial. By Lemma 9.2.5 (i), ǓnK is homotopy
equivalent to Ǔn+1K with a copy of KS−T coned off, where T = In(wn+1). So,
π1(Ǔn+1K) ∼= π1(ǓnK), for n � 1. Therefore, π1(ǓnK) is trivial for all n and
consequently, π∞1 (�) = lim←−π1(ǓnK) is also trivial. Since� is semistable, this
implies it is simply connected at infinity (Proposition G.4.3).

Conversely, suppose� is simply connected at infinity. Since� is one ended,
each KS−T is path connected (Theorem 8.7.2). By Lemma 9.2.5 (b), each of the
bonds π1(Ǔn+1K)→ π1(ǓnK) is onto. Since the inverse limit is trivial, this
means that each π1(ǓnK) is trivial. By Lemma 9.2.5 (ii), ǓnK retracts onto
KS−In(wn); so this space is also simply connected. As wn varies, In(wn) varies
over all T ∈ S. So, KS−T is simply connected for all T ∈ S. �

Given any starlike subset U of W, put

∂(UK) := UK ∩ ǓK. (9.7)

The proof of the next lemma is similar to that of Lemma 9.2.4.

LEMMA 9.2.6. ǓK is homotopy equivalent to ∂(UK).

Proof. Let V1 be the union of U with all the elements of Ǔ which are adjacent
to some element of U. As in Lemma 9.2.4, extend V1 to an exhaustive sequence
of starlike subsets, U ⊂ V1 ⊂ V2 ⊂ · · · so that for each n � 2, Vn − Vn−1

consists of a single extreme element vn. As before, for n � 2, Vn deformation
retracts onto Vn−1 and V1 deformation retracts onto ∂(UK). �



July 9, 2007 Time: 04:08pm chapter9.tex

174 CHAPTER NINE

Remark. Consider the problem of computing the groups π1(ǓnK) for an
arbitrary one-ended Coxeter group. By Lemma 9.2.6, ǓnK deformation re-
tracts onto ∂(ǓnK) := ∂(UnK). ∂(UnK) is formed from ∂(Un−1K) by removing
a copy of int(KT ) from both ∂(UnK) and ∂K and then gluing the pieces
together along ∂KT (:= KT ∩ KS−T ) (where T := In(wn)). So, π1(∂UnK) is the
amalgamated product of π1(∂(Un−1K − int(KT )) and π1(KS−T ) amalgamated
along π1(∂KT ). The problem is that this last group is not easy to control.
∂KT may not be simply connected (or for that matter, even connected). Hence,
in the general case it does not seem possible to write down a good formula
for the inverse limit, π∞1 (�) := lim←−(π1(∂(UnK). However, in the next example
we discuss a special case when it is possible.

Example 9.2.7. (The nerve is a PL manifold.) Suppose the nerve L of W is
a PL m-manifold, m � 3. (The definition of “PL manifold” is given in 10.4.8
of the next chapter.) As explained in 10.6, if L is a PL m-manifold, then, for
each s ∈ S, the mirror Ks is PL homeomorphic to an m-disk. Similarly, for each
nonempty spherical subset T , KT is an m-disk. So each KS−T is the complement
of the interior of an m-disk in L. Moreover, ∂(UnK) is formed by removing an
open m-disk and gluing on a copy of KS−T . Since ∂(U1K) = ∂K = L, ∂(UnK)
is a PL m-manifold homeomorphic to the connected sum of ∂(Un−1K) and L.
Thus, ∂(UnK) is the n-fold connected sum:

∂(UnK) = L� · · · �L
(where � denotes connected sum). Since m � 3, the fundamental group of a
connected sum is the free product of the fundamental groups of its factors. So

π1(ǓnK) = π1(∂(UnK) = π1(L) ∗ · · · ∗ π1(L)︸ ︷︷ ︸
n

.

Thus, π∞1 (�) = lim←−Gn, where Gn is the free product of n copies of π1(L). (In
other words, π∞1 (�) is the “projective free product” of an infinite number of
copies of π1(L).) We will return to this example in 10.5 in the case where the
PL manifold L is a nonsimply connected homology sphere.

Given a CW complex Y , we define, in Appendix G.2, its chain and
cochain groups at infinity, as well as, their respective homology groups
He
∗(Y) and H∗e (Y) (formulas (G.2) and (G.4)). Also, in Definition G.2.4,

we explain what it means for Y to be homologically semistable (given an
exhaustion of Y by compact subsets, C1 ⊂ C2 ⊂ · · · , the corresponding inverse
sequence of homology groups {H∗(Y − Cn)} is semistable). We point out
in Proposition G.2.5 that if Y is homologically semistable, then He

∗(Y) ∼=
lim←−H∗(Y − Cn).
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DEFINITION 9.2.8. Let m be a nonnegative integer. Y is m-acyclic at infinity
if it is one ended and He

i (Y) vanishes for i > 0.

The notion of being m-connected at infinity (generalizing the idea of being
simply connected at infinity) is defined at the end of Appendix G.4. If Y is
semistable and homologically semistable, then it follows from the Hurewicz
Theorem that when m � 1, Y is m-connected at infinity if and only if it is
both simply connected at infinity and m-acyclic at infinity. Here are two more
corollaries of Lemma 9.2.5.

THEOREM 9.2.9. � is homologically semistable.

Proof. This also follows from the proof of Theorem 8.3.1 in the previous
chapter. �

THEOREM 9.2.10. (Compare Corollary 8.5.4.) Suppose W is infinite and m
is an integer � 0. Then

(i) � is m-acyclic at infinity if and only if L− σT is m-acyclic for all
T ∈ S.

(ii) � is m-connected at infinity if and only if L− σT is m-connected for
all T ∈ S.

Proof. Starting with our usual exhaustive sequence U1 ⊂ U2 ⊂ · · · of starlike
subsets of W, Lemma 9.2.5 gives

H∗(ǓnK) ∼=
i=n⊕
i=1

H∗(KOut(wi)).

Also, KOut(wi) = KS−T , where T = In(wi). By Lemma A.5.5, KS−T and L− σT

are homotopy equivalent. Hence, ǓnK is m-acyclic for all n if and only if
L− σT is m-acyclic for all T ∈ S. This proves (i). Similarly, (ii). �

NOTES

9.1. For Theorem 9.1.3 to hold, it is enough to assume that X is a mirrored space
satisfying the Collared Condition of 8.4. For Theorem 9.1.5 to hold, we need only
assume that, in addition, X is locally path connected and semilocally simply connected.
The group W̃ � π1(X) in Theorem 9.1.5 can be thought of as the “orbihedral
fundamental group” of X or equivalently, as the “fundamental group of the scwol”
associated to X. (See Appendix E.2.)

9.2. It would be nice to have a direct proof of the semistability of W (Theorem 9.2.1)
without invoking Mihalik’s result that an amalgamated product of two finitely presented
one-ended groups along a finite subgroup is semistable if and only if each of the factors
is semistable.
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Chapter Ten

ACTIONS ON MANIFOLDS

The classical examples of geometric reflection groups in Chapter 6 act on
simply connected manifolds of constant curvature. This chapter concerns
actions of groups generated by reflections on manifolds without geometric
assumptions. In several respects such actions resemble the geometric exam-
ples. The first result, Theorem 10.1.13, is that the group W is a Coxeter
group and the manifold M has the form M = U(W, C) for some fundamental
chamber C. This is easiest to understand in the case where the W-action
is smooth (or, at least, locally linear). In this case C resembles a simple
polytope in that it is a manifold with corners as are its mirrors and as are
all intersections of its mirrors. As we shall see in 10.4, the same result is
nearly true without the local linearity hypothesis, where “nearly” refers to
the fact that it is necessary to replace the phrase “manifold with corners” by
“homology manifold with corners.” If M is a contractible manifold and the
action is cocompact, the resemblance of C to a simple polytope is even more
striking: C is contractible and each of its cofaces is acyclic (Theorem 9.1.4).
In this case the nerve L(W, S) must be a “generalized homology sphere”
(Definition 10.4.5).

In 10.5, by choosing L to be a nonsimply connected PL homology sphere of
dimension (n− 1), we get examples of aspherical manifolds whose universal
covers are not homeomorphic toEn, the reason being that their universal covers
are not simply connected at infinity (by Example 9.2.7). In Example 10.5.3
we improve this to get examples where the contractible cell complex � is
a topological manifold not homeomorphic to En. (This answers Gromov’s
question if every CAT(0) manifold must be homeomorphic to En.)

In Theorem 10.6.1 we give necessary and sufficient conditions for � to be a
PL manifold (resp., topological manifold or homology manifold). In particular,
� is a homology n-manifold if and only if L is a generalized homology (n− 1)-
sphere. A Coxeter system whose nerve is a generalized homology
(n− 1)-sphere is said to be type HMn. In 10.9 we characterize when W is a
virtual Poincaré duality group: it is if and only if it decomposes as W0 ×W1

with W0 spherical and W1 of type HMn.
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10.1. REFLECTION GROUPS ON MANIFOLDS

Locally Linear Reflections

Suppose G is a discrete group of diffeomorphisms acting properly on a smooth
manifold M. Properness of the action implies that for any x ∈ M, the isotropy
subgroup Gx is finite. Since Gx is a group of diffeomorphisms, it acts linearly
on the tangent space TxM. If we choose a Gx-invariant Riemannian metric on
M, then the exponential map provides a Gx-equivariant diffeomorphism from
a neighborhood of the origin in TxM onto a Gx-stable open neighborhood Ux

of x in M. As in Definition 5.1.5, properness of the action also means that we
can choose Ux small enough so that gUx ∩ Ux = ∅ for all g ∈ G− Gx.

DEFINITION 10.1.1. A proper action of a discrete group G on a manifold Mn

is locally linear if each x ∈ M has a Gx-stable open neighborhood Ux, as above,
which is Gx-equivariantly homeomorphic to a neighborhood of the origin in
some linear representation of Gx on Rn.

Thus, a smooth proper action of a discrete group G on a smooth manifold
M is locally linear. (For this reason locally linear actions are called “locally
smooth” in [36].)

It is immediate from Definition 10.1.1 that if G acts properly and locally
linearly on a manifold M and H ⊂ G is a finite subgroup, then its fixed set
Fix(H, M) is a locally flat submanifold of M; the point being that the fixed set
of a linear action of H on Rn is a linear subspace. (To say Nk ⊂ Mn is a locally
flat submanifold means that (Mn, Nk) is locally homeomorphic to (Rn,Rk).) In
general, the fixed set of a finite group of homeomorphisms on a manifold need
not be a submanifold.

DEFINITION 10.1.2. An involution r on a connected manifold M is a
reflection if its fixed set Mr separates M.

LEMMA 10.1.3. Suppose r is a locally linear reflection on a connected
manifold M. Then the fixed submanifold Mr is codimension one in M.
Moreover, it separates M into exactly two components, which are interchanged
by r.

Proof. Since Mr separates M, at least one point in Mr must have an 〈r〉-stable
linear neighborhood which is separated by Mr. The only linear involutions
on Rn with the property that their fixed subspace separates Rn are the linear
reflections. Hence, for at least one component of Mr, r is locally modeled
on a linear reflection at each point in the component. Such a component is
a locally flat submanifold of codimension one in M. Let M′r denote the union
of the codimension one components of Mr. Let M := M/〈r〉 be the orbit space.
We can identify Mr with its image Mr in M. Since the orbit space of a linear
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reflection on Rn is a half-space, M is a manifold with boundary near each point
of M

′
r (the boundary being M

′
r). Since M

′
r has a collared neighborhood in M, the

spaces M and M −M
′
r are homotopy equivalent. Since M is connected, so is its

continuous image M and therefore, also M −M
′
r. The other components of Mr

have codimension > 1 and so cannot separate M even locally. Hence, M −Mr

is also connected. Since M −Mr is connected and since M −Mr → M −Mr is
a principal C2-bundle, its total space has either one or two components. Since
Mr separates, M −Mr has two components, the C2-bundle is trivial and the
components of M −Mr are interchanged by r. It follows that all components
of Mr are codimension one, that M is a manifold with boundary and that M is
the double of M along its boundary. �

Nonexamples

One might be tempted to define a locally linear reflection on a manifold M
simply as an involution with fixed point set a (locally flat) submanifold of
codimension one and then hope that the separation property would follow
automatically. The following simple examples show this is not the case. First
consider the involution r on T2 (= S1 × S1) defined by r(x, y) := (y, x). The
fixed set is the diagonal circle, which does not separate. The orbit space T2/〈r〉
is a Möbius band. Next consider the case where M = RP2 and r : RP2 → RP2

is induced by a linear involution r̃ on S2. The fixed set of r is the disjoint of a
copy of RP1 (the image of the fixed set of r̃) and a point (the image of the line
in R3 normal to the fixed subspace). This time the fixed set has components of
different dimensions. Again, it doesn’t separate.

The Basic Theorem for Groups Generated by Reflections

In the next lemma, as well as in Theorem 10.1.5 and Lemma 10.1.6 below, we
do not assume the actions are locally linear.

LEMMA 10.1.4. Suppose r, s are distinct reflections on a connected manifold
M and that the dihedral group 〈r, s〉 acts properly on M. Then

(i) Mr is nowhere dense in M.

(ii) Mr ∩Ms is nowhere dense in Mr.

When the 〈r, s〉-action is locally linear, the lemma is obvious. We postpone
the proof of the general case until 10.4. The proof is based on a basic result
in the cohomological theory of compact transformation groups known as the
“Local Smith Theorem” (“Smith” refers to P. A. Smith, one of the founders of
the theory.)
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Suppose W acts properly on a connected manifold M and that it is generated
by reflections. Let R denote the set of all reflections in W. The fixed set, Mr,
of an element r ∈ R is the wall associated to r. (By Lemma 10.1.4 (ii), a
reflection is determined by its wall. This fact is used implicitly in the proof
of Theorem 10.1.5.) We proceed as in 6.6. Let

M(1) := M −
⋃
r∈R

Mr

denote the complement of the union of all walls. A connected component of
M(1) is an open chamber. A chamber is the closure of an open chamber. A wall
of a chamber C is a wall Mr so that there is at least one point x ∈ C ∩Mr such
that x belongs to no other wall. If this is the case, Cr := C ∩Mr is a mirror
of C. Two chambers are adjacent if they intersect in a common mirror. Fix a
chamber C and call it the fundamental chamber. Let S be the set of reflections
s such that Ms is a wall of C. Give C its tautological mirror structure, i.e., the
mirror structure (Cs)s∈S.

In the next theorem we prove that a group generated by reflections on a
manifold is a reflection group in the sense of Definition 5.2.6.

THEOREM 10.1.5. Suppose that W acts properly as a group generated by
reflections on a connected manifold M. With the notation above, the following
statements are true.

(a) (W, S) is a Coxeter system.

(b) The natural W-equivariant map U(W, C)→ M, induced by the
inclusion C ↪→ M, is a homeomorphism.

The proof is entirely similar to that of Theorem 6.6.3. Define � to be the
simplicial graph with vertex set equal to the set C of chambers and with two
vertices C, C′ ∈ C connected by an edge if and only if they are adjacent. As
in Lemma 6.6.4, � is connected and as in Lemmas 6.6.5 and 6.6.7, (�, C) is a
reflection system. Hence, (W, S) is a Coxeter system, establishing statement (a)
of the theorem. It also follows that two adjacent chambers are separated by the
wall corresponding to their common mirror (a fact used implicitly in the proof
of Lemma 10.1.6 below). To establish (b) we need the analog of Lemma 6.6.8.
As in Sections 5.1 (formula (5.1)) and 6.6, S(x) := {s ∈ S | x ∈ Cs}. The proof
of 6.6.8 goes through to give the following.

LEMMA 10.1.6. (Compare [29, p.80].) Suppose x, y ∈ C and w ∈ W are such
that wx = y. Then x = y and w ∈ WS(x).
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The proof of Theorem 10.1.5 (b) is then exactly the same as that of
Theorem 6.6.3 (iv): the natural map U(W, C)→ M is a continuous surjection
and is easily seen to be open; by Lemma 10.1.6, it is injective; hence, a
homeomorphism.

More nonexamples

Suppose, as in Example 6.5.1, that W is a spherical triangle group correspond-
ing to a triple (m1, m2, m3). It is instructive to consider the W-action on RP2

in order to understand how the conclusion of Theorem 10.1.5 can fail to hold.
Let a := −id denote the antipodal map on S2. There are two cases to consider
depending on whether or not a belongs to W. The first case, when a /∈ W,
occurs only for the triples (2, 2, n), with n odd, and (2, 3, 3). In this case, the
orbit space is a spherical triangle but not with the predicted angles (they are
(2, 2, 2n)- and (2, 3, 4)-triangles instead) and the three generators are not the
predicted ones. In the second case when a ∈ W, the action is not effective;
instead, we get an effective action of W/〈a〉. In neither case do we get a Coxeter
system and RP2 cannot be recovered from the basic construction.

Manifolds with Corners

A second countable Hausdorff space C is a smooth n-manifold with corners
if it is differentiably modeled on the standard n-dimensional simplicial cone
Rn
+ := [0,∞)n. This means that C is equipped with a maximal atlas of local

charts from open subsets of C to open subsets of Rn
+ so that the overlap

maps are diffeomorphisms. (A homeomorphism between two subsets of Rn

is a diffeomorphism if it extends to a local diffeomorphism on some open
neighborhood.) Given a point x ∈ C and a chart ϕ defined on a neighborhood
of x, the number c(x) of coordinates of ϕ(x) which are equal to 0 is independent
of the chart ϕ. For 0 � k � n, a connected component of c−1(k) is a stratum of
C of codimension k. The closure of a stratum is a closed stratum.

While a local diffeomorphism of Rn
+ must take strata to strata and preserve

the codimension of a stratum, the same cannot be said of a local homeomor-
phism. So, if we want to define a topological version of the above, we must
add a condition. Thus, C is a topological n-manifold with corners if it is locally
modeled onRn

+ and if each overlap map is a strata-preserving homeomorphism
(between two open subsets of Rn

+). For each x ∈ C, let ϒ(x) denote the set of
closed codimension one strata which contain x. The manifold with corners C
is nice if Card(ϒ(x)) = 2 for all x with c(x) = 2. For example, the manifold
with corners structure on D2 pictured in Figure 10.1 is not nice. If C is a nice
manifold with corners, then, by an easy argument, Card(ϒ(x)) = c(x) for all
x ∈ C. Moreover, any closed stratum of codimension k in C is also a nice
manifold with corners.
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Figure 10.1. A manifold with corners which is not nice.

Example 10.1.7. A simplical cone is a nice manifold with corners, so is any
simple polytope. If a polytope is not simple, then its natural differentiable
structure is not that of a manifold with corners.

DEFINITION 10.1.8. A mirrored manifold with corners is a nice manifold
with corners C together with a mirror structure (Cs)s∈S on C indexed by some
set S such that

• each mirror is a disjoint union of closed codimension one strata
of C and

• each closed codimension one stratum is contained in exactly one
mirror.

PROPOSITION 10.1.9. Suppose W acts properly and locally linearly on a
connected manifold M and that W is generated by reflections. Let C be a
fundamental chamber endowed with its tautological mirror structure (Cs)s∈S.
Then C is a mirrored manifold with corners. If the action is smooth, then C is
a smooth manifold with corners.

Proof. The point is that the W-action is locally modeled on finite linear
reflection groups and by Theorem 6.6.3 (iii), a fundamental chamber for
such a linear action is a simplicial cone. So the proposition follows from
Example 10.1.7 �

Conversely, we have the following result.

PROPOSITION 10.1.10. Suppose (W, S) is a Coxeter system and C is a
mirrored manifold with corners with W-finite mirror structure (Cs)s∈S. Then
U(W, C) is a manifold and W acts properly and locally linearly on it as a
group generated by reflections.

Proof. Given x ∈ C, let S(x) = {s ∈ S | x ∈ Cs}. Since the mirror structure
is W-finite (Definition 5.1.6), S(x) is spherical. We can find a contractible
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neighborhood of x in C of the form U × Cx where U is an open subset in
the relative interior of CS(x) and Cx is homeorphic to a simplicial cone in
RS(x). By Theorem 6.12.9, U(WS(x), Cx) ∼= RS(x). Hence, there is a WS(x)-stable
neighborhood of [1, x] in U(W, C) of the form U × RS(x). The proposition
follows. �

Remark 10.1.11. If C is a smooth manifold with corners, then it is shown in
[71, p.322] that C can be given the structure of a “smooth orbifold,” meaning
that U(W, M) has the structure of a smooth manifold with a smooth W-action.

Reflection Groups on Acyclic Manifolds and Homology Spheres

Here we combine results from this section with those of 8.2. We continue
to assume that the W-action on Mn is proper, locally linear, and generated
by reflections, that C is a fundamental chamber, and that S is the set of
fundamental reflections with respect to C. Then (W, S) is a Coxeter system,
C is a mirrored manifold with corners, and Mn ∼= U(W, C). The next result is
an immediate corollary of Lemma 8.2.15.

PROPOSITION 10.1.12. (W. C. and W. Y. Hsiang [160, Chapter I]). Suppose
W is finite and Mn is a closed manifold with the same homology as Sn (i.e., Mn

is a “homology sphere”). Put m = Card(S)− 1. Then

(i) n � m.

(ii) CS is a homology sphere of dimension n− m− 1. (When n = m, this
means CS = ∅.)

(iii) For each T � S, CT is an compact, acyclic manifold with corners of
codimension Card(T) in C.

(Homology spheres are discussed in the beginning of 10.3.)
The proposition means that the W-action on Mn resembles the linear action

on Sn in that the cofaces of C have the same homology as those of an (n− m)-
fold suspension of an m-simplex. (See Remark 8.2.17.) Similarly, if Mn is
acyclic and W is finite, the action resembles the linear action on Rn in that
the cofaces of its fundamental chamber have the same homology as those of a
simplicial cone. (This also was proved in [160].) When W is infinite and acts
properly on an acyclic Mn, we have the following corollary to Corollary 8.2.8

THEOREM 10.1.13. ([71, Theorem 10.1].) Suppose W acts cocompactly on
an acyclic manifold Mn. Then C resembles an n-dimensional simple polytope
in the following sense: for each T ∈ S, CT is a compact, acyclic manifold with
corners of codimension Card(T) in C.
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Since acyclic implies nonempty, this means that N(C) = L(W, S), where
N(C) denotes the the nerve of the mirror structure on C (Definition 5.1.1).
Thus, L(W, S) plays the role of the boundary complex of the dual polytope.

10.2. THE TANGENT BUNDLE

In this section we describe a relationship between the equivariant tangent
bundle of a manifold with a reflection group action and the tangent bundle
of its fundamental chamber.

To avoid the technicalities of discussing tangent “bundles” of topological
or PL manifolds, let us suppose in this section that M is smooth and that
the reflection group W acts smoothly and properly on it. By Theorem 10.1.5,
M ∼= U(W, C). By Proposition 10.1.9, the fundamental chamber C is a smooth
manifold with corners. Let p : M→ C be the orbit map. TM and TC denote
the tangent bundles of M and C, respectively.

THEOREM 10.2.1. ([75, Prop.1.4, p.110].) The tangent bundle TM is stably
W-equivariantly isomorphic to the pullback p∗(TC).

(Recall that two vector bundles with the same base space are stably isomorphic
if they become isomorphic after adding a trivial bundle to each. Two W-vector
bundles are W-equivariantly stably isomorphic, if, up to addition of trivial
bundles, there is a W-equivariant bundle isomorphism between them.)

To prove Theorem 10.2.1 we first need to explain how M is a pullback
of the geometric representation of Appendix D. As in 6.12, we have the
canonical representation of W on RS. Its dual on E = (RS)∗ is the geometric
representation. In Appendix D we show

• W is generated by the reflections across the faces of a simplicial
cone D.

• WD, the union of translates of D, is a convex cone.

• W acts properly on the interior I of this cone.

• Let D f = I ∩ D. Then D f is the union of all faces of D with finite
stabilizers.

• D f is a strict fundamental domain for W on I and I = U(W, D f ).

We can find a strata-preserving map ϕ : C→ D f . The reason is that each
stratum of D f is a face of a simplicial cone and hence, is contractible. Also,
we can obviously assume that ϕ is smooth. Suppose T ∈ S (k) is a spherical
subset of cardinality k. Since C and D f are manifolds with corners, the
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codimension-k strata CT and D f
T have tubular neighborhoods of the form

CT × Rk
+ and D f

T × Rk
+, respectively. Clearly, we can also assume that ϕ is

linear on such a tubular neighborhood of CT , i.e., the restriction of ϕ to the
tubular neighborhood has the form

ϕT × id : CT × Rk
+ → D f

T × Rk
+,

where ϕT denotes the restriction of ϕ to CT .
By the universal property of the basic construction (Lemma 5.2.5), the map

ϕ extends to a W-equivariant map ϕ̃ : M = U(W, C)→ I ⊂ E. Let p : M→
C and q : I → D f denote the orbit maps. Then M can be identified as the
following subset of C × I: M ∼= {(c, u) ∈ C × I | ϕ(c) = q(u)}, i.e., M is the
fiber product of C and I. We have the pullback square:

M
ϕ̃−−−−→ I

p↓ ↓ q

C
ϕ−−−−→ D f .

LEMMA 10.2.2. M is embedded in C × I with trivial normal bundle.

Proof. Let ψ := ϕ − q : C × I → E. As we have just seen, M = ψ−1(0). The
differential of p takes the tangent space of p−1(CT ) isomorphically onto the
tangent space of CT and the differential of ϕ takes the normal space to p−1(CT )
isomorphically onto the normal space to q−1(D f

T ). It follows that 0 is a regular
value of ψ and that dψ maps the normal space to M isomorphically onto E. �

Proof. Since E, with its linear W-action, is W-equivariantly contractible, the
inclusion M ↪→ C × E is W-homotopic to p. Hence,

T(C × I)|M ∼= p∗(TC)× E. (10.1)

The left-hand side of equation (10.1) is isomorphic to the sum of TM and the
normal bundle of M, which, by Lemma 10.2.2, is trivial. �

COROLLARY 10.2.3. TM is stably W-equivariantly trivial if and only if TC
is trivial.

Proof. Since the boundary of C is nonempty, TC is stably trivial if and only if
it is trivial. (Here we are assuming W is nontrivial.) If TM is stably trivial, then
so is its restiction to the fundamental chamber C and TM|C = TC. Conversely,
by Therem 10.2.1, if TC is stably trivial, then TM is stably W-equivariantly
trivial. �
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Remark. A manifold with trivial (resp., stably trivial) tangent bundle is
parallelizable (resp., stably parallelizable). Closed manifolds which are stably
parallelizable need not be parallelizable. The primary obstruction for paral-
lelizability is the Euler class of the tangent bundle: a closed manifold with
nonzero Euler characteristic is not parallelizable. The word “stably” cannot
be omitted from Corollary 10.2.3. Indeed, in the case where W is a nontrivial
finite geometric reflection group on Sn, C is a disk and TC is trivial while
Sn is not parallelizable for n 
= 1, 3 or 7. In fact, for n even, χ (Sn) = 2
(not 0).

COROLLARY 10.2.4. Suppose � ⊂ W is a torsion-free subgroup of finite
index, that M′ = M/�, and that r : M′ → C is the retraction induced by the
orbit map. Then TM′ is stably isomorphic to r∗(TC).

10.3. BACKGROUND ON CONTRACTIBLE MANIFOLDS

Homology Spheres

A closed m-manifold is a homology sphere if it has the same homology as
Sm. For m � 2, the only m-dimensional homology sphere is Sm. In 1900
Poincaré conjectured that the same was true for m = 3. He soon found a
counterexample. His new homology sphere was S3/G, where S3 is identified
with the group of quaternions of norm 1 and G ⊂ S3 is the binary icosahedral
group (a finite subgroup of order 120.) Slightly earlier Poincaré had discovered
the concept of the fundamental group and proved it was a topological invariant.
Since π1(M3) = G while π1(S3) = 1, M3 
= S3. M3 is now called Poincaré’s
homology sphere. (Another description of M3 was given in Remark 8.5.7 (i).)
After discovering this counterexample, Poincaré modified his conjecture to
the version, discussed below, which remained open until this century. Later
it was shown that many other groups G occur as fundamental groups of
homology 3-spheres. Over the last twenty years, homology 3-spheres have
become objects of intense study in 3-manifold theory (e.g., Casson invariants,
Vassiliev invariants, Floer homology).

For m � 3, the following three conditions on a group G are necessary for it
to be the fundamental group of a homology m-sphere:

(a) G is finitely presented,

(b) H1(G) = 0, and

(c) H2(G) = 0.

Condition (a) is necessary because, by a result of Kirby and Siebenmann [177],
any closed manifold has the homotopy type of a finite complex; hence, its



July 7, 2007 Time: 12:05pm chapter10.tex

186 CHAPTER TEN

fundamental group has a finite presentation. The reason for (b) is that for any
space X, H1(X) is the abelianization of π1(X); hence, the fundamental group
of a homology m-sphere, m � 2, must be a perfect group. The reason for (c) is
Hopf’s Theorem [156] (see Theorem F.1.4 in Appendix F) that for any space
X with fundamental group G, the canonical map X→ BG induces a surjection
H2(X)→ H2(G).

Conversely, Kervaire [174] proved that when m � 5, conditions (a), (b)
and (c) are sufficient for a group G to occur as the fundamental group of a
homology m-sphere.

Remark. It is known that in dimensions 3 and 4 these conditions are not
sufficient. The argument in dimension 4 uses L2-homology. As Shmuel
Weinberger explained to me, when G is infinite and the dimension is 4, there
is an additional restriction on G:

2 � L2b2(EG; G)− 2L2b1(EG; G). (10.2)

(Here L2bi(Y; G) denotes the ith L2-Betti number of Y , defined, in Appendix J.5,
as the “von Neumann dimension” of L2Hi(Y), the reduced L2-homology group
of Y .) The proof of (10.2) is based on the following two facts.

(i) There is an analogous result to Hopf’s Theorem but with
L2-homology: the natural map X→ BG induces an isomorphism
L2H1(X̃)→ L2H1(EG) and a (weak) surjection
L2H2(X̃)→ L2H2(EG).

(ii) Atiyah’s Formula (Theorem J.5.3 of Appendix J.5) states that the
alternating sum of the L2-Betti numbers of X̃ is equal to the ordinary
Euler characteristic of X (which is 2).

By Poincaré duality and (i), L2b3(X̃; G) = L2b1(X̃; G) = L2b1(EG; G) and
L2b2(X̃; G) � L2b2(EG; G). Using (ii) we get (10.2). Furthermore, it is known
that there are groups G which satisfy Kervaire’s conditions (a), (b), and (c)
above but which fail to satisfy the above inequality, [154].

In dimension 3, Thurston’s Geometrization Conjecture (proved by Perelman
[237, 239, 238]) imposes severe restrictions on G. For example, if G is infinite
freely indecomposable, and does not contain Z× Z, then it must be a discrete
subgroup of Isom(H3).

If Cn is a compact, contractible manifold with boundary, one can ask if Cn

must be homeomorphic to the n-disk. By Poincaré duality, (Cn, ∂C) has the
same homology as (Dn, ∂D). It then follows from the exact sequence of the pair
(Cn, ∂C) that ∂C has the same homology as ∂D = Sn−1, i.e., ∂C is a homology
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(n− 1)-sphere. To be explicit:

Hi(C
n, ∂C)∼=

{
Z if i = n,

0 otherwise;

Hi(∂C)∼=
{
Z if i = 0, n− 1,

0 otherwise.

However, for n � 4, there is no reason for ∂C to be simply connected. For
n � 5, the first example with ∂C not simply connected was constructed by
Newman, [226], by manipulating Poincaré’s homology sphere. In his example
π1(∂C) is the binary icosahedral group. We give the details in Example 10.3.2
below. A few years later Mazur [198] gave a four-dimensional example with
π1(∂C) nontrivial (and infinite). In fact, we now know the following.

THEOREM 10.3.1. Every homology sphere bounds a contractible topologi-
cal manifold.

When the dimension of the contractible manifold is � 5, Theorem 10.3.1
is a consequence of surgery theory (see [159, Theorem 5.6]). So, for n � 5,
the theorem holds not only for topological manifolds but in the PL category
as well. (For n � 5, it also holds in the smooth category provided we are
willing to modify the homology sphere by taking connected sum with an
exotic sphere.) For n = 4, the fact that any homology 3-sphere bounds a
contractible 4-manifold is due to Freedman [131, Theorem 1.4′, p. 367]. The
four-dimensional result is true only in the topological category (in dimension 4,
in the PL and smooth categories, surgery theory does not work). For example,
Poincaré’s homology 3-sphere does not bound a contractible 4-manifold with
a PL structure. (This follows from (a) Rohlin’s Theorem [247], which asserts
that the signature of a closed PL manifold with vanishing first and second
Stiefel-Whitney classes must be divisible by 16 and (b) the fact that Poincaré’s
homology 3-sphere bounds a parallelizable 4-manifold of signature 8, the
“E8-plumbing.”)

Example 10.3.2. (Newman’s example, [226].) Let A3 be the complement of a
small open ball in Poincaré’s homology 3-sphere. A3 is an acyclic 3-manifold
with fundamental group the binary icosahedral group G. A3 deformation
retracts onto the 2-skeleton L of Poincare’s homology 3-sphere. Embed L as a
subcomplex of some PL triangulation of Sn, n � 5. (In this range of dimensions
we can embed any finite 2-complex as a subcomplex of the sphere.) Let R
be a regular neighborhood of L in Sn (i.e., after replacing the triangulation
by its barycentric subdivision take R to be the union of all closed simplices
which intersect L). More explicitly, we could take R to be a tubular neigh-
borhood of A3 in Sn. Since A3 is acyclic, any vector bundle over it is trivial.
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(Proof: Since A is acyclic every homomorphism π1(A)→ Z/2 is trivial; so
any vector bundle over A is orientable. A principal G-bundle, P→ A, with
G = GL(n,R)0 is trivial if and only if it admits a section. Since G is a simple
space, π1(A) acts trivially on its homotopy groups. The obstructions to a
section lie in groups of the form Hi(A;πi−1(G)), all of which vanish.) So, R =
A3 × Dn−3. Therefore, ∂R = (A3 × Sn−4) ∪ (S2 × Dn−3). By van Kampen’s
Theorem, π1(∂R) = G = π1(R). Finally, let Cn denote the complement of the
interior of R in Sn. By Alexander duality, Cn is acyclic. Since the codimension
of L in Sn is at least 3, π1(Cn) = 1. (Any loop in Sn − L is null homotopic in
Sn; if the null homotopy is in general position with respect to L, then it misses
L.) Hence, Cn is a contractible n-manifold with boundary. Moreover, since the
fundamental group of its boundary is G, Cn is not homeomorphic to a disk.

The Generalized Poincaré Conjecture

Note that a homology sphere Mn, n � 2, is simply connected if and only
if it is homotopy equivalent to Sn. (Proof: Any closed orientable manifold
Mn admits a degree one map onto Sn; if Mn is a homology sphere this map
induces an isomorphism on homology; if, in addition, Mn is simply connected,
then, by Whitehead’s Theorem, this map is a homotopy equivalence.) Soon
after discovering his homology 3-sphere, Poincaré conjectured that any simply
connected, closed 3-manifold is homeomorphic to S3. (If M3 is simply
connected, then it is orientable and H1(M3) = 0. By Poincaré duality it is
a homology sphere and hence, as noted above, a homotopy sphere.) These
remarks led others to observe that the correct generalization of the Poincaré
Conjecture to higher dimensions is the statement that if a closed manifold Mn

is homotopy equivalent to Sn, then it is homeomorphic to it. In other words,
for n � 2, a simply connected homology n-sphere should be homeomorphic
to the standard n-sphere. Poincaré’s original conjecture has been proved by
G. Perelman [237, 239, 238] by using ideas of R. Hamilton on the Ricci
flow. (Also, see [49, 179, 219] for expositions of Perelman’s work.) Its
generalization to higher dimensions was proved much earlier, for n � 5, by
Smale [259] (with contributions by others, [227, 264, 265]), and for n = 4, by
Freedman [131].

THEOREM 10.3.3. (The Generalized Poincaré Conjecture of Smale [259],
Freedman [131] and Perelman [237, 239, 238].)

(i) If Mn−1 is a simply connected homology sphere, then Mn−1 is
homeomorphic to Sn−1.

(ii) If Cn is a compact, contractible manifold with boundary, and if ∂C is
simply connected, then Cn is homeomorphic to Dn.



July 7, 2007 Time: 12:05pm chapter10.tex

ACTIONS ON MANIFOLDS 189

What Smale actually proved in [259] was the smooth h-Cobordism Theorem
in dimensions �6. A cobordism Wn between two manifolds Mn−1

0 and Mn−1
1

is an h-cobordism if the inclusion of each end Mn−1
i ↪→ Wn is a homotopy

equivalence. The h-Cobordism Theorem asserts that any simply connected
h-Cobordism Wn is isomorphic (relative to M0) to the cylinder M0 × [0, 1].
(Here “isomorphism” means either “homeomorphism,” “PL homeomor-
phism,” or “diffeomorphism” depending on the category of manifold under dis-
cussion.) The h-Cobordism Theorem immediately implies Theorem 10.3.3 (ii).
Indeed, if we remove an open disk from the interior of Cn, what remains
is an h-cobordism from Sn−1 to ∂C. Hence, it is isomorphic to Sn−1 × [0, 1]
and so, Cn is isomorphic to Dn. The h-Cobordism Theorem also implies
statement (i) of the theorem. For, if we remove an open (n− 1)-disk from
Mn−1, what remains is a contractible (n− 1)-manifold with boundary Sn−2.
Hence, it is isomorphic to Dn−1. So, Mn−1 is the union of two (n− 1)-disks
glued along their boundaries and therefore, is homeomorphic to Sn−1. (Notice
that we cannot conclude that they are diffeomorphic.) So, as a corollary
to the smooth h-Cobordism Theorem in dimensions �6, Smale obtained
statement (ii) of Theorem 10.3.3 for smooth Cn, n � 6, with the stronger
conclusion that Cn is diffeomorphic to Dn, as well as, statement (i) for Mn−1

smooth and n− 1 � 6. To get statement (i) for n− 1 = 5 he reasoned as
follows. As was mentioned previously, by surgery theory, M5 bounds a smooth
contractible 6-manifold C6 (it might be necessary to first alter M5 by taking
connected sum with an exotic sphere, but Kervaire and Milnor [175] had
previously shown that there are no exotic 5-spheres). So, C6 ∼= D6 and hence,
M5 ∼= S5. A short time later Stallings [264] showed that these results also
held for PL (= piecewise linear) manifolds. Subsequently, Newman [227]
extended these results to the topological category. In 1982 Freedman [131,
Theorems 1.3 and 1.6] proved the five-dimensional h-Cobordism Theorem
as well as Theorem 10.3.3 for n = 5, but only in the topological category.
It is now known that the five-dimensional h-Cobordism Theorem is false
for general simply connected manifolds in the PL and smooth categories;
however, what happens with the four-dimensional version of Theorem 10.3.3
in these categories remains unknown. For two other short discussion of the
Poincaré Conjecture in dimension 3, as well as in higher dimensions; see
[211, 214].

Open Contractible Manifolds

Suppose Nn is an open contractible n-manifold (“open” means that Nn is a
noncompact manifold without boundary). One might ask if all such Nn are
homeomorphic to Rn. For n � 3 an obvious necessary condition is that Nn be
simply connected at infinity. It turns out that for n � 4 this condition is also
sufficient. We state this as the following theorem.
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T1 T'0

Figure 10.2. Whitehead’s example.

THEOREM 10.3.4. (Stallings [265], Freedman [131].) For n � 4, an open
contractible n-manifold is homeomorphic to Rn if and only if it is simply
connected at infinity.

Note that this implies the Generalized Poincaré Conjecture (Theo-
rem 10.3.3 (i)).

For n � 5, Theorem 10.3.4 was proved by Stallings in [265]. His proof was
distinctly different from Smale’s proof of the h-Cobordism Theorem using
handle cancellation. Instead, Stalling’s proof introduced the new technique of
engulfing. (A simple exposition of the ideas of Stalling’s proof can be found
in [127].) In dimension 4, the theorem is due to Freedman in the paper [131,
Corollary 1.2, p.366] cited earlier.

In view of our previous discussion of homology spheres, we see there are
many open contractible manifolds not homeomorphic to Euclidean space, at
least in dimensions � 4. Indeed, if Cn is a compact contractible manifold with
nonsimply connected boundary, then its interior, Ċ, is not simply connected at
infinity and hence, is exotic. Ċ is semistable (actually, stable) and π∞1 (Ċ) ∼=
π1(∂C). The picture can be more complicated: Nn need not be homeomorphic
to the interior of any compact manifold. In dimension 3, there is the following
well-known example of Whitehead [300] of an open contractible 3-manifold
which is not simply connected at infinity (and therefore, not homeorphic to the
interior of any compact 3-manifold).

Example 10.3.5. (Whitehead’s example, [300].) In Figure 10.2 there is a
picture of two solid tori T1 and T ′0 in S3. Let T0 be the complement of the
interior of T ′0. Since T ′0 is unknotted, T0 is also a solid torus with T0 ⊃ T1 and
π1(T0 − T1) nonabelian. Choose a self-homeomorphism f of S3 which takes
T0 onto T1 and inductively define a decreasing sequence of solid tori

T0 ⊃ T1 ⊃ · · · Tn ⊃ · · ·
by Tn+1 = f (Tn). The intersection

Z =
∞⋂

i=0

Ti
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is called the Whitehead continuum.) Then S3 − Z is an increasing union of
compact subsets:

S3 − Ṫ0 ⊂ S3 − Ṫ1 ⊂ · · · S3 − Ṫn ⊂ · · · .
Each Ti is unknotted in S3. So each S3 − Ti has the homotopy type of S1. It
is easy to see that the inclusion S3 − Ti ⊂ S3 − Ti+1 induces the trivial map
on the fundamental group. Thus, S3 − Z is homotopy equivalent to the infinite
mapping telescope of the degree 0 map of S1 to itself. So S3 − Z is contractible.
Since there is a homeomorphism which takes Ti − Z onto Ti+1 − Z, the
groups π1(Ti+1 − Z) and π1(Ti − Z) are isomorphic. It is not hard to see that
the inclusion Ti+1 − Z→ Ti − Z induces a monomorphism π1(Ti+1 − Z)→
π1(Ti − Z) which is not onto. Since S3 − Ṫi is a cofinal sequence of compact
sets, S3 − Z is not semistable in the sense of Definition G.4.1 of Appendix G.4.
In particular, S3 − Z is not simply connected at infinity.

Remark. In 1934, a year before the above example appeared, Whitehead [299]
had published a “proof” of the three-dimensional Poincaré Conjecture; the
above example was a counterexample to the statement in [299] that any open
contractible 3-manifold is homeomorphic to R3.

In 10.5 we will construct some higher-dimensional examples, which, al-
though semistable, do not have a finitely generated fundamental group at
infinity and hence are not interiors of compact manifolds.

10.4. BACKGROUND ON HOMOLOGY MANIFOLDS

DEFINITION 10.4.1. A space X is a homology n-manifold if it has the same
local homology groups as Rn, i.e., if for each x ∈ X,

Hi(X, X − x) =
{
Z if i = n,

0 otherwise.

X is orientable if there is a class [X] ∈ Hlf
n (X) which restricts to a generator

of Hn(X, X − x) for each x ∈ X. (The superscript in Hlf
∗ ( ) stands for “locally

finite.” When X is a CW complex Hlf
∗ (X) simply means cellular homology with

infinite chains.)

The usual argument for manifolds (e.g., in [142]) shows that orientable
homology manifolds satisfy Poincaré duality.

DEFINITION 10.4.2. (Compare [244].) A pair (X, ∂X), with ∂X a closed
subspace of X, is a homology n-manifold with boundary if it has the same
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local homology groups as does a manifold with boundary, i.e., if the following
conditions hold:

• X − ∂X is a homology n-manifold,

• ∂X is a homology (n− 1)-manifold, and

• for each x ∈ ∂X, the local homology groups H∗(X, X − x) all vanish.

The Local Smith Theorem and Newman’s Theorem

If a group G acts on a space X, then Fix (G, X) means the fixed point set
{x ∈ X | gx = x}. The next theorem is due to P. A. Smith [260, Theorem 1]. In
its statement the phrase “Z/p-homology manifold” means that the formula in
Definition 10.4.1 holds with coefficients in Z/p and with Z replaced by Z/p.
A proof can be found in [27, pp.74–80].

THEOREM 10.4.3. (The Local Smith Theorem.) Let p be a prime and P
a finite p-group acting effectively on a Z/p-homology manifold M. Then
Fix(P, M) is a Z/p-homology manifold. Moreover, if p is odd, then Fix(P, M)
has even codimension in M.

In other words, actions of p-groups on topological manifolds (or on homol-
ogy manifolds) have a certain amount of local linearity built in: the fixed sets
are submanifolds, up to homology with coefficients in Z/p.

Remark. (Cohomology manifolds.) To simplify the exposition, we are stating
Theorem 10.4.3 incorrectly. Actually the statements in both [260] and [27] are
in terms of “cohomology manifolds” rather than homology manifolds (where
the definition of a “cohomology manifold” is the obvious one). Under mild
hypotheses on the local topology, these two notions coincide.

A corollary of Theorem 10.4.3 is the following result of M.H.A. Newman,
[225] (see [36, pp.154–158] for a proof).

THEOREM 10.4.4. (Newman’s Theorem). Suppose a finite group G acts
effectively on a homology manifold M. Then Fix(G, M) is nowhere dense in M.

(Of course, the Local Smith Theorem and Newman’s Theorem are obvious for
locally linear actions of finite groups on manifolds.)

Polyhedral Homology Manifolds

DEFINITION 10.4.5. A space X is a generalized homology n-sphere (for
short, a “GHSn” or a “GHS”) if it is a homology n-manifold with the same
homology as Sn. A pair (X, ∂X) is a generalized homology n-disk (for short,



July 7, 2007 Time: 12:05pm chapter10.tex

ACTIONS ON MANIFOLDS 193

a “GHDn” or a “GHD”) if it is a homology n-manifold with boundary and if it
has the same homology as (Dn, Sn−1).

Remark on terminology. There is a conflict between the definition of a
“homology sphere” in the beginning of 10.3 and that of a “homology manifold”
in Definition 10.4.1. A “homology sphere” is a manifold while a homology
manifold need not be. So, in Definition 10.4.5 we use the term “generalized
homology sphere” as being less absurd than “homology homology sphere.” A
justification for this terminology is that homology manifolds are sometimes
called “generalized manifolds.”

The definition of a “convex cell complex” is given in Appendix A.1 (Defin-
ition A.1.9); the definition of a “link” of a cell in a cell complex is given in
Appendix A.6. A convex cell complex which is also a homology manifold is a
polyhedral homology manifold.

LEMMA 10.4.6. The following conditions on an n-dimensional convex cell
complex � are equivalent.

(a) � is a homology n-manifold.

(b) For each cell σ of �, Lk(σ ,�) is a GHSn−dim σ−1.

(c) For each vertex v of �, Lk(v,�) is a GHSn−1.

Proof. It is clear that a space is a homology n-manifold if and only if its
product with an open interval is a homology (n+ 1)-manifold. By Proposi-
tion A.6.2, if a point x in� lies in the interior of some k-cell σ , then a neighbor-
hood of x is homeomorphic to the cone on the k-fold suspension of Lk(σ ,�). It
follows that (a)⇐⇒ (b). The implication (b) =⇒ (c) is trivial. If σ is a cell of
� and v is a vertex of σ , then, by Lemma A.6.3, Lk(σ , Lk(v,�)) = Lk(σ ,�),
where σ is the cell of Lk(v,�) corresponding to σ . So, (c) =⇒ (b). �

The next proposition describes one way in which polyhedral generalized
homology spheres enter the theory of reflection groups on manifolds.

PROPOSITION 10.4.7. Suppose W is a proper, cocompact, locally linear
reflection group on an acyclic n-manifold Mn. Let C be a fundamental chamber
and S the set of fundamental reflections with respect to C. Then L(W, S) is a
GHSn−1.

In 10.7 we will remove the assumption of local linearity.

Proof. By Corollary 8.2.9, L(W, S) (= L) is the nerve of the mirror structure
on C (Definition 5.1.1). By Theorem 10.1.13, for each T ∈ S, CT is a compact
acyclic manifold with boundary. Its dimension is n− Card(T). So, ∂CT is
a homology sphere of dimension n− Card(T)− 1. Since L is the nerve of
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the covering of ∂C by the closed codimension one strata of C, the Acyclic
Covering Lemma (E.3.3) implies that it has has the same homology as Sn−1.
Similarly, for each T ∈ S>∅, Lk(σT , L) is the nerve of the covering of ∂CT by
the codimension one strata of CT . So, Lk(σT , L) has the same homology as
Sn−Card(T)−1. This completes the proof. �

DEFINITION 10.4.8. A convex cell complex � is a PL n-manifold if the link
of each vertex is PL homeomorphic to Sn−1.

Example 10.4.9. (Suspensions and double suspensions of homology spheres.)
The prototypical example of a polyhedron which is a homology manifold but
not a manifold is the suspension of a nonsimply connected homology sphere.
Suppose Mn−1, n � 4, is a homology sphere with π1(M) 
= 1. Its suspension
SM is a GHSn. However, it is not a manifold. The reason is that for n � 3,
every point x ∈ Rn has an arbitrarily small neighborhood U such that U − x is
simply connected, while a suspension point in SM does not have such simply
connected deleted neighborhoods.

On the other hand, if we suspend again, S2M does have this property. S2M
is certainly not a PL manifold, since the link of a 1-cell in the suspension
circle is Mn−1 and Mn−1 � Sn−1. An amazing theorem, due in many cases
to Edwards and in complete generality to Cannon [47], asserts that S2M is
always a topological manifold. This solved the “Double Suspension Problem,”
Milnor had listed as one of the seven hardest and most important problems
in topology at the 1963 Seattle Conference on topology. (Actually Milnor
gave this problem only for the double suspension of a homology 3-sphere.
Another problem on the list was the Poincaré Conjecture in dimensions 3 and
4. See [185, Problems 23–29, p.579] for the complete list of problems.) Since
S2M is homotopy equivalent to Sn+1, the Generalized Poincaré Conjecture,
Theorem 10.3.3, implies that S2M is, in fact, homeomorphic to Sn+1.

The following is the definitive result for polyhedral homology manifolds. It
implies the Double Suspension Theorem.

THEOREM 10.4.10. (Edwards [116], Freedman [131].) A polyhedral homol-
ogy n-manifold X, n � 3, is a topological manifold if and only if the link of
each of its vertices is simply connected.

For n � 2, every GHSn is homeomorphic to Sn. Consequently, for n� 3,
every polyhedral homology n-manifold is a manifold (in fact, a PL manifold).
In [116] Edwards stated the above theorem for n � 5 and calls it the “Poly-
hedral Manifold Characterization Theorem.” For n = 4, this comes down to
the question of whether or not the cone on a fake 3-sphere is necessarily a
4-manifold. Independent of the question of whether or not fake 3-spheres exist,
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Freedman showed that this was indeed the case: he showed that the product of
a homotopy sphere with R was homeomorphic to S3 × R, [131, Corollary 1.3′,
p. 371], and hence, that the open cone on such a homotopy sphere is an open
4-disk.

10.5. ASPHERICAL MANIFOLDS NOT COVERED
BY EUCLIDEAN SPACE

In this section we describe the main examples of [71] to prove the following.

THEOREM 10.5.1. ([71].) In each dimension n � 4, there are closed, aspher-
ical manifolds Mn with universal cover M̃n not homeomorphic to Euclidean
space.

In view of Theorem 10.3.4 of Stallings and Freedman, the only way to
distinguish M̃n from Rn is to show that it is not simply connected at infinity.

Suppose a finite simplicial complex L is a PL (n− 1)-manifold and a
homology sphere. Assume that there is a Coxeter system (W, S) with L(W, S) =
L. (By Lemma 7.2.2, we can always achieve this, without changing the
topological type of L, by replacing L by its barycentric subdivision and then
taking the right-angled Coxeter system associated to its 1-skeleton.) Let �
(= �(W, S)) be the cell complex constructed in Chapter 7. It is a contractible,
homology n-manifold. Moreover, � is a PL manifold except possibly at
its vertices. The vertices are PL singularities if and only if L is not PL
homeomorphic to Sn−1.

We wish to modify� to a topological manifold. By Theorem 7.2.4, we know
that � = U(W, K) = (W × K)/∼, where the fundamental chamber K is the
geometric realization |S| of S. It follows that K is the cone on ∂K (= |S>∅|).
Also, ∂K is homeomorphic to L (with the cell structure dual to its simplicial
structure). By Theorem 10.3.1, the homology sphere ∂K is the boundary of
a contractible n-manifold C. (If n > 4, we can take C to be a PL manifold.)
The idea is to hollow out each copy of K in U(W, K) and replace it by a copy
of C. The details go as follows. Since ∂C is identified with ∂K, we can use
the decomposition of ∂K into mirrors to get a mirror structure on C. In other
words, for each s ∈ S, set

Cs := Ks ⊂ ∂K.

Then U(W, C) is a contractible n-manifold with W-action. (It is contractible
because it is homotopy equivalent to U(W, K); it is a manifold because
U(W, K) is a manifold except at the cone points and we have desingularized
them.)

Suppose n � 4 and L is not simply connected. By Theorem 9.2.2, π∞1 (�) is
not trivial. The obvious map C→ K, extending the identity on the boundary,
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induces a W-equivariant proper homotopy equivalence U(W, K)→ U(W, C).
Since such a proper homotopy equivalence induces an isomorphism of funda-
mental groups at infinity, we see that U(W, C) is also not simply connected at
infinity and hence, not homeomorphic to Rn.

Remark 10.5.2. As in Chapters 8 and 9, let Un = {w1, . . . , wn} be an ex-
haustive sequence of starlike subsets of W. As explained in Example 9.2.7,
∂(UnC) = ∂(UnK) is the connected sum of n copies of L. Since n � 3,
π1(∂(UnC)) is the free product of n copies of π1(L). Since ǓnC deformation
retracts onto ∂(UnC), π1(ǓnC) is also equal to this free product. The bond
π1(∂(Un+1C))→ π1(∂(UnC)) is the natural projection which kills the last
factor. Hence, as in Example 9.2.7, π∞1 (U(W, M)) = lim←−(π1(L) ∗ · · · ∗ π1(L))
and when π1(L) is nontrivial, so is the inverse limit.

To actually get an aspherical n-manifold M as in Theorem 10.5.1 we argue
as follows. As explained in Corollary D.1.4 of Appendix D.1, the fact that
W has a faithful linear representation implies that it is virtually torsion-free.
So, we can choose a torsion-free subgroup � of finite index in W. Since W
acts properly on U(W, C), all its isotropy subgroups are finite and therefore, �
acts freely on U(W, C). So, U(W, C)→ U(W, C)/� is a covering projection.
Therefore, M := U(W, C)/� is a manifold. It is compact since � has finite
index in W. Since M̃ := U(W, C) is simply connected, it is the universal cover
of M and since it is not simply connected at infinity, it is not homeomorphic to
Rn. This completes the proof of Theorem 10.5.1.

Example 10.5.3. ([83, Remark 5b.2, p.384].) Next we give examples, for each
n � 5, where the cell complex � is a contractible topological n-manifold not
homeomorphic to Euclidean n-space. Suppose A is an (n− 1)-dimensional PL
manifold with boundary such that

(a) A is acyclic,

(b) π1(A) 
= 1, and

(c) π1(∂A)→ π1(A) is onto.

For n− 1 � 4, such A exist. Indeed, if C3 is denotes the complement of an open
3-ball in Poincaré’s homology 3-sphere (cf. Section 10.3), then one could take
A = C3 × Dk, for any k > 0.

Triangulate A as a flag complex so that ∂A is a full subcomplex and put

L := A ∪ Cone(∂A).

Let S := Vert(L). (W, S) is the associated right-angled Coxeter system and
� is the associated contractible cell complex. Let t ∈ S be the cone point
of Cone(∂A). Since A is an acyclic manifold with boundary, L is a GHSn−1.
Hence, � is a homology n-manifold. By (c) and the Seifert–van Kampen
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Theorem, L is simply connected. So, by Edwards’ Polyhedral Manifold
Characterization Theorem (10.4.10), � is a topological manifold. If we delete
the vertex t from L, what remains is homotopy equivalent to A, which is not
simply connected. So by Theorem 9.2.2, π∞1 (�) is not trivial and therefore, �
cannot be homeomorphic to Euclidean space.

As we shall see in Chapter 12, the natural piecewise Euclidean metric on
� is always nonpositively curved. So, the above construction provides an
answer to a question of Gromov [144, p.187]: for each n � 5 there is a closed
n-manifold Mn with a nonpositively curved piecewise Euclidean metric such
that its universal cover M̃n is not homeomorphic to Euclidean space.

10.6. WHEN IS � A MANIFOLD?

THEOREM 10.6.1

(i) � is a homology n-manifold if and only if L is a generalized
homology (n− 1)-sphere.

(ii) � is an n-manifold if and only if L is a generalized homology
(n− 1)-sphere and is simply connected (n− 1 
= 0, 1).

(iii) � is a PL n-manifold if and only if L is a PL triangulation of Sn−1.

Proof. The link of any vertex in � is isomorphic to L. So (i) and (iii) follow
immediately from the definitions. (See Lemma 10.4.6.) Assertion (ii) follows
from Theorem 10.4.10 (Edwards’ Polyhedral Manifold Characterization
Theorem). �

DEFINITION 10.6.2. A Coxeter system is type HMn (or simply, type HM) if
its nerve is a GHSn−1. (“HM” stands for “homology manifold.”)

10.7. REFLECTION GROUPS ON HOMOLOGY MANIFOLDS

This section concerns reflection groups on topological manifolds without the
assumption of local linearity. It turns out that our conclusions are substantially
unchanged if we only assume that the ambient space is a homology manifold.
We begin with a version of Lemma 10.1.3 when the reflection is not required
to be locally linear.

LEMMA 10.7.1. Suppose r is a reflection on a connected homology manifold
M. Then the fixed set Mr is a homology manifold of codimension one in M.
Mr separates M into exactly two components (“half-spaces”) and each such
half-space is a homology manifold with boundary (the boundary being Mr).
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Proof. Suppose dim M = n. By the Local Smith Theorem (Theorem 10.4.3),
Mr is a homology manifold over Z/2 of dimension � n− 1. Arguing as in the
proof of Lemma 10.1.3, we prove successively that

• at least one component of Mr has dimension n− 1,

• the orbit space M is connected,

• M −Mr is connected,

• M −Mr has exactly two components, and

• each component of Mr has dimension n− 1.

Moreover, if X denotes the closure of a component of M −Mr, then M ∼=
U(C2, X), where C2 is the cyclic group of order two generated by r.

Put ∂X := Mr. We must show that (X, ∂X) satisfies the conditions in
Definition 10.4.2. First, X − ∂X is a homology n-manifold, since it is an open
subset of M. Let x ∈ ∂X. Define

Z := X ∪ Cone(X − x),

Zr := Mr ∪ Cone(Mr − x) = ∂X ∪ Cone(∂X − x),

U(Z) := M ∪ Cone(M − x).

(In fact, M ∪ Cone(M − x) ∼= U(C2, Z), where Z has the single mirror Zr.)
Since M is a homology n-manifold, U(Z) has the same homology as Sn. By
Corollary 8.2.5, there are only two possibilities, either

(i) Z has the same homology as Sn and H∗(Z, Zr) vanishes in all
dimensions or

(ii) Z is acyclic and Zr has the same homology as Sn−1.

Since Mr is a homology (n− 1)-manifold over Z/2, the first possibility is
excluded. So the second holds. But this translates to the conditions that the
local homology groups H∗(X, X − x) all vanish and that ∂X has the same local
homology groups over Z as does Rn−1. So the conditions in Definition 10.4.2
hold. �

We are now in position to complete the proof of Lemma 10.1.4.

Proof of Lemma 10.1.4. This lemma concerns the action of a dihedral group
〈r, s〉 on a manifold (or homology manifold) M as a group generated by
reflections. The first assertion of the lemma is that the wall Mr is nowhere
dense in M. Of course, this follows the previous lemma. (In fact, we do not yet
need this lemma—the first assertion follows from Newman’s Theorem or from
the Local Smith Theorem.) The second assertion is that Mr ∩Ms (the fixed set
of 〈r, s〉) is nowhere dense in Mr. Supposing, as we may, that Mr ∩Ms 
= ∅,
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the dihedral group 〈r, s〉 is finite. Let m be the order of rs. Choose a prime
p dividing m and let Cp be the cyclic subgroup generated by (rs)m/p. We
have Mr ∩Ms ⊂ Fix(Cp, M). By the Local Smith Theorem, Fix(Cp, M) is a
homology manifold over Z/p. Moreover, if p is odd, its codimension in M
must be even and hence, it must have positive codimension in Mr (which,
by the previous lemma, is codimension one). If p = 2, then C2 acts on the
(integral) homology manifold Mr and so its fixed set, Mr ∩Ms, must have
positive codimension in Mr by the Local Smith Theorem. �

For the remainder of this section, W is a group generated by reflections
acting properly on a connected homology manifold M. Since we have finished
proving Lemma 10.1.4, we have also completed the proof of Theorem 10.1.5.
So, we know (W, S) is a Coxeter system and M = U(W, C) for some strict
fundamental domain C, where S is the set of reflections across the walls
of C. Next, we investigate the local structure of C and prove an analog of
Proposition 10.1.9.

DEFINITION 10.7.2. Suppose we have a space C and a filtration:

C = Cn ⊃ Cn−1 ⊃ · · ·C0 ⊃ C−1 = ∅,
so that for 0 � k � n, Ck − Ck−1 is a homology k-manifold. A connected
component of Ck − Ck−1 is a k-dimensional stratum. The closure of such a
stratum is a closed stratum. The filtered space C is a homology n-manifold
with corners if each closed stratum is a homology manifold with boundary,
i.e., whenever X is a k-dimensional stratum and x ∈ X,

Hi(X, X − x) =
{
Z if i = k and x ∈ X,

0 otherwise.

(Actually, to allow the type of picture in Figure 10.1 we should only require
that the above holds for any “local stratum,” i.e., in the above we should replace
X by any connected component of U ∩ X for any open neighborhood U of x.)
As before, a homology manifold with corners is nice if each codimension-
p stratum is contained in the closure of exactly p codimension-one strata
(Definition 10.1.8).

It follows from this definition that any homology n-manifold with corners
C is a homology manifold with boundary, where ∂C := Cn−1 is the union of
all strata of positive codimension. Also, if C is nice, then any one of its closed
k-dimensional strata is a nice homology k-manifold with corners. A mirrored
homology manifold with corners is defined as in 10.1.8.

PROPOSITION 10.7.3. Suppose W is a finite reflection group on a connected
homology n-manifold M = U(W, C), with C a fundamental chamber, S is the
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set of reflections across walls of C, and C is equipped with its tautological
mirror structure (Cs)s∈S. Then

(i) Fix(W, M) is a homology manifold of dimension n− |S| and

(ii) C is a mirrored homology n-manifold with corners.

(Here |S| = Card(S).)

Proof. The proof is by induction on |S|. The case |S| = 1 was taken care of
in Lemma 10.7.1. Suppose, by induction, that |S| > 1 and the proposition is
true for all special subgroups WT with T a proper subset of S. Given x ∈ C, let
S(x) = {s ∈ S | x ∈ Cs}. If S(x) 
= S, then it follows from the induction hypoth-
esis that for any subset U of S(x) the local homology groups H∗(CU , CU − x)
are correct. (This is because C is a neighborhood of x in a fundamental domain
for WS(x) on M.) So, we are reduced to the case S(x) = S. As in 10.7.1, put

Z := C ∪ Cone(C − x)

and

U(Z) := U(W, C) = M ∪ Cone(M − x).

Since M is a homology n-manifold, U(Z) has the same homology as Sn. By
Corollary 8.2.5, there is a unique subset T ⊂ S such that (Z, ZT ) has the same
homology as (Dn, Sn−1) (or the same homology as Sn if T = ∅). Moreover,

• W = WT ×WS−T and

• H∗(Z, ZU) = 0 for all U 
= T .

Claim. T = S. Suppose to the contrary that T 
= S. We first dispose of the case
T = ∅. In this case, Z has the homology of Sn and H∗(Z, ZU) = 0 for all U 
= ∅.
Then ZU has the homology of Sn and in particular, Zs has the same homology
as Sn for each s ∈ S. But this implies that (Cs, Cs − x) has the same homology
as (Dn, Sn−1). However, by Lemma 10.7.1, Ms is a homology manifold of
dimension n− 1. Therefore, Hn(Cs) = 0 = Hn−1(Cs − x) and consequently,
Hn(Cs, Cs − x) = 0. This contradiction shows that T = ∅ is impossible. The
argument when T is a nonempty proper subset of S is similar. Since T 
= ∅, Z
is acyclic. Hence, ZT has the homology of Sn−1 and if s ∈ S− T , Zs and ZT∪{s}

(= ZT ∪ Zs) are both acyclic. From the Mayer-Vietoris sequence, we see that
ZT ∩ Zs has the same homology as Sn−1. Therefore, (Zs, ZT ∩ Zs) has the same
homology as (Dn, Sn−1) and hence, WTZs = U(WT , Zs) has the same homology
as Sn. So, WTCs is a homology n-manifold at x. Since WT and s commute,
WTCs ⊂ Ms. But this contradicts the fact that the homology manifold Ms has
dimension n− 1. So, we have proved the claim.

If T = S, then, arguing as before, we get that ZS has the same homology as
Sn−1 and by Theorem 8.2.16, ZS has the same homology as Sn−|S| and for any
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U � S, ZU is acyclic. Hence, Fix(WS, M) (= CS) is a homology manifold of
codimension |S| in M and H∗(CU , CU − x) = 0. �

There is no problem removing the finiteness hypothesis from Proposi-
tion 10.7.3 to get the following.

THEOREM 10.7.4. Suppose that W is a proper reflection group on a
connected homology n-manifold M = U(W, C), where C is a fundamental
chamber with its tautological mirror structure (Cs)s∈S. Then C is a mirrored
homology n-manifold with corners.

Proof. We must show that for each x ∈ C, the pair (CS(x), CS(x) − x) has the
same homology as (Dn−|S(x)|, Sn−|S(x)|−1) and that for each proper subset U of
S(x), H∗(CU , CU − x) = 0. Since C is neighborhood of x in a fundamental
domain for the WS(x)-action on M and since, by Proposition 10.7.3, the
corresponding statements are true for this action, they also hold for C. �

We have the following converse to Theorem 10.7.4. Its proof is left as an
exercise for the reader.

PROPOSITION 10.7.5. Suppose (W, S) is a Coxeter system and C is a
mirrored homology manifold with corners with W-finite mirror structure
(Cs)s∈S. Then U(W, C) is a homology manifold.

DEFINITION 10.7.6. A mirrored homology n-manifold with corners C is a
generalized simple polytope (or a generalized polytope for short) if (C, ∂C)
is a generalized homology n-disk and if for each σT ∈ N(C), (CT , ∂CT ) is a
generalized homology disk of dimension n− |T|.

The proof of Proposition 10.4.7 now goes through to give the following.

THEOREM 10.7.7. Suppose an infinite, discrete group W acts properly and
cocompactly on a acyclic homology n-manifold M and that W is generated
by reflections. Let C be a fundamental chamber endowed with its tautogical
mirror structure (Cs)s∈S. Then C is a generalized polytope and L(W, S) is a
GHSn−1 (i.e., (W, S) is type HMn as in Definition 10.6.2).

In 10.9 we will see that the hypothesis of this theorem can be weakened even
further (Theorem 10.9.2).

10.8. GENERALIZED HOMOLOGY SPHERES AND POLYTOPES

Given a simplicial complex L with vertex set S, let S(L) denote the poset
of vertex sets of simplices in L, including the empty simplex. (The notation
is the same as in Appendix A.2, Example A.2.3.) As in Definition A.3.4 or
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in 7.2, K := |S(L)| is the geometric realization of S(L). For each T ∈ S(L),
KT := |S(L)�T | is the corresponding coface and ∂KT := |S(L)>T |. (KT is
sometimes called the “dual cone” to the simplex σT .) K is the dual complex
to L. Also, for each s ∈ S, put Ks := K{s}. As in 5.1 and 7.2, for each T ⊂ S,
put

KT :=
⋃
s∈T

Ks.

In Lemma A.5.5, we showed that for each T ∈ S(L), L− σT is homotopy
equivalent to KS−T .

Suppose K is the dual complex of a simplicial complex L. K is a polyhedral
generalized polytope if for each T ∈ S(L), (KT , ∂KT ) is a GHDn−|T|. As in
Theorem 10.7.7, note that L is the nerve of the covering of ∂K by the Ks and
that Lk(σT , L) is the nerve of the covering of ∂KT by the codimension-one
strata of KT . By the Acyclic Covering Lemma (E.3.3 in Appendix E.3), for
any T ∈ S(L), Lk(σT , L) and ∂KT have the same homology. (For T = ∅, this
means that L and ∂K have the same homology.) Thus, Lk(σT , L) has the same
homology as Sn−|T|−1 if and only if ∂KT does. It follows that K is a generalized
n-polytope if and only if L is a GHSn−1.

Remark. Of course, the model to keep in mind is where L is the boundary
complex of a simplicial polytope, K is the dual polytope, and the KT , T ∈ S(L),
are the faces of K.

A simplicial complex L has the punctured n-sphere property in homology
(for short, L is a PHSn) if the following two conditions hold:

(a) L has the same homology as Sn and

(b) for each nonempty simplex σ of L, L− σ is acyclic.

In terms of the dual complex K, these two conditions translate as follows:

(a)′ (K, ∂K) has the same homology as (Dn+1, Sn) and

(b)′ for each T ∈ S(L)>∅, H∗(K, KS−T ) vanishes in all dimensions.

LEMMA 10.8.1. ([77, Lemma 5.1, p.306].) Suppose L is a simplicial complex
and K = |S(L)| is its dual complex. Then the following three conditions are
equivalent:

(i) L is a generalized homology (n− 1)-sphere.

(ii) K is a generalized n-polytope.

(iii) L has the punctured (n− 1)-sphere property in homology.
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Proof. We have already observed that (i) and (ii) are equivalent.
For s ∈ S, set

L := Lk(s, L), K := |S(L)| = Ks, and S := S− s.

The vertex set of L is S and T ⊂ S− s is in S(L) if and only if T ∪ {s} is a
simplex of L. �

Claim. If L is a PHSn−1, then L is a PHSn−2.

Proof of Claim. For any T ∈ S(L),

(K, K
S−T

) = (Ks, Ks ∩ KS−(T∪{s})).

By excision,

H∗(Ks, Ks ∩ KS−(T∪{s})) ∼= H∗(KS−T , KS−(T∪{s})),

where we have excised the complement of Ks in KS−T . By the punctured sphere
property, KS−(T∪{s}) is acyclic and for T 
= ∅, KS−T is also acyclic. So, for

T ∈ S(L)>∅, H∗(K, K
S
) vanishes in all dimensions. When T = ∅, H∗(K, ∂K) =

H∗(KS, KS−{s}), which is concentrated in dimension n− 1 and is isomorphic to
Z in that dimension.

We continue with the proof of the lemma by showing (iii) =⇒ (ii) by
induction on n. The case n = 0 (i.e., L = ∅) is trivial. So, suppose L is a
PHSn−1, n � 1. It suffices to show, for each T ∈ S(L), that (KT , ∂KT ) has
the same homology as (Dn−|T|, Sn−|T|−1) . (Indeed, if we prove this, then
Lk(σT , L) has the same homology as Sn−|T|−1 for each T ∈ S(L) and hence
KT (= Cone(Lk(σT , L))) is a homology manifold with boundary.) The case
T = ∅ is part of the definition of the punctured (n− 1)-sphere property (the
second version). So suppose T ∈ S(L)>∅. Choose s ∈ T and let T ′ := T − s
(so that T = T ′ ∪ {s}). Let L = Lk(s, L) and K = Ks be as above. According
to the claim L is a PHSn−2. By the inductive hypothesis, (iii) holds for
L and K. On the other hand, we have natural identifications Lk(σT , L) =
Lk(σT ′ , L) and (KT , ∂KT ) = (KT ′ , ∂KT ′). Since (KT ′ , ∂KT ′) has the same ho-
mology as (Dn−|T ′|−1, Sn−|T ′ |−2), (KT , ∂KT ) has the same homology as (Dn−|T|,
Sn−|T|−1).

Finally, we prove (i) =⇒ (iii). Suppose L is a GHSn−1 and T ∈ S(L). If
T = ∅, then ∂K (= L) has the same homology as Sn−1 and so (K, ∂K) has the
same homology as (Dn, Sn−1). For T 
= ∅, KT is a regular neighborhood of
the simplex σT in the barycentric subdivision of L; hence, KT is contractible.
Since L is a polyhedral homology (n− 1)-manifold, (KT , ∂(KT )) is a homology
(n− 1)-manifold with boundary, where ∂(KT ) = KT ∩ KS−T . By Poincaré
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duality, (KT , ∂(KT )) has the same homology as (Dn−1, Sn−2). Hence,

H∗(KS, KS−T ) ∼= H∗(KT , KT ∩ KS−T ) ∼= H∗(Dn−1, Sn−2),

which is the condition we needed to check to verify (iii). �

DEFINITION 10.8.2. Suppose K is a polyhedral generalized polytope dual to
a simplicial complex L which is a GHSn−1. A resolution of K is a mirrored
manifold with corners C such that N(C) = L and such that for each T ∈ S(L),
the stratum CT is contractible.

THEOREM 10.8.3. ([71, Theorem 12.2].) Any polyhedral generalized poly-
tope K admits a resolution.

This is basically a consequence of the fact that any homology sphere bounds
a contractible manifold (Theorem 10.3.1).

Proof. Suppose dim K = n. Let Kk denote the union of strata of K of dimen-
sion �k. These strata are indexed by

S(k) := {T ∈ S(L) | n− |T| � k}.
We are going to inductively define a sequence of spaces C0 ⊂ · · · ⊂ Cn = C
so that the strata of Ck are indexed by S(k) and so that each stratum CT

is a contractible, (n− |T|) dimensional manifold with corners. Since every
generalized homology sphere of dimension �2 is a sphere, each stratum of
K of dimension �3 is a cell. So, we can set C3 := K3. Suppose Ck−1 has been
defined and T ∈ S(k)− S(k − 1). Put

∂CT :=
⋃

U�T

CU.
�

Claim. ∂CT is a homology sphere.

Proof of Claim. To prove this we must show ∂CT is a manifold with the same
homology as a sphere. The reason it is a manifold is that the link of each
stratum in ∂CT is the boundary of a simplex. More precisely, the link of CU in
∂CT is Lk(σT , ∂σU). To see that it has the same homology as a sphere, consider
the covering of ∂CT by its top dimensional strata. The nerve of this covering
is Lk(σT , L) which has the same homology as Sn−|T|−1 (since L is a GHSn−1).
By the Acyclic Covering Lemma (in Appendix E.3), ∂CT also has the same
homology as Sn−|T|−1, proving the claim. By Theorem 10.3.1, ∂CT bounds a
contractible manifold, which is our CT . �

Remark. The same argument shows that if a simplicial complex L is
a polyhedral homology manifold, then there is a manifold M (= ∂C) and
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a cell-like map M→ L, which is a “resolution” in the classical sense explained
in the Notes to 10.4.

COROLLARY 10.8.4. ([71, Theorem 15.5].) Suppose (W, S) is type HMn.
Then W acts as a proper, cocompact, locally linear reflection group on a
contractible n-manifold Mn.

Proof. L(W, S) is a GHSn−1 and K is a generalized polytope. By Theo-
rem 10.8.3 K has a resolution C. Put Mn = U(W, C). By Proposition 10.1.10,
Mn is a manifold and the W-action is locally linear. By Theorem 9.1.4, Mn is
contractible. �

This leaves open the question of whether we can choose C to be a smooth
manifold with corners so that the action on Mn is smooth (Remark 10.1.11).
To achieve this it might be necessary to weaken Definition 10.8.2 by allowing
cofaces of C to be acyclic rather than contractible. Call the manifold with
corners C an acyclic resolution of the polyhedral generalized polytope K if
for each T ∈ S(L), the stratum CT is acylic. The following theorem and its
corollary are proved in [71] (and we will not repeat the proofs here).

THEOREM 10.8.5. ([71, Theorem 17.1].) Suppose L is a GHSn−1 with dual
polyhedral generalized polytope K. Then K admits an acyclic resolution by a
smooth manifold with corners C. Furthermore, we may take each coface of C of
dimension 
= 3,4 to be contractible. If, for every simplex σ of codimension 4 in
L, the homology 3-sphere Lk(σ , L) smoothly bounds a contractible 4-manifold,
then we can take C to be a resolution.

COROLLARY 10.8.6. ([71, Cor. 17.2].) Suppose (W, S) is type HMn. Then
W acts as a proper,cocompact, smooth reflection group on a smooth acyclic
manifold Mn. Moreover, we can choose Mn to be contractible unless n = 4
and the homology 3-sphere L(W, S) does not smoothly bound a contractible
manifold.

10.9. VIRTUAL POINCARÉ DUALITY GROUPS

We recall some definitions from Appendix F. Details can be found in [42].
A group � is type FP if Z (regarded as the trivial Z�-module) has a finite
resolution by finitely generated projective Z�-modules. (If � has a classifying
space B� which is a finite CW complex, then the augmented cellular chain
complex for E� is a resolution of Z by finitely generated free Z�-modules.)
A group of type FP is torsion-free and finitely generated; however, it need not
be finitely presented (As we shall see in 11.6, Bestvina and Brady [24] have
provided examples of groups of type FP which are not finitely presented.)
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� is an n-dimensional Poincaré duality group (or a PDn-group for short) if it
is type FP and

Hi(�;Z�) ∼=
{

0 if i 
= n,

Z if i = n.

Equivalently, � is PDn if it is type FP and if B� satisfies Poincaré duality with
arbitrary local coefficients (see Appendix F.5 and [42, p.222]). Of course, the
fundamental group of any closed aspherical n-manifold Mn is a PDn-group. �
is a virtual PDn-group if it possesses a (necessarily torsion-free) subgroup of
finite index which is a PDn-group.

LEMMA 10.9.1. Let (W, S) be a Coxeter system. Then W is a virtual PDn

group if and only if

Hi
c(�) ∼=

{
0 if i 
= n,

Z if i = n.

Proof. As in Lemma F.2.2, if � is a discrete group acting properly and
cocompactly on a contractible CW complex Y , then H∗(�,Z�) ∼= H∗c (Y). As in
Corollary D.1.4, the existence of a faithful linear representation and Selberg’s
Lemma imply that W contains a torsion-free subgroup � of finite index. Since
W acts properly on �, � acts freely. Since � is contractible, �/� is a finite
model for B�; so, � is type FP (in fact, type F). Therefore, � is a PDn-group
(and W is a virtual PDn-group) if and only Hi

c(�) is given by the formula in
the lemma. �

Remark. By Farrell’s Theorem (F.5.2) and Lemma F.2.2, W is a virtual
Poincaré duality group if and only if H∗c (�) is finitely generated.

The next theorem is one of the main results of [77].

THEOREM 10.9.2. ([77, Theorem B].) Let (W, S) be a Coxeter system. Then
W is a virtual PDn group if and only if it decomposes as

(W, S) = (WS0 ×WS1 , S0 ∪ S1),

where WS1 is finite and (WS0 , S0) is type HMn.

Proof. First, suppose W decomposes as in the theorem with WS1 is finite and
(WS0 , S0) of type HMn. For i = 0, 1, set

Wi := WSi , Li := L(Wi, Si), Ki := K(Wi, Si), �i := �(Wi, Si).

Since �0 is a contractible homology manifold of dimension n, W0 is a virtual
PDn-group and and therefore, so is W (since W1 is finite).
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Conversely, suppose W is a virtual PDn-group. By Lemma 10.9.1, this
implies H∗c (�) is concentrated in dimension n and is isomorphic to Z in that
dimension. By Theorem 8.5.1, H∗c (�) is a direct sum of terms of the form
H∗(K, KOut(w)). Hence, only one of these summands can be nonzero (and it
must be isomorphic to Z in dimension n). Therefore, there is a unique spherical
subset S1 ∈ S such that

(a) If T ∈ S and T 
= S1, then H∗(K, KS−T ) = 0 in all dimensions.

(b) (K, KS−S1 ) has the same homology as (Dn, Sn−1).

(c) WS1 is a singleton.

(Here WS1 is as in Definition 4.7.4: it is the set of w in W such that In(w) = S1.)
According to Lemma 4.7.5, (c) implies a decomposition as in the theorem:
(W, S) = (W0 ×W1, S0 ∪ S1). It follows that K = K0 × K1, � = �0 ×�1 and
L = L0 ∗ L1 (the join of L0 and L1 defined in A.4.3). Since S1 is spherical, L1

is a simplex, �1 is a Coxeter cell and K1 is a Coxeter block (Definition 7.3.1).
Thus,

• (K0, ∂K0) has the same homology as (Dn, Sn−1) and

• if T ∈ S(W0, S0)>∅, then H∗(K0, (K0)S0−T ) vanishes in all dimensions.

That is to say, L0 has the punctured (n− 1)-sphere property in homology. By
Lemma 10.8.1, L0 is a GHSn−1, i.e., (W0, S0) is type HMn. �

Theorem 10.9.2 has an important corollary: the notion of being type HMn

depends only on the Coxeter group W and not on the choice of a fundamental
set of generators S. We state this as follows.

COROLLARY 10.9.3. ([60, Theorem 2.3].) Suppose S and S′ are two sets of
fundamental generators for W. If (W, S) is type HMn, then so is (W, S′).

Proof. We claim (W, S) is type HMn if and only if the following two conditions
hold:

(a) W is a virtual PDn-group.

(b) W has no nontrivial finite subgroup as a direct factor.

Indeed, Theorem 10.9.2 states that if (a) holds and the diagram of (W, S) has
no nontrivial spherical component, then it is type HMn. Conversely, suppose
(W, S) is type HMn and that a finite subgroup F is a direct factor. As we
shall see in Chapter 12 (Theorem 12.3.4 (ii)), since F is finite, Fix(F,�) =
Fix(G,�) for some spherical parabolic subgroup G. Since F is normal we can
assume that G is a spherical special subgroup WT . By Corollary 7.5.3 (ii),
Fix(WT ,�) is a homology (n− k)-manifold, where k = Card(T). Let N(F)
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denote the normalizer of F in W. Since N(F) = W, we have vcd(W) =
vcd(N(F)) = dim Fix(WT ,�) = n− k. So, k = 0 and F is trivial.

Since conditions (a) and (b) are independent of the fundamental set of
generators, the corollary follows. �

In Chapter 13 we shall prove another version of this corollary for groups of
“type PMn” (Theorem 13.3.10).

Using these ideas, we get the following manifold version of Theorem 8.2.16.

PROPOSITION 10.9.4. Suppose W is a proper, cocompact reflection group
on an N-manifold M with fundamental chamber C and fundamental set of
generators S. Suppose M has the same homology as Sn. Let W = WT ×WS−T

be the decomposition of Corollary 8.2.5. Then WS−T is type HMN−n.

Proof. As in Remark 8.2.17, let K′ be the fundamental chamber for the
linear WT -action on Sn, let K′′ = K(WS−T , S− T) and �′′ = �(WS−T , S− T).
By Remark 8.2.17, K′ is the suspended simplex Sn−m−1 ∗
m, where m =
Card(T)− 1 and C homologically resembles K′ × K′′. This means there is a
coface-preserving map C→ K′ × K′′ inducing a W-equivariant map M→
Sn ×�′′ which is an isomorphism on homology. This implies that M and
Sn ×�′′ have isomorphic compactly supported cohomology. By Poincaré
duality (applied to Mn), this is the same as H∗c (Sn × RN−n). So, by the Künneth
Theorem, H∗c (�) is isomorphic to H∗c (RN−n). By Theorem 10.9.2 this means
WS−T decomposes as the product of a spherical Coxeter group and a Coxeter
group of type HMN−n. Since dim�′′ = dim K′′ = N − n, the spherical factor is
trivial. �

The proof shows M homologically resembles the product action on the
product of Sn with a contractible manifold in that the chamber C homologically
resembles the product of the suspended simplex K′ with the generalized
polytope K′′.

Remark 10.9.5. Let R be a commutative ring. Definitions 10.4.1 and 10.4.5 can
be extended in an obvious fashion to define, respectively, a homology manifold
over R and a generalized homology n-sphere over R (a GHSn

R, for short). A
homology manifold over R satisfies Poincaré duality with coefficients in R.
Similarly, the notion of a PDn

R-group makes sense. (See Remark F.5.5.) The
proof of Theorem 10.9.2 works over any principal ideal domain R. (The reason
we need to assume R is a principal ideal domain is that we want to be able to
conclude from the assumption H

∗
(�; R) ∼= R that there is only one nonzero

term in the sum of Theorem 8.5.1.)

Example 10.9.6. (Poincaré duality groups over R.) There are groups of type
FP which satisfy Poincaré duality over some ring R but not over Z. For
example, suppose R = Z[ 1

m ]. For each n > 3 we can find an L which is a
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generalized homology (n− 1)-sphere over R but not over Z. For n even,
take L to be a lens space Sn−1/Cm, while for n = 2k + 1, take L2k to be the
suspension of a (2k − 1)-dimensional lens space. Proceed as in Lemma 7.2.2.
Triangulate L as a flag complex and let W be the right-angled Coxeter group
associated to its 1-skeleton. Then W is a virtual PDn

R-group. However, since
H∗(L) has nonzero m-torsion, it follows from Corollary 8.5.2 that H∗(W;ZW)
has nonzero m-torsion. Hence, W is not a virtual PDn-group over Z.

Next we use Theorem 10.9.2 to prove that if a Coxeter group acts effectively,
properly and cocompactly on an acyclic manifold, then it acts as a group
generated by reflections.

PROPOSITION 10.9.7. ([77, Cor. 5.6]). Suppose a Coxeter group W acts
effectively, properly and cocompactly on a Z/2 acyclic n-manifold M. Then
W acts on M as group generated by reflections. (Here “reflection” is used as
in Definition 10.1.2.) In particular, for any fundamental set of generators S
and any s ∈ S, Ms is a Z/2-acyclic, Z/2-homology manifold of codimension
1 in M.

Proof. By the Local Smith Theorem (10.4.3), Ms (= Fix(〈s〉, M)) is a Z/2-
homology manifold and by Smith theory, it is Z/2-acyclic. Since H∗c (M;Z/2)
is the same as H∗c (Rn;Z/2), it follows from Lemma F.2.2 that W is a virtual
Poincaré duality group over Z/2. By Remark 10.9.5, Theorem 10.9.2 goes
through when Z is replaced by Z/2. So, if S is any fundamental set of
generators for W, then S = S0 ∪ S1 and W = W0 ×W1, where W1 is finite
and L(W0, S0) is a GHSn−1 over Z/2. For any s ∈ S, its centralizer, NW (s)
acts properly and cocompactly on Ms. Since Ms is Z/2-acyclic, dim Ms =
vcdZ/2(NW (s)) (where the virtual cohomological dimension over Z/2 is defined
as in Remark F.4.2). If s ∈ S1, this virtual cohomological dimension is n;
hence, Ms = M. Since the W-action is effective, this cannot happen. So,
S1 = ∅ and W = W0. If s ∈ S0, then dim Ms = vcdZ/2(NW (s)) = dim�s =
n− 1. Then, by Alexander duality, M −Ms has two components, i.e., s is a
reflection. �

COROLLARY 10.9.8. Suppose M is a symmetric space of noncompact type
and W is a discrete cocompact group of isometries of M. Then M must be a
product of a Euclidean space and real hyperbolic spaces.

Proof. Since W acts on M by isometries, for each s ∈ S, Fix(〈s〉, M) is a totally
geodesic submanifold of M. By the previous proposition, this submanifold
must be of codimension one. But symmetric spaces of noncompact type do not
contain totally geodesic submanifolds of codimension unless each irreducible
factor is E1 or a real hyperbolic space Hk. �
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NOTES

In this chapter we have discussed some of the most famous results in topology: the
Generalized Poincaré Conjecture, the h-Cobordism Theorem, the Double Suspension
Theorem, and the Polyhedral Manifold Characterization Theorem. We have also
explained some of topology’s most famous examples: nonsimply connected homology
spheres and Whitehead’s example of a contractible 3-manifold which is not simply
connected at infinity.

10.1. There is an extensive literature on the cohomology theory of finite transformation
groups, e.g., see [27, 36].

The motivation of the Hsiangs [160] for proving Proposition 10.1.12 is interesting.
They were studying smooth actions of compact connected Lie groups on homotopy
spheres and on contractible manifolds. They wanted to use finite reflection groups
similarly to the way they are used in Lie group theory. The theorems they were aiming
for said that, under mild hypotheses, the smooth Lie group action would be “modeled
on” a linear representation. Typically their arguments went as follows. Suppose a Lie
group G acts on a homotopy sphere M. Let T ⊂ G be a maximal torus. By Smith
theory, the fixed set MT is a homology sphere. The Weyl group W acts on it. If we
somehow know that W acts by reflections on MT , then we can apply Proposition 10.1.12
to conclude that all proper special subgroups of W have fixed points. From this one can
often draw conclusions about the original G-action.

10.3. Figure 10.2 and much of the discussion in Example 10.3.5 on Whitehead’s
example are taken from [215].

10.4. A compact metrizable space is an ANR if it is locally contractible. When is an
ANR homology n-manifold a topological manifold? When n � 5, a complete answer
was given by Edwards and Quinn. An ANR homology manifold Xn is resolvable
if it is the image of a cell-like map from an n-manifold. Xn has the disjoint 2-
disk property if given embeddings fi : D2 → Xn, i = 1, 2, f2 can be approximated by
another embedding with image disjoint from f1(D2). (When Xn is a polyhedron this
property fails whenever the link of a vertex is a homology sphere with nontrivial π1.)
Generalizing Theorem 10.4.10, Edwards showed that Xn is a topological manifold if
and only if it is resolvable and has the disjoint 2-disk property. Quinn showed that there
is a single obstruction in 1+ 8Z for Xn to admit a resolution. (In fact, he incorrectly
believed that he could show this obstruction was always trivial.) Finally, it was proved
in [44] that for each n � 5, there are examples, satisfying the disjoint 2-disk property,
where the obstruction to resolvability is nonzero.

10.5. For several years it was conjectured that the universal cover of any closed
aspherical manifold must be homeomorphic to Euclidean space. (See, for example,
[167, 170] and [293, Problem F16, p. 388].) Some positive results in this direction had
been achieved in [188, 164]. This speculation was put to rest by Theorem 10.5.1, which
was proved in [71] by the method of 10.5.

In [71, Theorem 16.1] we claimed that when L is a GHS, � is simply connected
at infinity if and only if L is simply connected. Certainly, if π∞1 (�) is trivial, then
so is π1(L). However, the converse is patently false. We gave a counterexample in
Example 10.5.3. The correct result is Theorem 9.2.2: � is simply connected at infinity
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if and only if L, as well as, all “punctured nerves” (of the form L− σT ) are simply
connected.

Another version of Example 10.5.3 is explained in [5]. Suppose Ln−1 is a non-simply-
connected PL homology sphere, n � 5. One can then find a codimension one homology
sphere L′ ⊂ L whose fundamental group maps onto π1(L). L− L′ has two components.
Let L1, L2 be their closures. For i = 1, 2, put L̂i := Li ∪ Cone (L′). Triangulate L as a
flag complex so that L′ is a full subcomplex. W is the associated right-angled Coxeter
group. One can construct a CAT(0) cubical complex K̂ with ∂K̂ ∼= L and with two
interior vertices v1, v2 such that Lk(vi, K̂) = L̂i. Since L̂i is simply connected, it follows
from Theorem 10.4.10 that K̂ is a topological manifold with boundary and hence,
U(W, K̂) is a manifold, as well as a CAT(0)-space.
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Chapter Eleven

THE REFLECTION GROUP TRICK

The term “reflection group trick” refers to a method for converting a finite
aspherical CW complex into a closed aspherical manifold which retracts
back onto it. The upshot is that closed aspherical manifolds are at least as
complicated as finite aspherical complexes. The basic technique underlying
the trick is the semidirect product construction of 9.1.

Following [81], in 11.3 the trick is used to produce examples of topological
closed aspherical manifolds which are not homotopy equivalent to smooth
closed manifolds. Another consequence is discussed in 11.4: if the Borel
Conjecture is true for all closed aspherical manifolds, then its relative version
for aspherical manifolds with boundary is also true. In 11.6 we discuss
the Bestvina-Brady examples of groups of type FL which are not finitely
presented. Then we show how the reflection group trick can be used to promote
these to examples of Poincaré duality groups which are not finitely presented.

11.1. THE FIRST VERSION OF THE TRICK

A group π is type F if its classifying space Bπ has the homotopy type of a finite
CW complex. (See Appendix F.4 for more about groups of type F.) Given a
group π of type F, the reflection group trick is a technique for constructing a
closed aspherical manifold M such that π1(M) retracts onto π . In a nutshell
the construction goes as follows. Assume, as we may, that Bπ is a finite
polyhedron. “Thicken” Bπ to X, a compact PL manifold with boundary. (For
example, if n > 2(dim Bπ ), we can piecewise linearly embed Bπ in some
triangulation of En and then take X to be a regular neighborhood of Bπ in
En.) X is homotopy equivalent to Bπ (since it collapses onto it). Let (W, S) be
a Coxeter system whose nerve L is a triangulation of ∂X. (As in Lemma 7.2.2,
we can take L to be any triangulation of ∂X as a flag complex and then, as in
Example 7.1.7, take (W, S) to be the right-angled Coxeter system associated to
the 1-skeleton of L.) Let S be the set of spherical subsets of S. For each s ∈ S,
Xs is the geometric realization of S�{s} (regarded as a subset of ∂X). In other
words, Xs is the closed star of the vertex s of L in the barycentric subdivision
of L. (Xs)s∈S is a W-finite mirror structure on X. As usual, U := U(W, X).
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Since L is a PL triangulation of ∂X, this mirror structure gives X the structure
of a mirrored manifold with corners (in the sense of Definition 10.1.8). By
Proposition 10.1.10, this implies U is a manifold with a proper W-action.
By Corollary 7.5.3 (iii) and its proof, the action is locally linear.

Let � ⊂ W be any torsion-free subgroup of finite index. (For example, in
the right-angled case we could take � to be the commutator subgroup of W.)
Define M (or M(�, X)) to be the quotient space

M := U/�. (1)

Since � acts properly and freely on U , the quotient map U → M is a covering
projection. Hence, M is a manifold.

THEOREM 11.1.1. Suppose M is defined by (1). Then

(i) M is a closed aspherical manifold and

(ii) M retracts onto Bπ .

To prove this we need the following.

LEMMA 11.1.2. U is aspherical.

Proof. We construct the universal cover of Ũ of U as in 9.1. Let X̃ be the
universal cover of X, let L̃ = ∂̃X be the inverse image of ∂X in X̃ and let
S̃ = Vert(̃L) be the inverse image of S. As in 9.1, give X̃ the induced mirror
structure indexed by S̃ and let (W̃, S̃) be the (infinitely generated) Coxeter
system defined by formula (2) in Section 9.1. We must show Ũ is contractible.
By Theorem 9.1.4, this is equivalent to showing that

(a) X̃ is contractible and

(b) for each T̃ ∈ S(W̃, S̃)
>∅, the coface X̃T̃ is acyclic.

Condition (a) holds since X is aspherical. Condition (b) holds since for any
T̃ �= ∅, X̃T̃ is homeomorphic to the disk XT (where T denotes the image
of T̃). �

Proof of Theorem 11.1.1. M is aspherical since it is covered by U (which is
aspherical by the previous lemma). Since X is a strict fundamental domain for
the W-action, it can be identified with a subspace of M. Since [W : �] <∞,
M is tiled by finitely many copies of X. Since X (= U/W) is compact, so is
M. The orbit map U → X induces a retraction M→ X. Since X collapses onto
Bπ , (ii) holds. �

There is a more explicit description of π1(M). As in 9.1, W̃ � π is the group
of all lifts of the W-action to Ũ . Let q : W̃ → W be the natural projection
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and put �̃ := q−1(�). Since � is torsion-free, so is �̃. For any w ∈ W, q−1(w)
is a π -stable subset of W̃. Hence, �̃ is π -stable. π1(M) is the group of deck
transformations of Ũ → M, i.e., it consists of the elements of W̃ � π which
act on U as an element of �. That is to say, π1(M) = �̃ � π and the retraction
π1(M)→ π is the canonical homomorphism from the semidirect product
onto π .

In the next proposition, (X, ∂X) is not required to be a manifold with bound-
ary (however, ∂X is always required to be homeomorphic to the simplicial
complex L).

PROPOSITION 11.1.3. (Compare Theorem 10.6.1.) Suppose M = U/� as in
(1). The following statements hold.

(i) If (X, ∂X) is a Poincaré pair and ∂X is a homology manifold, then
M is a Poincaré space. (For the notions of a “Poincaré pair” and
“homology manifold,” see Definitions H.1.3 and 10.4.1, respectively.)

(ii) If (X, ∂X) is a homology manifold with boundary, then M is a
homology manifold.

(iii) If (X, ∂X) is a topological (resp. PL) manifold with boundary and if L
is a triangulation of ∂X as a PL manifold, then M is a topological
(resp. PL) manifold.

(iv) If (X, ∂X) is a smooth manifold with boundary and if L is a smooth
triangulation of ∂X, then M is a smooth manifold.

Proof. If (X, ∂X) is a homology manifold with boundary, then the dual com-
plex of L (= ∂X) gives X the structure of a mirrored homology manifold with
corners (as defined in 10.7.2). The proof is similar to that of Lemma 10.8.1. If L
is a PL triangulation of ∂X, then X has the structure of a manifold with corners.
Similarly, if L is a smooth triangulation, X is a smooth manifold with corners.
Assertions (iii) and (iv) now follow from Proposition 10.1.10 (although
PL manifolds are not mentioned in the statement of Proposition 10.1.10).
Assertion (ii) follows from Proposition 10.7.5.

To prove (i), write U as an increasing union of chambers as in 8.1:

X = P1 ⊂ · · · ⊂ Pn ⊂ · · · ,

where the intersection of the nth chamber wnX with Pn−1 is a generalized
homology disk of codimension 0 in wn∂X. (This uses the fact that ∂X is a
homology manifold.) It follows that (Pn, ∂Pn) is a Poincaré pair (and that ∂Pn

is a homology manifold). This implies that U is a Poincaré space and therefore,
so is M (since U is a covering of it). �
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11.2. EXAMPLES OF FUNDAMENTAL GROUPS
OF CLOSED ASPHERICAL MANIFOLDS

We begin with two examples of G. Mess [204], based on Baumslag-Solitar
groups.

Given a pair of integers (p, q), the Baumslag-Solitar group BS(p, q) is the
1-relator group defined by the presentation:

BS(p, q) := 〈a, b | abpa−1 = bq〉. (2)

If p and q are relatively prime, then the word abpa−1b−q is not a proper power.
So it follows from Lyndon’s Theorem on 1-relator groups ([195]) that the
presentation complex for BS(p, q) is aspherical. In other words, BS(p, q) is type
F and of geometric dimension 2. (This was explained earlier in 2.3. For the
definitons of “geometric dimension” and “type F,” see Appendix F.)

Of course, every two-dimensional polyhedron can be embedded in E5. Al-
though it is not true that every 2-complex can be embedded in E4, every finite
two-dimensional CW complex can be thickened to a compact 4-manifold.
(Proof: start with a boundary connected sum of S1 × D3 s as a thickened
1-skeleton, then add a 2-handle for each 2-cell.) Thus, for each Baumslag-
Solitar group π = BS(p, q) with p, q relatively prime, Bπ can be thickened to
a compact aspherical n-manifold with boundary for any n � 4.

A group π is residually finite if given any two elements g1, g2 ∈ π there is a
homomorphism ϕ to some finite group F such that ϕ(g1) �= ϕ(g2).

Example 11.2.1. (Not residually finite; Mess [204].) The Baumslag-Solitar
group π = BS(2, 3) is not residually finite. Neither is any other group (such
as �̃ � π ) which retracts onto π . Hence, for each n � 4, there is a closed
aspherical n-manifold whose fundamental group is not residually finite. (This
example answered Problem F.2 in Wall’s Problem List [293, p. 386] in the
negative.)

Example 11.2.2. (Infinitely divisible abelian subgroups; Mess [204].) This
time take π = BS(1, 2). The centralizer of b in this group is isomorphic to a
copy of the dyadic rationals. Hence, for each n � 4, there is a closed aspherical
n-manifold whose fundamental group contains an infinitely divisible abelian
group.

Example 11.2.3. (Unsolvable word probem, Weinberger [297, p.106].) There
are examples of finitely presented groups π with unsolvable word problem
such that Bπ is a finite 2-complex. (See [209, Theorem 4.12].) Since any
group which retracts onto such a group also has unsolvable word problem,
the reflection group trick gives the following: for each n � 4, there is a closed
aspherical n-manifold whose fundamental group has unsolvable word problem.
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11.3. NONSMOOTHABLE ASPHERICAL MANIFOLDS

The first examples of aspherical manifolds which could not be smoothed were
constructed in [81] by using the reflection group trick (answering part of
Problem G2 in Wall’s Problem List [293, p.391] in the negative).

As in 11.1, suppose (X, ∂X) is a compact aspherical n-manifold with
boundary, that ∂X is triangulable, that L is a triangulation of it as a flag complex
and that M = U/� is the result of applying the reflection group trick to these
data.

As explained in the last paragraph of Appendix H.2, associated to any
topological manifold with boundary (indeed, to any Poincaré pair), say (Y , ∂Y),
there is a stable spherical fibration ν(Y) over Y , called its “Spivak normal
fibration.” If Y is a smooth manifold, then the sphere bundle associated to
its stable normal bundle is ν(Y). So, there is an obstruction for (Y , ∂Y) to
be homotopy equivalent to a smooth manifold: its Spivak normal fibration
must reduce to a linear vector bundle. In more concrete terms, this comes
down to the question of whether the classifying map cν(Y) : Y → BG lifts
to BO. (As explained in Appendix H.2, BG is the classifying space for
stable spherical fibrations and BO is the classifying space for stable vector
bundles.)

PROPOSITION 11.3.1. The Spivak normal fibration of X reduces to a linear
vector bundle if and only if the Spivak normal fibration of M reduces to a
linear vector bundle. Hence, if the Spivak normal fibration of X does not
reduce to a linear vector bundle, M is not homotopy equivalent to a smooth
manifold.

Proof. Since X is a submanifold of codimension 0 in M, ν(M)|X = ν(X). So,
if cν(M) : M→ BG lifts to BO, then so does cν(X) : X→ BG.

To prove the converse, we first note that the proof of Theorem 10.2.1 shows
that ν(M) ∼= p∗(ν(X)), where p : M→ X is the retraction. Hence, cν(M) =
cν(X) ◦ p. So, if c̃ : X→ BO is a lift of cν(X), then c̃ ◦ p lifts cν(M). �

THEOREM 11.3.2. ([81].) In each dimension �13, there are closed aspheri-
cal manifolds not homotopy equivalent smooth manifolds.

Proof. The proof uses Proposition 11.3.1. Let BP̃L(i) be the classifying space
for PL block bundles of rank i. Then

BPL ∼ BP̃L := lim
i→∞

BP̃L(i).

Construct X as follows. First, find an element a ∈ πk(BPL) so that its image
α ∈ πk(BG) does not lie in the image of πk(BO)→ πk(BG). Let ar : Sk →
BP̃L(r) represent a. Take a degree one map Tk → Sk and compose it with ar to
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get br : Tk → BP̃L(r). We can also compose it with α to get β : Tk → BG. By
the classification of abstract regular PL neighborhoods ([250, Cor 4.7]), there
is a compact PL manifold X of dimension k + r such that

(i) X collapses onto Tk (so X is aspherical and π ∼= Zk), and

(ii) br classifies the normal block bundle of Tk in X (so the stable tangent
bundle of X is classified by the composition of X→ Tk with br).

Since Tk is parallelizable, it follows from (ii) that the composition of X→ Tk

with β classifies the inverse of the Spivak normal fibration ν(X). We claim
that cν(X) : X→ BG cannot lift to BO. Suppose, to the contrary, it does. Since
BO and BG are infinite loop spaces, BO ∼ �(�−1BO) and BG ∼ �(�−1BG).
Since cν(X) lifts to BO, its adjoint, ad(cν(X)) : STk → �−1BG, lifts to �−1BO.
(Here STk is the suspension of Tk.) It is well known that STk is homotopy
equivalent to Sk+1 ∨ A, where A is a wedge of spheres of dimension �k;
moreover, ad(cν(X))|Sk+1 is ad(−α). But this contradicts the assumption that
α does not lift to BO.

It remains to show that there exists such an element a ∈ πk(BPL). As
shown in [81, p. 140]), there is such an element in π9(BPL) coming from an
a4 ∈ π9(BP̃L(4)). �

11.4. THE BOREL CONJECTURE
AND THE PDn-GROUP CONJECTURE

The most famous problem concerning aspherical manifolds is the Borel
Conjecture. It asserts that a homotopy equivalence between closed aspherical
manifolds is homotopic to a homeomorphism. A relative version is that if
f : (X, ∂X)→ (X′, ∂X′) is a homotopy equivalence of pairs between manifolds
with boundary with X and X′ aspherical and f |∂X a homeomorphism, then f is
homotopic rel ∂X to a homeomorphism.

The Borel Conjecture is closely related to the PDn-Group Conjecture.
This asserts that if π is a finitely presented Poincaré duality group, then
it is the fundamental group of a closed aspherical manifold. (We will see
in Theorem 11.6.4 that without the hypothesis of finite presentation, the
PDn-Group Conjecture is false.) A relative version is that if π is a finitely
presented group of type FP and if (X, ∂X) is a Poincaré pair with X homotopy
equivalent to Bπ and ∂X a manifold, then (X, ∂X) is homotopy equivalent rel
∂X to a compact manifold with boundary. (For the definition of what it means
for a group to be of type F or FP, see Appendix F.4; for the definition of
“Poincaré duality group,” see Appendix F.5.1.) The Borel Conjecture and the
PDn-Group Conjecture are discussed in greater detail in Appendix H.1. In this
section we use the reflection group trick to show that for either of the above
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conjectures, the absolute version implies the relative version. More precisely,
we prove the following.

THEOREM 11.4.1

(i) Suppose (X, ∂X) is a counterexample to the relative version of the
PDn-Group Conjecture in dimension n �5 and L is a flag
triangulation of ∂X. Then M := U(W, X)/� is an aspherical
Poincaré duality space and π1(M) is a counterexample to the
PDn-Group Conjecture.

(ii) Suppose f : (X, ∂X)→ (X′, ∂X′) is a counterexample to the relative
version of the Borel Conjecture in dimension n � 5 and L is a
flag triangulation of ∂X (= ∂X′). Let M := U(W, X)/� and
M′ := U(W, X′)/�. Then the homotopy equivalence f̃ : M→ M′,
induced by f , is a counterexample to the Borel Conjecture.

As explained in Appendix H, in dimensions �5, the relative versions of
the Borel Conjecture and the PDn-Group Conjecture for a given group π are
basically equivalent to three algebraic conjectures. The first two conjectures
are in algebraic K-theory: the Reduced Projective Class Group Conjecture
(Conjecture H.1.8) and the Whitehead Group Conjecture (Conjecture H.1.9).
The Reduced Projective Class Group Conjecture implies that if π is type FP,
then it is automatically type F. The Whitehead Group Conjecture implies
that, in dimensions�5, any h-cobordism between manifolds with fundamental
group π is a cylinder. The third conjecture is the Assembly Map Conjecture
in L-theory (Conjecture H.3.2). Our argument for Theorem 11.4.1 consists of
proving the corresponding results for these algebraic conjectures. As usual,
π = π1(X), M = U/� and π̃ := π1(M) = π � �.

THEOREM 11.4.2. Suppose a group π of type F is a counterexample to the
Whitehead Group Conjecture, i.e., Wh(π ) �= 0. Then π̃ is the fundamental
group of a closed aspherical manifold M and Wh(π̃ ) �= 0.

Proof. Since π is a retract of π̃ , Wh(π ) is a direct summand of Wh(π̃ ). �
In the case of the Assembly Map Conjecture, we have the following.

THEOREM 11.4.3. With notation as in Appendix H.3, suppose (X, ∂X) is a
counterexample to the Assembly Map Conjecture, i.e., suppose the assembly
map A : H∗(X;L)→ L∗(π ) fails to be an isomorphism. Then A : H∗(M;L)→
L∗(π̃) fails to be an isomorphism.

Proof. As explained in Appendix H.3, after stabilizing by taking a product
with D4, the structure set S∗(X) is an abelian group; moreover, it is functorial
in X. The Assembly Map Conjecture is equivalent to the statement that S∗(X)
is trivial. Since X is a retract of M, S∗(X) is a direct summand of S∗(M). This
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proves the theorem. A more pedestrian version of this argument is to consider
the commutative diagram

H∗(X;L)
A−−−−→ L∗(π )

�
�

H∗(M;L)
A−−−−→ L∗(π̃ ).

H∗(X;L) is a direct summand of H∗(M;L) and L∗(π ) is a direct summand of
L∗(π̃ ). So, if A : H∗(X;L)→ L∗(π ) fails to be an isomorphism, then so does
A : H∗(M;L)→ L∗(π̃).) �

Question 11.4.4. Suppose π is FP and not F. (Conjecturally no such π exists.)
Is it possible to find a triangulable manifold ∂B and a map i : ∂B→ Bπ (which
we may assume is an embedding) so that (Bπ , ∂B) is a Poincaré pair (defined
in Appendix H.1)?

If we can find such a Poincaré pair, then we can apply the reflection
group trick (at least its second version, defined in the next section) to
obtain a space Y = U(W, Bπ )/� which is an aspherical Poincaré space (see
Proposition 11.5.3 below). Since π is not type F neither is any group, such as
π1(Y), which retracts onto it. Hence, if there is such a pair (Bπ , ∂B), then there
is also a Poincaré duality group not of type F.

Proof of Theorem 11.4.1. (i) Suppose (X, ∂X) is an n-dimensional Poincaré
pair with ∂X = L a manifold triangulated as a flag complex, with X finitely
dominated and homotopy equivalent to Bπ , where π is a group of type FP. By
Proposition 11.1.3 (i), M is Poincaré complex; moreover, M is also finitely
dominated and hence, π̃ is a finitely presented PDn-group. There are two
algebraic ways in which (X, ∂X) could provide a counterexample to the relative
version of the PDn-group Conjecture, either

• Wall’s finiteness obstruction σ (X) ∈ K̃0(Zπ ) could be nonzero or

• Sn−1(X) could be nonzero.

(For an explanation of these two conditions, see Appendices F.4 and H.3.)
Moreover, for n �5, these are the only two ways in which the PDn-Group Con-
jecture can fail. The failure of either condition for X causes the corresponding
failure in M. In the first case, since σ (M) ∈ K0(Zπ̃) restricts to σ (X), we see
that if σ (X) �= 0, then σ (M) �= 0. Similarly, in the second case, Theorem 11.4.3
shows that if Sn−1(X) �= 0, then Sn−1(M) �= 0.
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(ii) Suppose (X, ∂X) is a compact aspherical n-manifold with boundary and
L is a PL triangulation of ∂X as a flag complex. By Proposition 11.1.3 (iii), M
is a closed aspherical manifold. There are two algebraic ways in which (X, ∂X)
could fail the relative version of the Borel Conjecture, either:

• Wh(π ) �= 0 (and hence, there is a nontrivial h-cobordism of X rel
boundary) or

• Sn(X) �= 0.

Moreover, for n � 5, these are the only the only two ways in which the Borel
Conjecture can fail. In the first case, by Theorem 11.4.2 (ii), Wh(π̃ ) �= 0. In the
second case, by Theorem 11.4.3, Sn(M) �= 0. �

11.5. THE SECOND VERSION OF THE TRICK

By weakening the conditions in 11.1, we get a more general version of the
reflection group trick. As data, suppose we are given

• a space X, a group π , and an epimorphism ψ : π1(X)→ π ,

• a Coxeter system (W, S) with nerve L, and

• an embedding L ↪→ X, identifying L with a closed subpace of X.

As before, this gives X a mirror structure: Xs := |S�{s}|.
We want to define a covering space p̃ : Ũ → U with group of deck

transformations π . Let p : X̃→ X be the covering space corresponding to
Kerψ . Let L̃ := p−1(L) with the induced structure of a simplicial complex.
Let S̃ = p−1(S). As in formula (2) of Section 9.1, define a Coxeter matrix ms̃t̃

on S̃ by

ms̃t̃ =




1 if s̃ = t̃,

mst if s̃ and t̃ span an edge in L̃,

∞ otherwise.

where s̃, t̃ ∈ S̃ are vertices lying over s, t ∈ S. Let (W̃, S̃) be the corresponding
Coxeter system. If T̃ is a spherical subset of S̃, then its image T is a spherical
subset of S. Since T spans the simplex σT in L, p−1(σT ) contains a simplex
spanned by T̃ . It follows that L̃ is the nerve of (W̃, S̃). As before, L̃ gives
a mirror structure on X̃ over S̃. Put Ũ := U(W̃, X̃) and let p̃ : Ũ → U be the
natural projection. The group π acts on X̃ via deck transformations and on W̃
through diagram automorphisms (Definition 9.1.6). So, the semidirect product
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construction of 9.1 gives an action of the group G := W̃ � π on Ũ . The
subgroup π acts freely on Ũ and the orbit space is identified with U via p̃. (So,
Ũ is the covering space of U associated to the kernel of ψ ◦ r∗ : π1(U)→ π ,
where r : U → X is the natural retraction.) Just as in 9.1, G is the group of
all lifts of the W-action on U to Ũ . Let q : G→ W be the projection. Given
a subgroup � ⊂ W, put �̃ := q−1(�). Clearly, �̃ = �′ � π , where �′ is the
inverse image of � in W̃.

LEMMA 11.5.1. Suppose S is finite and π is torsion-free. Then G is virtually
torsion-free.

Proof. By Corollary 6.12.12, W has a finite-index, torsion-free subgroup �.
Let �′ be its inverse image in W̃. Then �′ is finite index in W̃. We claim it
is also torsion-free. This is because (a) by construction, W̃ → W maps each
spherical special subgroup of W̃ isomorphically onto a spherical special
subgroup of W and (b) by Corollary D.2.9 (or Theorem 12.3.4 (i)), each finite
subgroup of W̃ is contained in some conjugate of a spherical special subgroup;
hence, W̃ → W maps each finite subgroup injectively. Since �′ and π are both
torsion-free, so is their semidirect product �̃ = �′ � π . �

PROPOSITION 11.5.2. Ũ is acyclic if and only if X̃ is acyclic. Moreover, if
this is the case and if X is a finite CW complex, then G is type VFL.

(See Appendix F.4 for the definition of “type VFL.”)

Proof. By construction, for each nonempty spherical subset T ⊂ S̃, X̃T is a
cone and hence, is acyclic. So, the first sentence follows from Corollary 8.2.7.
The second sentence is just the observation that if �̃ is a torsion-free subgroup
of finite index, then the chain complex C∗(Ũ) is a finite resolution of Z by
finitely generated free Z�̃-modules. �

PROPOSITION 11.5.3. (Compare Lemma F.5.3). Suppose (X, L) is a com-
pact n-manifold with boundary and X̃ is acyclic. Then G is a virtual Poincaré
duality group of dimension n.

Proof. Let �̃ be a torsion-free subgroup of finite index in G, as above. By
Proposition 11.5.2, �̃ is type FL (and so a fortiori type FP) and Ũ is acyclic.
By Proposition 10.7.5, Ũ is a homology manifold. (If (X, L) is a PL manifold
with boundary, then, by Proposition 10.1.10, Ũ is actually a manifold.) Hence,

Hi
c(Ũ) ∼=

{
0 if i �= n,

Z if i = n.

Since H∗(�̃;Z�̃) ∼= H∗c (Ũ) (Lemma F.2.2), �̃ is a PDn-group. �
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Remark. Proposition 11.5.3 illustrates why we were interested in weakening
the conditions from 11.1. We want to replace the condition that X is aspherical
by the condition that it has an acyclic covering space X̃. In the case where
ψ : π1(X)→ π is the identity map, X̃ is the universal cover and we are back
to the original situation where X is aspherical.

11.6. THE BESTVINA-BRADY EXAMPLES

In [24] Bestvina and Brady constructed the first examples of groups of type FL
which are not finitely presented (and hence, not type F).

Right-Angled Artin Groups

As usual, L is a finite flag complex with vertex set S and, as in Example 7.1.7,
(W, S) is the right-angled Coxeter system associated to its 1-skeleton. For
each s ∈ S introduce a new symbol xs and let AL be the group defined
by the presentation 〈{xs}s∈S | R〉, where the set of relations R consists
of all commutators of the form [xs, xt] with {s, t} ∈ Edge(L). In other
words, AL has a generator for each vertex of L; two such generators com-
mute if and only if the corresponding vertices are connected by an edge
and there are no other relations. AL is called the right-angled Artin group
associated to L.

Example 11.6.1

(i) If L is the union of n points, AL is the free group of rank n.

(ii) If L is an n-simplex, AL is free abelian of rank n+ 1.

The classifying space of AL has a simple description, similar to the
description of the complex PL in 1.2. Denote the product of S copies of the
circle by TS (the “S-torus”). If U ⊂ S, then TU is naturally a subspace (in fact,
a subgroup) of TS. Define a subcomplex TL of TS by

TL :=
⋃

U∈S(L)

TU. (3)

It is easy to see TL is aspherical, i.e., a model for BAL ([176]). The fact that
its universal cover T̃L is contractible can also be explained with the theory of
nonpositively curved spaces discussed in Appendix I. T̃L is naturally a cubical
cell complex with a piecewise Euclidean metric and it follows from Gromov’s
Lemma in Appendix I.6 that it is a CAT(0)-space and hence, is contractible.
(See [56].)
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Bestvina-Brady Groups

Let ϕ : AL → Z be the homomorphism which sends each generator xs to 1.
The Bestvina-Brady group BL associated to L is defined to be Kerϕ. Using
the cubical structure on T̃L one can construct a ϕ-equivariant, piecewise linear
“Morse function” f : T̃L → Rwhich takes the vertices of T̃L to Z. (The vertices
of T̃L play the role of critical points.) Each level set f−1(t), t ∈ R, is BL-stable.
The main idea of [24] is to analyze how the topology of a level set changes
as it moves across a vertex. The effect is to cone off a copy of L. Hence, if L
is acyclic, the homology of all level sets are the same and f−1(t) is acyclic for
each t ∈ R. By using the CAT(0) structure on T̃L, Bestvina and Brady are also
able to analyze the effect of moving t on the fundamental group of a level set
f−1(t). For example, they show f−1(t) is simply connected if and only if L is
simply connected. If L is contractible, f−1(t)/BL is a model for BBL. For some
fixed generic t (i.e., t /∈ Z), put

ỸL := f−1(t) and YL := f−1(t)/BL. (4)

Since f is a piecewise linear map, TL can be triangulated so that YL is a finite
subcomplex. Bestvina and Brady prove the following.

THEOREM 11.6.2. ([24].) BL is

(i) finitely generated if and only if L is connected,

(ii) finitely presented if and only if L is simply connected,

(iii) type FL (or type FP) if and only if L is acyclic,

(iv) type F if and only if is L is contractible.

In particular, taking L to be a flag complex which is acyclic but not simply
connected, they get the following.

COROLLARY 11.6.3. ([24]). There are groups of type FL which are not
finitely presented.

These examples answered Problem F10 in Wall’s Problem List [293, p. 387]
in the negative. In the same problem Wall asked “Does this at least hold for
Poincaré duality groups?”

Poincaré Duality Groups That Are not Finitely Presented

The next theorem shows how we can use the second version of the reflection
group trick to promote the Bestvina-Brady examples to a negative answer to
the second part of Wall’s problem.
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THEOREM 11.6.4. ([77, Theorem C].) In each dimension �4, there are
examples of Poincaré duality groups which are not finitely presented.

Proof. Suppose L is a acyclic two-dimensional flag complex which is
not simply connected and that YL is as in (4) (i.e., YL is one of the
Bestvina-Brady examples). YL is a finite 2-complex and there is an epimor-
phism ϕ : π1(YL)→ BL. We want to apply the second version of the reflection
group trick from 11.5. Thicken YL to X, a compact PL n-manifold with
boundary (n can be any integer �4). Let r : X→ YL be the collapse and let
ψ = ϕ ◦ r∗ : π1(X)→ BL. Here we run into a problem with notation: the letter
L which we want to use for a triangulation of the boundary of a manifold is
already in use for a different flag complex, so we will have to use the letter
� instead. Let � be a triangulation of ∂X as a flag complex and (W�, S�)
be the associated right-angled Coxeter system. This is the necessary data for
the second version of the reflection group trick (where π = BL and (W, S) =
(W�, S�)). By Proposition 10.1.10, U(W�, X) is a manifold with a proper,
locally linear W�-action. X̃ is acyclic (since ỸL is acyclic and X̃ is homotopy
equivalent to ỸL). By Proposition 11.5.3, G = W̃� � BL is a virtual PDn-group
with a finite index, torsion-free subgroup �̃ = �′ � BL, which retracts onto BL.
Since BL is not finitely presented, neither is any group which retracts onto it
([292, Lemma 1.3]). �

Kirby and Siebenmann [177] proved that any compact topological manifold
is homotopy equivalent to a finite CW complex. In particular, the fundamental
group of a compact manifold must be finitely presented. So, Theorem 11.6.4
has the following corollary.

COROLLARY 11.6.5. For each n �4, there are PDn-groups which are not
fundamental groups of closed aspherical manifolds.

The Leary-Nucinkis Examples

By throwing finite group actions into the mix, Leary-Nucinkis proved the
following.

THEOREM 11.6.6. (Leary-Nucinkis [187].) There are examples of groups G
possessing a torsion-free subgroup � of finite index such that

(i) � is type F.

(ii) There is no CW model for EG with a finite number of G-orbits
of cells.

Let Q be a group of simplicial automorphisms of the finite flag complex
L. We can assume the Q-action is admissible, i.e., for any simplex σ in L,
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its setwise stabilizer is equal to its pointwise stabilizer. The Q-action on S (=
Vert(L)) induces a Q-action on AL through automorphisms and the subgroup
BL is Q-stable. Hence, we can form the semidirect products

AL � Q and BL � Q

The homomorphism ϕ : AL → Z extends to a homomorphism (also denoted
ϕ) from AL � Q to Z by sending Q to 0. Let TL be the cubical complex defined
by (3). The Q-action on L induces an isometric action on TL. The group of all
lifts of this action to T̃L is AL � Q. Fix t ∈ R. The level set f−1(t) is BL-stable
and Q acts on YL (= f−1(t)/BL). (When L is contractible, the homotopy type
of f−1(t) does not change as t varies in R.)

As explained in [187], in the above construction, the process of taking fixed
sets of Q works as one would predict:

(TL)Q = TLQ and (YL)Q = YLQ .

It is proved in [70] that the subgroup of AL fixed by Q is ALQ and in [187] that
the subgroup of BL fixed by Q is BLQ . Regarding Q as a subgroup of BL � Q
and letting VQ stand for NBL�Q(Q)/Q, we have VQ = BLQ ([187]).

By Theorem 11.6.2 (iv), BL is type F if and only if L is contractible. The
main idea of [187] is that if L is contractible and the Q-action is such that
LQ is not contractible, then G := BL � Q cannot have a finite model for EG.
The reason is that if EG has a finite model, then so does EVQ, namely, the
fixed set of Q on EG. But if LQ is not contractible, then the torsion-free group
VQ (= BLQ ) is not type F. Since there are many examples of such Q-actions
on contractible, finite simplicial complexes L, we get Theorem 11.6.6 with
G = BL � Q and � = BL. For examples of such Q-actions on contractible,
finite complexes with noncontractible fixed sets, see [36].

11.7. THE EQUIVARIANT REFLECTION GROUP TRICK

Suppose G is a discrete, cocompact group of isometries of a Riemannian
manifold M of nonpositive sectional curvature. For any finite subgroup H ⊂ G,
the fixed set MH is a totally geodesic, Riemannian submanifold; hence, a
convex subset; hence, contractible. So, M is a finite model for EG. (By saying
that the model is “finite” we mean that it can be cellulated so that there are only
finitely many G-orbits of cells.) The group VH := NH(G)/H is a cocompact
isometry group of MH . Since MH is a contractible manifold, this implies any
torsion-free subgroup of finite index in VH is a Poincaré duality group. (See
10.9 and Appendix F.5.) Such examples might lead one to speculate that if G
is a virtual Poincaré duality with a finite model for EG, then, for any finite
subgroup H ⊂ G, VH is also a virtual Poincaré duality group. We will see in
Theorem 11.7.3 below that such speculations are false.
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The “equivariant reflection group trick” is not so different from the ordinary
reflection group trick. Again, it is basically the semidirect product construction
of 9.1. The main difference is that we will not assume that the group acts
freely on L.

Suppose, as before, we are given as input, a CW pair (X, ∂X) and a
triangulation of ∂X by a flag complex L with vertex set S. From this we get
a right-angled Coxeter system (W, S) and a mirror structure (Xs)s∈S. Assume
that a finite group Q acts on (X, ∂X) and that the action on ∂X is induced by a
simplicial action on L. Further assume that the action of Q on L is admissible
(as defined in the previous section). As in 9.1, G := W � Q acts on U(W, X).

For H a subgroup of Q, let SH denote the vertex set of LH and WSH the special
subgroup generated by SH . NQ(H)/H acts on SH and hence, on (WSH , SH)
through diagram automorphisms. Let

VH := WSH � NQ(H)/H. (5)

In the next proposition we list two properties of the equivariant reflection group
trick. Its proof is left as an exercise for the reader.

PROPOSITION 11.7.1. Suppose, as above, G = W � Q and H is a subgroup
of Q. Put U = U(W, X) and let UH be the fixed set of H on U . Then

(i) UH = U(WSH , XH) and

(ii) NG(H)/H = VH, where VH is defined by (5).

If X = Cone(∂X), then U(W, X) is our favorite cubical complex 
. In the
next chapter we will see that the natural piecewise Euclidean metric on 

is CAT(0). Since G acts via isometries, it follows from Corollary I.2.12 in
Appendix I.2 that 
 is a model for EG. If L (∼= ∂X) is a triangulation of Sn−1,
then 
 is a manifold. Since WSH has finite index in VH , we see that VH is a
virtual Poincaré duality group if and only if WSH is and by Theorem 10.9.2,
this is the case if and only if LH is a generalized homology sphere.

There are many classical examples of actions of finite groups on spheres
which are not equivalent to linear actions (e.g., see [36]). In particular, the fixed
set of a finite group H on Sn−1 need not be a GHS. The idea of [88] is that these
exotic actions on spheres can be promoted to give VPDn groups G with finite
models for EG such that the normalizers of certain finite subgroups are not
VPDm for any m. Hence, there can be no cocompact action of any such G on a
contractible manifold so that the fixed sets of finite subgroups are contracible
submanifolds. Before stating this theorem, we give a concrete example of an
exotic action on a sphere.
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Example 11.7.2. (Actions on Brieskorn spheres.) Let N(a1, . . . , an) denote the
link of the origin in the complex hypersurface

(z1)a1 + · · · + (zn)an = 0.

It is a smooth manifold of dimension 2n− 3, called a “Brieskorn manifold.” As
Brieskorn showed, it is often homeomorphic to S2n−3; see [213]. For example,
N(3, 2, 2, 2) is diffeomorphic to S5. If ζ denotes a sixth root of unity, define an
action of C6 on N(3, 2, 2, 2) by

ζ · (z1, z2, z3, z4) = (ζ 2z1, ζ 3z2, z3, z4).

The fixed set of C3 on N(3, 2, 2, 2) is N(2, 2, 2) which is RP3, the fixed set of
C2 is N(3, 2, 2) which is a 3-dimensional lens space with fundamental group
Z/3 and the fixed set of C6 is N(2, 2) which is the disjoint union of two circles.

THEOREM 11.7.3. ([88], [125]). For each n � 6, there are examples of
VPDn groups G such that

(i) EG has a finite model (by a CAT(0)-manifold).

(ii) There is a finite subgroup H ⊂ G so that NG(H)/H is not a virtual
Poincaré duality group.

Proof. Equivariantly triangulate N(3, 2, 2, 2) (∼= S5) as a flag complex and
form the CAT(0) 6-manifold
 as above. For any nontrivial subgroup H of C6,
LH is not a GHS; hence, by Theorem 10.9.2, VH is not a virtual Poincaré duality
group. In fact, we can use the results of 8.9, to calculate the cohomology of
VH with group ring coefficients for any subgroup H ⊂ C6. For H = C3 or
C2, vcd(VH) = 4 and H4(VH;ZVH) = Z. However, H3(VH;ZVH) is either an
infinite sum ofZ/2’s (when H = C3) or ofZ/3’s (when H = C2). For H = C6,
the group VH has cohomological dimension 2 and its second cohomology
group is free abelian of infinite rank. By suspending L or by taking the product
of G with Zk, we can promote such examples to any dimension �6 �

Remark. A VPDn group G need not have any finite model for EG. This is
proved in [88] by using the equivariant reflection group trick to promote the
Leary-Nucinkis examples to cocompact actions on contractible manifolds.

NOTES

Thirty years ago there were many techniques for producing finite aspherical complexes
(e.g., the theory of small cancellation groups) and relatively few examples of closed
aspherical manifolds (principally, locally symmetric spaces). The reflection group trick
changed our perception of the possibilities.
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The reflection group trick was motivated by an idea of Thurston. In the mid-1970s
he discussed the following version of it in dimension 3. Suppose (X, ∂X) is a compact
3-manifold with boundary and that the interior of X can be given the structure of a
complete hyperbolic manifold. Thurston showed that by taking a suitable triangulation
L of ∂X and proceeding as in 11.1 one can give X the structure of a closed hyperbolic
orbifold. In other words, the universal cover of U(W, X) is identified with H3 and G
with a discrete group of isometries ofH3. This result was a generalization of Andreev’s
Theorem (6.10.2) and a special case of Thurston’s Geometrization Conjecture (6.10.1).
In fact, this version of the reflection group trick is a key step in Thurston’s proof of the
Geometrization Conjecture for Haken manifolds [277].

In its present form the reflection group trick was first described in [71, Remark 15.9].
It is also discussed in [146, p. 390]. In the next chapter, in 12.8, we will explain a
version of the reflection group trick which takes nonpositive curvature into account.
This version will allow us to start with a nonpositively curved, piecewise Euclidean
polyhedron and then find a closed, nonpositively curved, piecewise Euclidean manifold
which retracts onto it.

11.3. The results of this section were improved in [83]. It is proved there that for each
n � 4, there are closed aspherical topological n-manifolds which are not homotopy
equivalent to any PL manifold. The idea is to apply Gromov’s hyperbolization technique
to the E8-homology 4-manifold, obtaining an aspherical homology 4-manifold of
signature 8. By [131] this can be resolved to a topological 4-manifold, which, by
Rohlin’s Theorem, cannot be given a PL structure. By taking the product of this example
with a k-torus we also obtain examples in all dimensions >4.

11.5. Suppose X is a finite CW complex, X̃ is acyclic and π is nontrivial. In [77,
Theorem 6.5 (i)] I calculated the compactly supported cohomology of Ũ and proved the
following: W̃ � π is a virtual PDn group if and only if (a) L is an (n− 1)-dimensional
homology manifold and (b) (X, L) is an n-dimensional Poincaré pair over π ([77,
Theorem 6.10, p.313]).

11.6. To any Coxeter system (W, S) one can associate an Artin group as follows. For
each s ∈ S introduce a symbol xs and let = A(W,S) be the group with generating set
{xs}s∈S and relations of the form:

xsxt · · ·︸ ︷︷ ︸
mst

= xtxs · · ·︸ ︷︷ ︸
mst

for any two distinct elements s,t ∈ S with mst �= ∞. In other words, the alternating
word of length mst in xs and xt is equal to the alternating word of the same length in the
other order. Since these relations hold in the Coxeter group, we have an epimorphism
A(W,S) → W defined by xs → s. When W is the symmetric group on n letters, A(W,S)

is the braid group on n strands. The justification for the name “Artin group” is
that E. Artin initiated the study of braid groups. The theory of Artin groups is closely
tied to the theory of Coxeter groups and could have been dealt with extensively in
this book; however, we instead confine ourselves to a few remarks here. Suppose W is
finite. Complexifying the geometric representation we get a complex representation
on Cn. Let M be the complement of the union of reflecting hyperplanes in Cn. W
acts freely on M. Deligne [92] proved that M/W is the classifying space for BA(W,S).
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It is conjectured that a similar result holds when W is infinite. This is known to be
true in many cases (see [57, 289]) but is not known in general. The problem is that
the complex hyperplane complement is not known to be aspherical. It is also known
that the quotient of the complex hyperplane complement is homotopy equivalent to
a finite cell complex � called the “Salvetti complex” (see [56]). In many ways, the
universal cover of � is quite similar to 
. For example, it has a cellulation by Coxeter
polytopes which projects to the cellulation on 
. However, in general, it is still not
known if BA(W,S) is homotopy equivalent to a finite CW complex or even to a finite
dimensional one. In the right-angled case, everything works (in fact, the universal cover
of� is CAT(0)). Right-angled Artin groups are sometimes called “graph groups.” More
information about Artin groups can be found in [56, 57, 70, 78, 96].

Corollary 11.6.5 should not be regarded as a counterexample to the PDn-Group
Conjecture (H.1.2) and in fact, it is not (because in our statement of the conjecture
we explicitly assume the group to be finitely presented). The point is that the condition
of finite presentability is not the issue in surgery theory with which the conjecture is
usually associated. Our discussion of the Leary–Nucinkis examples is taken from [187]
and [88].

11.7. The discussion in this section comes from [88]. In [125] Farrell and Lafont give a
proof of Theorem 11.7.3 in which G is word hyperbolic. (See 12.5 for a discussion of
word hyperbolic groups.) Their construction uses the strict hyperbolization procedure
of [59].
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Chapter Twelve

� IS CAT(0): THEOREMS OF GROMOV

AND MOUSSONG

One of the main results in this book is that the natural piecewise Euclidean
metric on �(W, S) is nonpositively curved. Although this result will be
explained here, a general discussion of nonpositively curved spaces and many
of the details of our arguments will be postponed until Appendix I. The “natural
piecewise Euclidean metric on �” means, roughly, that each cell of � is
identified with a convex polytope in Euclidean space. This is explained in 12.1.
The notion of “nonpositive curvature” is defined via comparison triangles. It
means that any sufficiently small geodesic triangle in � is “thinner” than a
comparison triangle in E2 or in more precise language, that it satisfies the
“CAT(0)-inequality.” The question of whether a polyhedral metric on a cell
complex such as � is locally CAT(0) comes down to the question of showing
that the link L of each vertex, with its natural piecewise spherical structure, is
CAT(1) (i.e., triangles in L are thinner than comparison triangles in S2). In the
right-angled case the fact that L is CAT(1) is due to Gromov [147]. It is proved
in Appendix I.6 as “Gromov’s Lemma.” The same result holds for the nerve of
any Coxeter system (cf. Appendix I.7 and Section 12.3). This was proved by
Moussong in [221].

Since � is simply connected, the fact that it is nonpostively curved (i.e.,
is locally CAT(0)) implies that the CAT(0)-inequality holds globally for all
triangles (i.e.,� is a “CAT(0)-space”). It follows that there is a unique geodesic
between any two points in � and that � is a finite model for EW).

Moussong also determined exactly when � admits a piecewise hyperbolic
metric which is CAT(−1). � has such a metric if and only if certain obviously
necessary conditions hold. (These conditions are analogous to Andreev’s
Conditions in Theorem 6.10.2.) From this, we show in Corollary 12.6.3 that
the following conditions on (W, S) are equivalent:

• W is “word hyperbolic” in the sense of [147].

• Z× Z �⊂ W.

• �(W, S) admits a piecewise hyperbolic, CAT(−1)-metric.
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Moussong’s result precisely determines when every nontrivial free abelian
subgroup of W has rank 1. Krammer [181] generalized this by determining
all free abelian subgroups of W. His result (Theorem 12.7.4) is that the only
such subgroups are the “obvious ones.”

In 12.8 we discuss a variant of the reflection group trick which preserves
nonpositive curvature. It is a simultaneous generalization of the results of 11.1
and 12.2.

12.1. A PIECEWISE EUCLIDEAN CELL STRUCTURE ON �

In Appendix I.3 we define the notion of an X0-polyhedral complex or a
piecewise Euclidean cell complex. It is explained there how such a structure on
a cell complex � induces a length metric on it, called a piecewise Euclidean
metric. (A metric is a length metric if the distance between any two points is
the infimum of the lengths of all paths between them.) Under mild conditions
(e.g., finitely many shapes of cells), � is a “geodesic space” (defined in
Appendix I.1).

In 7.3 we defined a cellulation of � by Coxeter polytopes. Each Coxeter
polytope is naturally realized as polytope in some Euclidean space. The
realization is unique once we specify edge lengths and � gets the structure
of a piecewise Euclidean cell complex.

The Euclidean Structure on a Coxeter Polytope

In this paragraph, W is finite. S is a fundamental set of generators. As explained
in Sections 6.8 and 6.12, there is a canonical representation of W on the
Euclidean spaceRS (of real-valued functions from S toR) as a group generated
by the orthogonal reflections across the walls of a simplicial cone K. For each
s ∈ S, let us be the unit vector which is normal to the wall corresponding to s
and which points into K. As explained in 7.3, to define the Coxeter polytope
CW , we need only choose a point x in the interior of K. To this end, suppose
d = (ds)s∈S is an S-tuple of positive real numbers and x is the unique point in
RS defined by the linear system

〈us, x〉 = ds for all s ∈ S.

In other words, x is the point in K whose distance from the wall corresponding
to s is ds. As in Definition 7.3.1, the Coxeter polytope CW (d) is the convex
hull of Wx. Its vertex set is Wx. Its 1-skeleton is Cay(W, S). Thus, for each
s ∈ S and w ∈ W, there is an edge labeled s between wx and wsx. The length
of an edge labeled s is 2ds. For example, if W = (C2)S, then CW (d) is the box,∏

s∈S[−ds, ds]. (Compare Examples 7.3.2.)
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The Spherical Simplex σ

Consider the spherical polytope

σ := Lk(x, CW (d)).

By definition, it is the set of all inward-pointing unit tangent vectors at x. The
unit vector, which is parallel to the edge at x labeled s and which points away
from x, is −us. So, σ is a spherical simplex in the unit sphere of RS with
Vert(σ ) = {−us}s∈S. Since the antipodal map v→−v is an isometry of the
unit sphere, we can identify Lk(x, CW (d)) with the spherical simplex spanned
by the us. (Note that σ is independent of the choice of d.)

LEMMA 12.1.1. Suppose W is a finite Coxeter group. Then the spherical
simplex σ is the polar dual of the fundamental spherical simplex, K ∩ S(RS),
for the action of W on the unit sphere in RS. Moreover, if lst denotes the
length of the edge of σ between us and ut, then the matrix (cst) of cosines
of edge lengths of σ , defined by cst := cos(lst), is the cosine matrix from
Definition 6.8.11 associated to (W, S).

Proof. Since the us are the unit normals to the walls of the fundamental
simplex, σ is its polar dual. (For the definition of “polar dual” see I.5.2 in
Appendix I.5.) As for the last sentence, cos(lst) = 〈us, ut〉 = − cos(π/mst). �

The Metric on �

We return to the situation where (W, S) is an arbitrary Coxeter system and �
is the associated cell complex. Let d = (ds)s∈S be an element of (0,∞)S. For
each spherical subset T ∈ S, let dT = (ds)s∈T . Give � a piecewise Euclidean
cell structure by identifying the cell corresponding to wWT with the Coxeter
polytope CWT (dT ). The resulting piecewise Euclidean cell complex is denoted
�(d). (The choice of d is usually irrelevant and we generally will omit it from
our notation.)

The Piecewise Spherical Structure on L

Let L be the nerve of (W, S). W acts simply transitively on the vertex set of
� and as explained in Proposition 7.3.4, the link of each vertex is identified
with L. As explained in Appendix I.3, the piecewise Euclidean structure on �
induces a piecewise spherical structure on L. The piecewise spherical structure
on L is defined as follows: the simplex σT ⊂ L is identified with the Lk(x, CT ).
As we saw in Lemma 12.1.1, the edge lengths of σT are determined by the
cosine matrix of (WT , T). (For the definition and general discussion of the
notion of a piecewise spherical structure, see Appendix I.3.)
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12.2. THE RIGHT-ANGLED CASE

As in Example 7.3.2 (iii), the Coxeter polytope associated to a product of cyclic
groups of order 2 (and a constant S-tuple d) is a cube. So, as in Example 7.3.6,
if (W, S) is right angled, � is a cubical complex. Suppose this is the case and
� has the resulting piecewise Euclidean cubical structure. The link of each
vertex in � is isometric to L with its “all right structure” (Definition I.5.7 of
Appendix I.5). This means that each simplex of L is identified with the regular
spherical simplex of edge length π/2. By Lemma 7.1.8, L is a flag complex.
By Gromov’s Lemma (Lemma I.6.1 of Appendix I.6), this implies that L is
CAT(1). This is precisely what is needed to show that � is nonpositively
curved. In fact, we have the following.

THEOREM 12.2.1. (Gromov [147].) Suppose (W, S) is right angled. Then

(i) The piecewise Euclidean cubical structure on � is CAT(0).

(ii) The piecewise hyperbolic structure on � in which each cube is a
regular hyperbolic cube of edge length ε is CAT(−1) for some ε > 0
if and only if L satisfies the no �-condition of Appendix I.6.

(The no �-condition is that there are no “empty 4-circuits” in the 1-skeleton
of L.)

Proof. (i) Since the link of each vertex is CAT(1), � is nonpositively curved
(Theorem I.3.5 in Appendix I.3). Since � is simply connected (Lemma 7.3.5),
it follows from Gromov’s version of the Cartan-Hadamard Theorem (Theo-
rem I.2.7 in Appendix I.2) that it is CAT(0).

(ii) The link of a vertex of a regular cube of edge length ε in hyperbolic
space is a regular spherical simplex with all edge lengths< π/2. As ε increases
from 0 this simplex is a deformation of the all right regular spherical simplex.
So, the piecewise spherical structure on L deforms from its usual all right
structure. For small ε, will this deformation remain CAT(1)? As we explain
at the end of Appendix I.6, it will if and only if in the all right structure
on L, for each simplex σ ⊂ L (including the empty simplex), the infimum
of the lengths of all closed geodesics in Lk(σ , L) is strictly greater than 2π (in
language from the end of Appendix I.3, L must be “extra large”). Moreover,
this condition holds for L if and only if it satisfies the no �-condition. Thus,
the piecewise hyperbolic, cubical structure on � has curvature �−1 for some
ε if and only if L satisfies the no �-condition. (See Proposition I.6.8.) �

In Corollary 12.6.3, we will show that a right-angled W is word hyper-
bolic (in the sense of [147]) if and only if L satisfies the no �-condition.
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(“Word hyperbolicity” will be discussed in 12.5.) In Appendix I.6 we use
arguments of Vinberg from 6.11 to prove the following.

PROPOSITION 12.2.2. (Proposition I.6.6 of Appendix I.6.) Suppose a flag
complex L is a GHSn−1 satisfying the no �-condition. Then n � 4.

COROLLARY 12.2.3. (Moussong [221].) Suppose W is right angled, word
hyperbolic and type HMn. Then n � 4.

(“Type HMn” means that � is a homology n-manifold; cf. Definition 10.6.2.)
In 8.5 we calculated the virtual cohomological dimension of any Coxeter

group. In particular, if dim L = n− 1 and H
n−1

(L) �= 0, then, by Corol-
lary 8.5.5, vcd W = n. So, Corollary 12.2.3 raises the question of whether there
exist right angled Coxeter groups of arbitrarily high virtual cohomological
dimension. (Similarly, Vinberg’s Theorem 6.11.8 raises the same question for
arbitrary Coxeter groups.) In contrast to Proposition 12.2.2, for pseudomani-
folds, Januszkiewicz and Świa̧tkowski proved the following result.

THEOREM 12.2.4. (Januszkiewicz and Świa̧tkowski [166].) For each integer
n � 1 there is a finite (n− 1)-dimensional flag complex L such that

• L is an orientable pseudomanifold.

• L satisfies the no �-condition.

Since for such an L, Hn−1(L) �= 0, we have the following.

COROLLARY 12.2.5. ([166].) In each dimension n, there is a right-angled,
word hyperbolic Coxeter group W with vcd W = n.

(In Definition 13.3.1 of the next chapter, a Coxeter group with nerve a
pseudomanifold of dimension n− 1 will be called of “type PMn.”)

12.3. THE GENERAL CASE

A simplicial complex L with piecewise spherical structure has “simplices
of size �π/2” if each of its edges has length �π/2 (Definition I.5.8 of
Appendix I.5). In Definition I.7.1 such an L is called a “metric flag complex”
if it is “metrically determined by its 1-skeleton.” This means that a finite set of
vertices, which are pairwise connected by edges, spans a simplex of L if and
only if it is possible to find some spherical simplex (necessarily unique up to
isometry) with the given edge lengths.



August 2, 2007 Time: 03:49pm chapter12.tex

THEOREMS OF GROMOV AND MOUSSONG 235

LEMMA 12.3.1. Let L be the nerve of a Coxeter system (W, S) with its natural
piecewise spherical structure. Then L has simplices of size � π/2. Moreover,
it is a metric flag complex.

Proof. Let us be the vertex of L corresponding to s. There is an edge between
distinct vertices us and ut if and only if mst �= ∞ and its length is π − π/mst

which is � π/2. So, L has simplices of size � π/2. Suppose T ⊂ S is a subset
of vertices which are pairwise connected by edges. Let (cst) be the T × T
matrix defined by cst := cos d(us, ut) = − cos(π/mst). Then (cst) is the cosine
matrix of (WT , T). Hence, it is positive definite if and only if T is spherical
(Theorem 6.12.9), i.e., if and only if T corresponds to the vertex set of a
simplex in L. But the condition of being a metric flag complex is precisely that
any T ⊂ S whose corresponding matrix of cosines of edge lengths is positive
definite spans a simplex. (See the definitions of “nerve” in 7.1 and “metric flag
complex” in Appendix I.5.) �

In his Ph.D. thesis [221], G. Moussong proved a beautiful generalization
of Gromov’s Lemma I.6.1: a piecewise spherical simplicial cell complex
with simplices of size � π/2 is CAT(1) if and only if it is a metric flag
complex. (The precise statement and a sketch of the proof are given in Appen-
dix I.7.) So, a corollary to Lemma 12.3.1 and Moussong’s Lemma I.7.4 is the
following.

COROLLARY 12.3.2. The nerve L of any Coxeter system, equipped with its
natural piecewise spherical structure, is CAT(1).

In the same way we deduced Theorem 12.2.1 in the right-angled case from
this fact about the links, we get the following theorem of [221].

THEOREM 12.3.3. (Moussong’s Theorem.) For any Coxeter system, the
associated cell complex �, equipped with its natural piecewise Euclidean
structure, is CAT(0).

Since CAT(0) spaces are contractible, this gives an alternative proof that �
is contractible (Theorem 8.2.13).

Some Consequences for W

In the language of Appendix I.4, Moussong’s Theorem means that any Coxeter
group is a “CAT(0) group.” In particular, any Coxeter group satisfies all the
properties listed in Theorem I.4.1. We state some of these properties again in
the following theorem.
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THEOREM 12.3.4. Suppose (W, S) is a Coxeter system. Then

(i) Any finite subgroup F ⊂ W is conjugate to a finite subgroup of a
spherical special subgroup WT.

(ii) � is a finite model for EW.

(iii) The Conjugacy Problem for W is solvable.

(iv) Any virtually solvable subgroup of W is finitely generated and
virtually free abelian.

Proof. (i) By construction, the isotropy subgroup at any point of � is
conjugate to some special spherical subgroup. Since � is CAT(0), we can
apply the Bruhat–Tits Fixed Point Theorem (Theorem I.2.11 in Appendix I.2),
to conclude that the fixed point set of F on � is nonempty. Hence, F is
contained in the isotropy subgroup of any such fixed point and such an isotropy
subgroup is a spherical parabolic subgroup.

(ii) � has only finitely many orbits of cells since the fundamental domain
K is a finite simplicial complex. For the fact that � is an EW, see Theo-
rem I.4.1 (i).

(iii) For a solution to the Conjugacy Problem for CAT(0) groups, see
[37, pp. 445–446].

(iv) This property was stated already in Moussong’s thesis [221]. As is
explained in Appendix I.4.3, it is a consequence of the Solvable Subgroup
Theorem I.4.3 (see [37, p. 249]). �

(See Definition 2.3.1 and Appendix I.2 for further discussion of EW, the
universal space for proper W-actions.)

Here is another consequence of Moussong’s Theorem (together with the Flat
Torus Theorem).

THEOREM 12.3.5. Suppose (W, S) is irreducible and W is virtually abelian.
Then W is either finite or a cocompact Euclidean reflection group.

Proof. By Theorem I.4.1 (iv), any abelian subgroup of W is finitely generated;
hence, W is virtually free abelian. So Zn ⊂ W is a subgroup of finite index
for some integer n. If n = 0, then W is finite. So, suppose n > 0. Then W is
a virtual PDn-group. By Theorem 10.9.2, W decomposes as W = WS0 ×WS1 ,
where WS1 is finite and WS0 is type HMn. Since W is irreducible and infinite,
S = S0. So � is a homology n-manifold. By the Flat Torus Theorem in
Appendix I.4, Min(Zn) is isometric to En. Therefore, � = En and W acts as an
isometric reflection group on it. �
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12.4. THE VISUAL BOUNDARY OF �

Given a complete, locally compact, CAT(0)-space X, in Appendix I.8 we show
how to to adjoin to X a “visual boundary” ∂X, obtaining a compact space X.
Roughly, ∂X consists of an “endpoint” for each geodesic ray emanating from
any given base point. In the same appendix we define the notion of a “Z-set
compactification” and we state, in Theorem I.8.3 (i), that ∂X is a Z-set in X.
A consequence is that the (reduced) Cěch cohomology of ∂X is isomorphic to
the cohomology with compact supports of X (with a dimension shift).

The visual boundaries of the CAT(0)-complexes � are archetypes for
boundaries of general CAT(0)-spaces. As one might suspect after reading 8.3
and 9.2, the topology of ∂� is intimately connected to the topology of the finite
simplicial complex L.

The Case Where L Is a PL Manifold

This case is particularly tractable. Suppose X is a CAT(0) piecewise Euclidean
or piecewise hyperbolic polyhedron and that the link of any vertex of X is a PL
manifold of dimension n− 1. Let B be a closed metric ball in X. We show in
Theorem I.8.4 that ∂B is the connected sum Lk(v1)� · · · �Lk(vm) of the links of
those vertices v1, . . . vm which are contained in the interior of B. It follows that
∂X is the inverse limit of an inverse system of such connected sums.

This theorem applies to � when L is a PL manifold of dimension (n− 1). It
follows that ∂� is the inverse limit of an inverse sequence of connected sums
of copies of L. The map (or “bond”) from the (m+ 1)-fold connected sum to
the m-fold sum is the obvious one which collapses the last factor to a disk.
Properties of ∂� throw into relief many of the properties of � developed in
Chapters 8, 9, and 10, for instance:

• For i > 0, Ȟi(∂�) ∼= Hi+1
c (�).

• If L is a GHSn−1 (so that W is a virtual PDn-group), then � is a
contractible homology manifold and the reduced (co)homology of
∂� is concentrated in degree n− 1.

• If L is a PL homology sphere of dimension n− 1, then ∂� is the
inverse limit of connected sums of copies of L and ∂� is a homology
(n− 1)-manifold with the same homology as Sn−1 (see Section 10.8).
Moreover,

π1(∂�) ∼= π∞1 (�) ∼= lim←−(π1(L) ∗ · · · ∗ π1(L)).

If L is actually a sphere, then ∂� is an (n− 1)-sphere and � is PL
homeomorphic to an n-disk (Theorem I.8.4 (iii)).
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Various properties of ∂� when L is a PL manifold are developed by H.
Fischer [128] (at least in the right-angled case). For example, he uses results
of Jakobsche [165] to show that ∂� is topologically homogeneous. In other
words, for any two points x, y ∈ �, there is a self-homeomorphism of ∂�
taking x to y.

Example 12.4.1. (Continuation of Example 8.5.8.) Suppose L = RP2. Then
∂� is the inverse limit of m-fold connected sums of RP2, m ∈ N. (Such spaces
are called Pontryagin surfaces.) Similarly, if L = Mn−1 is any nonorientable
manifold, as in 8.5.8, we get Coxeter groups W with vcdZ(W) = n and
vcdQ(W) = n− 1 (since Hn

c (�;Z) = Z/2).

12.5. BACKGROUND ON WORD HYPERBOLIC GROUPS

Roughly, a quasi-isometry between two metric spaces is a function which is
“bi-Lipschitz in the large.” Here is the precise definition.

DEFINITION 12.5.1. Suppose (X1, d1) and (X2, d2) are metric spaces. A
(not necessarily continuous) function f : X1 → X2 is a (λ, ε)-quasi-isometric
embedding if there exists positive constants λ and ε such that

1

λ
d1(x, y)− ε � d2(f (x), f (y)) � λd1(x, y)+ ε

for all x, y ∈ X1. f is a (λ, ε)-quasi-isometry if, in addition, there is a constant C
so that every point of X2 lies in a C-neighborhood of Im f . If such an f exists,
then X1 and X2 are quasi-isometric.

Although the word metric on a finitely generated group 	 (defined in 2.1)
depends on the choice of generating set S, a basic fact is that any two such
choices yield quasi-isometric metrics.

Geometric group theory begins with the observation (called the Švarc-
Milnor Lemma in [37, p.140]) that if 	 is a discrete group of isometries acting
properly and cocompactly on a length space X, then 	, equipped with a word
metric, is quasi-isometric to X. For example, 	 is quasi-isometric to its Cayley
graph. If 	 = Zn, then it is quasi-isometric to En and if 	 is the fundamental
group of a closed hyperbolic n-manifold, then it is quasi-isometric to Hn. On
the other hand, En and Em (resp. Hn and Hm) are not quasi-isometric if n �= m
and En is not quasi-isometric to Hn, n �= 1. One is led to ask which properties
of a group are quasi-isometry invariants? Also, to what extent do geometric
notions such as curvature have group theoretic meanings? In a groundbreaking
paper, Gromov [147] developed the theory of word hyperbolic groups. (Earlier
this notion had been defined by I. Rips and D. Cooper, working independently
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of each other.) The idea is that “in the large” a word hyperbolic group should
look like a negatively curved space.

The notion of a geodesic triangle in a metric space is defined in Appen-
dix I.2. (It is a configuration of three points and three geodesic segments
connecting them in pairs.) A triangle in a metric space is δ-slim if each of
its edges is contained in the δ-neighborhood of the union of the other two.
In other words, if e1, e2, e3 are the three edges (in any order) and x ∈ e1, then
d(x, e2 ∪ e3) � δ. A geodesic space X is δ-hyperbolic if every triangle in X is
δ-slim. A group 	 is word hyperbolic if it has a finite set of generators S so
that Cay(	, S) is δ-hyperbolic, for some δ � 0.

Example 12.5.2. A tree, equipped with the natural metric in which each edge
has length 1, is 0-hyperbolic. Conversely, a geodesic space is 0-hyperbolic if
and only if it is an R-tree (see [138, pp.29–31]) for the definition of “R-tree”
and a proof of this fact). This is the basis for earlier statements by Gromov that
in the large, the universal cover of any negatively curved space “looks like a
tree.” A consequence is that a finitely generated free group is word hyperbolic
since the Cayley graph of a free group is a tree (see Figure 2.1 of Section 2.1).

A crucial property of the definition of δ-hyperbolic is given in the following
theorem. (For example, it implies that word hyperbolicity is independent of the
choice of generating set.)

THEOREM 12.5.3. (Gromov [147].) The property of being word hyperbolic
is a quasi-isometry invariant for groups.

A proof can be found in [37, pp. 400–405]. In outline it goes as follows. One
shows that if two geodesic spaces are quasi-isometric and one is δ-hyperbolic,
then the other is δ′-hyperbolic (for a different constant δ′). To prove this,
one needs to analyze “quasi-geodesics” (i.e., quasi-isometric embeddings of
intervals) and “quasi-triangles” in a δ-hyperbolic metric space. One can then
apply the statement about geodesic spaces to the Cayley graphs of two groups
to conclude Theorem 12.5.3.

THEOREM 12.5.4. Suppose 	 is a discrete group of isometries acting prop-
erly and cocompactly on a CAT(−1)-space X. Then 	 is word hyperbolic.

Sketch of Proof. By Definition I.2.1, a geodesic space X is CAT(−1) if and
only if triangles in X are “thinner” than comparison triangles in H2. So, to
show X is δ-hyperbolic it suffices to show that any triangle in H2 is δ-slim.
This is a straightforward computation. Since 	 is quasi-isometric to X (by the
Švarc-Milnor Lemma), it is word hyperbolic. �

In the next theorem we list some properties of word hyperbolic groups.
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THEOREM 12.5.5. Suppose 	 is a word hyperbolic group. Then

(i) Z× Z �⊂ 	.

(ii) The Word Problem and the Conjugacy Problem for 	 are solvable
([37]).

(iii) There is a finite model for E	 namely, the “Rips complex” of (	, S)
([203]).

(iv) 	 satisfies a linear “isoperimetric inequality.”

Some comments about the meaning of some of the statements in this
theorem are in order. First, consider (iii). Equip 	 with the word metric with
respect to a finite generating set S. Given a positive integer r, the Rips complex,
Rips(	, r), is defined to be the simplicial complex with vertex set 	 and with
simplices the nonempty finite subsets of 	 of diameter � r. It is proved in
[203] that for r sufficiently large (in fact, for r > 4δ + 6), Rips(	, r) is a finite
model for E	. (Most of the consequences of this fact were known much earlier
to Gromov and Rips.) Since Rips(	, r) has only a finite number of 	-orbits of
cells, 	 has a finite presentation. Let 〈S | R〉 be such a presentation.

Next, consider (iv). Let X be a 2-complex associated to the presentation
(cf. Section 2.2). A loop in the 1-skeleton of X corresponds to a word s in
S ∪ S−1 (that is, to an element of the free group on S). Suppose the loop is
null-homotopic in the 2-skeleton of X. Then it can be shrunk to the basepoint
by pushing it across 2-cells. This means that s can be written in the form

s =
N∏

i=1

xirix
−1
i , (12.1)

where ri ∈ R ∪R−1 and xi ∈ FS. The area of s, denoted Area(s), is the
smallest integer N so that s can be expressed in the form (12.1). The
presentation 〈S | R〉 satisfies a linear isoperimetric inequality if there is a
constant C such that for any word s which represents the identity element
of 	, we have Area(s) � Cl(s). The property of having a linear isoperimetric
inequality is independent of the choice of presentation. (This is an easy
exercise.) Moreover, this property immediately implies that the Word Problem
for 	 is solvable. (This is half of (ii).) As for the other half of (ii): the
Conjugacy Problem asks if there is an algorithm for deciding if two elements γ1

and γ2 of 	 are conjugate. A proof of the solvability of the Conjugacy Problem
for word hyperbolic groups can be found in [37, pp. 451–454].

Remark. The converse to Theorem 12.5.5 (iv) is true: if a finitely generated
group satisfies a linear isoperimetric inequality, then it is finitely presented and
word hyperbolic (Gromov [147]). A proof can be found in [37, pp. 417–421].
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12.6. WHEN IS � CAT(−1)?

As in 12.1, let d ∈ (0,∞)S. For each T ∈ S, we will now define a hyperbolic
polytope CT (d), combinatorially isomorphic to the Coxeter polytope of type
WT . Let ZT ⊂ Hn, n = Card(T), be the fundamental simplicial cone for WT

acting as a isometric reflection group on Hn. Let xd ∈ ZT be the point which,
for each s ∈ T , is distance ds from the s-wall of ZT . Let CT (d) be the convex
hull of the WT -orbit of xd. CT (d) is the hyperbolic Coxeter polytope with edges
of type s having length 2ds. Let �d be the piecewise hyperbolic structure on �
defined by identifying each Coxeter cell of type WT with CT (d).

THEOREM 12.6.1. (Moussong [221, Theorem 17.1].) The piecewise hyper-
bolic structure on �d is CAT(−1) if and only if there is no subset T ⊂ S
satisfying either of the following two conditions:

(a) WT is a cocompact Euclidean reflection group of dimension � 2.

(b) (WT , T) decomposes as (WT , T) = (WT ′ ×WT ′′ , T ′ ∪ T ′′) with both
WT ′ and WT ′′ infinite.

The proof of Theorem 12.6.1 follows from the arguments of Appendices I.6
and I.7 in the same way as does the proof of Theorem 12.2.1 (ii).

Let us say that (W, S) satisfies Moussong’s Condition if neither (a) nor (b)
holds for any T ⊂ S. The next result follows immediately from Lemma I.7.6.

LEMMA 12.6.2. The natural piecewise spherical structure on L(W, S) is
extra large if and only if (W, S) satisfies Moussong’s Condition.

Proof. Conditions (a) and (b) of Theorem 12.6.1 correspond to conditions (a)
and (b) of Lemma I.7.6. �

Proof of Theorem 12.6.1. The link of a vertex in the piecewise hyperbolic
structure on �d is a δ-change of the natural piecewise spherical structure on L,
where δ→ 1 as d→ 0. (See Appendix I.6 for the definition of “δ-change.”)
So, by Lemma I.6.7, �d will be CAT(−1) for sufficiently small d if and only
if L is extra large. By Lemma 12.6.2, this is the case if and only if Moussong’s
Condition holds. �

COROLLARY 12.6.3. The following conditions on (W, S) are equivalent.

(i) W is word hyperbolic.

(ii) Z× Z �⊂ W.

(iii) (W, S) satisfies Moussong’s Condition.

(iv) � admits a piecewise hyperbolic, CAT(−1) metric.
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Proof. The implication (i) =⇒ (ii) follows from Theorem 12.5.5 (i). If WT

satisfies condition (a) of Theorem 12.6.1, then WT is a Euclidean reflection
group and its translation subgroup of WT is free abelian of rank Card(T)− 1;
moreover, this rank is� 2. Similarly, if (b) holds for WT (so that it decomposes
as the product of two infinite subgroups), then Z× Z ⊂ WT . Hence, (ii) =⇒
(iii). The implication (iii) =⇒ (iv) is Theorem 12.6.1; (iv) =⇒ (i) follows
from Theorem 12.5.4. �

Two-Dimensional Examples

We expand on the discussion in Example 7.4.2. Let J be a finite simplicial
graph with vertex set S and m : Edge(J)→ {2, 3, . . . } a labeling of the edges.
Use the notation {s, t} → mst for this labeling. As in Example 7.1.6, there is an
associated Coxeter group W = W(J, m) with J the 1-skeleton of L(W, S). So,
J inherits a natural piecewise spherical structure in which the edge {s, t} has
length π − π/mst. The proof of the next proposition is immediate.

PROPOSITION 12.6.4. Suppose (J, m) is a labeled simplicial graph as
above.

(i) J = L(W, S) if and only if the natural piecewise spherical structure
on J is that of a metric flag complex. This is the case if and only if for
every 3-circuit of L, the sum over its edges satisfies

∑ 1

mst
� 1.

(ii) J is extra large if and only if for each 3-circuit, the above inequality
is strict and furthermore, J has no 4-circuits with each edge
labeled 2.

So, given (J, m), the 2-skeleton of the resulting piecewise Euclidean com-
plex �(W, S) is CAT(0) if and only if condition (i) of the previous proposition
holds and �(W, S) admits a piecewise hyperbolic CAT(−1)-structure if and
only if condition (ii) holds. Next, we specialize to the case where m is a
constant function. In other words, suppose m is an integer � 2 so that each
Coxeter 2-cell is a 2m-gon.

COROLLARY 12.6.5. (Gromov [147].) Suppose J is a simplicial graph and
m is an integer � 2.

(i) If m = 2, suppose J has no 3-circuits. Then there exists a piecewise
Euclidean, CAT(0) 2-complex in which each 2-cell is a regular
2m-gon and the link of each vertex is J.
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(ii) If m = 2, suppose J has no circuits of length � 4. If m = 3,
suppose J has no 3-circuits. Then there exists a piecewise hyperbolic,
CAT(−1) 2-complex in which each 2-cell is a regular hyperbolic
2m-gon and the link of each vertex is combinatorially equivalent
to J.

Subgroups of O+(n, 1) Generated by Reflections

Suppose (W, S) is a Coxeter system and that we have a representation W ↪→
O+(n, 1) such that each s ∈ S is sent to the isometric reflection across some
hyperplane Hs ⊂ Hn. (As in 6.2, O+(n, 1) is the group of isometries of Hn.)
Further suppose that for each s ∈ S we can choose a half-space bounded by Hs

so that the intersection C of all such half-spaces has nonempty interior and that
for all {s, t} ∈ S (2) the hyperplanes Hs and Ht make a dihedral angle of π/mst.
If C is a compact polytope, then W is a hyperbolic reflection group in the sense
of Definition 6.4.4 and hence, is word hyperbolic (since it is quasi-isometric
to Hn). In other examples C is not compact but still has finite volume. In this
case the picture is that C is a polytope with some “ideal” vertices which lie on
the sphere at infinity. The isotropy subgroup at such an ideal vertex is a special
subgroup WT , which must be a Euclidean reflection group of rank n. If n � 3,
then W is not word hyperbolic since Zn−1 ⊂ WT ⊂ W. An element of infinite
order in such a WT is a parabolic isometry of Hn (in the sense that it fixes
a unique point in the sphere at infinity). Suppose W{s,t} is an infinite dihedral
special subgroup (i.e., mst = ∞). Let us and ut be the unit inward-pointing
vectors normal to Hs and Ht. Then 〈us, ut〉 � −1, with equality if and only if
st is a parabolic element of O+(n, 1). So, W{s, t} contains parabolics if and only
if 〈us, ut〉 = −1. On the other hand, if WT is a Euclidean reflection group of
rank � 3, then it follows from the discussion in 6.12 that WT must fix a unique
point on the sphere at infinity (and hence, contains parabolics). Here is another
consequence of Theorem 12.6.1.

PROPOSITION 12.6.6. Suppose, as above, that W is represented as a group
generated by hyperbolic reflections across the faces of a (not necessarily
compact) convex set C ⊂ Hn, given as the intersection of a finite number of
half-spaces. Suppose further that W contains no parabolic isometries of Hn.
Then W is word hyperbolic.

Proof. Condition (a) of Theorem 12.6.1 follows from the hypothesis of no
parabolics. Condition (b), which does not allow special subgroups of the form
WT ′ ×WT ′′ with both factors infinite, is also easily seen to hold. (For example,
if we had such a decomposition, the Gram matrices associated to T ′ and
T ′′ must both be indefinite, contradicting the fact that the form on Rn,1 is
type (n, 1).) �
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Word Hyperbolic Coxeter Groups of Type HM

Moussong observed that, just as Corollary 12.2.3 follows from Corol-
lary 6.11.6, the arguments which prove Vinberg’s Theorem 6.11.8 show the
following.

PROPOSITION 12.6.7. (Vinberg, Moussong.) Suppose W is word hyperbolic
and type HMn. Then n � 29.

If L(W, S) is homeomorphic to S1, then W is a polygon group (cf. Sec-
tion 6.5) and it is word hyperbolic if and only if it can be represented as
a discrete subgroup of Isom(H2) generated by reflections across the sides
of a polygon. A similar result holds in dimension 3 since, when L is a
triangulation of S2, Moussong’s Condition is identical with the conditions
from Andreev’s Theorem 6.10.2. This raises the question of whether any word
hyperbolic Coxeter group of type HMn can be realized as a geometric reflection
group on Hn. Moussong addressed this problem and gave some 4-dimensional
counterexamples in [221, Section 18]. We discuss one of his examples
below.

Example 12.6.8. (A word hyperbolic Coxeter group of type HM4.) Let (W, S)
be the Coxeter system corresponding to the diagram in Figure 12.1. We claim
that W is word hyperbolic, type HM4 and that it does not have a representation
as a discrete group generated by reflections onHn. In order to better understand
these claims, consider another Coxeter group W ′ with diagram given by
Figure 12.2. W ′ is the product of two triangle groups; it acts cocompactly
on H2 ×H2 and hence, is type HM4. Its nerve is S3, triangulated as the join
of two triangles. Identify the generating sets of W and W ′ via the obvious
identifications of the nodes of their diagrams. Inspection shows W and W ′

have the same posets of spherical subsets; hence, they have the same nerve.
This shows W is also type HM4. W ′ does not satisfy Moussong’s Condition
since it decomposes as the product of two infinite special subgroups (the
triangle groups). However, W does satisfy Moussong’s Condition, the point
being that the edge of the diagram connecting the two triangles groups destroys
the product decomposition. How does one show that W cannot be realized as a
group generated by reflections across the faces of a hyperbolic polytope? Since
any two elements of the generating set S are connected by an edge (there being
no ∞’s in the diagram), the Gram matrix of any such hyperbolic polytope
must be equal to the cosine matrix of (W, S). (See 6.8 for the definitions of
the Gram matrix and the cosine matrix.) The final claim is that this cosine
matrix is nonsingular (of rank 6) and type (4, 2). On the other hand, if it could
be realized in Hn it would be rank k + 1, k = 4 or 5 and type (k, 1). This last
claim is plausible because the cosine matrix of W ′ is type (4, 2). The cosine
matrix of W differs from this by changing only a single pair of entries from
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44

Figure 12.1. W is word hyperbolic.

44

Figure 12.2. W ′ is not word hyperbolic.

0 (= − cosπ/2) to −1/2 (= − cosπ/3). So, the claim follows by computing
the determinant to be > 0.

12.7. FREE ABELIAN SUBGROUPS OF COXETER GROUPS

Call a subset T of S affine if WT is a Euclidean reflection group.
Let T1, . . . , Tn be the nonspherical, irreducible components of S (i.e., each

WTi is an infinite, irreducible component of W). Choose subgroups Hi ⊂ WTi

as follows. If Ti is affine, then Hi is the translation subgroup. Otherwise, Hi is
any infinite cyclic subgroup. Any subgroup of W which is conjugate to one of
the form

∏
i Hi is called a standard free abelian subgroup.

Moussong proved that (a) every solvable subgroup of W is virtually free
abelian (Theorem 12.3.4 (iv)) and (b) W is word hyperbolic if and only if
every standard free abelian subgroup is infinite cyclic (Theorem 12.6.1). In
this section we discuss an important result of Krammer [181]: any free abelian
subgroup of W is virtually a subgroup of a standard one.

Following [181], for any subset X ⊂ W, define its parabolic closure, Pc(X),
to be the smallest parabolic subgroup containing X. (See Section 4.5 for
the definition of “parabolic subgroup.”) An element w ∈ W is essential if
Pc(w) = W. For w ∈ W, Z(w) denotes its centralizer (= {v ∈ W | vw = wv}).
The next lemma is one of the most important results in [181]. We will not give
its proof since it would take us too far afield.

LEMMA 12.7.1. (Krammer [181, Cor. 6.3.10].) Suppose (W, S) is infinite,
irreducible and not affine (i.e., W is not a Euclidean reflection group) and that
w is an essential element of W. Then the infinite cyclic subgroup 〈w〉, generated
by w, has finite index in Z(w).

LEMMA 12.7.2. (Krammer [181, Lemma 6.8.1].) Suppose W is irreducible
and that T ⊂ S is such that the parabolic closure of N(WT ) (the normalizer of
WT) is all of W. Then either T is spherical or T = S.

Given U ⊂ S, define U⊥ := {s ∈ S | mst = 2, for all t ∈ U}.
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Proof of Lemma 12.7.2. The proof uses results and notation from 4.10. Sup-
pose T is not spherical. Let U be a nonspherical irreducible component of T .
By Proposition 4.10.2, N(WT ) = WT � GT . Let w ∈ GT . Then w−1AU = AU′

for some U′ ⊂ T . (AU is the fundamental U-sector in W as in Definition 4.5.1.)
By Theorem 4.10.6, there is a directed path in ϒ :

U = T0
s0→T1

s1→ · · · sk→Tk+1 = U′

with w = ν(T0, s0) · · · ν(Tk, sk). Since ν(T0, s0) is defined, T0 ∪ {s0} contains
a spherical component. Since U = T0 is irreducible and nonspherical, we
must have s0 ∈ U⊥. So, T1 = U and ν(T0, s0) = s0. Continuing in this fashion
we get w = s0 · · · sk ∈ WU⊥ . Therefore, GT ⊂ WU⊥ and N(WT ) ⊂ WT ∪U⊥ . So,
Pc(N(WT )) = WT ∪U⊥ . Since Pc(N(WT )) = W, this implies that T ∪ U⊥ = S.
Since U is a component of T ∪ U⊥, we must have U⊥ = ∅ and T = S. �

The following version of Theorem 12.3.5 was proved by Krammer.

THEOREM 12.7.3. (Krammer [181, Theorem 6.8.2].) Suppose W is infinite,
irreducible, and not affine. Let A ⊂ W be a free abelian subgroup with Pc(A) =
W. Then A is infinite cyclic.

Proof. Let a ∈ A− {1}. After conjugating, we may suppose Pc(a) is a special
subgroup, say, WT . For any b ∈ A, bWTb−1 = b Pc(a)b−1 = Pc(bab−1) =
Pc(a) = WT ; so, A ⊂ N(WT ). Since Pc(A) = W, it follows that Pc(N(WT )) =
W. By Lemma 12.7.2, T = S. (Since a has infinite order, T is not spherical.)
Hence, Pc(a) = W. By Lemma 12.7.1, [Z(a) : 〈a〉] <∞. Since A ⊂ Z(a), it
must have rank 1. �

THEOREM 12.7.4. (Krammer [181, Theorem 6.8.3].) Let W be a Coxeter
group. Then any free abelian subgroup has a subgroup of finite index which is
a subgroup of a standard free abelian subgroup.

Proof. Let A ⊂ W be a free abelian subgroup. A is finitely generated (Theo-
rem I.4.1 (vii) in Appendix I.4). Let N be a positive integer such that wN = 1
for any torsion element w ∈ W. Put B := {aN | a ∈ A}. Note that [A : B] <∞.
After conjugating, we may suppose that Pc(B) is a special subgroup, say, WT .
Let T1, . . . , Tk be the irreducible components of T and let Bi be the image of
B in WTi . Since Bi is nontrivial, abelian, finitely generated and torsion-free (by
our choice of N), it is free abelian. Moreover, Pc(Bi) = WTi . So, each Ti is
nonspherical. If Ti is not affine, then Bi is rank 1, by Theorem 12.7.3. If Ti

is affine, then Bi is contained in its translation subgroup by our choice of N.
Hence, B is contained in a standard free abelian subgroup. �
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Question. One way to get a flat subspace of� is to take a product of geodesics
in a subcomplex �(WT1 , T1)× · · · ×�(WTk , Tk) where WT1 × · · · ×WTk is a
special subgroup and each WTi is infinite, irreducible and nonaffine. One can
also take products with factors corresponding to spherical or affine subgroups.
The translate of any such subspace is also a flat. Any such translate is a
standard flat. Is every flat contained in a standard one?

12.8. RELATIVE HYPERBOLIZATION

Here we discuss a variant of the reflection group trick which preseves
nonpositive curvature. This variant is a simultaneous generalization of the
constructions in 11.1 and 12.2 (or 1.2). The input will consist of a pair (X, B)
of simplicial complexes so that B has a piecewise Euclidean metric. As output
we will produce a mirror structure on a simplicial complex K(X, B) such that
B is a subcomplex of K(X, B). (In fact, K(X, B) will be homeomorphic to the
first derived neighborhood of B in X.) Let W denote the right-angled Coxeter
group associated to the mirror structure. The space U(W, K(X, B)) will have a
natural piecewise Euclidean cell structure in which each copy of B is totally
geodesic. Moreover, when B is nonpositively curved, so is U(W, K(X, B)). In
the case where X is the cone over a simplicial complex L and B is the cone
point, this construction gives back the right-angled Coxeter group associated to
bL (the barycentric subdivision of L) and the complex � with its usual cubical
structure.

Here are the details of the construction. Suppose B is a piecewise Euclidean
cell complex. Subdividing if necessary, we may assume B is a simplicial
complex and that its simplices are isometrically identified with Euclidean
simplices. Suppose further that B is a subcomplex of another simplicial
complex X. Possibly after another subdivision, we may assume B is a full
subcomplex. This means that if a simplex σ of X has nonempty intersection
with B, then the intersection is a simplex of B (and a face of σ ). Note that
while each simplex of B is given a Euclidean metric, no metric is assumed on
the simplices of X which are not contained in B.

We will define a new cell complex D(X, B) equipped with a piecewise
Euclidean metric. We will also define a finite-sheeted covering space D̃(X, B)
of D(X, B). Each cell of D(X, B) (or of D̃(X, B)) will have the form α× [−1, 1]k,
for some integer k � 0, where α is a simplex of B and where α × [−1, 1]k

is equipped with the product metric. (Usually we will use α to stand for a
simplex of B and σ for a simplex of X which is not in B.) Define dim(X, B)
to be the maximum dimension of any simplex of X which intersects B but
which is not contained in B. In the next theorem we list some properties of the
construction.
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THEOREM 12.8.1

(i) For n = dim(X, B), there are 2n disjoint copies of B in D(X, B).

(ii) For each such copy and for each vertex v in B, the link of v in D(X, B)
is isomorphic to a subdivision of Lk(v, X). In particular, if X is a
manifold, then so is D(X, B).

(iii) If the metric on B is nonpositively curved, then the metric on D(X, B)
is nonpositively curved and each copy of B is a totally geodesic
subspace of D(X, B).

(iv) The group (C2)n acts as a reflection group on D(X, B).
(C2 denotes the cyclic group of order 2.) A fundamental chamber for
this action is denoted by K(X, B). It is homeomorphic to the first
derived neighborhood of B in X. Thus, K(X, B) is a retract of D(X, B)
and B is a deformation retract of K(X, B).

In fact, the entire construction depends only on a regular neighborhood of B in
X. More precisely, it depends only on the set of simplices of X which intersect
B. Let P denote the poset of simplices σ in X such that σ ∩ B �= ∅ and such
that σ is not a simplex of B. For each simplex α of B, let P>α be the subposet
of P consisting of all σ which have α as a face. Let F = Flag(P) denote
the poset of finite chains in P . (A chain is a subset of P which happens to
be totally ordered.) Given a chain f = {σ0 < · · · < σk} ∈ F , let σf denote its
least element, i.e., σf = σ0. Given a simplex α of B, let F>{α} denote the set of
chains f with σf > α. The simplicial complex F can be identified with the first
derived neighborhood of B in X, i.e., the union of the stars of all simplices of B
in the barycentric subdivision of X. (See Example A.3.3 of Appendix A.3 for
a more complete definition of Flag(P).)

Next we define the fundamental chamber K (= K(X, B)). Each cell of K
will have the form α × [0, 1]f , for some f ∈ F>{α}. Here [0, 1]f means the
set of functions from the set f to [0, 1]. So, the number of interval factors
of α × [0, 1]f is the number of elements of f . If f � f ′, then we identify
[0, 1]f with the face of [0, 1]f ′ defined by setting the coordinates xσ = 1, for
all σ ∈ f ′ − f . Define an order relation on the set of such cells as follows:
α × [0, 1]f � α′ × [0, 1]f ′ if and only if α � α′ and f � f ′. (Notice that if
α � α′, then F>{α′} ⊂ F>{α}.) K is defined to be the cell complex formed from
the disjoint union

∐
α×[0,1]f by gluing together two such cells whenever they

are incident. We leave it as an exercise for the reader to show that K can be
identified with a subcomplex of the second barycentric subdivision of X and
that it is homeomorphic to the first derived neighborhood of B in X. The idea
for proving this exercise is indicated in Figure 12.3 which illustrates the case
where X is a 2-simplex σ and B is an edge.
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δσKσ

K

B∩σ

Figure 12.3. Intersection of K with a simplex σ .

We define a mirror structure on K indexed by the set P . Instead of writing
Kσ , we shall use the notation δσK to denote the mirror corresponding to σ . For
each σ ∈ P>α and each chain f ∈ F with σ ∈ f , define δσ (α × [0, 1]f ) to be
the face of α × [0, 1]f defined by setting xσ = 0, i.e.,

δσ (α × [0,1]f ) = α × 0× [0,1]f−{σ }.

The mirror δσK is the subcomplex of K consisting of all such cells. We note
that δσK ∩ δσ ′K �= ∅ if and only if {σ , σ ′} is a chain. It follows that mirrors
δσ1 K, . . . , δσk K have nonempty intersection if and only if {σ1, . . . , σk} is a chain
f ∈ F and if this is the case,

δσ1 K ∩ · · · ∩ δσk K =
⋃

f ′∈F�f

(B ∩ σf )× 0× [0, 1]f ′−f .

Hence, the nerve of the mirror structure is F .
Next, apply the basic construction of Chapter 5. Define D̃ (= D̃(X, B)) by

D̃ := U((C2)P , K).

Remarks

(i) Of course, there is a bigger Coxeter group in the background, namely,
the right-angled Coxeter group W associated to the 1-skeleton of the
flag complex F , as in Example 7.1.7. (There is one fundamental
generator for each element of P and the nerve of W is F .) U(W, K)
is a covering space of D̃. The group (C2)P is the abelianization of W.

(ii) Suppose X is the cone on a simplicial complex ∂X and B is the cone
point. Then D̃(X, B) coincides with the cubical complex PL defined
in 1.2 (where L is the barycentric subdivision of ∂X).

(iii) How does the above construction differ from the usual reflection
group trick in the case when X is a regular neighborhood of B in some
manifold? The point is that in the above construction the mirrors δσK
are not the top-dimensional dual cells to a triangulation of ∂X.
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The definition of D is similar to that of D̃ only one uses the smaller group
(C2)n, n = dim(X, B), instead of (C2)P . More specifically, define a mirror
structure {Ki}1≤i≤n on K by letting Ki be the union of the δσK with dim σ = i.
Define D (= D(X, B)) by

D := U((C2)n, K). (12.2)

In other words, if {r1, . . . , rn} is the standard set of generators for (C2)n, then
we identify the points (gri, x) and (g, x) of (C2)n × K whenever x belongs to a
mirror δσK with i = dim σ .

At this stage it is clear that D(X, B) satisfies properties (i), (ii) and (iv) of
Theorem 12.8.1. Property (iii) (on nonpositive curvature) is more problematic.
Checking this is easier if we use the alternate description of D(X, B) given
below.

Background on Hyperbolization

The above variant of the reflection group trick has the additional benefit of
providing a relative hyperbolization procedure. The term “hyperbolization”
refers to an idea of Gromov [147, p.116] for starting with a simplicial complex
X and converting it into a new, nonpositively curved polyhedron h(X). Such a
procedure should satisfy at least some of the following properties.

• h(X) should have nonpositively curved metric (often piecewise
Euclidean).

• The construction should be functorial in the sense that if X ↪→ Y is a
simplicial injection, then there should be associated a isometric
embedding h(X) ↪→ h(Y).

• h(X) should preserve local structure, e.g., if X is a manifold, then h(X)
should also be a manifold.

• There should be a map h(X)→ X and it should be “degree one,” in the
sense that it should induce a surjection on integral homology.

Relationship with Relative Hyperbolization

Gromov also proposed the idea “relative hyperbolization”([147, pp.117–118]).
Given X and a subcomplex B, such a procedure should have as output a space
h(X, B) with B ⊂ h(X, B) and satisfying appropriate properties. For example,
if B has nonpositive curvature, h(X, B) should be nonpositively curved with B
as a totally geodesic subspace. Several such procedures have been proposed;
however, none of them are completely satisfactory. One such procedure is
described in [83, Section 1g]. Its major drawback is that it does not satisfy
the previous property: h(X, B) need not have nonpositive curvature even
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if B does. (However, it is proved in [86] that if B is aspherical, then so is
h(X, B).) In [162] and [59, pp. 135–138] a different relative hyperbolization
procedure is introduced. It has the advantage of satisfying the previous
property; however, its disadvantage is that property (d) fails. The variant of
the reflection group trick described below gives a closely related relative
hyperbolization procedure. The difference is that in [59, 162] the 1-skeleton of
X is not changed while in the procedure described below, it is. This procedure
has the same advantages and disadvantages as the one in [59, 162].

Another Definition of D(X, B)

Here we give a description of D(X, B) similar to the definition of the “cross with
interval” hyperbolization constructions in [59, 83]. We shall define a space
D(k)(X, B) for any pair (X, B) of simplicial complexes with dim(X, B) � k.
Moreover, these spaces come with commuting involutions r1, . . . , rk. The
definition is by induction on k. First of all, D(0)(X, B) is defined to be B.
Assume, by induction, that D(n−1) and the involutions r1, . . . , rn−1 have been
defined. Suppose dim(X, B) = n. Set

D(n)(Xn−1 ∪ B, B) := D(n−1)(Xn−1 ∪ B, B)× {−1, 1}.
If σ is an n-simplex in P , define

D(n)(σ , σ ∩ B) := D(n−1)(∂σ , ∂σ ∩ B)× [−1, 1].

It is called a hyperbolized n-simplex. Note that the boundary of D(n)(σ , σ ∩ B)
is naturally a subcomplex of D(n)(Xn−1 ∪ B, B). Hence, we can glue in each
hyperbolized simplex D(n)(σ , σ ∩ B) to obtain D(n)(X, B) = D(X, B). For 1 �
i < n, ri is the given involution on D(n−1)(Xn−1 ∪ B, B) and the identity on the
[−1, 1] factor. The involution rn fixes D(n−1)(Xn−1 ∪ B, B) and flips the [−1, 1]
factor. We leave it for the reader to check that this definition agrees with the
one given by (12.2).

Proof of Theorem 12.8.1 (iii). The proof is based on a Gluing Lemma of
Reshetnyak [45, p. 316] or [147, p. 124]. This asserts that if we glue together
two nonpositively curved spaces via an isometry of a common totally geodesic
subspace, then the new metric space is nonpositively curved. The inductive
hypothesis implies that the spaces D(n−1)(Xn−1 ∪ B, B) and D(n−1)(∂σ , ∂σ ∩ B)
are nonpositively curved and that the subspaces B and ∂σ ∩ B are totally
geodesic. Using the Gluing Lemma, we get that D(n)(X, B) is also nonpositively
curved. �

COROLLARY 12.8.2. Suppose B is a finite, piecewise Euclidean polyhedron.
Then there is a closed PL manifold M with a piecewise Euclidean metric such
that M retracts onto B.
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Proof. Take M = D(X, B) with X any triangulation of a PL manifold contain-
ing B as a full subcomplex. �

Applications to the Borel and Novikov Conjectures

We continue the line begun in 11.4. Farrell and Jones [121, 122, 123] have
proved the Borel Conjecture in dimensions �5 for the fundamental group of
any nonpositively curved, closed Riemannian manifold. (In what follows we
shall use the phrase the “Borel Conjecture” as a shorthand to stand for all three
of the algebraic conjectures: the Reduced Projective Class group Conjecture,
the Whitehead Group Conjecture and the Assembly Map Conjecture, discussed
in Appendix H.) It seems plausible that the Farrell-Jones program can be
adapted to prove the Borel Conjecture for the fundamental group of any closed
PL manifold Mn equipped with a nonpositively curved, piecewise Euclidean
metric. We assume that the piecewise Euclidean structure on Mn is compatible
with its structure of a PL manifold. The reason for this assumption is that
in order to apply the result of [120] we want the universal cover of Mn to
have a compactification which is homeomorphic to an n-disk so that the action
of the fundamental group extends to the compactication and so that the key
property from [120] (of having translates of compact sets shrink as they go
to the boundary) holds. Assuming the polyhedral structure on M is that of
a PL manifold, the existence of such a compactification (formed by adding
endpoints to geodesic rays) is explained in Theorem I.8.4 (iii) of Appendix I.8.
Using Corollary 12.8.2, the proof of Theorem 11.4.1 from the previous chapter
gives the next result.

THEOREM 12.8.3. Suppose the Borel Conjecture is true for the fundamental
group of any closed PL manifold with a nonpositively curved, piecewise
Euclidean metric. Then it is also true for the fundamental group of any finite,
nonpositively curved, piecewise Euclidean polyhedron.

The Farrell-Jones Program for nonpositively curved, piecewise Euclidean
manifolds has been partially carried out by B. Hu in [161, 162]. Hu first
showed, in [161], that the Farrell-Jones arguments work to prove the vanishing
the Whitehead group of the fundamental group of any closed PL manifold with
a nonpositively curved, polyhedral metric. He then used a construction similar
to the one in Theorem 12.8.1 to prove the Whitehead Group Conjecture for
fundamental groups of nonpositively curved polyhedra. We state this as the
following.

THEOREM 12.8.4. (Hu [161].) For any finite polyhedron with nonpositively
curved, piecewise Euclidean metric, the Whitehead group of its fundamental
group vanishes.
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Hu [162, p. 146] also observed that the Farrell-Hsiang [120] proof of
the Novikov Conjecture works for closed PL manifolds with nonpositively
curved polyhedral metrics. (This uses the fact that the compactification of its
universal cover is homeomorphic to a disk.) Hence, Corollary 12.8.2 yields the
following.

THEOREM 12.8.5. (Hu [162].) The Novikov Conjecture holds for the funda-
mental group π of any finite polyhedron with a nonpositively curved piecewise
Euclidean metric. Indeed, for such π , the assembly map, A : Hn(Bπ ;L)→
Ln(π ), is always an injection.

NOTES

12.3. Theorem 12.3.4 (i) is due to Tits. A sketch of his argument can be found in [29,
Ex. 2d), p.137] as well as in Corollary D.2.9 of Appendix D.2.

Given a Coxeter system (W, S), Niblo and Reeves [228] show there is a finite
dimensional, locally finite, CAT(0) cubical complex � on which W acts properly
and isometrically. (However, the action need not be cocompact.) When W is right-
angled, � = �. The construction of [228] comes from Sageev [251]. The key idea
is Sageev’s notion of a “half-space system.” Starting with � (or with Cay(W, S) or
with the interior I of the Tits cone), we have previously defined half-spaces and walls.
All give the same half-space system. Let H be the set of half-spaces, W the set of
walls and ∂ : H→W the natural map. H is a poset (the partial order is inclusion).
H admits an involution H→ H∗ which takes H to its opposite half-space H∗. This
poset with involution satisfies the additional axioms for it to be a “half-space system”
in the sense of [251]. To such a system, Sageev associates a CAT(0) cubical complex
�, as follows. A vertex of � is a section of ∂ : H→W . In other words, a vertex
specifies a “side” for each wall. Each element of W (:= Vert(Cay(W, S))) defines a
unique vertex in �; however, in the non-right-angled case, there are more vertices. For
example, if W = D3, the dihedral group of order 6, there are 8 vertices. (In general, if
W is finite and has m reflections, there are 2m vertices and 2m � Card(W) with equality
only if W is right-angled.) Two vertices are adjacent if they agree except on a single
wall. �1 is constructed by connecting adjacent vertices by edges. One continues by
filling in higher dimensional cubes in a fairly obvious fashion. The resulting cubical
complex � has dimension max{mT | T ∈ S}, where mT is the number of reflections
in WT . (dim� = max{Card(T) | T ∈ S}.) It follows from the results of [50, 228, 302]
that the W-action on � is cocompact if and only if no special subgroup of W is an
irreducible Euclidean reflection group of rank � 3. Recently Haglund and Wise have
proved that the cubical complex for any Coxeter system embeds virtually equivariantly
as a subcomplex of �(W, S) for some right-angled (W, S).

12.4. In 1985 R. Ancel and L. Siebenmann [6] announced results concerning the visual
boundary of� in the case where L is a PL homology sphere. In particular, they said that
the space ∂� was topologically homogeneous. Their results (at least in the right-angled
case) were proved in the Ph.D. thesis of H. Fischer, published as [128].
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12.5. A proof of the Švarc-Milnor Lemma can be found in [212], as well as Troyanov’s
article in [138, p. 60] or in [37, p.140].

12.6. For further results on the two-dimensional examples, see [14, 18, 152, 275].
In Proposition 12.6.7 and in Vinberg’s Theorem 6.11.8, it is not known whether the

upper bound of 29 is the best possible. (In fact, everyone, who I have ever heard express
an opinion, believes that it is not the best possible.)

12.7. The main result in Krammer’s thesis [181] is a solution to the Conjugacy
Problem for W. Although this follows from the fact that W is a CAT(0) group (cf.
Theorem 12.3.4 (iii)), Krammer gives an explicit algorithm which is faster than one
would deduce from general CAT(0) properties. His arguments make extensive use of
root systems and the Tits cone, described in Appendix D.

12.8. This section on relative hyperbolization is taken from [78, Section 17]. The
construction of D(X, B) was explained to me in the early 1990’s by Lowell Jones. It
is a variation of the “cross with interval” hyperbolization procedure which had been
described previously by Januszkiewicz and me in [83, p.377]. Relative versions of this
were described by Hu [162, pp.135–138] and by Charney and me in [59, pp.333–335].
In these earlier versions of relative hyperbolization the 1-skeleton of X was not changed.
Jones realized that the construction is nicer if, as in this section, we also hyperbolize
the 1-simplices.



July 9, 2007 Time: 04:42pm chapter13.tex

Chapter Thirteen

RIGIDITY

The goal of this chapter is to prove Theorem 13.4.1 which asserts that any
Coxeter group of type PM is strongly rigid. Roughly,“type PM” means the
nerve of (W, S) is an orientable pseudomanifold. “Strongly rigid” means any
two fundamental sets of generators for W are conjugate.

We begin with some basic definitions concerning rigidity in 13.1. Then we
show how the “graph twisting” technique of [35] can be used to construct
examples of nonrigid Coxeter groups. In 13.2 we explain the one-to-one
correspondence between the set of spherical parabolic subgroups in W and
the set of their fixed subspaces in �. In 13.3 we define what it means for
a Coxeter system to be “type PMn.” It is a generalization of the notion of
type HMn from Definition 10.6.2. We prove, in Lemma 13.3.6, that if (W, S)
is type PMn, then Hn(W;ZW) ∼= Z, where n = vcd(W). Similarly, for any
spherical special subgroup WT and k := Card(T), we have vcd(N(WT )) =
n− k and that Hn−k(N(WT );Z(WT )) has Z as a direct summand (Proposition
13.3.3). Using this, we show that the property of being type PM depends
only on W and not on the choice of a fundamental set of generators
(Theorem 13.3.10). In 13.4 we use algebraic topology to prove rigidity for
groups of type PM.

13.1. DEFINITIONS, EXAMPLES, COUNTEREXAMPLES

Recall Definition 3.3.2: a fundamental set of generators for a Coxeter group
W is a set S of generators such that (W, S) is a Coxeter system. Call W rigid
if any two fundamental sets of generators S and S′ give isomorphic Coxeter
diagrams. W is strongly rigid if any two fundamental sets of generators for it
are conjugate, i.e., if there is a w ∈ W such that S′ = wSw−1.

Example 13.1.1. (The dihedral group of order 12, cf. [29, Ex. 8, p. 33].) The

standard Coxeter diagram of D6, the dihedral group of order 12, is
6◦−−−◦.

D6 is isomorphic to D3 × C2 which has diagram ◦−−−◦ ◦. So, D6 is not
rigid.
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r wrw-1

Figure 13.1. A trivalent tree.

Example 13.1.2. (The free product of three cyclic groups of order 2.) Suppose
W := C2 ∗ C2 ∗ C2. Let r, s, t, be the generators of the three factors and
S := {r, s, t}. (W, S) is a Coxeter system. Let w be any element in the special
subgroup W{s,t} (an infinite dihedral group). Then S′ := {wrw−1, s, t} is also a
fundamental set of generators and S′ is not conjugate to S unless w = 1. Thus,
W is not strongly rigid. We leave it as an exercise for the reader to show that
r, s, and t represent the three conjugacy classes of involutions in W and that
the only way to get a fundamental set of generators is to choose one from each
conjugacy class. Hence, W is rigid.

This example can be understood geometrically as follows. � is the infinite
trivalent tree shown in Figure 13.1; the fundamental chamber K is the cone on
three points indicated by the heavier lines. The infinite dihedral group W{s,t}
stabilizes a subcomplex homeomorphic to a line (the axis of translation by
st). A nontrivial element w ∈ W{s,t} takes the fixed point of r to a different
point, namely the fixed point of wrw−1. S′ = {wrw−1, s, t} is not conjugate to S,
since the 3 points fixed by the elements of S′ are not mirrors of a common
chamber of �.

Automorphisms of Strongly Rigid Coxeter Groups

If wSw−1 = S and the Coxeter diagram of (W, S) has no spherical components,
then it is proved by Qi [242] that w = 1. (The argument is similar to the
proof of Theorem D.2.10 in Appendix D.2.) Recall Definition 9.1.6: a diagram
automorphism of (W, S) is an automorphism ϕ of W such that ϕ(S) = S. Since
S generates W, any automorphism is determined by its restriction to S. If ϕ is
a diagram automorphism, then ϕ|S induces an automorphism of the Coxeter
diagram �(W, S) (as a labeled graph). Hence, the diagram automorphisms of
(W, S) can be identified with the automorphisms of its Coxeter diagram.
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PROPOSITION 13.1.3. Suppose W is strongly rigid. Then every automor-
phism of W is the product of an inner automorphism and a diagram
automorphism. Moreover, if every component of its Coxeter diagram is
nonspherical, then the center of W is trivial and there is a semidirect product
decomposition:

Aut(W) = Inn(W)� Diag(W, S),

where Aut(W), Inn(W), and Diag(W, S) denote, respectively, the groups of
automorphisms, inner automorphisms, and diagram automorphisms of W.

Proof. If α ∈ Aut(W), then α(S) is another set of fundamental generators. By
strong rigidity, α(S) = wSw−1. It follows that α can be factored as α = γ ◦ β,
where γ ∈ Diag(W, S) and β ∈ Inn(W) is conjugation by w. If the diagram
of (W, S) has no irreducible spherical components, then w = 1. Consequently,
the center is trivial, the factorization α = γ ◦ β is unique and Aut(W) is the
semidirect product. �

Example 13.1.4. (The product of cyclic groups of order 2.) W = (C2)n is a
Coxeter group. Identify C2 with F2, the field with two elements. A fundamental
set of generators for W is the same thing as a basis for (F2)n. So, W is rigid
but not strongly rigid (since W is abelian, distinct bases are never conjugate).
The group of diagram automorphisms of (W, S) is the symmetric group Sn on
n letters. For n � 2, the full automorphism group of W is larger: Aut(W) =
GL(n,F2).

Reflections and Reflection Rigidity

Let RS be the set of reflections with respect to S, i.e., RS is the set of r ∈ W
such that r is conjugate to some s ∈ S. W has a rigid reflection set if RS = RS′

for any two fundamental sets of generators S and S′. (This is called “reflection
independence” in [13]).

DEFINITION 13.1.5. ([35].) (W, S) is reflection rigid if any fundamental set
of generators S′, with S′ ⊂ RS, has the same diagram as S. It is strongly
reflection rigid if any such S′ is conjugate to S.

These notions separate the rigidity question into two: first, does W have a
rigid reflection set and, second, is a given Coxeter system reflection rigid?

Example 13.1.6. (Reflection rigidity of dihedral groups.) As in Example
3.1.2, let Dm be the dihedral group of order 2m generated by reflections s and
t across lines Ls and Lt in R2 making an angle of π/m. If m is odd, then Dm is
reflection rigid (since every element of order two is a reflection). On the other
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hand, if m = 2d is even, then, as in Example 13.1.1, D2d
∼= Dd × C2; D2d has

2d reflections while Dd × C2 has d + 1; hence, if d > 1, D2d is not reflection
rigid. Suppose k is an integer prime to m such that k �≡ ±1 (mod m). Let L
be the line making an angle of kπ/m with Ls and let rL be the corresponding
reflection. Then rL ∈ Dm and S′ = {s, rL} is another fundamental set of gen-
erators not conjugate to S = {s, t}. Hence, Dm is not strongly reflection rigid
whenever there is such an integer k.

Remark. It is observed in [35, Lemma 3.7] that if S′ ⊂ RS, then RS′ = RS and
that it follows from a result of Dyer [107] that Card(S′) = Card(S) (see [35,
Theorem 3.8]).

Graph Twisting

For the remainder of this chapter it will be more convenient to use the labeled
simplicial graph ϒ associated to (W, S) (cf. Example 7.1.6) instead of its
Coxeter diagram. ϒ is the 1-skeleton of the nerve of (W, S). The edge {s, t}
is labeled by the integer mst. The labeled graph ϒ records contains exactly
the same information as the Coxeter diagram �, the difference being that the
edges in ϒ with mst = 2 are omitted from �, while those in � with mst = ∞
are omitted from ϒ .

Now suppose ϒ is a labeled simplicial graph with vertex set S and (W, S)
is the associated Coxeter system. Let T and U be disjoint subsets of S such
that

(a) WT is finite and

(b) each vertex of S− (T ∪ U) which is connected by an edge to a vertex
in U is also connected to all vertices in T by edges labeled 2.

As in 4.6, wT denotes the element of longest length in WT . Let ιT : W → W
be conjugation by wT . (Since ιT (T) = T , ιT induces an automorphism of �T .)
Define a new labeled graphϒ ′ by changing each edge ofϒ connecting a vertex
u ∈ U to t ∈ T to an edge (with the same label) from u to ιT (t). Define a new
set S′ of reflections in W by replacing each element u ∈ U by ιT (u) and leaving
the rest of S unchanged, i.e.,

S′ := ιT (U) ∪ (S− U).

Clearly, S′ is also a set of generators for W. Following [35], call the operations
ϒ → ϒ ′ and S→ S′ twisting of U around T.

PROPOSITION 13.1.7. ([35, Theorem 4.5].) If, as above, S′ and ϒ ′ are
obtained by twisting U around T, then S′ is also a fundamental set of
generators for W and its associated labeled graph is ϒ ′
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Figure 13.2. Twisted graphs for isomorphic Coxeter groups.

Proof. Let f : S→ S′ be the bijection defined by f |T ∪U := ιT |T ∪U : T ∪ U→
T ∪ ιT (U) and f |S−(T∪U) := id. We claim

[ f (s ) f ( t)]mst = 1 (13.1)

for all s, t ∈ S with mst �= ∞. We only need to consider the case where either s
or t belongs to T ∪ U. If they both do, we have [f (s)f (t)]m = ιT ([st]m) = 1,
where m := mst. If s ∈ U and t ∈ S− (T ∪ U) and m := mst �= ∞, then
ιT (t) = t by condition (b) above. So, [f (s)f (t)]m = [ιT (s)t]m = [ιT (st)]m = 1.
This proves (13.1). Hence, f extends to a homomorphism f̃ : W → W. Since
S′ is a set of generators, f̃ is onto. We remark that W is Hopfian, i.e.,
any self-epimorphism is an automorphism. (This follows from the fact that
W has a faithful linear representation and hence, is residually finite, see
Definition 14.1.9.) So, f̃ is an automorphism. Therefore, S′ is also a funda-
mental set of generators and the order of [f (s)f (t)] is mst. �

In Figure 13.2 we give two examples of how graph twisting can be used to
produce nonisomorphic labeled graphs having isomorphic Coxeter groups. The
first is from Mühlherr [222]. This was the first example of a infinite irreducible
Coxeter group which was not rigid. The second figure is basically a random
example of graph twisting taken from [35].

Remark 13.1.8. If the element wT ∈ WT of longest length is central, then ιT
is the identity on T . Hence, twisting around T leaves the graph ϒ unchanged.
Suppose WT is irreducible. Then wT is not in the center of WT only when its
Coxeter diagram is either An, n � 2, Dn with n odd, E6 or I2(m), m odd. (Here,
as in Table 6.1 of Section 6.9, I2(m) stands for the dihedral group of order 2m
and Dn for a subgroup of order 2 in the n-octahedral group.) Hence, we can
only get a nontrivial twisting of ϒ when an irreducible component of WT is
one of these cases.
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Rigidity of 2-Spherical Groups

Following [51], call a Coxeter system 2-spherical if mst is never equal to
∞. In the next few sentences, we summarize, without proofs, results from
[12, 35, 51, 130] on rigidity of 2-spherical Coxeter systems. In his thesis, Kaul
[172] proved that if one fundamental set S of generators is 2-spherical, then
so is any other fundamental set S′; moreover, Card(S′) = Card(S). (He calls
the 2-spherical condition “type Kn,” n = Card(S), since if it holds, then ϒ is
the complete graph on n vertices.) Kaul also proved that the set of edge labels,
with multiplicity, is the same for S and S′. So, for example, if all the edge labels
are equal, then W is rigid. It is observed in [35, Theorem 3.10] that irreducible
spherical Coxeter groups are reflection rigid. As we saw in Example 13.1.6,
most finite dihedral groups are not strongly reflection rigid. Franszen and
Howlett [130, p. 330] proved that an irreducible spherical Coxeter group of
rank > 2 is strongly reflection rigid if and only if no component of its diagram
is type H3 or H4. (They go on to compute the entire automorphism group of
any irreducible spherical Coxeter group.) In the nonspherical case we have
the following.

PROPOSITION 13.1.9. (Caprace and Mühlherr [51].) If W is 2-spherical
and no component of its Coxeter diagram is spherical, then it is strongly
reflection rigid.

13.2. SPHERICAL PARABOLIC SUBGROUPS
AND THEIR FIXED SUBSPACES

Recall from 4.5 that a subgroup G of W is parabolic if it is conjugate to some
special subgroup WT . Of course, exactly which subgroups are parabolic might
depend on the fundamental set of generators S. The rank of G is defined
by rkS(G) := Card(T). (This is well defined since, by Proposition 4.5.10,
the special subgroups WT and WU are conjugate if and only if T and U
are conjugate.) The parabolic subgroup G is spherical if WT is spherical.
The spherical parabolic subgroups are precisely the isotropy subgroups of W
on �. Let Par(k)(W, S) denote the set of spherical parabolic subgroups of
rank k and let Par(W, S) :=⋃

Par(k)(W, S) be the set of all spherical parabolic
subgroups.

A subspace of � means the fixed point set of some spherical parabolic
subgroup. (Note that if G := wWTw−1 is such a subgroup, then Fix(G,�) =
w Fix(WT ,�).) By Lemma 7.5.4, any point of Fix(G,�) has a neighborhood
of the form F × V , where F is open in Fix(G,�) and where V is an open ball
about the origin in the vector space RT equipped with the action of wWTw−1

as a linear reflection group. The codimension of the subspace fixed by G is the
rank of G (= dim V). A subspace of codimension one is the same thing as a
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wall of � fixed by some reflection. If E := Fix(G,�) is a subspace, then, for
any x ∈ E, G is a subgroup of the isotropy group, Wx. Call x a generic point of
E if Wx = G. The proof of the next lemma is immediate.

LEMMA 13.2.1. Suppose E is a subspace of �. A point x ∈ E is generic if
and only if for any wall �r, with r ∈ RS and E �⊂ �r, we have x /∈ �r. (Recall
�r := Fix(r,�).)

Since each wall has empty interior in � and since the walls form a locally
finite family of closed subcomplexes of �, it follows that the set of generic
points is open and dense in E. It also follows from this lemma that the notion of
a generic point in E can be defined without mentioning the parabolic subgroup.
Hence, G is determined by the subspace E: it is the isotropy subgroup at a
generic point. So, we have proved the following.

LEMMA 13.2.2. There is a canonical one-to-one correspondence between
the set of subspaces of � and Par(W, S). (The correspondence associates
Fix(G,�) to the group G ∈ Par(W, S).)

LEMMA 13.2.3. Suppose H is a finite subgroup of W. Then Fix(H,�) is a
subspace of � (i.e., Fix(H,�) = Fix(G,�) for some G ∈ Par(W, S)).

Proof. As explained in Theorem 12.3.4 (ii), by the Bruhat-Tits Fixed
Point Theorem (Theorem I.2.11), Fix(H,�) is nonempty. For any x ∈
Fix(H,�), H is contained in the parabolic subgroup Wx. Let G be a min-
imal spherical parabolic containing H. Then Fix(G,�) ⊂ Fix(H,�). If x ∈
Fix(H,�)− Fix(G,�), then H ⊂ Wx � G, contradicting the minimality of G.
So, Fix(H,�) = Fix(G,�). �

Given a finite subgroup H of W, put

RS(H) := {r ∈ RS | Fix(H,�) ⊂ Fix(r,�)}
and given a subspace E of �, put

RS(E) := {r ∈ RS | E ⊂ Fix(r,�)}.
Observe that the proper subspaces of � are precisely the nonempty intersec-
tions of walls. Indeed, any subspace E can be written as

E =
⋂

r∈RS(E)

Fix(r,�).

Conversely, suppose F := Fix(r1,�) ∩ · · · ∩ Fix(rk,�) is a nonempty inter-
section of walls. Then F is the fixed set of the finite subgroup 〈r1, . . . , rk〉 and
by Lemma 13.2.3, any such fixed set is a subspace.
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Given a finite subgroup H ⊂ W, define r̂kS(H) to be the least integer k
such that there are reflections r1, . . . , rk ∈ RS(H) with Fix(H,�) = Fix(r1,�)
∩ · · · ∩ Fix(rk,�).

LEMMA 13.2.4. If G ∈ Par(W, S), then r̂kS(G) = rkS(G).

Proof. Without loss of generality, we can assume G = WT for some T ∈ S.
Set k := Card(T) = rkS(G). By Lemma 7.5.4, any point x in Fix(WT ,�) has
a neighborhood of the form F × V where V is a neighborhood of the origin
in Rk. If x is generic, then any wall containing the fixed set intersects the
given neighborhood in a set of the form F × (Rk−1 ∩ V), where Rk−1 is some
linear hyperplane in Rk. Since the intersection of fewer than k hyperplanes
in Rk is a nonzero linear subspace, r̂kS(WT ) � k. Trivially, r̂kS(WT ) � k. So,
r̂kS(WT ) = k. �

LEMMA 13.2.5. Suppose H and G are finite subgroups of W with H ⊂ G and
H ∈ Par(W, S). If r̂kS(H) = r̂kS(G), then H = G.

Proof. Since H ⊂ G, Fix(G,�) ⊂ Fix(H,�). By Lemma 13.2.4, Fix(H,�)
has codimension k, where k := r̂kS(H). Since k = r̂kS(G), the codimension of
Fix(G,�) is� k. Hence, Fix(G,�) = Fix(H,�). Since the parabolic subgroup
H is the maximal subgroup which fixes Fix(H,�), the lemma follows. �

LEMMA 13.2.6. Suppose S and S′ are two sets of fundamental generators for
W. If RS = RS′ , then Par(k)(W, S) = Par(k)(W, S′) for all k � 1.

Proof. Set � := �(W, S) and �′ := �(W, S′). Suppose H ∈ Par(k)(W, S).
Then we can find k reflections r1, . . . , rk which generate H. Clearly, ri ∈
RS′ (H) and Fix(H,�′) = Fix(r1,�′) ∩ · · · ∩ Fix(rk,�′). Hence, r̂kS′ (H) � k =
rkS(H). Let G be the minimal S′-parabolic containing H (so that Fix(G,�′) =
Fix(H,�′)). By the same reasoning as above, r̂kS(G) � rkS′ (G). Therefore,
rkS(H) � r̂kS′ (H) = rkS′ (G) � r̂kS(G). Since H ⊂ G, Fix(G,�) ⊂ Fix(H,�)
and r̂kS(G) � rkS(H); so, all of the previous inequalities are equalities. In
particular, rkS(H) = r̂kS(G). By Lemma 13.2.5, G = H, i.e., H ∈ Par(k)(W, S′).
So, Par(k)(W, S) ⊂ Par(k)(W, S′). Since the argument is symmetric in S and S′,
Par(k)(W, S′) ⊂ Par(k)(W, S) and the lemma is proved. �

The proof of the next lemma is immediate and is omitted.

LEMMA 13.2.7. Suppose G1, G2 are spherical parabolics and G is the sub-
group generated by G1 and G2. Then Fix(G1,�) ∩ Fix(G2,�) = Fix(G,�).
Hence, Fix(G1,�) ∩ Fix(G2,�) is empty if and only if G is infinite.
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13.3. COXETER GROUPS OF TYPE PM

A locally finite convex cell complex 
 is an n-dimensional pseudomanifold if
(a) each maximal cell of 
 is n dimensional and (b) each (n− 1)-cell is a face
of precisely two n-cells. It follows that if σ is a k-cell in an n-dimensional
pseudomanifold 
, then Lk(σ ,
) is a pseudomanifold of dimension
n− k − 1. (The term “convex cell complex” is used as in Definition A.1.9 of
Appendix A.1. The “link” of a cell is defined in Appendix A.5.)

A pseudomanifold 
 is orientable if one can choose orientations for the
top-dimensional cells so that their sum is a cycle (possibly an infinite cycle).
If 
 is orientable, then so is each link. Two top-dimensional cells of 
 are
adjacent if their intersection is a common face of codimension one. A gallery
in 
 is a sequence (σ1, . . . , σk) of top-dimensional cells such that any two
successive ones are adjacent. 
 is gallery connected if any two chambers
can be connected by a gallery. (This is equivalent to the condition that the
complement of the codimension two skeleton of 
 be connected.)

DEFINITION 13.3.1. A Coxeter system (W, S) is type PMn, n > 1, if its nerve
L is an orientable, gallery connected pseudomanifold of dimension (n− 1).
(These conditions imply that Hn−1(L) ∼= Z.) When n = 1 we shall say (W, S)
is type PM1, if L = S0 (so that W is the infinite dihedral group).

Example 13.3.2. If L is a triangulation of any orientable closed (n− 1)-
manifold, then (W, S) is type PMn. In this case, the cellulation of� by Coxeter
polytopes, is an n-manifold except at vertices.

We suppose for the remainder of this section that (W, S) is type PMn.
Our first goal is to prove this condition is independent of the choice of the
fundamental set of generators (Theorem 13.3.10). The proof makes use of
our computations in 8.5 and 8.9 of the compactly supported cohomology
of Fix(WT ,�) for any spherical subset T . By Corollary 7.5.3 (i), for each
T ∈ S (k) (the collection of spherical subsets with k elements), Fix(WT ,�) is
a pseudomanifold of dimension n− k.

PROPOSITION 13.3.3. For each T ∈ S (k),

(i) Hn−k
c (Fix(WT ,�) has Z as a direct summand.

(ii) Fix(WT ,�) is a contractible, orientable pseudomanifold of dimension
n− k.

Proof. KT is the cone on ∂KT (∼= Lk(σT , L)), where σT is the simplex of L with
vertex set T . Since L is a orientable, so is Lk(σT , L). Hence, Hn−k(KT , ∂KT )
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has Z as a direct summand (and is isomorphic to Z if Lk(σT , L) is gallery
connected). The formula of Corollary 8.9.2 is

Hn−k
c (Fix(WT ,�) ∼=

⊕
w∈F(T)

Hn−k(KTw , δwKTw ).

Only w = 1 makes a nonzero contribution to the right hand side and since
δ1KT = ∂KT , its contribution is Hn−k(KT , ∂KT ). This proves (i).

We have already observed that Fix(WT ,�) is an (n− k)-dimensional
pseudomanifold. It is contractible by Theorem 12.3.4 (ii). The argument in
the previous paragraph shows it is orientable. �

COROLLARY 13.3.4. If G ∈ Par(n−1)(W, S), then Fix(G,�) is homeomor-
phic to a line.

Proof. A one-dimensional pseudomanifold is a manifold; a contractible 1-
manifold is a line. �

N(WT ) denotes the normalizer of WT in W.

COROLLARY 13.3.5. For any T ∈ S (k),

(i) Hn−k(N(WT );ZN(WT )) contains Z as a direct summand.

(ii) vcd(N(WT )) = n− k.

In the special case T = ∅, we have the following slightly stronger statement.

LEMMA 13.3.6. Hn
c (�) = Hn(W;ZW) ∼= Z.

Proof. The formula of Theorem 8.5.1 is Hn
c (�) =⊕

Hn(K, KOut(w)). The only
nonzero term in this formula occurs when w = 1. The point is that in the

definition of “type PMn we have the additional assumption that H
n−1

(L) ∼= Z.

So, the nonzero term is Hn(K, ∂K) = H
n−1

(L) ∼= Z. �

LEMMA 13.3.7. W does not have a nontrivial finite subgroup as a direct
factor.

Proof. Suppose W = F ×W ′, with F finite. Then vcd(N(F)) = vcd(W) = n.
Since Fix(F,�) coincides with the fixed set of some parabolic subgroup
of rank k, Corollary 13.3.5 (ii) implies k = 0. Therefore, Fix(F,�) = �. So, F
is trivial. �

LEMMA 13.3.8. Let S′ be another fundamental set of generators for W. Then
for any s′ ∈ S′, vcd(N(s′)) = n− 1.

Proof. Set �′ := �(W, S′), K′ := K(W, S′), and δwK′ = (K′)Out(w). By
Lemma 13.3.6, Hn

c (�′) = Hn
c (W;ZW) ∼= Z. So, applying Theorem 8.5.1 to�′,
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we get

Z ∼=
⊕
w∈W

Hn(K′, δwK′) ∼=
⊕
w∈W

H
n−1

(δwK′).

In Lemma 4.7.5 we proved that for any given spherical subset T of S′, there is
more than one w ∈ W with Out(w) = S′ − T except when WT is a direct factor
of W and w = wT (the element of longest length in WT ). Since W does not have
a nontrivial finite factor, the only possibility for a nonzero term is w = 1 and
we have

H
n−1

(δwK′) =
{
Z if w = 1,

0 if w �= 1.
(13.2)

Since Hi
c(�′) = 0 for all i > n, Hi(δwK′) = 0 for all i � n and all w ∈ W.

Consider the special case w = s′. δs′K′ is the closure of ∂K′ − K′s′ . By excision,
H∗(∂K′, δs′K′) ∼= H∗(K′s′ , ∂K′s′). Combining this with the exact sequence of the
pair (∂K′, δs′K′), we have the following commutative diagram:

Hn−1(∂K′, δs′K′) −−−−→ H
n−1

(∂K′) −−−−→ H
n−1

(δs′K′)

∼=
�

�∼= ∼=
�

Hn−1(K′s′ , ∂K′s′) −−−−→ Z −−−−→ 0

where the calculations Hn−1(∂K′) ∼= Z and Hn−1(δs′K′) = 0 are by (13.2).
Thus, Hn−1(K′s′ , ∂K′s′) has rank at least 1. Similarly, Hi(K′s′ , ∂K′s′) = 0 for i � n.
Corollary 8.9.2 implies that Hn−1

c (Fix(s′,�′)) has rank at least 1 and that
Hi

c(Fix(s′,�′)) = 0 for i � n. Since Fix(s′,�′) is CAT(0), it is a model for
EN(s′); hence, vcd(N(s′)) = n− 1. �

PROPOSITION 13.3.9. Let S′ be another fundamental set of generators for
W. Then, for each positive integer k, Par(k)(W, S′) = Par(k)(W, S).

Set S := S(W, S), S ′ := S(W, S′), L := L(W, S), L′ := L(W, S′), K :=
K(W, S) and K′ := K(W, S′).

Proof. A maximal spherical parabolic subgroup (with respect to either S or S′)
is just a maximal finite subgroup of W (by Lemma 13.2.3). So the maximal
elements of Par(W, S) and Par(W, S′) coincide. Since L is a pseudomanifold,
any simplex is an intersection of maximal simplices, i.e., any T ∈ S is the
intersection of elements in S (n). It follows that any spherical S-parabolic
subgroup is an intersection of maximal spherical parabolic subgroups.
By Lemma 5.3.6, this implies that any S-parabolic is also an S′-parabolic,
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i.e., Par(W, S) ⊂ Par(W, S′). By Lemma 13.2.6, it suffices to show Par(1)

(W, S) = Par(1)(W, S′). An S- (resp. S′-) parabolic subgroup lies in Par(1)(W, S)
(resp. Par(1)(W, S′)) if and only if it is cyclic of order 2. Hence, Par(1)(W, S) ⊂
Par(1)(W, S′). By Lemma 13.3.8, vcd(N(s′)) = n− 1 for any s′ ∈ S′. Hence, the
fixed set of s′ on� must have dimension n− 1, i.e., s′ ∈ RS. So, Par(1)(W, S′) ⊂
Par(1)(W, S). Hence, they are equal. �

THEOREM 13.3.10. Suppose S′ is another fundamental set of generators for
W. Then (W, S′) is also type PMn.

Proof. We must show that L′ satisfies the conditions in Definition 13.3.1. The
maximal elements of Par(W, S) and Par(W, S′) are equal and Par(n)(W, S) =
Par(n)(W, S′). So, Par(n)(W, S′) is the set of maximal elements in Par(W, S′).
In other words, every maximal simplex of L′ has dimension n− 1. Let T ∈
S ′(n−1) (i.e., σT is an (n− 2)-simplex in L′). By Proposition 13.3.9, WT ∈
Par(n−1)(W, S) and by Corollary 13.3.4, Fix(WT ,�) is homeomorphic to R.
Thus,

Hi
c(Fix(WT ,�)) =

{
Z if i = 1,

0 if i �= 1.
(13.3)

The same formula holds for Hi(N(WT );ZN(WT )) (by Lemma F.2.2). Hence,
(13.3) holds for Fix(WT ,�′) as well. For any T with dim σT = n− 2, K′T is
one dimensional and ∂K′T is a finite set of points. The formula of
Corollary 8.9.2 is

H1
c (Fix(WT ,�′)) ∼=

⊕
w∈F(T)

H1(K′Tw
, δwK′Tw

). (13.4)

All the terms on the right-hand side of (13.4) occur an infinite number of times
except the one corresponding to wT , the element of longest length in WT .
Hence, H1(K′T , ∂K′T ) ∼= Z, that is, ∂K′T = S0. In other words, Lk(σT , L′) = S0.
But this just means that L′ is an (n− 1)-dimensional pseudomanifold.

By Lemmas 13.3.6, F.2.2, and Corollary 8.9.2,

Z ∼= Hn
c (�′) ∼=

⊕
w∈W

Hn(K′, δwK′).

A similar argument shows Hn(K′, ∂K′) ∼= Z; hence, Hn−1(L′) ∼= Z. With Z/2
coefficients, the same arguments give Hn−1(L′;Z/2) ∼= Z/2.

From these cohomology computations, we show, first, that L′ is gallery
connected and second, that it is orientable. Call two (n− 1)-simplices of L′,
equivalent if they can be connected by a gallery in L′ and suppose C1, . . . , Cm

are the equivalence classes of (n− 1)-simplices of L′. Consider the chain with
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coefficients in Z/2,

ζi :=
∑
σ∈Ci

σ.

It is a mod 2 cycle and {ζ1, . . . , ζm} is linearly independent. Since the group
of top-dimensional cycles is equal to the top-dimensional homology group
and since Hn−1(L′;Z/2) ∼= Hn−1(L′;Z/2) ∼= Z/2, we must have m = 1, i.e.,
L′ is gallery connected. Secondly, since Hn−1(L′;Z) ∼= Z, we can orient the σ
so that ζ :=∑

σ is an integral cycle, i.e., L′ is orientable. So, (W, S′) is also
type PMn. �

The argument in the last paragraph of the above proof can also be used to
prove the following lemma which we shall need in the next section. Suppose a
simplicial complex L is a pseudomanifold. For v ∈ Vert(L), let O(v, L) denote
the open star of v in L. Two top-dimensional simplices σ , σ ′ are v-connected if
they can be connected by a gallery in L− O(v, L).

LEMMA 13.3.11. For n− 1 > 0, suppose a finite simplicial complex L is a
gallery connected, orientable, (n− 1)-dimensional pseudomanifold. (If n−
1 = 0, assume L = S0.) If v ∈ Vert(L), then any two (n− 1)-simplices in
L− O(v, L) are v-connected.

We remark that the lemma is not true if we only assume that L is connected
(rather than gallery connected). To see this, consider the example where L is
the suspension of two disjoint circles and v is one of the suspension points. The
complement of O(v, L) is then a wedge of two 2-disks. Two 2-simplices in this
complement can be connected by a gallery within the complement if and only
if they lie in the same 2-disk.

Proof of Lemma 13.3.11. As in the proof of Theorem 13.3.10, let C1, . . .Cm be
the v-connected classes of (n− 1)-simplices in L− O(v, L). Identify Lk(v, L)
with a subcomplex of L in the usual fashion. Each (n− 2)-simplex in Lk(v, L)
is the face of exactly two (n− 1)-simplices, one of which belongs to the star,
O(v, L), and the other to some Ci. Extend each Ci to an equivalence class Di by
adjoining the adjacent (n− 1)-simplices of O(v, L). Choose an orientation for
L and use it to orient each (n− 1)-simplex. Define cycles ζi by

ζi :=
∑
σ∈Di

σ.

Then ζ1, . . . , ζm are (n− 1)-cycles representing linearly independent classes in
Hn−1(L). Since Hn−1(L) ∼= Z, m = 1. �
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13.4. STRONG RIGIDITY FOR GROUPS OF TYPE PM

Our goal in this section is a proof of the following.

THEOREM 13.4.1. A Coxeter group W of type PM is strongly rigid. More
precisely, if S, S′ are two fundamental sets of generators for W, then there is a
unique element w ∈ W such that S′ = wSw−1.

COROLLARY 13.4.2. Suppose W is a Coxeter group of type PM. Then

Aut(W) = Inn(W)� Diag(W, S).

As usual, S = S(W, S), � = �(W, S), K = K(W, S), L = L(W, S) and simi-
larly, S ′ = S(W, S′), �′ = �(W, S′), K′ = K(W, S′), L′ = L(W, S′). By Propo-
sition 13.3.9, RS = RS′ . So, each element of S′ acts as a reflection on �. In
outline, the proof of Theorem 13.4.1 has two steps.

Step 1. For each s′ ∈ S′, the corresponding wall separates � into two half-
spaces. We will show that we can choose one of these half-spaces, call it Hs′ , so
that

⋂
s′∈S′ H

s′ is a nonempty union of chambers of �. Denote this intersection
by D.

Step 2. We will show that D consists of a single chamber of �.

This second step will complete the proof since D = wK implies S′ =
wSw−1. (The uniqueness assertion of the theorem will be taken care of in
Lemma 13.4.10 below.)

In the next two lemmas we begin the proof of Step 1 by showing how to
choose the half-spaces Hs′ .

LEMMA 13.4.3. Suppose s′ ∈ S′ and T1, T2 ∈ S ′(n) are distinct subsets such
that s′ /∈ T1 ∪ T2. Assume the corresponding (n− 1)-simplices σT1 and σT2 are
adjacent in L′. Then (T1 ∩ T2) ∪ {s′} generates an infinite subgroup of W.

Proof. This lemma is just a restatement of the hypothesis that L′ is a
pseudomanifold. Given a (n− 2)-simplex, exactly two (n− 1)-simplices have
it as a common face. Since σT1∩T2 is a codimension one face of both σT1 and σT2 ,
(T1 ∩ T2) ∪ {s′} cannot correspond to an (n− 1)-simplex of L′, i.e., W(T1∩T2)∪{s′}
must be infinite. �

Remark. There is a dual picture to keep in mind. W being type PMn means
that each codimension k coface of K′ is the cone on a (n− k)-dimensional
pseudomanifold (i.e., K′T ∼= Cone(Lk(σT , L′)). In particular, if Card(T) = n, K′T
is a point and if Card(T) = n− 1, K′T is an interval (the cone on S0). Call these
zero- and one-dimensional cofaces of K′ “vertices” and “edges,” respectively.
The maximal elements T1, T2 ∈ S ′(n) correspond to vertices x′1, x′2 of K′. The
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statement that σT1 and σT2 are adjacent means that x′1 and x′2 are connected
by an edge of K′. The statement that s′ /∈ Ti, for i = 1, 2, means x′i /∈ K′s′ .
The edge connecting x1 and x2 determines a one-dimensional subspace of �′,
namely, Fix(WT1∩T2 ,�′). By Lemma 13.2.7, the meaning of the conclusion
of Lemma 13.4.3 is that this one-dimensional subspace does not intersect the
wall of �′ corresponding to s′. The next lemma shows that the corresponding
assertion for � is also true.

LEMMA 13.4.4. Suppose s′ ∈ S′ and T1, T2 are distinct maximal elements of
S ′ such that s′ /∈ T1 ∪ T2. For i = 1, 2, let xi be the point in � corresponding
to WTi , i.e., xi := Fix(WTi ,�). Then x1 and x2 lie on the same side of the wall
Fix(s′,�).

Proof. By Lemma 13.3.11, any two top-dimensional simplices in L′ − O(s′, L′)
are s′-connected. Hence, σT1 and σT2 are s′-connected. Without loss of gen-
erality we can assume they are adjacent. By Proposition 13.3.9, WT1∩T2 ∈
Par(n−1)(W, S), so E := Fix(WT1∩T2 ,�) is a one-dimensional subspace of �.
By Lemmas 13.2.7 and 13.4.3, E ∩ Fix(s′,�) = ∅. Hence, E is contained in
an open half-space bounded by the wall Fix(s′,�). Since x1 and x2 are both in
E, this completes the proof. �

Let {T1, . . . , Tl} = S ′(n) (i.e., σT1 , . . . , σTl are the (n− 1)-simplices of L′).
Denote the corresponding points of � by xi (:= Fix(WTi ,�)). Let s′ ∈ S′. If
s′ ∈ Ti, then xi ∈ Fix(s′,�). By Lemma 13.4.4, Fix(s′,�) bounds a half-space
Hs′ which contains in its interior all the xi with s′ /∈ Ti. So, {x1, . . . , xl} ⊂ Hs′ .
Set

D :=
⋂
s′∈S′

Hs′ .

The next lemma completes the proof of Step 1.

LEMMA 13.4.5. D is a nonempty union of chambers of �.

Proof. {x1, . . . , xl} ⊂ D, so D is nonempty. To prove an intersection of half-
spaces (such as D) is a union of chambers it suffices to show that it is not
contained in any proper subspace of � (that is, it is not contained in the fixed
point set of any nontrivial parabolic subgroup). Let E be the smallest subspace
of � containing {x1, . . . , xl}. Since {x1, . . . , xl} ⊂ D, if D is contained in a
subspace, then this subspace must contain E. Clearly, E = Fix(WT ,�), where
T := T1 ∩ · · · ∩ Tl. If T �= ∅, then every (n− 1)-simplex of L′ contains σT and
this forces L′ to be the join σT ∗ Lk(σT , L′). But this is not the case, since the
join is contractible, while the pseudomanifold L′ has Hn−1(L′) ∼= Z. Hence,
T = ∅ and E = �. �
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Next, we define a mirror structure on D indexed by S′. For each s′ ∈ S′,
put Ds′ := D ∩ Fix(s′,�). The cofaces of D are defined as follows. For any
T ⊂ S′ put

DT :=
⋂
s′∈T

Ds′ .

Also, put D∅ := D and

∂DT :=
⋃

s′∈Vert(Lk(σT ,L′)

DT∪{s′}.

An n-dimensional pseudomanifold with boundary is a pair (A, B) of cell
complexes such that

• B is an (n− 1)-dimensional pseudomanifold.
• If σ is a k-cell in A− B, then Lk(σ , A) is an (n− k − 1)-dimensional

pseudomanifold (and is S0 if k = n− 1).
• Any point of B has a neighborhood in A homeomorphic to one of

the form U × [0, ε), where U is an open neighborhood of the
point in B.

LEMMA 13.4.6

(i) DT is nonempty if and only if T ∈ S ′.
(ii) For each T ∈ S ′, (DT , ∂DT ) is a contractible pseudomanifold with

boundary. (Its dimension is n− Card(T).)

(iii) There are coface-preserving maps ϕ : K′ → D and θ : D→ K′ such
that θ ◦ ϕ and ϕ ◦ θ are homotopic to the appropriate identity maps
and the homotopies are through coface-preserving maps.

(iv) D contains only a finite number of chambers of �.

Proof. (i) If T ∈ S ′, then DT �= ∅ since it contains the point xi for any i
such that T ⊂ Ti. Conversely, since DT ⊂ Fix(WT ,�), if DT �= ∅, then WT is
finite.

(ii) By Corollary 7.5.3, Fix(WT ,�) is a pseudomanifold of dimension
n− Card(T). Hence, the same is true for DT − ∂DT since it is an open subset
of Fix(WT ,�). Suppose x ∈ ∂DT . Then x ∈ DU − ∂DU for some U ∈ S ′>T . By
Lemma 7.5.4, x has a neighborhood in DT of the form F × C where F is an
open set in DU − ∂DU and C is a simplicial cone in some Euclidean space.
Since such a cone is homeomorphic to a half-space in the Euclidean space, DT

is a pseudomanifold with boundary near x. Since half-spaces and subspaces of
� are geodesically convex (in the piecewise Euclidean metric of Chapter 12)
and DT is the intersection of such convex subsets, it is also convex. Since �
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is CAT(0) (Moussong’s Theorem 12.3.3), so is DT . Hence, it is contractible
(Theorem I.2.6).

(iii) Since each coface K′T , T ∈ S ′, is also nonempty and contractible,
assertion (iii) is immediate from (ii).

(iv) By (iii), ϕ : (K′, ∂K′)→ (D, ∂D) is a homotopy equivalence of pairs.
So, Hn(D, ∂D) ∼= Hn(K′, ∂K′) ∼= Z. Suppose w1K, w2K, . . . are the chambers
of � contained in D. Let µi ∈ Cn(Ki) be the relative cycle representing the
fundamental class in Hn(wiK, wi∂K) (∼= Z). Then

∑
µi is a relative n-cycle

in Cn(D, ∂D) representing the fundamental class in Hn(D, ∂D). Since any
such relative n-cycle is a finite sum of n-cells, there can be only finitely many
wiK in D. �

We turn now to Step 2. We apply the basic construction of Chapter 5
to (W, S′) and the mirrored space D (where the index set is S′) to obtain
U := U(W, D). By Lemma 13.4.6 (i), the mirror structure is W-finite; so, by
Lemma 5.1.7, W acts properly on U . By Lemma 13.4.6 (ii), U is an orientable
pseudomanifold. (Compare Proposition 10.7.5.)

LEMMA 13.4.7. Suppose U (:= U(W, D)) is defined as above. Then

(i) U is W-equivariantly homotopy equivalent to �′.

(ii) U is a model for EW.

Proof. By Lemma 5.2.5 (on the universal property of the basic construction),
the maps ϕ : K′ → D ⊂ U(W, D) and θ : D→ K′ ⊂ �′ of Lemma 13.4.6 (iii)
extend to maps ϕ̃ : �′ = U(W, K′)→ U(W, D) and θ̃ : U(W, D)→ �′ and
it follows that both compositions ϕ̃ ◦ θ̃ and θ̃ ◦ ϕ̃ are W-homotopic to the
appropriate identity maps. This proves (i). Since �′ is a model for EW (by
Theorem 12.3.4 (ii)), assertion (ii) follows. �

By Lemma 5.2.5, the inclusion D ↪→ � extends to a W-equivariant map,
denoted f : U → �.

LEMMA 13.4.8. f : U → � is a W-equivariant homotopy equivalence.

Proof. Indeed, any equivariant map between two models for EW is an
equivariant homotopy equivalence. �

Let �(2) denote the union of the codimension two subspaces of �, i.e.,

�(2) :=
⋃

G∈Par(2)(W,S)

Fix(G,�).

In the next lemma we show that f : U → � is a branched covering.
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LEMMA 13.4.9. The restriction of f to f−1(� −�(2)) is a covering projec-
tion. Moreover the number of sheets of this covering is equal to the number p
of chambers of � which are contained in D.

Proof. Since D is the union of a finite number of chambers of �, we have
D = w1K ∪ · · ·wpK, where w1, . . . , wp are distinct elements of W. Let x ∈
K −�(2). For any (w, y) ∈ W × D, [w, y] denotes its image in U . Note [w, y] ∈
f−1(x) if and only if wy = x. Since y ∈ D, we must have y = wix for some
1 � i � p. So, w ∈ WS(x)w

−1
i . (WS(x) is the isotropy subgroup at x.) We must

show that x has a neighborhood V which is evenly covered by f . The first case
to consider is where x ∈ K − ∂K. In this case, take V = K − ∂K. For each i,
the subset w−1

i × wiV of W × D projects homeomorphically onto a subset Vi of
U and f takes Vi homeomorphically onto V . This shows f−1(V) is the disjoint
union of the Vi and that V is evenly covered by f .

The other case is where x ∈ ∂K −�(2). In other words, x lies in a mirror,
say Ks, s ∈ S, but not in any codimension two coface of K. Let V+ be an
open neighborhood of x in K such that V+ ∩ Kt = ∅ for all t �= s. Then
V := V+ ∪ sV+ is an open neighborhood of x in �. We next define, for each
1 � i � p, an open subset Vi of f−1(V). There are two subcases to consider.

Subcase 1. wisw−1
i /∈ S′. In this case wiV ⊂ D. Define Vi, as before, to be the

image of w−1
i × wiV in U .

Subcase 2. wisw−1
i ∈ S′, say, wisw−1

i = s′ ∈ S′. We still have wiV+ ⊂ D and
wiV+ ∩ ∂D ⊂ Ds′ . So, the images of w−1

i × wiV+ and w−1
i s′ × wiV+ in U fit

together to give an open set Vi in U . Moreover, since w−1
i × wiV+ maps onto

V+ and w−1
i s′ × wiV+ maps onto w−1

i s′wiV+ = sV+, we see that f takes Vi

homeomorphically onto V .

So, in both subcases, f−1(V) is the disjoint union of the Vi and hence, V is
evenly covered by f . Since any point in� −�(2) can be written in the form wx
for some w ∈ W and x ∈ K, and since f is equivariant, any point of � −�(2)

has a neighborhood which is evenly covered by f . Moreover, the number of
sheets is p. �

We can now complete the proof of Step 2. The argument goes roughly
as follows. The spaces U and � are both orientable, gallery connected,
n-dimensional pseudomanifolds and Hn

c (U) ∼= Hn(W;ZW) ∼= Hn
c (�) ∼= Z. Af-

ter picking orientations for U and �, it makes sense to speak of the degree
of f , denoted deg(f ); it is the integer d such that f ∗ takes the orientation class
of � to d times the orientation class of U . The fact (Lemmas 13.4.6 (iv) and
13.4.8) that f is a proper homotopy equivalence means that deg(f ) = 1. On
the other hand, a local computation using the fact that f is a branched cover
(Lemma 13.4.9) shows that deg(f ) = p where p is the number of chambers in
D. Hence, p = 1, i.e., D consists of a single chamber of �. The details follow.
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Proof of Step 2. We begin by orienting K,�, D,U to get distinguished
generators for the infinite cyclic groups Hn(K, ∂K), Hn

c (�), Hn(D, ∂D) and
Hn

c (U). (Each of these spaces is a n-dimensional simplicial complex and
we orient its n-simplices.) First orient K. (This can be done since, by
Definition 13.3.1, L is an orientable, (n− 1)-dimensional pseudomanifold and
K is the cone on the barycentric subdivision of L.) Each n-simplex in wK is
then oriented by (−1)l(w) times the orientation of the corresponding simplex
of K (where l(w) means word length with respect to S). This orients � and
D. Finally orient U by orienting each n-simplex in wD as (−1)l′(w) times the
orientation of the corresponding simplex of D (where l′(w) is word length with
respect to S′).

As in the proof of Lemma 13.4.9, put V = K − ∂K and f−1(V) = V1 ∪ · · · ∪
Vp. Denote the orientation classes in Hn(K, ∂K), Hn(Vi, ∂Vi), Hn

c (�) and Hn
c (U)

by e, ei, e� and eU , respectively. By excision, Hn(�,� − V) = Hn(K, ∂K) ∼=
Z. Since Hn

c (� − V) = 0, the exact sequence of the pair (�,� − V) shows
that the natural map Hn(K, ∂K) = Hn(�,� − V)→ Hn

c (�) takes e to e� .
Similarly,

Hn(U ,U − (V1 ∪ · · · ∪ Vp)) ∼=
p⊕

i=1

Hn(Vi, ∂Vi) ∼= Zp

and the natural map ⊕Hn(Vi, ∂Vi)→ Hn(U) sends ei to eU . Also, the map
(f |Vi )

∗ : Hn(K, ∂K)→ Hn(Vi, ∂Vi) sends e to ei. Consider the commutative
diagram

Hn
c (�)

f ∗−−−−→ Hn
c (U)




Hn(K, ∂K) −−−−→ ⊕
Hn(Vi, ∂Vi).

It follows that f ∗(e�) is the sum of the images of the ei in Hn
c (U), i.e.,

f ∗(e�) = peU . So deg(f ) = p. As we explained earlier, since f is a proper
homotopy equivalence, deg(f ) = 1. So p = 1. �

So D = wK and S′ = wSw−1. To complete the proof of Theorem 13.4.1 it
remains to show that w is unique. This is taken care of by the next lemma.

LEMMA 13.4.10. (cf. Theorem D.2.10.) If wSw−1 = S, then w = 1.

Proof. The argument is similar to the proof of Lemma 13.4.5. Let
{T1, . . . , Tl} = S (n). For 1 � i � l, let yi denote the unique fixed point of WTi .
Then yi ∈ K. Suppose wSw−1 = S. Since wyi is the unique fixed point of
WwTiw−1 and wTiw−1 ⊂ S, we also have wyi ∈ K. Hence, w ∈ WTi . Since this
holds for all i, w ∈ WT , where T = T1 ∩ · · · ∩ Tl. Since L is a pseudomanifold,
this implies, as in the proof of Lemma 13.4.5, that T = ∅. So, w = 1. �
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NOTES

13.1. The discussion in this section roughly follows that in [35]. Rather than the
“associated labeled graph,” the authors of [35] callϒ the “diagram” of (W, S); however,
this conflicts with the standard usage of the term “Coxeter diagram.” This leads them
to call the operation in this section “diagram twisting” rather than “graph twisting.”

The proofs of the results in [51, 130] on 2-spherical Coxeter groups make extensive
use of the “geometric representation” and “root systems” discussed in Appendix D.

Max Dehn introduced three algorithmic problems for finitely generated groups: the
Word Problem, the Conjugacy Problem, and the Isomorphism Problem. We gave Tits’
solution to the Word Problem for Coxeter groups in Section 3.4. As we pointed out in
Theorem 12.3.4 (iii), since � is CAT(0), the Conjugacy Problem for Coxeter groups is
solvable. An algorithm is given in [181]. A solution to the Isomorphism Problem for
Coxeter groups is not known, but these questions about rigidity are first steps in this
direction. For overviews of work on the Isomorphism Problem for Coxeter groups see
[12, 223].

13.2. The one-to-one correspondence between spherical parabolic subgroups and their
fixed subspaces (Lemma 13.2.2) holds for all parabolics provided one replaces the
complex� by the Tits cone in the geometric representation. (The “Tits cone” is defined
in Appendix D.2.) This observation is important in Krammer’s thesis [181].

13.3. This section and the next are taken from [60]. The idea of using the virtual
cohomological dimension of the normalizer of an element of S′ to prove that W has a
rigid reflection set (Proposition 13.3.9) was suggested by an argument of Rosas [249].

In 1977, in connection with his proof that a subgroup of infinite index in a PDn-group
G has cohomological dimension < n, Strebel [272] wrote:

. . . one could require G to be a finitely generated group of finite cohomological
dimension n, R to admit an RG-projective resolution which is finitely generated in
the top dimension n and Hn(G; RG) to be a free cyclic R-module. . . . However, I
know of no example which satisfies these assumptions without being a PD-group.
[emphasis added.]

Lemma 13.3.6 shows that any torsion-free subgroup of finite index in a Coxeter group
which is type PM but not type HM gives such an example. For example, we could
choose W so that its nerve L is any closed orientable (n− 1)-manifold which is not a
homology sphere.

13.4. A motivation for proving Theorem 13.4.1 was the work of Prassidis–Spieler [240]
(also see [249]). They proved the following result. Suppose a Coxeter group W
of type HM acts as a proper, locally linear, cocompact reflection group on mani-
folds M and M′ and that f : M→ M′ is a W-equivariant map. Further assume for
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both M and M′ that

(a) The fixed point set of each spherical parabolic subgroup is contractible.

(b) If such a fixed point set is three dimensional, then it is homeomorphic to R3.
(It follows from Perelman’s Theorem [237, 239, 238] that this requirement is
superfluous.)

Then f is equivariantly homotopic to a W-equivariant homeomorphism. Let C and C′

be fundamental chambers for M and M′, respectively. (We note that by Theorem 8.2.7
each coface of C or C′ is acyclic; condition (a) is equivalent to the requirement that
each coface is contractible. Condition (b) is equivalent to the condition that each
three-dimensional coface is homeomorphic to the 3-disk; hence, it is automatically
satisfied provided that Perelman’s proof, [237], of the three-dimensional Poincaré
Conjecture holds up.) Prassidis-Spieler also prove an analogous result when M
and M′ are contractible manifolds with boundary and f : (M, ∂M)→ (M′, ∂M′) is a
W-equivariant homeomorphism on the boundary. In outline their argument goes as
follows. Let S and S′ be reflections across the walls of C and C′, respectively. By
Theorem 13.4.1, S′ = wSw−1; so, replacing C′ by w−1C we can assume that S = S′.
The cofaces of C and C′ are then indexed by the spherical subsets of S and for each
T ∈ S(S), CT and C′T are contractible manifolds with boundary (of the same dimension).
After repeatedly applying the h-Cobordism Theorem, one concludes that there is a
strata-preserving homeomorphism g : C→ C′. The induced map g̃ : U(W, C) = M→
U(W, C′) = M′ is the desired equivariant homeomorphism.
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Chapter Fourteen

FREE QUOTIENTS AND SURFACE SUBGROUPS

In [147] Gromov asked if every word hyperbolic group is either virtually cyclic
or “large” in the sense defined below. He also asked if every one-ended word
hyperbolic group contains a surface group (see [21]). In this chapter these
questions are answered for Coxeter groups. In 14.1 we prove a result of [196]
(much of which was proved independently in [140]) that any Coxeter group is
either virtually abelian or large. In 14.2 we prove the result of [141] that any
Coxeter group is either virtually free or else it contains a surface group.

14.1. LARGENESS

References include [196, 139, 140, 65, 190, 210, 229].

DEFINITION 14.1.1. (Gromov [145].) A group G is large if it virtually has
a nonabelian free quotient (in other words, if there is a subgroup � of finite
index in G such that � maps onto a free group of rank � 2).

Our goal is to prove the following.

THEOREM 14.1.2. (Margulis and Vinberg [196], Gonciulea [140].) Any
Coxeter group is either virtually free abelian or large.

By Theorem 12.3.5, if a Coxeter group is virtually abelian, then it is a
product of a finite group and a cocompact Euclidean reflection group.

Virtual Actions on Trees

For each reflection r ∈ R, let �r := Fix(r,�) be the corresponding wall of �.
Suppose � is a subgroup of W and s ∈ S. We say (�, s) has the trivial
intersection property if for all γ ∈ �, either γ�s = �s or γ�s ∩�s = ∅. Note
that γ�s = �γ sγ−1

. So, if γ�s = �s, then γ sγ−1 = s, i.e., γ lies in C�(s)
(the centralizer of s in �). Conversely, when γ ∈ C�(s), it is obvious that
γ�s = �s.
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For the remainder of this section (except in Lemma 14.1.8) we suppose (�, s)
has the trivial intersection property. The union of walls ��s (:=⋃

γ∈� γ�
s)

divides � into convex regions. (Such a region is an intersection of half-spaces
bounded by walls of the form γ�s; hence, is convex.) Define a graph T with
one vertex for each such region and with an edge connecting two vertices if the
corresponding regions share a common wall.

LEMMA 14.1.3. T is a tree.

Proof. Consider the cover of� by the convex regions defined above. The nerve
of the cover is T . Since � is CAT(0) (Theorem 12.3.3), each convex region is
contractible as is each wall. It follows that T is homotopy equivalent to �,
which is contractible. �

The set Edge(T) of (unoriented) edges of T is equal to {γ�s}γ∈� . Hence,
� is transitive on Edge(T).

Remark. Of course, we get the same tree T and the same action of � on it if we
replace� by either: (a) the interior I of the Tits cone (Appendix D.2) or (b) the
Cayley graph of (W, S). In case (a) we know that � and I are W-equivariantly
homotopy equivalent. As for case (b), since Cay(W, S) is the 1-skeleton of
� in its cellulation by Coxeter polytopes, walls in Cay(W, S) have the same
separation properties as those in �.

DEFINITION 14.1.4. An element s ∈ S is two-sided with respect to � if
C�(s) ⊂ As.

(Recall Definition 4.5.1: As := {w ∈ W | l(sw) > l(w)}, the fundamental half-
space for s.)

Geometrically, two-sidedness means that the image of �s is a two-sided
subspace in �/�. If s is two-sided with respect to �, then a well-defined sign
can be assigned to each half-space bounded by a wall γ�s: the half-space is
positive if it contains γK and negative otherwise. This definition is independent
of the choice of γ because (a) two such γ lie in the same coset of C�(s) and
(b) C�(s) ⊂ As. So, when s is two-sided, each edge of T can be assigned an
orientation which is preserved by the �-action: if e is an edge corresponding
to a wall γ�s and if v, v′ are the endpoints of e, then e is oriented from v
to v′ if the region corresponding to v is on the positive side of γ�s. Since �
preserves these orientations, it acts on T “without inversions,” i.e., no edge of
T is flipped by an element of � (Definition E.1.5). Thus, s is two-sided with
respect to � if and only if the �-action on T is without inversions. In this case
there is a well-defined quotient graph T/� with Edge(T/�) = (Edge(T))/�
and � splits as a graph of groups over T/�. (See Appendix E.1.) Since � is
transitive on Edge(T) there are only two possibilities for T/�; either it is a
segment or a loop. (See Examples E.1.8 and E.1.9.)
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Let θs : W → Z/2 denote the number of times modulo 2 that a gallery from
K to wK crosses a �-translate of �s. In other words, θs(w) is the number,
modulo 2, of reflections of the form γ sγ−1, γ ∈ �, which separate 1 and w.
Let R(�, s) := {r ∈ R | r = γ sγ−1, γ ∈ �}. As in 4.2, given u, v ∈ W, let R(u, v)
be the set of reflections separating them. (So, θs(w) ≡ Card(R(1, w) ∩ R(�, s))
(mod 2).) Although θs is not, in general, a homomorphism, we have the
following.

LEMMA 14.1.5. ([139].) For any γ ∈ � and w ∈ W, θs(γw) = θs(γ )+
θs(w).

Proof. By Lemma 4.2.1 (i), R(1, w) and R(γ , γw) have the same cardinality.
Conjugation by γ maps the intersection of the first set with R(�, s) to its intersec-
tion with the second set. So, the number of �-translates of�s separating K and
wK is the same as the number separating γK and γwK. By Lemma 4.2.1 (ii),
Card(R(1, γw)) ≡ Card(R(1, γ ))+ Card(R(γ , γw)) (mod 2) and the same is
true after intersecting with R(�, s). So, θs(γw) = θs(γ )+ θs(w). �

A consequence is that θs|� is a homomorphism. For any α ∈ C�(s), �s is a
wall of αK (since sαK = αsK, which is adjacent to αK). So, for α ∈ C�(s),
the only wall of the form γ�s which can separate K from αK is �s itself. It
follows that s is two sided with respect to �′, where �′ = Ker(θs|�). So, by
passing to a subgroup of � of index one or two, we can assume s is two sided.
(More generally, for any group G of automorphisms of a tree T one can always
find a subgroup G0 of index one or two which acts without inversions [196,
Lemma 3].)

DEFINITION 14.1.6. ([139].) An element s ∈ S is �-separating if θs|� = 0.

Geometrically, s being �-separating means that the image of �s separates
�/�. Note that s being �-separating implies that it is two-sided with respect
to �. This discussion is summarized in the following.

PROPOSITION 14.1.7. Let v0 be the vertex of T corresponding to the region
containing K and let v1 be the vertex corresponding to the adjacent region
across �s. For i = 0, 1, let �i be the stabilizer of vi and C = C�(s) the
stabilizer of the edge from v0 to v1.

(i) Suppose s is �-separating. Then there are exactly two �-orbits of
vertices in T (one containing v0 and the other v1) and � decomposes
as an amalgamated product, � = �0 ∗C �1.

(ii) Suppose s is two-sided with respect to � and not �-separating. Then
� acts transitively on Vert(T) and � splits as a HNN construction,
� = �0∗C.
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(“Amalgamated products” and “HNN constructions” are defined in E.1.1 and
E.1.2, respectively. They correspond to the cases where T/� is a segment or
loop, respectively.) In terms of the orientations on the edges of T , the two
possibilities in the proposition look as follows. In case (i) (where s is �-
separating), each vertex of T is either a source or a sink. (All edges point
out from v0 and into v1.) In case (ii), at any vertex, edges with both type of
orientations occur.

We turn next to the existence of finite-index subgroups � such that � has the
trivial intersection property.

LEMMA 14.1.8. ([210].) If � ⊂ W is normal and torsion-free, then (�, s) has
the trivial intersection property for any s ∈ S.

The proof of this lemma appears in Millson’s paper [210] (where it is
attributed to H. Jaffe).

Proof. Given γ ∈ �, we must show that if γ�s ∩�s 	= ∅, then γ�s = �s.
Suppose x ∈ γ�s ∩�s. Since the reflections s and γ sγ−1 both fix x, so does
the commutator [s, γ ] := sγ sγ−1. Since the isotropy subgroup at any point of
� is finite, this implies [s, γ ] is torsion. Since � is normal in W, sγ s belongs
to � and hence, so does [s, γ ] = (sγ s)γ−1. Since [s, γ ] is torsion and � is
torsion-free, this means that [s, γ ] = 1, i.e., γ ∈ C�(s). �

By Corollary D.1.4, any Coxeter group has a torsion-free subgroup � of
finite index. Replacing � by the intersection of all its conjugates in W, we can
assume � is normal. Hence, one can always find a finite-index subgroup � to
which Lemma 14.1.8 applies.

Residually Finite Actions
The following important generalization of a residually finite group is defined
in [196].

DEFINITION 14.1.9. (Margulis and Vinberg [196, p. 172].) An action of a
group � on a set X is residually finite if for any two distinct elements x, x′ ∈ X,
there is a �-action on a finite set Y and a �-equivariant map f : X→ Y such
that f (x) 	= f (x′).

Remark 14.1.10

(i) A �-action on a set X is residually finite if and only if its restriction to
each orbit in X is residually finite.

(ii) A �-action on X is residually finite if and only if for any two distinct
elements x and x′ in X, there is a normal subgroup N of finite index
in � such that x, x′ belong to different N-orbits. (Proof: Assume the
�-action on X is residually finite. Let N be the kernel of the �-action
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on Y . Since f (Nx) 	= f (Nx′), x, x′ are in distinct N-orbits. For the
converse, suppose X is a single �-orbit and Nx 	= Nx′. Then take
Y := X/N and f : X→ Y the natural projection.)

(iii) The standard definition of a residually finite group � is equivalent to
the condition that the action of � on itself (by translation) is
residually finite.

The proof of Selberg’s Lemma shows any finitely generated linear group is
residually finite. Margulis and Vinberg observe that a similar argument shows
that if G ↪→ GL(V) is any real representation of a finitely generated group G,
then the action of G on the projective space P(V) is residually finite. Apply this
observation to the canonical representation (from 6.12) of W on RS. Let Res

denote the line spanned by the basis vector es. Restrict the representation to
�. The isotropy subgroup at point represented by Res in P(RS) is C�(s). Since
�/C�(s) ∼= Edge(T), we have the following.

PROPOSITION 14.1.11. (Margulis and Vinberg [196].) The action of � on
Edge(T) is residually finite.

Trees and Graphs

A tree is a star if all its edges have a common vertex; it is a line if it is
homeomorphic to the real line. A graph is a cycle if it is homeomorphic
to S1. Suppose � is a finite, connected graph. Its Euler characteristic χ (�)
is Card(Vert(�))− Card(Edge(�)). Since the reduced homology of � is
concentrated in dimension 1, we know that

• χ (�) � 1,

• χ (�) = 1 ⇐⇒ � is a tree (i.e., ⇐⇒ it is acyclic),

• χ (�) = 0 ⇐⇒ it is homotopy equivalent to a circle,

• χ (�) < 0 ⇐⇒ π1(�) is a nonabelian free group (since any
connected graph is homotopy equivalent to a bouquet of circles).

LEMMA 14.1.12. ([196, Lemma 4].) Suppose � is a finite, connected graph
and that its automorphism group is transitive on Edge(�).

(i) If χ (�) = 1, then � is a star.

(ii) If χ (�) = 0, then � is a cycle.

Proof. Suppose � has an extreme vertex. Then, by transitivity, every edge
must contain an extreme vertex. By connectivity, the other vertices of the edges
must all coincide. So, � is a star.
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Figure 14.1. The tree T0.

If χ (�) = 1, then � has an extreme vertex and so is a star. If χ (�) = 0, �
contains exactly one cycle and since it also cannot have an extreme vertex, it
must be that cycle. �

LEMMA 14.1.13. ([196, Proposition 2].) Suppose � acts without inversions
on a tree T and that its action on Edge(T) is transitive and residually finite. If
T is not a star or a line, then � is large (i.e., virtually has a nonabelian free
quotient).

Proof. Since T is not a star or a line, it contains a subtree T0 as in Figure 14.1.
By the residual finiteness of the �-action on Edge(T), there is a normal
subgroup N of finite index in � such that the edges of T0 lie in distinct
N-orbits. This implies that the quotient graph T/N is not a star or a cycle.
Since �/N is transitive on Edge(T/N), Lemma 14.1.12 implies χ (T/N) < 0.
The natural map �→ π1(T/N) is the desired epimorphism onto a nonabelian
free group. �

Stars and Lines
Suppose � is a normal torsion-free subgroup of finite index in W such that
each s ∈ S is two-sided with respect to �.

LEMMA 14.1.14. For a given s ∈ S, suppose the corresponding tree T is a
star. Then � = C�(s).

Proof. Suppose to the contrary that � 	= C�(s). Then there is an element γ ∈ �
such that γ�s 	= �s. Let r be the reflection γ sγ−1. Since �s and �r are
disjoint, r and s generate an infinite dihedral group. The proof of Lemma 14.1.8
shows that the element rs = γ sγ−1s belongs to �. Put α := rs. Since 〈r, s〉 is
infinite dihedral, the walls αm�s, m ∈ Z, are disjoint and are arranged in a
linear fashion. It follows that T must contain a line. Since T was assumed to
be a star, this is a contradiction. �

LEMMA 14.1.15. For a given s ∈ S, suppose T is a line. For i = 0,1, let vi

and �i be as in Proposition 14.1.7 and let C = C�(s).

(i) If s is �-separating, then C is index 2 in both �0 and �1.

(ii) If s is not �-separating, then �0 = C.
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Proof. These are the only two possibilities when a group acts without inver-
sions on a line and is transitive on the edge set. �

For a fixed �, T(s) denotes the tree corresponding to s. Define three subsets
of S:

S̃ :={s ∈ S | T(s) is a line},
S′ :={s ∈ S̃ | s is �-separating},
S′′ :={s ∈ S̃ | sis not �-separating}.

For each s ∈ S′, T(s)/� is a segment and � = �0 ∗C �1. By
Lemma 14.1.15 (i), �0/C and �1/C are both equal to C2 (the cyclic
group of order 2). So, we have a homomorphism ϕs : �→ �0/C ∗ �1/C =
C2 ∗ C2 = D∞, the infinite dihedral group. The kernel of ϕs is C and this is
also the kernel of the action on T(s). For each s ∈ S′′, T(s)/� is a loop and
� = �0∗C. Let ϕs : �→ Z be the homomorphism �→ π1(T(s)/�). Once
again, Kerϕs = C. The ϕs, s ∈ S̃, fit together to define a homomorphism:

� = (ϕs) : �→ (D∞)S′ × ZS′′ .

PROPOSITION 14.1.16. ([140]). Suppose that for each s ∈ S, T(s) is a star
or a line. Then � is virtually free abelian.

Proof.

Ker� =
⋂
s∈̃S

Kerϕs =
⋂
s∈̃S

C�(s).

On the other hand, by Lemma 14.1.14, for each s ∈ S− S̃, � = C�(s). So,
Ker� ⊂ C�(s) for all s. Since s is two-sided with respect to �, C�(s) ⊂ As. So,

Ker� ⊂
⋂
s∈S

As = {1}.

Consequently, � is injective and � is virtually free abelian. �

Proof of Theorem 14.1.2. If T(s) is a star or line for all s ∈ S, then, by the previ-
ous proposition, � is virtually free abelian. Otherwise, by Proposition 14.1.11
and Lemma 14.1.13, � virtually has a nonabelian free quotient. �

14.2. SURFACE SUBGROUPS

A surface group means the fundamental group of a closed, orientable surface
of genus> 0. Here we prove a theorem of [141] which completely answers the
question of when a Coxeter group W contains a surface subgroup.
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Since the rational cohomological dimension of an (infinite) virtually free
group is 1 while that of a surface group is 2, no virtually free group can contain
a surface subgroup. In Proposition 8.8.5 we gave a condition on the nerve of
(W, S) for W to be virtually free. The result of [141] is that this condition is
necessary and sufficient for W not to contain any surface subgroup.

THEOREM 14.2.1. (Gordon–Long–Reid, [141].) The following two condi-
tions on a Coxeter group W are equivalent:

(i) W does not contain a surface subgroup.

(ii) W is virtually free.

Example 14.2.2. (Polygon groups.) We repeat Examples 6.5.2 and 6.5.3.
Suppose W is a Coxeter group whose nerve L is a k-cycle, k > 3. Denote
the labeling, Edge(L)→ {2, 3, . . . }, by e→ me (if s and t are the endpoints
of e, then me := mst). Any such W can be represented as a group of isometric
reflections across the edges of a k-gon in either the hyperbolic plane H2 or
the Euclidean plane E2. Moreover, E2 occurs only when k = 4 and all edge
labels are 2. It follows that an orientation-preserving, torsion-free subgroup
of finite index in W is a surface group (and the surface has genus � 2 in the
non-Euclidean case).

Example 14.2.3. (Simplicial Coxeter groups.) Here we repeat some of the
discussion from 6.9 on Lannér groups. Suppose the nerve L of (W, S) is the
boundary of the simplex on S, in other words, every proper subset of S is
spherical. Any such W can be represented as a group generated by reflections
across the faces of a simplex in either Hn or En, where n = Card(S)− 1. (En

occurs only when the determinant of the cosine matrix is 0.) Thus, we can
identify K with a hyperbolic or Euclidean simplex and � with Hn or En.
Suppose n � 2. In both cases W contains a surface group. This can be seen as
follows. Pick any (n− 2)-element subset T of S. The fixed point set of WT on
� is a two-dimensional space isometric toH2 or E2. Let C be the centralizer of
WT . Then C acts isometrically and cocompactly on this fixed point set. So, any
torsion-free subgroup of finite index in C acts freely and cocompactly either
on H2 or E2 and hence, is a surface group.

Recall that a Coxeter system is 2-spherical if the 1-skeleton of its nerve is a
complete graph. The next lemma is a corollary of the previous example.

LEMMA 14.2.4. Suppose (W, S) is a 2-spherical Coxeter system. Then either
W is finite or it contains a surface group.

Proof. If W is not finite, we can find a subset T ⊂ S such that WT is infinite
and WU is finite for every proper subset U � T . (Choose T to be minimal with
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a full 4-cycle not full

Figure 14.2. Full and non-full 4-cycles.

respect to the property that WT is infinite.) Then WT is one of the Lannér groups
discussed in the previous example. Hence, it contains a surface group. �

For the remainder of this section all graphs will be simplicial, i.e., they will
have no loops or multiple edges. A subgraph�′ of a graph� is full if it is a full
subcomplex. (In other words, if two vertices of�′ are connected by an edge of
�, then the edge lies in �′.) Given a subset T ⊂ Vert(�), Span(T) denotes the
full subgraph of � spanned by T . Let C be the smallest class of graphs such
that:

(i) If � is in C, then so is any graph isomorphic to �.

(ii) Kn, the complete graph on n vertices, is in C for any n � 0. (By
convention, K0 := ∅.)

(iii) If � = �1 ∪�0 �2, where �0
∼= Kn for some n � 0 and �1, �2

are in C, then � ∈ C.

The proof of Theorem 14.2.1 is based on the following result of the graph
theorist G. A. Dirac.

THEOREM 14.2.5. (Dirac [99].) Let � be a finite graph. Then either � ∈ C
or � contains a full k-cycle for some k � 4.

The proof of Dirac’s Theorem is straightforward (it takes only half a page in
[141]) and we omit it.

In 8.8 we gave a precise description of when W is virtually free: it is if
and only if it belongs to the smallest class G containing the spherical Coxeter
groups and amalgamated products of groups in G along spherical special
subgroups (Proposition 8.8.5).

Proof of Theorem 14.2.1. We need to show that (i) implies (ii). (The other
implication was taken care of before the statement of the theorem.) L1 denotes
the 1-skeleton of the nerve of (W, S). If L1 contains a full k-cycle C, with
k � 4, then, by Example 14.2.2, W contains a surface group. (Since C is
full in L1, the special subgroup WVert(C) has nerve C and hence, contains
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a surface group.) So, by Dirac’s Theorem, we can assume that L1 ∈ C. By
Proposition 8.8.5, W is virtually free if and only if (W, S) is in the class G.
So, we must show that if L1 ∈ C, then either W contains a surface group or
it is in G. We show this by induction on n := Card(S). If L1 is the complete
graph on n vertices, the result follows from Lemma 14.2.4. If not, then by
definition of C, L1 = �1 ∪�0 �2 where �0 is a complete graph and both �1

and �2 have fewer than n vertices. This induces a splitting W = W1 ∗W0 W2,
where Wi denotes the special subgroup corresponding to �i, i = 0, 1, 2. By
Lemma 14.2.4 again, either W0 is finite or it contains a surface subgroup. So,
we can assume W0 is finite and by induction, that both W1 and W2 are in G.
But this means W ∈ G. �
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Chapter Fifteen

ANOTHER LOOK AT (CO)HOMOLOGY

Section 15.1 is separate from the rest of this chapter. It deals with the
cohomology of W with trivial coefficients in either Q (the rationals) or F2

(the field with two elements). We show that W is rationally acyclic. In the
right-angled case, we identify H∗(W;F2) with the face ring of its nerve.

In the remaining sections we continue the line begun in Chapter 8. We
answer a basic question left open there: what is the W-module structure on
H∗(U) and H∗c (U)? The answer has three components:

• an identification of the homology (resp. compactly supported
cohomology) of U with an equivariant homology group (resp.
cohomology group) of U with coefficients in the group ring ZW,

• a decreasing filtration of W-modules, ZW = F0 ⊃ · · ·Fp ⊃ · · · , and

• a calculation of the associated graded modules in equivariant
(co)homology.

In the end (Theorem 15.3.7), we determine the W-action on H∗(W;ZW) (or,
at least, on its associated graded module). Along the way, in 15.2, we get new
proofs for the formulas in Theorems 8.1.6 and 8.3.5. When W is finite and
the coefficients are in QW, there is no need to consider any associated graded
object: the (co)homology decomposes as a direct sum of W-modules which we
determine explicitly in Theorem 15.4.3.

15.1. COHOMOLOGY WITH CONSTANT COEFFICIENTS

By Theorem 8.2.13, � is contractble. By Theorem 7.2.4, the orbit space �/W
can be identified with the fundamental chamber K, which is also contractible.
Hence, Proposition F.1.3 from Appendix F yields the following.

THEOREM 15.1.1. Any Coxeter group W is rationally acyclic, i.e.,

H∗(W;Q) = 0.
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The Face Ring of a Simplicial Complex
Suppose L is a simplicial complex with vertex set S. As in Examples A.2.3,
S(L) is the poset of those subsets of S which span simplices in L. Introduce
indeterminates (xs)s∈S. Given a commutative ring R, let R(S) denote the
polynomial ring on (xs)s∈S. Let I be the ideal in R(S) generated by all square-
free monomials of the form xs1 · · · xsp where {s1, . . . , sp} /∈ S(L). R[L], the face
ring of L (also called its Stanley-Reisner ring) is the quotient ring:

R[L] := R(S)/I. (15.1)

Since the generators of I are square-free monomials, R[L] inherits the structure
of a graded ring from R(S).

As in Example 7.1.7, suppose (W, S) is the right-angled Coxeter system
associated to the 1-skeleton of L. As in the beginning of 10.8, let K := |S(L)|
be the dual complex to L. (Ks)s∈S is the corresponding mirror structure on K
and U(W, K) the result of applying the basic construction to these data. (N.B.
If L is not a flag complex, then U(W, K) �= �.) Define

BL := U(W, K)×W EW. (15.2)

(The twisted product X ×G Y was defined in 2.2: it is the quotient of X × Y by
the diagonal G-action.) Let π : BL → U(W, K)/W = K be the map induced
by the projection, U(W, K)× EW → U(W, K).

Since U(W, K) is simply connected (Theorem 9.1.3), π1(BL) = W. Since
W is right-angled, its abelianization is CS

2 (where C2 is the cyclic group of
order 2). Hence, there is a canonical map p : BL → BCS

2 = (BC2)S. Since
BC2 = RP∞, H∗(BC2;F2) ∼= F2[x], where F2 is the field with 2 elements and
the indeterminate x corresponds to the nonzero element in H1(BC2;F2). Hence,
H∗(BCS

2;F2) ∼= F2(S), where the indeterminates xs lie in degree 1. So, we have
an induced map on cohomology p∗ : F2(S)→ H∗(BL;F2).

PROPOSITION 15.1.2. ([82, Theorem 4.8, p. 436].) The map p∗ induces an
isomorphism, F2[L] ∼= H∗(BL;F2).

First we prove the proposition in the special cases where L is a simplex or
the boundary of a simplex.

LEMMA 15.1.3. Suppose σ is the simplex with vertex set {s0, . . . , sm}. Denote
the corresponding set of indeterminates {x0, . . . , xm}. Then

H∗(Bσ ;F2) ∼= F2[x0, . . . , xm] = F2[σ ]

and

H∗(B∂σ ;F2) ∼= F2[x0, . . . , xm]/(x0 · · · xm) = F2[∂σ ].
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Proof. When L = σ , W = Cm+1
2 , K = [0, 1]m+1 and U(Cm+1

2 , [0, 1]m+1) =
[−1, 1]m+1. Hence, Bσ → BCm+1

2 is a [−1, 1]m+1-bundle associated to a vector
bundle which is a sum of line bundles. The first Stiefel-Whitney class of the
ith line bundle is xi ∈ H1(BCm+1

2 ;F2). Its top Stiefel-Whitney class χ (its “mod
2 Euler class”) is x0 · · · xm. Since B∂σ is the sphere bundle associated to this
vector bundle, we have the Gysin sequence:

−→ Hi(Bσ ;F2)
∪χ−→ Hi+m+1(Bσ ;F2) −→ Hi+m+1(B∂σ ;F2) −→ ,

from which the lemma follows. �

Proof of Proposition 15.1.2. This follows from the Mayer-Vietoris sequence
and the previous lemma by induction on the number of simplices in L. �

When L is the nerve of a right-angled Coxeter system, U(W, K) = � and
BL ∼ BW. So, Proposition 15.1.2 becomes the following.

THEOREM 15.1.4. ([82, Theorem 4.11, p. 437].) Let (W, S) be a right-
angled Coxeter system with nerve L. Then H∗(W;F2) is isomorphic to the face
ring F2[L].

15.2. DECOMPOSITIONS OF COEFFICIENT SYSTEMS

Suppose a discrete group G acts cellularly on a CW complex Y and M is a G-
module. In Appendix F.2 we define the “equivariant (co)homology of Y with
coefficients in M” to be either the homology of M ⊗G C∗(Y) or the cohomology
of HomG(C∗(Y), M). (M is a right G-module in the case of homology and a
left G-module in the case of cohomology.) If G acts freely on Y , then M is
a “system of local coefficients” on Y/G (see Appendix F.1 for the definition)
and the equivariant (co)homology of Y is just the (co)homology of Y/G with
local coefficients in M. Even when the action is not free, the same result
holds, provided we use a general enough notion of coefficient system. In the
case where G = W and Y = U(W, X), a sufficiently general type of coefficient
system on Y/G is described below. (This notion of a “coefficient system” is
applicable when Y → Y/G gives a “simple complex of groups” over Y/G
as defined in Appendix E.2. For an even more general notion of coefficient
system, see [151].)

Coefficient Systems

Given a CW complex X, let X(i) be its set of i-cells and P(X) :=⋃
X(i).

For c ∈ X(i), d ∈ X(i−1), [d : c] denotes their incidence number. Write d < c
whenever [d : c] �= 0. Extend this to a partial order on P(X).



August 2, 2007 Time: 03:56pm chapter15.tex

ANOTHER LOOK AT (CO)HOMOLOGY 289

DEFINITION 15.2.1. A system of coefficients on a CW complex X is a functor
F from P(X) to the category of abelian groups. (Here the poset P(X) is
regarded as a category with HomP(X)(c, d) equal to a singleton whenever c � d
and empty otherwise.)

The functor F will be contravariant whenever we are dealing with chains or
homology and covariant in the case of cochains or cohomology. Define chains
and cochains with coefficients in F by

Ci(X;F) :=
⊕
c∈X(i)

F(c) and Ci(X;F) :=
∏

c∈X(i)

F(c). (15.3)

We regard both i-chains and i-cochains as functions f from X(i) to
⋃F(c) such

that f (c) ∈ F(c) for each c ∈ X(i). Boundary and coboundary maps are defined
by the usual formulas:

∂( f ) (c) :=
∑

[c : d]Fcd( f (d)),

δ( f ) (c) :=
∑

[d : c]Fdc( f (d)),

where, given an i-cell c, the first sum is over all (i+ 1)-cells d which are
incident to c and the second sum is over all (i− 1)-cells d which are incident to
c and where Fcd : F(d)→ F(c) is the homomorphism corresponding to c < d
(in the first case) or d < c (in the second). From this we get the corresponding
(co)homology groups, H∗(X;F) and H∗(X;F).

Invariants and Coinvariants

Given a left W-module M and a subset T ⊂ S, define the WT -invariants of M by

MT := MWT := {x ∈ M | wx = x for all w ∈ WT}. (15.4)

MT is a Z-submodule of M. If M is a right W-module, define its WT -
coinvariants by

MT := MWT := M ⊗WT Z
∼= M/MIT , (15.5)

where IT denotes the augmentation ideal in ZWT and where Z has the trivial
WT -action.

Now suppose X is a mirrored CW complex over S. For each cell c of X,
let S(c) := {s ∈ S | c ⊂ Xs}. Given a left W-module M, define I(M) to be the
system of coefficients on X which assigns to each cell c the abelian group MS(c).
If d < c, then S(c) ⊂ S(d) and we have an inclusion MS(d) ↪→ MS(c). So, I(M)
is a functor on the poset of cells in X. Similarly, if M is a right W-module, let
C(M) be the system of coefficients which assigns MS(c) to c. If d < c, we have
the projection MS(c) → MS(d); so, C(M) is a cofunctor on the poset of cells. Let
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X(p) be the set of p-cells in X. Define

Cp(X; I(M)) := { f : X(p) → M | f (c) ∈ MS(c)} ⊂ Hom(Cp(X), M),

Cp(X; C(M)) :=
⊕
c∈X(p)

MS(c).

For any Z-submodule N of a left W-module M and any subset T of S,
put NT := N ∩MT . This gives a subcoefficient system I(N) of I(M) defined
by I(N)(c) := NS(c). Suppose we have a direct sum decomposition (of Z-
modules), M = N ⊕ P, satisfying the following condition:

MT = NT ⊕ PT for all T ∈ P(S) (or S). (15.6)

This gives a direct sum decomposition of coefficient systems: I(M) = I(N)⊕
I(P). (Here P(S) is the power set of S.)

Similarly, for any Z-submodule N of a right W-module M and any T ⊂ S,
let NT denote the image of N in MT . This gives us a subcoefficient system C(N)
of C(M). As before, a direct sum decomposition M = N ⊕ P satisfying

MT = NT ⊕ PT for all T ∈ P(S) (or S) (15.7)

gives a direct sum decomposition of coefficient systems: C(M) = C(N)⊕ C(P).
The key observation in this section is that such direct sum decompositions

of coefficient systems give direct sum decompositions of (co)chain complexes
and of their (co)homology groups.

Let Z(W/WT ) denote the (left) permutation module defined by the W-action
on W/WT .

LEMMA 15.2.2. For any T ⊂ S and any W-module M,

(i) HomW (Z(W/WT ), M) ∼= MT,

(ii) M ⊗W Z(W/WT ) ∼= MT.

(M is a left W-module in (i) and a right W-module in (ii).)

Proof

(i) HomW (Z(W/WT ), M) can be identified with the set of W-equivariant
functions f : W/WT → M. The isotropy subgroup at the coset of the
identity element is WT . So, for any equivariant f , f (WT ) ∈ MT .
Conversely, given any x0 ∈ MT , the formula f (wWT ) = wx0, gives a
well-defined f : W/WT → M.

(ii) M ⊗W Z(W/WT ) = M ⊗W ZW ⊗WT Z = M ⊗WT Z = MT . �
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Remark. Suppose M is a W-bimodule. Then the right W-action on M gives
HomW (Z(W/WT ), M) and MT the structure of right W-modules and (i) is an
isomorphism of right W-modules. Similarly, (ii) is an isomorphism of left
W-modules.

The basic construction gives a W-complex U(W, X) (= U). Let H∗W (U ; M)
and HW

∗ (U ; M) be the equivariant cohomology and homology groups, re-
spectively, as defined in Appendix F.2. A corollary to Lemma 15.2.2 is the
following.

COROLLARY 15.2.3. There are natural identifications:

CW
∗ (U ; M) = C∗(X; C(M)) and C∗W (U ; M) = C∗(X; I(M)).

Symmetrization and Alternation Again

Let {ew}w∈W be the standard basis for ZW. For each spherical subset T of S,
define elements ãT and h̃T in ZW by formula (8.1) of Section 8.1:

ãT :=
∑

w∈WT

ew and h̃T :=
∑

w∈WT

(−1)l(w)ew.

For any subset T of S, let (ZW)T denote the WT -invariants in ZW, defined in
(15.4). Notice that (ZW)T is 0 if T /∈ S and is equal to the right ideal ãT (ZW)
if T ∈ S. Similarly, for T ⊂ S, define

HT := {x ∈ ZW | xeu = (−1)l(u)x, for all u ∈ WT}.
One checks that HT is the left ideal (ZW)h̃T when T is spherical and that
HT = 0 when it is not.

Let (ZW)T be the WT -coinvariants, defined in (15.5), and IT the aug-
mentation ideal of Z(WT ). For any s ∈ S, note that (ZW)I{s} = H{s}. Hence,
(ZW){s} = (ZW)/H{s}. More generally, for any T ⊂ S,

(ZW)IT =
∑
s∈T

H{s} so, (ZW)T = (ZW)
/ ∑

s∈T

H{s}. (15.8)

Two Bases for ZW

As in 4.7, for each w ∈ W, In(w) denotes the set of letters with which w can
end (Definition 4.7.1). It is a spherical subset of S (Lemma 4.7.2). Put

In′(w) := In(w−1) = {s ∈ S | l(sw) < l(w)}. (15.9)

Define elements b′w, bw ∈ ZW by

b′w := ãIn′(w)ew and bw := ewh̃In(w). (15.10)
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LEMMA 15.2.4. {b′w}w∈W is a basis for ZW (as a Z-module). More generally,
for any T ∈ S, {b′w | T ⊂ In′(w)} is a basis for (ZW)T .

Recall from 4.5 that for any T ⊂ S, AT (resp. BT ) is the set of elements of W
which are (T ,∅)-reduced (resp. (∅, T)-reduced) (see Definition 4.3.2). For any
spherical subset T , wT ∈ WT is the element of longest length.

Proof of Lemma 15.2.4. The point is that the matrix which expresses the b′w
in terms of the ew has 1’s on the diagonal and is upper triangular when the
elements of W are ordered compatibly with word length. In detail: suppose∑
βwb′w = 0 is a nontrivial linear relation. Let v ∈ W be an element with

βv �= 0 and l(v) maximum. Note that b′v is the sum of ev with various ew having
l(w) < l(v). Since the coefficient of ev in the linear relation must be 0, we have
βv = 0; so, {b′w}w∈W is linearly independent. Similarly, one shows, by induction
on word length, that each ev is a linear combination of b′w with l(w) � l(v).
Hence, {b′w} spans ZW.

To prove the second sentence, we first show that b′w ∈ (ZW)T whenever T ⊂
In′(w). For any U ∈ S with T ⊂ U, computation gives ãU = ãTcU,T , where

cU,T :=
∑

u∈AT∩WU

eu.

So, when T ⊂ In′(w), b′w = ãIn′(w)ew = ãTcIn′(w),Tew ∈ (ZW)T . Note T ⊂ In′(w)
if and only if w ∈ wTAT . By the previous paragraph, {b′w | w ∈ wTAT} is
linearly independent. It remains to show it spans (ZW)T . Since wTAT is a set of
coset representatives for WT\W, a basis for (ZW)T is {ãTew | w ∈ wTAT}. Let
ew := cIn′(w),Tew. For w ∈ wTAT , the matrix which expresses {ew | w ∈ wTAT}
in terms of {ew | w ∈ wTAT} has 1’s on the diagonal is upper triangular with
respect to word length. So,

{ãTew | w ∈ wTAT} = {b′w | T ⊂ In′(w)}
is also a basis for (ZW)T . �

LEMMA 15.2.5. {bw}w∈W is a basis for ZW. More generally, for any subset
U of S, the projection ZW → (ZW)S−U maps {bw | U ⊃ In(w)} injectively to a
basis for (ZW)S−U.

Proof. The proof of the first sentence is omitted since it is similar to that of the
first sentence of the previous lemma.

Fix a subset U ⊂ S and let p : ZW → (ZW)S−U denote the projection. Since
(ZW)S−U = Z(W/WS−U), {p(ew) | w ∈ BS−U} is an obvious basis for (ZW)S−U

(as a Z-module). Any element y ∈ ZW can be written in the form

y =
∑

w∈BS−U

∑
u∈WS−U

αwuewu. (15.11)
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An element y belongs to (ZW)IS−U = Ker(p) if and only if
∑

u∈WS−U
αwu = 0

for each w ∈ BS−U . Let y be an element in the Z-submodule spanned by
{bw | U ⊃ In(w)} (= {bw | w ∈ BS−U}), i.e., let

y =
∑

w∈BS−U

ywbw.

Suppose p(y) = 0. Let v ∈ BS−U be such that yv �= 0 and l(v) is maximum with
respect to this property. Since bv is the sum of ev and ±1 times various ew

with l(w) < l(v), the coefficients αvu in (15.11) are 0 for all u �= 1 in WS−U .
Then

∑
αvu = 0 forces αv = 0; so, {p(bw) | w ∈ BS−U} is linearly independent

in (ZW)S−U . The usual argument, using induction on word length, shows that
{p(bw) | w ∈ BS−U} spans (ZW)S−U . �

For each T ∈ S, define Z-submodules of ZW:

ÂT := Span{b′w | In′(w) = T}, (15.12)

ĤT := Span{bw | In(w) = T}. (15.13)

A corollary to Lemma 15.2.4 is the following.

COROLLARY 15.2.6. We have direct sum decompositions of Z-modules:

ZW =
⊕
T∈S

ÂT and for any U ∈ S (ZW)U =
⊕

T∈S�U

ÂT .

Consequently, given T ∈ S, for any U ⊂ S we have

(̂AT )U =
{

ÂT if U ⊂ T ,

0 if U ∩ (S− T) �= ∅. (15.14)

So, the decomposition satisfies condition (15.6). Hence, the direct sum decom-
position in Corollary 15.2.6 gives a decomposition of coefficient systems:

I(ZW) =
⊕
T∈S
I (̂AT ). (15.15)

For the ĤT , we have

(ĤT )U
∼=

{
ĤT if U ⊂ S− T ,

0 if U ∩ T �= ∅. (15.16)

In the above formula, by writing (ĤT )U
∼= ĤT , we mean that the projection

ZW → (ZW)U is injective on ĤT . To see that (ĤT )U = 0 when U ∩ T �= ∅,
note that if s ∈ U ∩ T , then ĤT ⊂ Hs ⊂ (ZW)IU . The ĤT version of Corol-
lary 15.2.6 is the following.
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COROLLARY 15.2.7. We have direct sum decompositions of Z-modules:

ZW =
⊕
T∈S

ĤT and for any U ∈ S (ZW)S−U =
⊕

T∈S�U

(ĤT )S−U.

So the decomposition in Corollary 15.2.7 satisfies (15.7) and gives a
decomposition of coefficient systems:

C(ZW) =
⊕
T∈S
C(ĤT ). (15.17)

Chapter 8 Revisited

We can use the previous two corollaries to give different proofs of the two
main results in Chapter 8, the formulas in Theorems 8.1.6 and 8.3.5. For the
remainder of this chapter, in all formulas involving cochains or cohomology
we shall assume X is compact and that its mirror structure is W-finite
(Definition 5.1.6), i.e., XT = ∅ whenever WT is infinite. These assumptions
imply that W acts properly and cocompactly on U (Lemma 5.1.7). In the case
of homology no such assumptions are needed.

By Lemma F.2.1,

C∗(U) = CW
∗ (U ;ZW), (15.18)

C∗c (U) = C∗W (U ;ZW). (15.19)

Recall Definition 4.7.4: WT := {w ∈ W | In(w) = T}. Since w→ w−1 is a
bijection from WT to {w ∈ W | In′(w) = T}, we see from (15.12) and (15.13)
that both ÂT and ĤT have one basis element for each element of WT . So, the
next theorem is the same calculation as in Chapter 8.

THEOREM 15.2.8. (= Theorems 8.1.6 and 8.3.5.)

Hi
c(U) ∼=

⊕
T∈S

Hi(X, XS−T )⊗ ÂT ,

Hi(U) ∼=
⊕
T∈S

Hi(X, XT )⊗ ĤT .

Proof. To prove the first formula, note that by (15.19) and Corollaries 15.2.3
and 15.2.7,

Ci
c(U) = CW

∗ (U ;ZW) = Ci(X; I(ZW)) =
⊕
T∈S

Ci(X; I (̂AT )).
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Given a cell c ∈ X(i), by (15.14),

(̂AT )S(c) =
{

0 if c ⊂ XS−T ,

ÂT otherwise.

Hence,

Ci(X; I (̂AT )) = { f : X(i) → ÂT | f (c) = 0 if c ⊂ XS−T}
= Ci(X, XS−T )⊗ ÂT .

Taking cohomology, we get the first formula.
To prove the second formula, note that by (15.18) and Corollaries 15.2.3 and

15.2.6,

Ci(U) = CW
∗ (U ;ZW) = Ci(X; C(ZW)) =

⊕
T∈S

Ci(X; C(ĤT )).

By (15.16), given a cell c ∈ X(i),

(ĤT )S(c)
∼=

{
0 if c ⊂ XT ,

ĤT otherwise.

Hence,

Ci(X; C(ĤT )) =
⊕
c∈X(i)

c�⊂XT

ĤT ∼= Ci(X, XT )⊗ ĤT .

Taking homology, we get the second formula. �

15.3. THE W-MODULE STRUCTURE ON (CO)HOMOLOGY

The W-action on U makes H∗(U) into a left W-module and H∗c (U) into
a right W-module. Since ZW is a bimodule, I(ZW) is a system of right
W-modules and hence, H∗(X; I(ZW)) is a right W-module. Similarly, C(ZW)
is a system of left W-modules and H∗(X; C(ZW)) is a left W-module. Moreover,
the isomorphisms,

H∗(U) ∼= HW
∗ (U ;ZW) = H∗(X; C(ZW))

and

H∗c (U) ∼= H∗W (U ;ZW) = H∗(X; I(ZW)),

of (15.18), (15.19), and Corollary 15.2.3 are compatible with the W-actions.
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Our plan is to define a decreasing filtration, ZW = F0 ⊃ F1 ⊃ · · · of right
W-modules, leading to a filtration of H∗(X; I(ZW)) by W-submodules. We
will then compute the associated graded terms. Similarly, we will define a
decreasing filtration (F′p)p�0 of left W-modules and use it to compute an
associated graded module of H∗(X; C(ZW)).

For each nonnegative integer p, define

Fp :=
∑

Card(T)�p

(ZW)T , Ep :=
⊕

Card(T)<p

ÂT , (15.20)

F′p :=
∑

Card(T)�p

HT , E′p :=
⊕

Card(T)<p

ĤT , (15.21)

where HT is defined by alternation over WT and ÂT , ĤT are defined in
(15.12) and (15.13), respectively. (Fp)p�0 and (F′p)p�0 are clearly decreasing
filtrations. Fp is a right W-module and I(Fp) is a subsystem of I(ZW) of right
W-modules. Similarly, C(F′p) is a subsystem of left W-modules. (However,
since Ep and E′p only have the structure of Z-submodules of ZW, I(Ep) and
C(E′p) are not systems of W-modules.) As we shall see below, Ep (resp. E′p) is
a complementary Z-submodule to Fp (resp. F′p).

LEMMA 15.3.1. We have decompositions (as Z-modules):

(i) ZW = Fp ⊕ Ep and this induces a decomposition of coefficient
systems, I(ZW) = I(Fp)⊕ I(Ep).

(ii) ZW = F′p ⊕ E′p and this induces a decomposition of coefficient
systems, C(A) = C(F′p)⊕ C(E′p).

Proof. (i) By the second formula of Corollary 15.2.6, Fp =
⊕

Card(T)�p ÂT ;
hence, by the first formula of the same corollary, ZW = Fp ⊕ Ep.
To get a decomposition of coefficient systems, we must show (ZW)U =
(Fp)U ⊕ (Ep)U for all U ⊂ S. Since (ZW)U =⊕

T⊃U ÂT ,

(ZW)U =
⊕
T⊃U

Card(T)�p

ÂT ⊕
⊕
T⊃U

Card(T)<p

ÂT . (15.22)

Denote the first summation in (15.22) by B and the second one by C.

Claim. B = (Fp)U .
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Proof of Claim. Obviously, B ⊂ (Fp)U . Let x ∈ (Fp)U . Since x ∈ Fp,

x =
∑

Card(T)�p

αT ,

where αT ∈ ÂT . Since x ∈ (ZW)U ,

x =
∑
T⊃U

βT ,

where βT ∈ ÂT . But A =⊕
T⊂S ÂT , so the two decompositions of x coincide.

Therefore, αT = 0 unless T ⊃ U. This gives

x =
∑
T⊃U

Card(T)�p

αT ∈ B,

which proves that (Fp)U ⊂ B. �

We continue with the proof of the lemma by noting that a similar argument
shows (Ep)U = C. Hence, (ZW)U = (Fp)U ⊕ (Ep)U and (i) is proved.

(ii) As before, by Corollary 15.2.7, ZW = F′p ⊕ E′p. To get the decomposi-
tion of coefficient systems, we must show that (ZW)S−U = (F′p)S−U ⊕ (E′p)S−U

for all U ⊂ S. Since (ZW)S−U =
⊕

T⊂U(ĤT )S−U ,

(ZW)S−U =
⊕
T⊂U

Card(T)�p

(ĤT )S−U ⊕
⊕
T⊂U

Card(T)<p

(ĤT )S−U. (15.23)

Denote the first summation in (15.23) by B′ and the second by C′.
We claim that (F′p)S−U = B′. Obviously, B′ ⊂ (F′p)S−U . Any x ∈ Fp can be
written in the form

x =
∑

Card(T)�p

γ T ,

where γ T ∈ ĤT . Since γ T ∈ IS−U whenever T ∩ (S− U) �= ∅, for those T
with T �⊂ U, we can set γ T = 0 without changing the congruence class of
x modulo IS−U . So, putting

y =
∑
T⊂U

Card(T)�p

γ T ,

we have y ≡ x mod IS−U and y ∈ B′. So, (F′p)S−U ⊂ B′. A similar argu-
ment shows (E′p)S−U = C′. Hence, (ZW)S−U = (F′p)S−U ⊕ (E′p)S−U and (ii) is
proved. �
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COROLLARY 15.3.2

(i) Fp ↪→ ZW induces an embedding Hi(X; I(Fp)) ↪→ Hi(X; I(ZW))
which is W-equivariant. Its image is a Z-module direct
summand.

(ii) F′p ↪→ ZW induces an embedding Hi(X; C(F′p)) ↪→ Hi(X; C(ZW))
which is W-equivariant. Its image is a Z-module direct
summand.

It follows that Fp+1 ↪→ Fp induces H∗(X; I(Fp+1)) ↪→ H∗(X; I(Fp)), an
embedding of right W-modules. This gives an associated graded group of right
W-modules,

H∗(X; I(Fp))/H∗(X; I(Fp+1)).

Similarly, there is an embedding, H∗(X; C(F′p+1)) ↪→ H∗(X; C(F′p)) and an
associated graded group of left W-modules. The goal of this section is to prove
Theorem 15.3.4 below. It gives a complete computation of these graded W-
modules.

For each T ∈ S, put

(ZW)>T :=
∑
U�T

(ZW)U and H>T :=
∑
U�T

HU.

(ZW)T/(ZW)>T is a right W-module and HT/H>T is a left W-module.

Example 15.3.3. (The sign representation.) (ZW)∅/(ZW)>∅ is isomorphic to
Z as an abelian group. We can take the image b

′
1 of the basis element

b′1 (= e1) as the generator. Since asb′1 ∈ (ZW)>∅, b
′
1 · as = 0 for all s ∈ S.

Hence, b
′
1 · s = −b

′
1. It follows that W acts on (ZW)∅/(ZW)>∅ via the sign

representation:

b
′
1 · w = (−1)l(w)b

′
1.

THEOREM 15.3.4. Let p be a nonnegative integer.

(i) There is an isomorphism of right W-modules,

H∗(X; I(Fp))/H∗(X;I(Fp+1))

∼=
⊕

Card(T)=p

H∗(X, XS−T )⊗ ((ZW)T/(ZW)>T ).
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(ii) There is an isomorphism of left W-modules,

H∗(X; C(F′p))/H∗(X; C(F′p+1))

∼=
⊕

Card(T)=p

H∗(X, XT )⊗ (HT/H>T ).

LEMMA 15.3.5. There are isomorphisms of W-modules

ψ : Fp/Fp+1
∼=−→

⊕
Card(T)=p

(ZW)T/(ZW)>T

and

ψ ′ : F′p/F
′
p+1

∼=−→
⊕

Card(T)=p

HT/H>T .

Proof. Suppose Card(T) = p. The inclusion (ZW)T ↪→ Fp induces (ZW)T →
Fp/Fp+1 and (ZW)>T is in the kernel. Let (ZW)T/(ZW)>T → Fp/Fp+1be the
induced map. This gives a map of right W-modules:

ϕ :
⊕

Card(T)=p

(ZW)T/(ZW)>T → Fp/Fp+1.

By Corollary 15.2.6, the inclusion ÂT ↪→ (ZW)T induces an isomorphism (of
Z-modules), ÂT → (ZW)T/(ZW)>T . Also, Fp =

⊕
Card(T)=p ÂT ⊕ Fp+1. So,

we have a commutative diagram (of maps of Z-modules):

�

�
���

�
���

ϕ

⊕
Card(T)=p ÂT

⊕
Card(T)=p(ZW)T/(ZW)>T Fp/Fp+1

Since the two slanted arrows are bijections, so is ϕ. Therefore, ϕ is an
isomorphism of right W-modules. Put ψ := ϕ−1.

The definition of the second isomorphism ψ ′ is similar. �

NOTATION. DT := (ZW)T/(ZW)>T and GT = HT/H>T .

Remark. If T is nonspherical, then both DT and GT are 0 (since the same is
true for (ZW)T and HT ).

Since the right W-module DT is neither a left W-module or even a
Z-submodule of a left W-module, the definition of its (left) WU-invariants
from (15.4) cannot be applied directly. Similarly, the definition of (right)
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coinvariants from (15.5) does not apply directly to GT . Nevertheless, for each
U ⊂ S, define

(DT )U := ((ZW)T ∩ (ZW)U)/((ZW)>T ∩ (ZW)U),

(GT )U := (HT )U/(H
>T )U.

These give a systems of W-modules on X defined by

I(DT )(c) := (DT )S(c),

C(GT )(c) := (GT )S(c),

respectively. As in (15.14) and (15.16),

(DT )U =
{

(ZW)T/(ZW)>T if U ⊂ T ,

0 if U ∩ ST �= ∅;
(15.24)

(GT )U =
{

HT/H>T if U ⊂ S− T ,

0 if U ∩ T �= ∅. (15.25)

LEMMA 15.3.6. Suppose U ⊂ S.

(i) The following sequence of right W-modules is exact,

0−→(Fp+1)U−→(Fp)U ψ̃−→
⊕

Card(T)=p

(DT )U−→ 0,

where ψ̃ is the map induced by ψ and

(ii) The following sequence of left W-modules is exact,

0−→(F′p+1)S−U−→(F′p)S−U
ψ̃ ′−→

⊕
Card(T)=p

(GT )S−U−→ 0,

where ψ̃ ′ is the map induced by ψ ′.

Proof. In the proof of Lemma 15.3.1, in (15.22), we showed

(Fp)U =
⊕

Card(T)�p
T⊃U

ÂT .

Put

B :=
⊕

Card(T)=p
T⊃U

ÂT .

B is a Z-submodule of (Fp)U and it maps isomorphically onto (Fp)U/(Fp+1)U .
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The image of B under ψ̃ is
⊕

Card(T)=p
T⊃U

(ZW)T/(ZW)>T =
⊕

Card(T)=p
T⊃U

DT .

This proves (i).
The proof that the sequence in (ii) is short exact is similar. �

Proof of Theorem 15.3.4. (i) By Lemma 15.3.6 (i), we have a short exact
sequence of coefficient systems on X:

0−→I(Fp+1)−→I(Fp)−→
⊕

Card(T)=p

I(DT )−→ 0

inducing a short exact sequence of cochain complexes:

0−→C∗(X; I(Fp+1))−→C∗(X; I(Fp))−→
⊕

Card(T)=p

C∗(X; I(DT ))−→ 0.

By the argument for Corollary 15.3.2, H∗(X; I(Fp+1))→ H∗(X; I(Fp)) is an
injection onto a Z-module direct summand. Hence, the long exact sequence in
cohomology decomposes into short exact sequences and we get

Hi(X; I(Fp))/Hi(X; I(Fp+1)) ∼=
⊕

Card(T)=p

Hi(X; I(DT ))

∼=
⊕

Card(T)=p

Hi(X, XS−T )⊗ DT ,

where the second isomorphism comes from using (15.24), to get

Ci(X; I(DT )) = { f : X(i) → DT | f (c) ∈ (DT )S(c) for all c ∈ X(i) }
= { f : X(i) → DT | f (c) = 0 if c ⊂ XS−T }
= Ci(X, XS−T )⊗ DT .

(ii) The proof is similar to that of (i). �

Remark. The decreasing filtration · · · ⊃ Fp ⊃ Fp+1 · · · of (15.20) gives a
filtration of cochain complexes

· · · ⊃ C∗(X; I(Fp)) ⊃ C∗(X; I(Fp+1)) · · · .
The quotient cochain complexes have the form C∗(X; I(Fp)/I(Fp+1)). As
explained in the beginning of Appendix E.3, by taking homology, we get a
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s

c

K

sc

Figure 15.1. Cocycles x and sx.

spectral sequence with E1-term:

Epq
1 := Hp+q(X; I(Fp)/I(Fp+1)).

It converges to

Epq
∞ := Hp+q(X; I(Fp))

Im(Hp+q(X; I(Fp+1)))
. (15.26)

So the meaning of Theorem 15.3.4 is that Epq
1 = Epq

∞.

The W-Module Structure on H∗(W;ZW)

As above, we have a filtration of H∗c (�) = H∗(K; I(ZW)) by W-submodules.
As in (15.26), Epq

∞ is the associated right W-module in filtration degree p
associated to Hp+q(K; I(ZW)). So Theorem 15.3.4 has the following corollary.

THEOREM 15.3.7. As a right W-module, Hp+q(W;ZW) (= Hp+q
c (�)) has as

its associated graded module,

Epq
∞ =

⊕
Card(T)=p

Hp+q(K, KS−T )⊗ DT .

By Theorem 15.2.8, we have a direct sum decomposition of Z-modules:

H∗c (�) ∼=
⊕
T∈S

H∗(K, KS−T )⊗ DT .

In view of Theorem 15.4.1, one might naively conjecture that H∗c (�) decom-
poses into a direct sum of right W-modules as above. In fact there is, in general,
no such decomposition as can be seen from the following example.

Example 15.3.8. Suppose W is the free product of three copies of Z/2.
Then K is the cone on three points. It has three edges. By Theorem 15.3.4,
H1(K, KS)⊗ D∅ is a quotient of H1

c (�). Let x ∈ C1(K) be a cochain
(= cocycle) which evaluates to 1 on one of the edges, call it c, and to 0 on
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the other two edges. Choose an element s in S which is not a vertex of c. Let y
denote the image of x⊗ 1 in H1(K, KS)⊗ D∅. By Example 15.3.3, D∅ has rank
1 as an abelian group and the W-action on it is given by the sign representation.
Hence, sy = −y in H1(K, KS)⊗ D∅. Suppose we had a W-equivariant splitting
ϕ : H1(K, KS)⊗ D∅ → H1

c (�). When regarded as an element of C1
c (�), x+ sx

represents ϕ(y+ sy) in H1
c (�), i.e., it represents 0. But x and −sx are not

cohomologous cocycles in C1
c (�). (One can see this by noting that there is a

line (= infinite 1-cycle) on which x evaluates to 1 and sx to 0; see Figure 15.1.)
Hence, there can be no such splitting ϕ.

15.4. THE CASE WHERE W IS FINITE

In this section, W is finite. We first deal with the analog of Theorem 15.3.4
when the coefficients are in R instead of Z. In this case there is no need to
consider quotient modules or associated graded modules in (co)homology.
The reason is that every short exact sequence of finite dimensional W-
representations splits. (Indeed, suppose V is a real representation of W. Since
W is finite, we can choose of W-invariant inner product. If V ′ ⊂ V is a
subrepresentation, then V = V ′ ⊕ (V ′)⊥, where (V ′)⊥ denotes the orthogonal
complement.) Before continuing we need to set up some notation.

Let 〈 , 〉 denote the standard inner product on RW in which {ew}w∈W is an
orthonormal basis. Let x→ x∗ be the anti-involution of RW which sends ew to
ew−1 . It is the adjoint with respect to the inner product, i.e., 〈xy, z〉 = 〈y, x∗z〉 =
〈x, zy∗〉. For each T ⊂ S, we have normalized versions of symmetrization and
alternation:

aT := ãT

Card(WT )
= 1

Card(WT )

∑
w∈WT

ew, (15.27)

hT := h̃T

Card(WT )
= 1

Card(WT )

∑
w∈WT

(−1)l(w)ew. (15.28)

It is readily checked that aT and hT are self-adjoint idempotents, i.e., a∗T = aT ,
h∗T = hT , (aT )2 = aT and (hT )2 = hT . That is to say, left or right multiplication
by aT or hT on RW is an orthogonal projection. (We will provide more details
about these formulas in Chapter 20.)

Define (RW)T and (RW)>T as before, i.e., (RW)T := aT (RW). Also, HT
R

and H>T
R are the analogs of HT and H>T , i.e., HT

R := (RW)hT . The appropriate
analogs of DT and GT are defined as follows: DRT is the orthogonal comple-
ment of (RW)>T in (RW)T and GRT is the orthogonal complement of H>T

R

in HT
R.
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By Corollaries 15.2.6 and 15.2.7, we have direct sum decompositions:

(RW)T =
⊕
U⊃T

DRU and HT
R =

⊕
U⊃T

GRU. (15.29)

Since a basis for ÂT (resp. ĤT ) projects to a basis for DRT (resp. GRT ), we have
dim DRT = dim GRT = Card(WT ). The proof of Theorem 15.3.4 immediately
yields the following.

THEOREM 15.4.1. There is an isomorphism of (left) W-representations:

H∗(U ;R) ∼=
⊕
T⊂S

H∗(X, XT )⊗R GRT .

Similarly, there is an isomorphism of (right) W-representations:

H∗(U ;R) ∼=
⊕
T⊂S

H∗(X, XS−T )⊗R DRT .

Rational Coefficients

In QW we cannot take orthogonal complements complements with impunity;
however, we can use the following result of L. Solomon [261] instead.

THEOREM 15.4.2. (Solomon [261, Theorem 2].) For any subset T ⊂ S, there
are direct sum decompositions

(QW)aT =
⊕
U⊃T

(QW)hS−UaU ,

(QW)hT =
⊕
U⊃T

(QW)aS−UhU.

There are also dual, right-hand versions of both decompositions.

(In Chapter 20 we will prove a Hilbert space version of this, valid for infinite
Coxeter groups.)

Define

DQT := aThS−T (QW),

GQT := (QW)aS−ThT .

Taking T = ∅ in Solomon’s Theorem, we get decompositions of QW:

QW =
⊕
U⊂S

DQU and QW =
⊕
U⊂S

GQU . (15.30)
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(The first is a decomposition of the left regular representation, the second of
the right.) By Solomon’s Theorem, we have (QW)>T =⊕

U�T DQU . Therefore,

DQT is a complementary subspace for (QW)>T in (QW)T . Similarly, GQT is a
complementary subspace for H>T

Q in HT
Q. (In general, they are not orthogonal

complements.) It follows that we have W-module isomorphisms:

DRT ∼= DQT ⊗Q R and GRT ∼= GQT ⊗Q R.
The direct sum decompositions in (15.30) induce direct sum decompositions
of coefficient systems (as W-modules) and direct sum decompositions of
(co)chain complexes of W-modules:

C∗(U ;Q) =
⊕
T⊂S

C∗(K, KT )⊗Q GQT ,

C∗(U ;Q) =
⊕
T⊂S

C∗(K, KT )⊗Q DQT

Taking (co)homology we get the following.

THEOREM 15.4.3. ([73, Theorem B].) There is an isomorphism of rational
W-representations

H∗(U ;Q) ∼=
⊕
T⊂S

H∗(X, XT )⊗Q GQT .

Similarly, there is an isomorphism of W-representations

H∗(U ;Q) ∼=
⊕
T⊂S

H∗(X, XS−T )⊗Q DQT .

Remark. Since H∗(U ;Q) and H∗(U ;Q) are dual W-representations, the two
formulas in Theorem 15.4.3 would lead one to suspect that GQT and DQS−T are
dual representations (and hence are isomorphic) This is indeed the case, since it
follows from arguments in [261] that (QW)(aS−ThTaS−T ) = (QW)hTaS−T and
that left multiplication by aS−T maps GQT = (QW)aS−ThT isomorphically onto
(QW)hTaS−T . This last expression is just the dual representation to DQS−T =
aS−ThT (QW). We shall return to this topic in Chapter 20 (see Theorems 20.6.19
and 20.6.20).

NOTES

15.1. The identification of the face ring of L with H∗(W;F2) in the right-angled case is
taken from my paper with Januszkiewicz [82]. More information about the face ring of
a simplicial complex can be found in [268].

15.2, 15.3, 15.4. The material in these sections is taken from [80]. Theorem 15.4.3 is
essentially proved in [73] by an argument which avoids explicit mention of the type of
coefficient systems discussed here.
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Chapter Sixteen

THE EULER CHARACTERISTIC

Algebraic topology began with Euler’s result that for any cellulation of the
2-sphere, the alternating sum of the number of cells is equal to 2. This leads
to the notion of the “Euler characteristic,” defined in 16.1. Given a group
of type VF, we define, in the same section, a rational number called its
“Euler characteristic” and give two explicit formulas for it in the case of a
Coxeter group. In 16.2 we discuss a conjecture about the Euler characteristic
of any even dimensional, closed, aspherical manifold M2k. It asserts that
(−1)kχ (M2k) � 0. The special case for a torsion-free subgroup of finite index
in a right-angled Coxeter group of type HM2k is called the “Charney–Davis
Conjecture.” It can be reformulated as a conjecture about the sign of a certain
number associated to any triangulation of S2k−1 as a flag complex. This is
explained in 16.3.

16.1. BACKGROUND ON EULER CHARACTERISTICS

Suppose X is a space with finitely generated homology. Its ith-Betti number
bi(X) is defined by

bi(X) := rkZ(Hi(X)),

where the rank of a finitely generated abelian group is given by rkZ(A) :=
dimQ(A⊗Q). The Euler characteristic of X is the integer χ (X) defined by

χ (X) :=
∑

(−1)ibi(X). (16.1)

If X is a finite CW complex, we can calculate χ (X) in terms of the number of
its cells. Let ci(X) denote the number of i-cells in X, i.e., ci(X) = rkZ(Ci(X)),
where Ci(X) is the group of cellular chains on X. A standard argument (e.g.,
see [113]) shows that the alternating sum of the ranks of the Ci in any chain
complex is equal to the alternating sum of the ranks after taking homology.
Hence,

χ (X) =
∑

(−1)ici(X) =
∑

cells σ

(−1)dim σ .
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A group G is of finite homological type if vcd G <∞ and if for every
G-module M which is finitely generated as an abelian group and for each
nonnegative integer i, Hi(G; M) is finitely generated. The most obvious
examples of groups of finite homological type are those of type VFP (where
VFP stands for “virtually type FP”). (The general reference for homology of
groups is [42]; for a quick summary, see Appendix F. In particular, the notion
of “vcd” or “virtual cohomological dimension” is defined in Appendix F.3
while “type FP” or “VFP” is defined in Appendix F.4.) If � is torsion-free
and of finite homological type, then its Euler characteristic is defined by

χ (�) := χ (B�) :=
∑

(−1)i rkZ(Hi(�)). (16.2)

When G is only required to be virtually torsion-free, this definition is not the
correct one. (For one reason, it is not multiplicative upon passing to subgroups
of finite index.) Instead, χ (G) should be defined as the rational number,

χ (G) := χ (�)

[G : �]
, (16.3)

where � ⊂ G is a torsion-free subgroup of finite index, [G : �].

Orbihedral Euler Characteristics

Suppose a discrete group G acts properly, cellularly, and cocompactly on a
cell complex Y . As we explain in Appendix E.2, the quotient space Y/G has
the structure of the geometric realization of a small category without loop (a
“scwol”). Over this scwol we get a “complex of groups,” denoted by Y//G.
When all the local groups are finite (as they are if the action is proper), this
complex of groups is an orbihedron.

The orbihedral Euler characteristic of Y//G is the rational number

χorb(Y//G) :=
∑

orbits of cells

(−1)dim σ

Card(Gσ )
, (16.4)

where the summation is over a set {σ } of representatives for the G-orbits of
cells and where Gσ denotes the stabilizer of σ . If the action is free (so that each
cell stabilizer is the trivial subgroup), then the orbihedral Euler characteristic
is the usual Euler characteristic of the quotient space Y/G.

An important feature of the Euler characteristics is that they are multiplica-
tive with respect to finite sheeted covers. Thus, if X′ → X is an m-sheeted
covering space, then χ (X′) = mχ (X). This property persists for the orbihedral
Euler characteristic: if G′ ⊂ G is a subgroup of index m, then

χorb(Y//G′) = mχorb(Y//G). (16.5)

In particular, if Y is acyclic and G is type VFL, then χ (G) = χorb(Y//G).
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Another Definition of the Rational Euler Characteristic of a Group

Suppose QG denotes the rational group algebra of a group G. Denote the
standard basis for QG as a rational vector space by (eg)g∈G. The standard
inner product on QG is defined by setting 〈eg, eh〉 equal to the Kronecker delta
δ(g, h). For any λ ∈ QG, the coefficient of the identity element in λ is 〈λ, e1〉.
Let ϕ be an endomorphism of a free QG-module F of rank n. After choosing
a basis, ϕ is represented by an (n× n) matrix (ϕij) with entries in QG. Define
trG(ϕ), the Kaplansky trace of ϕ, by

trG(ϕ) :=
n∑

i=1

〈ϕii, e1〉.

A standard argument shows this is independent of the choice of basis.
Next, suppose P is a finitely generated projective QG-module. So, P is

a direct summand of some finitely generated free module F. Let p : F→
F be a projection onto P. Define ρ(P), the rank of P, by ρ(P) := trG(p).
Standard arguments show this is a well-defined, nonnegative, rational number.
Moreover, ρ(P) = 0 if and only if P = 0.

A group G is has type FP over Q if there is a finite length resolution of
Q by finitely generated projective QG-modules. (Groups of type FP over
Z are discussed in Appendix F.4.) Suppose 0→ Pn → · · ·P0 → Q→ 0 is
such a projective resolution for G. Define χ (G), the Euler characteristic of
G, by

χ (G) :=
∑

(−1)iρ(Pi). (16.6)

If G acts properly, cellularly, and cocompactly on a rationally acyclic CW
complex Y , then it is of type FP over Q. The cellular chain complex C∗(Y;Q)
provides the desired projective resolution. (Proof: since the action is proper and
cellular, each Ci(Y;Q) is a sum of G-modules of the formQ(G/Gσ ), where Gσ

is finite. Since Gσ is finite, such a module is a direct summand of QG and
hence, is projective. Since there are only finitely many orbits of cells, Ci(Y;Q)
is a finitely generated projective QG-module.)

PROPOSITION 16.1.1. Suppose G acts properly, cellularly, and cocompactly
on a CW complex Y which is acyclic over Q. Then

χ (G) = χorb(Y//G).

Proof. Since H∗(Y;Q) = 0, the cellular chain complex of Y gives a finitely
generated projective resolution of Q:

→ Ci(Y;Q)→ Ci−1(Y ,Q)→ · · · → C0(Y;Q)→ Q→ 0.
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For any finite subgroup H of G, the QG-module Q(G/H) is induced from the
trivial representation of H. It follows that

ρ(Q(G/H)) = 1

Card(H)
.

Hence,

ρ(Ci(Y;Q)) =
∑ 1

Card(Gσ )
,

where the sum is over a set of representatives for the orbits of i-cells.
Comparing this with the definiton of the orbihedral Euler characteristic in
(16.5), the result follows. �

COROLLARY 16.1.2. Suppose we are given a model for EG with a finite
number of orbits of cells. Then χ (G) = χorb(EG//G).

Remark. As explained in Appendix F.4, a group G is “type VFL” if it has
a torsion-free subgroup � of finite index such that Z admits a finite length
resolution by finitely generated free ZG-modules. If G is type VFL, then it
can be shown that the two definitions of χ (G) given by (16.3) and (16.6) are
equal ([42, Exercise 1, p. 252]). However, if G is only assumed to be type
VFP, the equality of the two definitions is an open question (related to a
weak version of the Bass Conjecture). Since Coxeter groups are type VFL,
it will not be necessary for us to introduce notation distinguishing (16.3)
from (16.6).

Two Formulas for the Euler Characteristic of a Coxeter Group

Given a Coxeter system (W, S), we have the simplicial complex� of Chapter 7.
It is a model for EW (Theorem 12.3.4 (ii)). Each W-orbit of simplices intersects
the fundamental chamber K in a single simplex. The stabilizer of such a
simplex σ contains the spherical subgroup WT if and only if σ ⊂ KT and the
inclusion of WT in the stabilizer is strict if and only if σ ⊂ ∂KT . Hence, the
contribution of the open simplices with stabilizer WT to the orbihedral Euler
characteristic of �//W is the product of [χ (KT )− χ (∂KT )] with 1/Card(WT ).
Since KT is a cone, its Euler characteristic is 1. ∂KT is the barycentric
subdivision of Lk(σT , L), where σT is the simplex in the nerve L corresponding
to T ∈ S. (As usual, if T = ∅, we interpret this link to be all of L.) So,
χ (∂KT ) = χ (Lk(σT , L).) Hence,

χ (W) = χorb(�//W) =
∑
T∈S

1− χ (Lk(σT , L))

Card(WT )
. (16.7)
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The second formula for χ (W) comes from the cellulation of � by Coxeter
cells. There is one W-orbit of such cells for each T ∈ S. The dimension of the
cell corresponding to T is Card(T) and its stabilizer is WT . Hence, χorb(�//W)
can also be computed as

χ (W) =
∑
T∈S

ε(T)

Card(WT )
, (16.8)

where ε(T) := (−1)Card(T).

The f-Polynomial of a Simplicial Complex

Given a finite simplicial complex L, denote by fi(L) (or simply by fi) the number
of i-simplices of L. Put f−1(L) = 1 (corresponding to the one empty simplex).
(f−1, f0, . . . , fdim L) is the f -vector of L. The f -polynomial of L is defined by

f (t) :=
dim L∑
i=−1

fit
i+1. (16.9)

Now suppose (W, S) is a right angled. Then, for each T ∈ S, WT is the T-
fold product, (C2)T . So Card(WT ) = 2Card(T) = 2dim σT+1 and (16.8) gives the
following formula for the Euler characteristic:

χ (W) =
dim L+1∑

i=0

(−1)i

2i
fi−1 = f (− 1

2 ). (16.10)

16.2. THE EULER CHARACTERISTIC CONJECTURE

By Poincaré duality, the Euler characteristic of any odd-dimensional, closed
manifold is 0. A closed surface M2 is aspherical if and only if it is not S2

or RP2, i.e., if and only if χ (M2) � 0. Since χ (X × Y) = χ (X)χ (Y), it follows
that if a closed 2k-manifold is the product of k aspherical surfaces, then the sign
of its Euler characteristic is (−1)k. Such considerations led to the following
conjecture about even dimensional, aspherical manifolds.

CONJECTURE 16.2.1. (The Euler Characteristic Conjecture.) Suppose M2k

is a closed, aspherical manifold. Then (−1)kχ (M2k) � 0.

We might as well formulate the following two mild generalizations of the
Euler Characteristic Conjecture.

CONJECTURE 16.2.2. Suppose Q2k is a closed, aspherical 2k-dimensional
orbifold (i.e., suppose Q2k is the quotient orbifold of a proper cocompact action
of a group G on a contractible manifold). Then (−1)kχorb(Q2k) � 0.
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CONJECTURE 16.2.3. Suppose G is a virtual Poincaré duality group of
formal dimension 2k. Then (−1)kχ (G) � 0.

(The notion of a “virtual Poincaré duality group” is defined in Appendix F.5.)

The Chern-Gauss-Bonnet Theorem

Suppose M2k is a closed Riemannian manifold. Then

χ (M2k) =
∫

M2k

ω,

where ω is a certain 2k-form called the “Euler form.” (It is a constant multiple
of the Pfaffian of the curvature.) In dimension 2, ω is just the Gaussian
curvature multiplied by 1/2π .

The Combinatorial Version of the Gauss-Bonnet Theorem

In Definition I.2.1 of Appendix I.2, we define what it means for a metric space
X to be CAT(κ), κ ∈ R. X is nonpositively curved if it is locally CAT(0).
If, in addition, it is complete, then it is aspherical (Corollary I.2.9). Polyhe-
dral metrics of piecewise constant curvature are discussed in Appendix I.3.
In particular, there we define what is meant by a “piecewise Euclidean
metric” on a cell complex. The link of a vertex in a piecewise Euclidean cell
complex is naturally a piecewise spherical cell complex. One of the main
results in Appendix I.3, Theorem I.3.5, states that a piecewise Euclidean cell
complex is nonpositively curved if and only if the link of each of its vertices is
CAT(1).

Suppose σ n−1 is a convex polytope in Sn−1 and u1, . . . , ul are the inward-
pointing unit normal vectors to the codimension-one faces of σ n−1 (see 6.3 and
Appendix I.5). The intersection of the cone in Rn spanned by the ui with Sn−1

is a convex polytope in Sn−1, denoted by σ ∗ and called the dual polytope of σ .
(This is explained in more detail in Definition I.5.2.) The angle determined
by σ is its (n− 1)-dimensional volume, normalized so that the volume of
Sn−1 is 1, i.e., a(σ ) := vol(σ )/ vol(Sn−1). Its exterior angle a∗(σ ) is defined
by a∗(σ ) := a(σ ∗).

Example 16.2.4. If σ ⊂ S1 is a circular arc of length θ , then a(σ ) = θ/2π .
Moreover, σ ∗ is an arc of length π − θ ; so a∗(σ ) = 1

2 − a(σ ).

Example 16.2.5. (The case of an all right simplex.) For the notion of an “all
right” spherical simplex see Definition I.5.7 of Appendix I.5. (σ n−1 is all right
if it is isometric to the intersection of the unit sphere Sn−1 with the positive
“quadrant,” [0,∞)n ⊂ Rn.) Suppose σ n−1 is all right. Since 2n copies of
σ n−1 tessellate Sn−1, a(σ n−1) = 2−n. Since σ n−1 is isometric to its dual, we
also have a∗(σ n−1) = 2−n.
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Example 16.2.6. (A fundamental simplex.) Suppose W is a spherical reflection
group on Sn−1 and that σW is a fundamental simplex. Then a(σW ) = 1/|W|,
where |W| = Card(W).

Now suppose L is a piecewise spherical cell complex. Define

ω(L) :=
∑
σ∈F(L)

(−1)dim σ+1a∗(σ ), (16.11)

Where the sum is over all cells σ in L, including the empty cell, which
contributes +1 to the sum. (It is proved in [63] that ω(L) depends only on
the piecewise spherical metric on L and not on the particular cell structure.) If
� is a piecewise Euclidean cell complex, then for each v ∈ Vert(�), put

ωv := ω(Lk(v,�)), (16.12)

where the piecewise spherical structure on the “link of a vertex, ” Lk(v,�), is
explained in Appendix I.3.

THEOREM 16.2.7. (The Combinatorial Gauss-Bonnet Theorem of [63].) If
� is a finite piecewise Euclidean cell complex, then

χ (�) =
∑

v∈Vert(�)

ωv.

Thus, for piecewise Euclidean cell complexes, ωv plays the role of the Gauss-
Bonnet integrand.

Exercise 16.2.8. Prove this theorem by first showing that if P is any convex
Euclidean polytope, then

∑
a∗(Lk(v, P) = 1, where the summation is over all

vertices of P.

Example 16.2.9. (The case of an all right simplicial complex.) Suppose L is an
all right simplicial complex (Definition I.5.7) and f (t) its f -polynomial defined
in (16.9). By Example 16.2.5, for each (i− 1)-simplex σ of L, a∗(σ ) = 2−i.
So, the contribution of the (i− 1)-simplices to ω(L) is fi−12−i and hence,
ω(L) = f (− 1

2 ). (Compare this with formula (16.10).)

It is conjectured in [55] that the Euler Characteristic Conjecture for nonpos-
itively curved, piecewise Euclidean manifolds should hold for local reasons.
More precisely, there is the following.

CONJECTURE 16.2.10. Suppose L2k−1 is a piecewise spherical cell complex
homeomorphic to the (2k − 1)-sphere (or even to a generalized homology
sphere) and that L is CAT(1). Then (−1)kω(L2k−1) � 0.
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The Combinatorial Gauss-Bonnet Theorem shows that this conjecture im-
plies the Euler Characteristic Conjecture for any nonpositively curved, piece-
wise Euclidean manifold M2k. The conjecture is obviously true in dimension
1. For then, L is a circle, ω(L) = 1− (2π )−1l(L) (where l(L) means the length
of L) and L is CAT(1) if and only if l(L) � 2π (Exercise I.2.2 in Appendix I.2).

16.3. THE FLAG COMPLEX CONJECTURE

Let L be a simplicial complex endowed with its all right piecewise spher-
ical structure (in which each simplex is all right). By Gromov’s Lemma
(Lemma I.6.1), L is CAT(1) if and only if it is a flag complex. So, in this case,
by using Example 16.2.9, Conjecture 16.2.10 becomes the following purely
combinatorial conjecture.

CONJECTURE 16.3.1. (The Flag Complex Conjecture of [55].) Suppose L is
a triangulation of a (2k − 1)-dimensional generalized homology sphere as a
flag complex. Let f (t) be its f -polynomial from (16.9). Then (−1)kf (− 1

2 ) � 0.

Recall Theorem 10.6.1: � is a PL n-manifold if and only if L is a PL
triangulation of Sn−1; moreover, � is a homology n-manifold if and only if
L is a GHSn−1. By (16.10) and Example 16.2.9, the Euler characteristic of the
associated right-angled Coxeter group is ω(L) = f (− 1

2 ). So, the Flag Complex
Conjecture (also known as the Charney–Davis Conjecture) is just the Euler
Characteristic Conjecture (particularly, 16.2.3) in the special case of a right-
angled Coxeter group of type HM.

Suppose a manifold M2k is cellulated by cubes. By declaring each cube to
be a regular Euclidean cube, we get an induced piecewise Euclidean metric on
M2k (Examples I.3.2 (ii)). Since the link of a vertex in a cube is an all right
simplex, the link of a vertex in M2k is cellulated by all right simplices; so, by
Gromov’s Lemma, M2k is nonpositively curved if and only if the link of each
vertex is a flag complex.

PROPOSITION 16.3.2. ([55].) The Euler Characteristic Conjecture for
(homology) manifolds with nonpositively curved, piecewise Euclidean metrics
coming from a cubical structures is equivalent to the Flag Complex Conjecture.

Proof. As explained above, given a flag triangulation L of a GHS2k−1, the
Euler Characteristic Conjecture for the associated right-angled Coxeter group
WL implies (−1)kω(L) = (−1)kχ (WL) � 0. Conversely, if the Flag Complex
Conjecture holds for the link of each vertex in a cubical, nonpositively curved,
homology manifold M2k, then by the Combinatorial Gauss-Bonnet Theorem
we have (−1)kχ (M2k) � 0. �
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THEOREM 16.3.3.

(i) ([55], [269].) The Flag Complex Conjecture is true whenever L is the
barycentric subdivision of the boundary of any convex polytope. More
generally, it holds whenever L = Flag(�) (Definition A.3.2) where
� is any cellulation of S2k−1 as a regular CW complex which is
“shellable.”

(ii) ([91].) The Flag Complex Conjecture is true whenever L is a
triangulation of a rational homology 3-sphere as a flag complex.

(It is explained in [55], how statement (i) follows from a result of Stanley
[269]. In Corollary 20.5.3 it is explained how statement (ii) follows from
results on L2-cohomology.)

NOTES

16.1. The material on “rational Euler characteristics” is from [42, Ex. 1, p.252].

16.2. In the case of Riemannian manifolds of nonpositive sectional curvature, the Euler
Characteristic Conjecture is called the Chern–Hopf Conjecture. It first appeared in print
in Chern’s paper [64] on the general Gauss–Bonnet Theorem. This question (and a
similar question for positive sectional curvature) were asked by H. Hopf. Underlying
Hopf’s question is the question of whether the conjecture follows directly from the
Gauss-Bonnet Theorem, that is, does the nonpositivity of sectional curvature imply that
the sign of the Gauss-Bonnet integrand is (−1)k. Of course, this is exactly what happens
in dimension 2. The same is true in dimension 4. In the four-dimensional case Chern
gives a proof in [64] and attributes the argument to Milnor. (Presumably, Hopf asked
the question after his work relating the Euler characteristic of a hyperbolic manifold
to its volume, but before Chern had formulated the general Gauss–Bonnet Theorem.)
In 1976 R. Geroch [137] showed there is no such result in dimensions � 6 (the sign
of the sectional curvature does not determine the sign of the Gauss-Bonnet integrand).
On the other hand, if the “curvature operator” is negative semidefinite, then the sign of
Gauss–Bonnet integrand is (−1)k.

In the mid 1970s Thurston asked if the Euler Characteristic Conjecture were true
for all aspherical manifolds. In the special case of dimension 4, this conjecture was
included in Kirby’s well-known list of problems in low-imensional topology. In the
case of manifolds with piecewise Euclidean metrics of nonpositive sectional curvature,
the Euler Characteristic Conjecture was explicitly formulated in [55]. The Euler
Characteristic Conjecture is known to hold for closed manifolds which

• are locally symmetric manifolds (e.g., hyperbolic manifolds) or more generally,

• have negative semidefinite curvature operator, or

• are Kähler manifolds with negative sectional curvature ([148]).
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Chapter Seventeen

GROWTH SERIES

Suppose S a finite set of generators for a group G. As in 2.1, l : G→ N is word
length. Define a power series f (t) (the growth series of G) by f (t) :=∑

g∈G tl(g).
Thus, f (t) =∑∞

n=0 antn, where an is the number of vertices in a sphere of
radius n in Cay(G, S). If G is finite, f (t) is a polynomial. Under favorable
circumstances (for example, when G is an “automatic group”), f (t) is a rational
function. One of the first results in this line was the proof of the rationality of
growth series of Coxeter groups. We give the argument in Corollary 17.1.6.
It turns out that in the case of a Coxeter system (W, S), the definition of
the growth series can be extended to a power series W(t) in a certain vector t
of indeterminates. Again, it is a rational function of t. (This improvement will
be important in Chapters 18 and 20.) In 17.1 we give several explicit formulas
for W(t).

17.1. RATIONALITY OF THE GROWTH SERIES

As usual, (W, S) is a Coxeter system. Suppose we are given an index set I and
a function i : S→ I so that i(s) = i(s′) whenever s and s′ are conjugate in W.
(The largest possible choice for the image of i is the set of conjugacy classes
of elements in S and the smallest possible choice is a singleton.) Let t := (ti)i∈I

stand for an I-tuple of indeterminates and let t−1 := (t−1
i )i∈I . Write ts instead

of ti(s). If s1 · · · sl is a reduced expression for w, define tw to be the monomial

tw := ts1 · · · tsl . (17.1)

It follows from Tits’ solution to the word problem (Theorem 3.4.2 (ii)), that tw
is independent of the choice of reduced expression for w. Indeed, two reduced
expressions for w differ by a sequence of elementary M-operations of type (II)
(Definition 3.4.1). Such an operation replaces an alternating subword ss′ · · ·
of length mss′ by the alternating word s′s · · · of the same length but in the
other order. If mss′ is even, s and s′ occur the same number of times in these
subwords, so the monomial tw stays the same. If mss′ is odd, such an operation
does change the number of occurrences of s and s′ in the reduced expression.
However, when mss′ is odd, s and s′ are conjugate in the dihedral subgroup
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which they generate (Lemma 3.1.8) and so, a fortiori, are conjugate in W.
Thus, i(s) = i(s′) and the monomial again remains unchanged.

Similarly, define a monomial in the (ti)−1 by

t−1
w := (ts1 )−1 · · · (tsl )

−1. (17.2)

The growth series of W is the power series in t defined by

W(t) :=
∑
w∈W

tw. (17.3)

For any subset X of W, put

X(t) :=
∑
w∈X

tw. (17.4)

For any subset T of S, we have the the special subgroup WT and its growth
series WT (t). Note that if T is spherical, then WT (t) is a polynomial in t.

LEMMA 17.1.1. Suppose W is finite and wS is the element of longest length
(Section 4.6). Put tS := twS . Then W(t) = tSW(t−1).

Proof. By Lemma 4.6.1, for any w ∈ W, l(wSw) = l(wS)− l(w). So concan-
tenation of a reduced expression for wSw with one for w−1 gives a reduced
expression for wS. Hence, tS = twSwtw−1 . If s1 · · · sl is a reduced expression for
w, then sl · · · s1 is a reduced expression for w−1; so tw−1 = tw and therefore,
twSw = tSt−1

w . This gives

W(t) =
∑

wSw∈W

twSw =
∑
w∈W

tSt−1
w = tSW(t−1).

�
Remark. This lemma means that when W is finite, the coefficients of the
polynomial W(t) have a certain symmetry. If we write W(t) =∑

aJtJ , where
the tJ are monomials in the ti and the aJ are positive integers, then the lemma
implies that each tJ is a factor of tS and that if J′ denotes the index of the
monomial tS/tJ , then aJ = aJ′ . In the case of a single indeterminate t = t, this
condition means that polynomial W(t) is palindromic, i.e., if

W(t) = 1+ a1t + · · · + am−1tm−1 + tm,

then aj = am−j.

As in 4.5, for each T ⊂ S, BT denotes the (∅, T)-reduced elements in W.

LEMMA 17.1.2. ([29, Ex. 26 c), p. 43].) For each T ⊂ S, W(t) = BT (t)WT (t).
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Proof. By Lemma 4.3.3, each element w ∈ W can be written uniquely as w =
uv, where u ∈ BT , v ∈ WT and l(w) = l(u)+ l(v). So, tw = tutv. The lemma
follows. �

Given a finite set T , put ε(T) := (−1)Card(T). In the next lemma we recall a
basic formula from combinatorics. (A generalization is sometimes called the
Möbius Inversion Formula.) The proof is left as an exercise.

LEMMA 17.1.3. ([29, Ex. 25, p. 42].) Suppose f , g are two functions from the
power set of a finite set S to an abelian group such that for any T ⊂ S,

f (T) =
∑
U⊂T

g(U).

Then for any T ⊂ S,

g(T) =
∑
U⊂T

ε(T − U)f (U).

Recall Definition 4.7.4: if T ⊂ S, WT is the set of w ∈ W with In(w) = T .

LEMMA 17.1.4. ([29, Ex. 26, pp. 42–43].) For any T ⊂ S,

WT (t) = W(t)
∑
U⊂T

ε(T − U)

WS−U(t)
.

Proof. By Lemma 4.3.3 (ii), an element w ∈ W lies in BS−T if and only if
In(w) ⊂ T . Hence, BS−T can be decomposed as a disjoint union:

BS−T =
⋃
U⊂T

WU.

So

BS−T (t) =
∑
U⊂T

WU(t). (17.5)

Apply Lemma 17.1.3 with f (T) = BS−T (t) and g(T) = WT (t), to get

WT (t) =
∑
U⊂T

ε(T − U)BS−U(t). (17.6)

By Lemma 17.1.2, BS−U(t) = W(t)/WS−U(t). Substituting this into (17.6), we
get the formula of the lemma. �

By Lemma 4.7.2, WT is nonempty if and only if T is spherical; so the left-
hand side of the formula in Lemma 17.1.4 is 0 whenever T is not spherical.
The special case T = S is the following.
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COROLLARY 17.1.5

(i) Suppose W is finite and tS is the monomial corresponding to its
element of longest length. Then

tS = W(t)
∑
T⊂S

ε(T)

WT (t)
.

(ii) If W is infinite, then

0 =
∑
T⊂S

ε(T)

WT (t)
.

Proof. Apply Lemma 17.1.4 in the case T = S, to get

WS(t) = W(t)
∑
U⊂S

ε(S− U)

WS−U(t)
.

Suppose W is finite. Then, by Lemma 4.6.1, WS = {wS}; so, WS(t) = tS.
Reindex the sum by setting T = S− U, to get (i).

If W is infinite, then WS = ∅ and WS(t) = 0. Reindex the sum by setting
T = S− U and then divide by W(t) to get (ii). �

COROLLARY 17.1.6. W(t) = f (t)/g(t), where f , g ∈ Z[t] are polynomials
with integral coefficients.

Proof. When W is finite, W(t) is a polynomial with integral coefficients.
When W is infinite, we can use Corollary 17.1.5 (ii) to express 1/W(t) as an
integral linear combination of the 1/WT (t) with T � S. So, the result follows
by induction on Card(S). �

For any T ∈ S, set B′T := BTwT .

LEMMA 17.1.7. An element w ∈ W lies in B′T if and only if it is the longest
element in wWT. (In particular, B′T is a set of coset representatives for W/WT.)
Moreover, B′T = {w ∈ W | T ⊂ In(w)}.
Proof. By Lemma 4.3.3 (i), w can be written uniquely in as w = uv, where
u ∈ BT , v ∈ WT and where l(w) = l(u)+ l(v) (by Lemma 4.3.1). So, w is the
longest element in its coset if and only if v is the longest element of WT . This
proves the first sentence of the lemma.

To prove the final sentence, write w as uwIn(w), where u is (∅, In(w))-reduced.
If w ∈ B′T , then w ends in the letters of T; so, T ⊂ In(w). Conversely, if
T ⊂ In(w), then, by Lemma 4.6.1, we can write wIn(w) = awT with a being
(∅, T)-reduced and l(wIn(w)) = l(a)+ l(wT ). So, l(w) = l(ua)+ l(wT ), ua ∈ BT

and therefore, w ∈ B′T . �
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LEMMA 17.1.8. For any T ∈ S,

WT (t) = W(t)
∑

U∈S�T

ε(U − T)

WU(t−1)
.

Proof. By Lemma 17.1.7, B′T (t) = tTBT (t). Since B′T = {w ∈ W | T ⊂ In(w)}
(also by Lemma 17.1.7), B′T can be decomposed as a disjoint union

B′T =
⋃

U∈S�T

WU. (17.7)

Hence,

B′T (t) =
∑

U∈S�T

WU(t). (17.8)

If a subset T of S is not spherical, put B′T := ∅ and B′T (t) = 0. We can apply
Lemma 17.1.3 with f (T) = B′T (t) and g(T) = WT (t), to get

WT (t) =
∑

U∈S�T

ε(U − T)B′U(t). (17.9)

By Lemma 17.1.1,

tT
WT (t)

= 1

WT (t−1)
.

So, by Corollary 17.1.5 (i) and Lemma 17.1.2,

B′T (t) = tTBT (t) = tTW(t)
WT (t)

= W(t)
WT (t−1)

.

Substituting this into (17.9) yields the formula in the lemma. �

THEOREM 17.1.9. ([270].)

1

W(t−1)
=

∑
T∈S

ε(T)

WT (t)
.

Proof. It is immediate from the definitions that W∅ = {1} and W∅(t) = 1.
When T = ∅ the formula of Lemma 17.1.8 is

1 = W(t)
∑
U∈S

ε(U)

WU(t−1)
.

Replacing t by t−1 and U by T , we get the result. (A different proof can be
found in [53].) �
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As usual, L denotes the nerve of (W, S). For each T ∈ S, let LT := Lk(σT , L),
where σT is the simplex of L corresponding to T and where the “link” of σT is
as defined in Appendix A.6. The face poset of LT is isomorphic with S>T . (The
face poset is defined in Example A.2.3.) By convention, L∅ := L. By definition,
the Euler characteristic of LT is given by the formula

χ (LT ) :=
∑

U∈S>T

(−1)dim σU−T = −
∑

U∈S>T

ε(U − T). (17.10)

THEOREM 17.1.10. ([53].)

1

W(t)
=

∑
T∈S

1− χ (LT )

WT (t)
.

The proof of this depends on the following standard fact.

LEMMA 17.1.11. Suppose U is a subset of a finite set S. Then
∑

U⊂T⊂S

ε(T) = 0.

Proof of Theorem 17.1.10. When W is finite, LT is a simplex for each T �= S
and LS = ∅. Hence,

1− χ (LT ) =
{

0 if T �= S,

1 if T = S.

So when W is finite the theorem is the tautology 1/W(t) = 1/W(t).
Suppose W is infinite. We can rewrite Corollary 17.1.5 (ii) as

1

W(t)
= −ε(S)

∑
T�S

ε(T)

WT (t)
. (17.11)

The proof is by induction on Card(T). For any T ⊂ S, let S(T) be the set
of spherical subsets of T and for any U ∈ S(T), let LU(T) be the simplicial
complex corresponding to S(T)>U . Using (17.11) and the inductive hypothesis,
we get

1

W(t)
= −ε(S)

∑
T�S

ε(T)
∑

U∈S(T)

1− χ (LU(T))

WU(t)
. (17.12)

The coefficient of 1/WU(t) on the right hand side of (17.12) is

−ε(S)
∑

U⊂T�S

ε(T)[1− χ (LU(T))].
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We want to prove this coefficient is equal to 1− χ (LU), i.e.,
∑

U⊂T⊂S

ε(T)[1− χ (LU(T))] = 0.

By Lemma 17.1.11, the previous equation is equivalent to
∑

U⊂T⊂S

ε(T)χ (LU(T)) = 0. (17.13)

Let T ′ ∈ S>U and let σT ′ be the corresponding simplex in LU . The contribution
of T ′ to the left-hand side of (17.13) is

(−1)dim σT′
∑

T ′⊂T⊂S

ε(T),

which, by Lemma 17.1.11, is 0. Thus, (17.13) holds and (17.12) can be
rewritten as the formula of the theorem. �

The Region of ConvergenceR
Let z := (zi)i∈I be a point in CI . Put z−1 := (z−1

i )i∈I and for each T ⊂ S, put

RT := {z ∈ CI | WT (z) converges}, (17.14)

R−1
T := {z ∈ (C∗)I | WT (z−1) converges}. (17.15)

WriteR andR−1 instead ofRS andR−1
S . Note that when T is spherical, WT (t)

is a polynomial; hence,R = CI .

Example 17.1.12. (The infinite dihedral group.) Suppose S = {s1, s2},
ms1s2 = ∞, so that W is the infinite dihedral group D∞. Its nerve is the
0-sphere. Suppose I = {1, 2} and S→ I sends sj to j. Using Theorem 17.1.9
and Lemma 17.1.1, we compute

1

W(t)
= 1− t1t2

(1+ t1)(1+ t2)
.

So,R = {(z1, z2) | |z1||z2| < 1}. In particular, (0, 1)2 ⊂ R.

The proof of the next lemma is an easy exercise.

LEMMA 17.1.13. Suppose (W, S) decomposes as a product (W1 ×W2,
S1 ∪ S2). For i = 1, 2, let Ii be the index set for Si and ti an Ii-tuple of
indeterminates. Then W(t1, t2) = W1(t1)W2(t2). Moreover, R = R1 ×R2,
where R, R1, and R2 are the regions of convergence for W(t1, t2), W1(t1),
and W2(t2), respectively.
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Example 17.1.14. Suppose W = (D∞)n, the n-fold product of infinite
dihedral groups. Its nerve L is then the n-fold join of copies of S0, i.e.,
it is the boundary complex of an n-octahedron. By Example 17.1.12 and
Lemma 17.1.13, (0, 1)I ⊂ R.

The Radius of Convergence ρ

When I is a singleton, t is a single indeterminate t, WT (t) is a power series
in one variable and the interior of the region of convergence is a disk about
the origin in C. Its radius (the radius of convergence) is denoted ρT . Write
ρ instead of ρS. As in Corollary 17.1.6, express W(t) as a rational function
f (t)/g(t) where f and g are polynomials with no common factors. Then ρ is the
smallest modulus of a root of g(t). Since the coefficients of the power series
W(t) are positive, ρ must be a positive real root of this modulus, i.e., ρ is the
smallest root of g(t).

Example 17.1.15. (Right-angled polygon groups.) Suppose W is right angled
with nerve a k-gon, k � 4, and that t is a single indeterminate t. Using
Theorem 17.1.9 and Lemma 17.1.1 as before, we get

1

W(t)
= 1− kt

1+ t
+ kt2

(1+ t)2
= t2 + (2− k)t + 1

(1+ t)2
.

The roots of the numerator are ρ and ρ−1; so

ρ±1 = (k − 2)∓√k2 − 4k

2
,

e.g., ρ = 3−√5
2 when k = 5.

17.2. EXPONENTIAL VERSUS POLYNOMIAL GROWTH

We recall what it means for a finitely generated group G to be “amenable.” Let
� denote its Cayley graph with respect to some finite set of generators. For
any subset F ⊂ G, let ∂F denote the set of g ∈ F such that there is an edge of
� joining g to an element not in F. G satisfies the Følner Condition (and is
an amenable group) if for any positive number ε there is a finite subset F ⊂ G
such that

Card(∂F)

Card(F)
< ε.

In the next proposition we list six other conditions equivalent to the
condition that the radius of convergence of W(t) is 1.
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PROPOSITION 17.2.1. The following conditions on an infinite Coxeter sys-
tem (W, S) are equivalent.

(i) W is amenable.

(ii) W does not contain a free group on two generators.

(iii) W is not large (i.e., W does not contain a finite index subgroup �
which maps onto F2; cf. Definition 14.1.1).

(iv) W is virtually abelian.

(v) (W, S) decomposes as (W0 ×W1, S0 ∪ S1) where W1 is finite and
W0 is a cocompact Euclidean reflection group.

(vi) ρ = 1.

(vii) W has subexponential growth.

Proof. The implication (i) =⇒ (ii) is a standard fact.

(ii) =⇒ (iii). Suppose for some subgroup � of W we have a surjection
f : �→ F2 where F2 is the free group on {x1, x2}. Choose
γ1 ∈ f−1(x1), γ2 ∈ f−1(x2). Then 〈γ1, γ2〉 is a free
subgroup of W.

(iii) =⇒ (iv). By Theorem 14.1.2, if W is not virtually abelian, then it is
large.

(iv) =⇒ (v). This implication was proved as Theorem 12.3.5.

(v) =⇒ (vi). Since a Euclidean reflection group is virtually free abelian,
it has polynomial growth and therefore, the radius of
convergence of its growth series is 1. (In fact, the poles of
its growth series are all roots of unity; see Remark 17.2.2
below.)

(vi) =⇒ (vii) is obvious.

(vii) =⇒ (i) by the Følner Condition for amenability. �

Remark 17.2.2. Suppose W is a (cocompact) Euclidean reflection group.
Consider the case where (W, S) is irreducible. Let W ′ be the finite linear
reflection group obtained by dividing out the translation subgroup of W and
let m1, . . . , mn be the exponents of W ′. (The exponents are the degrees of
generators for the invariant polynomials in the ring of invariant polynomials
on the canonical representation of W ′; see [29].) According to [29, Ex. 10,
p. 245], the growth series of W is given by the following formula of Bott [28]:

W(t) =
n∏

i=1

1+ t + · · · + tmi

1− tmi
.
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In particular, all poles of W(t) are roots of unity. We can reach the same
conclusion without the assumption of irreducibility, since the growth series
of (W, S) is the product of the growth series of its irreducible factors.

17.3. RECIPROCITY

DEFINITION 17.3.1. Let δ = ±1. The rational function W(t) is δ-reciprocal
if W(t−1) = δW(t).

DEFINITION 17.3.2. A locally finite cell complex 
 is an Euler complex
of type δ if for each (nonempty) cell σ in 
, Lk(σ ,
) has the same Euler
characteristic as Sn−dim σ−1, with δ = (−1)n. In other words, we require

χ (Lk(σ ,
)) = 1− δ(−1)dim σ .

If, in addition,
 is a finite complex and the above also holds for σ = ∅, then it
is an Euler sphere of type δ (By convention, dim ∅ = −1 and Lk(∅,
) = 
.)

Thus, 
 is a Euler complex of type δ if and only if the link of each vertex is
an Euler sphere of type −δ. If 
 is a homology n-manifold, then it is an Euler
complex of type (−1)n; if it is a generalized homology n-sphere, then it is an
Euler sphere of type (−1)n. The intuition behind the next lemma is that any
closed odd-dimensional manifold has Euler characteristic 0 and hence, is an
Euler sphere of type −1.

LEMMA 17.3.3. If 
 is finite Euler complex of type −1, then χ (
) = 0 (and
hence, 
 is automatically an Euler sphere of type −1).

Proof. As in 7.2, partition 
 into “dual cones.” To do this, first recall from
Appendix A.3 that the barycentric subdivision of
 is the geometric realization
|F(
)| of its face poset. For each cell σ ∈ 
, set

Dσ := |F(
)�σ |, ∂Dσ := |F(
)>σ | Ḋσ := Dσ − ∂Dσ .

(Dσ is the dual cone to σ .) Since Dσ is a cone (on ∂Dσ ), χ (Dσ ) = 1 and
since ∂Dσ is (the barycentric subdivision of) Lk(σ ,
), χ (∂Dσ ) = χ (Lk(σ ,
).
Since (the barycentric subdivision of)
 can be partitioned as the disjoint union
of the open dual cones (Ḋσ )σ∈F(
), we have

χ (
) =
∑

1− χ (Lk(σ ,
) =
∑

1− (1+ (−1)dim σ )

= −
∑

(−1)dim σ = −χ (
).

So χ (
) = 0. �
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THEOREM 17.3.4. ([53].) Let (W, S) be a Coxeter system and L its nerve. If
L is an Euler sphere of type −δ, with δ ∈ {±1}, then W(t) is δ-reciprocal.

Proof. By hypothesis, for each T ∈ S, 1− χ (Lk(T , L)) = 1− (1−
δ(−1)dim T ) = δ(−1)Card(T) = δε(T). So, combining the formulas in
Theorems 17.1.9 and 17.1.10, we get 1/W(t) = δ/W(t−1). �

COROLLARY 17.3.5. If W is type HMn, then W(t) is (−1)n-reciprocal.

Remarks 17.3.6

(i) When t = t, a single indeterminate, if we substitute t = 0 into the
formula of Theorem 17.1.9, we get

1

W(∞)
=

∑
T∈S

ε(T) = 1−
∑
σ∈L

(−1)dim(σ ) = 1− χ (L).

(ii) If W(t) is δ-reciprocal, then

1 = 1/W(0) = δ/W(∞) = δ(1− χ (L)),

Hence, χ (L) = 1− δ.
(iii) If the nerve L is an Euler sphere of type −δ, then � is an Euler

complex of type δ.

17.4. RELATIONSHIP WITH THE h-POLYNOMIAL

Suppose L is a simplicial complex with vertex set S. As in Example A.2.3
and in Sections 7.2 and 10.8, S(L) denotes the face poset of L (including the
empty simplex). As usual, we identify a simplex in S(L) with its vertex set. If
T ∈ S(L), σT denotes the corresponding geometric simplex in L spanned by T .
S (m)(L) := {T ∈ S(L) | Card(T) = m} is the set of (m− 1)-simplices. Suppose
dim L = n− 1.

In formula (16.9) of 16.1, we defined the “f -polynomial,” fL(t), of L by

fL(t) :=
∑

T∈S(L)

tCard(T) =
n∑

i=0

fi−1ti,

where fm is the number of m-simplices of L and f−1 = 1. Its h-polynomial,
hL(t), is defined by

hL(t) := (1− t)nfL

(
t

1− t

)
. (17.16)
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Using the h-polynomial, the Flag Complex Conjecture 16.3.1 can be reformu-
lated as follows.

CONJECTURE 17.4.1. (Reformulation of the Flag Complex Conjecture.)
Suppose L is a triangulation of a GHS2k−1 as a flag complex. Then
(−1)khL(−1) � 0.

To see that this is equivalent to Conjecture 16.3.1, substitute t = −1 into
(17.16) to get hL(−1) = 2nfL(− 1

2 ). So, hL(−1) and fL(− 1
2 ) have the same

sign.
Now suppose that (W, S) is right-angled. Then for each spherical subset T ,

WT
∼= (Z/2)Card(T). So, WT (t) = (1+ t)Card(T) and hence,

1

WT (t)
=

(
1

1+ t

)Card(T)

and
1

WT (t−1)
=

(
t

1+ t

)Card(T)

. (17.17)

PROPOSITION 17.4.2. Suppose (W, S) is a right-angled Coxeter system and
its nerve L has dimension n− 1. Then

1

W(t)
= hL(−t)

(1+ t)n
.

Proof. By Theorem 17.1.9 and (17.17),

1

W(t)
=

∑
T∈S

ε(T)

WT (t−1)
=

∑
T∈S

( −t

1+ t

)Card(T)

= fL

( −t

1+ t

)
= hL(−t)

(1+ t)n
.

�

Example 17.4.3. (Right-angled three-dimensional polytope groups.) Suppose
(W, S) is right angled with nerve L a flag triangulation of S2. (It is a classical
result that the dual of L is isomorphic to the boundary complex of a simple,
convex polytope.) By Proposition 17.4.2, 1/W(t) = hL(−t)/(1+ t)3. By the
definition (17.16), hL(−t) = (1+ t)3fL( −t

1+t ), which simplifies to

hL(−t) = 1− (f0 − 3)t + (f1 − 2f0 + 3)t2 − (f0 − f1 + f2 − 1)t3

= 1− (f0 − 3)t + (f0 − 3)t2 − t3

= −(t − 1)(t2 − (f0 − 4)t + 1).
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(To get the second equality, use 3f2 = 2f1 and Euler’s formula f0 − f1 + f2 =
2.) If f0 � 6, there are three positive real roots, ρ, 1, and ρ−1, where

ρ±1 = (f0 − 4)∓
√

(f0 − 4)2 − 4

2
.

Exercise: Show that if L is a flag triangulation of S2, then f0 � 6.

NOTES

17.1. In the case where t is a single indeterminate, most of the results of this section
come from [29, Ex. 26, pp. 42–43]. The idea of extending the results from this exercise
to an I-tuple of indeterminates comes from [255]. Lemma 17.1.8 is due to Steinberg
[270]. For more about growth series of Coxeter groups, see [48, 129, 234, 235] or
[26, §7.1].

In Chapter 20 we will explain a connection between this material on growth series
and “weighted L2-Betti numbers.” The “weight” is a certain I-tuple q of positive
real numbers. The weighted L2-Euler characteristic of � turns out to be 1/W(q)
(Proposition 20.2.4). This number also turns up in Section 18.4 of the next chapter
as the “Euler Poincaré measure” of a building (Theorem 18.4.3). In Theorem 20.4.2 we
give a different proof of reciprocity for growth series of Coxeter groups of type HM
using Poincaré duality for weighted L2-cohomology (Corollary 17.3.5). The regionsR
andR−1 of 17.1 also play a key role in the results of Chapter 20.

17.2. The usual definition of an “amenable” group G is that it admits an invariant
“mean” M : L∞(G)→ R satisfying certain conditions. For finitely generated groups
this definition is equivalent to the Følner Condition.
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Chapter Eighteen

BUILDINGS

Buildings were introduced by Tits as an abstraction of certain incidence
geometries which had been studied earlier in the context of algebraic groups
(often over finite fields). As a combinatorial object, a building is a generaliza-
tion of a Coxeter system. It is first of all a “chamber system” as defined below.
The additional data for a chamber system to be a building consists of a Coxeter
system (W, S) and a “W-valued distance function” on the set of chambers. (This
is different from, but equivalent to, the classical definition of a building in [43]
as a certain type simplicial complex together with a system of subcomplexes
called “apartments,” subject to certain axioms.)

One can define the “geometric realization of a building” analogously to the
simplicial complex �(W, S) in Chapter 7. In fact, the geometric realization of
a building of type (W, S) will contain many copies of �(W, S), each of which
is called an “apartment.” The basic picture to keep in mind is the case where
W is the infinite dihedral group D∞. � is then a copy of the real line cellulated

by edges of unit length. The geometric realization of a building of type
∞◦−−−◦

is a tree (and any tree without extreme points is such a building). In � exactly
two chambers (= edges) meet along a mirror (= vertex), while in a building
(= tree) there can be more than two chambers along a mirror. In 18.2, we
discuss other possible realizations of a building as a topological space using
a construction similar to the one in Chapter 5. In 18.3 we use Moussong’s
Theorem to prove that the geometric realization of any building is CAT(0).

18.1. THE COMBINATORIAL THEORY OF BUILDINGS

Chamber Systems

A chamber system over a set S is a set � together with a family of
equivalence relations on� indexed by S. The elements of� are chambers. Two
chambers are s-equivalent if they are equivalent via the equivalence relation
corresponding to s; they are s-adjacent if they are s-equivalent and not equal.

Example 18.1.1. (The chamber system of a barycentric subdivision.) As in
Appendix B.1, suppose that P is a (n+ 1)-dimensional convex polytope, that
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b(∂P) is the barycentric subdivision of its boundary and that Cham(b(∂P)) is
the set of top-dimensional simplices of b(∂P). Each vertex of P has a type in
{0, 1, . . . , n}—it is the dimension of the face of which the vertex is a barycenter.
Each codimension-one face of a chamber has a cotype—it is the type of an
opposite vertex. Call two chambers i-adjacent if they are adjacent simplices
across a face of cotype i. This gives Cham(b(∂P)) the structure of a chamber
system over {0, 1, . . . , n}.

Example 18.1.2. (The chamber system associated to a family of subgroups.)
Let G be a group, B a subgroup, and (Gs)s∈S a family of subgroups such that
each Gs contains B. Define a chamber system� = �(G, B, (Gs)s∈S) as follows:
� := G/B and chambers gB and g′B are s-equivalent if they have the same
image in G/Gs.

Let � be a chamber system over S. A gallery in � is a finite sequence of
chambers (ϕ0, . . . ,ϕk) such that ϕj−1 is adjacent to ϕj, 1 � j � k. The type of
the gallery is the word s = (s1, . . . , sk) where ϕj−1 is sj-adjacent to ϕj. If each
sj belongs to a given subset T of S, then it is a T-gallery. A chamber system
is connected (or T-connected) if any two chambers can be joined by a gallery
(or a T-gallery). The T-connected components of a chamber system � are its
T-residues. For example, an {s}-residue is the same thing as an s-equivalence
class; so, in Example 18.1.2, an {s}-residue is a coset gGs.

The rank of a chamber system over S is the cardinality of S. A morphism
f : �→ �′ of chamber systems over the same set S is a function which
preserves s-equivalence classes, for all s ∈ S. A group G of automorphisms
of � is chamber transitive if it is transitive on �. Suppose G is chamber
transitive. Fix ϕ ∈ � and for each s ∈ S choose an {s}-residue containing ϕ.
Let B denote the stabilizer of ϕ and Gs the stabilizer of the {s}-residue. Clearly,
� is isomorphic to the chamber system �(G, B, (Gs)s∈S) of Example 18.1.2.

Suppose�1, . . . ,�k are chamber systems over S1, . . . , Sk. Their direct prod-
uct �1 × · · · ×�k is a chamber system over the disjoint union S1 ∪ · · · ∪ Sk.
Its chambers are k-tuples (ϕ1, . . . ,ϕk) with ϕi ∈ �i. For s ∈ Si, the chamber
(ϕ1, . . . ,ϕk) is s-adjacent to (ϕ′1, . . . ,ϕ′k) if ϕj = ϕ′j for j �= i and ϕi and ϕ′i are
s-adjacent.

Buildings

Suppose (W, S) is a Coxeter system and M = (mst) is its Coxeter matrix
(Definition 3.3.1). A building of type M (or of type (W, S)) is a chamber system
� over S such that

(i) for all s ∈ S, each s-equivalence class contains at least two
chambers, and
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(ii) there exists a W-valued distance function δ : �×�→ W, meaning
that given s an M-reduced word (Section 3.4), chambers ϕ and ϕ′

can be joined by a gallery of type s if and only if δ(ϕ,ϕ′) = w(s)
(where if s = (s1, . . . , sk) is a word, then w(s) := s1 · · · sk is its value).

A building of type (W, S) is spherical if W is finite; it is Euclidean (or affine
type) if W is a Euclidean reflection group. A residue of type T in a building
is spherical if T is spherical subset. A building is thick if for all s ∈ S, each
s-equivalence class has at least three elements.

Example 18.1.3. (Thin buildings.) Let W = �(W, {1}, (W{i})s∈S), where the
notation is as in Example 18.1.2. In other words, the set of chambers is W
and two chambers w and w′ are s-adjacent if and only if w′ = ws. There is
a W-valued distance function δ : W ×W → W defined by δ(w, w′) = w−1w′.
Thus, W is a building, called the abstract Coxeter complex of W.

Example 18.1.4. (Rank-1 buildings.) Suppose that � is a building of rank 1.
W is the cyclic group of order 2. � can be an arbitrary set with more than two
elements. There is only one possibility for δ : �×�→ W; it must map the
diagonal of�×� to the identity element and the complement of the diagonal
to the nontrivial element. Thus, any two chambers are adjacent.

Example 18.1.5. (Direct products.) Suppose that M1, . . . , Mk are Coxeter
matrices over S1, . . . , Sk, respectively. Let S denote the disjoint union
S1 ∪ · · · ∪ Sk and define a Coxeter matrix M over S by setting mst equal to the
corresponding entry of Mp whenever s, t belong to the same component Sp of S
and mst = 2 when they belong to different components. Then W = W1 × · · · ×
Wk where W = W(M) and Wp = W(Mp). Suppose �1, · · · ,�k are buildings
over S1, . . . , Sk. Their direct product � = �1 × · · · ×�k is a chamber system
over�. Moreover, the direct product of the Wp-valued distance functions gives
a W-valued distance function on �. Hence, � is a building of type M.

Example 18.1.6. (Trees.) Suppose W is the infinite dihedral group. Any tree
is bipartite, i.e., its vertices can be labeled by the two elements of S so that
the vertices of any edge have distinct labels. Suppose T is a tree with such a
labeling and suppose no vertex of T is extreme. Let� be the set of edges of T .
Given s ∈ S, call two edges s-equivalent if they meet at a vertex of type s. An
{s}-residue is the set of edges in the star of a vertex of type s. A gallery in �
is a sequence of adjacent edges in T . The type of a gallery is a word in S. The
word is reduced if and only if the gallery is minimal. Given two edges ϕ,ϕ′ of
T , there is a (unique) minimal gallery connecting them. The corresponding
word represents an element of w ∈ W and δ(ϕ,ϕ′) := w. Thus, every such

tree T defines a building of type
∞◦−−−◦. Not surprisingly, in the next section
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we will define the “geometric realization of a building” so that for the building
� corresponding to T it is T .

Example 18.1.7. (Generalized polygons.) A generalized m-gon is a bipartite
graph of diameter m and girth 2m. (If each edge has length 1, the diameter
of a graph is the maximum distance between two points; its girth is the
length of the shortest circuit.) Generalized 3-gons are also called projective
planes. In the same way as trees are the geometric realizations of buildings

of type
∞◦−−−◦, generalized m-gons are the geometric realizations of buildings

of type
m◦−−−◦. To be more specific, given a generalized m-gon P, put � =

Edge(P) and color the 2 different types of vertices by the fundamental set of
generators, {s, t}, of the dihedral group Dm. As before, a gallery is a
sequence of adjacent edges and it is minimal if and only if its type s is an
M-reduced word.

For a proof of the next result we refer the reader to [248, p. 29].

PROPOSITION 18.1.8. In a thick generalized m-gon, vertices of the same
type have the same valence and if m is odd, all vertices have the same
valence.

We denote the valencies at vertices of type s and t by qs + 1 and qt + 1,
respectively.

THEOREM 18.1.9. (Feit-Higman [126].) Finite, thick, generalized m-gons
exist only for m = 2, 3, 4, 6, or 8. Moreover, there are the following restrictions
on the parameters qs and qt:




qsqt(qsqt + 1)

qs + qt
is an integer for m = 4,

st is a perfect square for m = 6,

2st is a perfect square for m = 8.

Example 18.1.10. (Graph products and right-angled buildings.) Let ϒ be a
simplicial graph with vertex set S. As in Example 7.1.7, we have an associated
right-angled Coxeter system (W, S) and its Coxeter matrix M. Suppose we are
given a family of groups (Gs)s∈S. For each T ∈ S, let GT denote the direct
product

GT :=
∏
s∈T

Gs
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(G∅ = {1}). For T � T ′ ∈ S, let f T
T ′ : GT → GT ′ be the natural inclusion.

The graph product G of the family (Gs)s∈S (with respect to ϒ) is defined to be
the direct limit:

G := lim−→
T∈S

GT .

Equivalently, we could have defined it as the direct limit of the smaller family
{GT | T ∈ S�2}, where S�k := {T ∈ S | Card(T) � k}. (See the beginning of
Appendix G.1 for the definition of the direct limit of a poset of groups.)
Alternatively, G could have been defined as the quotient of the free product
of the (Gs)s∈S by the normal subgroup generated by all commutators of the
form [gs, gt], with gs ∈ Gs, gt ∈ Gt and mst = 2.

It is shown in [76] that the chamber system�(G, {1}, (Gs)s∈S) is a building of
type (W, S). The W-valued distance function δ : G× G→ W can be defined as
follows. First, note that it is clear that any g in G can be written in the form g =
gs1 · · · gsk , with gsi ∈ Gsi − {1} and with s = (s1, . . . , sk) M-reduced. Moreover,
if g′ = gs′1 · · · gs′k is another such representation, then g = g′ if and only if we
can get from one representation to the other by a sequence of replacements
of the form, gsgt → gtgs with mst = 2. In particular, the words s = (s1, . . . , sk)
and s′ = (s′1, . . . , s′k) must have the same image in W. If g = gs1 · · · gsk , then
define δ(1, g) = w(s) and then extend this to G× G by δ(g, g′) = δ(1, g−1g′).
Then δ has the desired properties.

Example 18.1.11. (Spherical buildings of type An.) Here we describe one of
the most well-known and important examples of a building. Let F be a field
and V = Fn+1. Define � to be the set of all complete flags of subspaces of V:

V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ V ,

where dimF(Vk) = k. We can give this the structure of a chamber system over
I := {1, . . . , n} by calling two complete flags i-adjacent if they differ only in
their ith term (i.e., the subspace of dimension i). Fix the base chamber to be
the standard flag: Vk = Fk. The group G = GL(n+ 1,F) acts transitively on
�. So, as in Example 18.1.2, � = �(G, B, (Gi)i∈I), where G = GL(n+ 1,F),
B is the stabilizer of the standard flag (i.e., B is the subgroup of upper
triangular matrices) and Gi is the stabilizer of the standard flag after the ith

subspace has been deleted. It turns out that this is a building associated to
the Coxeter system of type An. The Coxeter group W is the symmetric group
Sn+1 (see Example 6.7.1). Its W-valued distance function is defined as
follows. Suppose ϕ = {V1, . . . , Vn}, ϕ′ = {V ′1, . . . , V ′n} are two chambers. Put
V0 = V ′0 = {0} and Vn+1 = V ′n+1 = V . Define σ (i) := min{j | V ′i ⊂ V ′i−1 +
Vj}. One checks that σ is a permutation in Sn+1 and that δ(ϕ,ϕ′) := σ is a
W-valued distance function and hence, that � is a building. When n = 2, such
buildings are generalized 3-gons.
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Apartments and Retractions

Suppose� is a building of type (W, S). Let W be the abstract Coxeter complex
of Example 18.1.3. A W-isometry of W into � is a map α : W → � which
preserves W-distances, i.e.,

δ�(α(w),α(w′)) = δW(w, w′)

for all w, w′ ∈ W. (δ� is the W-valued distance function on� and δW(w, w′) =
w−1w′.) An apartment in � is an isometric image α(W) of W in �.

The set of W-isometries of W with itself is bijective with W. Indeed, given
w ∈ W, there is a unique isometry αw : W → W sending 1 to w, defined by
αw(w′) = ww′. It follows that an isometry α : W → � is uniquely determined
by its image A = α(W) together with a chamber ϕ = α(1).

Fix an apartment A in � and a base chamber ϕ in A. Define a map ρϕ,A :
�→ A, called the retraction of � onto A with center ϕ, as follows. Suppose
A = α(W) with α(1) = ϕ. Set ρϕ,A(ϕ′) = α(δ(ϕ,ϕ′)). The next lemma is an
easy exercise for the reader.

LEMMA 18.1.12. The map ρϕ,A : �→ A is a morphism of chamber systems.

In other words, if δ(ϕ′,ϕ′′) = s, then either ρ(ϕ′) = ρ(ϕ′′) or δ
(
ρ(ϕ′),

ρ(ϕ′′)
) = s, where ρ = ρϕ,A.

COROLLARY 18.1.13. Let ρ = ρϕ,A. If δ(ϕ′,ϕ′′) ∈ WT, then δ(ρ(ϕ′),
ρ(ϕ′′)) ∈ WT.

LEMMA 18.1.14. Let ρ = ρϕ,A : �→ A. If A′ is another apartment contain-
ing ϕ, then ρ|A′ : A′ → A is a W-isometry (i.e., ρ|A′ is an isomorphism).

Proof. Let α : W → A and β : W → A′ be W-isometries such that α(1) =
ϕ = β(1). If ϕ′ ∈ A′, then ρ(ϕ′) = α(δ(ϕ,ϕ′)) and β(δ(ϕ,ϕ′)) = ϕ′. Therefore,
ρ(ϕ′) = α ◦ β−1(ϕ′), i.e., ρ|A′ = α ◦ β−1. �

The Thickness Vector

A building � of type (W, S) has finite thickness if, for all s ∈ S, each
s-equivalence class is finite. If � has finite thickness, then it follows from the
existence of a W-distance function that each of its spherical residues is finite.

Let us say that � is regular if, for each s ∈ S, each s-equivalence class
has the same number of elements. When finite, we denote this number by
qs + 1. For other examples, note that Proposition 18.1.8 asserts that every
finite, thick, generalized m-gon is regular. The proof Proposition 18.1.8 also
gives the following lemma valid when the generalized m-gon is regular but not
necessarily thick.
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LEMMA 18.1.15. Suppose P is a finite, regular, generalized m-gon with m
odd. Then any two vertices of P have the same valence.

Proof. Let x and y be opposite vertices in P (i.e., d(x, y) = m). Let e be an
edge at y and y′ its other vertex. Since d(x, y) > d(x, y′) and the girth is m, this
implies that there is a unique edge path of length m− 1 from y′ to x. This
defines a bijection from the set of edges at y to those at x. Since m is odd, x and
y have different types, so qs = qt. �

COROLLARY 18.1.16. Suppose � is a regular building (of finite thickness)
of type (W, S). If s and s′ are conjugate elements of S, then qs = qs′ .

Proof. Suppose s and s′ are conjugate. By Lemma 3.3.3 there is a sequence,
s0, s1, . . . , sn, with s0 = s, sn = s′ and with each m(si, si+1) odd. By the previous
lemma, qs = qs1 · · · = qsn−1 = qs′ . �

Let I be the set of conjugacy classes of elements in S. For any regular
building �, the integers qs define an I-tuple q called the thickness vector of
�. Obviously, if G is a chamber transitive automorphism group of �, then �
is regular. For example, the abstract Coxeter complex W (Example 18.1.3) is
regular and its thickness vector is 1, the I-tuple with all entries equal to 1.
As another example, if � is a finite building of rank one, then its thickness
vector is the number q := Card(�)− 1. A third example is where F is a finite
field with q elements and � is the corresponding building of type An: the
thickness vector is the number q. The reason is that there are q+ 1 points
in the projective line over F. (The vector q is a single number in the An case,
since the elements of S are all conjugate.) Finally, in the case of a regular
right-angled building, Example 18.1.10 shows that q can be an arbitrary
element of NS.

As in formula (17.1), given an I-tuple q and an element w ∈ W, put qw =
qs1 · · · qsl , where s1 · · · sl is any reduced expression for w.

Suppose � is a regular building of thickness q. Choose a base chamber
ϕ0 ∈ � and define ρ : �→ W by ρ(ϕ) := δ(ϕ0,ϕ). (Essentially, ρ is a
retraction onto an apartment centered at ϕ0.)

LEMMA 18.1.17. For any w ∈ W, Card(ρ−1(w)) = qw.

Proof. This is proved by induction on l = l(w). It is trivially true for l = 0. If
l > 0, choose a reduced expression s = (s1, . . . , sl) for w. Put w′ = s1 · · · sl−1

and s = sl. It follows from the definition of a building, that for any ϕ ∈ ρ−1(w),
there is a unique gallery of type s from ϕ0 to ϕ. The penultimate chamber in
this gallery lies in ρ−1(w′). Thus, each chamber in ρ−1(w) is s-adjacent to a
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unique one in ρ−1(w′). By induction, Card(ρ−1(w′)) = qw′ . So

Card(ρ−1(w)) = qs Card(ρ−1(w′)) = qsqw′ = qw.

�

COROLLARY 18.1.18. Let � be a finite, spherical building of type (W, S).
Suppose it is regular with thickness vector q. Then Card(�) = W(q), where
W(q) is the growth polynomial from Chapter 17 evaluated at t = q.

Proof. Let ρ : �→ W be as in the previous lemma. Then

Card(�) =
∑
w∈W

Card(ρ−1(w)) =
∑
w∈W

qw = W(q).

�

Complement on Tits Systems and BN-Pairs

A Tits system (or a BN-pair) is a quadruple (G, B, N, S), where G is a group,
B and N are subgroups of G, W := N/N ∩ B, S is a subset of W and the
following axioms hold:

(T1) The set B ∪ N generates G and B ∩ N is a normal subgroup of N.

(T2) The set S generates the group W := N/(B ∩ N) and consists of
elements of order 2.

(T3) sBw ⊂ BwB ∪ BswB for s ∈ S and w ∈ W.

(T4) For all s ∈ S, sBs �⊂ B.

Given w ∈ W, put C(w) := BwB. The axioms imply that

• For each s ∈ S, Gs := B ∪ C(s) is a subgroup of G.

• (W, S) is a Coxeter system.

• The chamber system �(G, B, (Gs)s∈S) is a building of type (W, S).

• Suppose r : G/B→ W is defined by gB→ δ(B, gB) where δ is
W-distance in the building. Then the induced map r : B\G/B→ W
is a bijection.

For example, suppose, as in 18.1.11, G = GL(n+ 1,F) and B is the set of
upper triangular matrices. Let T ⊂ B be the subgroup of all diagonal matrices
and N ⊂ G the monomial matrices (i.e., those with only one nonzero entry in
each column). Then W := N/N ∩ B = N ∩ T is isomorphic to Sn+1. Let S be
the usual fundamental set of generators for Sn+1. Then (G, B, N, S) is a Tits
system.
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18.2. THE GEOMETRIC REALIZATION OF A BUILDING

Given a building � of type (W, S), we will define a simplicial complex
Geom(�), called its “geometric realization,” so that for each apartment α(W),
the corresponding subcomplex will be isomorphic to the simplicial complex
�(W, S) of Chapter 7. The definition is similar to the one in 7.2. As in
Definition A.3.4, given a poset P , its geometric realization |P| is defined to
be the simplicial complex Flag(P). Let C (= C(�)) denote the poset of all
spherical residues in �. Define the geometric realization of � to be

Geom(�) := |C|.
For each ϕ ∈ � let |ϕ| denote the maximal coface |C�{ϕ}|. The map Type:
C → S which associates to each residue its type induces a map of geometric
realizations Geom(�)→ K. Moreover, the restriction of this map to each
chamber |ϕ| is a homeomorphism.

There is a more illuminating approach using the construction of Chapter 5.
Let (Xs)s∈S be a mirror structure on a space X. Define an equivalence relation
on �× X by (ϕ, x) ∼ (ϕ′, x′) if and only if x = x′ and δ(ϕ,ϕ′) ∈ WS(x). The
X-realization of �, denoted U(�, X), is defined by

U(�, X) := (�× X)/ ∼ . (18.1)

(Here � has the discrete topology.)
Given ϕ ∈ �, T ∈ S, let ϕ · T ∈ C denote the T-residue containing ϕ. The

next result is a straightforward generalization of Theorem 7.2.4. Its proof is
left to the reader.

PROPOSITION 18.2.1. Suppose � is a building of type (W, S) and, as in 7.2,
that K is the geometric realization of S. Then the map �× S → C defined by
(ϕ, T)→ ϕ · T induces a homeomorphism U(�, K)→ Geom(�).

If ϕ is a chamber in �, then let X(ϕ) denote the image of ϕ × X in U(�, X).
For any subset � of �, put

U(�, X) :=
⋃
ϕ∈�

X(ϕ). (18.2)

Note that, if A ⊂ � is an apartment, then U(A, X) ∼= U(W, X). In particular,
U(A, K) ∼= �.

Example 18.2.2. (The usual definition.) As in Example 5.2.7, suppose �
is a simplex of dimension Card(S)− 1 and that its codimension one faces
are indexed by S. The “usual definition” of the geometric realization of the
building � is U(�,�) (see [43, 248]). If W is irreducible and affine type, then
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CW

BW

Figure 18.1. Coxeter cell and Coxeter block.

K = � and this agrees with the previous definition. However, in general, they
are different.

The Piecewise Euclidean Structure on Geom(�)

First, suppose W is spherical. Recall that its associated Coxeter polytope CW

is the convex hull of a generic W-orbit in the canonical representation on RS

(Definition 7.3.1). The intersection of CW with the fundamental simplicial cone
bounded by the walls corresponding to S is denoted BW and called a Coxeter
block of type (W, S). BW is combinatorially equivalent to a cube (of dimension
Card(S)).

We return to the case where (W, S) is arbitrary. Given T ∈ S, regard WT

as the coset of the identity element in W/WT ⊂ WS. As in 7.3, the cell of �
corresponding to WT is a Coxeter polytope CWT of type (WT , T). Its intersection
with a fundamental chamber K is a Coxeter block BWT .

We put a piecewise Euclidean structure on Geom(�) similarly to the way we
put one on � in 12.1. Let d ∈ (0,∞)S. For each T ∈ S, dT ∈ (0,∞)T denotes
the restriction of d to T and CWT (dT ) is the Coxeter polytope of type (WT , T)
corresponding to dT (i.e., each edge of type s has length 2ds). Let BWT (dT )
be the corresponding Coxeter block. Identify the intersection of CWT (dT ) and
K with BWT (dT ). This defines a piecewise Euclidean structure on K. Since
Geom(�) (= U(�, K)) is tessellated by copies of K, there is an induced a
piecewise Euclidean structure on it. On each apartment it has the desired
property of being isometric to the natural piecewise Euclidean structure on �.

Spherical Buildings

Suppose W is finite. Then � is the Coxeter polytope CW and K is the Coxeter
block BW . K has a unique minimal coface KS; it is the point vS := Fix(W, CW ).
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The point vS is a vertex of BW . Lk(vS, BW ) is a spherical simplex � in the unit
sphere Sn−1 of RS. � can be identified with the fundamental simplex for W
on Sn−1; its Gram matrix is the cosine matrix of (W, S) (Definition 6.8.11).
Thus, U(W,�) = Sn−1. If � is a spherical building of type (W, S), then there
is a unique residue of type S; it is the unique minimal element of C and hence,
specifies a cone point v ∈ Geom(�). It follows that

Lk(v, Geom(�)) = U(�,�). (18.3)

U(�,�) is the spherical realization of the spherical building �. The spherical
realization of each apartment of � is isometric to Sn−1.

18.3. BUILDINGS ARE CAT(0)

Our purpose in this section is to prove the following generalization of
Moussong’s Theorem (12.3.3).

THEOREM 18.3.1. The geometric realization of any building is a complete
CAT(0) space.

COROLLARY 18.3.2. For any spherical building �, its spherical realization
U(�,�) is CAT(1).

Proof of the corollary. By (18.3), Lk(v, Geom(�)) = U(�,�). Since
Geom(�) is CAT(0), every link in Geom(�) is CAT(1) (Theorem I.3.5 in
Appendix I.3). In particular, Lk(v, Geom(�)) is CAT(1). �

When the building � is of irreducible affine type, Theorem 18.3.1 is well
known. A proof can be found in [43, Ch. VI §3]. Our proof combines the
argument given there with Moussong’s Theorem.

Suppose A is an apartment in a building �, ϕ ∈ A and ρ = ρϕ,A : �→ A is
the retraction onto A with center ϕ. Since ρ is morphism of chamber systems
(Lemma 18.1.12), it induces a map of spaces, ρ : Geom(�)→ Geom(A),
which takes each chamber of Geom(�) isometrically onto a chamber of
Geom(A). Hence, ρ maps a geodesic segment in Geom(�) to a piecewise
geodesic segment in Geom(A) of the same length. From this observation we
conclude the following.

LEMMA 18.3.3. The retraction ρ : Geom(�)→ Geom(A) is distance
decreasing, i.e., for all x, y ∈ Geom(�),

dA(ρ(x), ρ(y)) � d�(x, y),

where dA and d� denote distance in Geom(A) and Geom(�), respectively. In
particular, if x, y ∈ Geom(A), then dA(x, y) = d�(x, y).
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LEMMA 18.3.4. There is a unique geodesic between any two points in
Geom(�).

Proof. A basic fact about buildings is that any two chambers are contained
in a common apartment ([248, Theorem 3.11, p. 34]). This implies that,
given x, y ∈ Geom(�), there is an apartment A such that x, y ∈ Geom(A).
(Choose chambers ϕ,ϕ′ ∈ � so that x ∈ K(ϕ), y ∈ K(ϕ′) and an apartment
A containing ϕ and ϕ′; then x, y ∈ Geom(A).) A basic fact about CAT(0)-
spaces is that any two points are connected by a unique geodesic segment
(Theorem I.2.5). Since Geom(A) is CAT(0) (Moussong’s Theorem), there is
a unique geodesic segment in Geom(A) from x to y. Let γ : [0, d]→ Geom(A)
be a parameterization of this segment by arc length, where d = dA(x, y). By
the last sentence of the previous lemma, γ is also a geodesic in Geom(�). Let
γ ′ : [0, d]→ Geom(�) be another geodesic from x to y. If ρ : Geom(�)→
Geom(A) is the geometric realization of any retraction onto A, then ρ ◦ γ ′ is a
geodesic in Geom(A) from x to y (since it is a piecewise geodesic of length d).
Hence, ρ ◦ γ ′ = γ . Let t0 = sup{t | γ |[0,t] = γ ′|[0,t]}. Suppose t0 < d. Then,
for sufficiently small positive values of ε, γ (t0 + ε) lies in the relative interior
of some coface K(ϕ)T , with ϕ ∈ A, while γ ′(t0 + ε) lies in the relative
interior of a different coface, say, K(ϕ′)T , where K(ϕ′)T �⊂ Geom(A). Set ρ =
ρϕ,A. Since K(ϕ)T �= K(ϕ′)T , δ(ϕ,ϕ′) /∈ WT . Hence, ρ(γ ′(t0 + ε)) �= γ (t0 + ε),
a contradiction. Therefore, t0 = d and γ = γ ′. �

LEMMA 18.3.5. Suppose ρ = ρϕ,A. If x ∈ K(ϕ), then d(x, ρ(y)) = d(x, y) for
all y ∈ Geom(�).

Proof. Choose an apartment A′ so that Geom(A′) contains both x and y. By
the previous lemma, the image of the geodesic γ from x to y is contained in
Geom(A′). By Lemma 18.1.14, ρ|A′ : A′ → A is a W-isometry. It follows that
ρ|Geom(A′) : Geom(A′)→ Geom(A) is an isometry. Hence, ρ ◦ γ is actually a
geodesic (of the same length as γ ). �

Proof of Theorem 18.3.1. Suppose � is a building and x, y, z ∈ Geom(�). For
t ∈ [0, 1], let pt be the point on the geodesic segment from y to x such that
d(y, pt) = td(x, y). By Lemma I.2.15 in Appendix I.2, to prove that Geom(�)
is CAT(0) we must show

d2(z, pt) � (1− t)d2(z, x)+ td2(z, y)− t(1− t)d2(x, y).

Choose an apartment A so that x, y ∈ Geom(A). Since the geodesic segment
from x to y lies in Geom(A), pt ∈ Geom(A). Hence, we can choose a chamber
ϕ in A so that pt ∈ K(ϕ). Let ρ = ρϕ,A. By Lemma 18.3.5, d(z, pt) = d(ρ(z), pt).



August 2, 2007 Time: 04:06pm chapter18.tex

340 CHAPTER EIGHTEEN

Hence,

d2(z, pt) = d2(ρ(z), pt)

� (1− t)d2(ρ(z), x)+ td2(ρ(z), y)− t(1− t)d2(x, y)

� (1− t)d2(z, x)+ td2(z, y)− t(1− t)d2(x, y).

The first inequality holds since x, y and ρ(z) all lie in Geom(A), which is is
CAT(0). The second inequality is from Lemma 18.3.3. Therefore, Geom(�) is
CAT(0). �

Since CAT(0)-spaces are contractible (Theorem I.2.6), we have the
following.

COROLLARY 18.3.6. For any building �, Geom(�) is contractible.

The Bruhat-Tits Fixed Point Theorem (I.2.11) states that if a group of
isometries of a complete CAT(0) space has a bounded orbit, then it has a fixed
point. Applying this result to the case of a building with a chamber transitive
automorphism group, we get the following.

COROLLARY 18.3.7. Suppose � = �(G, B, (Gs)s∈S) is a building as in
Example 18.1.2. Let H be a subgroup of G which has a bounded orbit in
Geom(�). Then H is conjugate to a subgroup of GT, for some T ∈ S.

The next result also follows from Theorem 18.3.1 (by Corollary I.2.13).

COROLLARY 18.3.8. (Meier [202]). Suppose G is a graph product of finite
groups (Gs)s∈S and, as in 18.1, that � = �(G, {1}, (Gs)s∈S is the associated
building. Then Geom(�) is a model for EG.

CAT(−1)-Structures on Buildings

A finite Coxeter group WT acts as a group of isometries on hyperbolic
space of dimension Card(T) as a group generated by isometric reflections
across the faces of a simplicial cone. Hence, given d ∈ (0,∞)S, there is a
hyperbolic Coxeter polytope HCWT (dT ) such that each edge of type s has
length 2ds. Its intersection with the fundamental simplicial cone is a hyperbolic
Coxeter block HBWT (dT ). So, for each d ∈ (0,∞)S we can put a piecewise
hyperbolic structure on Geom(�) by identifying each Coxeter block of type
T with HBWT (dT ). By Theorem 12.6.1, for sufficiently small d, this procedure
results in a CAT(−1) metric on � if and only if (W, S) satisfies Moussong’s
Condition. When the metric on � is CAT(−1), then the arguments proving
Theorem 18.3.1 show that Geom(�) is also CAT(−1). So, we have the
following.
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THEOREM 18.3.9. Suppose � is a building of type (W, S). Then Geom(�)
can be given a piecewise hyperbolic structure which is CAT(−1) if and only if
(W, S) satisfies Moussong’s Condition (from Theorem 12.6.1).

We also have the following analog of Corollary 12.6.3.

COROLLARY 18.3.10. Suppose that G is a graph product of finite groups
with associated right-angled Coxeter system (W, S) and associated building�.
Then the following conditions are equivalent.

(i) G is word hyperbolic.

(ii) Z+ Z �⊂ G.

(iii) (W, S) satisfies Moussong’s Condition.

(iv) L(W, S) satisfies the no �-condition (from Appendix I.6).

(v) Geom(�) admits a piecewise hyperbolic CAT(−1) metric.

Proof. In the case of a right-angled Coxeter system, Moussong’s Condition
is equivalent to the no �-condition. So (iii)⇐⇒ (iv). The remainder of the
argument is exactly the same as the proof of Corollary 12.6.3. �

18.4. EULER-POINCARÉ MEASURE

Suppose G is a locally compact, unimodular group and µ is a (not necessarily
positive) G-invariant measure on G. (If the measure is positive, it is a Haar
measure.) If � is a discrete subgroup of G, we get a measure on G/�, which
we also denote by µ.

DEFINITION 18.4.1. ([255]). A measure µ on G is an Euler-Poincaré
measure if every discrete, cocompact, torsion-free subgroup � ⊂ G has the
following two properties:

(a) � is type FL. (The definition is given in Appendix F.4.)

(b) χ (�) = µ(G/�). (χ (�) was defined in (16.2) of Section 16.1.)

Now suppose � is a building with chamber-transitive automorphism group
G and thickness vector q. Let µ be any nonzero G-invariant measure on G.
Define

χ (µ) :=
∑
σ⊂K

(−1)dim σ

µ(GS(σ ))
=

∑
T∈S

1− χ (LT )

µ(GT )
, (18.4)
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where the first sum ranges over all simplices σ in the fundamental chamber K,
where GS(σ ) is the stabilizer of σ and where, as in Theorem 17.1.10,
LT := Lk(σT , L). As in [255, p. 139], define the canonical measure µG by
µG := χ (µ)µ. It is independent of the choice of µ (provided G is
unimodular).

PROPOSITION 18.4.2. ([255, Prop. 24].) µG is an Euler-Poincaré measure.

Proof. As explained in [255], this follows from the following facts:

(a) Geom(�) is contractible (Corollary 18.3.6),

(b) Geom(�) is locally finite, and

(c) the G-action is cocompact.

Indeed, by (a) and (b),

χ (�) =
∑
σ⊂K

(−1)dim σ Card(�\G/GS(σ )).

The number of �-orbits of simplices of type σ is Card(�\G/GS(σ )). Since � is
torsion-free and GS(σ ) is compact, GS(σ ) acts freely on �\G. So, if µ is a Haar
measure, we have µ(�\G) = µ(GS(σ )) Card(�\G/GS(σ )). Hence,

χ (�) = µ(�\G)
∑
σ⊂K

(−1)dim σ

µ(GS(σ ))

= µ(�\G)χ (µ) = µG(G/�).

�

THEOREM 18.4.3. ([255, Théorème 6].) µG(B) = 1/W(q).

Proof. For T ∈ S, let �T denote the T-residue containing the chamber corres-
ponding to B. It is a finite spherical building. We have [GT : B] = Card(�T ) =
WT (q) (Corollary 18.1.18). Also, µ(GT ) = [GT : B]µ(B). Substituting these
formulas into (18.4), we get

χ (µ) =
∑
T∈S

1− χ (LT )

µ(GT )
= 1

µ(B)

∑
T∈S

1− χ (LT )

WT (q)
=

(
1

µ(B)

) (
1

W(q)

)
,

where the last equation is Theorem 17.1.10. So, µG(B) = χ (µ)µ(B) =
1/W(q). �
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NOTES

The fundamental ideas in this chapter go back to Tits [284, 285, 287]. Much of our
exposition is taken from [76]. Two basic references are [43, 248].

Some people in representation theory believe only two types of buildings are of any
importance, those of spherical or affine type. The examples of right-angled buildings
described in Example 18.1.10 should convince the reader that there are many other
interesting examples of buildings. More examples come from the theory of Kac-
Moody groups e.g., see [52]. As we mentioned previously, spherical buildings are often
associated with algebraic groups over finite fields. Euclidean buildings are associated
with algebraic groups over fields with discrete valuations, such as the p-adic rationals.
(See [43, V.8] for the standard example of such a Euclidean building.) Regular buildings
of type (W, S), when W is a hyperbolic polygon group, are called Fuchsian. Fuchsian
buildings, as well as, other buildings associated to hyperbolic reflection groups are
discussed in [30, 31, 32, 111, 133, 245].

18.1. Chamber systems were introduced by Tits [286]. As Weiss [298] points out, the
information in a chamber system is exactly the same as that in an edge colored graph
(without loops): the vertices are the chambers, two such are s-adjacent if and only
if they are connected by an edge colored s. (An example is Cay(W, S).) Expositions
of the theory of buildings based on the notion of chamber system are given in the
books [248, 298]. In earlier versions of the theory Tits used a certain type of simplicial
complexes called “chamber complexes,” in place of chamber systems. (The chambers
are the top-dimensional simplices.) The relationship between these two notions is
described in Example 18.2.2.

The condition that m = 2, 3, 4, 6 or 8 which occurs in the Feit-Higman Theorem
(18.1.9) is called the “crystallographic condition” (this condition should also include
m = ∞). The crystallographic condition also occurs in the theory of Kac-Moody
groups and Lie algebras.

The definition of a “Tits system” is taken from [29, p.15].

18.2. In [248, p. 184], Ronan comments to the effect that in the general case, the
geometric realization of a building should coincide with our definition, rather than the
“usual one” from Example 18.2.2.

18.3. Although Theorem 18.3.1 was known to Moussong, it is not stated in [221].
The theorem is stated in [76] and it is shown there how it follows from Moussong’s
Theorem 12.3.3.

18.4. The material in this section is essentially due to Serre [255, §7]. In [255]
Theorem 18.4.3 is stated only for (W, S) a simplicial Coxeter system. The reason for
this restriction was that the contractible complex � had not been defined when [255]
was written.
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Chapter Nineteen

HECKE–VON NEUMANN ALGEBRAS

In 19.1 we define the Hecke algebra associated to a Coxeter system (W, S)
and a certain tuple of numbers q. It is a deformation of the group algebra
RW and is isomorphic to RW. Hecke algebras arise in the study of buildings
of type (W, S) with thickness vector q. Given q, an I-tuple of positive real
numbers, in 19.2 we define a nonstandard inner product on RW and then
complete it to a Hilbert space L2

q(W). The Hecke algebra RqW is a ∗-algebra
of operators on L2

q(W) and it can be completed to a von Neumann algebra Nq.
We also define certain RqW-stable subspaces AT and HT of L2

q(W). Their von
Neumann dimensions (with respect to Nq) are calculated by using the
growth series of WT .

19.1. HECKE ALGEBRAS

Let A be a commutative ring with unit and A(W) the free A-module on W with
basis {ew}w∈W . AW denotes this A-module equipped with its structure as the
group ring of W. As in Chapter 17, i : S→ I is a function such that i(s) = i(s′)
whenever s and s′ are conjugate in W and given an I-tuple q = (qi)i∈I ∈ AI ,
write qs for qi(s).

PROPOSITION 19.1.1. (Compare [29, Exercise 23, p. 57].) Given I-tuples q
and r in AIand a function i : S→ I as above, there is a unique ring structure
on A(W) such that

esew =
{

esw if l(sw) > l(w),

qsesw + rsew if l(sw) < l(w),

for all s ∈ S and w ∈ W.

We will use the notation Aq,rW to denote A(W) with this ring structure. Note
that A1,0W = AW, where 1 and 0 denote the constant I-tuples 1 := (1, . . . , 1)
and 0 := (0, . . . , 0) respectively. So Aq,rW is a deformation of the group ring.

The function ew → ew−1 induces a linear involution ∗ of A(W), i.e.,

(∑
xwew

)∗
:=

∑
xw−1 ew. (19.1)
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Proof of Proposition 19.1.1. For each s ∈ S, define an A-linear endomorphism
Ls of A(W) by the formula in the proposition. Let Ms be the endomorphism
defined by Ms(x) := (Ls(x∗))∗.

Claim. For all s, t ∈ S, Ls ◦Mt = Mt ◦ Ls. The proof of this claim is a com-
putation. One shows Ls(Mt(ew)) = Mt(Ls(ew)) for all w ∈ W. This is proved
by computing the cases l(swt) = l(w)− 2, l(swt) = l(w)+ 2 and l(swt) = l(w),
separately (as well as some subcases). When l(swt) = l(w)+ 2, one needs to
recall Remark 3.2.15 that in the subcase l(sw) = l(wt) = l(w)+ 1, the Folding
Condition (F) implies that sw = wt and since s and t are then conjugate that
qs = qt and rs = rt.

LetA denote the subalgebra of End (A(W)) generated by the Ls. By the claim,
for any g ∈ A and t ∈ S, we have g ◦Mt = Mt ◦ g. This implies that if g(e1) =
0, then g = 0. (Indeed, if g(e1) = 0, then g(et) = g(Mt(e1)) = Mt(g(e1)) = 0
for all t ∈ S.)

For each w ∈ W, choose a reduced expression w = s1 · · · sl and set

Lw := Ls1 ◦ · · · ◦ Lsl .

Then Lw ∈ A and Lw(e1) = ew. If l(sw) > l(w), then Ls ◦ Lw(e1) = Lsw(e1),
while if l(sw) < l(w), then Ls ◦ Lw(e1) = qsLsw(e1)+ rsLw(e1). By the pre-
vious paragraph, if two elements of A agree on e1, then they are equal.
Hence,

Ls ◦ Lw =



Lsw if l(sw) > l(w),

qsLsw + rsLw if l(sw) < l(w).

Given any x =∑
xwew in A(W), there is a unique element f ∈ A such

that f (e1) = x, namely, f =∑
xwLw. Hence, f → f (e1) is an A-linear

isomorphism A→ A(W) which transports the algebra structure on A to the
desired structure on A(W). �

LEMMA 19.1.2. The following statements about Aq,rW are true.

(i) For all u, v ∈ W with l(uv) = l(u)+ l(v), euev = euv.

(ii) For all s ∈ S, e2
s = rses + qs.

(iii) (Artin relations.) For any two distinct elements s, t ∈ S with mst �= ∞,

eset . . .︸ ︷︷ ︸
mst

= etes . . .︸ ︷︷ ︸
mst

.
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Proof. The formulas in (i) and (ii) follow immediately from the formula in
Proposition 19.1.1. To prove (iii), suppose u is the element of longest length in
the dihedral group W{s,t} (i.e., u is an alternating word of length mst in s and t).
Then both sides of the formula in (iii) are equal to eu. �

From this lemma we get the following right-hand version of the formula in
Proposition 19.1.1.

COROLLARY 19.1.3. For all s ∈ S and w ∈ W,

ewes =
{

ews if l(ws) > l(w),

qsews + rsew if l(ws) < l(w).

Proof. If l(ws) > l(w), then, by Lemma 19.1.2 (i), ewes = ews. If l(ws) < l(w),
then w = w′s with l(w′) = l(w)− 1 and we have

ewes = ew′ses = ew′(es)
2 = ew′ (rses + qs)

= rsew′s + qsew′ = rsew + qsews,

where the last equation on the first line is from Lemma 19.1.2 (iii). �

LEMMA 19.1.4. Formula (19.1) defines an anti-involution of the ring Aq,rW.
In other words, for all x, y ∈ Aq,rW, (xy)∗ = y∗x∗.

Proof. For each w ∈ W, let Lw (resp. Rw) denote left (resp. right) translation
by ew defined by Lw(x) = ewx (resp. Rw(x) = xew). A calculation using Corol-
lary 19.1.3 gives: Rs = ∗Ls∗ = Ms, for all s ∈ S (where Ms is as in the proof of
Proposition 19.1.1). Indeed,

(∗Ls∗)(ew) = (Ls(ew−1 ))∗ = (esew−1 )∗

=



(esw−1 )∗ if l(sw−1) > l(w−1),

(qsesw−1 + rsew−1 )∗ if l(sw−1) < l(w−1)

=



ews if l(ws) > l(w),

qsews + rsew if l(ws) < l(w)

= ewes = Rs(ew),

where the next to last equality is Corollary 19.1.3. If s1 · · · sl is a reduced
expression for w, then Rw = Rsl · · ·Rs1 = ∗Lsl · · · Ls1∗ = ∗Lw−1∗. Therefore,
xew = Rw(x) = (∗Lw−1∗)(x) = (ew−1 x∗)∗. Hence, Rw = ∗Lw−1∗, for all w ∈ W.
So, (xew)∗ = (ew−1 x∗)∗∗ = ew−1 x∗ = e∗wx∗. The lemma follows. �
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The Special Case r = q − 1

For the remainder of this book we shall only be interested in the case where
rs = qs − 1, for all s ∈ S. We will write AqW instead of Aq,q−1W and call it
the Hecke algebra associated to the multiparameter q. (AqW is also called the
“Hecke-Iwahori algebra.”)

If s1 · · · sl is a reduced expression for w ∈ W, then, as in formula (17.1) for
the monomial tw, define qw ∈ A by

qw := qs1 · · · qsl . (19.2)

As before, it is independent of the choice of reduced expression for w.
Set εw := (−1)l(w). The maps ew → qw and ew → εw extend linearly to ring
homomorphisms AqW → A.

NOTATION. As in the previous chapter, use q−1 to denote the I-tuple (1/qi)i∈I .
When we want to use q−1 as a subscript or superscript we will write 1/q
instead.

The j-isomorphism

Following Kazhdan and Lusztig [173], define an isomorphism of algebras,
jq : AqW → A1/qW, by the formula

jq(ew) := εwqwew. (19.3)

It is called the j-isomorphism and denoted by j when there is no ambiguity.

Hecke Algebras and Functions on B \G/B

Suppose G is a topological group and B is a compact open subgroup. Let
C(G) denote the vector space of continuous real-valued functions on G. Let α :
G→ G/B and β : G→ B\G/B be the natural projections. Define subspaces
H ⊂ L ⊂ C(G) by

L := α∗(R(G/B)) and H := β∗(R(B\G/B)),

where, as before, for any set X, R(X) is the vector space of finitely supported
functions on X.

For each gB ∈ G/B, define agB ∈ L by agB(x) = 1 for x ∈ gB and agB(x) = 0
for x /∈ gB (i.e., agB is the characteristic function of gB). Since (agB) is a basis
for L, there is a unique linear form on L such that agB → 1 for all gB ∈ G/B.
We denote this form by ϕ→ ∫

ϕ (since it coincides with the Haar integral
normalized by the condition that

∫
aB = 1).
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If ϕ ∈ L and ψ ∈ H, then for each x ∈ G, the function θx : G→ R,
defined by θx(y) = ϕ(y)ψ(y−1x), belongs to L. The function ϕ ∗ ψ : x→∫
ϕ(y)ψ(y−1x)dy also belongs to L. Moreover, if ϕ ∈ H, then ϕ ∗ ψ ∈ H. The

function ϕ ∗ ψ is the convolution of ϕ and ψ . The map (ϕ,ψ)→ ϕ ∗ ψ makes
H into an algebra and L into a right H-module. H is called the Hecke algebra
of G with respect to B.

Next, suppose that G is a chamber transitive automorphism group on a build-
ing and that r : G/B→ W is defined by taking the W-distance from the cham-
ber corresponding to B. Let γ := r ◦ α : G→ W and J := γ ∗(R(W)) ⊂ H.

Remark. Suppose (G, B, N, S) is a Tits system (as in the complement at the end
of 18.1). Then r : B\G/B→ W is a bijection and hence, J = H.

LEMMA 19.1.5. Suppose, as above, that a given building admits a chamber
transitive automorphism group G (so G/B is the set of chambers). Let q be the
thickness vector. Then

(i) J is a subalgebra of H and

(ii) J ∼= RqW, the Hecke algebra defined previously.

Proof. Since G is chamber transitive, γ ∗ : R(W) → J is an isomorphism of
vector spaces. So, we only need to check that γ ∗ is an algebra homomorphism
from RqW to H. Let fw = γ ∗(ew). Then fw is the characteristic function of {g ∈
G | r(gB) = w}. In particular, for each s ∈ S, fs is the characteristic function of
Gs − B. We want to show that

fw ∗ fs =
{

fws if l(ws) > l(w),

qsfws + (qs − 1)fw if l(ws) < l(w).

By definition of convolution,

(fw ∗ fs)(g) =
∫

G
fw(x)fs(x

−1g)dx =
∫

G
fw(gu)fs(u

−1)du

=
∫

Gs−B
fw(gu)du,

which is equal to the Haar measure of the set

Ug := {u ∈ Gs − B | r(guB) = w}.
Let C0 := g0B be the chamber s-adjacent to gB which is closest to B. There
are qs other chambers adjacent to gB. We list them as: C1 = g1B, . . . , Cqs =
gqs B. So, for i > 0, r(Ci) = r(C0)s. Notice that if u ∈ Gs − B, then guB is
s-adjacent to gB and therefore, guB is equal to some Ci. So, if r(guB) = w, then
r(gB) = w or ws. In other words, if r(gB) �∈ {w, ws}, then (fw ∗ fs)(g) = 0. We



August 2, 2007 Time: 04:15pm chapter19.tex

HECKE–VON NEUMANN ALGEBRAS 349

now consider two cases. Each case further divides into two subcases depending
on whether r(gB) = w or ws.

Case 1. l(w) < l(ws). In this case r(C0) = w and r(Ci) = ws for i > 0.

(a) Suppose r(gB) = w. Then gB = C0 and guB = Ci for i > 0, so that
r(guB) = ws. Thus, Ug = ∅ and (fw ∗ fs)(g) = 0.

(b) Suppose r(gB) = ws. Then gB = Ck, for some k > 0, and

Ug = {u ∈ Gs − B | guB = C0} = (Gs − B) ∩ g−1g0B.

Since gB and g0B are s-adjacent and not equal, g−1g0B ⊂ Gs − B, so
that Ug = g−1g0B has measure 1. Therefore, (fw ∗ fs)(g) = 1. So, in Case 1,
fw ∗ fs = fws.

Case 2. l(w) > l(ws). In this case r(C0) = ws and r(Ci) = w for i > 0.

(a) Suppose r(gB) = w. Then gB = Ck for some k > 0. So the set

Ug =
⋃
0<i

{u ∈ Gs − B | guB = Ci} =
⋃

0<i�=k

g−1giB

has measure qs − 1.

(b) Suppose r(gB) = ws. Then gB = C0, and the set

Ug =
⋃
0<i

{u ∈ Gs − B | guB = Ci} =
⋃
0<i

g−1giB

has measure qs. So, in Case 2, fw ∗ fs = qsfws + (qs − 1)fw. �

19.2. HECKE–VON NEUMANN ALGEBRAS

For the remainder of this chapter, A will be the field of real numbers R and the
components of the multiparameter q = (qi)i∈I will be positive real numbers.
As explained in Appendix J.2, associated to the group algebra RW we have
the Hilbert space L2(W) and the von Neumann algebraN (W) of W-equivariant
bounded linear operators on it. (N (W) is the weak closure of RW.) Here we
give an analogous construction associated to the Hecke algebra RqW.

Define an inner product 〈 , 〉q on R(W) (= RqW) by
〈∑

awew,
∑

bwew

〉
q

:=
∑

awbwqw, (19.4)

where qw is defined by (19.2). As in [194], sometimes it is convenient to
normalize (ew)w∈W to an orthonormal basis for RqW by setting

ẽw := q−1/2
w ew. (19.5)
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The formula in Proposition 19.1.1 can then be rewritten as

(ẽs + q−1/2
s )(ẽs − q−1/2

s ) = 0. (19.6)

The (Hilbert space) completion of R(W) with respect to the inner product 〈 , 〉q
is denoted L2

q(W), or simply L2
q, when there is no ambiguity.

PROPOSITION 19.2.1. (Dymara [109, Proposition 2.1].) The inner product
defined by (19.4), multiplication defined by the formula in Proposition 19.1.1,
and the anti-involution ∗ defined by (19.1), give RqW the structure of a Hilbert
algebra structure in the sense of [100, A.54]. This means that

(i) (xy)∗ = y∗x∗,

(ii) 〈x, y〉q = 〈y∗, x∗〉q,

(iii) 〈xy, z〉q = 〈y, x∗z〉q,

(iv) for any x ∈ RqW, left translation by x, Lx : RqW → RqW, defined by
Lx(y) = xy, is continuous,

(v) the products xy over all x, y ∈ RqW are dense in RqW.

Since the action of RqW on itself by multiplication is continuous, L2
q is a

RqW-bimodule. An element x ∈ L2
q is bounded if right multiplication by x is

bounded on RqW (or equivalently, if left multiplication by x is bounded) . Let
Rb

qW be the set of all bounded elements in L2
q. As in [100] there are two von

Neumann algebras associated with this situation. Initially we denote them N L
q

and N R
q . N R

q (W) acts from the right on L2
q and N L

q from the left. Here are two
equivalent definitions of N R

q :

(a) N R
q is the algebra of all bounded linear endomorphisms of L2

q that
commute with the left RqW-action.

(b) N R
q is the weak closure of Rb

qW acting from the right on L2
q.

If we interchange the roles of left and right in the above, we get the two
equivalent definitions of N L

q . At cost of introducing some confusion, but with
the benefit of simplifying notation we will denote both von Neumann algebras
simply by Nq.

LEMMA 19.2.2. If T ⊂ S, then the inclusion Rq[WT ] ↪→ RqW induces in-
clusions Rb

q[WT ] ↪→ Rb
qW and Nq(WT ) ↪→ Nq.

Proof. Let L2
q(wWT ) ⊂ L2

q(W) denote the subspace of functions supported
on the coset wWT . Then L2

q(W) decomposes as an orthogonal direct sum of
spaces of the form L2

q(wWT ). Suppose λ ∈ Nq(WT ). Right multiplication by λ
preserves the summands and acts on each summand in the same way. The norm
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in the space L2
q(wWT ) is the norm in L2

q(WT ) rescaled by a factor of (qw)−1/2,
so the operator norms of right multiplication by λ on each of these subspaces
is bounded. Hence, λ ∈ Nq. �

The j-isomorphism

It follows from the definitions that the isomorphism jq : RqW → R1/qW of
(19.3) takes the orthonormal basis (ẽq

w) for RqW, defined by (19.5), to the
orthonormal basis (εwẽ1/q

w ) for R1/qW (where we have put superscripts on the
ẽw to indicate the dependence on q). So, jq is an isometry. Hence, it extends
to an isometry of Hilbert spaces j : L2

q → L2
1/q. From this, it is obvious that j

takes a bounded element of L2
q to a bounded element of L2

1/q. Hence, it extends
to an isomorphism of von Neumann algebras j : Nq → N1/q.

The Von Neumann Trace

Define the trace of an element ϕ ∈ Nq by

trNq (ϕ) := 〈e1ϕ, e1〉q,

where e1 denotes the basis element of L2
q corresponding to the identity element

of W. If 
 :
⊕n

i=1 L2
q →

⊕n
i=1 L2

q is a bounded linear map of left RqW-
modules, then we can represent it as right multiplication by an n× n matrix
(ϕij) with entries in Nq. Define

trNq (
) :=
n∑

i=1

trNq (ϕii).

HilbertN q-Modules and von Neumann Dimension

DEFINITION 19.2.3. A subspace V of an orthogonal direct sum of a finite
number of copies of L2

q is a HilbertNq-module if it is a closed subspace stable
under the diagonal left action of RqW.

By a map of HilbertNq-modules we will mean a bounded linear map of left
RqW-modules. A map is weakly surjective if it has dense image; it is a weak
isomorphism if it is injective and weakly surjective.

Let V ⊂⊕n
i=1 L2

q be a HilbertNq-module and let pV :
⊕n

i=1 L2
q →

⊕n
i=1 L2

q
be the orthogonal projection onto V . The von Neumann dimension of V is the
nonnegative real number defined by

dimNq V = trNq (pV ). (19.7)
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As usual, dimNq V does not depend on the choice of embedding of V into
a finite direct sum of copies of L2

q. If a subspace V ⊂⊕
L2

q is RqW-

stable but not necessarily closed, one defines dimNq V := dimNq V . As in
Proposition J.2.8 of Appendix J.2, this dimension function satisfies the usual
list of properties:

(i) dimNq V = 0 if and only if V = 0.

(ii) For any two Hilbert Nq-modules V and V ′,

dimNq (V ⊕ V ′) = dimNq V + dimNq V ′.

(iii) dimNq L2
q = 1.

(iv) Suppose f : V → V ′ is a weak isomorphism of Hilbert Nq-modules.
Then dimNq V = dimNq V ′.

(v) Suppose (W ′, S′) and (W ′′, S′′) are Coxeter systems, that S′ → I′ and
S′′ → I′′ are indexing functions, that q′ and q′′ are I′ and I′′-tuples,
that S = S ′ ∪ S′′ and I = I′ ∪ I′′ are disjoint unions, that
(W, S) = (W ′ ×W ′′, S′ ∪ S′′) and that q is the multiparameter for
(W, S) formed by combining q′ and q′′. Let V ′ (resp. V ′′) be a Hilbert
Nq′ (W ′)-module (resp. Nq′′(W ′′)-module). Then the completed tensor
product V := V ′ ⊗ V ′′ is naturally a Hilbert Nq-module and

dimNq(W)(V
′ ⊗ V ′′) = (dimNq(W ′) V ′)(dimNq(W ′′) V ′′).

(vi) Suppose T ⊂ S and VT is a Hilbert Nq(WT )-module. The induced
Hilbert Nq-module V is defined to be the completion of the tensor
product

V := L2
q(W)⊗Rq(WT ) VT .

Its dimension is given by dimNq V = dimNq(WT ) VT .

LEMMA 19.2.4. Suppose V ⊂⊕
L2

q is a Hilbert Nq-module. Extend the
j-isomorphism to the linear isometry j :

⊕
L2

q →
⊕

L2
1/q which is j on each

summand. Then j(V) ⊂⊕
L2

1/q is a Hilbert N1/q-module and

dimNq V = dimN1/q j(V).

Proof. If x ∈ RqW and v ∈ V , then j(x)j(v) = j(xv) ∈ j(V); so, j(V) is a
Hilbert N1/q-module. If pV :

⊕
L2

q →
⊕

L2
q is orthogonal projection onto V ,

then j ◦ pV ◦ j−1 :
⊕

L2
1/q →

⊕
L2

1/q is orthogonal projection onto j(V). We
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calculate its trace:

trN1/q (j ◦ pV ◦ j−1) = 〈(j ◦ pV ◦ j−1)(e1), e1〉1/q
= 〈(pV ◦ j−1)(e1), j−1e1〉q = 〈pV (e1), e1〉q
= trNq (pV ).

Hence, dimNq V = dimN1/q j(V). �

Idempotents inN q and Growth Series

Given a subset T of S, recall RT is the region of convergence for WT (t) and
R−1

T := {q | q−1 ∈ RT}.

LEMMA 19.2.5. Given a subset T of S and q ∈ RT , there is an idempotent
aT in Nq defined by

aT := 1

WT (q)

∑
w∈WT

ew,

Proof. Define

ãT =
∑

w∈WT

ew. (19.8)

Then 〈ãT , ãT〉q =
∑

qw = WT (q); hence, ãT ∈ L2
q(WT ) if and only if q ∈ RT .

So, assume q ∈ RT . As in 4.5, for each s ∈ S, Bs denotes the set of (∅, {s})-
reduced elements in W. Using the formula in Corollary 19.1.3, we calculate,
for each s ∈ T , that

ãTes =
∑

w∈Bs∩WT

ewes + ewses

=
∑

ews + qsew + (qs − 1)ews

= qsãT .

Hence, for w ∈ WT ,

ãTew = qwãT and ãT ẽw = q1/2
w ãT . (19.9)

We claim that ãT is a bounded element of L2
q(WT ) (and hence, by

Lemma 19.2.2, it lies in Nq). To see this, note that if x =∑
xwẽw ∈ Rq[WT ],

then (19.9) can be rewritten as

ãT

∑
xwẽw =

(∑
xwq1/2

w

)
ãT
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and hence ‖ãTx‖q ≤ ‖ãT‖q‖x‖q. It also follows from (19.9) that (ãT )2 =
WT (q)ãT . So

aT = 1

WT (q)
ãT

is an idempotent. �

LEMMA 19.2.6. Given a subset T of S and an I-tuple q ∈ R−1
T , there is an

idempotent hT ∈ Nq defined by

hT := 1

WT (q−1)

∑
w∈WT

εwq−1
w ew,

where εw := (−1)l(w).

Proof. The proof is similar to the previous one. Define

h̃T :=
∑

w∈WT

εwq−1
w ew. (19.10)

Then 〈h̃T , h̃T〉q =
∑

q−1
w = WT (q−1), so h̃T ∈ L2

q(WT ) if and only if q−1 ∈ RT .
Assume this. For s ∈ T , we calculate

h̃Tes =
∑

w∈Bs∩WT

εwq−1
w ewes + εwsq

−1
ws ewses

=
∑

εwq−1
w ews + εwsq

−1
w q−1

s (qsew + (qs − 1)ews)

= −
∑

εwq−1
w ew + εwsq

−1
w q−1

s ews

= −h̃T .

Hence, for w ∈ WT ,

h̃Tew = εwh̃T (19.11)

and

(h̃T )2 =
∑

w∈WT

εwq−1
w h̃Tew = WT (q−1)h̃T . (19.12)

As before, h̃T ∈ Rb
q[WT ]; hence, h̃T ∈ Nq. By (19.12), we get an idempotent

hT := 1

WT (q−1)
h̃T .

�
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Of course, when q = 1 and WT is finite, aT and hT reduce to the familiar
symmetrization and alternation elements in RWT defined by formulas (15.27)
and (15.28) in Section 15.4.

Using the formula in Proposition 19.1.1 (instead of Corollary 19.1.3), we get
the following right hand versions of (19.9) and (19.11) for T ⊂ S and w ∈ WT :

ewaT = qwaT (19.13)

and

ewhT = εwhT . (19.14)

What is the effect of the j-isomorphism on these idempotents? It follows
from definitions (19.3), (19.8), and (19.10) that

j(ãq
T ) = h̃1/q

T and j(h̃q
T ) = ã1/q

T ,

where we have used the superscripts q and 1/q to keep track of the dependence
on q. By the definitions in Lemmas 19.2.5 and 19.2.6,

j(aq
T ) = h1/q

T and j(hq
T ) = a1/q

T .

Using (19.9), (19.11), (19.13), and (19.14), we calculate that for U ⊂ T ⊂ S:

aUaT = aT = aTaU whenever q ∈ RT ,

hUhT = hT = hThU whenever q ∈ R−1
T .

If s1 · · · sl is a reduced expression for w, then sl · · · s1 is a reduced expression
for w−1. Hence,

qw−1 = qw and εw−1 = εw. (19.15)

So

a∗T = aT and h∗T = hT , (19.16)

whenever aT and hT are defined. In other words, the maps x→ xaT and
x→ xhT are orthogonal projections from L2

q onto sub-Nq-modules.

Remarks on terminology. The “a” in aT is for “average,” while the “h” in hT is
for “harmonic.”

LEMMA 19.2.7.

(i) For q ∈ R, L2
qaS is the line in L2

q consisting of all multiples of aS.

(ii) For q ∈ R−1, L2
qhS is the line in L2

q consisting of all multiples of hS.
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Proof. Suppose x =∑
xwew ∈ L2

qaS. Then

xw = q−1
w 〈x, ew〉q = q−1

w 〈xaS, ew〉q = q−1
w 〈x, aSew〉q

= q−1
w 〈x, qwaS〉q = 〈xaS, e1〉q = 〈x, e1〉q = x1.

So the coefficients are constant and x = x1ãS. The proof of (ii) is similar. (It
also follows from an application of the j-isomorphism.) �

DEFINITION 19.2.8. For each T ⊂ S, let αT : R[WT ]→ R and βT :
Rq[WT ]→ R be the algebra homomorphisms defined by ew → qw and ew →
εw, respectively. αT is the symmetric character and βT is the alternating
character.

COROLLARY 19.2.9. For q ∈ R, L2
qaS is stable under right Hecke multi-

plication. (Hence, it is a Hecke bimodule.) The right action of RqW on
L2

qaS is via the symmetric character αS. Similarly, for q ∈ R−1, L2
qhS is

stable under right Hecke multiplication and the action is via the alternating
character βS.

For any T ⊂ S and q ∈ RT , it is obvious that L2
qaT is the induced representa-

tion from L2
q(WT )aT . Similarly, for q ∈ R−1

T , L2
qhT is induced from L2

q(WT )hT .
Hence, we also have the following corollary.

COROLLARY 19.2.10. For any T ⊂ S and q ∈ RT , L2
qaT is stable under

right Hecke multiplication by Rq[WT ] and the action is via the symmetric
character αT . Similarly, for q ∈ R−1

T , L2
qhT is stable under right multiplication

by Rq[WT ] and the action is via βT .

SomeNq-Hilbert -Submodules of L2
q

To simplify notation, for each s ∈ S, write as and hs for the idempotents
a{s} and h{s}. Let As = L2

qas and Hs = L2
qhs be the corresponding Hilbert

Nq-submodules of L2
q.

LEMMA 19.2.11. For each s ∈ S, the subspaces As and Hs are the orthogonal
complements of each other in L2

q.

Proof

as + hs = 1

1+ qs
(1+ es)+ 1

1+ q−1
s

(1− q−1
s es)

= 1.

So as and hs are orthogonal projections onto complementary subspaces. �
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For each T ⊂ S, set

AT :=
⋂
s∈T

As and HT :=
⋂
s∈T

Hs. (19.17)

For any subspace E ⊂ L2
q, let E⊥ denote its orthogonal complement. Since ⊥

takes sums to intersections and intersections to closures of sums,
(∑

s∈T

As

)⊥
= HT ,

(∑
s∈T

Hs

)⊥
= AT , (19.18)

∑
s∈T

As = (HT )⊥,
∑
s∈T

Hs = (AT )⊥. (19.19)

LEMMA 19.2.12. Suppose T ⊂ S and AT is defined by (19.17). Then

(i) AT is stable under right Hecke multiplication by Rq[WT ]: for any
x ∈ AT and u ∈ WT, x · eu = qux.

(ii) If q /∈ RT , then AT = 0, while if q ∈ RT , AT = L2
qaT. In the second

case,

dimNq AT = 1

WT (q)
.

There is also the following version for HT .

LEMMA 19.2.13. Suppose T ⊂ S and HT is defined by (19.17). Then

(i) HT is stable under right Hecke multiplication by Rq[WT ]: for any
x ∈ HT and u ∈ WT, x · eu = εux.

(ii) If q /∈ R−1
T , then HT = 0, while if q ∈ R−1

T , HT = L2
qhT. In the

second case,

dimNq HT = 1

WT (q−1)
.

We prove only the first version, the second version being entirely similar.

Proof of Lemma 19.2.12. (i) The α{s}-eigenspace for the right action of
Rq[W{s}] on L2

q is Ker(qs − es) = Ker hs = L2
qas = As. So AT, being the in-

tersection of the As, is in the α{s}-eigenspace for all s ∈ T . In particular, for
any x ∈ AT and s ∈ T , x · es = qsx. So, if s1 · · · sk is a reduced expression for
u ∈ WT ,

x · eu = x · es1 · · · esk = qs1 · · · qsk x = qux,

which proves (i).
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(ii) Let x =∑
xwew ∈ AT . Write w = vu where v is (∅, T)-reduced and

u ∈ WT . We have

qvuxvu = 〈evu, x〉q = 〈eveu, x〉q = 〈ev, xe∗u〉q
= 〈ev, xeu−1〉q = 〈ev, qux〉q = qvquxv,

where the penultimate inequality is from part (i) and (19.15). So xvu = xv.
Thus,

〈x, x〉q =
∑
v∈BT

∑
u∈WT

qvqux2
vu = WT (q)

∑
v∈BT

qvx2
v ,

where BT denotes the set of (∅, T)-reduced elements. So x ∈ L2
q if and only if

x = 0 or q ∈ RT . Since xvu = xv for all u ∈ WT , we also have

x =
∑
v∈BT

xvev

∑
u∈WT

eu =
( ∑

v∈BT

xvev

)
ãT ∈ L2

qaT ,

which proves (ii). �

NOTES

19.1. Most of the material in this section is taken from [29, Exercise 23, p. 57].
The terminology “j-isomorphism” comes from [173]. The final paragraphs on Hecke
algebras and buildings are taken from [29, Ex. 22, pp. 56–57].

19.2. This section comes from [109] and [79]. I first learned about completing Hecke
algebras to von Neumann algebras from Jan Dymara. The idea may have been known
earlier, at least in the case of Euclidean reflection groups.

If W has no spherical or affine components, it can be shown that each nontrivial
conjugacy class in W is infinite. When this is the case, it follows that the von Neumann
algebra N (W) (= N1) associated to the group algebra is a factor (i.e., it has trivial
one-dimensional center).

As q varies, the Hecke algebras RqW are all isomorphic to the group algebra R1W.
One way to see this is to note that RqW is generated by the idempotents aq

s (where the
superscript denotes the dependence on q) and the correspondence a1

s → aq
s induces

an isomorphism R1W ∼= RqW. However, the same is not true for the Hecke – von
Neumann algebrasNq. For example, if q ∈ R, the center ofNq is at least 2-dimensional
as it contains 1 and aS. The reason is that, by (19.9) and (19.13), as commutes with
every element of RqW and hence, with every element ofNq. Similarly, for q ∈ R−1 the
center of Nq contains 1 and hS. Thus, Nq is never a factor in this range of q. On the
other hand, if W has no spherical or affine components, then, by the previous paragraph,
N1 is a factor. So the isomorphism type of Nq depends on q. A classification of these
von Neumann algebras up to isomorphism would be very interesting.
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Chapter Twenty

WEIGHTED L2-(CO)HOMOLOGY

Suppose � is a discrete group acting properly and cellularly on a CW complex
Y . C∗(Y;R) and C∗(Y;R) denote the vector spaces of real-valued cellular
chains and cochains, respectively. Ci(Y;R) is the set of all functions on the
set of i-cells of Y while Ci(Y;R) consists of the finitely supported ones. Let
L2Ci(Y) ⊂ Ci(Y;R) be the subspace of square summable cochains. (L2Ci(Y)
(= L2Ci(Y)) is the Hilbert space completion of Ci(Y;R) with respect to a
standard inner product.) Taking (co)homology, we get the L2-(co)homology
spaces of Y . If we are careful to use only closed subspaces in these Hilbert
spaces (by taking closures of the spaces of boundaries and coboundaries),
we get the “reduced” L2-(co)homology spaces of Y . When nonzero, these
Hilbert spaces tend to be infinite dimensional. More information is available.
The group � acts on these (co)homology spaces. Using the von Neumann
algebra associated to the group algebra R�, it is possible to define the “�-
dimension” of such a Hilbert space; it is a nonnegative real number. Hence,
we have the notion of an “L2-Betti number,” namely, the �-dimension of
a reduced L2-(co)homology space. All this is explained in Appendix J. Jan
Dymara [109] discovered a refinement of this theory in the case where
� is a Coxeter group W and the CW complex has the form U(W, X) (=
U). This theory was further developed in [79]. It is the subject of this
chapter.

Suppose we are given an I-tuple q of positive real numbers as in the previous
two chapters. This gives a deformation of the group algebra to a Hecke algebra
RqW and a corresponding von Neumann algebra Nq. The multiparameter
q gives a deformation of the standard inner product on C∗(U ;R) so that
the resulting square summable cochains L2

qC∗(U) ⊂ C∗(U ;R) become Nq-
modules and so that the coboundary maps are maps of Nq-modules. As
in the case of the standard inner product on the group algebra, this yields
(reduced) “weighted L2-cohomology” spaces L2

qH∗(U), whose “von Neumann
dimensions” are the “weighted L2-Betti numbers” bi

q(U) of U . (N.B. Although
the usual coboundary maps are Nq-equivariant, the usual boundary maps are
not. To remedy this one defines the “weighted L2-homology spaces” L2

qH∗(U)
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by using for boundary maps the adjoints of the coboundary maps rather
than those defined by the usual formula.) When q is the constant I-tuple
1, the Hecke algebra is the group algebra and the weighted L2-cohomology
spaces are the standard ones referred to in the first paragraph and in
Appendix J.

The study of the weighted L2-cohomology of U is closely related to the
growth series W(t) of Chapter 17. For example, for any nonzero constant, the
constant 0-cocycle on � is square summable if and only if q lies in the region
of convergence R for W(t). Moreover, provided U is connected, in this same
range of q, b0

q(U) = 1/W(q) (Proposition 20.3.1). Particularly easy to compute
is the “L2

q-Euler characteristic” χq(U), defined as the alternating sum of the
bi

q(U). An explicit formula is given in 20.2. In the case of principal interest,
where U = �, we have χq(�) = 1/W(q) (Proposition 20.2.4).

When W is type HMn so that � is a homology n-manifold, we have
Poincaré duality: bi

q(�) = bn−i
1/q(�). For general values of q we cannot say

much more about the bi
q, other than the function q→ bi

q(U) is continuous
(Theorem 20.2.1). However, for q ∈ R or for q−1 ∈ R, we give a complete
calculation of these weighted Betti numbers in Theorem 20.7.1. The method
for doing this follows the line laid down in 15.2. L2

qH∗(U) can be thought of as
a type of equivariant cohomology of U . A direct sum decomposition of coef-
ficient systems on X yields a decomposition of (co)chains and (co)homology.
We find such a decompositon of coefficient systems so that each term in the
sum essentially becomes a relative (co)homology group of X with constant
coefficients. The desired decompositions of coefficient systems (i.e., of L2

q) are
proved in 20.6. (When W is finite and q = 1, this decompositon is Solomon’s
Theorem 15.4.2.) Our proof of the decomposition theorems ultimately comes
down to showing the vanishing, except in the bottom dimension, of the relative
L2

q-homology of certain subcomplexes of � for q ∈ R. (These subcomplexes
are called “ruins” in 20.6.)

The calculation shows that as q goes from 0 to ∞, L2
qH∗(U) interpolates

between ordinary cohomology groups and cohomology with compact sup-
ports. (In Chapters 8 and 15 we calculated both the ordinary cohomology and
cohomology with compact supports of U . The answers are wildly different.)
Roughly speaking, for q ∈ R, L2

qH∗(U) looks like ordinary cohomology while
for q ∈ R−1, it looks like cohomology with compact supports. The precise
statement is given in Theorem 20.7.6.

When q = 1, L2
qH∗(�) is the ordinary L2-cohomology of �. In this

case, when (W, S) is type HMn, there is a pre-eminent question, the Singer
Conjecture (see Appendix J.7). It implies that L2Hk(�) should vanish except
for k = n

2 . (In particular, it should always vanish when n is odd.) This
conjecture is proved for W right-angled and n � 4 in [91]. A generalization
for weighted L2-cohomology is explained in 20.5.



August 16, 2007 Time: 09:37am chapter20.tex

WEIGHTED L2-(CO)HOMOLOGY 361

20.1. WEIGHTED L2-(CO)HOMOLOGY

As usual, X is a finite, mirrored CW complex over S and U = U(W, X). For any
cell c of X, S(c) := {s ∈ S | c ⊂ Xs}. X(i) and U (i) denote the set of i-cells in X
and U , respectively. As in 19.2, q is a multiparameter of positive real numbers
and Nq is the von Neumann algebra associated to the Hecke algebra RqW.

We begin by defining a chain complex of Hilbert Nq-modules for the CW
complex U with its cell structure induced from that of X. In this case, each
orbit of cells contributes an Nq-module of the form AT , for T = S(c). Next,
we consider the chain complexes arising from the cellulation of � by Coxeter
polytopes. These chain complexes are alsoNq-modules. In this case, each orbit
of cells contributes a Nq-module isomorphic to HT , for some T = S(c) ∈
S. When U = �, this chain complex is chain homotopy equivalent to the
first one.

Weighted (Co)chain Complexes for U (W, X)

Orient the cells of X arbitrarily and then orient the remaining cells of U so
that for each positively oriented cell c of X and each w ∈ W, wc is positively
oriented.

Define a measure µq on the orbit of a cell c ∈ X(i) by

µq(wc) := qu, (20.1)

where u is the shortest element in wWS(c) (i.e., u is the (∅, S(c))-reduced element
in this coset). Formula (20.1) extends to a measure, also denoted µq, on U (i).
As in [109], define the q-weighted L2-(co)chains on U in dimension i to be the
Hilbert space

L2
qCi(U) = L2

qCi(U) := L2(U (i),µq). (20.2)

We have coboundary and boundary maps, δi : L2
qCi(U)→ L2

qCi+1(U) and ∂i :
L2

qCi(U)→ L2
qCi−1(U) defined by the usual formulas:

δi(f )(γ ) :=
∑

[β : γ ]f (β), (20.3)

∂i(f )(α) :=
∑

[α : β]f (β), (20.4)

where the first sum is over all i-cells β incident to the (i+ 1)-cell γ and the
second is over all β whose boundary contains the (i− 1)-cell α. In contrast to
the usual situation, δi and ∂i+1 are not adjoint to one another. In fact, if one
defines ∂q

i : L2
qCi(U)→ L2

qCi−1(U) by

∂
q
i (f )(α) :=

∑
[α : β]µq(β)µq(α)−1f (β), (20.5)
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then a simple calculation shows ∂q is the adjoint of δ (with respect to the µq

inner product), We state this as the next lemma.

LEMMA 20.1.1. ([109, §1].) δ∗ = ∂q.

Since δ2 = 0, by taking adjoints, we have (∂q)2 = 0. Hence, (L2
qC∗(U), ∂q)

is a chain complex. Define the q-weighted L2-(co)homology of U by

L2
qHi(U) := Hi((L2

qC∗(U), δ)) = Ker δi/ Im δi−1,

L2
qHi(U) := Hi((L

2
qC∗(U), ∂q)) = Ker ∂q

i / Im ∂
q
i+1.

There is a standard problem with these (co)homology groups: the above
quotients need not be Hilbert spaces. To remedy this, define the reduced
q-weighted L2-(co)homology by

L2
qHi(U) := Ker δi/Im δi−1,

L2
qHi(U) := Ker ∂q

i /Im ∂
q
i .

The Isomorphism θ

The next lemma describes an important trick that we will need to use several
times.

LEMMA 20.1.2. The chain complexes (L2
qC∗(U), ∂q) and (L2

1/qC∗(U), ∂) are
isomorphic.

Proof. Given a chain f on U , define another chain θ (f ) by θ (f )(β) :=
µq(β)f (β). Note that θ (f ) is q−1-square summable if and only if f is q-square
summable. Hence, we get a linear isomorphism θ : L2

1/qC∗(U)→ L2
qC∗(U).

Using (20.4) and (20.5), a computation shows θ ◦ ∂ = ∂q ◦ θ . So θ is a chain
isomorphism. �

Remark 20.1.3. We have canonical inclusions of chain complexes:

C∗(U ;R) ↪→ (L2
qC∗(U), ∂) ↪→ Clf

∗ (U ;R). (20.6)

Using the isomorphism in Lemma 20.1.2 we get inclusions:

C∗(U ;R) ↪→ (L2
1/qC∗(U), ∂1/q) ↪→ Clf

∗ (U ;R). (20.7)

Similarly, we have inclusions of cochain complexes:

C∗c (U ;R) ↪→ L2
qC∗(U) ↪→ C∗(U ;R). (20.8)

(Here Clf
∗ ( ) and C∗c ( ) stand for, respectively, infinite cellular chains and finitely

supported cellular cochains.) The second map in (20.6) (or the second map in
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(20.7)) is obtained by dualizing the first map in (20.8). Similarly, the second
map in (20.8) is obtained by dualizing the first map in (20.6). Replacing 1/q
by q, the first map in (20.7) induces

can : Hi(U ;R)→ L2
qHi(U). (20.9)

Similarly, the first map in (20.8) induces

can : Hi
c(U ;R)→ L2

qHi(U). (20.10)

We will show in Theorem 20.7.6 that, for q ∈ R, the canonical map (20.9)
is a monomorphism with dense image, while for q ∈ R−1, the map (20.10)
is a monomorphism with dense image. This is the sense in which L2

qH∗(U)
interpolates between ordinary cohomology and cohomology with compact
supports. This is reminiscent of a well-known result of Cheeger-Gromov [62]
that if a discrete amenable group A acts properly on a CW complex X, then
the canonical map L2H∗(X)→ H∗(X;R) is injective (Theorem J.8.2). So, for
q ∈ R, weighted L2-cohomology behaves as if W were amenable.

Hodge Decomposition

Since δ∗ = ∂q and (∂q)∗ = δ, we get a Hodge decomposition

L2
qCi(U) = (Ker δi ∩ Ker ∂q

i )⊕ Im δi−1 ⊕ Im ∂
q
i+1 ,

as in Appendix J.3. It follows that both L2
qHi(U) and L2

qHi(U) can be identified
with the space Ker δi ∩ Ker ∂q

i of harmonic cochains. In particular, L2
qHi(U) ∼=

L2
qHi(U).

The HilbertNq-Module Structure on L2
qC∗(U )

Terminology is taken from 19.2. L2
q = L2(W, νq), where νq is the measure on

W defined by νq(w) = qw. For each subset T of S, the Hilbert Nq-submodule
AT ⊂ L2

q, defined by (19.17), can be identified with L2(W, νq)WT , the subspace
of functions which are constant on each right coset wWT . Since each cell of U
has the form wc for some cell c of X,

L2
qCi(U) =

⊕
c∈X(i)

L2(Wc,µq),

where the sum ranges over all i-cells c of X. L2(Wc,µq) can be identified with
AS(c) via the isometry ϕc : L2(Wc,µq)→ AS(c) defined by

ϕc(f ) = √
WS(c)(q)

( ∑
u∈BS(c)

f (uc)euaS(c)

)
,
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where the summation is over all (∅, S(c))-reduced elements u and where aS(c)

is the idempotent in Nq defined in Lemma 19.2.5. So we get an isometry

⊕ϕc : L2
qCi(U) =

⊕
c∈X(i)

L2(Wc,µq)
∼=−→

⊕
c∈X(i)

AS(c). (20.11)

Since each AS(c) is a leftRqW-submodule of L2
q, this gives L2

qCi(U) the structure
of a Hilbert Nq-module as in Definition 19.2.3 (provided we assume, as we
shall, that X is a finite complex). It also gives an isometric embedding


 : L2
qCi(U) ↪→

⊕
c∈X(i)

L2
q = Ci(X)⊗ L2

q. (20.12)

The next result is a straightforward computation.

LEMMA 20.1.4. ([109, Lemma 3.2].) δ and ∂q are maps of Hilbert Nq-
modules.

(It is not true that ∂ is a map of Hilbert Nq-modules.)
It follows that Ker δ, Ker ∂q, Im δ and Im ∂q are HilbertNq-modules. Hence,

L2
qHi(U) and L2

qHi(U)) are also Hilbert Nq-modules.

Weighted (Co)chain Complexes for the Cellulation
by Coxeter Polytopes

The cellulation of� by Coxeter polytopes gives a different (co)chain complex,
which also has the structure of a Hilbert Nq-module. Let CT denote the
Coxeter polytope in� corresponding to WT ∈ WS (the WT coset of the identity
element). WCT denotes the W-orbit of CT , i.e., the set of all Coxeter polytopes
in � of type WT (see 7.3). Let �cc stand for � with this cell structure. Define
a measure µq on �(i)

cc by µq(wCT ) = qu, where u (= pT (w)) is the shortest
element in wWT . Define the q-weighted L2-(co)chains on � in dimension i to
be the Hilbert space,

L2
qCi(�cc) = L2

qCi(�cc) := L2(�(i)
cc ,µq).

We have

L2
qCi(�cc) =

⊕
T∈S (i)

L2(WCT ,µq).

For each T ∈ S, arbitrarily choose an orientation for CT . Orient the remain-
ing cells in WCT as follows: if u ∈ BT , orient uCT so that left translation by u
is an orientation-preserving map CT → uCT . (As in 4.5 and 17.1, BT is the set
of (∅, T)-reduced elements in W.)

As in (20.3), δ : L2
qCi(�cc)→ L2

qCi+1(�cc) is the usual coboundary map. Its
adjoint ∂q : L2

qCi+1(�cc)→ L2
qCi(�cc) is defined in (20.5). Next, we determine
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the formula for the restriction of ∂q to the summand L2(WCU ,µq), where
U ∈ S (i+1). Suppose T ∈ S (i) is obtained by deleting one element of U and
that w ∈ BT . Any w ∈ W can be uniquely decomposed as w = uv with u ∈ BU

and v ∈ WU . If w ∈ BT , then v ∈ WU ∩ BT . For any f ∈ L2(WCU ,µq), we have
the following formula for ∂q:

∂qf (wCT ) = εvq−1
v f (uCU). (20.13)

WT acts nontrivially on the cell CT and v ∈ WT is εv-orientation-preserving.
Hence, the rightRq[WT ]-action on L2(WCT ,µq) is via the alternating character
βT of Definition 19.2.8, i.e., L2(WCT ,µq) is identified with HT . A specific
isometry ψ : L2(WCT ,µq)→ HT is defined by

ψT (f ) =
√

WT (q−1)

( ∑
u∈BT

f (uCT )eu

)
hT , (20.14)

where hT is the idempotent of Nq defined in Lemma 19.2.6. This gives an
isometry

L2
qCi(�cc) =

⊕
T∈S (i)

L2(WCT ,µq)
∼=−→

⊕
T∈S (i)

HT . (20.15)

Since each HT is a left RqW-submodule of L2
q, this gives L2

qCi(�cc) the
structure of a Hilbert Nq-module. It also gives an isometric embedding,

� : L2
qCi(�cc) ↪→

⊕
c∈S (i)

L2
q = Ci(K)⊗ L2

q.

Use the isomorphism in (20.15) to transport the Hilbert Nq-module structure
from the right hand side of (20.15) to L2

qCi(�cc). It is proved in [109, Lemma
4.3] that δ and ∂q are maps of HilbertNq-modules. We shall give the argument
in Lemma 20.6.21, below. Hence, the reduced L2-(co)homology groups,

L2
qHi(�cc) = Ker δi/Im δi−1 and L2

qHi(�cc) = Ker ∂q
i /Im ∂

q
i

are also Hilbert Nq-modules. It is proved in [109, §5] that the (co)homology
groups of L2

qC∗(�cc) and of L2
qC∗(�) are the same, i.e., L2

qH∗(�cc) ∼= L2
qH∗(�),

L2
qH∗(�cc) ∼= L2

qH∗(�) and L2
qH∗(�cc) ∼= L2

qH∗(�). (The point is that the
simplicial structure on � is a subdivision of �cc.)

The chain complex (L2
qC∗(�cc), ∂q) looks like this:

L2
q ←−

⊕
s∈S

Hs ←−
⊕

T∈S (2)

HT ←− · · · .

We shall explicitly describe the boundary maps in Lemma 20.6.21.
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20.2. WEIGHTED L2-BETTI NUMBERS AND
EULER CHARACTERISTICS

In Appendix J.5, in the case of ordinary L2-(co)homology (q = 1), we
define L2-Betti numbers and L2-Euler characteristics and we prove Atiyah’s
Formula which identifies the L2-Euler characteristic with the orbihedral Euler
characteristic of the quotient. (The orbihedral Euler characteristic is defined
by formula (16.4) in Section 16.1).) Here we give the analogous definitions for
weighted L2-(co)homology.

In the previous section we showed that the weighted L2-(co)chains are
Hilbert Nq-modules. As in 19.2, they have a von Neumann dimension,
dimNq ( ), defined by (19.7). Set

ci
q(U) := dimNq L2

qCi(U),

The stabilizer of an i-cell c ⊂ X is the special subgroup WS(c) and the summand
of L2

qCi(U) corresponding to the orbit of c is isomorphic to AS(c). Its dimension
is trNq (aS(c)) = 1/WS(c)(q). Hence,

ci
q(U) =

∑
c∈X(i)

1

WS(c)(q)
. (20.16)

By the Hodge decomposition, the reduced weighted L2-(co)homology
spaces are closed, RqW-stable subspaces of the weighted L2-(co)chains; so,
they are also Hilbert Nq-modules. The ith weighted L2

q-Betti number of U is
defined by

bi
q(U) := dimNq L2

qHi(U). (20.17)

THEOREM 20.2.1. ([79, Theorem 7.7].) For each i, the function q→ bi
q(U)

is continuous.

The proof can be found in [79, Section 7]. It is fairly long and we will not
reproduce it here.

Remark 20.2.2. In Theorem 20.7.1 we will give explicit formulas for the bi
q,

for q in R ∪R−1 (in fact, for q ∈ R ∪R−1). It follows from these formulas
that lim bi

q exists as q→ 0 or q→∞ and that

lim
q→0

bi
q(U) = bi(X) and lim

q→∞ bi
q(U) = bi(X, ∂X), (20.18)

where for any pair of spaces, (Y , Z), bi(Y , Z) := dimR(Hi(Y , Z;R)) is the
ordinary ith-Betti number. (See Remark 20.7.3.)

By the additive property of dimNq , the alternating sum of the Hecke–von
Neumann dimensions of a chain complex of Hilbert Nq-modules is equal
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to the alternating sum of the dimensions of its reduced homology groups.
This gives the following version of of Atiyah’s Formula (Theorem J.5.3) for
L2

q-cohomology:

∑
(−1)ibi

q(U) =
∑

(−1)ici
q(U). (20.19)

We denote either side of this equation by χq(U) and call it the L2
q-Euler

characteristic of U . Not only is q→ χq(U) continuous, it is a rational function
of q. As we show below, this is a easy corollary of (20.19).

PROPOSITION 20.2.3. (Rationality of Euler characteristics.) χq(U) =
f (q)/g(q) where f and g are polynomials in q with integral coefficients.

Proof. For each T ∈ S, XT (resp. ∂XT ) is defined as the subcomplex consisting
of those cells c such that T ⊂ S(c) (resp. T � S(c)). By (20.16) and (20.19),

χq(U) =
∑
T∈S

χ (XT )− χ (∂XT )

WT (q)
, (20.20)

where each term in the sum has numerator an integer and denominator a
polynomial in q. (Compare formula (16.7) in Section 16.1.) �

PROPOSITION 20.2.4. (Dymara [109, Cor. 3.4] or [79].)

χq(�) = 1

W(q)
.

We give two proofs.

First proof. By (20.20),

χq(�) =
∑
T∈S

χ (KT )− χ (∂KT )

WT (q)
,

and since χ (KT ) = 1 (because KT is a cone), Theorem 17.1.10 shows that the
right-hand side is equal to 1/W(q). �

Second proof. This time use the cellulation of � by Coxeter cells. We have

dimNq L2(WCT ,µq) = dimNq HT = 1

WT (q−1)
.

Hence,

ci
q(�cc) =

∑
T∈S (i)

1

WT (q−1)
,
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so

χq(�) =
∑
T∈S

ε(T)

WT (q−1)
= 1

W(q)
,

where the last equality is Theorem 17.1.9. �

20.3. CONCENTRATION OF (CO)HOMOLOGY IN DIMENSION 0

Vert(�) can be identified with W. So, L2
qC0(�cc) ∼= L2

q. A 0-cochain is a
cocycle if and only if it is the constant function on W. (See the discussion
preceding formula (J.9) of Appendix J.4.) If c denotes the constant, then the
norm, with respect to the inner product 〈 , 〉q, of the cocycle is

|c|
∑
w∈W

qw

and this is<∞ if and only if c = 0 or q ∈ R (and, if this is the case, its norm is
|c|W(q)). The subspace of constants in L2

q is AS. When q ∈ R, the orthogonal
projection L2

q → AS is the idempotent aS. So, b0
q(�) = dimNq (AS) = trNq aS =

1/W(q). (As a real vector space, AS has dimension 1 or 0; however, in our
setup, its dimension varies continuously from 1 (= χ (K)) to 0.) This proves
the following.

PROPOSITION 20.3.1. (Dymara [109].) L2
qH0(�) is nonzero if and only if

q ∈ R. Moreover, when q ∈ R, b0
q(�) = 1/W(q).

Remark 20.3.2. U is connected if and only if X is connected and Xs �= ∅ for
each s ∈ S (Theorem 8.2.7). Suppose this. An argument similar to the one
above shows L2

qH0(U) is nonzero if and only if q ∈ R and when this is the
case, b0

q(U) = 1/W(q).

A Chain Contraction

The following result of Dymara is fundamental to the remaining computations
in this chapter.

THEOREM 20.3.3. (Dymara [109].) Suppose q ∈ R. Then L2
qH∗(�) is con-

centrated in dimension 0.

The idea for the proof is straightforward, but the details involve some
delicate estimates. When q ∈ R, we will define a chain contraction H :
(L2

qC∗(�), ∂q)→ (L2
qC∗+1(�), ∂q). By Lemma 20.1.2, this is equivalent to
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defining a chain contraction H : (L2
1/qC∗(�), ∂)→ (L2

1/qC∗+1(�), ∂) (with
respect to the usual boundary map). For ordinary chains this follows from the
contractibility of �. However, now we need to show H is a bounded operator.
In order to get the required estimates, one needs to use the fact that natural
piecewise Euclidean metric on � is CAT(0) (Moussong’s Theorem 12.3.3).
Dymara first uses a simplicial version of geodesic contraction to define a
chain contraction, H : (C∗(�), ∂)→ (C∗+1(�), ∂), on the ordinary real-valued
simplicial k-chains. Next he shows that for q ∈ R−1, H extends to a bounded
linear operator, H : L2

qC∗(�)→ L2
qC∗+1(�), which is a chain homotopy with

respect to the usual boundary map, ∂ . (N.B., H is bounded for large values of
q not small ones.) Finally, one uses the isomorphism θ from Lemma 20.1.2
to convert this to the desired chain contraction (with respect to ∂1/q), H :
L2

1/qC∗(�)→ L2
1/qC∗+1(�), valid for all 1/q ∈ R.

Let x0 ∈ K be the central point in the fundamental chamber (i.e., x0 is the
vertex corresponding to the element W∅ ∈ WS). The lemmas Dymara needs
are stated below. In the first one, he defines the chain contraction on (C∗(�), ∂)
and shows it has the required properties.

LEMMA 20.3.4. (Dymara [109, Theorem 9.1].) There exists a chain con-
traction H : C∗(�)→ C∗+1(�) and constants C and R with the following
properties:

(a) If v ∈ �(0), then ∂H(v) = v− x0.

(b) If α is a simplex of positive dimension, then ∂(H(α)) = α − H(∂α).

(c) For every simplex α, ‖H(α)‖L∞ < C.

(d) If v is a vertex of a simplex α and γ : [0, d]→ � is the geodesic
segment from v to x0 (where d := d(v, x0) is the distance from v to x0),
then supp(H(α)) ⊂ NR(Im γ ). (Here, for a simplicial chain f , supp( f )
means the union of simplices which have nonzero coefficient in f .
NR(Im γ ) means the R-neighborhood of the geodesic segment γ ).

H is defined on vertices (and hence on 0-chains) by approximating geodesic
contraction to x0. Using induction on dimension, the definition is extended to
k-chains in a straightforward fashion. Using the fact that the metric is CAT(0),
Dymara shows H has the desired properties. In the second lemma, he shows
that properties (a)–(d) above are enough to guarantee that H extends to a
bounded linear operator.

LEMMA 20.3.5. (Dymara [109, Theorem 10.1].) Suppose q ∈ R−1. Then
the map H of Lemma 20.3.4 extends to a bounded operator H : L2

qCk(�)→
L2

qCk+1(�).

We will not give the proofs here.
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20.4. WEIGHTED POINCARÉ DUALITY

When W is type PMn (Definition 13.3.1), � is an orientable pseudomanifold
and so has a fundamental cycle (an infinite cycle in the top dimension n). This
cycle is not square summable and so is never an ordinary L2-chain (see the
discussion near the end of Appendix J.4). However, the analogous weighted
L2-chain is square summable with respect to 〈, 〉q provided q is sufficiently
large. To see this, first consider what it means for an n-chain f to be a cycle with
respect to ∂q. The coefficient in f of each n-simplex of K must be the same,
say, 1. Similarly, all n-simplices in wK must have the same coefficient. Let us
determine it. First consider an n-simplex α of sK which has a codimension
one face contained in Ks. Since ∂qf = 0, the coefficient of α must be q−1

s (see
(20.5)). So, the coefficent of each n-simplex in sK is also q−1

s . Continuing in
this fashion we see that the coefficient of each n-simplex of wK is q−1

w . So,
the norm of f is N

∑
q−1

w , where N is the number of n-simplices in K and
this norm is <∞ if and only if q ∈ R−1. It follows that there are nontrivial
n-cycles in � if and only if q ∈ R−1 and when this is the case, the space of
such n-cycles (= L2

qHn(�)) is a 1-dimensional real vector space isomorphic to
HS as an Nq-module. Hence, we have proved the following result, analogous
to Proposition 20.3.1.

PROPOSITION 20.4.1. (Compare [108].) Suppose W is type PMn. Then
L2

qHn(�) is nonzero if and only if q ∈ R−1. Moreover, when q ∈ R−1,

bn
q(�) = 1

W(q−1)
.

For the remainder of this section, W will be type HMn (Definition 10.6.2).
Recall this means � is a homology n-manifold, i.e., its nerve is a GHSn−1

(a “generalized homology sphere,” cf. Definition 10.4.5). Equivalently, it
means that K is a “generalized polytope,” i.e., for each T ∈ S, (KT , ∂KT ) is
a GHD (“generalized homology disk”) of codimension Card(T) (see Lemma
10.8.1). For the purpose of computing (co)homology, the decomposition
of � into translates of the KT behaves exactly as if it were a decomposition
into cells.

THEOREM 20.4.2. (Dymara [109, Theorem 6.1].) Suppose W is type
HMn. Then there is an isometry D : L2

qHi(�)→ L2
1/qHn−i(�), which is a

j-equivariant isomorphism from an Nq-module to an N1/q-module. Hence,

bi
q(�) = bn−i

1/q(�).

(The j-isomorphism was defined in Chapter 19.)
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The proof is along the same lines as the classical proof of Poincaré
duality for orientable PL manifolds, which we now recall. Let Mn be a PL
manifold. For each i-cell c in Mn, there is a dual (n− i)-cell Dc ⊂ Mn. (See
Definition A.5.4 for the meaning of “dual cone; ” in the case of a PL manifold,
a dual cone is a cell.) One defines the duality isomorphism D : Ci(Mn)→
Cn−i(Mn) by sending c to D(c) (the characteristic function of) the dual cell
Dc. The reason this works is that D is a map of complexes. In fact, up to sign,
it intertwines the boundary and coboundary maps: D(∂c) = ±δD(c).

In the case at hand, the cells are the Coxeter polytopes of the form wCT .
The dual (generalized) cell to wCT is wKT . The problem is that the standard
duality: wCT ↔ wKT interwines δ with the ordinary boundary map ∂ not with
∂q. What saves us is the j-isomorphism (defined by formula (19.3)) and the
trick in Lemma 20.1.2.

Proof of Theorem 20.4.2. We have two cell structures on �: its cellulation
by the Coxeter polytopes wCT and the dual “cellulation” by the generalized
homology polytopes, wKT . To distinguish them we use the notation �cc in
the first case and �dual in the second. Next, we need to fix some orientation
conventions. Orient �. Orient the KT arbitrarily subject only to the conditions
that the orientation of K agrees with that of �. (If T ∈ S (n), then KT is a 0-
cell so there is no choice.) Extend this equivariantly to orientations on the
orbits of the KT . The effect is to give an equality of incidence numbers:
[wKU : wKT ] = [KU : KT ], for all w ∈ W. We give the Coxeter cells the dual
orientations: if u is (∅, T)-reduced, then uCT is oriented dually to uKT . This
means that the orientation on uCT followed by the orientation on uKT gives the
orientation on �. (If w = uv, with v ∈ WT , then the orientation on wCT is εv

times the orientation on uCT .)
Define D : L2

qCi(�cc)→ L2
1/qCn−i(�dual) by

Df (wKT ) := εuquf (wCT ), (20.21)

where Card(T) = i and u is the (∅, T)-reduced element of wWT . Use c and d
to denote generic Coxeter cells of dimension i and (i− 1), respectively, and
let Dc, Dd be their dual cells. If c = wCT , then, as in 20.1, use the notation
µq(c) = qu and εq(c) := εu = (−1)l(u). Formula (20.21) becomes Df (Dc) =
εq(c)µq(c)f (c). We have the usual formula for δ and formula (20.13) for ∂q:

δ(g)(Dd) =
∑

Dc⊂Dd

[Dc : Dd]g(Dc)

∂q(f )(d) =
∑
c⊃d

[d : c]εq(c)εq(d)µq(c)µq(d)−1f (c).

Let us check that D intertwines δ and ∂q. The key point is that the incidence
numbers satisfy, [Dc : Dd] = ±[d : c], where the sign depends only on i and n.
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Therefore,

δ(Df )(Dd) =
∑
c⊃d

[Dc : Dd](Df )(c) = ±
∑
c⊃d

[d : c]εq(c)µq(c)f (c),

while

D(∂qf )(Dd) = εq(d)µq(d)(∂qf )(d)

= εq(d)µq(d)
∑
c⊃d

[d : c]εq(c)εq(d)µq(c)µq(d)−1f (c)

= ±δ(Df )(Dd),

as claimed.
Next we check that D takes the Nq-module L2

qCi(�cc) isometrically onto
theN1/q-module L2

1/qCn−i(�dual). SinceD clearly respects the decompositions
into Coxeter cells and their duals, this amounts to checking that the following
diagram commutes:

L2(WCT ,µq)
ψT−−−−→ Hq

T

D
�

�j

L2(WKT ,µ1/q)
ϕT−−−−→ A1/q

T .

Here ψT and ϕT are as in 20.1:

ψT (f ) :=
√

WT (q−1)
∑
u∈BT

f (uCT )euhT ,

ϕT (g) :=
√

WT (q−1)
∑
u∈BT

g(uKT )euaT .

The sums are over the set BT of (∅, T)-reduced elements. Compute:

ϕT (Df ) =
√

WT (q−1)
∑
Df (uKT )euaq−1

T

=
√

WT (q−1)
∑

εuquf (uCT )euaq−1

T

=
√

WT (q−1)
∑

f (uCT )j(eu)j(hq
T )

= j(ψT (f )),

where again the sums range over u ∈ BT . So, the diagram commutes. �
We can use Theorem 20.4.2 to calculate the L2

q-Euler characteristic of
� in two different ways. This gives the following alternative proof of
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Corollary 17.3.5 (which states that when W is type HMn its growth series is
(−1)n-reciprocal).

Proof. Writing bi
q for bi

q(�), we have:

1

W(q)
=

∑
(−1)ibi

q =
∑

(−1)ibn−i
1/q = (−1)n

∑
(−1)ibi

1/q

= (−1)n

W(q−1)
.

�

Combining Theorems 20.3.3 and 20.4.2, we get the following.

COROLLARY 20.4.3. Suppose W is type HMn and q ∈ R−1. Then L2
qH∗(�)

is concentrated in dimension n.

It follows from the continuity of the weighted Betti numbers that L2
qH∗(�)

vanishes identically for q ∈ R−R or q ∈ R−1 −R−1.
Write q � 1 to mean each qs is � 1.

COROLLARY 20.4.4. (Affine groups). Suppose W is a Euclidean reflection
group (i.e., an affine Coxeter group) and q � 1. Then L2

qH∗(�) is concentrated
in the top dimension.

Proof. Let W(t) be the growth series in a single indeterminate t. Its radius
of convergence is 1 (Remark 17.2). It follows that R ⊃ {q | q < 1} and that
R−1 ⊃ {q | q � 1}. �

COROLLARY 20.4.5. (Polygon groups.) Suppose W is a nonspherical poly-
gon group (see 6.5). Then L2

qH∗q(�) is concentrated in dimension



0 if q ∈ R,

1 if q /∈ R ∪R−1,

2 if q ∈ R−1.

So, whenever bi
q(�) is nonzero it is equal to |1/W(q)|, the absolute value of

the L2
q-Euler characteristic.

Proof. If q /∈ R ∪R−1, then, by Propositions 20.3.1 and 20.4.1, L2
qHi(�) = 0

for i = 0 or 2; hence, it is concentrated in dimension 1. �

Example 20.4.6. (Right-angled polygon groups.) To get a better feel for what
is going on in Corollary 20.4.5, let us return to Example 17.1.15: W is right
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angled with nerve a k-gon, k � 4, and q is a singleton q. Then χq = 1/W(q) =
(q2 − (k − 2)q+ 1)/(1+ q)2, which has roots

ρ±1 = (k − 2)∓√k2 − 4k

2
.

1/W(q) is positive on the intervals [0, ρ) and (ρ−1,∞) and negative on
(ρ, ρ−1). (This example also should be compared with Example J.5.4 in
Appendix J.5.)

20.5. A WEIGHTED VERSION
OF THE SINGER CONJECTURE

The Singer Conjecture ([102]) asserts that the ordinary reduced L2-
cohomology of the universal cover of any even-dimensional, closed, aspherical
manifold vanishes except in the middle dimension and in the odd-dimensional
case, that it vanishes in all dimensions. It is explained in Proposition J.7.2 of
Appendix J.7 how this conjecture implies the Euler Characteristic Conjecture
of 16.2. The Singer Conjecture for Coxeter groups is the following.

CONJECTURE 20.5.1. ([91].) Suppose W is a Coxeter group of type HMn.
Then

bi
1(�) = 0, for all i �= n

2
,

where bi
1(�) denotes the ordinary L2-Betti number of � with respect to W.

For n odd, this means bi
1(�) should equal 0 for all i.

In [91] B. Okun and I described a program (not yet successfully completed)
for proving Conjecture 20.5.1 by induction on dimension in the case where W
is right-angled. We did succeed in proving the following.

THEOREM 20.5.2. ([91, Theorem 11.1.1].) Conjecture 20.5.1 is true for
n � 4 when W is right-angled.

Actually, this was proved under the weaker assumption that W is “rationally
type HMn,” meaning that the nerve L is a GHSn−1 with rational coefficients.
(This guarantees Poincaré duality holds for L2

qH∗(�).) In outline, the proof

goes as follows. Since W is type HMn, L is a GHSn−1. For n � 3 this means
L is an actual (n− 1)-sphere. For n = 1, the only possibility is � = E1 and
since the reduced L2-cohomology of Euclidean space vanishes identically, the
conjecture holds. For n = 2, we proved it as Corollary 20.4.5. Dodziuk [102]
showed that the reduced L2-cohomology of hyperbolic space Hn vanishes for
i �= n

2 (Theorem J.8.7). So, if W is a cocompact, geometric reflection group
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on H3, the reduced L2-cohomology of � vanishes. Hence, if L is a flag
triangulation of S2 satisfing the conditions of Andreev’s Theorem in 6.10, the
conjecture holds. (In the right-angled case, Andreev’s Conditions amount to
the requirement that L has no empty 4-circuits and that it is not the suspension
of a 4- or 5-gon.) In the general three-dimensional case, one argues that L
can be decomposed as a connected sum, at vertices of valence 4, into pieces
each satisfying Andreev’s Conditions. One can then use the Mayer-Vietoris
sequence (from Appendix J.4) to conclude the conjecture holds for n = 3.
(Alternatively, the conjecture in dimension 3 follows from the result of Lott–
Lück [189].) The inductive arguments of [91] show the case n = 3 implies the
case n = 4.

A corollary of Theorem 20.5.2 is the Flag Complex Conjecture in
dimension 3.

COROLLARY 20.5.3. ([91, Theorem 11.2.1].) The Flag Complex Conjecture
of 16.3 holds for flag triangulations of (rational) homology 3-spheres.

Proof. If L is a flag triangulation of a rational homology 3-sphere and W the
assoiated right–angled Coxeter group, then χ (W) = χorb(�//W) is the number
f (− 1

2 ) in the Flag Complex Conjecture (by Example 16.2.9). As observed in
the proof of Proposition J.7.2, it follows from Atiyah’s Formula (20.19) (or
Theorem J.5.3) that χorb(�//W) = χ1(�). By Theorem 20.5.2, this number is
b2

1(�) which is � 0. �

By Proposition 16.3.2, this implies the following.

COROLLARY 20.5.4. The Euler Characteristic Conjecture holds for any
(rational) homology 4-manifold M4 with a nonpositively curved cubical cell
structure. (In other words, for any such M4, χ (M4) � 0.)

For general q, the appropriate generalization of Conjecture 20.5.1 is the
following ([79, Conj. 14.7]).

CONJECTURE 20.5.5. (The Weighted Singer Conjecture.) Suppose W is type
HMn. If q � 1 and k > n

2 , then bk
q(�) = 0.

By weighted Poincaré duality (Theorem 20.4.2), this is equivalent to the
conjecture that if q � 1 and k < n

2 , then bk
q(�) = 0. In [79] we improved the

proof in [91] of Theorem 20.5.2 to get the corresponding result for arbitrary q,
which we state below.

THEOREM 20.5.6. ([79, Theorem 16.13].) In the right-angled case, the
Weighted Singer Conjecture (20.5.5) is true for n � 4.
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Assume, for simplicity, q = q, a single indeterminate. By Theorem 17.3.4,
the roots of χq (= 1/W(q)) are symmetric about 1, i.e., if q is a root, then
so is q−1.

Example 20.5.7. (Right-angled 3-dimensional polytope groups.) We contine
Example 17.4.3: L is a flag triangulation of S2 and (W, S) is the associated
right-angled Coxeter system. In 17.4.3 we computed

1

W(q)
= −(q− 1)(q2 − (f0 − 4)q+ 1)

(1+ q)3
,

which has three positive real roots, ρ, 1, and ρ−1 (ρ±1 also is computed in
17.4.3). So χq is positive on the intervals [0, ρ), (1, ρ−1) and negative on
(ρ, 1), (ρ−1,∞). By Theorem 20.3.3, on (0, ρ), L2

qH∗(�) is concentrated in
dimension 0 and on (ρ−1,∞) it is concentrated in dimension 3. By Propo-
sition 20.3.1 and weighted Poincaré duality, it vanishes in the intermediate
range, q ∈ (ρ, ρ−1), in dimensions 0 and 3. Using Theorem 20.5.6 we see that
on (ρ, 1) it is concentrated in dimension 1 and on (1, ρ−1) it is concentrated in
dimension 2.

At one point, the following scenario seemed plausible:

(a) χq has exactly n positive real roots (counted with multiplicity) and

(b) L2
qH∗(�) is always concentrated in a single dimension. The

dimension jumps each time q passes a root and the size of the
jump is the multiplicity of the root.

In fact, both (a) and (b) are false. Gal [134] gave counterexamples to (a)
in dimensions � 6. Counterexamples to (b) are given in [79, Section 17] in
dimensions � 4.

20.6. DECOMPOSITION THEOREMS

In 15.4, in the case where W is finite, we gave two direct sum decompositions
of RW (in formulas (15.29) and equivalent versions in Solomon’s Theorem
15.4.2). The goal of this section is to establish analogous decompositions
for L2

q.
For each T ⊂ S, define

A>T :=
∑
U�T

AU and H>T :=
∑
U�T

HU.

Put DT := AT ∩ (A>T )⊥ and GT := HT ∩ (H>T )⊥. Call a subset U of S
cospherical if S− U is spherical. The decompositon theorems we are aiming
for are the following.
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THEOREM 20.6.1. (First Decomposition Theorem.) If q ∈ R ∪R−1, then∑
T⊂S

DT

is a direct sum and a dense subspace of L2
q. Moreover, if q ∈ R, the only

nonzero terms in the sum are those with T cospherical (i.e., with S− T ∈ S)
and if q ∈ R−1, the only nonzero terms in the sum are those with T spherical.

THEOREM 20.6.2. (Second Decomposition Theorem.) If q ∈ R ∪R−1, then∑
T⊂S

GT

is a direct sum and a dense subspace of L2
q. Moreover, if q ∈ R, the only

nonzero terms in the sum are those with T spherical, and if q ∈ R−1, the
only nonzero terms in the sum are those with T cospherical.

(Note that the roles of spherical and cospherical are reversed in the two
theorems.) When W is finite and q = 1, the theorems reduce to the formulas
(15.29) in Section 15.4.

Before beginning work in earnest, we prove the following lemma which
states that in both cases the sums are dense in L2

q.

LEMMA 20.6.3

AT =
∑
U⊃T

DU and HT =
∑
U⊃T

GU.

Proof. By definition of DT ,

AT := DT + A>T = DT +
∑
U�T

AU ,

and the first formula follows by induction on the size of S− T . Similarly, for
the second formula. �

The issue is to show the sums in Theorems 20.6.1 and 20.6.2 are direct. What
made the argument tractable for a finite W was the fact that we had a partition
of a basis for RW such that each subset of the partition projected to a basis
for a corresponding subspace in the direct sum decomposition. In essence, the
proof was a dimension count. Although this argument is not available when W
is infinite, we can give an analogous dimension count using the von Neumann
dimension. In rough outline the proof has three steps:

(1) For q ∈ R, we compute dimNq (GT ) and show
∑

dimNq (GT ) = 1
(= dimNq L2

q). (This implies the Second Decomposition Theorem

for q ∈ R.)
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(2) For q ∈ R, we show that DS−T is the closure of GTaS−T . From this
we get the First Decomposition Theorem for q ∈ R.

(3) The j-isomorphism (formula (19.3) in 19.1) switches GT and DT .
Applying it to (1) and (2) we get that both theorems also hold for
q ∈ R−1.

The difficult step is (1). Most of the work comes down to showing that a
certain chain complex of Hilbert Nq-modules, defined below, is acyclic. Fix a
spherical subset T ∈ S (k) (i.e., Card(T) = k). Put

Ci(H
T ) :=

⊕
U∈(S�T )(i+k)

HU (20.22)

and abbreviate it Ci. Whenever U ⊂ V , we have an inclusion ιUV : HV ↪→
HU . Fix some ordering of {s ∈ S− T | T ∪ {s} ∈ S}. The boundary map, ∂ :
Ci+1 → Ci corresponds to a matrix (∂UV ), where ∂UV = 0 unless U ⊂ V and is
equal to (−1)jιUV if U is obtained by deleting the jth element of V . This gives a
chain complex of Hilbert Nq-modules which starts out like this:

0 ←− HT ←−
⊕

(T∪{s})∈(S�T )(k+1)

HT∪{s} ←− · · · . (20.23)

THEOREM 20.6.4. For any T ∈ S and q ∈ R, H∗(C∗(HT )) is concentrated
in dimension 0. Therefore (by continuity of weighted L2-Betti numbers), for
q ∈ ∂R (:= R−R), the reduced homology,H∗(C∗(HT )), is also concentrated
in dimension 0.

This means that, for q ∈ R, the family of subspaces (HT )T∈S is “in general
position” in L2

q.
The proof is algebraic topological: we identify C∗(HT ) with the relative

L2
q-chains on a certain pair of subcomplexes of � and then use an inductive

argument starting from Lemma 20.3.4 to show its only nonvanishing weighted
L2-Betti number is in the lowest possible dimension. The details of the proof
will be postponed until the end of this section.

Assuming Theorem 20.6.4, let us continue with the proof of Step (1). If
q ∈ R, then HT = 0 for all nonspherical T (because T is spherical whenever
RT ∩ R−1

T �= ∅). So, for T �∈ S, GT = 0 (since it is a submodule of HT ).
For T ∈ S, GT is the orthogonal complement of the image of ∂ : C1(HT )→
C0(HT ) = HT ; hence,H0(HT ) = GT .

Denote by R(Nq) the Grothendieck group of Hilbert Nq-modules. If F
is such a Hilbert module, [F] denotes its class in R(Nq). By additivity
of dimension, the function F→ dimNq F induces a homomorphism dimNq :
R(Nq)→ R. We derive some corollaries of Theorem 20.6.4.
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COROLLARY 20.6.5. For q ∈ R and T ∈ S, the following formulas hold
in R(Nq):

[GT ] =
∑

U∈S�T

ε(U − T)[HU],

[HT ] =
∑

U∈S�T

[GU].

Proof. The boundary maps in C∗(HT ) are maps of Hilbert Nq-modules.
So, the first formula follows from Theorem 20.6.4 by taking the Euler
characteristics. The second formula follows from this and Möbius Inversion
(see Lemma 17.1.3). �

COROLLARY 20.6.6. Suppose q ∈ R and T ∈ S. Then dimNq GT =
WT (q)/W(q).

Proof. By Lemma 19.2.13 (ii), dimNq HU = 1/WU(q−1). So

dimNq GT =
∑

U∈S�T

ε(U − T)

WU(q−1)
= WT (q)

W(q)
,

where the first equality comes from the previous corollary and the second from
Lemma 17.1.8. �

COROLLARY 20.6.7. The Second Decomposition Theorem holds for q ∈ R:∑
T⊂S

GT

is a direct sum and a dense subspace of L2
q. Moreover, GT = 0 whenever T is

not spherical.

Proof. Since GT ⊂ HT , the last sentence follows from Lemma 19.2.13. Con-
sider the natural epimorphism

f :
⊕
T∈S

GT →
∑
T∈S

GT ,

where
⊕

means the external direct sum and where, as usual,
∑

means the
internal sum. The statement that the internal sum is direct means that f is
injective. Since (WT )T∈S is a partition of W, the dimension of the domain
of f is

∑
T∈S

dimNq GT =
∑
T∈S

WT (q)

W(q)
= 1.

So dimNq (Ker f ) is 1− 1 = 0; hence, f is injective. �
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NOTATION. Use the symbol
⊎

to denote an internal sum of submodules of
L2

q, which happens to be a direct sum.

The fact that the sum of GT in Corollary 20.6.7 is direct has the following
two consequences.

COROLLARY 20.6.8. Let A and B be collections of subsets of S. If q ∈ R,
then

⊎
T∈A

GT ∩
⊎
T∈B

GT =
⊎

T∈A∩B
GT .

COROLLARY 20.6.9. If q ∈ R and T ⊂ S, then

HT =
⊎
U⊃T

GU.

We turn to the proof of Step (2).

LEMMA 20.6.10. (Compare [261, Lemma 1].) Suppose T , U are subsets of
S and q ∈ RU ∩R−1

T (so that hT and aU are defined). If T ∩ U �= ∅, then
hTaU = 0.

Proof. Let s ∈ T ∩ U. Then hTaU = hThsasaU = 0 (since hsas = 0 by
Lemma 19.2.11). �

LEMMA 20.6.11. Suppose q ∈ R and T �⊂ U. Then

GTaS−U = 0.

Proof. Since GT ⊂ HT , the assertion follows from the previous lemma. �

LEMMA 20.6.12. If q ∈ R and U ⊂ S, then
∑
T∈S
T⊂U

GTaS−U

is a dense subspace of AS−U and a direct sum. Moreover, if T ∈ S, then right
multiplication by aS−T induces a weak isomorphism GT → GTaS−T .

Proof. As usual, BS−U is the set of (∅, S− U)-reduced elements in W. By
formula (17.5) in 17.1,

BS−U(q) =
∑
T⊂U

WT (q).
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Dividing by W(q) and using Lemma 17.1.2, we get

1

WS−U(q)
=

∑
T⊂U

WT (q)

W(q)
.

Applying Lemma 20.6.3 to A∅ = L2
q yields

L2
q =

∑
T∈S

GT .

Multiplying on the right by aS−U and using Lemma 20.6.11, we obtain

AS−U =
∑
T∈S

GTaS−U =
∑
T∈S
T⊂U

GTaS−U.

So

dimNq AS−U �
∑
T∈S
T⊂U

dimNq GTaS−U �
∑
T∈S
T⊂U

dimNq GT =
∑
T⊂U

WT (q)

W(q)

= 1

WS−U(q)
= dimNq AS−U ,

where the last equality is from Lemma 19.2.12 (ii). Hence, both inequalities
are equalities and

dimNq GTaS−T = dimNq GT .

It follows that right multiplication by aS−T is a weak isomorphism from GT to
GTaS−T and that the sum is direct. �

LEMMA 20.6.13. Suppose q ∈ R and T ⊂ S. Then DS−T = GTaS−T . In par-
ticular, DS−T = 0 if T �∈ S.

Proof. Since, by definition, DS−T ⊂ AS−T , we have DS−T = DS−TaS−T and
since DS−T ⊂ (A>(S−T))⊥, we have

DS−T ⊂ (A>(S−T))⊥aS−T .

Using equations (19.19), we compute

(A>(S−T))⊥ =
⋂

U�T

(AS−U)⊥ =
⋂

U�T

∑
s∈S−U

Hs.

By Corollary 20.6.9, Hs =⊎
V�s GV . Therefore,

(A>(S−T))⊥ =
⋂

U�T

∑
s∈(S−U)

⊎
V�s

GV =
⋂

U�T

⊎
V⊂U

GV .
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Using Corollary 20.6.8,

(A>(S−T))⊥ =
⊎

V �⊂U ∀U�T

GV = GT �
⊎
V �⊂T

GV .

Thus,

DS−T ⊂
(

GT �
⊎
V �⊂T

GV

)
aS−T = GTaS−T +

∑
V �⊂T

GVaS−T .

By Lemma 20.6.11, the only nonzero term on the far right is GTaS−T .
Therefore, DS−T ⊂ GTaS−T .

For the opposite inclusion, note that, for U � T , GTaS−TaS−U =
GTaS−U = 0 (by Lemma 20.6.11). Since Ker aS−U = (AS−U)⊥, we have,
GTaS−T ⊂ (AS−U)⊥ for all U � T . Since GTaS−T ⊂ AS−T , it follows from the
definition of DS−T that GTaS−T ⊂ DS−T . �

We now complete Step (2).

COROLLARY 20.6.14. The First Decomposition Theorem holds for q ∈ R:
∑
T⊂S

DS−T

is a direct sum and a dense subspace of L2
q. Moreover, DS−T = 0 whenever T

is not spherical (and q ∈ R).

Proof. The last sentence is from Lemma 20.6.13. By Lemmas 20.6.13 and
20.6.12 and the proof of Corollary 20.6.7, the dimensions of the nontrivial
terms sum to 1. �

The final step is now a triviality.

Proofs of Theorems 20.6.1 and 20.6.2. The j-isomorphism switches q with
q−1, HT with AT , and GT with DT . So the First Decomposition Theorem for
q ∈ R−1 follows from the Second for q ∈ R and vice versa. �

We state some further corollaries of the First Decomposition Theorem.

COROLLARY 20.6.15. Let A be a collection of subsets of S and U ⊂ S a
given subset. If q ∈ R ∪R−1, then

DU ∩
⊎
U∈A

DV =
{

0 if U �∈ A,

DU if U ∈ A.
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COROLLARY 20.6.16. If q ∈ R ∪R−1 and U ⊂ S, then

AU =
⊎
V⊂U

DV .

COROLLARY 20.6.17. (Compare Lemmas 17.1.4 and 17.1.8 and Corol-
lary 20.6.6.) Suppose T ∈ S.

(i) For q ∈ R, dimNq DS−T = WT (q)/W(q).

(ii) For q ∈ R−1, dimNq DT = WT (q−1)/W(q−1).

Proof

(i) By Lemma 20.6.13, aS−T maps GT monomorphically onto a dense
subspace of DS−T . So, dimNq DS−T = dimNq GT = WT (q)/W(q),
where the second equality is Corollary 20.6.6.

(ii) For q ∈ R−1, the following formulas hold in R(Nq),

[AT ] =
∑

U∈S�T

[DU],

[DT ] =
∑

U∈S�T

ε(U − T)[AU],

where the first formula is from Corollary 20.6.16 and the second
follows from the first by the Möbius Inversion Formula. So, as in
Corollary 20.6.6,

dimNq DT =
∑

U∈S�T

ε(U − T)

WU(q)
= WT (q−1)

W(q−1)
,

where the second equality is Lemma 17.1.8. �

Of course, similar corollaries hold for the GT for all q ∈ R ∪ R−1. We
will also need the following version of Lemmas 20.6.12 and 20.6.13. Its proof
is essentially the same as the proofs of these lemmas, except that we use
Theorem 20.6.1 and its corollaries instead of the corresponding statements
involving the GU .

LEMMA 20.6.18. (Compare Lemmas 20.6.12 and 20.6.13.) Suppose q ∈ R
and U ⊂ S. Then ∑

T∈S
T⊂U

DS−ThU
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is a dense subspace of HU and a direct sum decomposition. If T ∈ S, then
the right multiplication by hT induces a weak isomorphism DS−T → DS−ThT .
Moreover, GU = DS−UhU.

A Generalization of Solomon’s Theorem

When W is finite, Theorem 15.4.2 gives a decomposition of the rational (or
real) group algebra (formula (15.29) in 15.4). Here we give an analogous
decomposition of L2

q. First, we need the following.

THEOREM 20.6.19. Suppose T ∈ S.

(i) If q ∈ R, then L2
qaS−ThT = GT and L2

qhTaS−T = DS−T .

(ii) If q ∈ R−1, then L2
qaThS−T = GS−T and L2

qhS−TaT = DT.

Proof

(i) Suppose q ∈ R. By Lemma 20.6.11, right multiplication by aS−T

annihilates GU if U �⊂ T and by Lemma 20.6.12, it is a weak
isomorphism from GT to GTaS−T . So, by Lemma 20.6.13,
L2

qhTaS−T = GTaS−T = DT . Similarly, by Lemma 20.6.18,

L2
qaS−ThT = GT .

(ii) Applying the j-isomorphism to the two equations in (i), we get the
two equations in (ii). �

Remark. It seems probable that L2
qaS−UhU = GU and L2

qhUaS−U = DU when-

ever q ∈ RS−U ∩R−1
U (so that hU and aS−U are both defined).

An immediate consequence of the First and Second Decomposition Theo-
rems and the previous theorem is the following generalization of Solomon’s
result.

THEOREM 20.6.20

(i) If q ∈ R, then
∑
T∈S

L2
qhTaS−T and

∑
T∈S

L2
qaS−ThT

are direct sum decompositions and dense subspaces of L2
q.

(ii) If q ∈ R−1, then
∑
T∈S

L2
qhS−TaT and

∑
T∈S

L2
qaThS−T

are direct sum decompositions and dense subspaces of L2
q.
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Ruins and the Proof of Theorem 20.6.4

It remains to prove Theorem 20.6.4 (which states that the homology of C∗(HT )
is concentrated in dimension 0). Given U ⊂ S, put S(U) := {T ∈ S | T ⊂ U}
and define �(U) to be the subcomplex of �cc consisting of all (closed)
Coxeter cells of type T with T ∈ S(U). Put K(U) := �(U) ∩ K. Clearly,
K(U) = K(WU , U), the standard fundamental chamber for �(WU , U). Thus,

�(U) = U(W, K(U))) = W ×WU �(WU , U). (20.24)

Our goal is to identify the chain complex C∗(HT ) of (20.22) with the relative
L2

q-chains on a pair of subcomplexes of �. To this end, given T ∈ S(U), define
three subcomplexes of �(U):

�UT : the union of closed cells of type T ′, with T ′ ∈ S(U)�T ,

�̂UT : the union of closed cells of type T ′′, T ′′ ∈ S(U), T ′′ /∈ S(U)�T ,

∂�UT : the cells of �UT of type T ′′, with T ′′ /∈ S(U)�T .

�UT is the union of all cells of type T ′′, where T ′′ � T ′ for some T ′ ∈ S(U)�T .
So,

∂�UT = �UT ∩ �̂UT

and

�(U) = �UT ∪ �̂UT .

The pair (�UT , ∂�UT ) is called the (U, T)-ruin. For example, for T = ∅, we
have �U∅ = �(U) and ∂�U∅ = ∅.

By (20.24), theNq-modules L2
qC∗(�(U)) and L2

qH∗(�(U)) are induced from
the Nq[WU]-modules L2

qC∗(�(WU , U)) and L2
qH∗(�(WU , U); hence, we can

calculate von Neumann dimensions over Nq[W] by calculating them with
respect to Nq[WU].

LEMMA 20.6.21

(i) There is a isomorphism of chain complexes of Nq-modules

� ′ : L2
qC∗(�cc)→ C∗(H∅),

where C∗(H∅) is the chain complex from (20.22).

(ii) Suppose T ∈ S (k). Then � ′ induces an isomorphism of chain
complexes of Nq-modules

L2
qC∗(HT )

∼=−→ L2
qC∗+k(�ST , ∂�ST ).

In particular, L2
qCm(�ST , ∂�ST ) = 0 for m < k.
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K = K(U) = a square

U = {r, s, t, v} U´ = {r, t, v} T = {s, t} T´ = {t}

r

v

s

t
ΩU´T´ ∩ K

ΩUT´ ∩ K

Σ(U´) ∩ K

ΩUT ∩ K

ˆ

ˆ

Figure 20.1. Complements of ruins intersected with K.

Proof. (i) For each T ∈ S modify the isometryψT of (20.14) to another Hilbert
Nq-module isomorphism, ψ ′T : L2(W〈T〉,µq)→ HT as follows:

ψ ′T (f ) :=
√

WT (q−1)ψT (f ) = WT (q−1)

(∑
u∈BT

f (uCT )eu

)
hT . (20.25)

� ′ is defined to be the direct sum of the ψ ′T . Suppose U ∈ S>∅ and T ⊂ U is
obtained by deleting one element from U. Look at Figure 20.1 and define

K(U, T) := �UT ∩ K,

∂K(U, T) := ∂�UT ∩ K,

K̂(U, T) := �̂UT ∩ K.

So

�UT = U(W, K(U, T)),

∂�UT = U(W, ∂K(U, T)),

�̂UT = U(W, K̂(U, T)).

Statement (i) follows immediately from the next claim.
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Claim. The following diagram commutes:

L2(WCU ,µq)
ψ ′U−−−−→ HU

∂
q
T

�
�i

L2(WCT ,µq)
ψ ′T−−−−→ HT

where ∂q
T denotes the L2(W〈CT〉,µq)-component of ∂q and i is the natural

inclusion.

Proof of Claim. Using (20.25) and (20.13), we get

ψ ′T (∂q
T f ) = WT (q−1)

(∑
w∈BT

(∂q
T f )(wCT )ew

)
hT

= WT (q−1)

(∑
u∈BU

∑
v∈WU∩BT

εvq−1
v f (uCU)euev

)
hT

= WT (q−1)

(∑
u∈BU

f (uCU)eu

) ( ∑
v∈WU∩BT

εvq−1
v ev

)
hT

= WU(q−1)

(∑
u∈BU

f (uCU)eu

)
hU

= i(ψ ′U(f )),

where the next to last equality is from the following formula for hU , valid
whenever T ⊂ U and q ∈ R−1

U :

hU =
( ∑

v∈WU∩BT

εvq−1
v ev

)
hT .

(This formula holds since WU ∩ BT is a set of coset representatives for WU/WT

and since for any v ∈ WU ∩ BT and w ∈ WT , we have evew = evw and qvqw =
qvw.) This completes the proof of the claim. �

(ii) The second part of the lemma follows from part (i). The point is that
if we write � for �(S, T), then the cells of form WCT ′ , T ′ ∈ (S�T )(i+1), are a
basis for Ci(�, ∂�). Hence,

L2
qCi(�, ∂�) =

⊕
T ′∈(S≥T )(i+1)

L2(WCT ′ ,µq) ∼=
⊕

HT ′
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and (i) shows that the ∂q maps are induced by the inclusions HT ′′ ↪→ HT ′ , with
T ′ ⊂ T ′′. �

THEOREM 20.6.22. Suppose T ∈ S (k). If q ∈ R, then L2
qH∗(�ST , ∂�ST ) is

concentrated in dimension k. If q ∈ ∂R, the same holds for L2
qH∗(�ST , ∂�ST ).

The final sentence of the theorem follows from the second and the continuity
of the bi

q (Theorem 20.2.1). In the special case T = ∅, we have �ST = � and
the theorem asserts that for q ∈ R, L2

qH∗(�) is concentrated in dimension 0.
This is Theorem 20.3.3. It is the first step in an inductive proof.

Before beginning the proof, note that there is an excision

L2
qC∗(�UT , ∂�UT ) ∼= L2

qC∗(�(U), �̂UT ). (20.26)

Also, for any s ∈ T , if we set T ′ := T − s and U′ = U − s, there is an excision

L2
qC∗(�(U′), �̂U′T ′) ∼= L2

qC∗(�̂UT , �̂UT ′ ). (20.27)

(See Figure 20.1.)

Proof of Theorem 20.6.22. Suppose U ⊂ S and T ∈ S(U)(k). We shall prove,
by induction on k, that L2

qH∗(�UT , ∂�UT ) is concentrated in dimension k.
When k = 0 (i.e., when T = ∅) this is Theorem 20.3.3 (and the fact that
L2

qC∗(�(U)) is induced from L2
qC∗(�(WU , U))). Assume by induction, that

our assertion holds for k − 1, with k − 1 � 0. By (20.26), the assertion is
equivalent to showing that L2

qH∗(�(U), �̂UT ) is concentrated in dimension
k. Choose an element s ∈ T and set T ′ := T − s, �̂ := �̂UT , �̂′ := �̂UT ′ .
Consider the long exact sequence of the triple (�(U), �̂, �̂′):

L2
qH∗(�(U), �̂′)→ L2

qH∗(�(U), �̂)→ L2
qH∗−1(�̂, �̂′)

By (20.27), the right-hand term excises to the homology of the (U′, T ′)-ruin,
while the middle term is that of the (U, T)-ruin and the left-hand term is
that of the (U, T ′)-ruin. By induction, the left-hand and right-hand terms are
concentrated in dimension k − 1. So the middle term can only be nonzero in
dimensions k − 1 and k. On the other hand, by Lemma 20.6.21(ii), the middle
term vanishes in dimensions < k. �

Proof of Theorem 20.6.4. By Lemma 20.6.21,

H∗(C∗(HT )) = L2
qH∗+k(�ST , ∂�ST ).



August 16, 2007 Time: 09:37am chapter20.tex

WEIGHTED L2-(CO)HOMOLOGY 389

By Theorem 20.6.22, the right-hand side is concentrated in dimension k; so,
the left-hand side is concentrated in dimension 0. �

Exercise 20.6.23. Use Corollary 8.1.5 to compute the ordinary homology of
the (S, T)-ruin. Show that H∗(�ST , ∂�ST ) is concentrated in dimension k.

20.7. DECOUPLING COHOMOLOGY

In this section we use the First Decomposition Theorem (20.6.1) to get a
decomposition of weighted L2-cohomology and a computation of L2

q-Betti
numbers. We retain notation of 20.1: X is a CW complex with mirror structure
(Xs)s∈S, XV =⋃

s∈V Xs, U = U(W, X) and for any cell c of X, S(c) = {s ∈ S |
c ⊂ Xs}. Given a pair of spaces (Y , Z), bi(Y , Z) (:= dimR(Hi(Y , Z)⊗ R)) is the
ordinary ith Betti number. We will prove the following.

THEOREM 20.7.1. ([79, Theorem 10.3].)

(i) For q ∈ R, there is an isomorphism of Nq-modules

L2
qH∗(U) ∼=

⊕
T∈S

H∗(X, XT )⊗ DS−T .

So

bi
q(U) =

∑
T∈S

bi(X, XT )
WT (q)

W(q)
.

(ii) For q ∈ R−1, there is an isomorphism of Nq-modules

L2
qH∗(U) ∼=

⊕
T∈S

H∗(X, XS−T )⊗ DT .

So

bi
q(U) =

∑
T∈S

bi(X, XS−T )
WT (q−1)

W(q−1)
.

The special case U = � is the following corolllary (the first part of which is
equivalent to Theorem 20.3.3).

COROLLARY 20.7.2. ([79, Theorem 10.4].)

(i) If q ∈ R, then L2
qH∗(�) is concentrated in dimension 0 and is ∼= AS.

So, b0
q(�) = 1/W(q).
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(ii) If q ∈ R−1, then

L2
qH∗(�) ∼=

⊕
T∈S

H∗(K, KS−T )⊗ DT .

So,

bi
q(�) =

∑
T∈S

bi(K, KS−T )
WT (q−1)

W(q−1)
.

Proof. If T is a nonempty spherical subset, then KT is contractible and
therefore, bi(K, KT ) = 0 for all i. So, the only nonzero term in Theorem 20.7.1
(i) is H0(K)⊗ DS (= AS), which gives (i). Statement (ii) is the same as
Theorem 20.7.1 (ii) with X replaced by K. �

Remark 20.7.3. For T �= ∅, as q→ 0, WT (q)/W(q)→ 0/1 = 0; hence, as
q→∞, WT (q−1)/W(q−1)→ 0. On the other hand, for T = ∅,

lim
q→0

1/W(q) = lim
q→∞ 1/W(q−1) = 1.

Hence, only the limits with T = ∅ are nonzero. Combining this with the
formulas in Theorem 20.7.1, we get formula (20.18) of Remark 20.2.2,

lim
q→0

bi
q(U) = bi(X) and lim

q→∞ bi
q(U) = bi(X, ∂X).

We will prove Theorem 20.7.1 by applying techniques from Chapter 15.
As in 15.2, by taking invariants, L2

q (or any other Hilbert Nq-module) defines
a simple system of coefficients I(L2

q) on X. It assigns to each i-cell c, the
submodule AS(c) (= (L2

q)Rq[WS(c)]). Just as in Corollary 15.2.3, the map 
 from
(20.12) gives an identification

L2
qCi(U) = Ci(X; I(L2

q)). (20.28)

By the First Decomposition Theorem (20.6.1), for q ∈ R ∪ R−1,

L2
q =

⊎
V⊂S

DV .

For the same range of q, given subsets U, V of S, by Corollaries 20.6.15 and
20.6.16,

DV ∩ AU =
{

DV if U ⊂ V ,

0 if U �⊂ V .
(20.29)
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It follows that, for q ∈ R ∪ R−1, there is a direct sum decomposition of
coefficient systems,

I(L2
q) =

⊎
V⊂S

I(DV ), (20.30)

where I(DV ) is the coefficient system which associates DV ∩ AS(c) to a cell c.
This gives a decomposition of cochain complexes,

C∗(X; I(L2
q)) =

⊎
V⊂S

C∗(X; I(DV )). (20.31)

LEMMA 20.7.4. For V ⊂ S, C∗(X; I(DV )) ∼= C∗(X, XS−V )⊗ DV.

Proof. As in the proof of Theorem 15.3.4,

Ci(X; I(DV )) = {f : X(i) → DV | f (c) ∈ DV ∩ AS(c), ∀c ∈ X(i)}
= {f : X(i) → DV | f (c) = 0, ∀c ⊂ XS−V}
= Ci(X, XS−V )⊗ DV .

�
Proof of Theorem 20.7.1. By (20.31),

⊕
C∗(X; I(DV )) ↪→ C∗(X; L2

q) is a
weak isomorphism of cochain complexes. By the proof of Lemma J.3.2 in
Appendix J.3, this induces a weak isomorphism in reduced cohomology,

⊕
V⊂S

H∗(X; I(DV ))→ H∗(X; I(L2
q)) (20.32)

and by the proof of Lemma J.2.6, if two Hilbert Nq-modules are weakly
isomorphic, they are isomorphic. By Lemma 20.7.4, H∗(X; I(DV )) =
H∗(X, XS−V )⊗ DV . By (20.28), the right hand side of (20.32) is L2

qH∗(U). By

Theorem 20.6.1, when q ∈ R, only cospherical V contribute nonzero terms to
the left hand side of (20.32), while if q ∈ R−1 only spherical V appear. This
proves the theorem except for the formulas for L2

q- Betti numbers. These follow
from the calculations of dimNq DV in Corollary 20.6.17. �

There is a version of Theorem 20.7.1 in L2
q-homology. Although L2

q-
homology is isomorphic to L2

q-cohomology, the natural decomposition of it
comes from the Second Decomposition Theorem 20.6.2 (as in Theorem 15.3.4)
and involves the GV rather than the DV . We state the homology version below.

THEOREM 20.7.5

(i) If q ∈ R, then

L2
qH∗(U) ∼=

⊕
T∈S

H∗(X, XT )⊗ GT .
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(ii) If q ∈ R−1, then

L2
qH∗(U) ∼=

⊕
T∈S

H∗(X, XS−T )⊗ GS−T .

The Relationship with Ordinary Homology
and Cohomology with Compact Supports

THEOREM 20.7.6

(i) For q ∈ R, the canonical map can : H∗(U ;R)→ L2
qH∗(U) is an

injection with dense image.

(ii) For q ∈ R−1, the canonical map can : H∗c (U ;R)→ L2
qH∗(U) is an

injection with dense image.

In Chapter 15 we carefully distinguished between left and right modules:
left modules should be used as coefficient modules for cohomology and right
modules for homology. However, in this chapter, in effort to keep notation
from becoming hopelessly complicated, we have dropped the distinction and
used right Nq-modules as coefficients for both homology and cohomology.
We need to slightly modify our notation from Section 15.2 to be consistent
with the notation here. First, (15.10) should be changed to b′w = ewãIn(w) (the ã
term is on the right instead of the left). {b′w}w∈W is a basis RW. Let AT

R be the
subspace of RW spanned by {b′w | T ⊂ In(w)} and as in (15.12), ÂT

R is the span
of {b′w | T = In(w)}. As usual, AT = L2

qaT . Let i : AT
R→ AT be the inclusion

induced by b′w → b′w. (The element ãT is defined by the same formula either as
an element of RW in (8.1) or as an element of Nq in (19.8). So, using Hecke
multiplication, we can also regard b′w as an element ofNq.) Let pT : AT → DT

be orthogonal projection.

LEMMA 20.7.7. Suppose T ∈ S. For q ∈ R−1, the map pT ◦ i : ÂT
R→ DT is

injective with dense image. Similarly, for q ∈ R, ĤT
R→ GT is injective with

dense image.

Proof. First, i : AT
R→ AT is injective with dense image. By Corollary 20.6.16,

the kernel of pT is
∑

U∈S>T
AU . So, i takes

⊕
U∈S>T

ÂU
R onto a dense subspace

of Ker pT . Since, by Corollary 15.2.6, AT
R =

⊕
U∈S�T

ÂU
R , it follows that i takes

ÂT
R injectively to a subspace whose closure is complementary subspace for

Ker pT . This proves the statement concerning q ∈ R−1. The proof of the last
sentence of the lemma is similar. �
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Proof of Theorem 20.7.6. We first prove (ii). Suppose q ∈ R−1. We have a
commutative diagram:

⊕
H∗(X, XS−T )⊗ ÂT

R −−−−→ H∗c (U ;R) === H∗(X; I(RW))
�can

↓
d L2

qH∗(U) === H∗(X; I(L2
q))

�⊕πT

⊕
H∗(X, XS−T )⊗ DT

⊕
H∗(X; I(DT )).

Here the sums range over all T ∈ S and the horizontal maps are the nat-
ural identifications from Theorem 15.2.8 and Lemma 20.7.4. Also, πT :
H∗(X; I(L2

q))→ H∗(X; I(DT )) is the coefficient homomorphism induced by
orthogonal projection L2

q → DT and d := ⊕(pT ◦ i) is the coefficient homo-
morphism induced from the maps pT ◦ i : ÂT

R→ DT of Lemma 20.7.7. By
Theorem 20.7.1, ⊕πT is a weak isomorphism. In other words, up to a
weak isomorphism of Hilbert Nq-modules, the canonical map H∗c (U ;R)→
L2

qH∗(U) is identified with d. By Lemma 20.7.7, each pT ◦ i is injective with
dense image. This proves (ii).

The canonical map in (i) is induced by the composition of chain maps:

(C∗(U ;R), ∂) ↪→ (L2
1/qC∗(U), ∂)

∼=−→L2
q(C∗(U), ∂q),

where the second map is the isomorphism of Lemma 20.1.2. Suppose q ∈ R.
Again we have a commutative diagram:

⊕
H∗(X, XS−T )⊗ ĤT

R −−−−→ H∗(U ;R) === H∗(X; C(RW))
�can

↓
g L2

qH∗(U) === H∗(X; C(L2
q))

�⊕π ′T
⊕

H∗(X, XS−T )⊗ GS−T ←−−−−
⊕

H∗(X; C(GS−T )).

where the horizontal maps are the natural identifications, π ′T is coefficient
homomorphism induced by the orthogonal projection L2

q → GS−T and g is
the sum of coefficient homomorphisms from Lemma 20.7.7. So, as before,
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up to a weak isomorphism of Hilbert Nq-modules, the canonical map
H∗(U ;R)→ L2

qH∗(U) is identified with g. By Lemma 20.7.7, g is a sum of
maps, each of which is injective with dense image, proving (i). �

20.8. L2-COHOMOLOGY OF BUILDINGS

As in Chapter 18, let 
 be a building of type (W, S) with a chamber transitive
automorphism group G and thickness vector q. Its geometric realization,
Geom(
) (= U(
, K)), is defined in 18.2. G is a group of homeomorphisms
of Geom(
). Give it the compact open topology. The stabilizer B of a given
chamber ϕ is a compact open subgroup. As in 18.4, let µ be Haar measure on
G, normalized by the condition that µ(B) = 1.

The von Neumann Algebra of G

G acts on L2(G) via the left regular representation. The von Neumann algebra
N (G) consists of all G-equivariant bounded linear endomorphisms of L2(G).
Any α ∈ N (G) is represented by convolution with some distribution fα . This
distribution need not be a function. For example, if α is the identity map on
L2(G), then fα = δ1 (the Dirac delta). One would like to define the “trace”
of α to be fα(1) whenever fα is a function. However, since fα is well-defined
only up to sets of measure 0, we must proceed differently. Suppose α ∈
N (G) is nonnegative and self-adjoint. Let β be its square root. If fβ is a
L2 function, put

trN (G) α := ‖fβ‖ :=
(∫

G
fβ(x)2dµ

)1/2

.

This extends in the usual fashion to give a “trace” on (n× n)-matrices with
coefficients in N (G). If V is a closed, G-stable subspace of

⊕
L2(G) and

πV :
⊕

L2(G)→⊕
L2(G) is orthogonal projection, then the von Neumann

dimension of V is defined by dimN (G) V := trN (G) πV .
We identify L2(
) = L2(G/B) with the subspace of L2(G) consisting of

the functions which are constant on each left coset gB, g ∈ G. Orthogonal
projection from L2(G) onto L2(G/B) is given by convolution with the char-
acteristic function of B. Since µ(B) = 1, dimN (G) L2(G/B) = 1. The retraction
r : G/B→ W, defined by taking the W-distance to a base chamber, induces a
bounded linear map L2

q(W)→ L2(G/B) which we also denote by r. Since this
map takes bounded elements of L2

q(W) to bounded elements of L2(G/B), we
get the following version of Lemma 19.1.5.

LEMMA 20.8.1. The map r : L2
q(W)→ L2(G/B) induces a monomorphism

of von Neumann algebras r : Nq → N (G). (In particular, r commutes with
the ∗ anti-involutions on Nq and N (G).)
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L2C∗(
) denotes the Hilbert space of square summable simplicial cochains
on Geom(
) and H∗(
) denotes the subspace of harmonic cocycles. (Of
course, H∗(
) is isomorphic to reduced cohomology of the cochain complex
L2C∗(
).) We have

L2Ci(
) =
⊕
c∈K(i)

L2(G/GS(c)) ⊂
⊕
c∈K(i)

L2(G),

where GS(c) is the stabilizer of the i-simplex c. Define the L2-Betti numbers of

 with respect to G by

bi(
; G) = dimN (G)Hi(
),

The retraction r : Geom(
)→ � induces a map on cochains which we
again denote by r : L2

qC∗(�)→ L2C∗(
). We also have “transfer maps” on
chains and cochains. On the level of chains, the transfer map sends a cell
c of � to r−1(c)/Card(r−1(c)). On the level of cochains, the transfer map
t : L2C∗(
)→ L2

qC∗(�) is defined by

t(f )(c) := 1

Card(r−1(c))

∑
f (c′),

where the sum is over all c′ ∈ r−1(c). (The orientations on the c′ are induced
from the orientation of c.) Note that Card(r−1(c)) = µq(c), where µq is the
measure on Wc defined in (20.1).

Remark. Suppose Geom(
) is the geometric realization of a building asso-
ciated to a Tits system (G, B, N, S). Then L2

qC∗(�) can be identified with the
B-invariant cochains L2C∗(
)B and the map r : L2

qC∗(�)→ L2C∗(
) with the
inclusion of the B-invariant cochains. The map t : L2C∗(
)→ L2

qC∗(�) is then
averaging over B. In other words, if� is identified with a subspace of Geom(
)
via some section of r : Geom(
)→ �, then

t(f )(c) =
∫

x∈B
f (xc)dµ.

The proofs of the next two lemmas can be found in [79] and we omit them.

LEMMA 20.8.2. ([79, Lemma 13.6].)

(i) t ◦ r = id : L2
qCi(�)→ L2

qCi(�).

(ii) The maps r and t are adjoint to each other.

(iii) These maps take harmonic cocycles to harmonic cocycles.
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Consider the diagram

L2
qC∗(�)

r−−−−→ L2C∗(
)

p

�
�P

L2
qH∗(�)

r−−−−→ H∗(
)

where p and P denote the projections onto harmonic cocycles.

LEMMA 20.8.3. ([79, Lemma 13.7].) P ◦ r = r ◦ p.

THEOREM 20.8.4. ([79, Theorem 13.8].) Suppose 
 is a building with a
chamber transitive automorphism group G and with thickness vector q. Then
the L2-Betti numbers of Geom(
) (= U(
, K)) equal the L2

q-Betti numbers of
�, i.e.,

bi(
; G) = bi
q(�).

Remark. This theorem is proved in [109, Fact 3.5] in the case where the
building comes from a Tits system. Here we use Lemma 20.8.3 to weaken
the hypothesis to the case of an arbitrary chamber transitive group G. The
technique in [109] of integrating over B is replaced by the use of the transfer
map t.

Proof of Theorem 20.8.4. For each simplex c in the fundamental chamber K,
consider the commutative diagram

L2
q(W)

r−−−−→ L2(G/B)
�

�
L2

q(W/WS(c))
r−−−−→ L2(G/GS(c))

where WS(c) and GS(c) are the isotropy subgroups of c in W and G, respectively,
the vertical maps are orthogonal projections and r (= r∗) is the map induced
by r : G/B→ W. Let eB ∈ L2(G/B) denote the characteristic function of B
and let ec be its image under orthogonal projection to L2(G/GS(c)). (ec is the
characteristic function of GS(c) renormalized to have norm 1.) Note that eB is
the image of the basis vector e1 ∈ L2(W) under r and ec is the image of aS(c).
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We have the commutative diagram:

⊕
L2

q(W)
r−−−−−−−−−−−−−→ ⊕

L2(G)
�

�
⊕

L2
q(W/WS(c)) === L2

qCi(�)
r−−−−→L2Ci(
) === ⊕

L2(G/GS(c))

p

�
�P

L2
qHi(�)

r−−−−→Hi(
),

where the sums are over all c ∈ K(i). Let e ∈⊕
L2(G/GS(c)) be the vector

(ec)c∈K(i) and let a ∈⊕
L2

q(W/WS(c)) be the vector (aS(c))c∈K(i) . (So, r(a) = e.)
Using Lemma 20.8.2, we get

bi(
; G) := dimN (G)Hi(
)

= 〈P(e), e〉 = 〈Pr(a), r(a)〉 = 〈rp(a), r(a)〉
= 〈p(a), tr(a)〉q = 〈p(a), a〉q = dimNq L2

qHi(�)

:= bi
q(�).

�

The Decomposition Theorem for L2(G/B)

For each T ∈ S, let

ÃT := L2(G/GT ) = L2(G)GT

be the subspace of L2(G/B) consisting of the square summable functions on G
which are constant on each coset gGT . Set

D̃T := ÃT ∩

 ∑

U∈S>T

ÃU



⊥

.

D̃T is a closed G-stable subspace in the regular representation. (It corresponds
to the Nq-module DT defined in 20.6.)

THEOREM 20.8.5. (The Decomposition Theorem for L2(G/B).) Suppose G
is a chamber transitive automorphism group of a building 
 and B is the
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stabilizer of a given chamber. If the thickness vector q lies inR−1, then

∑
T∈S

D̃T

is a dense subspace of L2(G/B) and a direct sum decomposition.

Given a module M and a collection of submodules (Mα)α∈A, the statement
that (Mα)α∈A gives a direct sum decomposition of M can be interpreted as a
statement about chain complexes as follows. Set

C1 :=
⊕
α∈A

Mα and C0 := M,

where
⊕

means external direct sum. Let ∂ : C1 → C0 be the natural map. This
gives a chain complex, C∗ := {C0, C1}, with nonzero terms only in degrees 0
and 1. The statement that the internal sum

∑
Mα is direct is equivalent to the

statement that ∂ is injective, i.e., that H∗(C∗) vanishes in dimension 1. The
statement that the Mα span M is equivalent to the statement that ∂ is onto, i.e.,
that H∗(C∗) vanishes in dimension 0. Similarly, if M and the Mα are Hilbert
spaces, then the statement that Mα is dense in M is equivalent to the statement
that the reduced homologyH∗(C∗) vanishes in dimension 0.

Proof of Theorem 20.8.5. The map r from Lemma 20.8.1 takes AT to ÃT and
DT to D̃T . Define chain complexes Ĉ∗ = {Ĉ0, Ĉ1} and C∗ = {C0, C1} by

Ĉ1 :=
⊕
T∈S

D̃T and Ĉ0 := L2(G/B),

C1 :=
⊕
T∈S

DT and C0 := L2
q(W),

where the boundary maps Ĉ1 → Ĉ0 and C1 → C0 are the natural maps.
By the Decomposition Theorem for L2

q (Theorem 20.6.1), H∗(C∗) vanishes
identically. So, by the proof of Theorem 20.8.4, H∗(Ĉ∗) has dimension 0 with
respect toN (G) and hence, also vanishes identically. The theorem then follows
from the previous paragraph. �

Remark. The representations D̃T are defined by Dymara and Januszkiewicz in
[110]. Their notation is different; they use something like L2(G)σ instead of D̃T .
They prove Theorem 20.8.5 (as well as, Theorem 20.8.6 below) but only under
the assumption that the thickness q is extremely large. They deal only with the
case where q is a singleton q and they need to assume q > 1

25 (1764dim�).
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Decoupling Cohomology

The proof of Theorem 20.7.1 goes through to give the following.

THEOREM 20.8.6. ([79, Cor. 13.11], [110, Cor. 8.2 and Prop. 8.5].) Suppose

 is a building with a chamber transitive automorphism group G and that its
thickness vector q lies in R−1. Then there is an isomorphism of orthogonal
G-representations:

H∗(
) ∼=
⊕
T∈S

H∗(K, KS−T )⊗ D̃T .

Euclidean Buildings

From Corollary 20.4.4 we get the following (known) result.

COROLLARY 20.8.7. Suppose that 
 is a Euclidean building with a cham-
ber transitive automorphism group. Then its reduced L2-cohomology is
concentrated in the top dimension.

Application to Fuchsian Buildings

A building 
 is Fuchsian if its associated Coxeter group is a hyperbolic
polygon group (see Example 6.5.3) and its automorphism group is chamber
transitive. When the polygon is a right-angled m-gon, m � 5, we construct
can construct Fuchsian buildings as in Example 18.1.10. The thickness vector
q can be an arbitrary k-tuple of positive integers. From Corollary 20.4.5 and
Theorem 20.8.6, we get the following.

COROLLARY 20.8.8. Suppose 
 is a Fuchsian building, with a chamber
transitive automorphism group G and with thickness vector q. Then H∗(
)
is concentrated in dimension {

1 if q /∈ R−1,

2 if q ∈ R−1.

Moreover, when bi(
; G)) is nonzero it is equal to |1/W(q)|.

Example 20.8.9. (Examples 17.1.15 and 20.4.6 continued.) Suppose K is a
right-angled k-gon, k � 4, and the thickness of 
 is a constant integer q. As in
Example 20.4.6,

ρ−1 = (k − 2)+√k2 − 4k

2
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andH∗(
) is concentrated in dimension
{

1 if q < ρ−1,

2 if q > ρ−1.

NOTES

This chapter comes from [79, 109].

20.2. As explained in Theorem 18.4.3, the relationship between Euler characteristics of
groups acting on buildings and growth series of Coxeter groups was first pointed out by
Serre [255].

20.5. In [91] it is suggested that there is a close analogy between Coxeter groups of
type HMn, with n odd, and 3-manifold theory (at least in the right-angled case). A
well-known conjecture of Thurston asserts that any aspherical 3-manifold M3 should
“virtually fiber” over S1. This means that there should be a finite-sheeted coveri
M̃3 → M3 so that M̃3 fibers over S1. Similarly, it is conjectured in [91, §14] that if
W is right-angled and L is a PL triangulation of Sn−1, with n odd, then there should be
a finite index, torsion-free subgroup � ⊂ W so that �/� fibers over S1. Lück [191] has
proved the vanishing of the L2-Betti numbers for the universal cover of any mapping
torus (Theorem J.8.1 in Appendix J.8). Since L2-Betti numbers are multiplicative with
respect to finite index subgroups (Proposition J.5.1 (ii)), the above conjecture implies
Conjecture 20.5.1 (at least for n odd). In the right-angled case, the arguments of [91]
would also give us the even-dimensional case.
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CELL COMPLEXES

A.1. CELLS AND CELL COMPLEXES

Affine Spaces and Affine Maps

An affine space is a set A together with a simply transitive action of a real
vector space V on it. (In fancier language, A is a “torsor” for V .) V is the
tangent space ofA. An affine subspace ofA is the orbit of a point under a linear
subspace of V . For example, if E is a vector space and V is a linear subspace,
then any coset of the form A = e+ V , with e ∈ E, is an affine subspace of E;
its tangent space is V . The standard example of an affine space is Euclidean
n-space En; its tangent space is Rn. (See 6.2.)

Given a point p in A and a vector v in V , the translate of p by v is denoted
by p+ v. If p and q are two points in A, then, since the V-action is simply
transitive, there is a unique v ∈ V such that q = p+ v. We write v = q− p.
Hence, once a base point p inA has been chosen we get a bijection αp : V → A
defined by v→ p+ v.

SupposeA andA′ are affine spaces with tangent spaces V and V ′. A function
f : A→ A′ is an affine map if there is a linear map F : V → V ′ such that
f (p+ v)− f (p) = F(v) for all v ∈ V . So, a map f : V → V ′ between two vector
spaces is affine if and only if f (v) = u0 + F(v) for some fixed u0 ∈ V ′ and some
linear map F. F is the linear part of f and u0 is its translational part. Thus, an
affine map is a linear map plus a translation. It follows that the group of affine
automorphisms of A is the semidirect product V � GL(V).

If p0, p1, . . . , pn are points in an affine space A and t0, t1, . . . , tn are real
numbers such that

∑
ti = 1, then the affine combination t0p0 + t1p1 + · · · +

tnpn is defined to be the point p0 + t1(p1 − p0)+ · · · + tn(pn − p0). (This is
independent of the choice of which pi is used as base point.) The set of all affine
combinations of a set is its affine span. The points p0, p1, . . . , pn are affinely
independent if the vectors p1 − p0, . . . , pn − p0 are linearly independent. If
p0, p1, . . . , pn are affinely independent, then the coordinates (t0, t1, . . . , tn) of
any point p =∑

tipi in the affine span of pi are uniquely determined by p. An
affine combination t0p0 + · · · + tnpn is a convex combination if each ti � 0.
Two points p0 and p1 determine a line segment [p0, p1], defined as the set of all
convex combinations of p0 and p1, i.e., [p0, p1] = {(1− t)p0 + tp1 | t ∈ [0, 1]}.
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Similarly, (p0, p1) = {(1− t)p0 + tp1 | t ∈ (0, 1)} is the open line segment
determined by p0 and p1.

A subset X of A is convex if given any two points in X, the line segment
between them is contained in X. Equivalently, X is convex if and only if any
convex combination of points in X is contained in X. The convex hull of a
subset S of A is the smallest convex set which contains it. In other words, it is
the set of all convex combinations of points in S.

A hyperplane in A is an affine subspace of codimension one. Thus, a
hyperplane is defined by an equation of the form ϕ(x) = 0, where ϕ : A→ R
is a nonconstant affine map. A half-space in A is defined by an inequality of
the form ϕ(x) � 0. If the inequality is strict, we get an open half-space. Any
hyperplane separates A into two half-spaces.

Suppose X is a closed convex subset of A. An affine hyperplane H is a
supporting hyperplane of X if X ∩ H �= ∅ and if X is contained in one of the
half-spaces bounded by H. (That is to say, X lies on one side of H.) Obviously,
any closed convex subset X is the intersection of the half-spaces which contain
it and are bounded by supporting hyperplanes.

Convex Polytopes

DEFINITION A.1.1. A convex polytope in A is the convex hull of a finite
subset. Its dimension is the dimension of the affine subspace it spans. (We will
use the term convex cell interchangeably with convex polytope.)

Equivalently, a convex polytope is a compact intersection of a finite number
of half-spaces.

If a convex polytope is 0-dimensional, it is a point; if it is 1-dimensional, it
is an interval; if it is 2-dimensional, it is a polygon.

Suppose P is a convex polytope and H a supporting hyperplane. Then P ∩ H
is also a convex polytope. (If P is the convex hull of S, then P ∩ H is the
convex hull of S ∩ H.) P ∩ H is called a face of P. A 0-dimensional face of P
is a vertex; a one-dimensional face is an edge. The set of vertices is denoted
Vert(P) and called the vertex set.

DEFINITION A.1.2. A simplex σ in A is the convex hull of a set {p0, . . . , pn}
of affinely independent points. Equivalently, σ is the set of all convex
combinations of the pi. The points p0, . . . pn are the vertices of σ .

It follows that a simplex is a convex polytope of dimension n (where n is
the number of vertices minus 1). A 2-simplex is a triangle; a 3-simplex is a
tetrahedron. The following basic lemma explains why simplices are easier to
work with than general convex polytopes.
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LEMMA A.1.3. Suppose that σ (resp. σ ′) is a simplex in some affine space,
that I (resp. I′) is its vertex set and that A (resp. A′) is the affine subspace
spanned by I (resp. I′). Let ϕ : I→ I′ be any function. Then there is a
unique affine map f : A→ A′ such that f (p) = ϕ(p) for each vertex p ∈ I (in
particular, f (σ ) ⊂ σ ′).

In other words, the set of affine maps from a simplex σ to another one σ ′ is
naturally identifed with the set of functions Vert(σ )→ Vert(σ ′).

Proof. Suppose I = {p0, . . . , pn}. Then {p1 − p0, . . . , pn − p0} is a basis for the
tangent space of A. Hence, there is a unique linear map F between tangent
spaces defined by pi − p0 → ϕ(pi)− ϕ(p0). The required affine map is then
defined by f (x) = F(x− p0)+ ϕ(p0). �

Example A.1.4. The standard n-simplex �n is the convex hull of the standard
basis, e1, . . . , en+1, in Rn+1. More generally, given a set S, let RS denote the
real vector space of all finitely supported functions S→ R. (RS is topologized
as the direct limit of its finite-dimensional subspaces, i.e., a subset of RS is
closed if and only if its intersection with each finite-dimensional subspace is
closed.) For each s ∈ S, let es denote the characteristic function of {s}. Then
{es}s∈S is the standard basis of RS. The standard simplex on S, denoted by �S,
is the convex hull of the standard basis in RS. In other words, it is the set of all
convex combinations of the es.

Example A.1.5. The standard n-dimensional cube �n is the convex polytope
[−1, 1]n ⊂ Rn. Its vertex set is {±1}n. Let In = {1, . . . , n} and let {ei}i∈In be the
standard basis for Rn. For each subset J of In, RJ denotes the linear subspace
spanned by {ei}i∈J and �J denotes the standard cube in RJ . (If J = ∅, then
R∅ = �∅ = {0}.) Each face of [−1, 1]n is a translate of �J for some J ⊂ In.
We say such a face is type J.

Example A.1.6. (Cartesian products.) If P and P′ are convex polytopes in
affine spaces A and A′, then P× P′ is a convex polytope in A× A′. More
generally, if, for 1 � i � n, Pi is a convex polytope in Ai, then P1 × · · · × Pn

is a convex polytope in A1 × · · · × An. In the special case where each Pi is
an interval and each Ai is one dimensional, we get a convex polytope affinely
isomorphic to an n-cube (and we also call it an “n-cube”).

Example A.1.7. (The n-dimensional octahedron.) The n-octahedron On is the
convex hull of the set of points in Rn of the form εiei where {ei}i∈In is the
standard basis for Rn and each εi ∈ {±1}. The group G generated by all sign
changes and permutations of the coordinates acts orthogonally on Rn. The set
of all εiei is a single G-orbit. It follows that G is a group of symmetries of
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On and that each of the points εiei is a vertex of On. (If one point is a vertex,
then so is any other point in its orbit.) So, On has 2n vertices. The group G
is called the n-octahedral group; it is the semidirect product of the symmetric
group Sn on n letters with the group (C2)n of all sign changes. (In fact, G is
the Coxeter group of type Bn discussed in Example 6.7.2.) It is easy to see that
{εi1 ei1 , . . . , εik eik} is the vertex set of a face of On if and only if the elements
of {ei1 , . . . , eik} are distinct. Thus, each proper face of On is a simplex. In the
literature the n-octahedron is often called the n-dimensional “cross polytope.”

DEFINITION A.1.8. A (linear) convex polyhedral cone C in a finite-
dimensional real vector space V is the intersection of a finite number of linear
half-spaces in V (a half-space is linear if its bounding hyperplane is a linear
subspace). C is essential if contains no line (or equivalently, if the intersection
of C with a sphere about the origin does not contain any pair of antipodal
points). If C is essential, then the origin is its vertex (or cone point). An
essential polyhedral cone C is a simplicial cone if any m of its codimension
one faces intersect in a codimension m face (in other words, if its intersection
with a sphere about the origin is a spherical simplex).

Cell Complexes

We begin with the classical definition of a cell complex in an affine space A.

DEFINITION A.1.9. A convex cell complex is a collection � of convex
polytopes in A such that

(i) if P ∈ � and F is a face of P, then F ∈ � and

(ii) for any two polytopes P and Q in � either P ∩ Q = ∅ or P ∩ Q is a
common face of both polytopes.

Traditionally, the elements of � are called cells (instead of “polytopes”). A
subset �′ of � is a subcomplex if it is closed under the operation of taking
faces (i.e., if �′ satisfies condition (i) above). If each cell of � is a simplex,
then � is a simplicial complex. If each cell of � is a cube, then � is a cubical
complex. � is locally finite if each cell in � is a face of only finitely many
other cells in �.

Associated to �, there is a topological space, called its underlying space.
For the moment we denote it X(�). As a set, X(�) is

X(�) :=
⋃
P∈�

P.

If � is locally finite, then X(�) is given the induced topology as a subspace
of A. If � is not locally finite, this topology is not the correct one. Instead
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X(�) is given the “CW topology.” This means that X(�) is topologized as the
direct limit of the underlying spaces of its finite subcomplexes. (See the last
paragraph of this section for the definition of “CW complex.”)

Perhaps unfortunately, it is traditional in topology to blur the distinction
between a cell complex and its underlying space and use the same symbol, say,
� to stand for both. Sometimes we will follow this tradition and sometimes we
will not. However, henceforth, will not use the notation X(�). When we want
to emphasize the set of cells in � we will write something like F(�) and call
it the “face poset” of �. (See Examples A.2.3 in the next section.)

DEFINITION A.1.10. A space X is a polyhedron if it is homeomorphic to (the
underlying space of) a convex cell complex.

DEFINITION A.1.11. A cellulation of a space X is a homeomorphism f from
a cell complex � onto X; f is a triangulation if � is a simplicial complex.
By an abuse of language we will sometimes say that � is a cellulation (or
triangulation) of X without specifying the homeomorphism.

Example A.1.12. Given a convex polytope P, the set of all its nonempty faces
is a convex cell complex. We also denote this convex cell complex by P.
A slightly less trivial example is the subcomplex ∂P of P consisting of all
proper faces. It is the boundary complex of P. If P is n-dimensional, then the
underlying space of P is an n-disk and the underlying space of ∂P is an (n− 1)-
sphere.

DEFINITION A.1.13. The k-skeleton of a convex cell complex � is the
subcomplex �k consisting of all cells of dimension � k.

CW Complexes

Given a space Y and a map ϕ from ∂Dn (= Sn−1) to Y , let Y ∪ϕ Dn denote the
quotient space of the disjoint union Y

∐
Dn by the equivalence relation which

identifies a point x ∈ ∂Dn with its image ϕ(x). Y ∪ϕ Dn is called the space
formed by attaching an n-cell to Y via ϕ.

A CW complex is a space X which can be constructed by successively
attaching cells to the union of the lower-dimensional cells. A more intrinsic
definition goes as follows. A CW complex is a Hausdorff space X together with
an increasing filtration by closed subspaces: X−1 ⊂ X0 ⊂ X1 ⊂ · · · , where
X−1 := ∅ and Xn − Xn−1 is (homeomorphic to) a disjoint union of open
n-cells {en

α}, α ranging over some index set. Moreover, for each such cell there
must be a characteristic map �α : (Dn, ∂Dn)→ (Xn, Xn−1) which maps the
interior of Dn homeomorphically onto en

α . (The restriction of �α to ∂Dn is the
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attaching map for en
α .) If there are an infinite number of cells, then it is further

required that X is the “closure finite” (i.e., the image of each attaching map
is contained in a finite number of lower dimensional cells) and has the “weak
topology” (i.e., a subset C ⊂ X is closed if and only if its intersection with each
cell is closed). Xn is called the n-skeleton of X. X is a regular CW complex if
each attaching map is an embedding. For a more detailed discussion of CW
complexes, see [153, Appendix].

A.2. POSETS AND ABSTRACT SIMPLICIAL COMPLEXES

A poset is a partially ordered set. Given a poset P and an element p ∈ P , put

P�p := {x ∈ P | x � p}. (A.1)

Define P�p, P<p and P>p similarly. Given elements p, q ∈ P , define P[p,q], the
interval from p to q, by

P[p,q] := {x ∈ P | q � x � p}. (A.2)

The opposite or dual poset to P is the poset Pop with the same underlying set
but with the order relations reversed.

Example A.2.1. (Power sets.) Given a set I, its power set P(I) is the set of all
subsets of I. It is partially ordered by inclusion.

Example A.2.2. (The poset of intervals.) Given a poset P , let I(P) denote its
set of intervals, partially ordered by inclusion.

Example A.2.3

• (The poset of faces of a polytope.) Given a convex polytope P, let F̃(P)
denote its set of faces (including the empty face), partially ordered by
inclusion. Let F(P) = F̃(P)>∅ denote the poset of nonempty faces.

• (The poset of cells of a cell complex.) More generally, if, as in
Definition A.1.9, � is a cell complex, then let F(�) denote the poset of
cells of �. In order to be consistent with the notation of the previous
paragraph, we let F̃(�) = F(�) ∪ {∅} be the poset obtained by
adjoining the “empty cell” to F(�).

• (The poset of simplices of a simplicial complex.) Suppose � = L, a
simplicial complex. For consistentcy with the notation in 7.1, write

S(L) := F̃(L), (A.3)

for the poset of simplices of L (including the “empty simplex”).
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Example A.2.4. (The face poset of an n-simplex.) S(�n) ∼= P(In+1), where
In+1 = {1, . . . , n+ 1}.

Example A.2.5. (The face poset of an n-cube.) Consider the n-cube �n :=
[−1, 1]n. Its vertex set is {±1}n. Explicitly, for each J ∈ P(In), define a function
εJ : In → {±1} by

εJ(i) :=
{
−1 if i ∈ J,

+1 if i /∈ J.
and set

eJ :=
n∑

i=1

εJ(i)ei =
∑
i/∈J

ei −
∑
i∈J

ei (A.4)

{eJ}J∈P(In) is clearly the vertex set of �n. In other words, the vertex set of �n

can be identified with the power set P(In). It is also clear that for each interval
[J1, J2] ∈ I(P(In)), the set of vertices {eJ}J∈[J1,J2] is the vertex set of the face of
�n defined by the equations

xi = −1 for i ∈ J1,

xi = +1 for i ∈ In − J2.

Denote this face by �[J1,J2]. It is a face of type J2 − J1. Thus, F̃(�n) ∼=
I(P(In)) via the correspondence �[J1,J2] ↔ [J1, J2].

Two polytopes P and P′ are combinatorially isomorphic if their face posets
are isomorphic. P and P′ are combinatorially dual (or simply dual) if F̃(P) ∼=
F̃(P′)op. Given an n-dimensional convex polytope P in Euclidean space En,
there is a simple construction (cf. [39, pp. 37–43]) of another polytope P′ ⊂ En

which is combinatorially dual to it. As examples, an n-cube is dual to an
n-dimensional octahedron; an n-simplex is dual to itself; any polygon is also
self-dual.

Abstract Simplicial Complexes

DEFINITION A.2.6. An abstract simplicial complex consists of a set S (the
vertex set) and a collection S of finite subsets of S such that

(i) for each s ∈ S, {s} ∈ S and

(ii) if T ∈ S and if T ′ ⊂ T , then T ′ ∈ S.

An abstract simplicial complex S is a poset: the partial order is inclusion.
Condition (ii) means that if T ∈ S, then S�T is the power set of T . An element
of S is a simplex of S. If T is a simplex of S and T ′ � T , then T ′ is a face of T .
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The dimension of a simplex T is defined by

dim T := Card(T)− 1. (A.5)

A simplex of dimension k is a k-simplex. A 0-simplex is also called a vertex.
(We will often blur the distinction between an element s ∈ S and the singleton
{s} and write Vert(S) := S.) A 1-simplex is an edge.

Sometimes we will say a poset P is an abstract simplicial complex if
there is an (order-preserving) isomorphism from P to an abstract simplicial
complex S.

DEFINITION A.2.7. A subset S ′ of an abstract simplicial complex S is a
subcomplex of S if it is also an abstract simplicial complex (in other words, if
T ∈ S ′ and T ′ < T , then T ′ ∈ S ′). A subcomplex S ′ of S is a full subcomplex
if T ∈ S and T ⊂ Vert(S ′) implies that T ∈ S ′.

The next definition is justified by Lemma A.1.3.

DEFINITION A.2.8. Suppose S and S ′ are abstract simplicial complexes
with vertex sets S and S′, respectively. A simplicial map from S to S ′ is a
function ϕ : S→ S′ such that whenever T ∈ S, ϕ(T) ∈ S ′.

DEFINITION A.2.9. The k-skeleton of an abstract simplicial complex S is the
subcomplex Sk consisting of all simplices of dimension � k.

Example A.2.10. Suppose � is a simplicial complex as in Definition A.1.9
(i.e., � is a convex cell complex in which each cell is a simplex). We can
associate to � an abstract simplicial complex S(�) as follows. The vertex set
S is the set of 0-dimensional cells in �. S(�) is defined by declaring that a
subset T ⊂ S belongs to S(�) if and only if T spans a simplex σT in �. We
will show below that all abstract simplicial complexes arise from a convex cell
complex in this fashion. That is to say, any abstract simplicial complex S is
associated to a geometric simplicial complex� so that S = S(�). Such a� is
called a geometric realization of S.

The Geometric Realization of an Abstract Simplicial Complex

Suppose S is an abstract simplicial complex with vertex set S. As in
Example A.1.4, let �S denote the standard simplex on S. For each nonempty
finite subset T of S, σT denotes the face of �S spanned by T . Define a
subcomplex Geom(S) of �S by

σT ∈ Geom(S) if and only if T ∈ S>∅. (A.6)

The convex cell complex Geom(S) is the standard geometric realization of S.
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DEFINITION A.2.11. A convex polytope P is a simple polytope if the
boundary complex of its dual polytope is a simplicial complex, in other words,
if F(∂P)op is an abstract simplicial complex. For n = dim P, this is equivalent
to the condition that exactly n codimension one faces meet at each vertex.

For example, a cube is simple, an octahedron is not.

DEFINITION A.2.12. A posetP is an abstract convex cell complex if satisfies
the following two conditions:

(a) For each p ∈ P , P�p is isomorphic to the poset of faces of some
convex polytope.

(b) If p, p′ ∈ P are such that P�p ∩ P�p′ �= ∅, then P�p ∩ P�p′ contains
a greatest element (which we shall denote by p ∩ p′).

If each of the convex polytopes in condition (a) is a cube, then P is an abstract
cubical complex.

Condition (b) in the above definition is the analog of condition (ii) in
Definition A.1.9, which requires that if two cells have nonempty intersection,
then the intersection is a common face of both.

It is clear that the poset of cells in a convex cell complex is an abstract
convex cell complex. Conversely, it is not hard to prove that for any abstract
cell complex P , there is a cell complex which realizes it (see Example A.5.1).

A.3. FLAG COMPLEXES AND BARYCENTRIC SUBDIVISIONS

DEFINITION A.3.1. An incidence relation on a set S is a symmetric and
reflexive relation.

DEFINITION A.3.2. Suppose S is a set equipped with an incidence relation.
A flag in S is a subset of pairwise incident elements. Let Flag(S) denote the set
of all finite flags in S, partially ordered by inclusion. Obviously, it is an abstract
simplicial complex with vertex set S.

Example A.3.3. (Chains in a poset.) Suppose P is a poset. We can sym-
metrize the partial order to get an incidence relation on P: two elements p
and q of P are incident if and only if p � q or q � p. In a poset any finite set
of pairwise incident elements is totally ordered. So, a flag in P is the same
thing as a finite chain, i.e., a finite, totally ordered subset. When P is a poset,
Flag(P) denotes the abstract simplicial complex of all finite chains in P . We
call it the flag complex of P . In the literature this simplicial complex is also
called the “derived complex” or the “order complex” of P .
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DEFINITION A.3.4. The geometric realization of a poset P is the geometric
realization of the simplicial complex Flag(P). We use the notation

|P| := Geom(Flag(P))

especially when we are interested in the underlying space of Flag(P).

DEFINITION A.3.5. An abstract simplicial complex S with vertex set S is
a flag complex if given a finite nonempty subset T ⊂ S, any two elements of
which are connected by an edge in S, then T is a simplex in S. We will also
call the geometric realization L of such an S a flag complex.

Flag complexes play an important role throughout this book, particularly, in
the discussion of right-angled Coxeter groups (e.g., Example 7.1.7) and in the
theory of nonpositively curved cubical cell complexes (e.g., Gromov’s Lemma
in Appendix I.6). Flag complexes are also needed in 12.2 and 16.3.

Example A.3.6. (Polygons.) Suppose Lm is the boundary complex of an
m-gon, i.e., suppose Lm is a triangulation of a circle into m edges. Then Lm

is a flag complex if and only if m �= 3.

In combinatorics literature flag complexes are called “clique complexes.”
In [147] Gromov called them simplicial complexes which satisfy the “no �
condition.” In [75] I called them complexes which “were determined by their
1-skeleton.” (See Example A.3.8 below.)

It is worth recording the following lemma which asserts that the complexes
of Definition A.3.2 are all flag complexes and that every flag complex arises
from this construction. (The proof is a triviality.)

LEMMA A.3.7. (Compare [43, p. 29].) Suppose L is an abstract simplicial
complex with vertex set S. Then L is a flag complex if and only if there is an
incidence relation on S so that L = Flag(S).

Proof. Suppose S is equipped with an incidence relation. Distinct vertices v0

and v1 span an edge in Flag(S) if and only if they are incident. Hence, if T
is a nonempty subset of vertices which are pairwise connected by edges, then
the elements of T are pairwise incident. So, such a T is a flag; hence, Flag(S)
is a flag complex. Conversely, suppose L is a flag complex. Call two distinct
vertices incident if and only if they are connected by an edge. Then, clearly,
L = Flag(S). �

Example A.3.8. (Simplicial graph = incidence relation.) A simplicial graph
with vertex set S carries exactly the same information as an incidence relation
on S. Indeed, given such a simplicial graph J, define vertices v and v′ to
be incident if v = v′ or {v, v′} is an edge of J. The associated flag complex
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L = Flag(S) can be described as follows: T ⊂ S spans a simplex σT of L if and
only if T spans a complete subgraph of J (i.e., if any two distinct vertices of T
are connected by an edge in J.) The 1-skeleton of L is J and L is the smallest
full subcomplex of the full simplex on S which contains J. Thus, a flag complex
is a simplicial complex which is “determined by its 1-skeleton.”

Barycentric Subdivision

Let P be a convex polytope. For each face F of P choose a point vF in the
relative interior of F. This is enough data to define a certain subdivision of P
into simplices. Given a flag α = (F1 < · · · < Fk) ∈ Flag(F(P)), the associated
points vF1 , . . . , vFk are affinely independent. Hence, we can define 〈α〉 to be the
k-simplex in P spanned by vF1 , . . . , vFk .

PROPOSITION A.3.9. Let P be a convex polytope. Each point of P lies in the
relative interior of some simplex 〈α〉 for some unique α ∈ Flag(F(P)).

The proposition means that {〈α〉}α∈Flag(F(P)) defines a subdivision of P in
the sense that the relative interiors of the simplices 〈α〉 give a partition of P
into disjoint subsets. The convex cell complex {〈α〉}α∈Flag(F(P)) is a simplicial
complex. It will be denoted by bP and called the barycentric subdivision of P.
Another way of saying this is that bP is a geometric realization of the abstract
simplicial complex Flag(F(P)).

More generally, if� is a convex cell complex, one can define its barycentric
subdivision to be the simplicial complex b� obtained by barycentrically
subdividing all the cells of �. The associated abstract simplicial complex is
Flag(F(�)). In other words, the barycentric subdivision of � is the geometric
realization of the poset of cells of �, that is, b� = |F(�)|.
Proof of Proposition A.3.9. The proof is by induction on dim P. For dim P = 0
there is nothing to prove. So, suppose that dim P = n and the proposition
is true in dimensions < n. Roughly, the proof comes down to the fact that
P is the cone on ∂P. More precisely, suppose x ∈ P. If x = vP, then 〈α〉 is
the 0-simplex vP. If x �= vP, then the ray from vP through x intersects ∂P
in a unique point x′. Since x′ lies in some proper face F of P, it follows
from the inductive hypothesis that x′ lies in the relative interior of some
simplex 〈α′〉 for some unique α′ ∈ Flag(F(F)). If x = x′, we are done. Other-
wise, x is in the relative interior of the simplex α spanned by vP and the
vertices of α′. �

Remark A.3.10. Since the barycentric subdivision of any convex cell complex
is a flag complex, the condition that a simplicial complex L be a flag complex
imposes no restrictions on its topology: it can be any polyhedron.
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Figure A.1. Barycentric subdivision of a polygon.

DEFINITION A.3.11. A combinatorial equivalence between two cell com-
plexes � and �′ is an isomorphism of face posets ϕ : F(�)→ F(�′). Let
Aut(�) denote the group of combinatorial self-equivalences of �.

A combinatorial equivalence ϕ : F(�)→ F(�′) induces a simplicial iso-
morphism Flag(F(�))→ Flag(F(�′)). The geometric realization of this
simplicial isomorphism is a homeomorphism bϕ : b�→ b�′ of barycentric
subdivisions. This shows that any combinatorial equivalence induces a cell-
preserving homeomorphism of the underlying cell complexes.

A.4. JOINS

Suppose E and E′ are disjoint subspaces of an affine space A. If S (resp. S′) is
a maximal affinely independent set of points in E (resp. E′), then S ∪ S′ might
or might not be affinely independent in A. If it is, then E and E′ are in general
position. It is easy to see that this condition does not depend on the choice
of S and S′. Here is an equivalent definition in the case where E and E′ are
finite dimensional. Let E′′ denote the affine subspace spanned by E and E′.
Since we can find a maximal affinely independent subset of E′′ having each
of its points either in E or E′, it is clear that dim E′′ � dim E + dim E′ + 1 and
that we have equality if and only if E and E′ are in general position. If they
are in general position, then E′′ is called the join of E and E′ and we will
write E′′ = E ∗ E′.

DEFINITION A.4.1. Suppose P and P′ are convex polytopes in general
position in some affine space (more precisely, the affine subpaces which they
span are in general position). The join of P and P′ is the convex polytope P ∗ P′

defined as the convex hull of P ∪ P′.
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Here are two other equivalent definitions of the join:

• P ∗ P′ is the convex hull of Vert(P) ∪ Vert(P′).

• P ∗ P′ is the union of all line segments connecting a point in P
to one in P′.

By the first paragraph of this section,

dim(P ∗ P′) = dim P+ dim P′ + 1. (A.7)

Example A.4.2. The join of two simplices is a simplex.

DEFINITION A.4.3. Suppose � (resp. �′) is a convex cell complex in an
affine subspace E (resp. E′) of some affine space. Suppose further that E and
E′ are in general position. Their join � ∗�′ is the cell complex consisting of
all cells obtained by taking the join of a cell in � with one in �′. (Here it
is important to include the cells which lie entirely in one cell complex or the
other. This is done by remembering to take into account the empty cell. For
example, a cell P ∈ � can be regarded as the join of P and ∅.)

The cone on a cell complex�, denoted Cone(�), is defined to be the join of
� with a disjoint point.

Example A.4.4. (Compare Example A.1.7.) Let S0 denote the cell complex
consiting of two points (S0 is the 0-sphere). The n-octahedron is the n-fold join
of S0 with itself: On = S0 ∗ · · · ∗ S0.

If � and �′ are locally finite, then the underlying space of � ∗�′ is the
union of all line segments connecting a point in� to one in�′. This motivates
the following definition.

DEFINITION A.4.5. Suppose X and Y are nonempty topological spaces.
Their join X ∗ Y is defined to be the quotient of X × Y × [0, 1] by the
equivalence relation ∼ generated by

(x, y, 0) ∼ (x, y′, 0) and (x, y, 1) ∼ (x′, y, 1)

where x, x′ ∈ X and y, y′ ∈ Y . In particular, Cone(X), the cone on X is defined
to be the join of X and a point.

What is the poset of faces of the join of two convex polytopes P and P′? The
answer is obvious:

F̃(P ∗ P′) ∼= F̃(P)× F̃(P′), (A.8)

where the isomorphism is given by F ∗ F′ ↔ (F, F′). Here F and F′ are faces of
P and P′, respectively, and either can be ∅. The isomorphism in (A.8) is order



August 2, 2007 Time: 11:58am appendixa.tex

414 APPENDIX A

preserving if we put the natural partial order on the product F̃(P)× F̃(P′):
(F1, F′1) � (F2, F′2) if and only if F1 � F2 and F′1 � F′2. Similarly, if � and �′

are convex cell complexes, then

F̃(� ∗�′) ∼= F̃(�)× F̃(�′). (A.9)

Formula (A.9) makes it clear how to define the join of two abstract simplicial
complexes L and L′, we should have

S(L ∗ L′) ∼= S(L)× S(L′), (A.10)

where, as in formula (A.3) of Example A.2.3, S(L) is the poset of simplices
in L. More explicitly, suppose S and S′ are the vertex sets of L and L′ and that
S ∩ S′ = ∅. The simplicial complex L ∗ L′ can be defined as follows: its vertex
set is the disjoint union S ∪ S′ and a nonempty subset T ∪ T ′ of S ∪ S′ is the
vertex set of a simplex in L ∗ L′ if and only if T ∈ S(L) and T ′ ∈ S(L′).

Example A.4.6. (The cone on a barycentric subdivision.) If L is the geometric
realization of an abstract simplicial complex S (= S(L)), then |S| (= Flag(S)),
the geometric realization of the poset S, is the cone on bL, the barycentric
subdivision of L. (By Proposition A.3.9, |S>∅| is bL. So, |S(L)| is the join of
bL and a point, where ∅ corresponds to the cone point.)

The following lemma, which is used in 12.2 and Appendix I.6, is left as an
exercise for the reader.

LEMMA A.4.7. The join of two flag complexes is a flag complex.

Example A.4.8. (The standard subdivision of an n-cube.) We take notation
from Examples A.2.1, A.2.3, A.2.4, and particularly A.2.5. Let �n = [−1, 1]n

be the standard n-cube. We are going to define a subdivision of �n into
simplices, without introducing any new vertices, so that the corresponding
abstract simplicial complex is Flag(P(In)). As in Example A.2.5, Vert(�n) ∼=
P(In) via the correspondence eJ ↔ J. Let α = (J1 < · · · < Jk) ∈ Flag(P(In)).
The corresponding geometric simplex 〈α〉 of the subdivision is the simplex
spanned by {eJ1 , . . . , eJk}. The simplex 〈α〉 is contained in the face �[J1,Jk] of
�n. It is easy to see that this actually gives a subdivision of the cube. See
Figure A.2.

Since by Example A.2.4, S(�n−1) ∼= P(In), and since by Example A.4.6,
|S(�n−1)| is the cone on the barycentric subdivision of �n−1, we have
established the following.

LEMMA A.4.9. The standard subdivision of �n is combinatorially isomor-
phic to the cone on the barycentric subdivision of �n−1.
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=

=

1-simplex

Figure A.2. Standard subdivisions of cubes.

A.5. FACES AND COFACES

Let P be a poset and |P| its geometric realization. There are two decomposi-
tions of |P| into closed subspaces. Both decompositions are indexed by P . For
the first, take the geometric realizations of the subposets P�p, with p ∈ P .
|P�p| is a face of |P|. For the second decomposition, take the geometric
realizations of the subposets P�p. |P�p| is a coface of |P|.

Since a simplex in Flag(P) is a chain in P , the vertex set of any simplex is
totally ordered. In particular, each simplex in Flag(P) has a minimum vertex
as well as a maximum one. The face |P�p| is the union of all simplices with
maximum vertex p. Similarly, the coface |P�p| is the union of all simplices
with minimum vertex p.

Example A.5.1. (The geometric realization of an abstract convex cell com-
plex.) If P = F(�) for some convex cell complex � and P a cell of �, then
F(�)�P = F(P) and the geometric realization of the poset F(�)�P is bP, the
barycentric subdivision of P.

On the other hand, suppose P is an abstract convex cell complex in the
sense of Definition A.2.12. In view of condition (b) of that definition, for each
p ∈ P , the face |P�p| is (the barycentric subdivision of) a convex cell. So, the
faces of |P| are convex cells and they are glued together by (geometric
realizations of) combinatorial equivalences of their faces (these are homeomor-
phisms). So any abstract convex cell complex P has a geometric realization by
a cell complex, namely |P|.

Remark. If � is a PL manifold and P is a cell in �, then |F(�)�P| is called
the dual cell to P.
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For the remainder of this section, L is a simplicial complex with vertex set S.
As in formula (A.3) of Example A.2.3, S(L) (or simply S) denotes the poset
of abstract simplices in L (including the empty simplex). In other words, S is
the poset of those subsets T of S such that T spans a simplex of L. Write σT

for the corresponding (closed) geometric simplex in L. The abstract simplicial
complex Flag(S>∅) is the poset of (nonempty) simplices in the barycentric
subdivision bL of L. Suppose α = {T0, . . . , Tk} ∈ Flag(S>∅), where Ti ∈ S>∅
and T0 < · · · < Tk. Denote the corresponding closed simplex in bL by 〈α〉.

Here is another example in which each face is (combinatorially isomorphic
to) a convex polytope.

Example A.5.2. (The cubical structure on |S(L)|.) By Example A.4.6, |S|
(= |S(L)|) is the cone on the barycentric subdivision bL. By Lemma A.4.9,
for each T ∈ S, |S�T | is isomorphic to (the standard subdivision of) a cube.
The dimension of the cube is Card(T) (= dim σT + 1). So, each face of |S| is a
cube. It follows that the poset S is an abstract cubical cell complex in the sense
of Definition A.2.12.

Example A.5.3. (Cofaces of |S(L)|.) Set K = |S| and for each s ∈ S (=
Vert(L)), let Ks be the coface |S�{s}|. Ks is the union of all closed simplices
with minimum vertex {s}. In other words, Ks is the closed star of the vertex {s}
in bL. If a simplex α ∈ Flag(S) has minimum vertex T for some T ∈ S, then α
is a face of a simplex with minimum vertex {s} for each s ∈ T . It follows that

|S�T | =
⋂
s∈T

Ks.

(This should be compared to formula (5.2) in Section 5.1.)

DEFINITION A.5.4. For each T ∈ S, let KT be the coface |S�T | and ∂KT :=
|S>T |. In particular, ∂K := |S>∅| is bL. We shall sometimes say the coface KT

is the dual cone to the simplex σT and that K, together with its partition into
cofaces, is the dual complex to L.

The Relationship Between ∂K and L

As in 5.1 and 7.2, for each T ⊂ S, put

KT :=
⋃
s∈T

Ks. (A.11)

The next lemma is used several times in Chapters 8, 9, and 10.

LEMMA A.5.5. Suppose L is a simplicial complex. Then, for each T ∈ S(L),
L− σT is homotopy equivalent to KS−T .
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KS−T and L− σT can both be regarded as subspaces of bL. We will prove
the lemma by showing that KS−T is a deformation retract of L− σT . We
need some more notation. Suppose α = {T0, . . . , Tk} ∈ Flag(S>∅). Denote the
corresponding closed simplex in bL by 〈α〉. A point x ∈ 〈α〉, can be written as
a unique convex linear combination

x =
∑
T∈α

xTvT ,

where vT is the vertex of bL corresponding to T ∈ S>∅. (The xT are nonnegative
real numbers satisfying:

∑
xT = 1). If U /∈ α, put xU := 0. The (xT )T∈S>∅ are

the barycentric coordinates of x. The support of x, denoted supp(x), is the set
of T ∈ S>∅ such that xT �= 0.

Proof of Lemma A.5.5. As a subset of bL,

σT = {x ∈ bL | (U ∈ supp(x)) =⇒ (U ⊂ T)}
= {x ∈ bL | supp(x) ⊂ Flag(S�T )}.

So

L− σT = {x ∈ bL | ∃ U ∈ supp(x) with U �⊂ T}
and

KS−T = {x ∈ bL | supp(x) ∩ Flag(S�T ) = ∅}.
Hence, KS−T ⊂ L− σT and (L− σT )− KS−T = {x | supp(x) ∩ Flag(S�T ) �= ∅,
supp(x) �⊂ Flag(S�T )}. Put ∂KS−T := KS−T ∩ KT , i.e.,

∂KS−T = {x | (U ∈ supp(x)) =⇒ (U ∩ T �= ∅, U ∩ S− T �= ∅)}.
Put β(x) := supp(x)− (supp(x) ∩ Flag(S�T )). Define r : (L− σT )− KS−T →
∂KS−T by setting all barycentric coordinates xU with U /∈ β(x) equal to 0 and
then renormalizing so the sum of the coordinates is 1, i.e.,

r(x) :=
∑

U∈β(x)

xUvU

/ ∣∣∣∣∣∣
∑

U∈β(x)

xU

∣∣∣∣∣∣ .

Extend r to a retraction (L− σT )→ KS−T by setting it equal to the identity
map on KS−T . We claim r is a deformation retraction, i.e., if i : KS−T →
L− σT is the inclusion, then i ◦ r is homotopic to the identity map of KS−T .
For x ∈ (L− σT )− KS−T , the restriction of r to the complement of the face
〈supp(x) ∩ Flag(S�T )〉 in the simplex 〈supp(x)〉 is just the standard projection
onto the opposite face 〈β(x)〉 and we have the usual straight line homotopy
defined by (x, t)→ tx+ (1− t)r(x). These homotopies fit together to give the
homotopy between i ◦ r and id. �
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Lk(v)
Lk(v)

Figure A.3. Two links.

A.6. LINKS

Suppose P is a convex polytope in a finite-dimensional affine space A with
tangent space V . Let TP denote the tangent space of P, i.e., TP is the linear
subspace of V consisting of all vectors of the form t(x− y), where x, y ∈ P and
t ∈ R. Given x ∈ P, define CxP, the inward-pointing tangent cone at x, to be the
set of all v ∈ TP such that x+ tv ∈ P for all t ∈ [0, ε) for some ε > 0. CxP is a
linear polyhedral cone in TP. Suppose F is a proper face of P. If x ∈ int(F) and
y ∈ F, then CyP ⊂ CxP, with equality if and only if y ∈ int(F). (Here int(F) is
the relative interior of F.) Also, if x, y are both in int(F), then CxP and CyP
have the same image in TP/TF. This common image is an essential polyhedral
cone, denoted by Cone(F, P).

One way to define the “link” of F in P is as the image of Cone(F, P)− 0 in
the unit sphere of TP/TF. Equivalently, the link of F in P, denoted Lk(F, P)
is the intersection of Cone(F, P) with an affine hyperplane in TP/TF which
intersects every nonzero face of Cone(F, P). Lk(F, P) is a convex polytope in
this affine hyperplane, well defined up to an affine isomorphism. Its dimension
is dim P− dim F − 1. For example, the link of a vertex in a three-dimensional
cube is a triangle, while the link of a vertex in an octahedron is a square. (See
Figure A.3.)

If F1 < F2 < P, then the inclusions TF2 ⊂ TP, TF2/TF1 ⊂ TP/TF1 and
CyF2 ⊂ CyP induce a natural identification of Lk(F1, F2) with a face of
Lk(F1, P). So, the poset of faces of Lk(F, P) is naturally isomorphic toF(P)>F,
where F(P) is the poset of faces of P, discussed in Example A.2.3.

DEFINITION A.6.1. Suppose � is a convex cell complex and F is a cell of
�, then Lk(F,�), the link of F in � is the convex cell complex consisting
of all cells of the form Lk(F, P), where F < P ∈ � and where, whenever
F1 < F2 < P ∈ �, we identify Lk(F1, F2) with the corresponding face of
Lk(F1, P) ∈ Lk(F1,�).

As before, the poset of cells in Lk(F,�) is identified with F(�)>F.
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PROPOSITION A.6.2. Suppose a point x in (the geometric realization of) a
locally finite convex cell complex � lies in the relative interior of some cell F.
Then there is an open neighborhood of x in� of the form int(F)× Nε, where Nε
denotes an ε neighborhood of the cone point in Cone(Lk(F,�)). Equivalently,
a neighborhood of x is homeomorphic to the cone on the k-fold suspension of
Lk(F,�), where k = dim F.

Proof. The open star of F in �, denoted Star(F,�), is defined as the union
of all open cells int(F′), where F′ ∈ F(�) and F is a face of F′. Given
such an F′, let σF′ denote the corresponding cell in Lk(F,�). (dim σF′ =
dim F′ − dim F − 1.) Since int(F′) ∼= int(F ∗ σF′ ), it follows that Star(F,�) ∼=
int(F)× Nε. To prove the last sentence of the proposition, let Dk be a disk
neighborhood of x ∈ int(F). Then Dk × Cone(Lk(F,�)) ∼= Sk−1 ∗ Lk(F,�).
(Compare equation (A.10).) Finally, taking the join with Sk−1 is the same as
taking the k-fold suspension. �

LEMMA A.6.3. Suppose v is a vertex of a cell F in some convex cell complex
�. Then Lk(σF, Lk(v,�)) = Lk(F,�), where σF denotes the cell of Lk(v,�)
corresponding to F.

Proof. This is simply a matter of unwinding the definitions. On the level of
posets of cells, we have

F(Lk(σF, Lk(v,�)) = F(Lk(v,�))>σF = (F(�)>{v})>F

= F(�)>F = F(Lk(F,�)),

from which the lemma follows. �

Remark. When, as in Chapter 6, F is a face of a convex polytope P in a space of
constant curvature, Cone(F, P) is naturally a polyhedral cone in the orthogonal
complement of TxF in TxP and the intersection of this cone with the unit sphere
in TxP is naturally a spherical polytope. So, in this geometric context, we will
always regard Lk(F, P) as a spherical polytope.
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REGULAR POLYTOPES

B.1. CHAMBERS IN THE BARYCENTRIC SUBDIVISION
OF A POLYTOPE

Suppose P is an (n+ 1)-dimensional convex polytope and ∂P is its boundary
complex (Example A.1.12). As in Appendix A.3, b(∂P) is the barycentric
subdivision of ∂P.

DEFINITION B.1.1. A top-dimensional simplex of b(∂P) is a chamber. The
set of all chambers in b(∂P) is denoted Cham(b(∂P)).

A simplex of b(∂P) corresponds to a chain (or flag) of cells in ∂P. We
will identify a simplex with the corresponding chain of cells. In particular,
a chamber σ n of b(∂P) is identified with a maximal chain {F0, F1, . . . , Fn},
where Fi < Fi+1. Since the chain is maximal, we must have dim Fi = i. In
fact, this will be our convention, when dealing with such chains: the cells will
be indexed by dimension, i.e., dim Fi = i.

DEFINITION B.1.2. Suppose α = (Fi(1) < · · · < Fi(k)) is a (not necessar-
ily maximal) chain of cells in ∂P, with dim Fi(j) = i( j). Then α has type
(i(1), . . . , i(k)) The corresponding geometric simplex of b(∂P) spanned by the
barycenters of the Fi(j) is also said to have type (i(1), . . . , i(k)).

As examples, a chain consisting of a single i-dimensional face is a chain of
type (i); a maximal chain is of type (0, 1, . . . , n).

As in Definition A.3.11, Aut(P) denotes the group of combinatorial
automorphisms of P. Note that Aut(P) acts on the poset Flag(F(∂P)) of
Appendix A.3. (Flag(F(∂P)) is the set of chains of cells in ∂P.) Moreover,
the action preserves type. Hence, Aut(P) acts as a group of type-preserving
simplicial automorphisms of b(∂P). In particular, Aut(P) acts on Cham(b(∂P)).

Let �n denote the standard n-simplex on the vertex set {0, 1, . . . , n}. There
is a natural simplicial projection d : b(∂P)→ �n defined on the vertices by
sending the barycenter vF of a cell F to the integer, dim F ∈ {0, 1, . . . , n}. Note
that the restriction of d to any chamber is an isomorphism. As explained in
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Example 18.1.1, d gives Cham(b∂P) the structure of a chamber system over S
in the sense of 18.1. (Here S is the set of codimension one faces of �n.)

LEMMA B.1.3. Aut(P) acts freely on Cham(b(∂P)).

Proof. The point is that b(∂P) is a (gallery connected) pseudomanifold (in fact,
an n-sphere). (Although the 0-sphere is not connected, the case n = 0 is easily
dealt with by a separate argument.) Suppose ϕ ∈ Aut(P) and ϕ stabilizes a
chamber σ ∈ Cham(b(∂P)). Since the action of Aut(P) preserves dimension,
ϕ must fix each vertex of σ . Hence, it must fix σ pointwise. Since b(∂P)
is a pseudomanifold, there is exactly one other chamber across any given
codimension-one face of σ . This chamber must also be fixed by ϕ. Since
any two chambers can be connected by a sequence of adjacent chambers (a
“gallery”), the geometric realization of ϕ must actually be the identity map. �

Suppose Pn+1 is a convex polytope in En+1 and that Isom(P) is its group
of symmetries. If an element g ∈ Isom(P) stabilizes a face of P, then it
must fix the center (= barycenter) of that face. It follows that the action of
Isom(P) on b(∂P) is through simplicial automorphisms and that the natural
map Isom(P)→ Aut(P) is injective.

Fix a chamber σ = {F0, . . . , Fn} ∈ Cham(b(∂Pn+1)). For 1 � i � n, define
one-dimensional cell complex Li(σ ) as follows:

Li(σ ) =




∂F2 if i = 1,

Lk(Fi−2, ∂Fi+1) if 2 � i � n− 1,

Lk(Fn−2, ∂P) if i = n and n � 2.

(B.1)

Since Lk(Fi−2, ∂Fi+1) is the boundary complex of the polygon Lk(Fi−2, Fi+1),
each Li(σ ) is the boundary of a polygon. In other words, it is a triangulation
of S1. (By an abuse of language, we will often blur the distinction between a
polygon and its boundary complex and say that Li(σ ) “is a polygon.”) Let mi(σ )
be the number of edges of Li(σ ). The n-tuple m(σ ) := (m1(σ ), . . . , mn(σ )) is
the Schläfli symbol of P at σ . Since a convex polygon has at least three sides,
mi(σ ) � 3.

For 0 � i � n, let σi be the codimension one face of σ opposite to the
barycenter of Fi. Let us say that σi is a simplex of cotype i. We can identify σi

with the (nonmaximal) chain of cells {F0, . . . , Fn} − {Fi}. Let σ (i) denote the
adjacent chamber to σ across its face of cotype i. We say that σ (i) is i-adjacent
to σ . Thus, the i-adjacent chamber to σ has the form

σ (i) = ({F0, . . . , Fn} − {Fi}) ∪ F′i , (B.2)

for some (uniquely determined) i-dimensional face F′i .
Next we want to consider links of codimension two simplices in the

barycentric subdivision of ∂P. The following lemma clarifies the situation.



July 9, 2007 Time: 05:09pm appendixb.tex

REGULAR POLYTOPES 423

LEMMA B.1.4. Fix a chamber σ . As above, let F′i and F′j be the cells of ∂P
determined by the chambers which are i-adjacent and j-adjacent to σ . Suppose
|i− j| � 2. Then

σ (i, j) := ({F0, . . . , Fn} − {Fi, Fj}) ∪ {F′i , F′j}
is a chamber of b(∂P).

Proof. We must show that σ (i, j) is a chain of cells. We know that

Fi−1 < F′i < Fi+1 and Fj−1 < F′j < Fj+1.

Without loss of generality we can assume j > i. Since |i− j| � 2, we have
j− 1 � i+ 1; so

F0 < · · ·Fi−1 < F′i < Fi+1 · · ·Fj−1 < F′j < Fj+1 · · · < Fn,

which proves the lemma. �

LEMMA B.1.5. Suppose 0 � i < j � n and σij = σi ∩ σj is a codimension-
two face of the chamber σ . Let Lk(σij) denote the link of σij in b(∂P). (Lk(σij)
is a triangulation of S1.) Then

(a) If j = i+ 1, then Lk(σij) is the barycentric subdivision of the polygon
Lj(σ ) defined in (B.1). Hence, Lk(σij) is a 2mj(σ )-gon.

(b) If j � i+ 2, then Lk(σij) is a 4-gon.

Proof. We have σij = {F0, . . . , Fn} − {Fi, Fj}.
Case (a). j = i+ 1. An edge of Lk(σij) is a pair of cells {Gj−1, Gj}, where

Fj−2 < Gj−1 < Gj < Fj+1,

but this means that Lk(σij) = bLj(σ ).

Case (b). j � i+ 2. An edge of Lk(σij) is a pair of cells {Gi, Gj} where

Fi−1 < Gi < Fi+1 and Fj−1 < Gj < Fj+1.

By the sentence containing equation (B.2), there are precisely two such Gi,
namely, Fi and F′i and precisely two such Gj, namely, Fj and F′j . Using
Lemma B.1.4, there are exactly four edges in Lk(σij): {Fi, Fj}, {F′i , Fj}, {F′i , F′j}
and {Fi, F′j}. So Lk(σij) is a 4-gon. �

The Coxeter matrix of P at σ is the symmetric, (n+ 1)× (n+ 1) matrix
(mij(σ )) with all diagonal entries = 1 and with the entries above the diagonal
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defined by

mij(σ ) =
{

mj(σ ) if j = i+ 1,

2 if j � i+ 2.
(B.3)

The Coxeter diagram associated to such a Coxeter matrix is a “straight line”
in the following sense. It is a graph with n+ 1 vertices, say, 0, 1, . . . , n. Two
vertices are connected by an edge if and only if they differ by 1 and the edge
between i− 1 and i is labeled by an integer mi � 3 (where, as usual, we omit
the labels from the edges with mi = 3). We shall say that such a diagram is a
straight line Coxeter diagram.

B.2. CLASSIFICATION OF REGULAR POLYTOPES

DEFINITION B.2.1. A convex polytope P is combinatorially regular if
Aut(P) acts transitively on Cham(b(∂P)). A polytope in Euclidean space is
regular if Isom(P) acts transitively on Cham(b(∂P)).

Remarks B.2.2

(i) Regularity implies combinatorial regularity.

(ii) Suppose P is regular and G = Isom(P) or Aut(P). Since any chain
of faces can be extended to a maximal chain, it follows that G acts
transitively on the set of chains of a given type (as defined in
Definition B.1.2). In particular, G acts transitively on the set of
i-dimensional faces for 0 � i � n and each face of P is also a
regular polytope.

(iii) Definition B.2.1 is what one arrives at by trying to make precise the
notion that P is as “symmetric as possible.” To see this, suppose
G = Aut(P). If we want P to be highly symmetric, the first condition
we might impose is that G acts transitively on Vert(P). Next we might
want the condition that for each v ∈ Vert(P), Lk(v, P) should be
(combinatorially) regular. By induction on dimension, “regular”
should mean that the isotropy subgroup Gv acts transitively on the
chambers in b(∂ Lk(v, P)). An i-cell of Lk(v, P) corresponds to an
(i+ 1)-cell of P which contains v, so a chamber of b(∂ Lk(v, P))
gives a chamber {F0, . . . , Fn} of b(∂P), with F0 = v. Thus, G
should act transitively on the set of maximal chains of cells
of P.

If P is combinatorially regular, then the Schläfli symbol (m1(σ ), . . . , mn(σ ))
and the Coxeter matrix (mij(σ )) are obviously independent of the choice of
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chamber σ . We denote them by m := (m1, . . . , mn) and (mij) and call them,
respectively, the Schläfli symbol and Coxeter matrix of P.

In dimension 2 we have the regular polygons. The Schläfli symbol of an
m-gon is (m); its symmetry group is the dihedral group Dm (Example 3.1.2).
In each dimension n > 2 there are three “obvious” regular polytopes:
the n-simplex �n (Example A.1.4), the n-cube �n (Example A.1.5) and the
n-octahedron On (see Example A.1.7). The symmetry group of �n is the
symmetric group Sn+1 on its vertex set (Example 6.7.1). Its Schläfli symbol
is (3, 3, . . . , 3). The n-cube and the n-octahedron are dual polytopes and
hence, have the same group of symmetries, namely, the octahedral group of
Example 6.7.2. The Schläfli symbol of �n is (4, 3, . . . , 3), while the Schläfli
symbol of On is (3, . . . , 3, 4). (The Schläfli symbols of a regular polytope and
its dual are the reverses of each other: if (m1, . . . , mn) is the Schläfli symbol of
P, then the Schläfli symbol of its dual is (mn, . . . , m1). Thus, P is self-dual if
and only if its Schläfli symbol is palindromic.) All of the facts in this paragraph
are easy to prove and are left as exercises for the reader.

If P is a regular polytope with Schläfli symbol (m1, . . . , mn), then it each of
its codimension one faces is regular with Schläfli symbol (m1, . . . , mn−1) and
the link of each of its vertices is (combinatorially) regular with Schläfli symbol
(m2, . . . , mn).

Of course, in dimension 3 there are two other regular polytopes known to
the ancient Greeks: the dodecahedron and its dual, the icosahedron. These have
Schläfli symbols (5, 3) and (3, 5), respectively.

One of the remarkable discoveries of nineteenth century (due to Schläfli in
1850) is that the above examples almost constitute the complete list of regular
polytopes. As we shall see below, each regular polytope is determined (up to
an isometry and a homothety) by its Schläfli symbol. Furthermore, it turns out
that there are exactly three other “nonobvious” regular polytopes and all three
occur in dimension 4. Their Schläfli symbols are (3, 4, 3), (5, 3, 3), and (3, 3, 5).
They are called by Coxeter in [69] “the 24-cell,” “the 120-cell,” and “the 600-
cell,” respectively. The codimension one faces of a 24-cell are octahedra; there
are 24 such faces; the link of each vertex is a cube. It is self-dual. The 120-cell
and the 600-cell are dual to one another. The 120-cell has dodecahedra as its
three-dimensional faces; there are 120 such faces; the link of each vertex is a
tetrahedron (a 3-simplex). The 600-cell has tetrahedra as its three-dimensional
faces; there are 600 such faces; the link of each vertex is an icosahedron.

In the next few pages we will establish a one-to one correspondence between
each of the following:

• the set of dual pairs of combinatorially regular (n+ 1)-dimensional
polytopes (up to combinatorial equivalence),

• the set of dual pairs of regular (n+ 1)-dimensional polytopes in En+1

(up to isometry and homothety), and
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• the set of Coxeter systems (W, S) of rank (n+ 1) with W finite and
with a straight line Coxeter diagram (up to isomorphism of Coxeter
systems).

Thus, the classification of regular polytopes reduces to the classification of
finite Coxeter groups (which will be accomplished in Appendix C). Here is the
theorem.

THEOREM B.2.3. If Pn+1 ⊂ En+1 is a regular polytope, then its symmetry
group Isom(Pn+1) is a geometric reflection group on Sn. Conversely, if (W, S) is
a Coxeter system of rank (n+ 1) with W finite and with diagram a straight line,
then, up to isometry and homothety, there are at most two regular polytopes in
En+1 (a polytope and its dual) which have (W, S) as their associated Coxeter
system. Moreover, these dual polytopes are isomorphic if and only if the
Coxeter diagram admits a nontrivial involution (i.e., the Schläfli symbol is
palindromic).

In the course of proving this the following facts will come out in the wash:

• Any combinatorially regular polytope is combinatorially equivalent to
a regular polytope in Euclidean space (a result of [201]).

• A sequence (m1, . . . , mn) of integers � 3 is the Schläfli symbol of a
regular polytope if and only if its associated Coxeter matrix (defined
in (B.3)) determines a finite Coxeter group. Furthermore, if this is the
case, then the Schläfli symbol determines the regular polytope (up
to isomorphism).

References for this material include [69, 74, 171, 201] and [257,
Chapter 5 §3].

B.3. REGULAR TESSELLATIONS OF SPHERES

Given a straight line spherical Coxeter diagram, we show here how to assemble
the chambers into spherical polytopes to get a regular tessellation of the sphere
and then by taking the convex hull of its vertices a regular polytope in En+1.

THEOREM B.3.1. (Compare [74, Theorem 3.9].) Let (W, S) be a Coxeter
system with S = {s0, s1, . . . , sn} and with Coxeter matrix (mij)0�i,j�n. Suppose
W is finite and that the Coxeter diagram of (W, S) is a straight line in the
precise sense that mij = 2 when |i− j| � 2 and 2 < mij <∞ when |i− j| = 1.
For 1 � i � n, put mi = mi−1,i. Then there is a regular tessellation of Sn

with Schläfli symbol (m1, . . . , mn). Moreover, this tessellation is unique up to
isometries of Sn.
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Proof. We know from Section 6.6 that W can be represented as a geometric
reflection group on Sn as follows. There is a spherical n-simplex σ with
codimension one faces (σi)0�i�n such that the dihedral angle between σi and
σj is π/mij and such that si is reflection across σi. Let vi be the vertex opposite
to σi. We need to understand how to construct the top-dimensional cells of the
tessellation. One such cell Fn is the union of translates of σ by the elements
of the isotropy subgroup at vn. The other n-cells are then the translates of Fn

by the elements of W. The claim is that Fn is a spherical polytope and that
its subdivision into translates of σ is the barycentric subdivision. In proving
this, it is no harder to reconstruct an entire maximal chain F0 < · · · < Fn of
the tessellation.

The isotropy subgroup of W at vi is the special subgroup W(i) generated
by S− si. The diagram of W(i) is either a line segment (if i = 0 or n) or two
line segments (if 1 � i � n− 1). Thus, W(i) = Gi × Hi where Gi is the special
subgroup generated by {s0, . . . , si−1} and Hi is the special subgroup generated
by {si+1, . . . , sn}. (Gi is trivial if i = 0; Hi is trivial if i = n.) Let σ (i) be the
face of σ spanned by v0, . . . , vi and let

Fi =
⋃

w∈Gi

wσ (i).

We claim that, for 0 � i � n,

(a) Fi is a convex spherical polytope in the i-sphere Si fixed by Hi.

(b) The triangulation of Fi by the i-simplices {wσ (i)}w∈W(i) is the
barycentric subdivision.

Note that Gi+1 is a reflection group on Si. Claims (a) and (b) imply that the
Gi+1-translates of the Fi are the cells of the regular tessellation. To prove the
claims, first note that σ (i) ⊂ Si. Since the Gi and Hi actions commute, Fi ⊂ Si.
Since the sum of two numbers of the form π/mij is � π , two codimension one
faces of Fi intersect at an angle � π . Hence, Fi is convex. This proves (a).
Suppose, by induction, that for i < k the triangulation of Fi by the translates
of σ (i) is its barycentric subdivision. (The case i = 0 is trivial.) So, this holds
for Fk−1 and all its translates under Gk. Since the union of these translates is
∂Fk, they give the barycentric subdivision of ∂Fk. Since vk is the center of
Fk, the translates of σ (k) give the cone on the barycentric subdivision of ∂Fk,
i.e., the barycentric subdivision of Fk. This proves (b). Since the simplex σ
is determined, up to isometry, by its dihedral angles, the tessellation is also
unique up to isometry. �

Proof of Theorem B.2.3. Suppose Pn+1 is regular. Declare the center of each
face to be its barycenter and then take the barycentric subdivision of P. Since
the centers are preserved, this is stable under Isom(Pn+1). Radially project
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from the center of Pn+1 onto a sphere Sn centered at the same point. Choose
σ ∈ Cham(b(∂P)). The element of Isom(P) that takes σ to an adjacent chamber
must act on Sn as reflection across their common face (since it fixes the face
pointwise). It follows from the analysis in the previous section that the dihedral
angle between σi and σj must be π/mij where the mij are defined by (B.3).
So, Isom(P) acts on Sn as the geometric reflection group generated by the
reflections across the faces of σ and by, Theorem 6.4.3, it is a Coxeter group
W with a straight line diagram.

Conversely, suppose (W, S) is a spherical Coxeter system with a straight
line diagram. As in Theorem B.3.1, we get a cellulation of Sn. Take the
convex hull of the set of 0-cells in this cellulation to get the regular polytope
Pn+1 ⊂ Rn+1. �

B.4. REGULAR TESSELLATIONS

The results of the previous three sections can be generalized to “regular tessel-
lations” of pseudomanifolds, following the lines laid down by Lannér [184].
We sketch the theory here; more details can be found in [74]. Throughout this
section, � is a n-dimensional convex cell complex satisfying the following
conditions.

Conditions B.4.1

• Each cell of � is a face of some n-dimensional cell (i.e., � is a “pure”
cell complex).

• � is connected.

• The link of each codimension one cell is S0 (i.e., � is a
pseudomanifold) and the link of each cell of codimension � 2 is
connected. (This implies that Cham(b�) is “gallery connected” in the
sense of 18.1.)

Sometimes we will also want to impose the following additional conditions.

Conditions B.4.2

• � is simply connected.

• The link of any codimension two cell is a triangulation of S1.

• The link of each cell of codimension � 3 is simply connected.

We proceed as in B.1. A top-dimensional simplex in b� is a chamber. Let
Cham(b�) denote the set of all chambers in b�. A chamber σ is the same thing
as a maximal flag of cells, (F0 < · · · < Fn), where dim Fi = i. As before, we
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have a simplicial projection d : b�→ �n, defined on vertices by sending the
barycenter of a cell F to the number dim F. Aut(�) acts on b� and the action
commutes with the projection d. As in Lemma B.1.3, Aut(�) acts freely on
Cham(b�).

Fix a chamber σ = (F0 < · · · < Fn) ∈ Cham(b�). As in formula (B.1), for
1 � i � n, define a triangulation Li(σ ) of a connected 1-manifold by

Li(σ ) :=




∂F2 if i = 1,

Lk(Fi−2, ∂Fi+1) if 2 � i � n− 1;

Lk(Fn−2,�) if i = n and n � 2.

For i < n, Li(σ ) is a triangulation of S1; mi(σ ) denotes its number of edges.
Ln(σ ) is either a circle or a line. When it is a circle, define mn(σ ) to be the
number of its edges. When it is the line, mn(σ ) := ∞. The n-tuple m(σ ) :=
(m1, . . . , mn) is the Schläfli symbol at σ . � is regular if m(σ ) is a constant
function of σ ; it is symmetrically regular if Aut(�) is transitive on Cham(b�).

Remarks on terminology. Our terminology here is somewhat inconsistent with
that in B.2. There we used “combinatorially regular” to mean the same as
“symmetrically regular” here. Also, in B.2 we did not have a term meaning
that the Schläfli symbol was constant on chambers (here called “regular”).

Given an n-tuple m = (m1, . . . , mn), define a Coxeter matrix (mij) on I :=
{0, 1, . . . , n} as in formula (B.3). All diagonal entries are equal to 1 and the
entries above the diagonal are given by

mij(σ ) =
{

mj(σ ) if j = i+ 1,

2 if j � i+ 2.

Let Wm be the resulting Coxeter group. Its diagram is the straight line

m1◦−−−◦ · · · · · · mn◦−−−◦ .
Let W(i) be the special subgroup obtained by omitting the ith vertex of this
diagram. The initial part of m is the (n− 1)-tuple (m1, . . . , mn−1); its final part
is the (n− 1)-tuple (m2, . . . , mn). If m is the Schläfli symbol of a regular cell
complex, then its initial part is the symbol of a regular n-dimensional polytope,
i.e., the corresponding Coxeter group W(n) is spherical (as in the previous two
sections).

We assume for the rest of this appendix that � is regular. There is a natural
action (from the right) of Wm on Cham(b�), the ith reflection si takes a chamber
σ to the adjacent chamber across its codimension one face σi of cotype i.
Since b� is gallery connected, Wm is transitive on Cham(b�). Let π (b�, σ )
denote the isotropy subgroup at σ . (Here we are thinking of b�→ �n as an



July 9, 2007 Time: 05:09pm appendixb.tex

430 APPENDIX B

“orbihedral covering,” Wm as the “orbihedral fundamental group” of �n, the
action of Wm on Cham(b�) as the analog of the action of the fundamental
group on the inverse image of a base point in a covering space, so that π (b�, σ )
is the analog of the fundamental group of b�.)

Suppose� and�′ are regular cell complexes with the same Schläfli symbol.
In keeping with the above analogy, call a simplicial map b�→ b�′ an
“orbihedral covering” if d = p ◦ d′, where d : b�→ �n and d′ : b�′ → �n

are the canonical projections. The proofs of the next three results are omitted,
since they are very close to the proofs of the corresponding results in covering
space theory.

LEMMA B.4.3. ([74, Prop. 2.9].) Suppose � and �′ are regular cell com-
plexes with the same Schläfli symbol and σ ∈ Cham(b�), σ ′ ∈ Cham(b�′).
Then there is an orbihedral covering �→ �′ taking σ to σ ′ if and only if
π (b�, σ ) is a subgroup of π (b�′, σ ′).

COROLLARY B.4.4. ([74, Prop. 3.5].) Regular cell complexes � and �′ are
isomorphic if and only if they have the same Schläfli symbol m and π (b�, σ )
and π (b�′, σ ′) are conjugate subgroups of Wm.

COROLLARY B.4.5. ([74, Prop. 3.6].) A regular cell complex � is sym-
metrically regular if and only if π (b�, σ ) is a normal subgroup of Wm for
some (in fact, for any) σ ∈ Cham(b�). Moreover, Aut(�) = Wm/π where
π := π (b�, σ ).

The role of the universal cover of � is played by the Coxeter complex

Um := U(Wm,�n)

of Example 5.2.7 in Section 5.2. A vertex v in Um has type i if it projects to the
vertex i ∈ {0, . . . , n} = Vert(�n). Suppose vn is type n. As in Theorem B.3.1,
by assembling together all top-dimensional simplices which meet at vn, we
obtain a regular polytope Fn of dimension n. In this way, we see that Um is
the barycentric subdivision of a regular cell complex which we denote by the
same symbol Um. Since Um exists for any n-tuple m, an n-tuple m occurs as
the Schläfli symbol of a regular cell complex if and only if its initial part
is spherical. Since Wm acts freely on Cham(Um), Lemma B.4.3 shows that
Um is the universal orbihedral cover. This gives the following.

THEOREM B.4.6. ([74].) Suppose � is a regular cell complex with Schläfli
symbol m. Then there is an orbihedral cover p : Um → b� and b� ∼= Um/π

for some subgroup π ⊂ Wm.

We turn now to Conditions B.4.2.
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LEMMA B.4.7. ([74, Lemma 2.25].) Let � be a regular cell complex of
dimension n � 2 and m its Schläfli symbol. Suppose � is a finite complex.
Then the following statements are equivalent:

(a) � satisfies Conditions B.4.2.

(b) � is PL homeomorphic to Sn.

(c) Wm is spherical and p : Um → b� is an isomorphism.

Obviously, (c) =⇒ (b) =⇒ (a). The proof that (a) =⇒ (c) is by induction
on dimension using the fact that the link of any cell in a regular cell complex
is also regular. A fairly immediate corollary is the following.

THEOREM B.4.8. ([74, Theorem 2.26].) Let � be a regular cell complex of
dimension n � 2 and m its Schläfli symbol. Suppose � is simply connected.
Then the following statements are equivalent.

(a) � satisfies Conditions B.4.2.

(b) � is a PL manifold.

(c) The final part (m2, . . . , mn) of m is the symbol of a spherical Coxeter
group (= W(0)) and the projection p : Um → � is an isomorphism.

If we drop the simple connectivity requirement, then we see that � is a PL
manifold if and only if Um is a PL manifold and the subgroup π (= π (b�, σ ))
acts freely on Um. Moreover, this is the case if and only if the intersection
of π with any conjugate of the subgroup W(0) is trivial. (Its intersection with
conjugates of W(n), the subgroup corresponding to the initial part of m, is
automatically trivial.)

If both the initial and final parts of m are spherical, then Wm is a simplicial
Coxeter group (or a “Lannér group”) as in Section 6.9. It follows that
U(Wm,�n) can be identified with Sn, En or Hn as the determinant of the
cosine matrix is positive, zero or negative, respectively. (Following Section 6.2,
we denote these constant curvature spaces by Xn

κ for κ = +1, 0 or −1,
respectively.) Since En and Hn are contractible, it follows that when κ = 0
or −1, π acts freely if and only if it is torsion-free.

The following theorem summarizes the above discussion.

THEOREM B.4.9. ([74].)

(i) For n � 2, an n-tuple m = (m1, . . . , mn), of positive integers each
� 3, is a Schláfli symbol of a regular tessellation of a PL manifold if
and only if its initial and final parts are both spherical.
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(ii) Suppose � is a PL manifold and a regular cell complex with Schläfli
symbol m. Then � is equivalent to a classical geometric tessellation
of a space of constant curvature. That is to say, Wm is a simplicial
Coxeter group acting isometrically on Um = Xn

κ for some
κ ∈ {+1, 0,−1} and � ∼= Xn

κ/π , where π ⊂ Wm is some subgroup
which acts freely on Xn

κ .

Euclidean Tessellations

According to Table 6.1 in Section 6.9, there is only one infinite family of
Euclidean reflection groups with straight line diagrams, namely the family
of diagrams C̃n. C̃n has Schläfli symbol (4, 3, . . . , 3, 4). It corresponds to the
standard tessellation of En by n-cubes; the link of each vertex is the boundary
complex of an n-octahedron. The tessellation is self-dual. (In dimensions 1 and
2 this tessellation corresponds to the diagrams Ã1 and B̃2, respectively.)

There are only two other Euclidean reflection groups with straight line
diagrams, one in dimension 2, the other in dimension 4. In dimension 2, we
have G̃2 with corresponding Schläfli symbols (6, 3) or (3, 6). The first is the
usual tiling of the plane by regular hexagons, the second is the dual tiling by
equilateral triangles. In dimension 4 we have the diagram F̃4 corresponding
to (3, 4, 3, 3) and (3, 3, 4, 3). These give the only two interesting regular
tessellations of Euclidean space. The first is a tessellation of E4 by 24-cells;
the link of each vertex is the boundary of a 4-cube. The second is the dual
tessellation by four-dimensional octahedra; the link of each vertex being the
boundary of a 24-cell.

Hyperbolic Tessellations

Examining Table 6.2 in Section 6.9, we see that simplicial hyperbolic reflection
groups occur only in dimensions 2, 3, and 4. In dimension 2 there are an
infinite number with straight line diagrams. There are three in dimension 3
and three more in dimension 4. In dimension 2 we have the (p, q, 2) triangle
groups with Schläfli symbols (p, q), with 1

p + 1
q <

1
2 , giving a tessellation of

H2 by p-gons, q meeting at each vertex. (See [115].) In dimension 3 we have
the symbols (3, 5, 3), (5, 3, 4), (4, 3, 5), and (5, 3, 5). In each case the cells and
vertex links can be read off from the symbol. For example, (4, 3, 5) corresponds
to a tessellation of H3 by cubes; the link of each vertex being the boundary
of an icosahedron. In dimension 4 we have (5, 3, 3, 3), (3, 3, 3, 5), (5, 3, 3, 4),
(4, 3, 3, 5), and (5, 3, 3, 5). Again in each case we can read off the structure
from the symbol. For example, (5, 3, 3, 5) is the self-dual tessellation of H4 by
120-cells in which the link of each vertex is the boundary of a 600-cell. These
regular tessellations of Hn, n � 3, were explained by Coxeter [68].
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THE CLASSIFICATION OF SPHERICAL

AND EUCLIDEAN COXETER GROUPS

Here we prove the classical classification results for simplicial Coxeter groups.
That is to say, we show that Tables 6.1 and 6.2 of Section 6.9 are correct.

C.1. STATEMENTS OF THE CLASSIFICATION THEOREMS

In view of Theorem 6.8.12 the classification of spherical reflection groups
reduces to the classification of those Coxeter matrices M such that the
corresponding cosine matrix (cij) (defined by equation (6.21) of Section 6.8) is
positive definite. By Theorem 6.12.9, classifying spherical reflection groups is
the same as classifying finite Coxeter groups.

Recall that M is reducible if its Coxeter diagram is not connected. Equiv-
alently, M is reducible if the index set I has a nontrivial partition as I =
I′ ∪ I′′, with mij = 2 for all i ∈ I′ and j ∈ I′′. A third way to say this is
that its cosine matrix is decomposable (Definition 6.3.6). A decomposable
matrix is positive definite if and only if each of its indecomposable principal
submatrices is positive definite. So, it suffices to consider the case where M is
irreducible.

DEFINITION C.1.1. Let � be a Coxeter diagram. We say that � is positive
semidefinite (or positive definite) as its cosine matrix is positive semidefinite
(or positive definite). Similarly, � is of type (n, 1) if its cosine matrix is of
this type.

Here is the famous classification of finite Coxeter groups (see [67]).

THEOREM C.1.2. (Classification of finite Coxeter groups.) The connected,
positive definite Coxeter diagrams are those listed in the left-hand column
of Table 6.1. (In other words, this is the complete list of diagrams of the
irreducible Coxeter systems (W, S) with W finite.)

In the course of proving this we will classify the other simplicial Coxeter
groups as well. In the Euclidean case, by Theorem 6.8.12, this amounts to
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classifying the Coxeter diagrams which are connected and positive semidefi-
nite degenerate (and therefore of corank 1).

THEOREM C.1.3. (Classification of Euclidean Coxeter groups). The con-
nected, positive semidefinite Coxeter diagrams, which are not positive definite,
are those listed in the right hand column of Table 6.1. (In other words, this is
the complete list of diagrams of the irreducible Euclidean reflection groups.)

By Theorem 6.8.12, the classification of hyperbolic simplicial Coxeter
groups amounts to the classification of Coxeter diagrams of type (n, 1) with
the property that every proper subdiagram is positive definite. The result is the
following.

THEOREM C.1.4. (Classification of hyperbolic simplicial Coxeter groups.)
The connected, Coxeter diagrams of type (n, 1) with the property that every
proper subdiagram is positive definite exist only for n � 4 and they are listed
in Table 6.2. (In other words, this is the complete list of diagrams of hyperbolic
simplicial reflection groups.)

Our proof of these theorems is essentially the one given by Humphreys [163]
(which follows the treatment in [303]). This proof is not as elegant as the one
given in [29] and it gives no hint as to how one might discover the list in
Table 6.1. However, the basic argument of [163] reduces to straightforward
calculations of determinants, which the reader can easily carry out himself.

C.2. CALCULATING SOME DETERMINANTS

Suppose A is an n× n symmetric matrix. If A is positive definite, then so is
its principal submatrix A(n) (where, by definition, A(n) is obtained by deleting
the last row and column of A). Conversely, if A(n) is positive definite, then
there are only three possibilities for A: it is either positive definite, positive
semidefinite of corank 1 or nondegenerate of type (n, 1). We can distinguish
these possibilities by calculating det(A): it is > 0, = 0 or < 0, respectively.
Thus, A is positive definite if and only if A(n) is positive definite and det(A) > 0.
So, ultimately, we can decide the positivity of A by calculating determinants.

Define a principal minor of A to be the determinant of a matrix obtained
by deleting the last k rows and columns of A, 0 � k � n. The well-known
positivity test alluded to above is the following: A is positive definite if and
only if each principal minor is positive.

Positivity of Certain Cosine Matrices

In the next few paragraphs we show that the diagrams in the left hand column
of Table 6.1 are all positive definite. First consider the rank two case, i.e., the



July 9, 2007 Time: 09:59am appendixc.tex

CLASSIFICATION OF SIMPLICIAL GROUPS 435

cosine matrices of the I2(m). We have

det A =
(

1 − cos(π/m)

− cos(π/m) 1

)
= sin2(π/m) > 0.

So A is positive definite.
Suppose the rank of A is � 3. Looking at the diagrams on the left hand

side of Table 6.1, we see that whenever there are more than three vertices, the
greatest possible label on any edge is 5. So, the relevant values of the cosine
function are given by

cos(π/m) =




1/2 if m = 3,
√

2/2 if m = 4,

(1+√5)/4 if m = 5.

Since the denominator 2 often occurs in the cosine matrices of these diagrams,
it makes more sense to calculate the determinant of the matrix 2A.

Another thing we can see from Table 6.1 is that it is always possible to
number the vertices of the diagram so that the nth vertex is connected to only
one other vertex, the (n− 1)st, and with this edge labeled by m = 3 or 4. Let
di be the determinant of the upper left i× i matrix (di is a principal minor).
Expanding 2A along its last row we find that

det 2A = 2dn−1 − dn−2 if m = 3, (C.1)

det 2A = 2dn−1 − 2dn−2 if m = 4. (C.2)

Using these two formulas it is easy to inductively verify that the values of
det 2A, where A is the cosine matrix of a diagram of rank > 2 in the left-hand
column of Table 6.1, are given by Table C.1. So, we have proved the following
lemma.

LEMMA C.2.1. Each of the diagrams in the left-hand column of Table 6.1 is
positive definite.

Some Nonpositive Determinants

We turn our attention to the diagrams on the right hand side of Table 6.1. As
was pointed out in 6.9, these diagrams have the property that the cosine matrix
of every proper subdiagram is positive definite. So, if we can show that in each
case the determinant is 0, we will have proved the following.

LEMMA C.2.2. Each of the diagrams in the right-hand column of Table 6.1
is positive semidefinite of corank 1.
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An Bn Dn E6 E7 E8 F4 H3 H4

n+ 1 2 4 3 2 1 1 3−√5 (7− 3
√

5)/2

Table C.1. Determinant of 2A.

In the case of Ãn, the sum of all the rows of A is 0; hence, det A = 0. In all
other cases, we can choose one of the terminal vertices of the diagram (which
is a tree) and then use (C.1) or (C.2) together with Table C.1 to immediately
calculate that the determinant is 0. As a random example, for Ẽ7, the relevant
subdiagrams are E7 and D6 and (C.1) reads: det 2A = 4− 4 = 0.

LEMMA C.2.3. The cosine matrices of the diagrams

Z4 ◦−−− 5◦−−−◦−−−◦

Z5
5◦−−−◦−−−◦−−−◦−−−◦

have negative determinants. (These diagrams occur in Table 6.2.)

Proof. If A is the cosine matrix of Z4 or Z5, then we can compute
det 2A by using (C.1) and the values of the determinant for H3 and H4 in
Table C.1. In the case of Z4, we get det 2A = 3− 2

√
5. For Z5, we get

det 2A = 4− 2
√

5. �

C.3. PROOFS OF THE CLASSIFICATION THEOREMS

Suppose � and �′ are Coxeter diagrams and that � is connected. Say that �
dominates �′ if the underlying graph of �′ is a subgraph of � and if the label on
each edge of �′ is � the label on the corresponding edge of �. If, in addition,
� �= �′, then say � strictly dominates �′ and write � � �′. The next lemma is
a corollary of Lemma 6.3.7.

LEMMA C.3.1. ([163, p. 36].) Suppose an irreducible Coxeter diagram � is
positive semidefinite. If � � �′, then �′ is positive definite.

Proof. Let A = (aij) be the n× n cosine matrix for � and A′ = (a′ij) the cosine
matrix for �′. Since �′ is a subgraph of �, after reordering the vertices of �
we can assume that A′ is the k × k matrix in the upper left corner of A for some
k � n. Since � dominates �′, aij � a′ij � 0 for all 1 � i, j � k, i �= j. Suppose
A′ is not positive definite, i.e., suppose there is a nonzero vector x ∈ Rk with
xtA′x � 0. We claim that

0 �
∑

aij|xi||xj| �
∑

a′ij|xi||xj| �
∑

a′ijxixj � 0, (C.3)
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where the sums are over 1 � i, j � k. The first inequality in (C.3) is because
A is positive definite, the second because aij � a′ij, for 1 � i, j � k, the third
because a′ij � 0 for i �= j and the last is by assumption. So the inequalities in
(C.3) are all equalities. If we write

y = (|x1|, . . . , |xk|) ∈ Rk,

z = (|x1|, . . . , |xk|, 0, . . . , 0) ∈ Rn,

then (C.3) reads 0 � ztAz � ytA′y � xtA′x � 0. Since ztAz = 0, z ∈ Ker A. By
Lemma 6.3.7, its coordinates are all nonzero. Hence, k = n and the coordinates
of y are all nonzero. Since � � �′, aij < a′ij, for at least one pair {i, j}. Hence,
ztAz < ytA′y, a contradiction. �

Proofs of Theorems C.1.2 and C.1.3. ([163, p. 37].) We want to show Table 6.1
is the complete list of the connected Coxeter diagrams which have positive
semidefinite cosine matrices. Suppose, to the contrary, that � is a connected,
positive semidefinite Coxeter diagram not on this list. Let n be the rank of
� and m the maximum label on any edge. By using Lemma C.3.1 repeat-
edly, one now establishes the following statements, showing that no such �
exists:

• n � 3 (since all Coxeter diagrams of rank � 2 are positive
semidefinite).

• m �= ∞ (since � � Ã1).

• � is a tree (� contains no circuits since � � Ãn).

Suppose m = 3. Then

• � must have a branch vertex (since � �= An).

• The branch vertex is unique (since � � D̃n, n > 4).

• Each branch vertex is valence 3 (since � � D̃4).

So, suppose � has three branches with a � b � c edges along each of the three
branches.

• a = 1 (since � � Ẽ6).

• b � 2 (since � � Ẽ7).

• b = 2 (b �= 1 since � �= Dn).

• c � 4 (since � � Ẽ8).
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Therefore,

• m � 4 (the case m = 3 is impossible, since � �= E6, E7, E8).

• Only one edge of � has a label > 3 (since � � C̃n).

• � has no branch vertices (since � � B̃n).

Suppose m = 4. Then

• The two extreme edges of � are labeled 3.

• n = 4 (since � � F̃4).

Therefore,

• m = 5 (m = 4 is impossible since � �= F4 and m = 6 is impossible
since � � G̃2).

• The edge labeled 5 must be an extreme edge (since � � Z4, where

Z4 is the diagram ◦−−− 5◦−−−◦−−−◦ of Table 6.2).

• Contradiction (since � �= H3, H4, which are the only remaining
possibilities). �

Proof of Theorem C.1.4. � is the diagram of a hyperbolic simplicial Coxeter
group if and only if it satisfies the following two conditions:

(a) Every proper subdiagram is positive definite.

(b) � does not appear in Table 6.1.

It is simple to check that the diagrams in Table 6.2 satisfy both conditions.
It is also easy to check that there are no further possibilities. To do this, a

couple of observations are useful. First, in any connected spherical diagram
with n � 3, the largest label m which can occur is 5. Second, � can contain no
proper cycle (since every connected spherical diagram is a tree). So � is either
a cycle or a tree. Now consider the ways of adding a node to a diagram in the
left hand column of Table 6.1 so that (a) holds. Inspection shows that in every
case we either get another diagram in Table 6.1 or a diagram in Table 6.2. �
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THE GEOMETRIC REPRESENTATION

In Chapter 7 we associated to a Coxeter system (W, S) a geometric object: the
cell complex �. Here we associate another geometric object to it: the interior
I of the “Tits cone.” � and I have several important properties in common.
W acts properly on both. Both are models for EW. (In particular, both are
contractible.) The main advantage of � is that its W-action is cocompact. The
advantage of I is that it is a W-stable open set in a faithful linear representation.
For example, the existence of this representation allows one to conclude that
W is virtually torsion-free (Corollary D.1.4 below).

D.1. INJECTIVITY OF THE GEOMETRIC REPRESENTATION

In 6.12 we started with a Coxeter matrix M = (mij) over a index set I,
then defined an associated Coxeter system (W, S) (where S := {si}i∈I) and a
bilinear form BM on RI given by BM(ei, ej) := − cos(π/mij). (For the notion
of a Coxeter matrix and its associated Coxeter system, see Definitions 3.3.1
and 3.3.2, respectively.) We go on to define the “canonical representation”
ρ : W → GL(RI) (Definition 6.12.5). It is induced from the map which sends
the generator si to the linear reflection ρi defined by equation (6.33) of 6.12.

To simplify notation, put E := RI . We are interested in the dual of the canon-
ical representation ρ∗ : W → GL(E∗). We call it the geometric representation
of (W, S). In many ways it is more important than the canonical representation.
We denote vectors of E by Roman letters such as ei or x and vectors in E∗ by
Greek letters such as ξ . The natural pairing of E∗ and E will be denoted either
by (ξ , x)→ ξ (x) or (ξ , x)→ x(ξ ). Let ξi ∈ E∗ be the linear form x→ BM(x, ei).
Then ρ∗(si) is the linear reflection ρ∗i on E∗ defined by

ρ∗i (ϕ) = ϕ − 2ei(ϕ)ξi. (D.1)

To check that this actually is the formula for ρ∗(si), compute

(ρ∗(si)(ϕ))(x)=ϕ(ρi(x)) = ϕ(x− 2BM(x, ei)ei)

=ϕ(x)− 2BM(x, ei)ϕ(ei) = (ϕ − 2ei(ϕ)ξi)(x)

= ρ∗i (ϕ)(x).
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(Since ei is a linear form on E∗ and ξi ∈ E∗ is a vector with ei(ξi) = 1, it follows
from formula (6.1) of 6.1 that (D.1) actually defines a linear reflection.)

Let C be the simplicial cone in E∗ defined by the inequalities

ei(ϕ) � 0, i ∈ I,

and let
◦
C be its interior (defined by the strict inequalities, ei(ϕ) > 0).

THEOREM D.1.1. (Tits, see [29, p. 97].) Let w ∈ W. If w
◦
C ∩

◦
C �= ∅, then

w = 1.

A corollary is Theorem 6.12.10 which states that ρ∗ : W → GL(E∗) is
faithful. If ρ∗ is faithful, then so is ρ. This gives the following (stated earlier
as Corollary 6.12.11).

COROLLARY D.1.2. The canonical representation ρ is faithful.

Another corollary is the following.

COROLLARY D.1.3. ([29, Cor. 3, p. 97].) ρ∗(W) is a discrete subgroup of
GL(E∗). Similarly, ρ(W) is a discrete subgroup of GL(E).

Proof of Corollary D.1.3. Pick ϕ ∈
◦
C. Let V := {g ∈ GL(E∗) | g(ϕ) ∈

◦
C}. V is

an open neighborhood of 1 in GL(E∗). By Theorem D.1.1, V ∩ ρ∗(W) = {1}.
So ρ∗(W) is a discrete subgroup. The second sentence follows from the
first. �

Selberg’s Lemma [254] states that any finitely generated subgroup of
GL(n,C) is virtually torsion-free. (Recall that a group virtually has some
property if it has a subgroup of finite index which is torsion-free.) So a
consequence of Corollary D.1.2 is the following.

COROLLARY D.1.4. Any (finitely generated) Coxeter group is virtually
torsion-free.

When s = si, write es instead of ei. Let Hs (or Hs(C)) be the open half-space
in E∗ defined by es(ξ ) > 0. Set

As := {w ∈ W | w
◦
C ⊂ Hs(C)}.

The proof of Theorem D.1.1 is based on Tits’ Lemma from 4.8. To apply
this lemma we must verify a certain Property (P) holds for each pair of distinct
elements in S. We do so below.

LEMMA D.1.5. ([29, Lemma 1, p. 98].) Given distinct elements s, t ∈ S and
an element v ∈ W{s,t}, v(As ∩ At) is contained either in As or in sAs and in the
second case, l(sv) = l(v)− 1.
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Proof. Let E{s,t} := Res ⊕ Ret ⊂ E and let E∗{s,t} be the dual 2-plane given
by E∗{s,t} := E∗/Ann(E{s,t}), where Ann(E{s,t}) is the annihilator of E{s,t} (i.e.,
Ann(E{s,t}) := {ξ ∈ E∗ | es(ξ ) = 0 = et(ξ )}). W{s,t} acts naturally on E{s,t} and
is naturally identified with the geometric representation of the Coxeter system
(W{s,t}, {s, t}). The dual of the inclusion E{s,t} ↪→ E is the W{s,t}-equivariant
surjection p : E∗ → E∗{s,t}. The subsets Hs(C), Ht(C) and Hs(C) ∩ Ht(C) are
the inverse images under p of the corresponding subsets of E{s,t}. So, we are
reduced to proving the lemma in the case where W is the dihedral group
W{s,t} of order 2m, m := m(s, t). We shall show this reduces to checking the
lemma in the two standard pictures described in Examples 3.1.2 and 3.1.3. We
distinguish two cases.

Case 1. m = ∞. Let (ξ ,ϕ) be the dual basis to (es, et). Then

s · ξ = −ξ + 2ϕ, t · ξ = ξ ,

s · ϕ= ϕ, t · ϕ= 2ξ − ϕ.

Let L be the affine line in E∗ spanned by ξ and ϕ. The above formulas show
L is stable under W. Let f : R→ L be the affine isomorphism defined by
t→ tξ + (1− t)ϕ. Transporting the action to R via this map we obtain the
standard action of the infinite dihedral group on R, where s and t act by
reflections across 0 and 1, respectively. Let In ⊂ L be the image under f of
[n, n+ 1] and let Cn ⊂ E∗ be the union of all positive real multiples of In.
Then C = C0. Since the In are permuted simply transitively by W so are the
Cn. If v ∈ W, then vC is equal to one of the Cn and hence, is on the positive
side of 0 (if n � 0) or on the negative (if n < 0). It follows that v(As ∩ At) is
contained either in As (if n � 0) or in sAs (if n < 0). In the second case I0 and
In are on opposite sides of ξ and hence, l(sv) = l(v)− 1.

Case 2. m <∞. The bilinear form BM has matrix


 1 − cos(π/m)

− cos(π/m) 1




Since its determinant is 1− cos2(π/m) = sin2(π/m) > 0, BM is positive def-
inite. Hence, we can use the form BM to identify both E and E∗ with the
Euclidean plane R2. After this identification, es and et become unit vectors
making an angle of π − π/m and C becomes a sector bounded by two lines
making an angle of π/m (es and et are the inward-pointing unit normal
vectors). Hence, C is a fundamental chamber for the dihedral group. The
lemma follows easily from this (for example, from the results of 6.6). �
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Proof of Theorem D.1.1. (W, S, {As}s∈S) satisfies Property (P) by the previous
lemma together with Tits’ Lemma 4.8.3. By Remark 4.8.1 (i),

⋂
As is

prefundamental for W, i.e., w
◦
C ∩

◦
C �= ∅ =⇒ w = 1. �

D.2. THE TITS CONE

Given s ∈ S, let Cs denote the codimension one face of C defined by es(x) = 0.
(We are altering our notation and using the Roman letter x for a point in C
rather than a Greek letter.) This defines a tautological mirror structure on C
indexed by S. (See 5.1 for the definition of this and other constructions used
below.) As in (5.1), S(x) := {s ∈ S | x ∈ Cs} and as in (5.2), for each T ⊂ S,

CT is the intersection of the Cs, s ∈ T . Let
◦
CT := {x ∈ C | S(x) = T}.

◦
CT is the

relative interior of CT . Put

C f :=
⋃
T∈S

◦
CT

(where S is the set of spherical subsets of S) and put

U :=
⋃
w∈W

wC and I :=
⋃
w∈W

wC f .

U is the Tits cone. (Since C is a cone, for x ∈ C and λ ∈ [0,∞), λx ∈ C; hence,
if wx ∈ U, then so is λwx = wλx, i.e., U is a cone.)

Examples D.2.1

(i) (The infinite dihedral group D∞.) Since S = {s1, s2}, dim E∗ = 2.
Introduce coordinates (x1, x2) by xi = ei(x). C is the positive quadrant
bounded by the coordinate lines. As in Case 1 in the proof of
Lemma D.1.5, the affine line x1 + x2 = 1 is stable under D∞ and the
action on it can be identified with the standard D∞-action on E1.
C f = C − {0}, U is the half-plane x1 + x2 � 0 and I is the
corresponding open half-plane. Similarly, if W is any irreducible
Euclidean reflection group, then C is a simplicial cone,
C f = C − {0}, U is a half-space and I is an open half-space. (See
Proposition 6.8.8.)

(ii) (Hyperbolic triangle groups.) Suppose W is a hyperbolic triangle
group generated by the reflections s1, s2, s3 across the faces of a
triangle � ⊂ H2. Since bilinear form BM is associated to the cosine
matrix, it is nondegenerate of type (2, 1). So both E and E∗ can be
identified with Minkowski space R2,1. C is the cone on �,
C f = C − {0}, U is the positive light cone and I is its interior.
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Figure D.1. The cone on a hyperbolic triangle group.

(See Figure D.1.) Similarly, if W is one of the simplicial hyperbolic
Coxeter groups with diagram listed in Table 6.2, then I is the interior
of the positive light cone in Rn,1 (n � 4).

On the other hand, if, as in Example 6.5.3, W is a hyperbolic m-gon
group, with m > 3, we again get a representation W ↪→ O(2, 1) with
fundamental chamber the cone on the m-gon. However, this is not the
geometric representation. (The cone on an m-gon, m > 3, is not a
simplicial cone; moreover, dim E∗ = m �= dimR2,1.)

Once we choose a point x ∈
◦
C we get an embedding of the Cayley graph of

(W, S) in U: the vertex set of Cay(W, S) is identified with Wx and vertices wx
and wsx are connected by the line segment between them. Let E∗s ⊂ E∗ denote
the hyperplane fixed by ρ∗(s). By Lemma 4.2.2, the vertices x and wx are on
opposite sides of E∗s if and only if l(w) > l(sw). Hence, we have the following.

LEMMA D.2.2. Given s ∈ S and w ∈ W, the chambers C and wC lie on
opposite sides of the hyperplane E∗s if and only if l(w) > l(sw).

Let −C ⊂ E∗ denote the image of C under the antipodal map x→−x.

LEMMA D.2.3. Suppose y ∈ −
◦
C. Then y ∈ U if and only if W is finite.

Proof. Suppose y = wx for some x ∈
◦
C. For each s ∈ S, l(ws) < l(w), since y

and x lie on opposite sides of E∗s . Hence, by Lemma 4.6.2, W is finite and w is
the element of longest length. Conversely, if W is finite and w0 is its element

of longest length, then w0y ∈
◦
C and y ∈ U. �

COROLLARY D.2.4. The point 0 ∈ E∗ lies in the interior of U if and only if
W is finite.

Proof. If W is finite, then E∗ = U. If W is infinite, then, by the previous

lemma, there is a point y ∈ −
◦
C such that ty /∈ U for all t ∈ (0,∞). As t→ 0,

lim ty = 0; so 0 is not in the interior. �

We omit the proof of the next lemma since it essentially identical to the
proof of Lemma 6.6.8.
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LEMMA D.2.5. ([29, Prop. 5, p. 101].) Suppose x, y ∈ C and w ∈ W are such
that wx = y. Then x = y and w ∈ WS(x).

Since we have mirror structures on C and C f , we can apply the basic
construction of Chapter 5 to get W-spaces U(W, C) and U(W, C f ). It is a
tautology that the mirror structure on C f is W-finite (Definition 5.1.6). It
follows from the universal property of the basic construction (Lemma 5.2.5)
that the inclusion ι : C→ U induces an equivariant map ι̃ : U(W, C)→ U.
Similarly, the restriction of ι to C f induces U(W, C f )→ I.

THEOREM D.2.6

(i) The natural map ι̃ : U(W, C)→ U is a bijection.

(ii) Its restriction U(W, C f )→ I is a W-equivariant homeomorphism.

(iii) I is the interior of U.

Proof. (i) By definition U = WC, so, ι̃ is surjective. By Lemma D.2.5,
wx = w′x′ if and only if x = x′and w−1w′ ∈ WS(x), i.e., if and only
if [w, x] = [w′, x′] in U(W, C). So ι̃ is injective.

Given x ∈ C, let Vx be a neighborhood of x in C which intersects only
those Cs with s ∈ S(x). (We could take Vx to be the complement in C of those
Cs which do not contain x.) Then U(WS(x), Vx) is a neighborhood of [1, x] in
U(W, C) and WS(x)Vx is an open neighborhood of x in U.

(ii) Suppose WS(x) is finite. By Theorem 6.6.3 (iv), ι̃ takes U(WS(x), Vx)
homeomorphically onto WS(x)Vx. Similarly, it takes a neighborhood
of [w, x] homeomorphically onto its image. This shows that the bijection
ι̃ : U(W, C f )→ I is a homeomorphism.

(iii) The argument for (ii) shows that I ⊂ int(U). Conversely, suppose x ∈
C − C f so that WS(x) is infinite. Then Corollary D.2.4 (applied to the geometric
representation of WS(x)) shows that x /∈ int(U). So I = int(U). �

Remark. In regard to part (i) of the theorem, when W is infinite, U(W, C) and
U are definitely not homeomorphic. The topology on U(W, C) is that of a cell
complex (the CW topology) while U has the induced topology as a subset of
E∗. These are not the same. For example, if one picks a point in the interior of
each chamber intersected with a sphere about the origin in E∗, the result is not
discrete in U; however, its inverse image in U(W, C) is discrete.

Let F denote the set of all subsets of U of the form w
◦
CT for some w ∈ W

and T ⊂ S.
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THEOREM D.2.7. ([29, Prop. 6, p. 102].)

(i) U is convex.

(ii) Any closed line segment in U meets only finitely many elements of F .

Proof. Suppose x, y ∈ U. We will prove that the segment [x, y] is covered by
finitely many elements of F . This implies both (i) and (ii). After translating
both x and y by the same element of W, we can assume x ∈ C. Let w ∈ W be
such that y ∈ wC. The proof is by induction on l(w). For each s ∈ S, let Hs be
the half-space of E∗ bounded by E∗s and containing C. The relation wC �⊂ Hs

is equivalent to
◦
C �⊂ int(Hs) and hence, by Lemma D.2.2, to l(sw) < l(w). The

intersection [x, y] ∩ C is a closed segment [x, z] for some z ∈ C. First suppose

z = y, i.e., y ∈ C. Then there are subsets X, Y of S such that x ∈
◦
CX , y ∈

◦
CY .

The open segment (x, y) is contained in CX∩Y ; so, [x, y] ⊂
◦
CX ∪

◦
CY ∪

◦
CX∩Y ,

which proves the assertion in this case. Next, suppose z �= y. Then z ∈ E∗s for

some s ∈ S. So,
◦
C and w

◦
C are on opposite sides of E∗s and l(sw) < l(w). By the

inductive hypothesis [z, y] (= s[z, sy]) is covered by finitely many elements of
F and hence, so is [x, y] = [x, z] ∪ [z, y] since [x, z] ⊂ C. �

Some Consequences

Since U is convex, so is its interior I. Since the mirror structure on C f is
W-finite, it follows from Lemma 5.1.7 that W acts properly on U(W, C f ) and
hence, also on I. From this we get the following.

THEOREM D.2.8. (Compare Theorem 12.3.4.) I is a model for EW.

(The definition of EW is given in 2.3.1. Further discussion can be found in
Corollary I.2.12 of Appendix I.2.)

Proof. For any finite subgroup F ⊂ W and x ∈ I, define the AvF(x), the F-
average of x, to be the convex combination

AvF(x) := 1

Card(F)

∑
f∈F

fx.

(The notion of a convex combination of points in an affine space is explained in
the beginning of Appendix A.1.) Since I is convex, AvF(x) ∈ I. Since AvF(x)
is fixed by F, this shows that Fix(F, I) �= ∅. Since W acts on I via affine
transformations, Fix(F, I) is convex; hence, contractible. �

Recall that a conjugate of a spherical special subgroup is called a “spherical
parabolic subgroup” in 13.2. Since each isotropy group on I is a conjugate
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of some spherical special subgroup, we get the following result of Tits (also
proved as Theorem 12.3.4 (i)).

COROLLARY D.2.9. (Tits, [29, Ex. 2d), p. 137].) Each finite subgroup of W
is contained in a spherical parabolic subgroup.

THEOREM D.2.10. The center of an infinite, irreducible Coxeter group is
trivial.

Proof. Suppose w is a nontrivial element of the center of W. By
Lemma 6.12.2 (i), ρ∗(w) acts as a homothety. Since it cannot map the
fundamental cone C to itself (since w �= 1), it must map it to −C. If C and
−C are both contained in the Tits cone, then we must have I = E∗. But this
can only happen if W is finite. So w must be trivial. �

� Is the Cocompact Core of I
Let P be the power set of S (Example A.2.1). Its geometric realization |P|
has a mirror structure over S defined by |P|s := |P�{s}|. For each T ⊂ S
choose a “barycenter” vT in the relative interior of the face CT . The vertices
corresponding to any chain in P span a simplex in C. In this way we get
any embedding of the barycentric subdivision of the cone on a simplex of
dimension Card(S)− 1 as a neighborhood of the origin in C. (Call this the
“barycentric subdivision” of C.) U(W, |P|) is the cone on the Coxeter complex
and � = U(W, |S|) is a subcomplex. As in Theorem D.2.6, the inclusion
|P| ↪→ C induces an injection U(W, |P|) ↪→ U and its restriction to � is
an embedding � ↪→ I. There is a coface-preserving deformation retraction
C f → |S|. This induces a W-equivariant retraction I → �.

D.3. COMPLEMENT ON ROOT SYSTEMS

A root basis is a triple (E, 〈 , 〉,
), where, 〈 , 〉 is a symmetric bilinear form on
a real vector space E and 
 is a finite subset of E such that

(a) For all p ∈ 
, 〈p, p〉 = 1.

(b) For any two distinct elements p, q ∈ 
,

〈p, q〉 ∈ {− cos(π/m) | m an integer � 2} ∪ (−∞,−1].

(c) There is an element ξ ∈ E∗ with ξ (p) > 0, for all p ∈ 
.

For each p ∈ 
, let rp ∈ GL(E) be the reflection defined by rp(x) = x−
2〈x, p〉p. Let W ⊂ GL(E) be the subgroup generated by S := {rp}p∈
. It follows
from the arguments in the previous two sections of this appendix that W acts as
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a discrete reflection group on the dual space E∗ with fundamental chamber C,
the simplicial cone defined by the inequalities ξ (p) � 0, p ∈ 
 and that (W, S)
is a Coxeter system.

A root is an element x ∈ E of the form x = wp for some w ∈ W and p ∈ 
.
The set� of all roots in E is called the root system associated to the root basis.
The elements of 
 are simple roots. A root x ∈ � is positive if ξ (x) � 0 for
all ξ ∈ C. When E = RI , 〈 , 〉 = BM( , ) and 
 = {es}s∈S as in D.1, we get the
classical root basis and root system.

For any w ∈ W, the condition that ξ (wes) < 0 for all ξ ∈
◦
C means that

wC and C are separated by the wall in E∗ defined by ξ (es) = 0, i.e., that
l(sw) > l(w). In other words, if Âs := {w ∈ W | ξ (wes) < 0}, then Âs = As, the
half-space defined in 4.5. Thus, a root carries essentially the same information
as a half-space. (In fact, in [248] a “root” is synonymous with a half-space
in W.)

NOTES

D.1, D.2. The material in these sections is due to Tits in [281]. A published version
appeared in Bourbaki [29] and our presentation follows the treatment there. In [29] the
canonical representation ρ is called the “geometric representation” and what we call
the geometric representation (that is, ρ∗) is called the “contragredient representation.”
When the bilinear form BM( , ) is nonsingular, ρ and ρ∗ are isomorphic.

Vinberg wrote an important paper [290] expanding on Tits’ results. Among other
things, he considered linear representations similar to the geometric one but with funda-
mental chambers allowed to be a polyhedral cones rather than being restricted simplicial
cones. For example, if we start with a hyperbolic polygon group (Example 6.5.3), then
we get a linear representation into O(2, 1) ⊂ GL(3,R) with fundamental chamber the
cone on an m-gon. This is a simplicial cone only for m = 3. (See Examples D.2.1 (ii).)

A different argument for Theorem D.2.10 is given in [242].

D.3. Root systems are underemphasized in this book. They play an imporant role in
most of the rest of the literature on Coxeter groups allowing the tools of linear algebra
to be brought into play. Our discussion in this section is taken from [181].
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Appendix E

COMPLEXES OF GROUPS

The theory of complexes of groups was developed in the early 1990s as a
natural outgrowth of Serre’s theory of graphs of groups and groups acting
on trees (usually called “Bass-Serre theory”). A graph of groups is a special
case of a complex of groups. The ideas are somewhat easier to understand
in this case and we discuss it first in E.1. One way in which a complex of
groups can arise is from the action of a discrete group G on a cell complex
Y . The underlying cell complex of the complex groups is the orbit space
K := Y/G. The group associated to a cell σ of K is the stabilizer of a
preimage of σ in Y . When Y is simply connected, G is the “fundamental
group” and Y the “universal cover” of the associated complex of groups. A
basic question is whether every complex of groups arises in this fashion. (Is
it “developable?”) This turns out always to be the case for graphs of groups
(the universal cover is a tree), but is not always the case for general complexes
of groups. An extra hypothesis which insures this in the general case is one
of nonpositive curvature. A prototypical example of a complex of groups is
given by the system of spherical special subgroups in a Coxeter system (W, S)
(see Example E.2.2). Its underlying cell complex is the geometric realization
of S. This complex of groups is developable, its fundamental group is W and
its universal cover is �. By Moussong’s Theorem, it is nonpositively curved.

Roughly speaking, a “complex of spaces” is a space X together with a
projection map to a cell complex. A complex of spaces gives a complex
of groups: the group associated to a cell is the fundamental group of the
inverse image of the cell in X. The notion of the “fundamental group of a
complex of groups” G is best understood in terms of complexes of spaces:
when G is associated to a complex of spaces X, π1(G) is simply π1(X).
One of the motivations for developing the theory is the following problem.
Suppose a collection of aspherical cell complexes are glued together in the
same combinatorial pattern as some cell complex (in other words, it gives a
complex of spaces over the cell complex). Is the resulting space aspherical?
When the cell complex is a graph the answer is affirmative (Whitehead’s
Theorem E.1.15). In the general case the issue is whether the universal cover
of the associated complex of groups is contractible.

In E.3 we discuss a different topic, the “Mayer-Vietoris spectral sequence”
associated to the cover of a CW complex X by a family of subcomplexes. The
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E2-term involves the homology of the nerve of the cover with coefficients in
a system which associates to each simplex of the nerve, the homology of the
associated subspace. (This type of coefficient system also occurs in a spectral
sequence calculating the homology of a complex of spaces with coefficients in
any “module” over an associated complex of groups.) The main result of E.3
is the Acyclic Covering Lemma which was needed in 8.2.

E.1. BACKGROUND ON GRAPHS OF GROUPS

Here we summarize some of the main the points of the Bass-Serre theory of
graphs of groups from [256, 252].

DEFINITION E.1.1. Suppose G1, G2 and A are groups and that i1 : A ↪→ G1,
i2 : A ↪→ G2 are monomorphisms. The amalgamated product of G1 and G2

along A is the quotient of the free product of G1 and G2 by the normal subgroup
generated by {i1(a)i2(a)−1 | a ∈ A}. It is denoted G1 ∗A G2.

DEFINITION E.1.2. Suppose A and G are groups and i1 : A ↪→ G, i2 : A ↪→
G are monomorphisms. Form G ∗ C∞, the free product of G and the infinite
cyclic group. Let t be a generator of C∞. The HNN construction on these data is
the quotient of G ∗ C∞ by the normal subgroup generated by {ti1(a)t−1i2(a)−1 |
a ∈ A}. It is denoted G∗A. (In other words, we impose the condition that
t conjugates i1(a) to i2(a) for all a ∈ A.)

Throughout this section all graphs will be connected. Given a graph �,
edge(�) is the set of its directed edges. Given e ∈ edge(�), t(e) denotes its
terminal vertex; e is the same edge in the reverse direction.

DEFINITION E.1.3. ([256, p. 38].) A graph of groups G over �, is an
assignment of a group G(v) to each v ∈ Vert(�) and a group G(e) to each
e ∈ edge(�), together with a monomorphismψe : G(e) ↪→ G(t(e)). In addition,
it is required that G(e) = G(e).

DEFINITION E.1.4. ([256, pp. 42–43].) Suppose G is a graph of groups over
� and T is a maximal tree in �. Introduce a symbol λe for each e ∈ edge(�).
The fundamental group of the graph of groups G, denoted π1(G, T), is the
quotient of the free product of the G(v), v ∈ Vert(�), and the free group on
the λe, e ∈ edge(�) by the normal subgroup generated by all relations of the
form:

λeψe(a)λ−1
e = ψe (a) λe = λ−1

e if e ∈ edge(�), a ∈ G(e)

λe =1, if e ∈ edge(T)

(Usually, we will drop the T from our notation and write simply π1(G).)
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Another way to define π1(G) is via the notion of a “graph of spaces”
explained in Definition E.1.13, below. If X is a graph of spaces with associated
graph of fundamental groups G, then π1(G) := π1(X).

In the case where no edge of � connects a vertex to itself, it is unnecessary
to consider directed edges and the definition of a graph of groups can be
simplified. LetF(�) be the poset of cells in� andF(�)op the dual (or opposite)
poset, thought of as a category. When � has no loops of length one, a graph
of groups over � is simply a functor G from F(�)op to the category of groups
and monomorphisms. So, associated to each vertex v of � there is a group G(v)
and to each (undirected) edge e, a group G(e). Moreover, when v is a vertex of
e, there is a monomorphism G(e) ↪→ G(v).

When � is a tree, G is called a tree of groups and π1(G) is the direct limit of
the family of groups consisting of the edge groups and vertex groups (“direct
limit” is defined in Appendix G.1).

DEFINITION E.1.5. The action of a group G on a simplicial graph � is
without inversions if no edge of � is flipped by an element of G. (In other
words, given an edge of� there is no element of G which switches its vertices.)

When G acts on� without inversions, there is a well-defined quotient graph
�/G (not necessarily a simplicial graph).

Example E.1.6. (Actions on simplicial graphs.) Suppose G acts on a con-
nected simplicial graph � without inversions. This gives the data for a graph
of groups G on the quotient graph � := �/G. For each vertex v (resp. oriented
edge e) of �, choose a vertex ṽ (resp. oriented edge ẽ) of � projecting onto it.
Set G(v) := Gṽ and G(e) := Gẽ, the isotropy subgroups at ṽ and ẽ, respectively.
If v is the terminal vertex of the oriented edge e, then we can find g ∈ G so
that ṽ is the terminal vertex of gẽ. Define G(e) ↪→ G(v) to be the composition
of inner automorphism by g with the natural inclusion, Ggẽ ↪→ Gṽ.

The main result of Bass-Serre theory is the following.

THEOREM E.1.7. ([256].) Suppose that G is a graph of groups over �
and G = π1(G). Then there exists a tree T with G-action with the following
properties.

(a) T/G = �.

(b) Suppose e is an edge of �, v a vertex of e, ẽ a lift of e to T and ṽ a
vertex of ẽ lying above v. Then there are isomorphisms Gṽ

∼= G(v)
and Gẽ

∼= G(e) taking the inclusion Gẽ ↪→ Gṽ to the monomorphism
G(e) ↪→ G(v).

Moreover, T is unique up to isomorphism.

T is the universal cover of G.
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Example E.1.8. (A segment of groups). Suppose � is the graph with one edge
and two vertices (so that � is a segment). A graph of groups over � is a segment
of groups. It gives the data for an amalgamated product: the vertex groups are
G1 and G2, the edge group is A. The fundamental group of the segment of
groups is G := G1 ∗A G2. Let T be the graph with vertex set the disjoint union
of G/G1 and G/G2. Two vertices g1G1 and g2G2 are connected by an edge
if and only if g−1

1 g2 ∈ A. The proof that T is a tree follows from the standard
normal form in which an element of the amalgamated product can be written.
(See [256].)

Example E.1.9. (A loop of groups). Suppose � is the graph with one vertex
and one edge. (� is homeomorphic to a circle.) A graph of groups over � is a
loop of groups. It gives the data for a HNN construction: the vertex group is G
and the edge group is A. The fundamental group of the loop of groups is G∗A.

A consequence of Theorem E.1.7 (b) is that the natural map G(v)→ π1(G)
is injective (since it is isomorphic to the inclusion Gṽ ↪→ G). In the language
of complexes of groups in [37, 151], this means G is developable. In contrast
with the general theory of complexes of groups, an important feature of a
graph of groups is that its universal cover T is not only simply connected but
contractible. One reason for this is that any tree is nonpositively curved (in
sense which will be explained in Appendix I).

A graph of groups G is uninteresting if for some vertex v the natural map
G(v)→ π1(G) is an isomorphism. (In other words, if π1(G) has a fixed point
on T .) Otherwise, G is interesting.

DEFINITION E.1.10. A splitting of a group G is an interesting graph of
groups G together with an isomorphism G ∼= π1(G).

DEFINITION E.1.11. ([256, p. 58].) A group G has property FA if any G-
action on any tree has a fixed point.

If G has property FA, then every graph of groups for it is uninteresting;
hence, such a group cannot split.

Example E.1.12. ([256, Exercise 3, p. 66].) Every 2-spherical Coxeter group
has property FA. (Recall that “2-spherical” means that no entry of the Coxeter
matrix is∞.)

Let � be a graph and b� its barycentric subdivision. For each cell σ in �,
there is a vertex vσ in b�. There are two types of vertices in b�: if w ∈ Vert(�),
we have the corresponding vertex vw of b� and if e ∈ Edge(�) we have its
midpoint ve. For each vertex v in b�, let D(v) denote its closed star in b�.
(There is one exception to this if v is the midpoint of an edge e and if e is a
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loop, then we split the single vertex of the loop into two and define D(v) to be
a copy of the interval projecting onto e.)

DEFINITION E.1.13. A graph of spaces over a graph � is a space X together
with a map p : X→ b� such that

(a) For each vertex vσ of b�, p−1(vσ ) is path connected.

(b) For each vertex vσ , there is a projection map p−1(D(vσ ))→ p−1(vσ ),
which is a homotopy equivalence.

(c) For e an edge and w an endpoint of e, let φe,w : π1(p−1(ve))→
π1(p−1(vw)) be the map on fundamental groups induced by the
composition of the inclusion p−1(ve) ↪→ p−1(D(vw)) with the
projection p−1(D(vw))→ p−1(vw). Then it is required that each φe,w

be a monomorphism.

If, in addition, X is a CW complex, the map p is cellular and each fiber p−1(vσ )
is a subcomplex of X, then X is a cellular graph of spaces.

To a graph of spaces p : X→ b� and a section s : b�→ X of p, one can
associate a graph of groups G over � as follows. If σ ∈ F(�), then G(σ ) =
π1(p−1(vσ , s(vσ ))). Furthermore, if e is an edge of � and w is an endpoint of e,
then the monomorphism G(ve)→ G(vw) is defined to be φe,w. If p : X→ b� is
a graph of spaces with associated graph of groups G, then it follows from van
Kampen’s Theorem that π1(X) ∼= π1(G).

DEFINITION E.1.14. An aspherical realization of G is a graph of spaces
p : X→ b� with G as its associated graph of groups such that for each vertex
vσ of b�, p−1(vσ ) is aspherical.

Given a graph of groups G, there are two methods for constructing an
aspherical realization of it. The first is the most direct: glue together the
appropriate aspherical spaces. Start with the disjoint union of BG(v), v ∈
Vert(�). For each edge e of � take a copy of BG(e)× [0, 1]. If v0 and v1 are the
endpoints of e, then the data for a complex of groups give us monomorphisms
G(e)→ G(v0) and G(e)→ G(v1). By the universal property of classifying
spaces, we can realize these monomorphisms by maps BG(e)× 0→ BG(v0)
and BG(e)× 1→ BG(v1) and then use these maps to glue BG(e)× [0, 1] onto
BG(v0) and BG(v1) for each e ∈ Edge(�). If X is the resulting space, then the
obvious projection map p : X→ b� is an aspherical realization of G.

The second construction of an aspherical realization goes as follows. Let
G = π1(G) and let EG denote the universal cover of BG. Let T be the
tree associated to G and let EG×G T denote the quotient space of the
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diagonal G-action. Projection on the second factor EG× T → T induces
p : EG× G T→ b�, which is clearly an aspherical realization of G.

A cellular aspherical realization X of G has the following universal property.
Given another cellular graph of spaces Y over � with associated graph
of groups G ′ and a homorphism ϕ : G ′ → G, there is a map f : Y → X,
compatible with the projections to b�, and which realizes ϕ. (A homomor-
phism between graphs of groups means a natural transformation of functors.)
Moreover, f is unique up to a homotopy through such maps. It follows that a
cellular aspherical realization of G is unique up to homotopy equivalence. We
denote it by BG and call it the classifying space of G.

There is an important application of Theorem E.1.7 to the problem of
deciding when a space constructed by gluing together various aspherical
spaces is aspherical. The following classical theorem of J.H.C. Whitehead
provides the answer.

THEOREM E.1.15. (Whitehead). Let G be a graph of groups, BG an aspher-
ical realization and G = π1(G). Then BG is aspherical (i.e., BG is homotopy
equivalent to BG).

Proof. Consider the aspherical realization EG×G T of G. Its universal cover
is EG× T , which is contractible. �

E.2. COMPLEXES OF GROUPS

In this section we summarize the theory of complexes of groups. This theory
is mainly due to Haefliger [150, 151]. (Also, see [66].) A fairly complete
treatment can be found in the book of Bridson and Haefliger [37].

Simple Complexes of Groups

We begin by discussing a generalization of graphs of groups over graphs
without a loop consisting of a single edge.

DEFINITION E.2.1. A simple complex of groups G over a posetP is a functor
from P to the category of groups and monomorphisms. In other words, G is
a family {Gp}p∈P of groups together with monomorphisms ψpq : Gp ↪→ Gq,
defined whenever p < q, such that ψpr = ψqr ◦ ψpq for all p < q < r. If P is
the dual poset to the face poset of a simplex, then a simple complex of groups
over it is a simplex of groups.

(In the case of a graph of groups over a graph � without loops consisting of
one edge, the poset is F(�)op.)
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Example E.2.2. (Simple complex of groups associated to a Coxeter system.)
We previously have been dealing with the prototypical example of a simple
complex of groups: the one associated to a Coxeter system (W, S). Let S be the
poset of spherical subsets of S. Define a simple complex of groupsW over S by
settingWT := WT , for each T ∈ S. (For T ′ ⊂ T , the required monomorphism
WT ′ ↪→ WT is inclusion.)

Associated to a simple complex of groups we have the direct limit:

Ĝ := lim−→
p∈P

Gp.

(The direct limit of a family of groups is a generalization of the amalgamated
product; see [256, p. 1], as well as, the beginning of Appendix G.1.)

In Definition A.3.4 we explained |P|, the “geometric realization” of the
poset P . In Appendix A.5 we showed how to decompose |P| into its “cofaces,”
{|P�p|}p∈P .

By using a slight variation of the basic construction of Chapter 5, we can
associate a cell complex U(G) to a simple complex of groups G. For each
x ∈ |P|, let p(x) be the smallest p ∈ P such that x ∈ |P�p|. Put G := Ĝ and

U(G) := (G× |P|)/ ∼ , (E.1)

where ∼ is the equivalence relation defined by (g, x) ∼ (h, y) ⇐⇒ x = y and
gh−1 ∈ Gp(x). If |P| is simply connected (e.g., if P has an initial element), then
Ĝ coincides with what we call below the fundamental group of G and U(G) is
the universal cover of G. (See [37, Examples 3.11 (1), p. 551].)

Scwols

A category is small if its objects form a set. A small category without loop
(abbreviated scwol) is a small category in which the only morphism from a
given object to itself is the identity morphism.

A poset is naturally a scwol. The objects are the elements of the poset. There
is exactly one morphism from p to q if p � q and Hom(p, q) = ∅ if p and q are
incomparable.

Suppose X is a scwol. Its vertex set, Vert(X ), is the set of objects in
X . Define Edge(X ) to be the set of morphisms which are not the identity
morphism of an object. If a ∈ Edge(X ) is a morphism from v to y, then its
initial vertex i(a) (resp. its terminal vertex t(a)) is v (resp. y). For example, if �
is a graph without loops consisting of one edge, then F(�)op, the dual poset of
its face poset, is a scwol. Its vertex set is the set of vertices in the barycentric
subdivision b�; its edge set is the set of edges in b�. The edges of b� are
oriented so that the terminal vertex of any edge is one of the original vertices
(and its initial vertex is the midpoint of one of the original edges). On the other
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hand, if � has one-edged loops, then it gives a scwol which is not a poset.
As before, one introduces a midpoint in each edge, but now we can have two
morphisms connecting vertices.

The geometric realization of a scwol X can be defined in a similar fashion
to that of a poset (Definition A.3.4). It is a cell complex denoted by |X |. Each
cell a simplex. There is an n-simplex for each n-tuple of composable edges.
(However, unlike the case of a poset, |X | might not be a simplicial complex:
a nonempty intersection of two simplices is a union of common faces, but it
need not be a single simplex. For example, |X | could be a digon.)

A reader, who is unfamiliar with this material, probably expects the
definition of a “complex of groups” over a scwol Y to be a functor from Y
to the category of groups and monomorphisms. In fact, the correct definiton
is a slightly following weaker notion (called a “lax functor” by homotopy
theorists).

DEFINITION E.2.3. (See [37, p. 535].) Suppose Y is a scwol. A complex
of groups G over Y is a family (Gu,ψa, ga,b) where u ranges over Vert(Y),
a ranges over Edge(Y) and (a, b) ranges over pairs of composable edges in
Edge(Y) such that

• ψa : Gi(a) → Gt(a) is an injective homomorphism,

• ga,b ∈ Gt(a), and

• Ad(ga,b)ψab = ψa ◦ ψb (where ab denotes composition in Y and
Ad(ga,b) means conjugation by ga,b).

Moreover, the elements ga,b must satisfy the “cocycle condition:”

ψa(gb,c)ga,bc = ga,bgab,c.

Gu is called the local group at u.

Example E.2.4. (The trivial complex of groups over a scwol.) There is a trivial
complex of groups over any scwol Y: all the local groups are defined to be the
trivial group.

Actions on Scwols

Suppose a group G acts on a scwol X , that Y is the quotient scwol and
that p : X → Y is the projection. One can associate to such an action, a
complex of groups G = X //G over Y , as follows. For each v ∈ Vert(Y), choose
ṽ ∈ Vert(X ) with p(ṽ) = v. Given a ∈ Edge(Y) with i(a) = v, it follows from
Definition E.2.3 that there is a unique edge ã ∈ Edge(X ) with i(ã) = ṽ. If
y = t(a), then ỹ might not be to equal t(ã). So, choose ha ∈ G with ha · t(ã) = ỹ.
For each v ∈ Vert(Y), the local group Gv is defined to be the isotropy subgroup
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at ṽ. For a ∈ Edge(Y), ψa : Gi(a) → Gt(a) is defined by ψa(g) := hagh−1
a . For

each pair (a, b) of composable edges in Y , put ga,b := hahbh−1
ab . One checks

that (Gv,ψa, ga,b) is a complex of groups, well-defined up to isomorphism.
(See[37].)

DEFINITION E.2.5. A complex of groups G over a scwol Y is developable if
it is isomorphic to the complex of groups associated to the action of a group G
on some scwol X with Y ∼= X /G.

Unlike the case of a graph of groups, not every complex of groups is
developable.

The Fundamental Group of a Complex of Groups

Given a complex of groups G over Y , one can define its fundamental group,
π1(G), as in Definition E.1.4 (see [37, pp. 546–553]). Using generators and
relations, it can be defined in a fairly straightforward way from the local
groups Gv, v ∈ Vert(Y), by adjoining generators for the edges in Y and
then adding relations for the 2-simplices in |Y| and the 1-simplices of a
maximal tree T in the 1-skeleton of |Y|. (We will suppress this dependence
on the choice of T .) It follows from the definition that there are natural maps
Gv → π1(G).

As we mentioned previously, if G is a simple complex of groups over
a poset P whose geometric realization is simply connected, then π1(G) is
just the direct limit group, Ĝ. For another example, if we have a trivial
complex of groups over a scwol Y (Example E.2.4), its fundamental group is
π1(|Y|).

PROPOSITION E.2.6. ([37, Prop. 3.9, p. 550].) G is developable if and only
if for each local group, the natural map Gv → π1(G) is injective.

PROPOSITION E.2.7. (Haefliger [150, 151].) Let G = (Gv,ψa, ga,b) be a
complex of groups over a scwol Y . Then there is an action of G = π1(G) on a
scwol Ỹ with quotient Y and associated complex of groups (G′v,ψ ′a, g′a,b) such
that

(a) |Ỹ| is simply connected.

(b) G′v = Im(Gv → G); ψ ′a is induced by ψa and g′a,b is the image of ga,b.

(c) In particular, if G is developable, then (G′v,ψ ′a, g′a,b) is identified
with G.

Moreover, Ỹ is unique up to G-equivariant isomorphism.
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The scwol Ỹ is the universal cover of G. One of the main accomplishments
in [37] is a proof that in the presence of nonpositive curvature any complex of
groups is developable. Moreover, its universal cover is contractible. Here, as
in Appendix I, nonpositive curvature means “locally CAT(0).” To be slightly
more precise, to say that a complex of groups G over Y is nonpositively curved
means that each v ∈ Vert(Y) has a neighborhood in |Y|which is the quotient of
an isometric action of Gv on a CAT(0) “Xκ -polyhedral complex,” with κ � 0.
(See [37], as well as, Appendix I.3 for more precise definitions.) Here is a
statement of the theorem.

THEOREM E.2.8. (Haefliger [37, Thm. 4.17, p. 562].) Suppose G is a
nonpositively curved complex of groups over a scwolY . Then G is developable.
Moreover, if Ỹ denotes its universal cover, then |Ỹ| is CAT(0) (and hence, by
Theorem I.2.6, is contractible).

Complexes of Spaces

The following material can be found in [150, 151] (but not in [37]). Roughly
speaking, a complex of spaces over a scwol X consists of a space Y and
a projection map π : Y → |X | such that the inverse image of each cell of
X is homotopy equivalent to the inverse image of its barycenter. The actual
definition, in which we must keep track of base points, is somewhat more
complicated.

Given v ∈ Vert(X ), Haefliger defines its “dual cone,” Dv. In the case where
the scwol is a poset P , Dv := |P�v|, the subcomplex of |P| which we earlier
called a “coface.” In the general case, Dv is not a subcomplex of |X |; however,
morally, it is. In particular, there is a canonical map jv : Dv → |X | and one can
“restrict” any complex of groups over X to Dv. Given a space Y , a scwol X
and a projection map π : Y → X , for each v ∈ Vert(X ), put Y(v) := π−1(v)
and let Y(Dv) denote the subspace of Dv × Y consisting of all (x, y) such that
jv(x) = π (y).

A complex of spaces over a scwol X is a space Y , a projection map
π : Y → |X | and a section s : |X |1 → Y of π defined over the 1-skeleton
of |X | satisfying certain conditions (see [151, p. 290]). These conditions
insure that if we put Gv := π1(Y(v), s(v)), then it is possible to define for each
a ∈ Edge(X ), ψa : Gi(a) → Gt(a) and for each pair (a, b) of composable edges,
ga,b ∈ Gt(a) so that G := (Gv,ψa, ga,b) is a complex of groups over X . G is the
complex of groups associated to the complex of spaces Y . Once this definition
is accomplished it is straightforward consequence of van Kampen’s Theorem
that π1(G) = π1(Y).

Example E.2.9. Suppose (Xs)s∈S is a mirror structure on a CW complex X
and N(X) denotes its nerve. (N(X) is the abstract simplicial complex from
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Definition 5.1.1.) Put X∅ := X. This gives the data for a complex of spaces
over the poset S(N(X))op (where S(N(X)), the poset of simplices of N(X), is
defined in Example A.2.3).

We have the following generalization of Definition E.1.14.

DEFINITION E.2.10. A (cellular) aspherical realization of a complex of
groups G over a scwol X is complex of CW complexes Y → |X | such that
each Y(v) is aspherical and G is the associated complex of groups.

It is proved in [151, Theorems 3.4.1 and 3.52] that aspherical realizations
exist and are unique up to homotopy equivalence.

E.3. THE MAYER-VIETORIS SPECTRAL SEQUENCE

Background

Spectral sequences were invented by Leray around 1946. They are a tool
for computing (co)homology. To fix ideas, we stick to homology. Roughly
speaking, a spectral sequence is family {Er

pq} of abelian groups (or R-modules)
where p, q and r are integers and r � 0. The number p+ q is the total degree.
Each of the Er

∗∗ is equipped with a differential dr of total degree −1 and
“bidegree” (−r, r − 1), i.e., dr maps Er

pq to Er
p−r,q+r−1. It is required that Er+1

∗∗
is obtained by taking the homology of Er

∗∗, i.e.,

Er+1
pq =

Ker(dr : Er
pq → Er

p−r,q+r−1)

Im(dr : Er
p+r,q−r+1 → Er

pq)
.

A spectral sequence is first quadrant if Er
pq = 0 whenever p < 0 or q < 0. If

this is the case (and henceforth, we will always assume that it is), then the
spectral sequence converges to E∞, i.e., for a fixed p and q, there is an r so
that for all s � r, all the incoming and outgoing differentials ds vanish and
Er

pq = Er+1
pq = · · · =: E∞pq .

The most important examples of spectral sequences arise in association
with filtrations of chain complexes. Given an abelian group (or R-module or
chain complex) A, recall that an (increasing) filtration is a sequence FpA of
subgroups (or submodules or subcomplexes) such that FpA ⊂ Fp+1A. Given
a filtration {FpA}, define the associated graded group Gr A = {Grp A} by
Grp A := FpA/Fp−1A.

Suppose C is a chain complex with an increasing filtration {FpC}. There is an
induced filtration of homology: FpH∗(C) := Im(H∗(FpC)→ H∗(C)). Define
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subgroups of Cp+q:

Zr
pq :=FpCp+q ∩ ∂−1(Fp−rCp+q−1),

Z∞pq :=FpCp+q ∩ Ker ∂ ,

Br
pq :=FpCp+q ∩ ∂Fp+r−1Cp+q+1,

B∞pq :=FpCp+q ∩ ∂Cp+q+1.

The associated spectral sequence is defined by

Er
pq := Zr

pq/(B
r
pq + Zr−1

p−1,q+1)

and

E∞pq := Z∞pq/(B
∞
pq + Z∞p−1,q+1) = Grp Hp+q(C).

(The differentials are induced by ∂ .)
In particular, E0

pq = FpCp+q/Fp−1Cp+q := Grp Cp+q. So, the E0-terms are
the associated graded groups of the filtration of the chain complex, while the
E∞-terms are the graded groups associated to the filtration of homology. In
practice, this means that after E∞∗∗ has been calculated, we can read off the
homology of C in dimension n (or at least its associated graded group) by
looking at the terms on the “isodiagonal,” p+ q = n.

A double complex is a family of abelian groups, {Cpq}, p, q ∈ Z, equipped
with a horizontal differential ∂ ′ : Cpq → Cp−1,q of bidegree (−1, 0) and a
vertical differential ∂ ′′ : Cpq → Cp,q−1 of bidegree (0,−1), so that {C∗,q, ∂ ′}
and {Cp,∗, ∂ ′′} are both chain complexes (i.e., ∂ ′ ◦ ∂ ′ = 0, ∂ ′′ ◦ ∂ ′′ = 0). It is
also required that ∂ ′ and ∂ ′′ commute in the graded sense: ∂ ′∂ ′′ = −∂ ′′∂ ′. The
total complex TC is defined by

TCn :=
⊕

p+q=n

Cpq .

It has a differential, ∂ := ⊕(∂ ′ + ∂ ′′), which makes it into a chain complex
(i.e., (∂ ′ + ∂ ′′)2 = 0).

There are two filtrations of TC, leading to two different spectral sequences.
The first filtration is defined by Fp(TCn) :=⊕

i�p Ci,n−i. The associated
spectral sequence {Er} converges to H∗(TC). It has E0

pq = Cpq with d0 = ±∂ ′;
so, E1

pq = Hq(Cp,∗) and d1 is induced by ∂ ′. As Ken Brown writes in [42,
p. 165], “E2 can be described as the horizontal homology of the vertical
homology of C.” Similarly, the second filtration is defined by Fp(TCn) :=⊕

j�p Cn−j,j. Its spectral sequence again converges to H∗(TC). It has E0
pq = Cqp

and E1
pq = Hq(C∗,p).
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Coefficient Systems

In 15.2 we considered coefficient systems F on a simplicial complex L of
the following type: F is a functor (either covariant or contravariant) from the
poset S(L)>∅ to the category of abelian groups. For example, a contravariant
coefficient system is a family (F(T)) of abelian groups indexed by S(L)>∅
and homomorphisms FUT : F(T)→ F(U) whenever U < T such that FVT =
FVU ◦ FUT whenever V < U < T . As in 15.2, define a chain complex

Cp(L;F) :=
⊕

T∈S (p+1)(L)

F(T),

where, as usual, we are identifying the p-simplices in L with their vertex
sets (which have cardinality p+ 1). The corresponding homology groups are
denoted H∗(L;F). (See [87, 151, 243, 294] for more details.)

Example E.3.1. (The nerve of a cover.) Suppose X is a mirrored CW complex
with mirror structure (Xs)s∈S. Further suppose X =⋃

s∈S Xs. So X is covered
by its mirrors. As in Example E.2.9, let L = N(X) be the nerve of cover. For
each nonnegative integer q define a contravariant coefficient system hq on L by

hq(T) := Hq(XT ).

Whenever U < T , XT ⊂ XU and the inclusion induces a map on homology; so,
hq is a contravariant functor.

The Spectral Sequence

We continue with the notation of the above example. For each nonnegative
integer p, define Cp to be the following direct sum of chain complexes:

Cp :=
⊕
σT∈L(p)

C(XT ),

where L(p) means the set of p-simplices in L and σT means the simplex
with vertex set T . Totally order the vertex set S of L. If the vertex set of
σT is {t0, . . . , tp}, with t0 < · · · < tp, define ∂iT to be {t0, . . . , t̂i, . . . , tp} and
∂iσT := σ∂iT to be the corresponding face. The inclusion XT ⊂ X∂iT induces a
chain map C(XT ) ↪→ C(X∂iT ) and we denote the sum of these maps over p-
simplices by ∂i : Cp → Cp−1. Define the boundary map ∂ : Cp → Cp−1 by

∂ :=
p∑

i=0

(−1)i∂i.
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The inclusions Xs ↪→ X induce an augmentation map, ε : C0 → C(X). This
defines a chain complex in the category of chain complexes

−→ Cp
∂−→ Cp−1 · · · −→ C0

ε−→ C(X) −→ 0 (E.2)

and hence a double complex

Cpq :=
⊕
σT∈L(p)

Cq(XT ).

A straightforward argument shows that (E.2) is exact.
As explained above, there are two spectral sequences associated to the

double complex. The second spectral sequence has E1
pq = Hq(C∗,p). Since (E.2)

is exact, Hq(C∗,p) is concentrated along the line q = 0, where E1
p,0 = Cp(X).

Taking horizontal homology, we get that E2 is also concentrated on q = 0
and that E2

p,0 = Hp(X). So the spectral sequence collapses and we conclude:
H∗(TC) ∼= H∗(X).

The first spectral sequence has

E1
pq = Hq(Cp,∗) =

⊕
σT∈L(p)

Hq(XT ) := Cp(L; hq),

where hq is the contravariant coefficient system on L defined in Example E.3.1.
Taking horizontal homology, gives E2

pq = Hp(L; hq), a spectral sequence also
converging to H∗(TC) (∼= H∗(X)). This establishes the existence of the Mayer-
Vietoris spectral sequence, which we state as the following.

THEOREM E.3.2. Suppose, as above, that {Xs}s∈S is a cover of the CW
complex X by subcomplexes and that the nerve of the cover is L. There is a
spectral sequence converging to H∗(X) with E2-term:

E2
pq = Hp(L; hq),

where hq denotes the coefficient system, T → Hq(XT ).

The Acyclic Covering Lemma

As above, {Xs}s∈S is a cover of a CW complex X by subcomplexes and L is the
nerve of the cover.

LEMMA E.3.3. (The Acyclic Covering Lemma, see [42, p. 168].) Suppose
XT is acyclic for each T ∈ S(L)>∅. Then H∗(X) ∼= H∗(L).

Proof. The argument uses the Mayer-Vietoris spectral sequence. Since each
XT is acyclic, hq := Hq(XT ) is 0 for q > 0 and for q = 0, it is the system of
constant coefficients Z. So the E2-term is concentrated on the p-axis, where
E2

p,0 = Hp(L). The lemma follows. �
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In Section 8.2, in the proof of Lemma 8.2.12, we needed the following more
precise version of the Acyclic Covering Lemma.

LEMMA E.3.4. Let m be a nonnegative integer and suppose that, for each
simplex σT of L, XT is (m− dim σT )-acyclic. Then Hi(X) ∼= Hi(L) for all i � m.

Proof. By hypothesis, Hq(XT ) = 0 for q � m− dim σT . So, E1
pq :=

Cp(L; hq) = 0 if p+ q � m and q �= 0. Moreover, since XT is 0-acyclic for
dim σT � m, E1

p,0 = Cp(L;Z) for p � m. Also, E1
m+1,0 maps onto Cm+1(L;Z).

Therefore, E2
pq = 0 in the same range (p+ q � m and q �= 0) and E2

p,0 = Hp(L)
for p � m. When p � m all higher differentials mapping from the p-axis have
image in groups which are 0. So, when the total degree p+ q is � m, the
spectral sequence collapses and E2 = E∞. The lemma follows. �

LEMMA E.3.5. Let m be an integer � Card(S)− 2. Suppose that the nerve L
contains ∂�, where � is the full simplex on S. (In other words, each proper
intersection is nonempty.) Further assume for each proper subset T of S, that
XT is (m− dim σT )-acyclic. Put q := min{i | Hi(XS) �= 0}. If q � m− dim�,
then Hq+dim�(X) �= 0 (in particular, X is not m-acyclic).

Proof. If q = −1, then L = ∂� and dim ∂� � m. So, the previous lemma
gives

H−1+dim�(X) = Hdim ∂�(∂�) ∼= Z = H−1(∅).
Suppose q > −1. Then L = �. Consider the E2-terms. The term of lowest
total degree is E2

0,0. If q > 0, this is H0(�) = Z (which accounts for H0(X)).
(When q = 0, we need to modify the argument slightly; the details are left
to the reader.) The nonzero term of next lowest total degree is E2

pq, where
p := dim� and E2

pq = Hp(�; hq) = Hq(XS). Since this term cannot be affected

by any higher differential, it survives to E∞ and therefore Hp+q(X) �= 0. �

NOTES

E.1. Bass took the notes for the original French version of Serre’s book [256] and
wrote the appendix on the combinatorial definition of the fundamental group of a graph
of groups (Definition E.1.4). A treatment of this material from a more topological
viewpoint can be found in the paper of Scott and Wall [252].

“HNN” stands for G. Higman, B. Neumann, and H. Neumann.
Different proofs of Whitehead’s Theorem E.1.15 can be found in [42, pp. 50–51] and

[153].
Barnhill [17] has generalized Definition E.1.11 by defining a group G to have

property FAn if any G-action on any CAT(0)-space of dimension � n has a fixed point.
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(CAT(0)-spaces are defined Appendix I.2.) She also generalized Example E.1.12: if a
Coxeter group has the property that every special subgroup of rank� n+ 1 is spherical,
then it has property FAn.

E.2. The basic references for scwols and complexes of groups are [37] and two papers
by Haefliger, [150, 151]. The construction of U(G) in (E.1) is also called the “basic
construction” in [37].

In [151] it is shown that there is a category CG associated to a complex of groups
G over a scwol Y . The objects of G are the same as those of Y . The set of morphisms
from an object u to itself is enlarged from the identity element to Gu. If a is an edge in
Y , then the morphism set from i(a) to t(a) is Gt(a).

One can define the “geometric realization” of any small category C (not just a scwol).
This is usually called the classifying space or the nerve of C and denoted BC. (When C
is a group, i.e., when it has only one object and all morphisms are isomorphisms, then
BC is the usual classifying space.) In fact, BCG is a complex of spaces over Y and a
cellular aspherical realization of G ([151]).

E.3. The type of coefficient system discussed in this section can be generalized to
coefficients on (the nerve of) any small category C. One is interested in functors (either
covariant or contravariant) from C to the category of abelian groups. In the case of the
category CG associated to G, such functors are called G-modules (either left or right) in
[151].

A good general reference for spectral sequences is [199]. The discussion of the
Mayer-Vietoris spectral sequences follows Brown’s book [42, pp. 166–168]. Brown
attributes the Acyclic Covering Lemma to Leray.
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HOMOLOGY AND COHOMOLOGY OF GROUPS

F.1. SOME BASIC DEFINITIONS

Local Coefficients

Suppose X is a CW complex with fundamental group π and with universal
cover X̃. The cell structure on X lifts to a cell structure on X̃. A local coefficient
system on X means a Zπ -module A, for π = π1(X). A is called a constant
coefficient system if π acts trivially on A.

Let C∗(X̃) denote the cellular chain complex of X̃. Since the action of π on X̃
by deck transformations freely permutes the cells, Ck(X̃) is the free Zπ -module
on the set of k-cells in X. Next we are going to define chains and cochains with
“local coefficients” in a Zπ -module. We will try to stick to the convention that
it is a right Zπ module when we are dealing with chains or homology and a left
Zπ module when dealing with cochains or cohomology. Given a Zπ -module
A, the cellular chain complex and the cellular cochain complex on X with local
coefficients in A are defined, respectively, by

C∗(X; A) := A⊗π C∗(X̃) (F.1)

and

C∗(X; A) := Homπ (C∗(X̃), A). (F.2)

(Here and elsewhere⊗π means⊗Zπ , the tensor product of a (right)Zπ -module
and a (left) Zπ -module. Similarly, Homπ ( , ) (or HomZπ ( , )) means the set of
π -equivariant homomorphisms between two Zπ -modules.) Taking homology
of these chain complexes we get H∗(X; A) and H∗(X; A) which are, respectively,
the homology and cohomology groups of X with local coefficients in A.

Example F.1.1

(i) (Constant coefficients.) Suppose A is the constant coefficient system
Z. Then H∗(X;Z) and H∗(X;Z) are the ordinary homology and
cohomology groups of X.

(ii) (Group ring coefficients.) If A = Zπ , then H∗(X;Zπ ) = H∗(X̃) and if,
in addition, X is a finite complex, H∗(X;Zπ ) is H∗c (X̃), the
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cohomology of X̃ with compact support. The point is that Zπ is the
ring of finitely supported functions π → Z and for any Zπ -module
M, Homπ (M,Zπ ) can be identified with Homc(M,Z), which, by
definition is the set of Z-module homomorphisms f : M→ Z such
that for any x ∈ M, f (gx) = 0 for all but finitely many g ∈ π . (See
[42, p. 208].) It follows that C∗(X;Zπ ) is the complex of ordinary
(finitely supported) cellular chains on X̃ while C∗(X;Zπ ) is the
complex of finitely supported (i.e., compactly supported) cellular
cochains on X̃. See Section 8.5 and [42, Prop. 7.5, p. 209].)

(iii) More generally, suppose X′ → X is a covering space with
π1(X′) = π ′. The fiber of X′ → X can be identified with the π -set
π/π ′. Let

Z(π/π ′) := Zπ ⊗π ′ Z
denote the permutation module on π/π ′. Then H∗(X;Z(π/π ′)) =
H∗(X′) and if X is a finite complex, then H∗(X;Z(π/π ′)) = H∗c (X′).

The Topologist’s Definitions of Group (Co)homology

Suppose π is a group and that Bπ is its classifying space (defined in
Section 2.3). As is usual, the universal cover of Bπ is denoted Eπ . (Eπ is
called the universal space for π .) Given a Zπ -module A, the homology and
cohomology groups of π with coefficients in A are defined by

H∗(π ; A) := H∗(Bπ ; A) and H∗(π ; A) := H∗(Bπ ; A). (F.3)

Let ε : C0(Eπ )→ Z be the augmentation map. Since Eπ is acyclic (it is
contractible), the sequence

−→Ck(Eπ )−→ · · · −→C0(Eπ )
ε−→Z−→ 0 (F.4)

is exact. In other words, (F.4) is a resolution of Z by free Zπ -modules. (Here
and throughout the group π acts trivially on Z.)

The Algebraist’s Definitions

A projective resolution (resp. a free resolution), F∗ = (Fk)k�0, of Z is an exact
sequence of projective Zπ -modules (resp. free Zπ -modules),

−→Fk−→ · · · −→F0−→Z−→ 0. (F.5)

Given a projective resolution F∗ and a π -module A, we have a chain com-
plex F∗ ⊗π A as well as a cochain complex Homπ (F∗, A). The algebraist’s
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definitions of group (co)homology are the following:

H∗(π ; A) := H∗(F∗ ⊗π A) and H∗(π ; A) := H∗(Homπ (F∗, A)). (F.6)

A standard argument (cf. [42, pp. 21–24]) shows any two projective resolutions
are chain homotopic and hence, that the (co)homology groups defined by (F.6)
are independent of the choice of projective resolution.

If π acts freely and cellularly on an acyclic CW complex Y , then C∗(Y)
provides a free resolution of Z over Zπ . Hence, we have the following.

PROPOSITION F.1.2. Suppose π acts freely and cellularly on an acyclic CW
complex Y and that A is a Zπ -module. Then

H∗(π ; A) ∼= H∗(Y/π ; A) and H∗(π ; A) ∼= H∗(Y/π ; A).

A similar result to this holds when the π -action on Y is only required to
be proper (rather than free) provided we replace Z by the rational numbers
Q. The reason is that for any finite subgroup H of π , Q(π/H) is a projective
Qπ -module (becauseQ(π/H) can be embeddded as a direct summand ofQπ ).
Hence, we have the following.

PROPOSITION F.1.3. Suppose π acts properly and cellularly on an acyclic
CW complex Y and that A is a Qπ -module. Then H∗(π ; A) and H∗(π ; A) are
the homology of the complexes

A⊗Qπ C∗(Y) and HomQπ (C∗(Y), A),

respectively. In particular, H∗(π ;Q) ∼= H∗(Y/π ;Q).

One of the first theorems using the homology of groups (and still one of the
best) is the following theorem of H. Hopf [156] concerning the cokernel of the
Hurewicz map h : π2(X)→ H2(X).

THEOREM F.1.4. (Hopf’s Theorem.) Let X be a connected CW complex. Put
π1(X) = π . Then the sequence

π2(X)
h−→H2(X)

ψ−→H2(π )−→ 0

is exact (where ψ : H2(X)→ H2(π ) is induced by the canonical map
X→Bπ ).

F.2. EQUIVARIANT (CO)HOMOLOGY WITH GROUP
RING COEFFICIENTS

Suppose G is a discrete group acting cellularly on a CW complex Y . Given a
G-module A, define the equivariant (co)chains of Y with coefficients in A by
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formulas similar to (F.1) and (F.2), namely, by

CG
∗ (Y; A) := A⊗G C∗(Y) (F.7)

and

C∗G(Y; A) := HomG(C∗(Y), A). (F.8)

As before, A is a right G-module for chains or homology and a left G-module
for cochains or cohomology.

Remark. Some algebraic topologists believe that “equivariant (co)homology”
only refers to the (co)homology of the Borel construction, Y ×G EG. However,
there are many other equivariant theories, e.g., the one defined by (F.7)
and (F.8).

When G acts freely, Y → Y/G is a covering projection, π1(Y/G) maps
onto G and the equivariant (co)chains reduce to the (co)chains on Y/G with
local coefficients in A. (Even when the action is not free, we can regard
the equivariant (co)homology as computing the (co)homology of Y/G with
coefficients in a “system of coefficients” on Y/G, defined, for example, as in
[151].)

LEMMA F.2.1

(i) CG
∗ (Y;ZG) = C∗(Y).

(ii) If G acts properly and cocompactly on Y, then C∗G(Y;ZG) ∼= C∗c (Y).

Proof. (i) CG
i (Y;ZG) = ZG⊗ZG Ci(Y) = Ci(Y).

(ii) For any G-module A, by [42, Lemma 7.4, p. 208], we have
HomG(A,ZG) ∼= Homc(A,Z), where Homc(A,Z) denotes the set of Z-module
maps f : A→ Z such that for each a ∈ A, f (ga) = 0 for all but finitely many
g ∈ G. Hence, Ci

G(Y;ZG) = HomG(Ci(Y),ZG) = Homc(Ci(Y),Z). Ci(Y) is a
direct sum of modules of the form Z(G/Gσ ) where σ ranges over a set of
representatives for the orbits of i-cells. If Gσ is finite, then Homc(Z(G/Gσ ),Z)
can be identified with the Z-module of finitely supported functions on G/Gσ .
If the action is cocompact, then there are only finitely many orbits of cells and
hence, only finitely many summands. So, when the action is both proper and
cocompact, Homc(Ci(Y),Z) = Ci

c(Y). �

So equivariant homology with group ring coefficients is the same as ordinary
homology, while equivariant cohomology with group ring coefficients is the
same as cohomology with compact supports.
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LEMMA F.2.2. ([42, Proposition 7.5 and Exercise 4, p. 209].) Suppose a
group G acts properly and cocompactly on an acyclic complex Y. Then
H∗(G;ZG) ∼= H∗c (Y).

(Some readers might think that this lemma has been stated incorrectly and
that we should have assumed π to be torsion-free. However, the statement
is correct. The basic reason is that for any finite group G, H∗(G;ZG) = 0 in
positive dimensions.)

Proof. Let C∗ := C∗(Y) be the cellular chain complex of Y and F∗ a free
resolution of Z over ZG. Since C∗ is acylic, C∗ ⊗ F∗ is also a free reso-
lution of Z over ZG; so, the cohomology of cochain complex HomG(C∗ ⊗
F∗,ZG) is H∗(G;ZG). We can also compute HomG(C∗ ⊗ F∗,ZG) =
HomG(C∗, Hom(F∗,ZG)) via a spectral sequence, as follows. Cp is a direct sum
of modules of the form Z(G/Gσ ) where σ ranges over a set of representatives
for the orbits of p-cells. For each such summand we have

HomG(Z(G/Gσ ), Hom(F∗,ZG)) ∼= HomGσ
(F∗,ZG).

The cohomology of this last complex is just Hq(Gσ ;ZG). Taking cohomology
first with respect to q we get a spectral sequence whose Epq

1 term is a sum of
terms of the form Hq(Gσ ;ZG). Since ZG is a free Gσ -module and since Gσ is
finite (because the action is proper), these groups vanish for q > 0. For q = 0
they are the invariants, (ZG)Gσ . All that remains is

Ep,0
1 =

⊕
(ZG)Gσ ∼= HomG(Cp,ZG) = Cp

G(Y).

So Ep,0
2
∼= Hp

G(Y;ZG). Since the G-action on Y is cocompact, Lemma F.2.1 (i)
gives Hp

G(Y;ZG) = Hp
c (Y), completing the proof. �

Remark. When G contains a torsion-free subgroup G′ of finite index, one
can give a different argument for this lemma. Then, as in Examples F.1.1,
H∗(G′;ZG′) = H∗c (Y). By Shapiro’s Lemma ([42, p. 73]), H∗(G; CoindG

G′A) ∼=
H∗(G; A) for any G′-module A. Since G′ is finite index in G a coinduced
module is isomorphic to the induced module (cf. [42, Prop. 5.9, p. 70]). In
particular, when A = ZG′, the induced module is

ZG⊗G′ ZG′ ∼= ZG.

So H∗(G;ZG) ∼= H∗(G′;ZG′) ∼= H∗c (Y).
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F.3. COHOMOLOGICAL DIMENSION
AND GEOMETRIC DIMENSION

The geometric dimension of a group π , denoted gdπ , is the smallest integer n
so that there is an n-dimensional CW model for Bπ .

The cohomological version of this notion goes as follows. The cohomolog-
ical dimension of π , denoted cdπ , is the projective dimension of Z over Zπ .
In other words, it is the smallest integer n such that Z admits a projective
resolution

0−→Pn−→ · · · −→P0−→ 0 (F.9)

(or∞ if there is no such integer). The following basic lemma has been well-
known since the beginning of the study of group cohomology.

LEMMA F.3.1. If cdπ <∞, then π is torsion-free.

Proof. Suppose that Z has a projective resolution over Zπ as in (F.9) of length
n. Let Cm be any cyclic sugroup of π . Then (F.9) is also a projective resolution
for Cm, so cd(Cm) � n. But cd(Cm) = ∞ whenever m > 1 (because BCm is an
infinite lens space which has cohomology in arbitrarily high dimensions). So
m = 1 and π is torsion-free. �

It is not hard to show ([42, p. 185]) that this definition is equivalent to the
following:

cdπ = sup{n | Hn(π ; A) �= 0 for some π -module A}. (F.10)

In fact, since any module A is a quotient of some free module we can rewrite
this as follows (cf. [42, Prop. 2.3, p. 186]:

cdπ = sup{n | Hn(π ; F) �= 0 for some free Zπ -module F}. (F.11)

The chain complex (F.4) of an n-dimensional model for Eπ gives a free
resolution of Z. Hence, cdπ � gdπ. When cdπ �= 2, it is known that this
inequality is an equality. 1n 1957 Eilenberg and Ganea [117] published the
following theorem.

THEOREM F.3.2. (Eilenberg-Ganea.) Suppose π is a group.

(i) If cdπ > 2, then cdπ = gdπ .

(ii) If cdπ = 2, then gdπ � 3.

A nontrivial free group F obviously satisfies cd F = gd F = 1 (since we can
take BF to be a wedge of circles). A decade after the Eilenberg-Ganea paper,
the case cdπ = 1 was taken care of by the following theorem.
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THEOREM F.3.3. (Stallings [266] and Swan [274].) If cdπ = 1, then π is a
free group.

Stallings [266] proved this theorem under the hypothesis that π was finitely
generated; Swan removed that hypothesis in [274].

The question of whether or not there exist groups of cohomological
dimension 2 and geometric dimension 3 is known as the Eilenberg-Ganea
Problem. (This is Problem D4 in Wall’s Problem List [293, p. 381].) Possible
counterexamples to this problem were discussed in Section 8.5.

THEOREM F.3.4. (Serre [255].) Suppose π is a torsion-free group and that
π ′ is a subgroup of finite index. Then cdπ ′ = cdπ .

Recall that a group π virtually possesses some property if it has a subgroup
π ′ of finite index which possesses that property. For example, π is virtually
torsion-free if it has a torsion-free subgroup of finite index. (This will be
our main use of the term “virtually.”) Given a virtually torsion-free group
π , its virtual cohomological dimension, denoted vcdπ , is the cohomological
dimension of any torsion-free subgroup of finite index. In view of Serre’s
Theorem F.3.4 and the observation that the intersection of two finite index
subgroups is also a finite index subgroup, we see that vcdπ is well defined.

F.4. FINITENESS CONDITIONS

A CW complex is finite type if its skeleta are finite complexes. (In other words,
X is finite type if its i-skeleton, Xi, is a finite complex for each i.) A resolution
(Pi)i�0 is finite type if each Pi is a finitely generated module.

Previously, various “finiteness conditions” on a group π have been consid-
ered. Here is the standard list. The group π is type

Fn if the n-skeleton of Bπ is a finite complex,

F∞ if Bπ is finite type,

F if Bπ is a finite complex,

FLn if Z has a partial free resolution of finite type and length n,

FL∞ if Z has a free resolution of finite type,

FL if Z has a free resolution of finite type and finite length,

FPn if Z has a partial projective resolution of finite type and length n,

FP∞ if Z has a projective resolution of finite type,

FP if Z has a projective resolution of finite type and finite length.
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Of course, in the above list, a phrase such as “Bπ is a finite complex” is an
abbreviation for “Bπ has a model which is a finite complex” and a phrase such
as “free resolution” is an abbreviation for “resolution by free Zπ -modules.”
The “F” stands for “finite,” the “L” for “libre” (= “free”) and the “P” for
“projective.” Standard references on such finite conditions are [41], [42] as
well as [255].

Three other finite conditions are suggested in [24], π is type

FHn if π acts freely and cocompactly on an (n− 1)-acyclic complex,

FH∞ if π is type FHn for all n,

FH if π acts freely and cocompactly on an acyclic complex.

Obviously, F =⇒ FH =⇒ FL =⇒ FP, and the same implications are
valid with the subscripts “n” or “∞” appended. In fact, FLn ⇐⇒ FPn (cf.
[42, Prop. 4.1, p. 192]). It is also obvious that F =⇒ F∞ =⇒ Fn and
similarly, for FH, FL and FP.

Types F1, FH1, FL1 and FP1 are each equivalent to the condition that
π is finitely generated. Type F2 is equivalent to π being finitely presented;
however, types FH2, FL2 and FP2 are weaker homological versions of
finite presentation. (As we explained in Section 11.6, Bestvina–Brady [24]
constructed examples of groups of type FH which are not finitely presented.)
On the other hand, Wall [292] proved that if π is assumed to be finitely
presented, then FLn =⇒ Fn and FL =⇒ F.

It is immediate from the definitions that if π is type FP, then cdπ <∞ and
hence, that π is torsion-free.

If π is type FP, then the functor on π -modules A→ Hn(π ; A) commutes
with direct limits. So, the definition of cohomological dimension in (F.11) can
be simplified as follows.

PROPOSITION F.4.1. ([42, Prop. 6.7, p. 202].) If π is type FP, then cdπ =
sup{n | Hn(π ;Zπ ) �= 0}.

If any one of the above finiteness conditions holds for a group π , then it
also holds for any subgroup of finite index in π . Since groups of type FP
are torsion-free, it is useful to define the corresponding virtual notions for
a virtually torsion-free group π . Thus, π is type VF, VFH, VFL or VFP if it
contains a torsion-free subgroup of finite index which is type F, FH, FL or FP,
respectively.

Remark F.4.2. Given a commutative ring R, there are obvious definitions of
what it means for a group π to be type FHR, FLR, or FPR (namely, in the
previous definitions replace Z by R and Zπ by Rπ ). As before, it is obvious
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that FHR =⇒ FLR =⇒ FPR. Similarly, we can define the cohomological
dimension and virtual cohomological dimension over R, denoted by cdR and
vcdR, respectively.

Finite Domination and Wall’s Finiteness Obstruction

DEFINITION F.4.3. A space X is finitely dominated (or is dominated by a
finite complex) if there is a finite CW complex Y together with maps r : Y → X
and i : X→ Y such that r ◦ i is homotopic to idX .

Suppose X is dominated by a finite complex Y . Then π = π1(X) is finitely
presented (since π1(X) is a retract of π1(Y) and π1(Y) is finitely presented.)
Let X̃→ X be the universal covering space and let Ỹ → Y be the covering
space with group of deck transformations i∗(π1(X)). Each cellular chain group
Ck (̃Y) is a finitely generated free Zπ -module. If X is dominated by Y , then
C∗(X̃) is chain homotopy equivalent to a chain complex C∗, where Ck is
isomorphic to a direct summand of Ck (̃Y), in other words, each Ck is a finitely
generated projective Zπ -module. Define Wall’s finiteness obstuction σ (X) to
be the (reduced) Euler characteristic of this chain complex in the reduced
projective class group K̃0(Zπ ). In other words, σ (X) is the element of K̃0(Zπ )
defined by the formula:

σ (X) :=
∑

(−1)k[Ck]. (F.12)

(The projective class group K0(Zπ ) is the Grothendieck group of finitely
generated projective Zπ -modules. K0(Zπ ) ∼= K̃0(Zπ )⊕ Z, where the reduced
projective class group K̃0(Zπ ) is the kernel of the homomorphism K0(Zπ )→
Z which takes the rank of a projective module. Given a finitely generated
projective Zπ -module E, [E] denotes its class in K̃0(Zπ ).)

If X is homotopy equivalent to a finite CW complex, then C∗ is chain
homotopy equivalent to a finite chain complex of finitely generated free Zπ -
modules and hence, σ (X) = 0. Conversely, in [292] Wall proved that σ (X) is
well-defined and that X is finitely dominated if and only if π1(X) is finitely
presented and σ (X) = 0. (See [218] for further discussion of Wall’s finiteness
obstruction.)

This gives us the topologist’s interpretation of what it means for a finitely
presented group π to be type FP: it is FP if and only if Bπ is finitely
dominated.

There is no known example of a torsion-free group π with K̃0(Zπ ) �= 0 and
conjecturally, any such reduced projective class group is 0. Thus, conjecturally,
a group of type FP is type F if and only if it is finitely presented. (See Problem
F8 in Wall’s Problem List [293, p. 387].)
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F.5. POINCARÉ DUALITY GROUPS AND DUALITY GROUPS

DEFINITION F.5.1. A group π is an n-dimensional Poincaré duality group
(or a PDn-group for short) if it is type FP and

Hi(π ;Zπ ) ∼=
{

0 if i �= n,

Z if i = n.

The dualizing module D is the π -module Hn(π ;Zπ ). (As an abelian group
D ∼= Z. Necessarily, the action of π on D is via some homorphism w1 : π →
{±1}, called the orientation character. The PDn-group π is orientable if its
orientation character is trivial.

The fundamental group π of a closed aspherical n-manifold Mn is a PDn-
group. The reason is that H∗(π ;Zπ ) is isomorphic to the cohomology with
compact supports of the universal cover M̃n and since M̃n is a contractible
n-manifold, H∗c (M̃n) ∼= H∗c (Rn) and furthermore, H∗c (Rn) is as in the formula
in Definition F.5.1. (Of course, this is the geometric intuition underlying the
definition.)

Farrell proved the following.

THEOREM F.5.2. (Farrell [119].) Suppose π is a finitely presented group of
type FP. Let n be the smallest integer such that Hn(π ;Zπ ) �= 0. If Hn(π ;Zπ )
is finitely generated, then π is a PDn-group.

LEMMA F.5.3. Suppose a virtually torsion-free group G acts properly and
cocompactly on an acyclic complex Y whose cohomology with compact
supports is given by

Hi
c(Y) ∼=

{
0 if i �= n,

Z if i = n.

Then G is a virtual PDn-group.

Proof. Since Y/G is compact, G is type VFL. By Lemma F.2.2,

Hi
c(G;ZG) ∼= Hi

c(Y) ∼=
{

0 if i �= n,

Z if i = n.

and the same formula holds for any torsion-free subgroup π of finite index
in G. �

Here is an equivalent definition ([42, p. 222]): π is a PDn-group if there
exists a π -module D which is isomorphic to Z as an abelian group and if there
is a fundamental class µ ∈ Hn(π ; D) such that cap product with µ induces an
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isomorphism: Hk(π ; A) ∼= Hn−k(π ; A⊗ D). That is to say, π is a PDn-group
if Bπ satisfies Poincaré duality with local coefficients. (We note that if π is
orientable, then A and A⊗ D are isomorphic π -modules.) In this version, it is
not necessary to assume that π is type FP, it is a consequence of the definition.
If we assume that, in addition, π is type F, then either version of the definition
is equivalent to Bπ being a Poincaré complex in the usual sense.

A virtually torsion-free group π is said to be a virtual Poincaré duality
group (a VPDn-group for short) if it contains a finite index subgroup which is a
PDn-group. (This is in line with the definitions in the previous section.)

DEFINITION F.5.4. A group π is an n-dimensional duality group (or a
Dn-group for short) if it is type FP and if Hi(π ;Zπ ) = 0 for all i �= n. The
π -module D := Hn(π ;Zπ ) is the dualizing module.

Remark F.5.5. Just as in Remark F.4.2, given a commutative ring R, there are
obvious definitions of what it means for a group π to be a PDn

R-group or a
Dn

R-group (it must be type FPR and its cohomology with Rπ coefficients must
be concentrated in degree n).
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Appendix G

ALGEBRAIC TOPOLOGY AT INFINITY

G.1. SOME ALGEBRA

A poset A is a directed set if for all α,β ∈ A, there exists an element γ ∈ A
with γ � α, γ � β. An inverse system in a category C is a contravariant functor
from a directed set A to C. In other words, an inverse system {Cα , f αβ ,A} is a
collection of objects Cα indexed byA together with morphisms f αβ : Cα → Cβ
for each pair β,α with β � α so that the following two conditions are satisfied:
(1) for all α ∈ A, f αα = id and (2) whenever γ � β � α, f αγ = f αβ ◦ f βγ . The
f αβ are called the bonds of the inverse system. Let N = {1, 2, . . . } denote the
natural numbers with their usual ordering. When A = N, the inverse system is
called an inverse sequence. In this case the bonds are determined by specifying
the morphisms fn : Cn+1 → Cn.

A morphism between two inverse systems {Cα , f αα′ ,A} and {Dβ , gββ ′ ,B} in C
is a function φ : B→ A and for each β ∈ B, a morphism pβ : Cφ(β) → Dβ of
C so that whenever β � β ′ ∈ B there exists an α ∈ A such that the following
diagram commutes:

Cφ(β) ←−−−−− Cα −−−−−→ Cφ(β ′)

p
β↓ ↓ p

β′

Dβ ←−−−−−−−−−−−−−− Dβ ′ .

(The horizontal arrows are bonds.) Two morphisms (φ, {pβ}) and (φ′, {pβ ′ }) are
equivalent if for each β ∈ B there exists α ∈ Awith α � φ(β), α � φ′(β) such
that the following diagram commutes:

Cφ(β) ←−−−−− Cα −−−−−→ Cφ′(β)

p
β↓ ↓ p′

β

Dβ ←−−−−−−−−−−−−−− Dβ.

Given a category C, we define another category, pro-C. Its objects are inverse
systems in C and its morphisms are equivalence classes of morphisms of the
above type. A pro-isomorphism is an isomorphism in pro-C.
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Suppose C is a category in which arbitrary products exist. (Such categories
include the categories of sets, groups, R-modules (R a ring) and topological
spaces.) If {Cα , f αβ ,A} is an inverse system, then its inverse limit, denoted
lim←−Cα , is the subset of the direct product

∏
α∈A Cα consisting of all A-tuples

(cα) such that f αβ (cα) = cβ for all β � α ∈ A.
Similarly, a direct system in C is a covariant functor from a directed set A

to C. It also has the form {Cα , f αβ ,A} except that this time there are bonds
f βα : Cβ → Cα whenever β � α. If coproducts exist in C, then the direct limit
of a direct system of sets, {Cα , f αβ ,A}, is denoted lim−→Cα , and defined to be
the quotient of the coproduct

∐
α∈A Cα under the equivalence relation which

identifies cα ∈ Cα with cβ ∈ Cβ whenever there is a γ ∈ Awith γ � α,β such
that f αγ (cα) = f βγ (cβ). (If C is the category of sets, coproduct means disjoint
union; if C is the category of R-modules or the category of abelian groups,
coproduct means direct sum; if it is the category of groups then coproduct
means free product.)

It is clear that the inverse limit and the direct limit are characterized, up to
canonical isomorphism, by a certain universal property. We leave the precise
formulation of this property as an exercise for the reader.

In what follows we will primarily be interested in inverse systems which are
inverse sequences.

Semistability

Suppose

G1←−· · · Gn−1
fn−1←−Gn

fn←−Gn+1←− · · ·
is an inverse sequence of groups. For m > n, f m

n : Gm → Gn denotes the
composition fn ◦ · · · ◦ fm−1.

DEFINITION G.1.1. An inverse sequence of groups (Gn, fn) is semistable (or
Mittag-Leffler or pro-epimorphic) if for any n ∈ N, there is an integer m > n
so that for all k � m, Im f k

n = Im f m
n .

Remark G.1.2. An inverse sequence is pro-isomorphic to a sequence of
epimorphisms if and only if it is semistable.

The lim1 Term

Given an inverse sequence {Mn} of R-modules, define the shift homomorphism

s :
∞∏

n=1

Mn →
∞∏

n=1

Mn
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by (x1, x2, . . . )→ (x1 − f1(x2), x2 − f2(x3), . . . ). The kernel of s is lim←−Mn. The

cokernel is denoted lim1 Mn and called the derived limit.
This definition can be extended to the category of groups. Given an inverse

sequence of groups {Gn} the kernel of the shift homomorphism is again the
inverse limit. However, lim1 Gn is defined to be the quotient set of

∏∞
n=1 Gn

by the equivalence relation generated by putting (xn) ∼ (yn) if there exists
(zn) ∈∏

Gn such that yn = znxnfn(z−1
n+1) for all n. lim1 Gn has the structure of a

pointed set, where the base point [1] is the equivalence class of (1, 1 . . . ).
The next result can be found in [135, Prop. 3.5.2].

PROPOSITION G.1.3. Suppose {Gn} is an inverse sequence of groups.

(i) If the sequence is semistable, then lim1 Gn = [1].

(ii) Conversely, if each Gn is countable and if lim1 Gn = [1], then the
sequence is semistable.

The first assertion in the proposition follows from Remark G.1.2 and the fact
that the derived limit depends only on the pro-isomorphism type of the inverse
system.

G.2. HOMOLOGY AND COHOMOLOGY AT INFINITY

Suppose Y is a CW complex. Define the chain groups at infinity and the
homology groups at infinity by

Ce
∗(Y) := Clf

∗+1(Y)/C∗+1(Y), (G.1)

He
k(Y) := Hk(Ce

∗(Y)), (G.2)

respectively. (The reasons for the shift in indexing in (G.1) will become clear
below.) Define the cochain groups at infinity and the cohomology groups at
infinity by

C∗e (Y) := C∗(Y)/C∗c (Y), (G.3)

Hk
e (Y) := Hk(C∗e (Y)). (G.4)

The above notation is the same as in [135]; the subscript or superscript e
stands for “end.” The groups defined by (G.2) and (G.4) are sometimes called
the end (co)homology groups of Y .

Since the short exact sequences

0−→C∗(Y)−→Clf
∗ (Y)−→Ce

∗−1(Y)−→ 0,

0−→C∗c (Y)−→ C∗(Y)−→ C∗e (Y) −→ 0
(G.5)
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induce long exact sequences in homology and cohomology, we have the
following.

PROPOSITION G.2.1. There are exact sequences

−→He
n(Y)−→Hn(Y)−→Hlf

n (Y)−→He
n−1(Y)−→,

−→Hn
c (Y)−→Hn(Y)−→Hn

e (Y)−→Hn+1
c (Y)−→.

Suppose we have an increasing filtration of Y by finite subcomplexes

C1 ⊂ · · ·Ci ⊂ · · · .
(In particular, this means that Y is the union Ci.) This gives an inverse
sequence:

Y − C1 ⊃ · · · Y − Ci ⊃ · · · .
We want to compute the end (co)homology groups of Y from the inverse
sequence of chain groups (C∗(Y , Y − Ci)). The problem is that if we wish
to remain within the context of cellular chains, Y − Ci is, in general, not a
subcomplex and neither is its closure Y − Ci.

This can be remedied as in [135, Section 3.6]. A subcomplex X of a CW
complex Y is a full subcomplex if it is the largest subcomplex of Y having X0

as its 0-skeleton. Given a subcomplex A ⊂ Y , its CW complement is the full
subcomplex of Y generated by the vertices of Y0 − A0. It is denoted Y \ A.

Given the increasing filtration (Ci), the inverse sequence (Y \ Ci) gives a
direct sequence of cochain groups (C∗(Y , Y \ Ci)). It follows immediately from
the definitions that

C∗c (Y) ∼= lim−→C∗(Y , Y \ Ci). (G.6)

Comparing this with the short exact sequence (G.5), we also see that

C∗e (Y) ∼= lim−→C∗(Y \ Ci). (G.7)

Since taking homology commutes with taking direct limits, we get the
following.

THEOREM G.2.2. (Compare [135, Theorems 3.8.1, 3.8.2].) The natural
maps

lim−→H∗(Y , Y \ Ci)→ H∗c (Y) and lim−→H∗(Y \ Ci)→ H∗e (Y)

are isomorphisms.

The homology version is more problematic. The reason is that taking
homology does not commute with taking inverse limits. The lim1 term
intervenes. The homology version of Theorem G.2.2 is the following.
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THEOREM G.2.3. (Compare [135, Theorems 3.6.12 and 3.6.13].) The fol-
lowing sequences are short exact:

0→ lim1 Hk+1(Y , Y \ Ci)→ Hlf
k (Y)→ lim←−Hk(Y , Y \ Ci)→ 0,

0→ lim1 Hk+1(Y \ Ci)→ He
k(Y)→ lim←−Hk(Y \ Ci)→ 0.

Under the condition of “homological semistability,” defined in the next
subsection, the lim1 terms in the above theorem vanish and Theorem G.2.3
becomes the direct analog of Theorem G.2.2.

Homological Semistability

DEFINITION G.2.4. A CW complex Y is homologically semistable if there
is a filtration, C1 ⊂ · · ·Ci ⊂ · · · , by finite subcomplexes so that the inverse
sequence (H∗(Y \ Ci)) is semistable.

One can show that if (H∗(Y \ Ci)) is semistable for one filtration Ci, then
it is semistable for any such filtration. A version of Definition G.2.4 for the
fundamental group will be discussed in Appendix G.4 below.

Combining Theorem G.2.3 and Proposition G.1.3 we get the following.

PROPOSITION G.2.5. If Y is homologically semistable, then

He
∗(Y) ∼= lim←−H∗(Y \ Ci).

Singular Homology and Cohomology

The above definitions can be extended to the singular theories in a straight-
forward fashion. So, for Y an arbitrary space, C∗(Y) and C∗(Y) denote,
respectively, the complexes of singular chains and singular cochains on Y , and
H∗(Y) and H∗(Y) their respective (co)homology groups.

In the case of cohomology with compact supports one can proceed as in
[142] as follows. Given compact subspaces C and D of Y with C ⊂ D, we have
Y − D ⊂ Y − C and hence, a natural inclusion C∗(Y , Y − C) ↪→ C∗(Y , Y − D)
and an induced homomorphism in cohomology H∗(Y , Y − C)→ H∗(Y , Y −
D). Singular cohomology with compact supports of Y is defined by

H∗c (Y) = lim−→H∗(Y , Y − C) (G.8)

where the direct limit is over the directed system of all compact subspaces
C ⊂ Y .

Locally finite singular homology is defined as follows. A locally finite chain
α is a (possibly infinite) formal linear combination, c =∑

mλλ, of singular
simplices λ such that any y ∈ Y has a neighborhood U with Im λ ∩ U 
= ∅ for
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only finitely many λ in the support of c. Clf
∗ (Y) denotes the chain complex of

locally finite singular chains and Hlf
∗ (Y) its homology.

G.3. ENDS OF A SPACE

A continuous map f : Y → X of topological spaces is proper if f−1(C) is
compact for every compact subset C of X.

A ray in a topological space X is a map r : [0,∞)→ X. A ray r : [0,∞)→
X is proper if and only if for any compact C ⊂ X there is a positive integer N so
that r([N,∞)) ⊂ X − C. In other words, r(t) “goes to infinity” as t→∞. We
are interested in proper rays. The next definition is due to Freudenthal [132].

DEFINITION G.3.1. Two proper rays r1, r2 : [0,∞)→ X determine the same
end if for any compact subset C ⊂ X, there is a positive integer N so that
r1([N,∞)) and r2([N,∞)) are contained in the same path component of X − C.
This is an equivalence relation on the set of proper rays. An equivalence class
is an end of X. The equivalence class of r is denoted end(r). The set of all such
equivalence classes is denoted Ends(X).

The number of ends of X is Card(Ends(X)). X is one-ended if it has exactly
one end. Suppose X is locally path connected and connected. Then Ends(X) =
∅ if and only if X is compact.

There is a natural topology on Ends(X). A sequence (end(rn))n∈N converges
to end(r) if for each compact C ⊂ X there is a sequence (Nn) of positive
integers so that rn([Nn,∞)) and r([Nn,∞)) are contained in the same path
component of X − C. This gives a topology on Ends(X): a subset A of Ends(X)
is closed if and only if, for any sequence (end(rn)) in A, limn→∞ end(rn) =
end(r) implies end(r) ∈ A.

The poset C of all compact subsets of X gives an inverse system (X − C)C∈C .
So, we can take path components and then take the inverse limit. Under
reasonable conditions, this inverse limit is the space of ends, i.e.,

Ends(X) ∼= lim←−π0(X − C). (G.9)

The definition of “reasonable conditions” is given in Proposition G.3.3 below.
A reader unfamiliar with these notions will benefit from doing the following

exercise.

Exercise G.3.2. Suppose X is the regular trivalent tree. Then Ends(X) is a
Cantor set.

PROPOSITION G.3.3. Suppose X satisfies reasonable conditions (i.e., sup-
pose X is a connected, locally path connected, locally compact, second
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countable, Hausdorff space). Let e(X) be the number of ends of X and let k
be any field. Then

e(X) = dimk He
0(X; k).

Remark G.3.4. If X is path connected and H1(X; k) = 0, then

e(X) = dimk Hlf
1 (X; k)− 1

(i.e., Hlf
1 (X; k) is isomorphic to a codimension one subspace of He

0(X; k)). If
e(X) is finite, then we also have e(X) = dimk H0

e (X; k). If e(X) is infinite, then
so is dimk H0

c (X; k); however, it is countably infinite while e(X) is uncountable.
Similarly, if H1(X; k) = 0 and dimk H1

c (X; k) is infinite, then so is e(X).

G.4. SEMISTABILITY AND THE FUNDAMENTAL GROUP
AT INFINITY

Suppose C1 ⊂ C2 ⊂ · · · is a filtration of a CW complex Y by finite subcom-
plexes and r : [0,∞)→ Y is a proper ray with r(i) ∈ Y \ Ci. Let e := end(r)
denote the equivalence class of r in Ends(Y). The inclusions induce an inverse
sequence

π1(Y \ Cn+1, r(n+ 1))→ π1(Y \ Cn, r(n)).

Our first concern is the semistability (Definition G.1.1) of this inverse
sequence. By Proposition G.1.3 (i), the sequence is semistable if the derived
limit is trivial.

Suppose C′1 ⊂ C′2 ⊂ · · · is another filtration of Y by finite subcomplexes
and r′ is another proper ray with end(r′) = e and r′(i) ∈ Y \ C′i. It is proved in
[135] that the two inverse sequences (π1(Y \ Cn, r(n))) and (π1(Y \ C′n, r′(n)))
are pro-isomorphic. So, their derived limits are simultaneously trivial or not. In
other words, the two inverse sequences are simultaneously semistable or not.

DEFINITION G.4.1. Suppose a CW complex Y has an end e represented by a
ray r. Y is semistable at e if there is a filtration (Cn)n∈N by finite subcomplexes
such that the inverse sequence (π1(Y \ Cn, r(n))) is semistable.

The notions of semistability (and stability) go back to Siebenmann’s thesis
[258]. The definition of a space being simply connected at infinity is given
at the beginning of 9.2. Further results on semistability can be found in
[164, 205, 206, 208].

Suppose � is a finitely presented group, that B is a finite CW complex with
π1(B) = � and that B̃ is its universal cover. Then � is semistable (resp. simply
connected at infinity) if B̃ is semistable (resp. simply connected at infinity).
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One shows this defintion is independent of the choice of B. In particular, it only
depends on the 2-skeleton of B. More generally, if � acts properly, cellularly
and cocompactly on a simply connected CW complex X, then � is semistable
(resp. simply connected at infinity) if and only if X is. The main problem in
this area is the following.

CONJECTURE G.4.2. (Geoghegan’s Conjecture.) Every one-ended, finitely
presented group is semistable.

Geoghegan’s Conjecture is equivalent to the conjecture that the universal
cover of any finite CW complex is semistable.

If Y is semistable, the pro-isomorphism type of (π1(Y \ Cn, r(n))) is inde-
pendent of the choice of ray r and filtration {Cn}. Hence, the inverse limit gives
a group, well defined up to isomorphism, called the fundamental group at e:

π e
1 (Y) := lim←−(π1(Y \ Cn, r(n))). (G.10)

(e plays the role of a basepoint in this group.) If Y is one-ended, then this group
is called the fundamental group at infinity and denoted π∞1 (Y).

If � is finitely presented, one ended, and semistable, then define π∞1 (�) to
be π∞1 (X), where X is any complex on which � acts properly and cocompactly.

Suppose X is a one-ended space satisfying reasonable conditions (cf.
Proposition G.3.3). The definitions of semistability and of the fundamental
group at infinity also work in this context. A neighborhood of infinity in X
means the complement of a compact set. (In other words, a neighborhood of
infinity is a deleted neighborhood of∞ in the one point compactification.) X
is simply connected at infinity if given any neighborhood of infinity, X − C,
there is a smaller neighborhood of infinity, X − D, such that any loop in X − D
is null-homotopic in X − C. (“Smaller” means C ⊂ D.) The proof of the next
proposition is straightforward and is omitted.

PROPOSITION G.4.3. ([164, 135].) Suppose X is a one-ended space satisfy-
ing reasonable conditions. Then X is simply connected at infinity if and only if
it is semistable and π∞1 (X) is trivial.

Remark. When X has more than one end, one can also define what it means
for X to be “simply connected at an end e.” A similar result to the above
proposition holds: X is simply connected at e if and only if it is semistable
at e and π e

1 (X) = 1. The details are left to the reader.

One can also make sense of various other connectivity conditions at infinity.
For example, X is m-connected at infinity if given any neighborhood of infinity
X − C there is a smaller neighborhood of infinity X − D such that any map
Sk → X − D is null-homotopic in X − C for all k � m.
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NOTES

G.1. Most of this section is taken from [135, Chapter 3]. Another discussion of the
derived limit of an inverse sequence can be found in [153, p. 313].

In the literature a slightly weaker definition of directed set is often used: the ordering
need not give a partial order. Directed sets are necessary in the discussion of the
pro-isomorphism type of an inverse system. However, the notions of direct limit and
inverse limit are more general and can be defined for any functorial family of bonds.

G.3. Proofs for most of the results discussed in this section can be found in [37] and
[135].

G.4. A interesting result on the fundamental group at infinity is proved by Geoghegan
and Mihalik in [136].
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Appendix H

THE NOVIKOV AND BOREL CONJECTURES

H.1. AROUND THE BOREL CONJECTURE

The most famous conjecture concerning aspherical manifolds is the following.

CONJECTURE H.1.1. (The Borel Conjecture.) Suppose f : M→ M′ is a
homotopy equivalence between closed aspherical manifolds. Then f is homo-
topic to a homeomorphism.

Remarks

(i) At one time people believed that Conjecture H.1.1 might hold for all
manifolds without the asphericity hypothesis. (This was the Hurewicz
Conjecture.) This was soon seen to be false: Reidemeister showed
that homotopy equivalent lens spaces could be distinguished by the
use of “Reidemeister torsion.” With the advent of surgery theory in
the 1960’s, it became clear that, in dimensions n �5, nothing like the
Hurewicz Conjecture could be true for simply connected manifolds.
For example, for any simply connected Mn, with n � 6, and with a
nontrivial Betti number in some dimension divisible by 4 and
�= 0, n, one can find homotopy equivalent manifolds Nn not
homeomorphic to Mn.

(ii) Apparently, Borel’s reason in the 1950s for making this conjecture
(or rather for asking it as a question) was the analogy with the rigidity
results of Bierberbach (for flat manifolds) and Mostow (for
solvmanifolds). Nowadays, when discussing Borel’s Conjecture,
people usually also mention the analogy with the Mostow Rigidity
Theorem [220] on the rigidity of locally symmetric manifolds with
universal cover having no factor which is either (a) compact, (b)
Euclidean or (c) the hyperbolic plane. (See paragraph 6.10 of the
Notes to Chapter 6 for a further discussion of the Mostow Rigidity
Theorem.)

(iii) Even if M and M′ are assumed to be smooth or PL manifolds,
it is not possible to replace the word “ homeomorphism” by
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“diffeomorphism” or “PL homeomorphism” in the conclusion of the
Borel Conjecture. Indeed, if Mn is any flat manifold (e.g., Tn) or any
closed, stably parallelizable, hyperbolic manifold and �n is any
exotic sphere, then the connected sum Mn#�n is never diffeomorphic
to Mn. (A result of Sullivan [273] implies that any closed hyperbolic
manifold has a finite sheeted cover which is stably parallelizable.) In
the PL case, Ontaneda [230, 231] has shown that there are examples
where M and M′ are not PL homeomorphic.

(iv) Over the last twenty years, Farrell and Jones have made substantial
progress in proving the Borel Conjecture for nonpositively curved
Riemannian manifolds of dimension � 5. In particular, they have
proved it in the case of closed nonpositively curved manifolds.
(See [121, 122, 123, 124].)

(v) Of course, the Borel Conjecture is true in dimensions 1 and 2. It now
seems that it has also been proved in dimension 3. Indeed, it is
implied by Thurston’s Geometrization Conjecture, which has recently
been proved by Perelman [237, 239, 238]. (See also [49, 179].)

Closely related to the Borel Conjecture is the following.

CONJECTURE H.1.2. (The PDn-Group Conjecture.) Suppose π is a finitely
presented Poincaré duality group. Then Bπ is homotopy equivalent to a closed
manifold.

The definition of “PDn-group” can be found in Appendix F.5. As we saw in
Theorem 11.6.3, without the hypothesis of finite presentation, the PDn-group
Conjecture is false.

Poincaré Pairs

Before stating the relative versions of the above conjectures, we need to discuss
Poincaré pairs.

DEFINITION H.1.3. An n-dimensional Poincaré pair is a CW pair (X, ∂X),
with X is finitely dominated, together with a homomorphism w1 : π1(X)→
{±1} such that there is a fundamental class µ ∈ Hn(X, ∂X; D) so that for any
local coefficient system A on X, cap product with µ induces an isomorphisms

Hk(X; A)∼=Hn−k(X, ∂X; D⊗ A)

Hk(X; A)∼=Hn−k(X, ∂X; D⊗ A).

Here D is the local coefficient system defined as follows: as an abelian group
D ∼= Z and π1(X) acts on D via the homomorphism w1. (For the notion of
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“finitely dominated,” see Definition F.4.3. As in Appendix F.1, by a “local
coefficient system” we mean a Zπ1(X)-module.) (X, ∂X) is orientable if w1 is
the trivial homomorphism. If ∂X = ∅, then X is a Poincaré complex. D is the
orientation module and µ the fundamental class.

In 11.5 we need the following generalization of a Poincaré pair.

DEFINITION H.1.4. Suppose X is a finitely dominated CW complex, ∂X a
subcomplex, π a group and ψ : π1(X)→ π an epimorphism. As in Appen-
dix F.1, any Zπ module gives a local coefficient system on X. If w1 : π →
{±1} is a homomorphism, then we get the Zπ -module D which is isomorphic
to Z as an abelian group and on which π acts via w1. The pair (X, ∂X) together
with the homomorphism w1 is a Poincaré pair over π of formal dimension n if
there is a class µ ∈ Hn(X, ∂X; D) such that

∩µ : Hi(X; M)→ Hn−i(X, ∂X; D⊗M)

is an isomorphism for all i and for any Zπ -module M.

Of course, when π = π1(X) and ψ is the identity map, this reduces to the
notion of “Poincaré pair” in Definition H.1.3.

LEMMA H.1.5. Suppose X is a finitely dominated CW complex, ∂X is a
subcomplex, π is a group and ψ : π1(X)→ π an epimorphism. Let X̃ be the
covering space associated to ψ and let ∂X̃ denote the inverse image of ∂X in
X̃. Assume X̃ is acyclic. Then (X, ∂X) is a Poincaré pair over π if and only if

Hi
c(X̃, ∂X̃;Z) =

{
Z if i = n,

0 otherwise.

A proof in the absolute case can be found in [42, pp. 220–221]. In fact, the
argument given there works in the relative case and proves the above lemma.

Relative Versions of These Conjectures

CONJECTURE H.1.6. (Relative version of the Borel Conjecture.) Suppose
(M, ∂M) and (M′, ∂M′) are aspherical manifolds with boundary and f :
(M, ∂M)→ (M′, ∂M′) is a homotopy equivalence of pairs with f |∂M a homeo-
morphism. Then f is homotopic rel ∂M to a homeomorphism.

CONJECTURE H.1.7. (Relative version of the PDn-group Conjecture.) Sup-
pose π is a finitely presented group of type FP and (X, ∂X) is a Poincaré
pair with X homotopy equivalent to Bπ and ∂X a manifold. Then (X, ∂X) is
homotopy equivalent rel ∂X to a compact manifold with boundary.
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(What it means for a group to be of type F or FP is defined in Appendix F.4.)
In Theorem 11.4.1, by using the reflection group trick, we showed that the

relative version of each of these conjectures is implied by its absolute version.

Conjectures in Algebraic KKK-Theory

Kirby and Siebenmann [177, p. 744] proved that any compact topological
manifold X is homotopy equivalent to a finite CW complex. (Replace X by
the total space X̂ of a normal disk bundle to X in some Euclidean space
of dimension �5. Since X̂ is parallelizable, the main result of [177] implies
that it admits a PL triangulation; in particular, it is a finite complex.) So,
Conjecture H.1.7 implies that any finitely presented group π of type FP is
type F. More precisely, if (X, ∂X) is a Poincaré pair with X ∼ Bπ , then its
finiteness obstruction σ (X) (defined by (F.12)) must vanish. As explained in
Appendix F.4, the following conjecture says that σ (X) always lies in the trivial
group.

CONJECTURE H.1.8. (The Reduced Projective Class Group Conjecture.)
For any torsion-free group π , the reduced projective class group K̃0(Zπ )
vanishes.

For manifolds with nontrivial fundamental groups, the h-Cobordism
Theorem need not be true. The correct result is the s-Cobordism Theorem,
where the “s” refers to a “simple” in front of “homotopy equivalence.” (For
smooth 4-manifolds, Donaldson proved that the h-Cobordism Theorem fails
even in the simply connected case.) Simple homotopy equivalence is the equiv-
alence relation generated by elementary expansions and collapses of simplices.
Algebraically such an operation corresponds to change of basis for a free
ZG-module by an elementary matrix.

For a given ring R, define K1(R) to be the quotient GL(R)/[GL(R), GL(R)],
where GL(R) denotes the infinite general linear group over R. It is known
that the commutator subgroup [GL(R), GL(R)] is generated by elementary
matrices. Let {±g | g ∈ G} be the subgroup of K1(ZG) generated by 1× 1
matrices of the form ±g. The Whitehead group of G, denoted Wh(G), is
the quotient K1(ZG)/{±g | g ∈ G}. Associated to a homotopy equivalence
f : P→ Q between finite polyhedra, there is an element α( f ) ∈ Wh(G) called
its Whitehead torsion. The homotopy equivalence f is simple if α( f ) = 0.
The torsion of an h-cobordism Wn between manifolds Mn−1

i , i = 0, 1, is the
Whitehead torsion of the inclusion Mn−1

0 ↪→ Wn. Wn is an s-cobordism if
its torsion is 0. The s-Cobordism Theorem asserts that if n � 6 and Wn is
an s-cobordism, then Wn is isomorphic to the cylinder Mn−1 × [0, 1]. (See
[127].) Given a manifold Mn−1

0 with fundamental group π and an element
α ∈ Wh(π ), it is also known that one can construct an h-cobordism Wn with
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torsion α. If W is an h-cobordism from M0 to M1 with nontrivial torsion,
then either M0 is not homeomorphic to M1 or else the two ends of W can be
glued together via a homeomorphism M0 → M1 which is homotopic to but not
pseudoisotopic to the identity, thus, producing a manifold homotopy equivalent
to but not homeomorphic to M0 × S1. In either case, if M0 were a closed
aspherical manifold, we would have a counterexample to Conjecture H.1.1.
Similar remarks apply in the case of an aspherical manifold with boundary.
Thus, Conjecture H.1.6 implies that for any group π of type F we should have
Wh(π ) = 0. In fact, there is no counterexample known to the following.

CONJECTURE H.1.9. (The Whitehead Group Conjecture.) For any torsion-
free group π , Wh(π ) = 0.

H.2. SMOOTHING THEORY

For each positive integer n there are H-spaces:

G(n) the space of self homotopy equivalences of Sn−1,

TOP(n) the space of self-homeomorphisms of Rn,

PL(n) the space of PL self-homeomorphisms of Rn, and

O(n) the Lie group of orthogonal linear automorphisms of Rn.

We have obvious inclusions PL(n) ↪→ TOP(n) ↪→ G(n) and O(n) ↪→ TOP(n).
PL(n) is homotopy equivalent to the group PD(n) of “piecewise differentiable”
homeomorphisms of Rn and O(n) ↪→ PD(n); so, in this way we also have
an “inclusion” O(n)→ PL(n). Their classifying spaces are denoted BG(n),
BTOP(n), BPL(n) and BO(n), respectively. BG(n) is the classifying space
for spherical fibrations with fiber Sn−1, BO(n) is the classifying space for n-
dimensional vector bundles, while BTOP(n) and BPL(n) are, respectively, the
classifying spaces for topological and PL microbundles with fiber Rn.

If we take the direct limit of the G(n), TOP(n), PL(n) or O(n) we obtain
H-spaces G, TOP, PL and O and their respective classifying spaces BG, BTOP,
BPL and BO. These are the classifying spaces for “stable bundles.” Let us
recall what this means. Suppose ξ1 and ξ2 are two vector bundles over a CW
complex X. For i = 1, 2, let ci : X→ BO(ni) classify ξi and let c̃i : X→ BO
be the composition of ci and the natural map BO(ni)→ BO. Bundles ξ1 and ξ2

are stably isomorphic if and only if it is possible to find trivial vector bundles
ε1 and ε2 so that the Whitney sums ξ1 ⊕ ε1 and ξ2 ⊕ ε2 are isomorphic. It
follows that ξ1 is stably isomorphic to ξ2 if and only if c̃1 is homotopic to
c̃2. When we speak of a “stable vector bundle” we mean its class under the
equivalence relation of stable isomorphism (in other words, its class in K̃O(X))
and similarly, for BG, BTOP and BPL. In what follows we are interested in
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the stable tangent bundle or its inverse, the stable normal bundle, of a compact
manifold M.

The inclusions TOP ↪→ G, PL→ TOP and O ↪→ TOP induce fibrations
BG→ BTOP, BPL→ BTOP and BO→ BTOP with fibers G/TOP, TOP/PL
and TOP/O, respectively. The main result in smoothing theory is the following.

THEOREM H.2.1. (Munkres [224], Hirsch and Mazur [155], Kirby and
Siebenmann [177, 178].) In the following statements, dim M = n, and n � 5.

(i) A topological manifold M admits a PL structure if and only if the
classifying map for its stable tangent bundle M→ BTOP lifts to BPL.

(ii) If M admits at least one PL structure, then the set isomorphism
classes of PL structures on M is in bijective correspondence with the
set of homotopy classes [M, TOP/PL]. (This is the set of isomorphism
classes of reductions of the “structure group” from TOP to PL.)

(iii) A topological or PL manifold M admits a smooth structure if and
only if the classifying map of its stable tangent bundle lifts to BO.

(iv) If M admits at least one smooth structure, then the set of isomorphism
classes of smooth structures on M is bijective with [M, TOP/O].
Similarly, the set of isomorphism classes of smooth structures with
the same underlying PL structure is bijective with [M, PL/O].

Remark. In Theorem 11.3.2 we use this to show there exist closed aspherical
manifolds not homotopy equivalent to smooth manifolds.

Kirby and Siebenmann also showed that

πi(TOP/PL) ∼=
{
Z/2 if i = 3,

0 otherwise.

From this and standard obstruction theory we get the following corollary.

COROLLARY H.2.2. (Kirby–Siebenmann [177], [178].) Let M be an
n-manifold, n � 5.

(i) M admits a PL structure if and only if a certain obstruction in
H4(M;Z/2) vanishes.

(ii) If M admits at least one PL structure, then the set isomorphism
classes of PL structures on M is bijective with H3(M;Z/2).

In his Ph.D. thesis M. Spivak [262] showed that associated to any Poincaré
complex X there is a spherical fibration ν over X with total space E(ν) such
that E(ν) is fiber homotopy equivalent to the sphere bundle of the stable
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normal bundle of X whenever X is a manifold. It is called the Spivak normal
fibration. The construction of E(ν) can be found in [40]. It goes as follows.
Since X is homotopy equivalent to a polyhedron we may assume that it
actually is a polyhedron. Piecewise linearly embed X in Euclidean space
RN with N � 2 dim X + 1. Let R be a closed regular neighborhood of X in
RN . Then R collapses onto X and, as Spivak proved, the restriction of the
collapse to ∂R is the spherical fibration. In more detail, by a well-known
construction (see [153, p. 407]), any map is homotopic to a fibration. If we
use this construction to replace ∂R→ X by E(ν)→ X, then the fiber of E(ν)
is Sk−1, where k = N − dim X. An obvious obstruction for X to be homotopy
equivalent to a manifold is that the classifying map cν : X→ BG for the stable
class of ν lifts to a map into BTOP (or BPL or BO in the cases of PL or smooth
manifolds, respectively). In analogy with Theorem H.2.1 one might expect this
to be the complete obstruction (in dimensions� 5) and that manifold structures
on X would be bijective with [X, G/TOP]. We shall see in the next section that
this is not, in fact, the case. Wall’s surgery obstruction groups must be brought
into the picture.

H.3. THE SURGERY EXACT SEQUENCE
AND THE ASSEMBLY MAP CONJECTURE

Suppose (X, ∂X) is an n-dimensional Poincaré pair. A structure on X is an
n-dimensional manifold with boundary (M, ∂M) and a homotopy equivalence
of pairs f : (M, ∂M)→ (X, ∂X) such that f |∂M is a homeomorphism (so,
∂X must be a manifold). Two structures f0 : (M0, ∂M0)→ (X, ∂X) and f1 :
(M1, ∂M1)→ (X, ∂X) are equivalent if there is an h-cobordism W rel ∂M0 from
M0 to M1 and a map F : (W, ∂M0 × [0, 1])→ (X, ∂X) such that for i = 0, 1,
F|Mi = fi. Let S(X) denote the set of equivalence classes of structures on X.

Associated to a group π and a nonnegative integer n, there is a certain
abelian group called the “Wall surgery group” and denoted Ln(π ). This is
defined either as a Witt group of Hermitian forms on free Zπ -modules (for
n even) or as a group of automorphisms of such a form (for n odd). It follows
that the surgery groups are 4-periodic, i.e., Ln(π ) = Ln+4(π ). In the case of the
trivial group, these groups were computed by Kervaire–Milnor [175] to be:

Ln(1) =




Z if i ≡ 0 (mod 4),

Z/2 if i ≡ 2 (mod 4),

0 otherwise.

(H.1)

For π = π1(X), we have Sullivan’s surgery exact sequence,

Ln+1(π )→ S(X)→ [(X, ∂X), (G/TOP, ∗)]→ Ln(π ).
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(The naive analogy with smoothing theory would suggest that the surgery
groups L∗(π ) should not occur in the above sequence.)

By a relative structure on (X, ∂X) we mean, as before, a homotopy equiva-
lence of pairs f : (M, ∂M)→ (X, ∂X), only this time there is no restriction on
f |∂M . S(X, ∂X) stands for the set of equivalence classes of relative structures
on (X, ∂X). The corresponding surgery exact sequence is

Ln+1(π )→ S(X, ∂X)→ [X, G/TOP]→ Ln(π ).

(Our conventions about the meaning of S(X) and S(X, ∂X) are intended; they
should not be reversed. The reason for these conventions is to make notation
in various versions of the surgery exact sequence consistent.)

Not only are the surgery groups 4-periodic, so are the homotopy groups of
G/TOP. They are given by the formula

πi(G/TOP) =




Z if i ≡ 0 (mod 4),

Z/2 if i ≡ 2 (mod 4),

0 otherwise.

(H.2)

(The similarity in (H.1) and (H.2) is not accidental.) Moreover, the 4-fold loop
space, �4(Z× G/TOP), is homotopy equivalent to Z× G/TOP. It follows
that Z× G/TOP defines a spectrum L and a generalized homology theory
H∗(X;L). More is known about the homotopy type of G/TOP: localized at
2 it is isomorphic to a product of Eilenberg-MacLane spectra, away from 2 it
is isomorphic to BO. For example,

Hm(X;L)⊗Q ∼=
∑

Hm−4k(X;Q).

The generalized cohomology theory asssociated to L is represented by ho-
motopy classes of maps into Z× G/TOP, i.e., H0(X;L) := [X,Z× G/TOP].
For n = dim X, Poincaré duality defines isomorphisms

[(X, ∂X), (G/TOP, ∗)] ∼= Hn(X;L)

and

[X, G/TOP] ∼= Hn(X, ∂X;L),

where ∗ ∈ G/TOP is a base point.
The structure sets S(X) and S(X, ∂X) are also 4-periodic. (Strictly speaking,

for this to be true, in the definition of “structure” it is necessary to replace
the condition that (M, ∂M) is a manifold with boundary by the condition
that it be an ANR homology manifold with boundary satisfying the disjoint
disk property. This is explained in [44, 296].) Then S(X) ∼= S(X × D4);
moreover, S(X × Dk) has the structure of an abelian group whenever k � 2.
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So, if dim X = n, define Sn+k(X) := S(X × Dk) and Sn+k(X, ∂X) := S(X ×
Dk, ∂(X × Dk)). By enforcing periodicity, we can then put an abelian group
structure on Sn+k for k < 2 (indeed, even for k negative). Using this, we get
the modern versions of the above two surgery exact sequences:

→ Ln+1(π )→ Sn(X)→ Hn(X;L)
A−→Ln(π )→,

→ Ln+1(π )→ Sn(X, ∂X)→ Hn(X, ∂X;L)−→Ln(π )→.
Both sequences are exact sequences of abelian groups. The map A :
Hn(X;L)→ Ln(π ) was first defined by Quinn. It is called the assembly map.
For a more explanation of the surgery exact sequence, see [295].

CONJECTURE H.3.1. (The Assembly Map Conjecture.) Suppose M
is a closed aspherical manifold or an aspherical Poincaré complex
with fundamental group π . Then A : H∗(M;L)→ L∗(π ) is an
isomorphism.

CONJECTURE H.3.2. (Relative version of the Assembly Map Conjecture.)
Suppose π is a group of type FP. Then A : H∗(Bπ ;L)→ L∗(π ) is an
isomorphism.

Conceivably, this conjecture could be true for any torsion-free group π .

Remark. There are versions of the structure sets, Wall groups and the surgery
exact sequences incorporating simple homotopy equivalences. One modifies
the notation by adding a superscript “s” on S∗( ) and L∗( ). Ss

∗(X) is defined by
considering simple homotopy equivalences from manifolds to X and calling
two such equivalent if they differ by an s-cobordism. Similarly, the Wall group
Ls
∗(Zπ ) contains Wh(π ). In this version the statement that the assembly map

H∗(Bπ ;L)→ Ls
∗(Zπ ) is an isomorphism implies Wh(π ) = 0.

THEOREM H.3.3. For a given group π of type F and an integer n � 5,
the relative version of the Borel Conjecture (H.1.6) holds whenever X is a
compact aspherical n-manifold with boundary with π1(X) = π if and only if
the following two conditions hold:

• Wh(π ) = 0 and

• A : H∗(Bπ ;L)→ L∗(π ) is an isomorphism.

Proof. If 0 �= a ∈ Wh(π ) and n � 5, then we can find a manifold Vn+1 which
is an h-cobordism rel boundary with one end X and with Whitehead torsion
a. If the other end X′ is not homeorphic to X, then it is a counterexample to
Conjecture H.1.6. If X′ is homeorphic to X, then V is a counterexample to
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the conjecture for X × [0, 1]. If A : Hn(Bπ ;L)→ Ln(π ) is not injective, then
Sn(Bπ ) �= 0; hence, we can find (X, ∂X), a n+ 4k-manifold with boundary,
such that Sn(X) �= 0 and Conjecture H.1.6 is false for X. Similarly, if A :
Hn(Bπ ;L)→ Ln(π ) is not onto, then Sn−1(Bπ ) �= 0 and we again get a
counterexample.

Conversely, suppose both conditions hold. Since A : H∗(Bπ ;L)→ L∗(π )
is an isomorphism, S(X) = 0; hence, up to an h-cobordism there is only
one structure on X. Since Wh(π ) = 0 and n � 5, the h-cobordism must be
X × [0, 1]. �

Similar considerations prove the following.

THEOREM H.3.4. For a given group π of type FP and an integer n � 5,
the relative version of the PDn-group Conjecture (Conjecture H.1.7) holds
whenever (X, ∂X) is an n-dimensional Poincaré pair with X ∼ Bπ if and only
if the following two conditions hold:

• σ (X) = 0 (where σ (X) ∈ K̃0(Zπ ) is Wall’s finiteness obstruction) and

• A : H∗(Bπ ;L)→ L∗(π ) is an isomorphism.

H.4. THE NOVIKOV CONJECTURE

The Hirzebruch L-genus of a closed manifold M is a certain power series
L∗(M) in the Pontrjagin classes (of the tangent bundle) of M. The part ofL∗(M)
which lies in H4k(M;Q) is denoted Lk(M); it is a polynomial in the Pontrjagin
classes. The Hirzebruch Signature Theorem asserts that when dim M = 4k, the
signature of M is 〈Lk(M), [M]〉 (i.e., the cohomology class Lk(M) evaluated on
the fundamental class [M]). For the definition of the L-genus and a proof of the
Signature Theorem, see [216].

Suppose π1(M) = π and that c : M→ Bπ is the canonical map. As α
ranges over H∗(Bπ ;Q) we get numbers 〈c∗(α) ∪ L∗(M), [M]〉, called the
higher signatures of M. Novikov originally conjectured that these higher
signatures were homotopy invariants, i.e., if M and M′ are homotopy equivalent
closed manifolds, then they have the same higher signatures. (Of course,
it was well-known that, even in the simply connected case, the rational
Pontrjagin classes of M and M′ can be different.) It is also well-known
that the cohomology classes L∗(M) determine the Pontrjagin classes (since
pk(M) occurs with nonzero coefficient in Lk(M)). It follows that in the case
where M = Bπ is an aspherical manifold, the higher signatures determine
the Pontrjagin classes of M. So in this case, the Novikov Conjecture is the
following weak form of the Borel Conjecture: if M is aspherical, then its
rational Pontrjagin classes are homotopy invariants, i.e., if f : M→ M′ is a
homotopy equivalence, then f ∗(pi(M′)) = pi(M). (This is implied by the Borel
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Conjecture, since, as Novikov previously had shown, the rational Pontrjagin
classes are homeomorphism invariants.)

With regard to the surgery exact sequence, if a homotopy equivalence
f : M′ → M represents an element in S(M), then its image in Hn(M;L)⊗Q
can be computed from the difference of total Pontrjagin classes, p∗(M′)−
f ∗(p∗(M)). So, for M = Bπ , Novikov’s original conjecture is equivalent
to the conjecture that assembly map A : Hn(Bπ ;L)⊗Q→ Ln(Zπ )⊗Q is,
rationally, a monomorphism. In fact, it turns out that this version is equivalent
to the homotopy invariance of the the higher signatures. That is to say, the
modern formulation of the Novikov Conjecture is the following.

CONJECTURE H.4.1. (The Novikov Conjecture.) For any finitely presented
group π , after tensoring with Q, the assembly map, A : Hn(Bπ ;L)⊗Q→
Ln(π )⊗Q, is a monomorphism.

NOTES

References for this material include [40, 122, 183, 295].
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Appendix I

NONPOSITIVE CURVATURE

I.1. GEODESIC METRIC SPACES

Let (X, d) be a metric space. A path γ : [a, b]→ X is a geodesic (or a geodesic
segment) if it is an isometric embedding, i.e., if d(γ (s), γ (t)) = |s− t| for
all s, t ∈ [a, b]. Similarly, an isometric embedding [a,∞)→ X, R→ X or
S1 → X is called, respectively, a geodesic ray, a geodesic line or a closed
geodesic. (S1 denotes the circle with its standard metric, possibly rescaled so
that its length can be arbitrary.) (X, d) is a geodesic space if any two points can
be connected by a geodesic segment.

Given a path γ : [a, b]→ X in a metric space X, its length l(γ ) is defined by

l(γ ) := sup

{
n∑

i=1

d(γ (ti−1), γ (ti))

}
,

where a = t0 < t1 < · · · tn = b runs over all possible subdivisions of [a, b].
(X, d) is a length space if

d(x, y) = inf{l(γ ) | γ is a path from x to y}.
(Here we allow∞ as a possible value of d.) Thus, a length space is a geodesic
space if the above infimum is always realized and is �= ∞.

I.2. THE CAT(κ)-INEQUALITY

As in Chapter 6, for each real number κ , X2
κ denotes the simply connected,

complete, Riemannian 2-manifold of constant curvature κ:

• X2
0 is the Euclidean plane E2.

• If κ > 0, then X2
κ = S2 with its metric rescaled so that its curvature is κ

(i.e., it is the sphere of radius 1/
√
κ).

• If κ < 0, then X2
κ = H2, the hyperbolic plane, with its metric rescaled.

(The spaces E2, S2 and H2 are defined and explained in Section 6.2.)
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Figure I.1. The CAT(κ)-inequality.

A triangle � in a metric space X is a configuration of three geodesic
segments (“edges”) connecting three points (“vertices”) in pairs. A comparison
triangle for � is a triangle �∗ in X2

κ with the same edge lengths. When κ � 0
such comparison triangle always exists. When κ > 0 a necessary and sufficient
condition for a comparison triangle to exist is that l(�) � 2π/

√
κ , where l(�)

denotes the sum of the lengths of the three edges of�. (2π/
√
κ is the length of

the equator in a 2-sphere of curvature κ .) When κ > 0, we shall always make
this assumption on l(�).

If�∗ is a comparison triangle for�, then for each edge of� there is a well-
defined isometry, denoted by x→ x∗, which takes the given edge of � onto
the corresponding edge of �∗.

DEFINITION I.2.1. A metric space X satisfies CAT(κ) (or is a CAT(κ)-space)
if the following two conditions hold:

(a) If κ � 0, then X is a geodesic space, while if κ > 0, it is required that
there is a geodesic segment between any two points < π/

√
κ apart.

(b) (The CAT(κ)-inequality). For any triangle � (with l(�) < 2π/
√
κ if

κ > 0) and any two points x, y ∈ �, we have

d(x, y) � d∗(x∗, y∗),

where x∗, y∗ are the corresponding points in the comparison triangle
�∗ and d∗ is distance in X2

κ . (See Figure I.1.)

For κ � 0, condition (a) implies that X is connected; however, if κ > 0,
X need not be connected.

Exercise I.2.2. Suppose κ > 0. Show that a circle of length l is CAT(κ) if and
only if l � 2π/

√
κ .
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DEFINITION I.2.3. A metric space X has curvature � κ if the CAT(κ)-
inequality holds locally in X.

Remarks I.2.4

(i) Suppose γ1, γ2 are two geodesic segments with the same initial point
x = γ1(0) = γ2(0). The Aleksandrov angle between γ1 and γ2 at x is
defined as

lim sup
s,t→0

α(s, t),

where α(s, t) is the angle at the vertex corresponding to x in a
comparison triangle in E2 for the triangle with vertices x, γ1(s), γ2(t).
Aleksandrov proved that a metric space X is CAT(κ) if and only if it
satisfies condition (a) above and if for any triangle � in X (with
l(�) < 2π/

√
κ when κ > 0) the Aleksandrov angle at any vertex is

� the corresponding angle in a comparison triangle �∗ ⊂ X2
κ . (For

details, see [37, p. 161] or Troyanov’s article in [138, p. 49].)

(ii) Xn
κ satisfies CAT(κ ′) for any κ ′ � κ and any n � 2. It follows that if X

is CAT(κ), then it is also CAT(κ ′) for every κ ′ > κ . (See [37, p. 165].)

(iii) The Comparison Theorem of Aleksandrov and Toponogov asserts
that a Riemannian manifold has sectional curvature � κ if and only if
the CAT(κ)-inequality holds locally. (Of course, this is the
justification for the terminology in Definition I.2.3.) A proof can be
found in Troyanov’s article in [138, pp. 52–59] or in [1].

THEOREM I.2.5. (Uniqueness of geodesics.) Suppose X is CAT(κ). If κ � 0,
then there is a unique geodesic between any two points of X. If κ > 0, the
geodesic segment between any two points of distance < π/

√
κ is unique.

In other words, there are no “digons” in X of edge length< π/
√
κ when κ > 0

and no digons at all when κ � 0.

Proof. Suppose we have two distinct geodesic segments between points x and
y (of distance < π/κ if κ > 0). Introduce a third vertex z in a portion of one
of the segments where they do not coincide. This gives a triangle in X. Its
comparison triangle in X2

κ degenerates to a single geodesic segment. So, the
CAT(κ)-inequality implies that the original two segments must be equal. �

Suppose X is CAT(0). Choose a basepoint x0 ∈ X. By the previous result,
for each x ∈ X, there is a geodesic γx : [0, d]→ X from x0 to x, where d :=
d(x0, x). Define h : X × [0, 1]→ X by h(x, t) := γx(ts). It follows from the
Arzelà–Ascoli Theorem that h is continuous. So, h is a homotopy from the
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constant map to idX . h is called geodesic contraction. Hence, we have the
following result.

THEOREM I.2.6. A complete CAT(0)-space is contractible.

The Cartan-Hadamard Theorem states that a simply connected, complete,
nonpositively curved, Riemannian manifold is contractible. Gromov’s version
of this is the following.

THEOREM I.2.7. (Gromov’s version of the Cartan-Hadamard Theorem.)
Suppose a geodesic space is complete, simply connected and has curvature
� κ for some κ � 0. Then it is CAT(κ).

The analog of this result for κ > 0 is the following.

THEOREM I.2.8. Suppose a complete length space X has curvature � κ , for
some κ > 0. Then the following conditions are equivalent.

(a) Given any two points of distance < π/
√
κ , the geodesic between

them is unique.

(b) There is no closed geodesic of length < 2π/
√
κ .

(c) X is CAT(κ).

A corollary of Theorems I.2.6 and I.2.7 is the following result (mentioned
previously in Section 2.3).

COROLLARY I.2.9. If X is complete and nonpositively curved, then it is
aspherical.

Proof. Its universal cover is CAT(0); hence, contractible. �

The Center of a Bounded Set

The radius of a bounded subset Y in a metric space X is the real number

rY := inf{r | Y ⊂ B(x, r) for some x ∈ X}.
Here B(x, r) denotes the open ball of radius r centered at x. (B(x, r) denotes the
closed ball.)

PROPOSITION I.2.10. (Compare [37, pp. 178–179] or [43, p. 188].) Suppose
Y is a bounded subset of a complete CAT(0)-space X. Then there is a unique
point cY ∈ X (called the center of Y) such that Y ⊂ B(cY , rY ).

Proof. Let (xn) be a sequence in X such that Y ⊂ B(xn, rn) where rn → rY .
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Claim. (xn) is a Cauchy sequence.
If we assume this claim there is nothing left to prove. Indeed, (xn) has a limit

since X is complete and cY := lim xn has the required property. The fact that
the sequence is Cauchy also implies uniqueness.

Proof of Claim. Given ε > 0, choose numbers R > rY and R′ < rY so that
the annulus A := B(0, R)− B(0, R′) in R2 contains no line segment of length
� ε. (Here 0 denotes the origin in R2.) For sufficiently large n, n′, we have
rn, rn′ < R. For each y ∈ Y , consider the triangle �(y, xn, xn′ ) in X and its
comparison triangle �∗y := �(0, x∗n, x∗n′ ) in R2. Let m be the midpoint of the
geodesic segment from xn to xn′ and m∗ the midpoint of [xn, xn′ ]. If for every
y ∈ Y we had m∗ ∈ B(0, R′), then, by the CAT(0)-inequality, we would have
Y ⊂ B(m, R′), contradicting R′ < rY . Hence, there exists a point y ∈ Y such
that m∗ lies in A. Since this means that at least half of [xn, xn′ ] lies in A, the
length of [xn, xn′ ] is < 2ε. �

The Bruhat-Tits Fixed Point Theorem

A famous theorem of E. Cartan asserts the existence of a fixed point for any
compact group of isometries on a simply connected, complete, nonpositively
curved Riemannian manifold. This was generalized by Bruhat and Tits to the
following.

THEOREM I.2.11. (The Bruhat-Tits Fixed Point Theorem.) Let G be a group
of isometries of a CAT(0)-space X. If G is compact (or more generally if G has
a bounded orbit on X), then G has a fixed point on X.

Proof. Suppose X has a bounded orbit Gx. By Proposition I.2.10, this orbit has
a center c. Since Gx is G-stable so is c. �

PROPOSITION I.2.12. Let G be a group of isometries of a CAT(0)-space X.
Then its fixed point set, Fix(G, X), is convex and hence, CAT(0). In particular,
if Fix(G, X) is nonempty, it is contractible.

Proof. Suppose x, y ∈ Fix(G, X) and let γ be the geodesic segment from x to y.
For any g ∈ G, g · γ is another geodesic segment with the same endpoints.
By Theorem I.2.5, g · γ = γ , i.e., the geodesic segment from x to y lies in
Fix(G, X). �

COROLLARY I.2.13. Suppose G is a discrete group of isometries acting
properly on a complete CAT(0)-space X. Then X is a model for EG, the
universal space for proper G-actions.

(See Definition 2.3.1 in Section 2.3 for more about EG.)
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Proof. Let F be a finite subgroup of G. By the Bruhat-Tits Fixed Point
Theorem, Fix(F, X) �= ∅ and by Proposition I.2.12, it is contractible. �

COROLLARY I.2.14. Suppose G is a discrete group of isometries acting
properly on a complete CAT(0)-space X. Further suppose X/G is compact.
Then there is a simplicial complex � on which G acts properly, simplicially
and with a finite number of orbits of simplices such that � is G-equivariantly
homotopy equivalent to X. In particular, � is a CW model for EG with a finite
number of G-orbits of cells.

Proof. We shall construct G-equivariant covering of X by open balls with the
property that if B(x, r) is one of these balls, then gB(x, r) ∩ B(x, r) = ∅ for all
g ∈ G− Gx. Since X/G is compact we can cover it by a finite number of
images of such balls. Lift this to a covering of X and let � be the nerve of
the covering. (In other words, Vert(�) is the set of balls in the covering, a finite
nonempty subset of Vert(�) spans a simplex if and only if the corresponding
intersection of balls is nonempty.) Since balls in E2 are convex, so are balls
in any CAT(0) space (hence, they are contractible). Since the intersection of
convex sets is convex, it follows that the natural map X→ � is an equivariant
homotopy equivalence. �

A Condition for Verifying the CAT(0)-Inequality

Suppose x, y, z are vertices of a triangle in a geodesic space X and that, for
t ∈ [0, 1], pt is the point on the geodesic from y to x such that d(y, pt) = td(y, x)
and d(x, pt) = (1− t)d(y, x). If x, y, z are points in E2, then pt = ty+ (1− t)x.
A simple argument ([43, p. 153]) shows

d2(z, pt) = (1− t)d2(z, x)+ td2(z, y)− t(1− t)d2(x, y). (I.1)

Here d denotes Euclidean distance and d2(x, y) := d(x, y)2.
We return to the situation where � is a triangle in X with vertices x, y, z.

Since the edge lengths of� are the same as those in the Euclidean comparison
triangle, we have the following well-known lemma, which we needed in
Section 18.3.

LEMMA I.2.15. With notation as above, the CAT(0)-inequality for the trian-
gle � in X is equivalent to the inequality

d2(z, pt) � (1− t)d2(z, x)+ td2(z, y)− t(1− t)d2(x, y),

for all t ∈ [0, 1].
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Local Geodesics

Suppose c : [a, b]→ X is a path and t0 ∈ (a, b). Then c is a local geodesic at
c(t0) if there is an open interval U containing t0 such that c|U is a geodesic. A
proof of the next lemma is can be found in [37, p. 160].

LEMMA I.2.16. Suppose X is a CAT(κ)-space and c : [a, b]→ X is a path.
If κ > 0 also suppose l(c) � π/κ . Then c is a geodesic if and only if it is a
local geodesic.

The Cone on a CAT(1)-Space

We gave a definition of the “cone” on a topological space X in Definition A.4.5.
We slightly modify it here. The cone on X, denoted Cone(X), is the quotient
space of X × [0,∞) by the equivalence relation ∼ defined by (x, s) ∼ (y, t) if
and only if (x, s) = (y, t) or s = t = 0. The image of (x, s) in Cone(X) is denoted
[x, s]. The cone of radius r, denoted Cone(X, r), is the image of X × [0, r] in
Cone(X). (In A.4.5 only the definition of the cone of radius 1 was given.)

Given a metric space X and a real number κ , we shall define a metric dκ on
Cone(X). (When κ > 0, the definition only makes sense on the open cone of
radius π/

√
κ .) The idea underlying the definition is that when X = Sn−1, by

using “polar coordinates” and the exponential map, Cone(X) can be identified
with Xn

κ (when κ > 0, provided the radius is < π/
√
κ). Transporting the

constant curvature metric on Xn
κ to Cone(Sn−1), we obtain a formula for dκ

on Cone(Sn−1). The same formula then defines a metric on Cone(X) for any
metric space X.

To write this formula we first need to recall the Law of Cosines in S2
κ , E2 or

H2
κ . Suppose we have a triangle in X2

κ with edge lengths s, t and d and angle θ
between the first two sides. As in [37, p. 24], there is a Law of Cosines in each
space:

• in E2:

d2 = s2 + t2 − 2st cos θ

• in S2
κ :

cos
√
κd = cos

√
κs cos

√
κt + sin

√
κs sin

√
κt cos θ

• in H2
κ :

cosh
√−κd = cosh

√−κs cosh
√−κt + sinh

√−κs sinh
√−κt cos θ

Given x, y ∈ X, put θ (x, y) := min{π , d(x, y)}. Define the metric d0 on
Cone(X) by

d0([x, s], [y, t]) := (s2 + t2 − 2st cos θ (x, y))1/2.
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Similarly, the metrics dκ , κ �= 0 are defined so that the appropriate Law of
Cosines holds with d = dκ and θ = θ (x, y). Cone(X) equipped with the metric
dκ is denoted by Coneκ (X).

Remark. If X is a (n− 1)-dimensional spherical polytope, then Coneκ (X) is
isometric to a convex polyhedral cone in Xκ (see Section 6.2).

PROPOSITION I.2.17. Suppose X is a complete and any two points of
distance � π can be joined by a geodesic. Then

(i) ([37, pp. 62–63].) Coneκ (X) is a complete geodesic space.

(ii) (Berestovskii [19] or [37, pp. 188–190].) Coneκ (X) is CAT(κ) if and
only if X is CAT(1).

Spherical Joins

In Definition A.4.5 we defined the join X1 ∗ X2 of two nonempty topolog-
ical spaces: it is the quotient space of X1 × X2 × [0, 1] by an equivalence
relation ∼. Now suppose di is a metric on Xi. We are going to slightly modify
this definition of X1 ∗ X2 by replacing [0, 1] by [0,π/2]. Then we will define a
metric d on the join. Thus,

X1 ∗ X2 := (X1 × X2 × [0,π/2])/ ∼,

where ∼ is defined by: (x1, x2, θ ) ∼ (x′1, x′2, θ ′) whenever θ = θ ′ = 0 and x1 =
x′1 or θ = θ ′ = π/2 and x2 = x′2 or (x1, x2, θ ) = (x′1, x′2, θ ′). We denote the
image of (x1, x2, θ ) in X1 ∗ X2 by (cos θ )x1 + (sin θ )x2. For i = 1, 2, define a
metric di

π on Xi by di
π (x, y) := min{π , di(x, y)}. Define the distance d between

points x = (cos θ )x1 + (sin θ )x2 and x′ = (cos θ ′)x′1 + (sin θ ′)x′2 by requiring
that it be at most π and that

cos(d(x, x′)) = cos θ cos θ ′ cos(d1
π (x1, x′1))+ sin θ sin θ ′ cos(d2

π (x2, x′2)).

(X1 ∗ X2, d) is the spherical join of X1 and X2. If X1 is the 0-sphere S0 and
X2 = X, then S0 ∗ X is called the spherical suspension and denoted by SX.)

Given two metric space (Y , ρ) and (Y ′ρ ′), the product metric d on Y × Y ′ is
defined by

d((y, y′), (z, z′)) :=
√
ρ(y, z)2 + ρ ′(y′, z′)2. (I.2)

The importance of the spherical join lies in the following lemma (the proof
of which is left as an exercise for the reader).

LEMMA I.2.18. Let (X1, d1), (X2, d2) be metric spaces. Then Cone0(X1)×
Cone0(X2) endowed with the product metric is isometric with Cone0(X1 ∗ X2).

We give three references for the proof of the following important lemma.
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LEMMA I.2.19. ([37, p. 190], [221] or [54, Appendix]). Suppose X1 and X2

are metric spaces. The spherical join X1 ∗ X2 is CAT(1) if and only if both X1

and X2 are CAT(1).

I.3. POLYHEDRA OF PIECEWISE CONSTANT CURVATURE

In 6.2 we defined the notion of a convex polytope in Xn
κ . (As in 6.2 we are

primarily interested in κ ∈ {+1, 0,−1}.) Call such a convex polytope an Xκ -
polytope when we do not want to specify n. In Definition A.2.12, we explained
what it means for a poset P to be an abstract convex cell complex.

DEFINITION I.3.1. An Xκ -cell structure on an abstract convex cell complex
P is a family (Cp)p∈P of Xκ -polytopes so that if p < p′ and Fp is the
corresponding face of Cp′ , then there is an isometry Cp

∼= Fp inducing the
natural combinatorial identification of face posets. Thus, if 
 is the geometric
realization of P , we have an identification, well-defined up to isometry, of
each cell in 
 with an Xκ -polytope. We say that 
 is a Xκ -polyhedral
complex.

Examples I.3.2

(i) (Euclidean cell complexes.) Suppose a collection of convex
polytopes in En is a convex cell complex in the classical sense
(Definition A.1.9). Then the union 
 of these polytopes is a
X0-polyhedral complex.

(ii) (Regular cells.) As explained in Appendix 1, there are three families
of regular polytopes which occur in each dimension n: the n-simplex,
the n-cube, and the n-octahedron. Each face of a simplex is a
lower-dimensional simplex and each face of a cube is a
lower-dimensional cube. On the other hand, the faces of an
octahedron are simplices, not lower dimensional octahedra. By
requiring each cell of a complex to be one of the above two types
(simplices or cubes) we get the corresponding notion of a simplicial
complex (Definition A.2.6) or cubical complex (Definition A.2.12).
In each case we can be realize the polytope as a regular polytope in
Xn
κ and this polytope is determined, up to congruence, by its edge

length. (When κ > 0, there is an upper bound on this edge length,
namely, 2√

κ
arctan d

2 , where d is the edge length of the n-dimensional

regular polytope in Rn centered at the origin with vertices on Sn−1.)
Hence, we can define an Xκ -structure on a simplicial complex or a
cubical complex simply by specifying an edge length.
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Suppose 
 is a Xκ -polyhedral complex. A path γ : [a, b]→ 
 is piecewise
geodesic if there is a subdivision a = t0 < t1 · · · < tk = b so that for 1 � i � k
γ ([ti−1, ti]) is contained in a single (closed) cell of
 and so that the restriction
of γ to [ti−1, ti] is a geodesic segment in that cell. The length of the piecewise
geodesic γ is defined by l(γ ) :=∑n

i=1 d(γ (ti), γ (ti−1)), i.e., l(γ ) := b− a.

 has a natural length metric

d(x, y) := inf{l(γ ) | γ is a piecewise geodesic from x to y}.
(As usual we allow ∞ as a possible value of d.) The length space 
 is
called a piecewise constant curvature polyhedron. As κ = +1, 0,−1, we say
that it is, respectively, piecewise spherical, piecewise Euclidean, or piecewise
hyperbolic.

DEFINITION I.3.3. An Xκ -polyhedral complex 
 has finitely many shapes
of cells if its cells represent only finitely many isometry classes.

For a proof of the following basic result see [37].

PROPOSITION I.3.4. (See [37, pp. 105–111] as well as [221]). Let 
 be a
connected Xκ -polyhedral complex with its length metric. Suppose that either
(a) 
 is locally finite or (b) 
 has finitely many shapes of cells. Then 
 is a
complete geodesic space.

Geometric Links

Suppose x is a point in an n-dimensional Xκ -polytope P. The geometric link,
Lk(x, P), of x in P is the set of all inward-pointing unit tangent vectors at x.
It is (isometric to) an intersection of a finite number of half-spaces in Sn−1.
For example, if x lies in the interior of P, then Lk(x, P) ∼= Sn−1, while if x is
a vertex of P, then Lk(x, P) is a spherical polytope (i.e., it contains no pair
of antipodal points). Similarly, if 
 is an Xκ -polyhedral complex and x ∈ 
,
define Lk(x,
) to be the union of all Lk(x, P) where P is a cell of
 containing
x (i.e., if x ∈ P ∩ P′, we glue together Lk(x, P) and Lk(x, P′) along their
common face Lk(x, P ∩ P′). Since each such Lk(x, P) can be subdivided into
spherical polytopes, Lk(x, P) is a piecewise spherical length space. Lk(x,
)
should be thought of as the space of directions at x.

It is well-known (and follows immediately from Proposition I.2.17 (ii)) that
a surface of piecewise constant curvature κ has curvature � κ if and only if
the sum of the angles at each vertex is � 2π . In view of Exercise I.2.2 this
is the same as the requirement that the link of each vertex be CAT(1). In
Theorem I.3.5 below, we state a similar result for an arbitrary Xκ -polyhedral
complex: it has curvature � κ if and only if the link of each vertex is
CAT(1). So, this CAT(1) condition on links of vertices should be viewed as
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a generalization of the condition in dimension 2 that the sum of the angles
is �2π .

As in 6.2, identify Xn
κ with a certain hypersurface in a (n+ 1)-dimensional

vector space Eκ , equipped with a symmetric bilinear form. Eκ is Rn+1, Rn+1 or
Rn,1 as κ is, respectively, > 0, = 0 or < 0.) For any subset P ⊂ Xn

κ , let E(P) ⊂
Eκ denote the linear subspace spanned by P. Suppose P is a convex polytope in
Xn
κ , that F is a face of P and x ∈ F. E(F, P) denotes the orthogonal complement

of E(F) in E(P). The restriction of the bilinear form to E(F, P) is positive
definite and E(F, P) is naturally identified with the orthogonal complement
of TxF in TxP. (Here TxP denotes the tangent space at x.) In Appendix A.6, we
defined the notion of the “link” of a face of a convex polytope in some affine
space. We now define a similar notion forXκ -polytopes. Let Cone(F, P) denote
the essential polyhedral cone in E(F, P) consisting of all inward-pointing
tangent vectors and set

Lk(F, P) := Cone(F, P) ∩ S(E(F, P)), (I.3)

where S(E(F, P)) denotes the unit sphere in E(F, P). Thus, Lk(F, P) is spherical
polytope. Its dimension is 1 less than the codimension of F in P.

Suppose 
 is an Xκ -polyhedral complex and F is one of its cells. As in
Definition A.6.1, we have a cell complex Lk(F,
). By the previous paragraph
it is piecewise spherical (i.e., it is an X1-polyhedral complex). When we
wish to emphasize this piecewise spherical structure we will call Lk(F, P) the
geometric link. The following theorem is main result of this section. Details of
the proof can be found in [37, pp. 206–207].

THEOREM I.3.5. (The Link Condition.) Suppose 
 is an Xκ -polyhedral
complex with finitely many shapes of cells. The following conditions are
equivalent.

(a) 
 has curvature � κ .

(b) For each x ∈ 
, Lk(x,
) is CAT(1).

(c) For each v ∈ Vert(
), the piecewise spherical complex Lk(v,
) is
CAT(1).

(d) For each cell F of 
, Lk(F, L) has no closed geodesic of length
< 2π .

(e) For each cell F of 
, Lk(F, L) is CAT(1).

Sketch of proof. Since a neighborhood of x in
 is isometric to a neighborhood
of the cone point in Coneκ (Lk(x,
), the equivalence of (a) and (b) follows
from Proposition I.2.17. If x ∈ int(F) for some cell F of 
, then Lk(x,
)
is isometric to the spherical join Sdim F−1 ∗ Lk(F,
). So, the equivalence
of (b) and (e) follows from Lemma I.2.19. The equivalence of (d) and (e)
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follows from Theorem I.2.8 and induction on dimension. The equivalence
of (c) and (e) is just the fact that if v is a vertex of a cell F and σF is the
cell of Lk(v,
) corresponding to F, then we have a canonical identification:
Lk(σF, Lk(v,
)) ∼= Lk(F,
). �

Given a geodesic space X define its systole, sys(X), to be the infimum of the
lengths of all closed geodesics. Call a piecewise spherical complex large if it
is CAT(1). Theorem I.3.5 states that an Xκ -polyhedral complex has curvature
� κ if and only if it has large links (or equivalently, if and only if the link of
each of its cells has systole � 2π ).

A piecewise spherical complex L to be extra large if for each cell σ of L
(including the empty cell) sys(Lk(σ , L)) > 2π .

Infinitesimal Shadows

Suppose c : [a, b]→ 
 is a piecewise geodesic with c(t0) = x0. We then
get two geodesic arcs, cout : [t0, t0 + ε)→ 
 and cin : [t0, t0 + ε)→ 
, both
emanating from x0, defined by cout := c|[t0,t0+ε] and cin(t) := c(t0 − t). Let c′out
and c′in be their unit tangent vectors in Lk(x0,
). The proof of next lemma is
straightforward.

LEMMA I.3.6. (See [221, Lemmas 4.1 and 4.2].) A piecewise geodesic path
c : [a, b]→ 
 is a local geodesic at x0 if and only the distance from c′out to c′in
in Lk(x0,
) is � π .

Example I.3.7. Let S1(2π + δ) denote the circle of circumference 2π + δ,
δ � 0. It is CAT(1). Let Xκ := Coneκ (S1(2π + δ)). By Proposition I.2.17 (ii),
it is CAT(κ). Let θ1, θ2 ∈ S1(2π + δ) and define a path c : [−a, a]→ Xκ by

c(t) :=
{

[−t, θ1] if t � 0,

[t, θ2] if t � 0,

where, as usual, [t, θ ] denotes the image of (t, θ ) in the cone. By Lemmas I.2.16
and I.3.6, c is a geodesic if and only if d(θ1, θ2) � π . So, if δ > 0, there are
many ways to extend the geodesic c|[−a,0] past the cone point. These extensions
are parameterized by an arc of θ2’s, specifically, the arc of radius 1

2δ centered
at the point of distance π + 1

2δ from θ1.

The above example illustrates a dramatic difference between a (singular)
metric on piecewise constant curvature polyhedron and the metric on a
Riemannian manifold: in the singular case extensions of geodesic segments
need not be unique.

Suppose 
 is a piecewise constant curvature cell complex, x ∈ 
 and u ∈
Lk(x,
). The infinitesimal shadow of x with respect to u, denoted Shad(x, u),
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is the set of all v ∈ Lk(x,
) such that there is a geodesic c : [−a, a]→

 with c(0) = x and with unit tangent vectors at x, cin = u and cout = v.
Thus, Shad(x, u) measures the outgoing directions of possible extensions of
a geodesic coming into x from the direction u. (In particular, 
 has extendible
geodesics if and only if Shad(x, u) �= ∅, for all x ∈ 
 and u ∈ Lk(x,
).) For
example, if Lk(x,
) = Sn and u ∈ Sn, then Shad(x, u) = {−u}. As another
example, if, as in I.3.7, Lk(x,
) = S1(2π + δ), then the infinitesimal shadow
is an arc of radius 1

2δ.
The next lemma result follows immediately from Lemma I.3.6 and the

definition of infinitesimal shadow.

LEMMA I.3.8. With notation as above, Shad(x, u) = Lk(x, u)− B(u,π ),
where B(u,π ) is the open ball in Lk(x,
) of radius π with center u.

I.4. PROPERTIES OF CAT(0) GROUPS

Call a group CAT(0) if it is isomorphic to a discrete group of isometries acting
properly and cocompactly on some complete CAT(0) space.

THEOREM I.4.1. Suppose G is a CAT(0) group. Then

(i) There is a model for EG (the universal space for proper G-actions)
with EG/G compact.

(ii) G is finitely presented.

(iii) There are only finitely many conjugacy classes of finite subgroups
in G.

(iv) cdQ(G) <∞.

(v) H∗(G;Q) is finite dimensional.

(vi) The Word and Conjugacy Problems for G are solvable.

(vii) Any abelian subgroup of G is finitely generated.

(viii) Any virtually solvable subgroup of G is virtually abelian.

Properties (i) through (v) are finiteness properties of the type considered in
Appendix F.4. Property (i) is a consequence of the Bruhat-Tits Fixed Point
Theorem (Corollary I.2.13). Given that (i) holds, Corollary I.2.14 implies that
there is a CW model for EG with a finite number of orbits of cells. Properties
(ii) through (v) follow from this.

Property (vi) gives two standard algorithmic consequences for a group
which has such an action on a CAT(0) space. (The Word Problem is defined in
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Section 3.4. Similarly, the Conjugacy Problem for a group G asks if there is an
algorithm for deciding when any two given elements are conjugate.)

Properties (vii) and (viii) are related to the Flat Torus Theorem, discussed
below.

The Flat Torus Theorem

Suppose g is an isometry of a metric space X. Its displacement function
dg : X→ [0,∞) is defined by dg(x) := d(x, gx). Its translation length is the
nonnegative real number |g| := inf{dg(x) | x ∈ X}. The set of points where this
infimum is attained is denoted Min(g) (and called the min set of g). If G is a
subgroup of Isom(X), put

Min(G) :=
⋂
g∈G

Min(g). (I.4)

An isometry g is semisimple if Min(g) �= ∅; otherwise it is parabolic. There
are two types of semisimple isometries: if |g| = 0 (so that the fixed point set of
g is nonempty), g is called elliptic, while if |g| > 0, g is hyperbolic. If g is an
isometry of a CAT(0) space X, then g is hyperbolic if and only if there exists
a geodesic line R ↪→ X which is translated nontrivially by g. It turns out that
the magnitude of this translation is |g|. Such a geodesic line is called an axis
for g. Min(g) is the union of all its axes. (See [37, pp. 231–232] for proofs of
the statements in this paragraph.)

THEOREM I.4.2. (The Flat Torus Theorem, [37, pp. 244–245].) Let A be a
free abelian group of rank n acting by semisimple isometries on a CAT(0)
space X. Then

(i) Min(A) �= ∅ and it decomposes as a product Y × En.

(ii) Every a ∈ A stabilizes Min(A) and respects the product
decomposition. Moreover, a acts as the identity on the Y factor
and as a translation on the En factor.

(iii) For each y ∈ Y, (y× En)/A is a flat n-torus.

(iv) If an element of Isom(X) normalizes A, then it stabilizes Min(A) and
preserves the product decomposition.

(v) If a subgroup G ⊂ Isom(X) normalizes A, then a subgroup of finite
index in G centralizes A. Moreover, if G is finitely generated, then G
has a subgroup of finite index which contains A as a direct factor.

One corollary of the Flat Torus Theorem is property (vii) of Theorem I.4.1.
(See [37, pp. 247–248].) Another corollary is property (viii) which we state as
the following result.
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THEOREM I.4.3. (The Solvable Subgroup Theorem, [37, p. 249].) Suppose
G is a CAT(0) group and that H ⊂ G is a virtually solvable subgroup. Then H
is finitely generated and virtually abelian (i.e., H contains an abelian subgroup
of finite index).

I.5. PIECEWISE SPHERICAL POLYHEDRA

The Polar Dual of a Spherical Polytope

Suppose P ⊂ Sn is an n-dimensional spherical polytope and {v1, . . . , vk} is its
vertex set. Define k × k symmetric matrices

lij(P) := d(vi, vj) = cos−1〈vi, vj〉 (I.5)

and

c∗ij(P) := cos lij = 〈vi, vj〉. (I.6)

where d(vi, vj) is the length of the circular arc from vi to vj. In other words, if
{vi, vj} is an edge of P then lij(P) is its length.

Similarly, if u1, . . . , ul are the inward-pointing unit normal vectors to the
codimension one faces of P, define l× l symmetric matrices:

θij(P) := π − cos−1〈ui, uj〉 (I.7)

and

cij(P) := − cos θij = 〈ui, uj〉. (I.8)

By convention, θii := π . (θij(P)) is the matrix of dihedral angles of P and
(cij(P)) is its Gram matrix. (See equations (6.12) and (6.13) in Section 6.8.)

Given a matrix (lij)0�i,j�n, with lij ∈ (0,π ) for i �= j and lij = 0 for i = j,
define a matrix (c∗ij) by

c∗ij := cos(lij). (I.9)

The proof of the next lemma is essentially the same as that of Proposition 6.8.2.

LEMMA I.5.1. Suppose (lij)0�i,j�n is a symmetric matrix with lij ∈ (0,π )
whenever i �= j and lij = 0 for i = j. Then (lij) is the matrix of edge lengths
of a spherical n-simplex σ if and only if the matrix (c∗ij) is positive definite.

DEFINITION I.5.2. Suppose P ⊂ Sn is an n-dimensional spherical polytope
with vertex set {v1, . . . , vk}. Its polar dual is the polytope P∗ given by the
intersection of half-spaces in Sn defined by the inequalities 〈vi, x〉 � 0, i =
1, . . . , k. Equivalently, if u1, . . . , ul are the unit inward-pointing normals to the
codimension-one faces of P, then {u1, . . . , ul} is the vertex set of P∗.
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It is obvious that

• P and P∗ are combinatorially dual. (Recall from Appendix A.2 that this
means that their face posets are anti-isomorphic, i.e., F̃(P∗) ∼= F̃(P)op,
where F̃(P) is defined in Example A.2.3.)

• In particular, the dual of a spherical n-simplex σ is a spherical
n-simplex σ ∗. The vertices v0, v1, . . . , vn of σ are the inward-pointing
normals to the codimension-one faces of σ ∗ and vice versa.

• P∗∗ = P.

From (I.5) and (I.7) we get the following lemma.

LEMMA I.5.3. Suppose P is a spherical polytope and P∗ is its dual. Then the
edge lengths of P are the exterior dihedral angles of P∗. In other words,

lij(P) = π − θij(P
∗) and c∗ij(P) = cij(P

∗).

In Lemma 6.3.3 we proved that if all the dihedral angles of a spherical
polytope are nonobtuse, then it is a simplex. Combining this with Lemma I.5.3,
we get the following.

COROLLARY I.5.4. Suppose each nontrivial edge of a spherical polytope P
has length � π/2. Then P is a simplex.

Proof. By Lemma 6.3.3, P∗ is a simplex. Therefore, so is P. �

DEFINITION I.5.5. A face angle of an Xκ -polytope means an angle in some
2-dimensional (polygonal) face. An Xκ -polytope P has nonacute face angles
if each of its face angles is � π/2.

LEMMA I.5.6. If an Xκ -polytope has nonacute face angles, then it is simple.
(The definition of a “simple polytope” is given in Definition A.2.11.)

Proof. Suppose P is an Xκ -polytope and σ is the the link of a vertex v of P.
Then σ is a spherical polytope. Moreover, the edge lengths of σ are the face
angles at v of the 2-dimensional faces containing v. Hence, the edge lengths of
σ are all � π/2. By Corollary I.5.4, σ is a simplex. Since this is true at each
vertex, P is simple. �

DEFINITION I.5.7. A spherical simplex is all right if each of its edge lengths
is π/2. (It follows from (I.5) that a simplex is all right if and only if each of
its dihedral angles is π/2.) Similarly, a piecewise spherical simplicial complex
(i.e., an X1-simplicial complex) is all right if each of its simplices is all right.
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DEFINITION I.5.8. A spherical simplex has size � π/2 if each of its edge
lengths is � π/2. The phrase that a piecewise spherical simplicial complex
has simplices of size �π/2 has a similar meaning.

Examples I.5.9

(i) Since each dihedral angle in a Euclidean cube is π/2, the link of each
face of a Euclidean cube is an all right simplex. Hence, the link of
any cell in a piecewise Euclidean cubical complex is a piecewise
spherical, all right simplicial cell complex.

(ii) The link of a face of a simple polytope is a simplex. So, if all cells of
a complex 
 are simple polytopes, then the link of each cell in 
 is a
simplicial cell complex. The link of a vertex of a simple polytope P
with nonacute face angles is a simplex of size � π/2 and by
Lemma I.5.11 below, the same is true for the link of any face of P.
Hence, if each cell of an Xκ -polyhedral complex is a simple polytope
with nonacute face angles, then the link of each of its cells is a
simplicial cell complex of size � π/2.

The next lemma is obvious and its proof is left to the reader.

LEMMA I.5.10. Suppose L is a piecewise spherical, all right, simplicial
complex. Then the link of any simplex in L is all right.

However, the following generalization of the above lemma is not so obvious.

LEMMA I.5.11. (Moussong [221, Lemma 8.3].) Suppose L is a piecewise
spherical simplicial complex with simplices of size � π/2. Then the link of
any simplex in L also has simplices of size � π/2.

The proof depends on the next lemma.

LEMMA I.5.12. Suppose σ ⊂ Sn is a spherical simplex of size � π/2.
Let {v0, . . . , vn} be its vertex set. Then the spherical simplex Lk(v0, σ ) has
size � π/2.

Proof. Let p : Rn+1 → Rn+1 be orthogonal projection onto the hyperplane
(v0)⊥. Then Lk(v0, σ ) is the spherical (n− 1)-simplex wtih vertex set
{v̂1, . . . , v̂n}, where v̂i := p(vi)/|p(vi)|. (Here |x| := √〈x, x〉.) We must show
that for i �= j, 〈v̂i, v̂j〉 � 0, i.e., 〈p(vi), p(vj)〉 � 0. This is the calculation:

〈p(vi), p(vj)〉= 〈vi − 〈vi, v0〉v0, vj − 〈vj, v0〉v0〉
= 〈vi, vj〉 − 〈vi, v0〉〈vj, v0〉 � 0. �
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Proof of Lemma I.5.11. Suppose σ is a simplex of L, v ∈ Vert(σ ). Let σ ′ (resp.,
L′) be the full subcomplex spanned by Vert(σ )− {v} (resp., by Vert(L)− {v}).
If L has simplices of size � π/2, then so does L′. Also, Lk(σ , L) is naturally
identified with Lk(σ ′, L′). So, by induction on Card(Vert(L)), it suffices to do
the case where σ is a vertex. This case follows from Lemma I.5.12. �

I.6. GROMOV’S LEMMA

Gromov proved the following lemma in [147, p. 122].

LEMMA I.6.1. (Gromov’s Lemma.) Suppose L is an all right, piecewise
spherical simplicial complex. Then L is CAT(1) if and only if it is a flag
complex.

(Flag complexes are discussed in Appendix A.3.)

COROLLARY I.6.2. (Berestovskii [19].) Any polyhedron can be given a
piecewise spherical structure which is CAT(1).

Proof. As we pointed out in Remark A.3.10, since the barycentric subdivision
of any cell complex is a flag complex, L can be any polyhedron. �

Another important corollary of Gromov’s Lemma is the following.

COROLLARY I.6.3. A piecewise Euclidean cubical complex X is nonposi-
tively curved if and only if the link of each of its vertices is a flag complex.

Proof. This follows from Theorem I.3.5 and Examples I.5.9 (i). �

The basic idea in the proof of Gromov’s Lemma is the following.

LEMMA I.6.4. If L is an all right piecewise spherical flag complex, then the
length of any closed geodesic in L is � 2π .

Proof. Given any vertex v of L, its open star, denoted O(v, L), is the union of
all open simplices which have v as a vertex. It is an open neighborhood of v in
L. The closed star, Star(v, L), is the union of all closed simplices containing v.
Let γ be the image of a closed geodesic in L and v a vertex of L. Suppose
γ has nonempty intersection with O(v, L). Then c := γ ∩ Star(v, L) is an
arc of γ .

Claim. The length of c is π .

Proof of Claim. Due to the all rightness condition, the space Star(v, L) is
isometric to Cone1(Lk(v, L)) (the spherical cone on the link of v in L) and
we may identify Lk(v, L) with the metric sphere of radius π/2 about v in L.
If γ passes through v, the claim is obvious. So, suppose γ misses v. Consider
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the surface S ⊂ Star(v, L) defined as the union of all geodesic rays of length
π/2 emanating from v and passing through points of γ . S is a finite union of
isosceles spherical triangles of height π/2 with common apex at v, matched
together in succession along γ . Develop S along γ in a locally isometric
fashion into S2 . Assume that the image of v is the north pole. Under the
developing map the curve c must be mapped onto a local geodesic, therefore,
onto a segment of a great circle of S2. Since the image of c cuts inside the
northern hemisphere and connects two points on the equator, it must have
length π . �

It suffices to show that we can find two vertices, v, w, such that O(v, L) ∩
γ �= ∅, O(w, L) ∩ γ �= ∅ and O(v, L) ∩ O(w, L) = ∅. Put V = {v ∈ Vert(L) :
O(v, L) ∩ γ �= ∅}, then γ is contained in the full subcomplex of L spanned
by V . If O(v, L) ∩ O(w, L) �= ∅ held for all v, w ∈ V , then all pairs of vertices
in V would be connected by an edge in L. Since L is a flag complex,
V would span a simplex in L. But a simplex cannot contain a closed
geodesic. �

Proof of Gromov’s Lemma. If x is an interior point of a simplex σ of L,
then a neighborhood of x is isometric to a neighborhood of the cone point
in the spherical cone on Sdim σ−1 ∗ Lk(σ , L). By Proposition I.2.17 (ii) and
Lemma I.2.19, this neighborhood is CAT(1) if and only if Lk(σ , L) is CAT(1).
(This is basically the argument for the proof of Theorem I.3.5.)

Suppose L is a flag complex. The link of any simplex in a flag complex
is (obviously) also a flag complex. By Lemma I.5.10, it is all right. So, by
Lemma I.6.4, Theorem I.2.8 and induction on dimension, L is CAT(1) if and
only if for all simplices σ in L (including the empty simplex), Lk(σ , L) contains
no closed geodesic of length < 2π . Since we proved that this holds in the
previous lemma, L is CAT(1).

Conversely, if L is not a flag complex, then the link L′ of some simplex in
L must contain an “empty triangle,” i.e., a circuit of 3 edges in its 1-skeleton
which does not bound a 2-simplex. Since such a circuit is a closed geodesic in
L′ of length 3π/2, L′ is not CAT(1) and hence, neither is L. �

The No ���-Condition

Next we address the question of when an all right, piecewise spherical flag
complex is extra large. In other words, when is its systole > 2π?

An empty 4-circuit in a simplicial complex L is a circuit of 4 edges such
that neither pair of opposite vertices is connected by an edge. In other words,
the 4-circuit is a full subgraph of L1. (If L is a flag complex, a 4-circuit is
empty if and only if it is not the boundary of two adjacent 2-simplices.) The
simplicial complex L satisfies the no �-condition if it has no empty 4-circuits.
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(In Section 14.2, empty 4-circuits were called “full 4-cycles;” see Figure 14.2
for a picture of one.)

Gromov attributes the following result to Siebenmann. It follows from an
argument similar to the proof of Lemma I.6.4.

LEMMA I.6.5. ([147, p. 123].) Suppose L is an all right, piecewise spherical
flag complex. Then L is extra large if and only if it satisfies the no�-condition.

Proof. Note that if L satisfies the no�-condition, then so does the link of each
simplex of L. An empty 4-circuit in L is a closed geodesic of length 2π . So,
extra largeness implies the no �-condition.

Conversely, suppose that in L there is a closed geodesic γ of length 2π . As
in the proof of Lemma I.6.4, we can find vertices v and w such that γ has
nonempty intersection with both open stars O(v, L) and O(w, L) and such that
these open stars are disjoint. Moreover, the intersection of γ with either closed
star is an arc of length π . Since l(γ ) = 2π , Star(v, L) ∩ Star(w, L) must contain
at least 2 points of γ of distance π . It follows that the intersection must contain
at least 2 vertices not connected by an edge. Hence, we get an empty 4-circuit
passing through v and w. �

The next proposition follows from the arguments in Section 6.11 on the
nonexistence of right-angled polytopes in hyperbolic spaces of dimension> 4.

PROPOSITION I.6.6. Suppose L is an all right, piecewise spherical flag
complex which is

• a GHSn−1 and

• extra large.

Then n � 4.

(The notion of a GHSn−1 or “generalized homology (n− 1)-sphere,” was
defined in 10.4.5.)

Proof. Suppose L is a flag complex and a GHSn−1. We will show that if n > 4,
then L must contain an empty 4-circuit. The proof is basically the same as
that of Corollary 6.11.6. (This corollary deals with simple polytopes. In order
to translate it to our situation, one should think of L as being the dual of the
boundary complex of a simple polytope.)

Let σ be a simplex of codimension 2 in L. Since L is a generalized homology
sphere, the link of σ is a triangulation of S1 (i.e., it is the boundary of a
polygon). Let mσ be the number of edges in Lk(σ , L). As in Section 6.11,
let A2 be the average value of mσ .

Claim. (Compare Lemma 6.11.5.) If n > 4, then A2 < 5.
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Proof of Claim. Define fi to be the number of (n− i− 1)-simplices in L
(and fn = 1) and then define the h-polynomial of L by formula (6.24) of
Section 6.11. It is known that Lemma 6.11.4 holds for generalized homology
spheres, i.e., hi = hn−i and hi � 0. The estimate of A2 then proceeds exactly as
in the proof of Lemma 6.11.5. �

Since L is a flag complex, so is Lk(σ , L). Hence, each mσ > 3. If n > 4,
then, by the Claim, there must exist at least one σ with mσ = 4. Regarding
Lk(σ , L) as a subcomplex of L, we see that it is, in fact, an empty 4-circuit.
(Suppose to the contrary that there were an edge e connecting opposite edges
of this 4-circuit. Then L contains the 1-skeleton of the join e ∗ σ and hence, by
the flag condition, the entire simplex e ∗ σ . But then e represents another edge
in Lk(σ , L), a contradiction.) �

Deformations of Piecewise Spherical Structures

Suppose σ , σ ′ are spherical simplices. Let δ � 1. Call σ ′ a δ-change of σ
if there exists a bi-Lipschitz homeomorphism f : σ ′ → σ with Lipschitz
constant δ, i.e.,

1

δ
d(x, y) � d( f (x), f (y)) � δd(x, y).

f is called a δ-map. Similarly, given two piecewise spherical simplicial
complexes L′ and L, call L′ a δ-change of L if there exists a simplicial
isomorphism f : L′ → L which restricts to a δ-map on each simplex. Moussong
proved the following.

LEMMA I.6.7. (Moussong [221, Lemma 5.11].) Suppose L is a piecewise
spherical simplicial complex. For any positive number α < sys(L), there is a
number δ > 1 such that sys(L′) � α for any δ-change L′ of L.

Remark. In general, sys(L) is not an upper semicontinuous function of the
spherical structure on L. (In other words, it is not an upper semicontinuous in
the edge lengths of simplices of L.)

CAT(−1)-Cubical Complexes

As we pointed out in Example I.3.2, every cubical complex has a canonical Xκ
structure (once we specify the edge length of a cube) formed by declaring each
cube to be a regular polytope in Xκ . The most important case is when κ = 0;
however, κ < 0 is also interesting. There are two equivalent ways to look at
this. Either we can let the curvature κ vary and hold the edge length fixed or
we can vary the edge length ε and hold the curvature = −1. In the first way,
the dihedral angle between two codimension one faces of a cube increases to
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its Euclidean value of π/2 as κ → 0. In the second way, the dihedral angle
goes to π/2 as ε→ 0. We adopt the second point of view.

Suppose 
 is a cubical cell complex. It admits a family of piecewise
hyperbolic structures, parameterized by a positive real number ε, defined by
declaring each cube to be isometric to a regular cube of edge length ε in Hn.
Let 
ε denote 
 equipped with this structure. As we increase ε away from 0
the dihedral angle of each cube will decrease from π/2. In other words, the
piecewise spherical structure on the link of any vertex will be a δ-change of
the all right structure in which the edge lengths are< π/2. When will
ε have
curvature �− 1? By Theorem I.3.5 this will be the case if and only if the link
of each vertex is CAT(1). By Lemma I.6.7 such a δ-change of the all right
structure on a link will still be CAT(1), for δ sufficiently close to 1 if and only
if the original all right structure is extra large. If there are only a finite number
of isomorphism types of links, then for ε sufficiently small we will obtain a
sufficiently small δ-change of each link. Hence, we have the following.

PROPOSITION I.6.8. Suppose 
 is a locally finite cubical complex. Further
suppose that there are only finitely many isomorphism types of links of vertices
in
. Then
ε has curvature�−1 for some ε > 0 if and only if the link of each
of its vertices is a flag complex satisfying the no �-condition.

Combining this with Proposition I.6.6 we get the following.

COROLLARY I.6.9. Let 
 be a cubical complex endowed with a piecewise
hyperbolic structure so that each cube is regular. Suppose 


• is a homology n-manifold and

• has curvature �−1.

Then n � 4.

I.7. MOUSSONG’S LEMMA

Throughout this section, L is a piecewise spherical cell complex and each cell
is a simplex of size � π/2.

DEFINITION I.7.1. L is a metric flag complex if it is a simplicial complex
and if the following condition (∗) holds.

(∗) Suppose {v0, . . . , vk} is a set of vertices of L any two of which are
connected by an edge. Put cij = cos(d(vi, vj)). Then {v0, . . . , vk} spans a
simplex in L if and only if (cij) is positive definite.

In other words, L is a metric flag complex if it is “metrically determined by
its 1-skeleton.”
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Examples I.7.2

(i) Suppose a 1-dimensional simplicial complex L is a triangle with edge
lengths l1, l2, and l3. L is the boundary of a spherical 2-simplex if and
only if l1 + l2 + l3 < 2π and the three triangle inequalities hold. (See
the discussion at the beginning of Section 6.5.) Hence, L is a metric
flag complex if and only if the sum of the three edge lengths is � 2π .
If the sum is < 2π , it is necessary to fill in the spherical 2-simplex to
get a metric flag complex.

(ii) Any flag complex with its all right, piecewise spherical structure is a
metric flag complex.

LEMMA I.7.3. The link of a simplex in a metric flag complex is a metric flag
complex.

Proof. Suppose L is a metric flag complex. Let RS be the vector space on the
vertex set of L. As in formula (I.10) below, we have a symmetric bilinear form
〈 , 〉 on RS defined by

〈vi, vj〉 :=




1 if i = j,

cos(d(vi, vj)) if {vi, vj} ∈ Edge(L),

−1 if {vi, vj} /∈ Edge(L).

As in the proof of Lemma I.5.11, it suffices to prove the case of a link of
a vertex v0 in L. Let T be the union of {v0} with the set of vertices which
are connected to v0 by an edge of L. Let V (:= (v0)⊥) denote the orthogonal
complement of v0 in RT and let p : RT → V be orthogonal projection. As in
I.5.11, put v̂i := p(v)/|p(vi)|. For i �= 0, the v̂i can be identified with the vertices
of Lk(v0, L). Suppose v̂1, . . . , v̂k are pairwise connected by edges in Lk(v0, L).
To prove the lemma we must show that the restriction of the bilinear form
to Span(v̂1, . . . v̂k) is positive definite if and only if it is positive definite on
Span(v0, v1 . . . vk). This is obvious. �

The following result of [221] generalizes Gromov’s Lemma.

LEMMA I.7.4. (Moussong’s Lemma.) Suppose L is a piecewise spherical cell
complex in which all cells are simplices of size� π/2. Then L is CAT(1) if and
only if it is a metric flag complex.

We sketch a proof taken from [182] (or [90]). The argument is fairly simple
if one is willing to assume the following lemma of Bowditch. It gives a
characterization of CAT(1) spaces. Call a closed rectifiable curve in a metric
space shrinkable if it can be homotoped through a family of closed rectifiable
curves so that the lengths of the curves do not increase and do not remain
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constant during the homotopy. (Note that a shrinkable closed curve in a
compact space is always shrinkable to a constant curve.) Bowditch [33] uses
the Birkhoff curve-shortening process to prove the following.

LEMMA I.7.5. (Bowditch’s Lemma.) Let X be a compact metric space of
curvature �1. Suppose that every nonconstant closed rectifiable curve of
length < 2π is shrinkable in X. Then X is CAT(1).

Proof of Moussong’s Lemma. As in Gromov’s Lemma I.6.1, the “only if”
implication is easy; it is left as an exercise for the reader. Let L be a
metric flag complex in which all simplices have size �π/2. These properties
are inherited by links (Lemmas I.5.11 and I.7.3). By Theorem I.3.5 and
induction on dimension, we may assume that L has curvature �1. Suppose
that L is not CAT(1). Then by Bowditch’s Lemma there exists a nonconstant,
nonshrinkable, closed curve of length <2π in L. Choose a shortest possible
among such curves. This curve, denoted γ , is a nonshrinkable closed geo-
desic of length <2π . Since L consists of simplices of size �π/2, for each
vertex v of L, the closed π/2-ball Bv about v is isometric to the spherical
cone Cone1(Lk(v, L)) and is contained in the star Star(v, L). It is easy to
see that L is covered by the interiors of balls Bv, v ∈ Vert(L). As in the
proof of Lemma I.6.4, γ ∩ Bv is an arc of length π whenever γ meets the
interior of Bv.

Suppose a vertex v is such that γ meets the interior of Bv and does not pass
through v. Let us perform the following modification on γ : replace the segment
γ ∩ Bv with the union of the two geodesic segments from v to γ ∩ ∂Bv. This
modification can clearly be achieved via a homotopy through curves that have
constant length. It follows that the modified closed curve continues to be a
nonshrinkable closed geodesic of same length. Repeated application of such
modifications results in a nonshrinkable closed geodesic that passes through
the maximum number of vertices. Such a curve is necessarily contained in the
1-skeleton of L. Since all edges have length � π/2, the curve is a 3-circuit in
the 1-skeleton. But in a metric flag complex every 3-circuit of perimeter < 2π
is the boundary of a 2-simplex. Therefore, it cannot be a closed geodesic, a
contradiction. �

The Nerve of an Almost Negative Matrix

Let S be a finite set. Following [221], call a symmetric S× S matrix (cst) almost
negative if each entry on the diagonal is > 0 and each off-diagonal matrix is
� 0. An almost negative matrix is normalized if each diagonal entry is 1. Any
almost negative matrix C can be normalized to C′ := DCD where D := (dst)
is the diagonal matrix defined by dss := 1/

√
css. C′ is the normalization of

C. Suppose C = (cst) is a normalized almost negative matrix. Note that C is
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positive definite if and only if it is the cosine matrix associated to the set of
edge lengths of a spherical simplex (as in (I.9)). For each T ⊂ S let CT be the
T × T submatrix obtained by considering only the entries indexed by T × T .
We associate to a normalized almost negative matrix C a piecewise spherical
metric flag complex L (= L(C)) as follows: Vert(L) := S and a nonempty
subset T of S is the vertex set of a simplex σT in L if and only if CT is positive
definite. L(C) is called the nerve of C. The piecewise spherical structure is
defined by identifying σT with the spherical simplex with cosine matrix CT .
In particular, distinct vertices s and t are connected by an edge if and only if
0 � cst > −1 and if this is the case, the length lst of the edge is cos−1(cst).

A symmetric T × T matrix (cst) is decomposable if there is a nontrivial par-
tition T = T ′ ∪ T ′′ so that cst = 0 for all s ∈ T ′, t ∈ T ′′. If CT is decomposable,
write CT = CT ′ ⊕ CT ′′ . Note that if CT has such a decomposition, then L(CT )
is the spherical join L(CT ′) ∗ L(CT ′′ ).

Extra Largeness

Besides proving Lemma I.7.4, Moussong established the following generaliza-
tion of the no �-condition (Lemma I.6.5).

LEMMA I.7.6. (Moussong [221, Lemma 10.3].) Suppose C is an S× S
normalized almost negative matrix. Then any closed geodesic of length 2π
is contained in a subcomplex of the form L(CT ), for some T ⊂ S, where
either CT

(a) is indecomposable and positive semidefinite of rank equal to
Card(T)− 1, with Card(T) � 3 or

(b) decomposes as CT = CT ′ ⊕ CT ′′ , with neither CT ′ nor CT ′′ positive
definite.

Any metric flag complex with simplices of size� π/2 arises as the nerve of
a normalized almost negative matrix. Indeed, given such an L, set

cst :=




1 if s = t,

cos(lst) if {s, t} ∈ Edge(L),

−1 if {s, t} /∈ Edge(L),

(I.10)

where lst denotes the length of the edge spanned by {s.t}. The matrix (cst) is
almost negative (since lst � π/2 whenever {s, t} ∈ Edge(L)). Moreover, L is
the nerve of this matrix.

Given a subset T of vertices of a piecewise spherical complex L, let LT

denote the full subcomplex spanned by T .
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COROLLARY I.7.7. Suppose L is a piecewise spherical metric flag complex
with simplices of size � π/2. Then L is extra large if and only if for all
T ⊂ Vert(L) neither of the following conditions holds:

(a) LT is isometric to the polar dual of a Euclidean simplex of dimension
� 2.

(b) T = T ′ ∪ T ′′ and LT is isometric to the spherical join LT ′ ∗ LT ′′ ,
where neither T ′ nor T ′′ is the vertex set of a simplex in L.

Proof. We deduce this from Lemma I.7.6. Suppose L is associated to the
normalized almost negative matrix C = (cst). Let U ⊂ S be such that CU is in-
decomposable, positive semidefinite of corank 1 and Card(U) � 3. Let T ⊂ U
be a minimal subset such that CT is not positive definite. Then Card(T) �= 2.
(Otherwise, CT =

(
1 −1
−1 1

)
. By calculating a 3× 3 determinant we see that

any 3× 3 positive semidefinite matrix containing this matrix as a 2× 2 minor
must have all other off-diagonal entries equal to 0. So, if CT if 2× 2, CU is
decomposable.) T has the property that for every nonempty, proper subset T ′

of T , CT ′ is positive definite. By Proposition 6.8.8, CT is the Gram matrix of a
Euclidean simplex, i.e., LT is polar dual of this same simplex. Thus, condition
(a) of the corollary is equivalent to condition (a) of Lemma I.7.6. �

I.8. THE VISUAL BOUNDARY OF A CAT(0)-SPACE

Here we explain how to adjoin a space ∂X of “ideal points” to a complete
CAT(0)-space X obtaining X = X ∪ ∂X. When X is locally compact, X will be
a compactification of X. We give several equivalent definitions of ∂X.

Fix a base point x0 ∈ X. The rough idea is that X is formed by adding an
“endpoint” c(∞) to each geodesic ray c : [0,∞)→ X beginning at x0. ∂X
is the set of such endpoints. In other words, ∂X is the set of geodesic rays
emanating from x0. The topology on X is the “inverse limit topology” (called
the “cone topology” in [37]). It can be described as follows. Consider the
system of closed balls centered at x0, {B(x0, r)}r∈[0,∞). For each s > r, there is
a retraction ps,r : B(x0, s)→ B(x0, r), defined as the “nearest point projection.”
In other words, if c is a geodesic segment starting from x0, then ps,r takes
c(t) to itself when 0 � t � r and to c(r) when r < t � s. This gives an inverse
system of balls. (See Appendix G.1 for a discussion of inverse systems.) The
inverse limit is denoted lim←−B(x0, r). A point in lim←−B(x0, r) can be identified
with a map c : [0,∞)→ X such that c(0) = x0 and ps,r(c(s)) = c(r) for all
s > r. There are two types of such maps: either c(s) �= c(r) for all s > r (in
which case c is a geodesic ray) or else there is a minimum value r0 such that
c(s) = c(r0) (in which case c is a geodesic on [0, r0] followed by the constant
map on [r0,∞)). There is an obvious bijection φ : X→ lim←−B(x0, r) which
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associates to x ∈ X the map cx : [0,∞)→ X whose restriction to [0, d(x0, x)]
is the geodesic segment from x0 to x and which is constant on [d(x0, x),∞).
The inverse limit has a natural topology (as a subspace of the direct product).
It is compact if X is locally compact. The map φ takes X homeomorphically
onto an open dense subset of the inverse limit. So, it makes sense to topologize
X by declaring φ to be a homeomorphism.

Examples I.8.1. If X = En or Hn, then X is homeomorphic to the n-disk Dn

and ∂X to Sn−1 (the “sphere at infinity”).

The problem with the previous definition is its dependence on the choice of
base point x0. This is remedied as follows. Call two geodesics c : [0,∞)→ X
and c′ : [0,∞)→ X with possibly different base points x0 and x′0, parallel
if there exists a constant C such that d(c(t), c′(t)) � C for all t. This is an
equivalence relation on the set of geodesic rays. The equivalence class of c
is denoted c(∞). For any choice of x0, the equivalence class of any ray has a
unique representative emanating from x0. (This follows from the fact that X is
CAT(0), cf. [37, p. 261].) Moreover, different choices of base point yield the
same topology on X ([37, p. 264]). It is often better to regard ∂X as the space
of parallel classes of geodesic rays in X. For example, from this point of view,
it is clear that the action of Isom(X) on X extends to the boundary.

Horofunctions

Let C(X) be the vector space of real-valued, continuous functions on X,
equipped with the topology of uniform convergence on bounded sets. C(X)
denotes its quotient by the 1-dimensional subspace of constant functions. The
equivalence class of a continuous function f is denoted f . Define an embedding
ι : X ↪→ C(X) by ι(x) := dx, where dx(y) := d(x, y). The closure of ι(X) in C(X)
is denoted X̂. The following theorem is proved in [37, pp. 267–271].

THEOREM I.8.2. The map ι : X→ X̂ extends to a homeomorphism X→ X̂.

A function h ∈ C(X) is a horofunction if its image in C(X) lies in X̂ − ι(X).
Suppose c : [0,∞)→ X is a geodesic ray. The Busemann function associated
to c is the function bc ∈ C(X) defined by

bc(x) := lim
t→∞(d(x, c(t))− t).

Its image bc in C(X) depends only on the parallel class of c. The content of
Theorem I.8.2 is that every horofunction is the Busemann function of a unique
parallel class of geodesic ray.
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ZZZ-Set Compactications

A compact Hausdorff space Y is a Euclidean neighborhood retract (an “ENR”
for short) if it is finite dimensional and locally contractible. A closed subset
Z of an ENR Y is a Z-set if for every open subset U ⊂ Y , the inclusion
U − Z ↪→ U is a homotopy equivalence. Y is called a Z-set compactification
of Y − Z. The standard example of this is where Y is a compact manifold with
boundary and Z is a closed subset of its boundary.

THEOREM I.8.3. Suppose X is a finite-dimensional, complete, locally com-
pact, CAT(0)-space. Then

(i) ∂X is a Z-set in X.

(ii) H∗c (X) ∼= H∗(X, ∂X) ∼= Ȟ∗−1(∂X), where Ȟ∗( ) means reduced
Cěch-cohomology.

Proof. (i) Given t ∈ (0,∞), let Rt : [0,∞]→ [0, t] be the obvious retraction.
Given a continuous function f : ∂X→ (0,∞), let rf : X→ X be the map
which retracts each geodesic ray c starting at x0 onto the restriction of the ray
to [0, f (c(∞))]. This is a deformation retraction onto rf (X). Given an open set
U ⊂ X, we can choose f so that rf : U→ U − ∂X is a homotopy equivalence.
It follows that X is locally contractible (since any CAT(0)-space is locally
contractible) and that ∂X is a Z-set.

(ii) Since X is compact and ∂X is a Z-set, it follows from the defini-
tions in Appendix G.2 that H∗c (X) = H∗(X, ∂X) and H∗e (X) = Ȟ∗(∂X), where
H∗e (X) denotes the end cohomology of X. (Compare Theorem G.2.2.) Since
X is contractible, the long exact sequence of the pair gives H∗(X, ∂X)
∼= Ȟ∗−1(∂X). �

Polyhedra with Isolated PL Singularities

In this paragraph 
 is an Xκ -polyhedral complex and a complete CAT(κ)-
space. Further suppose that the link of each vertex is a PL n-manifold. To
simplify notation, for each v ∈ Vert(
), write L(v) instead of Lk(v,
). Choose
a base point x0 not in Vert(
). In the next theorem we consider the inverse
system of metric spheres ∂B(x0, r) centered at x0.

THEOREM I.8.4. ([83].) With hypotheses as above, suppose v1, . . . , vm are
the vertices of 
 which lie in B(x0, r). Then

(i) ∂B(x0, r) = L(v1)� · · · �L(vm), where the symbol � means connected
sum.

(ii) The inverse system of metric spheres is pro-isomorphic to the inverse
system {L(v1)� · · · �L(vm)}, where the bonding maps are the obvious
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ones which collapse those factors in the domain which are not in the
range. Hence, ∂
 = lim←−(L(v1)� · · · �L(vm)).

(iii) Suppose 
 is a (n+ 1)-dimensional PL manifold (i.e., suppose the
link of each of its vertices is PL homeomorphic to Sn). Then its
compactification 
 is homeomorphic to Dn+1 and ∂
 is
homeomorphic to Sn.

Sketch of proof. A corollary to Theorem I.2.5 is that in a CAT(1)-space, any
open ball of radius � π is contractible. In the case at hand, the CAT(1)-space
is a link of the form L(v) and hence, is a PL n-manifold. So, if we extend the
statement of the theorem to κ > 0 by making the obvious modification for open
balls of radius � π/√κ , then, by induction on dimension, we can assume that
for each v ∈ Vert(
), u ∈ L(v) and r < π , we have proved B(u, r) ∼= Dn (where
B(u, r) means the closed ball in L(v)). Moreover, B(u,π ) ∼= Rn.

Define ρ : 
→ [0,∞) by ρ(x) := d(x0, x). The level set ρ−1(r) is the metric
sphere ∂B(x0, r). This is analogous to the usual picture in Morse theory. The
vertices of 
 play the role of the critical points of ρ. The topological type of
a level set does not change if there is no vertex in the region between ρ−1(r)
and ρ−1(r + ε); however, when the level set crosses a vertex v, the effect is to
remove an n-disk of the form B(u, r) for some u ∈ L(v) and r < π and replace
it with L(v)− B(u, r). In other words, the level set changes by taking connected
sum with L(v). This is the argument for (i). Statement (ii) follows. As for (iii),
if 
 is a PL (n+ 1)-manifold, then each L(v) is PL homeomorphic to Sn. By
(i) and (ii) each metric sphere is homeomorphic to Sn and ∂
 ∼= Sn. Similarly,
one can see directly that 
 ∼= Dn+1. �

Remark I.8.5. The notion of a “word hyperbolic group” was defined in 12.5.
Given a word hyperbolic group �, Gromov [147] showed how to associate
a compact metric space ∂�. If � acts isometrically and cocompactly on a
CAT(0)-space X, then ∂� is homeomorphic in ∂X. (In particular, if � acts
this way on two different CAT(0)-spaces, their boundaries are homeomorphic.)
More generally, it is a result of Bestvina and Mess [25] that the Rips complex
of � has an equivariant Z-set compactification formed by adjoining ∂�.

NOTES

The basic reference for the material in this appendix is the book [37] of Bridson and
Haefliger. Their notation is somewhat different from ours. For example, they use Mκ

instead of Xκ to denote a space of constant curvature κ . The organization of this
appendix is similar to that in my expository paper [90] written with G. Moussong.

I.2. In the 1940s and 1950s, A. D. Aleksandrov introduced the notion of a length space
and the idea of curvature bounds on length spaces. He was primarily interested in
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lower curvature bounds (defined by reversing the CAT(κ)-inequality). Aleksandrov’s
motivation was the following classical problem of H. Weyl: is every positvely curved
Riemannian metric on S2 isometric to the boundary of a convex body in E3? This was
answered affirmatively for analytic metrics by H. Lewy. The answer was later extended
to Ck metrics for k � 4 by Nirenberg and eventually for k � 2 by Heinz. It was proved
for C2 metrics in 1942 by Aleksandrov using polyhedral techniques. Somewhat later
Pogorelov proved that a geodesic metric on the 2-sphere has nonnegative curvature
if and only if it is isometric to the boundary of a convex body. Pogorelov first
showed that any nonnegatively curved piecewise flat metric on S2 was isometric to
the boundary of a convex polytope. He deduced the general result from this by using
approximation techniques. (For a nice discussion of Weyl’s problem including a list of
further references, see [263, pp. 226–227].)

Call a smooth convex hypersurface in Minkowski space Rn,1 spacelike if it has
a spacelike normal vector at each point. (See 6.2 for the definitions of Rn,1 and
of a “spacelike” vector.) It follows from Gauss’ equation that a spacelike, convex
hypersurface in Rn,1 is a nonpositively curved Riemannian manifold (e.g., Hn is
nonpositively curved.) More generally, any piecewise Euclidean, spacelike, convex
hypersurface in Rn,1 is CAT(0), cf. [61].

Another early paper on nonpositively curved spaces was Busemann’s [46].
Gromov’s version of the Cartan–Hadamard Theorem (Theorem I.2.7) is stated

in [147]. A proof can be found in Ballman’s article in [138, pp. 195–196] under
the additional hypothesis that X is locally compact. A proof which doesn’t use this
hypothesis can be found in [37, Chapter II.4]; the argument there follows the one given
in [3].

The CAT(κ) terminology was introduced by Gromov [147]. When asked what it
abbreviates, he sometimes answers “Cartan, Aleksandrov, Toponogov;” other times
Cartan is replaced by “Comparison.”

The proof of Proposition I.2.10 (asserting the existence of a center of a bounded set)
is taken from [37, p. 179].

I.3. The first person to focus attention on nonpositively curved polyhedral metrics was
Gromov in his seminal paper [147]. Soon afterwards, proofs of many of the basic facts
about piecewise constant curvature polyhedra were given by Moussong in his thesis
[221].

I.4. In the context of Riemannian manifolds, the Flat Torus Theorem and the Solvable
Subgroup Theorem were proved independently by Gromoll and Wolf [143] and by
Lawson and Yau [186]. In [147] Gromov states that both results hold for CAT(0) spaces.
As indicated in our exposition, proofs were provided by Bridson and Haefliger in [37].

I.5. The boundary of an n-dimensional spherical polytope P is a piecewise spherical
structure on Sn−1 and it satisfies the “reverse CAT(1)-inequality” (as does the boundary
of any convex body in Sn). In particular, the boundary of the polar dual of P satisfies
the reverse CAT(1)-inequality. Given an n-dimensional Euclidean polytope P ⊂ En, its
polar dual is the cellulation of Sn−1 obtained by taking all normal vectors to ∂P. (The
(n− 1)-cells of this cellulation are the polar duals of the spherical polytopes of the
form Lk(v, P), v ∈ Vert(P).) Similarly, the polar dual of a polytope P in Hn is a piece-
wise spherical structure on Sn−1. It is proved in [58] that it is CAT(1). (In fact, it is
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“extra large” in the sense of the definition following Theorem I.3.5.) Conversely, Rivin
and Hodgson [246] proved that a piecewise spherical structure on S2 was CAT(1) and
extra large if and only if it was the polar dual of a polytope in H3.

I.6. During the last fifteen years nonpositively curved cubical complexes have become
ubiquitous in geometric group theory e.g., see [24, 59, 88, 90, 91, 187, 228, 251]. There
are two reasons for this: first, along with simplicial complexes, cubical complexes
are the most likely to occur in nature and second, Gromov’s Lemma I.6.1 (or more
precisely, Corollary I.6.3) gives a combinatorial condition for nonpositive curvature
(links are flag complexes) which is easy to check.

Corollary I.6.3 has many further applications. For example, as explained in [83]
and [236], it is the reason why Gromov’s “hyperbolization procedures” produce
nonpositively curved spaces. It is also the basic mechanism behind the proofs in [84, 85]
that various blowups of real projective space are nonpositively curved.

I.7. The basic reference for Moussong’s Lemma is his Ph.D. thesis, [221]. Our proof
here closely follows the exposition in [90, pp. 64–65]. The best example of a metric
flag complex is the nerve of a Coxeter system (W, S) with its natural piecewise
spherical structure and the best application of Moussong’s Lemma is Moussong’s
Theorem 12.3.3, which states that �(W, S) is CAT(0). Similarly, the most important
application of Lemma I.7.6 is Moussong’s result (Corollary 12.6.3) on the word
hyperbolicity of W. These results are explained in Chapter 12.

I.8. A good reference for this material is [37, Chapter II.8]. Busemann functions and
horofunctions are discussed in [15]. Other references include [23, 83, 104]. Most of
Theorem I.8.4 comes from [83]. Case (iii) of this theorem is similar to a result proved
earlier by D. Stone [271]: he showed that when 
 is a PL (n+ 1)-manifold, it is PL
homeomorphic to Rn+1.

In [23] Bestvina discusses the notion of a “Z-set compactification” of a group �.
This means a proper action of � on a contractible ENR X (i.e., an “ER”) together with
a Z-set compactification to X.
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Appendix J

L2-(CO)HOMOLOGY

J.1. BACKGROUND ON VON NEUMANN ALGEBRAS

Suppose H is a Hilbert space with inner product 〈 , 〉. Let L(H) be the algebra
of bounded linear operators on H, i.e., all continuous linear endomorphisms
ϕ : H→ H. The operator norm of ϕ, denoted ‖ϕ‖, is the supremum over all
x in the unit ball of H of ‖ϕ(x)‖. The topology on L(H) defined by this norm
is called the uniform topology, since with this topology a sequence converges
if and only if it converges uniformly on all bounded subsets of H. The weak
topology on L(H) is defined as follows. Suppose E = {(x1, y1), . . . (xn, yn)} is
a finite collection of pairs in H. Let UE denote the set of ϕ ∈ L(H) such that
〈ϕ(xi), yi〉 < 1, for i = 1, . . . , n. The weak topology is defined so that {UE } is
a neighborhood basis of 0 (and so that translation is a homeomorphism). It is
the weakest topology in which the maps L(H)→ C defined by ϕ→ 〈ϕ(x), y〉
are continuous for all x, y ∈ H.

A unital subalgebra A ⊂ L(H) is a ∗-algebra if it is closed under taking
adjoints. (Unital means that it contains the identity operator.) It is a C∗-algebra
if, in addition, it is closed in the uniform topology. It is a von Neumann
algebra if it is also closed in the weak topology. For any ∗-algebra A ⊂ L(H),
its commutant A′ is the set of all ϕ ∈ L(H) which commute with A; its
bicommutant is A′′. Obviously, A ⊂ A′′. Basic facts are that A′′ is a von
Neumann algebra and thatA is a von Neumann algebra if and only ifA = A′′.

The center of A always contains the scalar multiples of the identity; if there
is nothing else, we say it has trivial center. A von Neumann algebra is a factor
if it has trivial center. Every von Neumann algebra is a direct integral of factors.

J.2. THE REGULAR REPRESENTATION

Suppose � is a countable discrete group. L2(�) denotes the vector space of
square-summable, real-valued functions on �, i.e.,

L2(�) :=
{

f : �→ R
∣∣∣∣
∑

f (γ )2 <∞
}
.
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It is a Hilbert space with inner product 〈 , 〉 defined by

〈 f , f ′〉 :=
∑
γ∈�

f (γ )f ′(γ ). (J.1)

The group algebra R� can be identified with the dense subspace of L2(�)
consisting of the functions with finite support. For each γ ∈ �, eγ denotes
the characteristic function of {γ }, i.e.,

eγ (γ ′) :=
{

1 if γ = γ ′,
0 otherwise.

So {eγ }γ∈� is an orthonormal basis for L2(�) in the sense that it spans a dense
subspace. There is a left action of � on L2(�) defined by right translation:

(γ · f )(γ ′) := f (γ ′γ ).

This action is called the left regular representation of �. Similarly, left
translation defines the right regular representation. Both actions are orthogonal
with respect to the inner product (J.1). The left �-action gives L2(�) the
structure of a left R�-module and similarly, for the right action. Given x =∑

xγ eγ ∈ R�, put |x| :=∑ |xγ |. Then, for any f ∈ L2(�),

‖x · f‖ �
∑
γ∈R�
|xγ | ‖γ · f‖ = |x| ‖f‖, (J.2)

where ‖f‖ := 〈 f , f 〉 is the L2 norm. In other words, the left action of x on
L2(�) is a bounded operator and similarly, for the right action. The adjoint of
translation by eγ is translation by eγ−1 . So we have proved the following.

LEMMA J.2.1. Both the left and right actions make R� into a ∗-algebra of
bounded linear operators on L2(�).

Let (R�)n (resp. ((L2(�))n) denote the direct sum of n copies of R� (resp.
of L2(�)). Using (J.2), we get the following.

LEMMA J.2.2. ([113, Lemma 2.2.1, p. 190].) Let ϕ : (R�)n → (R�)m be a
morphism of free left R�-modules (i.e., a �-equivariant linear map). Then the
induced map � := L2(�)⊗R� ϕ : (L2(�))n → (L2(�))m is bounded.

Proof. We can represent ϕ by right multiplication by the matrix X = (xij),
with xij ∈ R�. In other words, ϕ takes the row vector a = (a1, . . . , an) to a · X.
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Then � takes the row vector f = ( f1, . . . , fn) ∈ (L2(�))n to f · X. So,

‖f · X‖2=
∑

j

∥∥∥∥
∑

i

fixij

∥∥∥∥
2

�
∑

i,j

|xij|2‖ fi‖2

�
( ∑

i, j

|xij|2
)
‖f‖2,

which means � is bounded. �

Suppose V and V ′ are Hilbert spaces with orthogonal �-actions. By a map
from V to V ′ we will always mean a �-equivariant, bounded linear map
f : V → V ′. The kernel of a map is a closed subspace; however, the image
need not be. The map f is a weak surjection if its image is dense in V ′; it is a
weak isomorphism if, in addition, it is injective. A sequence of maps

· · · −→ V
f−→ V ′

g−→ V ′′ · · ·
is weakly exact at V ′ if Im f = Ker g.

Hilbert �-Modules

A Hilbert space with orthogonal �-action is a Hilbert �-module if it is
isomorphic to a closed �-stable subspace of a finite (orthogonal) direct sum
of copies of L2(�) with the diagonal �-action. (In the literature such a Hilbert
space with orthogonal �-action is sometimes called a “finitely generated”
Hilbert �-module.)

Example J.2.3. If F is a finite subgroup of �, then L2(�/F), the space of
square summable functions on �/F, can be identified with the subspace of
L2(�) consisting of the square summable functions on � which are constant on
each coset. This subspace is clearly closed and �-stable; hence, L2(�/F) is a
Hilbert �-module.

Example J.2.4. (The completed tensor product) Suppose � = �1 × �2 and
for j = 1, 2, that Vj is a Hilbert �j-module. The L2-completion of the tensor
product is denoted V1⊗̂V2. It is a Hilbert �-module.

Next we want to state a mild generalization of Lemma J.2.2 which will be
needed in the next section. Suppose

E =
n⊕

i=1

R(�/Fi) and E′ =
m⊕

j=1

R(�/F′j),
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where Fi and F′j are finite subgroups of �. Then V = L2(�)⊗R� E and V ′ =
L2(�)⊗R� E′ are Hilbert �-modules.

LEMMA J.2.5. With notation as above, let ϕ : E→ E′ be a morphism left
R�-modules. Then the induced map � := L2(�)⊗R� ϕ : V → V ′ is bounded
and hence is a map of Hilbert �-modules.

Proof. Let p : (R�)n → E be orthogonal projection and ι : E′ → (R�)m in-
clusion. Then ι ◦ ϕ ◦ p : (R�)n → (R�)m is �-equivariant and hence can
be represented by an (n× m)-matrix with coefficients in R� as in the
proof Lemma J.2.2. As before, this same matrix represents �; so, � is
bounded. �

An isomorphism of finite-dimensional Hilbert spaces can be factored as the
composition of a self-adjoint map and an isometry (“polar decomposition”).
This fact can be promoted to the following.

LEMMA J.2.6. ([113, Lemma 2.5.3, p. 194].) If two Hilbert �-modules are
weakly isomorphic, then they are �-isometric.

Proof. Suppose f : V1 → V2 is a weak isomorphism. Then f ∗◦ f : V1 → V1 is
self-adjoint, positive definite, and has dense image. Put

g =
√

f ∗◦ f .

Then g is self-adjoint, positive definite, and Im(g) ⊃ Im( f ∗◦ f ). Put h :=
f ◦ g−1 : Im(g)→ V2. We compute

〈h(x), h(y)〉= 〈 f ∗ ◦ ( f ◦ g−1)(x), g−1(y)〉 = 〈(g2 ◦ g−1)(x), g−1(y)〉
= 〈(g ◦ g−1)(x), (g∗ ◦ g−1)(y)〉 = 〈x, y〉;

so h : Im(g)→ Im( f ) is an isometry. Hence, it extends to an isometry V1 →
V2, which we also denote by h. We easily check that since f and f ∗ are
�-equivariant so are g and h. So h is the required isometry of Hilbert
�-modules. �

Induced Representations

Let H be a subgroup of � and V a Hilbert H-module. The induced representa-
tion Ind�H(V) is the L2-completion of R� ⊗RH V . Alternatively, it is the vector
space of all square summable sections of the vector bundle � ×H V → �/H.
(�/H is discrete.) The induced representation is obviously a Hilbert space with
orthogonal �-action. Denote by L2(H)n the direct sum of n copies of L2(H). If
V is a closed subspace of L2(H)n, then Ind�H(V) is a closed subspace of L2(�)n.
(This follows from the observation that Ind�H(L2(H)) can be identified with
L2(�).) Thus, Ind�H(V) is a Hilbert �-module. For example, if F is a finite
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subgroup of � and R denotes the trivial 1-dimensional representation of F,
then Ind�F(R) can be identified with L2(�/F).

The Von Neumann AlgebraN (�)

L2(�) is an R�-bimodule. Here are three equivalent definitions of the von
Neumann algebra N (�) associated to the group algebra R�.

• N (�) is the algebra of all maps from L2(�) to itself. (Recall that “map”
means a bounded linear operator which is equivariant with respect to
the left �-action.)

• N (�) is the double commutant of the right R�-action on L2(�).

• N (�) is the weak closure of the algebra of operators R� acting from
the right on L2(�).

There is also a version of this von Neumann algebra acting from the left. We
also denote it N (�).

The �-Trace

The �-trace of an element ϕ ∈ N (�) is defined by

tr�(ϕ) := 〈ϕ(e1), e1〉 (J.3)

(where e1 ∈ L2(�) is the basis element corresponding to the identity element
of �). The restriction of tr� to the subalgebra R� ⊂ N (�) is the classical
Kaplansky trace.

Let Mn(N (�)) denote the set of n× n matrices with coefficients in N (�).
Given � = (ϕij) ∈ Mn(N (�)), define

tr�(�) :=
n∑

i=1

tr�(ϕii). (J.4)

The next lemma states that tr�( ) has the expected properties. It is proved by
standard arguments.

LEMMA J.2.7. (Compare [113, pp. 199–200].) Suppose �,� ∈ Mn(N (�)).
Then

(i) tr�(� ◦�) = tr�(� ◦�).

(ii) tr�(�) = tr�(�∗) (where �∗ is the adjoint of � with respect to the
inner product 〈 , 〉).

(iii) Suppose � is self-adjoint and idempotent. Then tr�(�) � 0 with
equality if and only if � = 0.
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Similarly, given a Hilbert �-module V isomorphic to L2(�)n and a
self-map � of V , by choosing an identification V ∼= L2(�)n, one can define
tr�(�) by (J.4). The resulting number is independent of the choice of isomor-
phism V ∼= L2(�)n.

Von Neumann Dimension

Let V be a Hilbert �-module. Choose an embedding of V as a closed,
�-stable subspace of L2(�)n for some n ∈ N and let pV : L2(�)n → L2(�)n be
orthogonal projection onto V . Then dim�(V), the von Neumann dimension of
V (also called its �-dimension), is defined by

dim�(V) := tr�(pV ). (J.5)

If E ⊂ L2(�)n is a not necessarily closed, �-stable subspace, put dim�(E) :=
dim�(E). We list some properties of dim�(V). Proofs can be found in [113].

PROPOSITION J.2.8. Suppose V , W are Hilbert �-modules.

(i) dim�(V) ∈ [0,∞).

(ii) dim�(V) = 0 if and only if V = 0.

(iii) If � is the trivial group (so that V is finite dimensional), then
dim�(V) = dim(V).

(iv) dim�(L2(�)) = 1.

(v) dim�(V ⊕W) = dim�(V)+ dim�(W).

(vi) If f : V → W is a map of Hilbert �-modules, then

dim�(V) = dim�(Ker f )+ dim�(Im f ).

(vii) If f : V → W is a map of Hilbert �-modules and f ∗ : W → V its
adjoint, then Ker f and Im f ∗ are orthogonal complements in V.
Hence,

dim�(V) = dim�(Ker f )+ dim�(Im f ∗).

So by (vi), dim�(Im f ) = dim�(Im f ∗).

(viii) By (v) and (vi), if 0→ Vn → · · · → V0 → 0 is a weak exact
sequence of Hilbert �-modules, then

n∑
i=0

(−1)i dim�(Vi) = 0.
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(ix) If H is a subgroup of finite index m in �, then

dimH(V) = m dim�(V).

(x) If � is finite, then

dim�(V) = 1

|�| dim(V).

(xi) If H is a subgroup of � and W is a Hilbert H-module, then

dim�(Ind�H(W)) = dimH(W).

(xii) If F is a finite subgroup of �, then by (x) and the fact that L2(�/F) is
identified with Ind�F(R),

dim�(L2(�/F)) = 1

|F| .

(xiii) As in Example J.2.4, suppose � = �1 × �2 and Vj is a Hilbert
�j-module, for j = 1, 2. Then

dim�(V1⊗̂V2) = dim�1 (V1) dim�2 (V2).

LEMMA J.2.9. Let V, V ′ be Hilbert �-modules with dim�(V) = dim�(V ′).
Then the following statements are equivalent:

(a) f is injective;

(b) f is weakly surjective;

(c) f is a weak isomorphism.

Proof. Statement (c) is equivalent to the conjunction of (a) and (b). So,
it suffices to show (a) and (b) are equivalent. By Proposition J.2.8 (ii),
dim�(Im( f )) = dim�(V)− dim�(Ker( f )). So, dim�(Ker( f )) = 0 if and only
if dim�(Im( f )) = dim�(V) = dim�(V ′). �

Example J.2.10. (The infinite cyclic group and Fourier series.) In this ex-
ample L2(�) will denote the Hilbert space of square summable, complex-
valued (rather than real-valued) functions on �. When � = C∞, the infinite
cyclic group, the von Neumann dimension can be understood analytically.
Let L2(S1) be the Hilbert space of equivalence classes of square integrable,
complex-valued functions on the circle (where two functions are equivalent
if they differ only on a set of measure 0). An action of C∞ on L2(S1) is
defined by letting k times the generator act by pointwise multiplication with the
function z→ zk. Fourier transform gives a C∞-equivariant isometry L2(C∞) ∼=
L2(S1). The von Neumann algebra N (C∞) is B(L2(S1))C∞ , the algebra of C∞-
equivariant, bounded linear operators on L2(S1). Let L∞(S1) be the Banach
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space of equivalence classes of essentially bounded functions on S1 (essentially
bounded means bounded on the complement of a set of measure 0). Given
f ∈ L2(S1) we get an operator Mf ∈ B(L2(S1)C∞ which sends g ∈ L2(S1) to g · f
(pointwise multiplication by f ). In this way, N (C∞) is identified with L∞(S1)
and the �-trace, L∞(S1)→ C (where � = C∞) with

f →
∫

S1
f dµ,

where dµ is Lebesgue measure, normalized so that the circle has length 1.
A function f corresponds to an idempotent in N (C∞) if and only if it is the
characteristic function χE of some measurable set E ⊂ S1. The corresponding
idempotent is projection onto the closed subspace of L2(S1) consisting of those
functions which are supported on E. If VE is the corresponding subspace of
L2(C∞), then dim� VE = µ(E). This can be any number λ in [0, 1] (take E to
be an arc of length λ). It follows that there are Hilbert C∞-modules with von
Neumann dimension any nonnegative real number. By Proposition J.2.8 (xi)
the same holds for an arbitrary group �, provided it contains at least one
element of infinite order.

J.3. L2-(CO)HOMOLOGY

Suppose � acts properly, cellularly and cocompactly on a CW complex X.
Cocompactness implies that there are only finitely many �-orbits of cells in
X. Let C∗(X) denote the usual cellular chain complex on X with coefficients
in R. An element of C∗(X) is a finitely supported function ϕ from the set of
oriented k-cells in X to R satisfying ϕ(c) = −ϕ(c) (where c and c denote the
same cell but with opposite orientations). Define L2Ci(X) to be the space of
�-equivariant i-chains with coefficients in L2(�): L2Ci(X) := C�

i (X; L2(�))
(see (F.7) in Appendix F.2.) In other words,

L2Ci(X) := L2(�)⊗R� Ci(X). (J.6)

An element of L2Ci(X) is an L2-chain. It can be regarded as an infinite chain
with square summable coefficients. If X is connected and � acts freely on it,
then � is a quotient of π1(X/�), L2(�) is a π1(X/�)-module and L2Ci(X) is
just the space of i-chains on X/� with local coefficients in L2(�) (as defined
by formula (F.1) of Appendix F.1).

The definition of the space of L2-cochains on X is the same, i.e., L2Ci(X) :=
L2Ci(X). (Since L2(�) can be identified with its dual, L2Ci(X) is naturally
identified with Ci

�(X; L2(�)) := Hom�(Ci(X), L2(�)), the equivariant cochains
with coefficients in L2(�).) If c is an i-cell of X, then the space of L2-chains
which are supported on the �-orbit of c can be identified with L2(�/�c). Since
�c is finite, L2(�/�c) is a Hilbert �-module. (Here we are assuming that the
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stabilizer of �c fixes c pointwise. In the general case, it is induced from the
one-dimensional represention of �c on H∗(c, ∂c;R).) Since there are a finite
number of �-orbits of i-cells, L2Ci(X) is the direct sum of a finite number of
such subspaces; hence, it is a Hilbert �-module.

Unreduced and Reduced L2-Homology

The boundary maps ∂i : L2Ci(X)→ L2Ci−1(X) and coboundary maps
δi : L2Ci(X)→ L2Ci+1(X) are defined by the usual formulas.

LEMMA J.3.1. The boundary and the coboundary operators are maps of
Hilbert �-modules, i.e., they are �-equivariant, bounded linear operators.

Proof. The linear operator ∂i : L2Ci(X)→ L2Ci−1(X) is �-equivariant since
the action on X is cellular and it is bounded (by Lemma J.2.5) since it is induced
from the boundary operator Ci(X)→ Ci−1(X). The same holds for δi since it is
the adjoint of ∂i+1. �

Define subspaces of L2Ci(X):

Zi(X) := Ker ∂i, Zi(X) := Ker δi,

Bi(X) := Im ∂i+1, Bi(X) := Im δi−1,

the L2-cycles, -cocycles, -boundaries, and -coboundaries, respectively. The
corresponding quotient spaces

L2Hi(X) :=Zi(X)/Bi(X),

L2Hi(X) :=Zi(X)/Bi(X).

are the unreduced L2-homology and -cohomology groups, respectively. (In
other words, L2Hi(X) is the equivariant homology of X with coefficients in
L2(�), that is, L2Hi(X) := H�

i (X; L2(�)).) Since the subspaces Bi(X) and Bi(X)
need not be closed, these quotient spaces need not be Hilbert spaces.

Let Bi(X) (resp. Bi(X)) denote the closure of Bi(X) (resp. Bi(X)). The reduced
L2-homology and -cohomology groups are defined by

L2Hi(X) :=Zi(X)/Bi(X),

L2Hi(X) :=Zi(X)/Bi(X).

They are Hilbert �-modules (since each can be identified with the orthogonal
complement of a �-stable subspace in a closed �-stable subspace of L2Ci(X)).
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Hodge Decomposition

Since 〈δi−1(x), y〉 = 〈x, ∂i(y)〉 for all x ∈ L2Ci−1(X), y ∈ L2Ci(X), we have
orthogonal direct sum decompositions

L2Ci(X)=Bi(X)⊕ Zi(X),

L2Ci(X)=Bi(X)⊕ Zi(X).

Since 〈δi−1(x), ∂i+1(y)〉 = 〈x, ∂i∂i+1(y)〉 = 0, the subspaces Bi(X) and Bi(X) are
orthogonal. This gives the Hodge decomposition

L2Ci(X) = Bi(X)⊕ Bi(X)⊕ (Zi(X) ∩ Zi(X)).

It follows that the reduced L2-homology and L2-cohomology groups can both
be identified with the subspace Zi(X) ∩ Zi(X). We also denote this intersection
Hi(X) and call it the subspace of harmonic i-cycles. Thus, an i-chain is
harmonic if and only if it is simultaneously a cycle and a cocycle. The
combinatorial Laplacian � : L2Ci(X)→ L2Ci(X) is defined by

� = δi−1∂i + ∂i+1δ
i.

One can check thatHi(X) = Ker�.

LEMMA J.3.2. Suppose C∗ and D∗ are cochain complexes of Hilbert
�-modules and f : C∗ → D∗ is a weak isomorphism of cochain complexes
(i.e., f is a cochain map and for each i, fi : Ci → Di is a weak isomorphism).
Then the induced map H( f ) : Hi(C∗)→ Hi(D∗) is also a weak isomorphism.
In particular (by Lemma J.2.6), Hi(C∗) and Hi(D∗) are isometric Hilbert
�-modules.

Proof. Let Zi(C) and Bi(C) denote the cocycles and coboundaries in Ci (and
similarly for D∗). Since f is a cochain map, f (Zi(C)) ⊂ Zi(D) and f (Bi(C)) ⊂
Bi(D). Since f is continuous, f (Bi(C)) ⊂ Bi(D). Since f is injective,

dim�(Zi(D)) � dim�(Zi(C)) and dim�(Bi(D)) � dim�(Bi(C)). (J.7)

From the short exact sequences

0→Zi(C)→ Ci → Bi+1(C)→ 0,

0→Zi(D)→ Di → Bi+1(D)→ 0,

one obtains

dim�(Ci) = dim�(Zi(C))+ dim�(Bi+1(C))

and

dim�(Di) = dim�(Zi(D))+ dim�(Bi+1(D)).
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Since f is a weak isomorphism, one has that dim�(Di) = dim�(Ci). Hence,

dim�(Ci)= dim�(Di) = dim�(Zi(D))+ dim�(Bi+1(D))

� dim�(Zi(C))+ dim�(Bi+1(C)) = dim�(Ci),

which together with (J.7) implies

dim�(Zi(D)) = dim�(Zi(C)) and dim�(Bi(D)) = dim�(Bi(C)). (J.8)

It follows from Lemma J.2.9 that the maps f : Zi(C)→ Zi(C) and f : Bi(C)→
Bi(D) are weak isomorphisms. This implies that H( f ) : Hi(C∗)→ Hi(D∗) is
weakly surjective.

To show H( f ) is injective, let H be the orthogonal complement to Bi(C) in
Zi(C). Note that H is closed and �-stable. We have

dim�(Zi(D))= dim�

(
f
(

H + Bi(C)
))

= dim� ( f (H))+ dim�

(
Bi(D)

)− dim�

(
f (H) ∩ Bi(D)

)

= dim�(Zi(D))− dim�

(
f (H) ∩ Bi(D)

)
,

where the third equality follows from (J.8). Hence, dim�

(
f (H) ∩ Bi(D)

)
= 0

and therefore f (H) is a complementary subspace for Bi(D). Since f is injective
when restricted to H, so isH( f ). �

J.4. BASIC L2 ALGEBRAIC TOPOLOGY

Suppose � acts cellularly, properly and cocompactly on a CW complex X
and that Y is a �-stable subcomplex. The reduced L2-(co)homology groups
L2Hi(X, Y) are defined similarly to before. Versions of most of the Eilenberg-
Steenrod Axioms hold for L2H∗(X, Y). We list some standard properties below.
(Of course, similar results hold for the contravariant L2-cohomology functor.)

Functoriality

For i = 1, 2, suppose (Xi, Yi) is a pair of �-complexes and f : (X1, Y1)→
(X2, Y2) is a �-equivariant map (a �-map for short). Then there is an induced
map f∗ : L2Hi(X1, Y1)→ L2Hi(X2, Y2). This gives a functor from pairs of
�-complexes to Hilbert �-modules. Moreover, if f ′ : (X1, Y1)→ (X2, Y2) is
another �-map which is �-homotopic to f , then f∗ = f ′∗.
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Exact Sequence of a Pair

The sequence of a pair (X, Y),

→ L2Hi(Y)→ L2Hi(X)→ L2Hi(X, Y)→,

is weakly exact.

Excision

Suppose (X, Y) is a pair of �-complexes and U is a �-stable subset of Y
such that Y − U is a subcomplex. Then the inclusion (X − U, Y − U)→ (X, Y)
induces an isomorphism

L2Hi(X − U, Y − U) ∼= L2Hi(X, Y).

A standard consequence of the last two properties is the following.

Mayer-Vietoris Sequences

Suppose X = X1 ∪ X2, where X1 and X2 are �-stable subcomplexes of X. Then
X1 ∩ X2 is also �-stable and the Mayer-Vietoris sequence,

→ L2Hi(X1 ∩ X2)→ L2Hi(X1)⊕ L2Hi(X2)→ L2Hi(X)→,

is weakly exact.

Twisted Products and the Induced Representation

Suppose that H is a subgroup of � and that Y is a space on which H acts. The
twisted product, � ×H Y , is a left �-space and a �-bundle over �/H. Since
�/H is discrete, � ×H Y is a disjoint union of copies of Y , one for each element
of �/H. If Y is an H complex, then � ×H Y is a � complex and the following
formula holds:

L2Hi(� ×H Y) ∼= Ind�H(L2Hi(Y)).

Künneth Formula

Suppose � = �1 × �2 and that Xj is a CW complex with �j-action for j = 1, 2.
Then X1 × X2 is a �-complex and

L2Hk(X1 × X2) ∼=
∑

i+j=k

L2Hi(X1)⊗̂L2Hj(X2).
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Figure J.1. An L2 1-cycle.

(Co)homology in Dimension 0

An element of C0(X) is an L2 function on the set of vertices of X; it is a
0-cocycle if and only if it takes the same value on the endpoints of each edge.
Hence, if X is connected, any 0-cocycle is constant. If, in addition, � is infinite
(so that the 1-skeleton of X is infinite), then this constant must be 0. So, when
X is connected and � is infinite, L2H0(X) = L2H0

(X) = 0. Hence,

L2H0(X) = 0. (J.9)

On the other hand, the unreduced homology L2H0(X) need not be 0. For
example, if X = R, cellulated as the union of intervals [n, n+ 1], and � = C∞,
then any vertex of R is an L2-0-cycle which is not an L2-boundary. (A vertex
bounds a half-line which can be thought of as an infinite 1-chain, however,
this 1-chain is not square summable.) In fact, if � is infinite, then L2H0(X) = 0
if and only if � is not amenable.

Example J.4.1. Suppose X is a regular trivalent tree. The previous paragraph
shows L2H0(X) = 0 (since X is infinite). By an easy computation, the 1-cycle
pictured in Figure J.1 is square summable. Since any 1-chain on a graph is
automatically a cocycle, this cycle is harmonic and hence represents a nonzero
element in L2H1(X) (Hodge decomposition).

The Top-Dimensional Homology of a Pseudomanifold

Suppose a regular � cell complex X is an n-dimensional, pseudomanifold.
This means that each (n− 1)-cell is contained in precisely two n-cells. If
a component of the complement of the (n− 2)-skeleton is not orientable,
then it does not support a nonzero n-cycle (with coefficients in R). If such
a component is orientable, then any n-cycle supported on it is a constant
multiple of the n-cycle with all coefficients +1. If the component has an
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infinite number of n-cells, then this n-cycle does not have square summable
coefficients. Hence, if each component of the complement of the (n− 2)-
skeleton is either infinite or nonorientable, then L2Hn(X) = 0. In particular,
if the complement of the (n− 2)-skeleton is connected and � is infinite, then
L2Hn(X) = 0.

Example J.4.2. It follows from the previous two paragraphs that L2H(E1)
vanishes in all dimensions (where E1 is cellulated by unit intervals). So, by
the Künneth Formula, L2H(En) also vanishes in all dimensions.

J.5. L2-BETTI NUMBERS AND EULER CHARACTERISTICS

The ith L2-Betti number of X is defined by

L2bi(X;�) := dim� L2Hi(X), (J.10)

where dim�( ) is the �-dimension (or von Neumann dimension) defined
by (J.5).

If X and X′ are contractible (proper and cocompact) � complexes, their
L2-Betti numbers are equal. (The reason is that the chain complex C∗(X;R)
gives a projective resolution of R by projective R�-modules. It follows that
the unreduced L2-cohomology, L2Hi(X) is equal to Hi(�; L2(�). Hence, when
we take reduced cohomology, the result again depends only on �.) So, when
X is contractible (or just acyclic), we will sometimes write L2bi(�) instead of
L2bi(X;�). We summarize some of basic properties of L2-Betti numbers in the
next proposition.

PROPOSITION J.5.1

(i) L2bi(X;�) = 0 if and only if L2Hi(X) = 0.

(ii) If H is a subgroup of finite index m in �, then
L2bi(X; H) = mL2bi(X;�).

(iii) If Y is a CW complex with H-action, H a subgroup of �, then

L2bi(� ×H Y;�) = L2bi(Y; H).

(iv) If � = �1 × �2 and for j = 1, 2, Xj is a CW complex with �j action,
then

L2bk(X1 × X2;�) =
∑

i+j=k

L2bi(X1;�)L2bj(X2;�).

Proof. The first three statements follow from, respectively, parts (ii), (ix), and
(xi) of Proposition J.2.8. Statement (iv) is the combination of part (xiii) of the
same proposition with the Künneth Formula. �
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The L2-Euler characteristic of X is defined by

L2χ (X;�) :=
∞∑

i=0

(−1)iL2bi(X;�). (J.11)

Supposing, as always, that the �-complex X is proper and cocompact, the
orbihedral Euler characteristic χorb(X//�) is defined by formula (16.4), which
we recall here:

χorb(X//�) :=
∑
orbits

of cells

(−1)dim c

|�c| ,

where |�c| denotes the order of the stabilizer of the cell c. Note that if
the �-action is free, then χorb(X//�) is just the ordinary Euler characteristic
χ (X/�).

Atiyah’s Formula

LEMMA J.5.2. Suppose C∗ is a chain complex of ( finitely generated) Hilbert
�-modules and thatH∗ is its reduced homology. Set

ci := dim� Ci and bi := dim�Hi.

Further suppose that there is an integer n such that ci = 0 for all i > n. Then

n∑
i=0

(−1)ici =
n∑

i=0

(−1)ibi

Proof. (From [113, Theorem 3.6.1]). Let Bi := Im δ ⊂ Ci and Bi := Im ∂ ⊂Ci

be the spaces of cocycles and cycles, respectively. We have the Hodge
decomposition Ci = Bi ⊕ Bi ⊕Hi. So

ci = dim Bi + dim Bi + bi, (J.12)

where, to simplify notation, we are writing dim( ) for dim�( ). Since the kernel
of ∂i : Ci → Ci−1 is Bi ⊕Hi, the restriction of ∂i to Bi is a weak isomorphism
to Bi−1. So, dim Bi = dim Bi−1. Hence, if we take the alternating sum of both
sides of (J.12), the terms on the right-hand side involving dim Bi and dim Bi

cancel. �

THEOREM J.5.3. (Atiyah’s Formula [11].) Suppose the �-action on X is
proper and cocompact. Then

χorb(X//�) = L2χ (X;�).
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Proof. Given a cell c in X, by Proposition J.2.8 (xii), we have
dim� L2(�/�c) = 1/|�c|. Since L2Ci(X) is a direct sum over orbits of i-cells c
of L2(�/�c),

ci := dim� L2Ci(X) =
∑
orbits

of i-cells

1

|�c| .

So, the formula follows from the previous lemma and the definition of
χorb( ). �

Example J.5.4. Suppose � is the fundamental group of M2, a closed surface
of genus g > 0 and X is its universal cover. By results in the previous section,
L2H0(X) = 0 and L2H2(X) = 0; hence, only L2H1(X) can be nonzero. By
Atiyah’s Formula, b1(X;�) = −χ (M2) = 2g− 2.

Remark J.5.5. Since L2Hi(X) is a Hilbert �-submodule of L2Ci(X),

L2bi(X;�) � dim� L2Ci(X).

In particular, if X is the universal cover of a finite CW complex Y and
� = π1(Y), we get the estimate, L2bi(X;�) � ci(Y), where ci(Y) is the number
of i-cells in Y .

J.6. POINCARÉ DUALITY

Suppose (X, ∂X) is a pair of �-complexes and that X is an n-dimensional
manifold with boundary. Then

L2Hi(X, ∂X) ∼= L2Hn−i
(X), (J.13)

L2Hi(X) ∼= L2Hn−i
(X, ∂X).

When X is cellulated as a PL manifold with boundary, these isomorphisms
are induced by the bijective correspondence σ ↔ Dσ which associates to each
i-cell σ its dual (n− i)-cell Dσ . A slight elaboration of this argument also
works in the case where (X, ∂X) is a polyhedral homology manifold with
boundary; the only complication being that the “dual cells” need not actually
be cells, rather they are “generalized homology disks” as in Definition 10.4.5.

In fact, as is shown in [113, Theorem 3.7.2], in order to have the Poincaré
duality isomorphisms of J.13, all one need assume is that (X, ∂X) is a “virtual
PDn-pair,” in the sense that there is a subgroup H of finite index in � so that
the chain complexes K∗(X, ∂X) and nDK∗(X) are chain homotopy equivalent,
where nDKi(X) is defined by nDKi(X) = HomZH(Kn−i(X),ZH).
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Example J.6.1. (PD2-groups.) Suppose � is a PD2-group (Definition F.5.1).
Since this implies � is infinite, L2b0(�) = 0 (by formula (J.9) in J.4). By
Poincaré duality, L2b2(�) = 0. So, χ (�) = −L2b1(�) � 0. Hence, if � is
orientable, its ordinary Betti numbers satisfy

b1(�)− 2 = −b0(�)+ b1(�)− b2(�) � 0.

So b1(�) = rk(�ab) � 2. Similarly, when � is nonorientable, b1(�) � 1. This
fact was crucial in the proof by Eckmann and his collaborators that PD2-groups
are surface groups, see [112]. (The actual argument in [114] used the Hattori-
Stallings rank instead of L2-Betti numbers.)

J.7. THE SINGER CONJECTURE

Shortly after Atiyah’s Formula (Theorem J.5.3) became known, Dodziuk and
Singer independently pointed out that the Euler Characteristic Conjecture of
16.2 follows if one can prove the reduced L2-(co)homology of the universal
cover of any even dimensional, closed, aspherical manifold vanishes except in
the middle dimension. (This was first explained in the introduction of [102].
We give the argument below.) This led to the following.

CONJECTURE J.7.1. (The Singer Conjecture.) If Mn is a closed aspherical
manifold with universal cover M̃n, then

L2Hi(M̃
n) = 0 for all i �= n

2 .

PROPOSITION J.7.2. The Singer Conjecture implies the Euler Characteris-
tic Conjecture (= Conjecture 16.2.1).

Proof. Let M2k be a closed aspherical manifold with fundamental group π .
The Euler Characteristic Conjecture asserts that (−1)kχ (M2k) � 0. If the
Singer Conjecture holds for M2k, then L2bi(M̃2k;π ) = 0 for i �= k. Atiyah’s
Formula gives: χ (M2k) =∑

(−1)iL2bi(M̃2k;π ) = (−1)kL2bk(M̃2k;π ). So,
(−1)kχ (M2k) = L2bk(M̃2k;π ) � 0. �

The Singer Conjecture holds for elementary reasons in dimensions �2
(Examples J.4.2 and J.5.4). In [189] Lott and Lück proved that it holds for
those aspherical 3-manifolds for which Thurston’s Geometrization Conjecture
is true (hence, by [237], for all aspherical 3-manifolds). It is also known to
hold for (a) locally symmetric spaces, (b) negatively curved Kähler manifolds
(by [148]), (c) Riemannian manifolds of sufficiently pinched negative sectional
curvature (by [103]), (d) closed aspherical manifolds with fundamental group
containing an infinite amenable normal subgroup (by [62]), and (e) manifolds
which fiber over S1 (by [191]).
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We note that the Euler Characteristic Conjecture and Singer’s Conjecture
both make sense for closed aspherical orbifolds or, for that matter, for virtual
Poincaré duality groups (Definition F.5.1 in Appendix F.5).

J.8. VANISHING THEOREMS

Here we state some basic results about the vanishing of L2-cohomology,
providing evidence for the Singer Conjecture.

Mapping Tori

Suppose a closed manifold M fibers over a circle. The product formula
for Euler characteristics shows χ (M) = 0. Gromov asked if the reduced L2-
homology of its universal cover vanishes in all dimensions. It does, as Lück
showed in [191], by proving a more general result for “mapping tori.”

Suppose F is a CW complex and f : F→ F is a self-map. The mapping
torus of f is the quotient space Tf of F × [0, 1] by the equivalence relation
which identifies (x, 0) with ( f (x), 1). Projection of F × [0, 1] onto its second
factor induces a natural projection p : Tf → S1 (we regard S1 as the space
formed by identifying the endpoints of [0, 1]). The homotopy type of Tf

depends only on the homotopy class of f .

Remark. If f is a homeomorphism, then Tf → S1 is a fiber bundle. Conversely,
any fiber bundle over S1 is the mapping torus of a homeomorphism. Similarly,
if f is a homotopy equivalence, then Tf → S1 is a fibration and any fibration
over S1 has this form.

Next, suppose f is cellular (i.e., f takes the i-skeleton of F to itself, for
all i � 0). Then Tf has a cell structure induced from that of F × [0, 1), i.e.,
each i-cell c of F contributes two cells to Tf , the i-cell c× 0 and the
(i+ 1)-cell c× (0, 1). Put � = π1(Tf ). At the level of fundamental groups
the projection p induces a surjection p∗ : �→ Z. Put �n := p−1

∗ (nZ). It is a
subgroup of index n in �.

THEOREM J.8.1. (Lück [191]). Suppose f : F→ F is a self-map of a finite
CW complex and that Tf is its mapping torus. Let T̃f be the universal cover of
Tf and � := π1(Y). Then L2bi (̃Tf ;�) = 0 for all i.

Proof. Let ci(Y) denote the number of i-cells in a CW complex Y . By the
Cellular Approximation Theorem ([153, p. 349]), we can assume f is cellular.
As mentioned above, Tf has a cell structure with ci(Tf ) = ci−1(F)+ ci(F). Note
that this formula is independent of the map f . We leave it as an exercise for
the reader to show that the n-fold covering space T̃f /�n of Tf is homotopy
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equivalent to the mapping torus Tf n , where f n denotes the n-fold composition
f ◦ · · · ◦ f . By Remark J.5.5,

L2bi (̃Tf n ;�n) � ci(Tf n ) = ci−1(F)+ ci(F).

So, by Proposition J.5.1 (ii),

L2bi (̃Tf ;�) = L2bi (̃Tf ;�n)

n
� ci−1(F)+ ci(F)

n
.

Since the right-hand side goes to 0 as n→∞, we get L2bi (̃Tf ;�) = 0. �

Actions of Amenable Groups

There is a canonical map L2Hi(X)→ Hi(X;R), which regards an L2-cocycle
as an ordinary cocycle. Restricting this map to the harmonic cocycles we get a
map, can : L2Hi(X)→ Hi(X;R).

THEOREM J.8.2. (Cheeger-Gromov [62].) Suppose � is an infinite amenable
group. Then the canonical map L2Hi(X)→ Hi(X;R) is injective.

In the case when the action is proper and cocompact a simple proof of this
theorem appears in [113]. We outline it below.

Outline of Eckmann’s proof of Theorem J.8.2. Let K be the kernel of the
canonical map L2Hi(X)→ Hi(X;R). The idea is to use the Følner Condition
to show that dim� K = 0. (The Følner Condition for a finitely generated group
to be amenable is explained at the beginning of 17.2.) Since � is countable,
the Følner Condition implies we can find an exhaustion of � by finite sets,
F1 ⊂ F2 ⊂ · · · so that

∞⋃
j=1

Fj = � and lim
j→∞
|∂Fj|
|Fj| = 0.

Choose a fundamental domain D for X as follows. Pick a representative
cell for each �-orbit of cells and let D be the union of the closures of
these representatives. Put Xj =

⋃
FjD and let ∂Xj be its topological boundary

in X. Let P : L2Ci(X)→ L2Hi(X) be orthogonal projection onto the harmonic
cocycles and let πj be the composition of P with the inclusion L2Ci(Xj) ↪→
L2Ci(X). (Since Xj is a finite complex, L2Ci(Xj) = Ci(Xj).) We have

dimR πj(K)=
∑
γ ,c

γ c⊂Xj

〈πj(γ c), c〉 = |Fj|
∑
c⊂D

〈P(c), c〉

= |Fj| dim� K.
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So

dim� K = dimR πj(K)

|Fj| . (J.14)

Using the local finiteness of X (and some work), one can obtain the estimates:
dimR πj(K) � dimR Ci(∂Xj) � |∂Fj|αi, where αi is the number of i-cells in D.
Combining this with (J.14), we get

dim� K � |∂Fj|
|Fj| .

By the Følner Conditon, the right-hand side goes to 0 as j→∞. �

COROLLARY J.8.3. Suppose � is an infinite amenable group and X is
contractible. Then for all i ≥ 0, L2Hi(X) = 0 and hence, L2bi(�) = 0.

Cheeger and Gromov actually prove a stronger form of Theorem J.8.2.
They do not need to assume the action is cocompact but only that X has
“bounded geometry.” For example, they reach the same conclusion when �
is only assumed to contain an infinite, normal amenable subgroup A and the
�-action is cocompact. Then Theorem J.8.2 applies to the A-action on X to
give the following.

COROLLARY J.8.4. Suppose a group � of type VF contains an infinite,
normal amenable subgroup. Then L2bi(�) = 0 for all i � 0. Hence, χ (�) = 0.

Example J.8.5. (Circle bundles.) Suppose B�→ B is a bundle with fiber S1

and B� homotopy equivalent to a finite CW complex. Then the image of π1(S1)
in π1(B�) is a normal, infinite amenable subgroup; hence, L2bi(�) = 0 for
all i � 0.

Complements on Square Summable Forms and the DeRham Theorem

Suppose M is a smooth closed manifold , �p(M) is the vector space of closed
p-forms on M, and d : �p(M)→ �p+1(M) is the exterior differential. This
gives us the de Rham cochain complex

· · · −→ �p(M)
d−→ �p+1(M) −→· · · ,

and corresponding cohomology groups H∗dR(M). The classical de Rham
Theorem states that if M has a smooth triangulation, then integration
over p-simplices defines an isomorphism Hp

dR(M)
∼=−→ Hp(M;R).

Let �p(V) denote the space of alternating multilinear p-forms on a vector
space V . If V has an inner product and dim V = n, then there is a canonical
isomorphism �p(V) ∼= �n−p(V). This isomophism takes the wedge product
of p elements in an orthonormal basis for V∗ and maps them to the wedge
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product of the complementary elements in the basis. Now suppose Mn is a (not
necessarily closed) n-dimensional, Riemannian manifold. If Mn is not closed,
then �P(Mn) means the compactly supported smooth p-forms. If Tx denotes
the tangent space of Mn at x, we get an isomorphism �p(Tx) ∼=∧n−p(Tx).
This isomorphism induces the Hodge star operator, ∗ : �p(Mn)→ �n−p(Mn).
(There is a choice of ± sign here, which we are ignoring.) Define an inner
product on �p(Mp) by

〈ω, η〉 :=
∫

M
ω ∧ η

The Hilbert space completion of �p(Mn) is denoted L2�p(Mn). If Mn has
bounded geometry (i.e., if it is the universal cover of a closed manifold),
then d is a bounded operator. Define the Laplacian, � := d ◦ d∗ + d∗ ◦ d :
L2�p(Mn)→ L2�p(Mn). Its kernel L2Hp

dR(Mn) is the space of square inte-
grable hamonic forms. It can be identified with the reduced L2-cohomology of
the cochain complex {L2�∗(Mn)}. The L2 version of the deRham Theorem was
proved by Dodziuk.

THEOREM J.8.6. (L2 de Rham Theorem of [101].) Suppose Mn is a
closed manifold with a Riemannian metric and a smooth triangulation.
Give its universal cover M̃n the induced metric and induced triangulation.
Then integration of closed p-forms over p-simplices defines an isomorphism
L2Hp

dR(M̃n)
∼=−→ L2Hp(M̃n).

Symmetric Spaces

A symmetric space of noncompact type (without Euclidean factor) means a
manifold of the form G/K, where G is a semisimple Lie group (without
compact factors) and K is a maximal compact subgroup. For example,
hyperbolic n-space Hn is a symmetric space.

THEOREM J.8.7. (Dodziuk [102].) L2Hi
dR(Hn) = 0, for all i �= n

2 .

Outline of Dodziuk’s proof of Theorem J.8.7. The argument only uses the fact
that we have a “rotationally symmetric” Riemannian metric on a manifold Mn

diffeomorphic to Rn. This means that in polar coordinates the metric has the
form ds2 = dr2 + f (r)2dθ2 where dθ is the standard round metric on Sn−1,
where r is the distance to the origin and f : [0,∞)→ [0,∞) is a smooth
increasing function satisfying

f (0) = 0, f ′(0) = 1, lim
r→∞ f (r) = ∞.

(When Mn = Hn, f (r) = er.)
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Let ω be a harmonic p-form. Using the fact that the Hodge star operator on
Sn−1 is conformally invariant, after some computations, Dodziuk shows that
ω �= 0 implies

∫∞
1 f n−2p−1(r)dr <∞ (where f k(r) := f (r)k). Applying this in

dimension n− p, we see that if L2Hn−p(Mn) �= 0, then
∫∞

1 f−n+2p−1(r)dr<∞.
By Poincaré duality, L2Hp(Mn) ∼= L2Hn−p(Mn); so, both exponents must
give convergent integrals. If n = 2p, both exponents equal −1 and we
get the condition

∫∞
1

1
f (r) dr <∞. Notice that (n− 2p− 1)(−n+ 2p− 1) =

1− (n− 2p)2. So, if n− 2p = ±1, one exponent is 0 and the integral diverges.
Otherwise, the exponents have different signs, so at least one of them
diverges. �

In fact, the following theorem states that the same is true for any symmetric
space of noncompact type ( for a proof, see [192, Cor. 5.16]).

THEOREM J.8.8. Suppose Xn is a symmetric space of noncompact type. Then
L2Hi

dR(Xn) = 0, for all i �= n
2 .

By the de Rham Theorem, we get the same conclusion about the vanishing of
the cellular L2-cohomology of Xn whenever the cell structure on Xn is pulled
back from a cellulation of a locally symmetric manifold Mn (of which Xn is
the universal cover). Thus, Theorem J.8.8 shows the Singer Conjecture holds
for locally symmetric manifolds. We also see that L2Hk(X2k) �= 0 whenever
X2k is the universal cover of a locally symmetric manifold of nonzero Euler
characteristic.

Complements on Kähler Manifolds and the Hard Lefschetz Theorem

Suppose M is a complex manifold of complex dimension n (hence, of real
dimension 2n). We can equip M with a Hermitian metric (i.e., a Hermitian
inner product on each tangent space). The imaginary part of the Hermitian
metric is a nondegenerate 2-form ω. M is a Kähler manifold if ω is closed.
For example, CPn is a Káhler manifold, so is any smooth projective variety
M ⊂ CPn.

Suppose (M,ω) is a Kähler manifold. Let L : �p(M)→ �p+2(M) be the
linear operator λ→ λ ∧ ω. The key fact is that L preserves harmonic forms.
Let [ω] ∈ H2

dR(M) be the Kähler class. Put � := ∧ [ω] : Hp
dR(M)→ Hp+2

dR (M)
and �k := � ◦ · · · �, the k-fold composition. (Hp

dR( ) denotes the harmonic
p-forms.)

THEOREM J.8.9. (The Hard Lefschetz Theorem.) Suppose (M,ω) is a closed
Kähler manifold of complex dimension n. Then �n−p : Hp

dR(M)→ H2n−p
dR (M) is

an isomorphism.
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Sketch of proof. Wedging (n− p) times with a nondegenerate 2-form on
Tx gives an isomorphism �p(Tx)→ �2n−p(Tx). Hence, Ln−p : �p(M)→
�2n−p(M) is an isomorphism. Since Ln−p takes harmonic forms to harmonic
forms and restricts to �n−p onHp

dR(M), the theorem follows. �
The same argument proves the following.

THEOREM J.8.10. (L2 version of Hard Lefschetz Theorem.) Suppose (M,ω)
is a (not necessarily compact) Kähler manifold of complex dimension n. Then
�n−p : L2Hp

dR(M)→ L2H2n−p
dR (M) is an isomorphism.

Kähler Hyperbolicity

The ideas in this paragraph are from Gromov [148].

DEFINITION J.8.11. Suppose (M,ω) is a closed Kähler manifold, that M̃ is
its universal cover and ω̃ is the pullback of ω to M̃. The n(M,ω) (or (M̃, ω̃)) is
Kähler hyperbolic if there exists a bounded 1-form η on M̃ such that ω̃ = dη
(i.e., ω̃ is d(bounded)).

Gromov proved the following two theorems.

THEOREM J.8.12. (Gromov [148].) A closed Kähler manifold of negative
sectional curvature is Kähler hyperbolic.

THEOREM J.8.13. (Gromov [148].) Suppose (M,ω) is Kähler hyperbolic of
complex dimension n and that π = π1(M). Then

(i) L2Hp(M̃) = 0 for all p �= n (and hence, L2bp(M̃) = 0 for all p �= n.

(ii) L2bn(M̃) �= 0 (and hence, (−1)nχ (M) > 0).

Proof of part (i) of Theorem J.8.13. Suppose λ ∈ L2�p(M̃) is a closed p-form.
By Theorem J.8.10 it suffices to show Ln−p(λ) represents 0 in cohomology. We
will show, in fact, that L(λ) is 0 in cohomology. Note that if η is any bounded
form then λ ∧ η is square summable. In particular, by Kähler hyperbolicity,
ω̃ = dη, where η is bounded. Hence,

d(λ ∧ η) = (dλ ∧ η)− (λ ∧ ω̃) = −L(λ).

So L(λ) is 0 in cohomology. (The proof of (ii) is more difficult.) �

Remark. Lück [192] points out the following are examples of Kähler mani-
folds (M,ω) which are Kähler hyperbolic:

• π1(M) is word hyperbolic and π2(M) = 0.

• M is a submanifold of a Kähler hyperbolic manifold.

• M̃ is a Hermitian symmetric space of noncompact type (and without
Euclidean factor).
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NOTES

A good introduction to L2-cohomology along the same lines as here can be found in
Eckmann’s paper [113]. Much more can be found in Lück’s book [192].

Farber defines an “extended L2-(co)homology” theory in [118] and demonstrates
that this is the correct categorical framework for L2-(co)homology. An extended
L2-(co)homology object is isomorphic to the sum of its “projective part” and its “torsion
part.” The projective part is essentially the reduced L2-(co)homology group while its
torsion part contains information such as Novikov-Shubin invariants.

In [193, 192] Lück introduces a different approach to L2-Betti numbers. He considers
the ordinary equivariant homology H∗�(X;N (�)) with coefficients in the �-module
N (�) defined as in Appendix F.2. Since N (�) is an N (�)-bimodule, H∗�(X;N (�))
is a right N (�)-module. (The situation is analogous to equivariant (co)homology with
group ring coefficients discussed in Lemma F.2.1 and in the introduction to Chapter 15.)
Lück shows that one can associate a “dimension” to a N (�)-module in a way which is
compatible with the �-dimension and L2-Betti numbers. More exactly, this dimension
of Hk(X;N (�)) is equal to L2bk(X;�). There are several advantages to Lück’s approach.
First, L2-Betti numbers can be defined even when the action is not proper and not
cocompact (provided we allow∞ as a possible value). Second, Lück’s definition makes
sense equally well for singular (co)homology and other (co)homology theories.
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[119] F. T. Farrell. Poincaré duality and groups of type (FP). Comment. Math. Helv.,
50:187–195, 1975.

[120] F. T. Farrell and W. C. Hsiang. On Novikov’s Conjecture for nonpositively
curved manifolds. Ann. Math. (2), 113:199–209, 1981.

[121] F. T. Farrell and L. E. Jones. A topological analogue of Mostow’s rigidity
theorem. J. Amer. Math. Soc., 2:257–369, 1989.

[122] F. T. Farrell and L. E. Jones. Classical Aspherical Manifolds, volume 75
of CBMS Regional Conference Series in Mathematics. Amer. Math. Soc.,
Providence, 1990.

[123] F. T. Farrell and L. E. Jones. Topological rigidity for compact non-positively
curved manifolds. In Differential Geometry, Los Angeles 1990, volume 54 of
Proceedings and Symposia in Pure Mathematics, pages 224–274. Amer. Math.
Soc., Providence, 1993.

[124] F. T. Farrell and L. E. Jones. Rigidity for aspherical manifolds with π1 ⊂
GLm(R). Asian J. Math., 2:215–262, 1998.

[125] F. T. Farrell and J. Lafont. Finite automorphisms of negatively curved Poincaré
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affine map, 401, 403
affine space, 401; tangent space of, 401
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Aleksandrov angle, 501
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Andreev’s Theorem, 106, 245, 375
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Aleksandrov. See Aleksandrov angle;

exterior
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Artin group, 229–230; right-angled, 223
aspherical complex, 15, 21; 2-complex, 156,

215–216; finite complex, 23–24

aspherical manifold, 22–23, 106, 213; Euler
characteristic of, 310; nonsmoothable, 216–
217; not covered by En, 195–197
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459; of graph of groups, 453

aspherical space, 21–25, 213, 453
assembly map, 495
Assembly Map Conjecture, 218, 253, 495
Atiyah’s Formula, 545; for weighted L2-

(co)homology, 367
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attaching; a cell, 405; map, 406
automorphisms of a Coxeter group, 256; dia-

gram. See diagram automorphism; of type
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Ballman, W., 24, 255
Barnette, D., 110
Barnhill, A., 464
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barycentric subdivision, 411, 415, 417, 421; of

a cell complex, 411; cone on, 414; of a
polytope, 94, 411

basic construction. See U or U(W, X)
Bass, H., 450
Baumslag–Solitar group. See group,

Baumslag–Solitar
Benakli, N., 255
Berestovskii, V. N., 24, 507, 519
Bestvina, M., 154, 156, 165, 224, 472, 532
Bestvina–Brady examples, 226, 223–228
Bestvina–Brady groups, 224
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1, 75; type (n, k), 75
BM( , ) the canonical form, 116
BN-pair. See Tits system
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488, 490, 495
Brady, N., 156, 224, 274, 472, 473
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Brieskorn manifold, 228
Brin, M., 255
Brown, K., 307, 315, 344, 464, 472
Bruhat–Tits Fixed Point Theorem, 237,
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Bryant, J., 210
building, 6, 328–346; affine, 331; apartment of.

See apartment, in a building; chamber of.
See chamber, in a building; Eucliean, 330,
344; finite thickness, 333; Fuchsian, 344,
399; gallery of. See gallery, in a building;
geometric realization of, 336–338; regular,
334; residue of. See residue; right-angled,
331; spherical, 1, 330; thick, 330; thickness
vector, 334; type An, 332

Busemann function, 528
Busemann, H., 528, 531
B(x, r) the ball of radius r, 502

C∗-algebra, 531
Cannon, J., 194
canonical measure, 343
canonical representation, 115–120, 439; dis-

crete image, 440; dual of. See geometric
representation

Caprace, P-E., 260
Cartan–Hadamard Theorem, 23, 233, 502
CAT(0) group. See group, CAT(0)
CAT(0) structure on �. See �(W, S),

CAT(0) structure on
CAT(κ), 500
CAT(κ)-inequality, 499–508; CAT(κ)-space,

312, 500; CAT(0), 230–238
Cauchy’s Geometric Lemma, 107
Cauchy’s Topological Lemma, 108
Cay(G, S). See Cayley, graph
Cayley; graph, 16, 15–17, 28, 30, 46, 158,

239; of (W, S), 34, 36, 66, 90, 131, 277;
2-complex, 18–21, 28, 132, 159; of (W, S),
131; of a dihedral group, 28

cd. See cohomological dimension

cell, 404; convex, 402
cell complex, 415; abstract, 135, 409, 508;

cubical, 409; convex, 135, 263, 404; cubi-
cal, 8, 233, 404, 416, 508, 519, 523; piece-
wise Euclidean. See polyhedron, piecewise
Euclidean; piecewise spherical. See poly-
hedron, piecewise spherical; poset of cells of
a, 406; regular, 429; �. See � or �(W, S);
simplicial, 404, 508; subcomplex of a, 404;
full, 248; symmetrically regular, 429; Xκ -
polyhedral complex, 508, 529

cellulation, 405
center of a bounded set, 503
C�(s), the centralizer of s, 277
chamber, 64, 88, 133, 179; of a barycentric

subdivision, 94, 421, 428; in a building, 329–
332; for a convex polytope, 94; fundamental,
64, 89, 232; mirror of, 179 ; open, 88;
system, 328; associated to a polytope, 329,
422; rank of, 329; transitive, 329; of W ′ on
�, 58; wall of, 179

Charney, R., 24, 72, 110, 166, 223, 230, 255,
315, 320, 325, 532

Charney–Davis Conjecture. See Flag Complex
Conjecture

Cheeger, J., 549
Cheeger–Gromov Theorem, 549
Chern, S. S., 315
Chern–Gauss–Bonnet Theorem, 15
Chern–Hopf Conjecture. See Euler

characteristic, Conjecture
C∞, 27, 450
circuit; empty 4-, 521; 3- and 4-, 243
classification; of Euclidean Coxeter groups,

434; of finite Coxeter groups, 433; of hy-
perbolic simplicial reflection groups, 434; of
spherical reflection groups, 433

classifying space for a group, 22, 206, 454,
466, 488, 490, 495; universal property, 22

classifying space of a category. See nerve, of a
category

classifying spaces for bundles, 491
clique complex. See flag complex
Cm, 25, 27, 130, 537
cocompact, 239
coefficient system. See system of coefficients
coface; of D, 270; of a geometric realization,

128, 415; of K, 133; of �, 133; of X, 63,
150

cohomological dimension, 154, 470, 470–471;
nonadditivity of, 157; over R, 473; virtual,
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154, 307, 471; of a Coxeter group, 154, 156,
157, 235; of a normalizer, 264–265

cohomology, 6; with compact supports, 146–
150, 157, 466, 529; of �, 6, 153; with
constant coefficients; of a Coxeter group,
286–288; end, 479, 529; equivariant, 468,
539; with group ring coefficients, 466; of
a Coxeter group, 152–157, 303; L2, 539–
541; in dimension 0, 368, 543; reduced, 539;
top-dimensional, 370, 543; unreduced, 539;
weighted, 6; of a group, 466, 467, 474 ; with
local coefficients, 465

Collared Condition, 175
collared pair, 150
combinatorial equivalence, 412
combinatorial Laplacian, 540
combinatorially, isomorphic, 407
compact supports. See cohomology, with

compact supports
compactification; of a CAT(0)-space, 527–530;

Z-set, 529
Comparison Theorem of Aleksandrov and

Toponogov, 501
comparison triangle. See triangle, comparison
complex; boundary, 405
complex; convex cell. See cell complex, convex
complex; cubical. See cell complex, cubical
complex; double. See double complex
complex; flag, 410, 519; metric. See metric flag

complex 15
complex of groups, 307, 456, 454–459; devel-

opable, 457; simple. See simple complex of
groups; trivial, 456; universal cover of, 458

complex of spaces, 458
cone, 66, 413; on a cell complex, 413; Cone(X),

413, 506; Coneκ (X), 507, 512; on a space,
66, 413, 506

Conjugacy Problem, 514; for CAT(0) groups,
513; for Coxeter groups, 237, 255, 274

connected chamber system, 329
connected subset of W, 50
connected sum, 174, 530
continuity of L2-Betti numbers, 366
contractible, 21, 25, 127, 144, 502; weakly, 21
contractible manifold, 185–191
convex; cell complex. See cell complex, con-

vex; hull, 402; polytope, 74, 78, 402; bound-
ary complex of a, 405; in En, 74; face of a,
402; in Hn, 76; in Sn, 75; subset of an affine
space, 402; subset of W, 50, 50

convolution, 348
Cooper, D., 24, 240

Corson, J., 454
cosine matrix. See matrix, cosine
cospherical subset, 376
cotype, 422
Coxeter, H.M.S., 425, 433
Coxeter, block, 207, 337
Coxeter cell, 128, 207, 231, 233, 364, 385
Coxeter complex, 3, 68, 430; abstract, 330
Coxeter diagram, 42, 42–44, 245, 256, 433;

irreducible component of, 61; nodes of, 42;
straight line, 424; type An, 92, 130; type Bn,
93; type Dn, 94

Coxeter graph, 42
Coxeter group, 37; affine. See reflection, group,

Euclidean; automorphisms of, 257; center
of, 257; ends of a, 159; exponents of a, 324;
free abelian subgroup of a, 246–247; large-
ness of, 276–282; right-angled. See right-
angled Coxeter system; simplicial, 102–103,
433–441; as technique for constructing ex-
amples, 4, 136; type HM, 197, 201, 206, 207,
235, 274, 275, 325, 370, 374; type PM, 235,
263, 263–274, 370; virtually free, 154, 161–
163; word hyperbolic, 242–246

Coxeter matrix, 2, 37, 40, 42, 43, 101, 116, 124,
329, 433–441; of a polytope, 423, 425

Coxeter polytope, 128, 128–131, 231, 233,
337, 364; hyperbolic, 242

Coxeter system, 2, 37, 37–39, 56, 90; asso-
ciated labeled graph, 124, 258; associated
simple complex of groups, 455; diagram of.
See Coxeter, diagram; irreducible, 44, 433;
nerve of a, 123, 232; pre-Coxeter system,
2, 30, 56, 64, 66; reducible, 44, 130; 2-
spherical, 260, 283, 452

crystallographic condition, 344
�n the n-cube, 8, 95, 130, 134, 403, 414, 425,

508; face poset of, 407; standard subdivision
of, 414

cubical complex. See cell complex,
cubical

curvature, � κ , 501
CW . See Coxeter, polytope
CW complex, 406; characteristic maps of, 406;

regular, 406
cycle, 283

Davis, M. W., 110, 136, 166, 182, 196, 216,
223, 228, 229, 255, 287, 307, 315, 320, 325,
344, 374, 400, 424–432, 529, 532

Davis complex. See � or �(W, S)



July 27, 2007 Time: 12:38pm index.tex

576 INDEX

de Rham cochain complex, 550
de Rham cohomology, 550
de Rham Theorem, 550; L2 version, 551
Deletion Condition, 31, 35, 36, 39, 45
Deligne, P., 230
derived complex. See flag complex, of a poset
developable. See complex, of groups,

developable
diagram automorphism, 169, 256
Dicks, W., 165
digon, 501
dihedral angle, 78, 96, 244; nonobtuse, 78
dihedral group, 26–29, 42, 59, 82, 95, 130, 331,

425; infinite, 26, 160, 321; Tits cone for,
442

dimension; of an affine space, 401; cohomo-
logical. See cohomological dimension; of a
convex polytope, 402; of a simplex, 408; von
Neumann. See von Neumann dimension

Dm, 26, 28, 29, 42, 59, 82, 95, 130, 255, 258,
331, 425

direct limit. See limit, direct
directed set, 477
Dirichlet domain, 91
Disjoint 2-Disk Property, 210
displacement function, 514
D∞, 26, 59, 82, 124, 160; growth series of, 321
dodecahedron. See regular polytope,

dodecahedron
Dodziuk, J., 547
Donaldson, S., 490
double complex, 460; associated spectral

sequence, 460; associated total complex,
460

Double Suspension Theorem, 194
doubling along a face, 112
Dranishnikov, A., 157, 532
dual cell, 371, 415
dual complex, 416
dual cone, 324, 416; in a poset, 458; in a scwol,

458
dual polytope. See polytope, dual
dual poset. See poset, opposite
dualizing module, 474
Dyer, M., 258
Dymara, J., 307, 350, 367–368, 400

Eckmann, B., 535, 536, 547, 549, 554
edge, 402; path, 16; of a simplicial complex,

408
Edwards, R., 195, 210

EG the universal space for proper actions, 3,
25, 156, 237, 271, 340, 445, 504, 513; finite-
ness properties, 225–227, 228

Eilenberg, S., 471
Eilenberg–Ganea Problem, 471,154
Eilenberg–Ganea Theorem, 470, 155
element of longest length, 53, 293, 316
elliptic isometry. See isometry, elliptic
empty 4-circuit, 521
En. See Euclidean n-space En

end(r), 482
ends, of a group, 158; of a space, 482
Ends(G). See ends, of a group
Ends(X), 482
ENR, 529
Eπ the universal space for π , 22, 466
essential element of a Coxeter group, 246
Euclidean manifold, 23
Euclidean n-spaceEn, 73, 73–77, 283, 401, 499
Euclidean reflection, 74
Euclidean reflection group. See reflection,

group, Euclidean
Euclidean simplex, 101, 527; polar dual, 527
Euler characteristic, 185, 306, 545; Conjecture,

310, 547; of a Coxeter group, 310; right-
angled, 310; of a graph, 280; of a group, 307,
308, 341; L2, 545; of an odd dimensional
manifold, 310; orbihedral, 307, 311, 366,
545; weighted L2, 367, 366–368

Euler class, 185, 288
Euler complex, 324
Euler-Poincaré measure, 341
Euler sphere, 324
exact triad, 165
Exchange Condition, 35, 36, 40, 49, 54
excision, 542
extendible geodesics, 513
extra large. See piecewise spherical, cell

complex, extra large
extreme element of a starlike set, 50

face; of a cell complex, 415; of a convex
polytope, 402; of a geometric realization,
128, 415; poset, 406; of a cell complex, 324,
406; of a cube, 407; of a simplex, 407; of a
simplicial complex, 287, 320, 406; ring, 287,
288

family of groups, 64
Farber, M., 554
Farrell, F. T., 228, 230, 253, 474, 488
Farrell–Jones Program, 253
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Feit-Higman Theorem, 331
Ferry, S., 210
filtration, 459
finite homological type, 307
finitely many shapes of cells, 510
finitely presented group, 224, 473
finiteness conditions, 471–473, 513; type F,

226; type F or VF, 212, 213, 215, 218, 224,
225, 472, 490; type FH or VFH, 472; type
FH∞, 472; type FHn, 472; type F∞, 472;
type FL or VFL, 221, 224, 309, 341, 472,
474; type FL∞, 472; type FLn, 472; type Fn,
472; type FP or VFP, 153, 206, 218, 224,
307, 472, 490; over Q, 308; type FP∞, 472;
type FPn, 472

Fischer, H., 239, 254
flag, 409
flag complex, 10, 125, 314, 410, 411, 519;

metric. See metric flag complex; of F(P),
411; of a poset, 249, 409

Flag Complex Conjecture, 314, 326
Flag(P), 126, 249, 409
flat manifold, 23
Flat Torus Theorem, 238, 514
flip of an edge, 30
Folding Condition, 35, 36, 49, 345
Følner Condition, 322, 323, 549
Fourier series, 537
F(P) the face poset, 406, 411
f -polynomial, 310
Franszen, W., 260
Freedman, M., 188, 189, 195
Freudenthal, H., 482
full subcomplex, 160, 284
fundamental chamber. See chamber,

fundamental
fundamental domain, 64, 69, 91, 232, 549;

Dirichlet, 91, 130; strict, 1, 64, 69, 83, 91
fundamental group, 166–168; at an end, 484; at

infinity, 484
fundamental set of generators for a Coxeter

group, 37, 255
fundamental simplex, 338
f -vector, 112, 310

Gal, S., 376
gallery, 48, 89; in a building, 331; in a chamber

system, 329; connected, 263, 428; geodesic,
48, 331; minimal, 48; in a pseudomanifold,
263

�-dimension, 536, 544

�-trace, 308, 535
Ganea, T., 471
Gauss–Bonnet Theorem, 85, 311, 315; combi-

natorial version, 312
general position of affine subspaces, 412
generalized homology disk, 193, 202, 370, 546
generalized homology sphere, 193, 202, 370,

521
generalized polytope, 201, 370, 371; resolution

of, 204
geodesic, 499; closed, 499; contraction, 502;

line, 499; local, 506; piecewise, 510, 512;
ray, 499, 527; parallel, 528; segment, 499;
space, 499, 510; uniqueness of, 501

geodesic metric space. See metric space,
geodesic

Geoghegan’s Conjecture, 484
Geoghegan, R., 484, 485
geometric dimension, 154, 215, 470
geometric realization; of an abstract cell com-

plex, 415; of abstract simplicial complex,
408; of a poset, 126, 202, 410; of a scwol,
456

geometric reflection group. See reflection,
group, geometric

geometric representation, 183, 274, 439; dis-
crete image, 440; faithful, 440

Geometrization Conjecture. See Thurston’s
Conjecture

Geroch, R., 315
GHDn. See generalized homology disk
GHSn. See generalized homology sphere
Gonciulea, C., 276
Gordon, C.McA., 283
Gram matrix, 81, 96, 96–101, 245, 515, 527
graph, 23; Cayley. See Cayley, graph; simpli-

cial. See simplicial, graph
graph of groups, 161, 173, 450–454; aspherical

realization of, 453; developable, 452; fun-
damental group of a, 450; interesting, 452;
uninteresting, 452; universal cover of a, 451

graph of spaces, 453; cellular, 453
graph product of groups, 332; model for EG,

340 ; word hyperbolic, 341
Gromov, M., 4, 23–24, 197, 240, 241, 276, 315,

410, 519, 549, 553
Gromov’s Lemma, 10, 223, 314, 519–523
group; amenable, 322, 543, 549; Baumslag–

Solitar, 215; binary icosahedral, 185;
CAT(0), 513–515; classifying space for,
22, 206, 454, 466, 488, 490, 495; Coxeter.
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group (cont.)
See Coxeter, group; cyclic, 27, 450, 537;
dihedral, 26, 28, 29, 42, 95, 130, 425;
finitely presented, 206, 473; icosahedral, 95;
octahedral, 92, 95, 404, 425; 1-relator, 23,
215; Poincaré duality. See Poincaré duality
group; presentation of, 18; proper action of,
3, 25, 66, 177; splitting of, 452; symmetric.
See symmetric group; type FP, 206; word
hyperbolic, 24, 230, 235, 240, 553, 566;
boundary of, 530

growth; exponential, 322; polynomial, 322
growth series, 315–327, 335, 360; and Euler

characteristics, 343, 367; rational, 318; reci-
procity of, 324, 325

Gysin sequence, 288

Haar measure, 341, 394
Haefliger, A., 24, 72, 454, 458, 459, 464, 531
Haglund, F., 255
half-space, 33, 38, 49, 69, 254; affine, 402; in
En, 74; in Hn, 76, 244; linear, 404; of �, 33;
open, 402; opposite, 48; positive, 33; of �.
See � or �(W, S), half-space of; in Sn, 75;
system, 254; of U , 69; of W, 48, 58, 277,
447; fundamental, 48

Hamilton, R., 188
Hard Lefschetz Theorem, 552; L2 version of,

553
harmonic cycle, 540
harmonic forms, 551
Hatcher, A., 406
Hausmann, J.-C., 186, 216
h-cobordism, 189; Theorem, 275; torsion of an,

490
Hecke algebra, 344, 344–349
Hilbert �-module, 533
Hilbert Nq-module, 351; structure on

L2
qC∗(U), 363

Hirsch, M., 492
Hirzebruch, F., 496
HM; type, 237, 245–246, 325. See also Cox-

eter, group, type HM.
HNN construction, 279, 450
Hodge decomposition, 540
Hodge star operator, 551
Hodgson, C., 532
homology, 137; equivariant, 468; of a group,

466, 467; with group ring coefficients, 466;
L2, 539–541; in dimension 0, 543; reduced,
540; top-dimensional, 370, 543; with local

coefficients, 465; locally finite, 147, 191,
482; reduced, 140

homology manifold, 135, 191, 214; ANR, 210;
resolvable, 210; with boundary, 192, 214;
orientable, 191

homology manifold with corners, 199; stratum
of, 199

homology sphere, 182, 185; bounds a con-
tractible manifold, 187; generalized, 193,
197, 202; Poincaré’s, 155, 185, 187, 197

Hopf, H., 158, 186, 315, 467
Hopf’s Theorem, 186, 467, 467
horofunction, 528
Howlett, R., 260
h-polynomial, 112, 325–327, 522
Hsiang, W. C., 182, 187, 253
Hsiang, W. Y., 182
Hu, B., 253, 255
Hurewicz Theorem, 128
h-vector, 112
hyperbolic manifold, 23
hyperbolic isometry. See isometry, hyperbolic
hyperbolic n-space Hn, 75, 73–77, 244, 283,

499; L2-Betti numbers of, 551; Poincaré disk
model, 77, 87; quadratic form model, 77

hyperbolic reflection, 77
hyperbolic simplex, 97–99
hyperbolization procedure, 252; relative, 252
hyperplane, 402; affine, 402; in En, 74; in Hn,

76; in Sn, 75; supporting, 402

icosahedron. See regular polytope,
icosahedron

incidence relation, 409; flag of an, 409
incompressible torus, 105, 120
infinitesimal shadow, 513
intrinsic distance, 17
inverse limit. See limit, inverse
inverse sequence, 477
inverse system, 477; bond of, 477
In(w), 54, 317
I(P), 406
isometry; elliptic, 514; parabolic, 244, 514;

semisimple, 514
Isomorphism Problem for Coxeter groups, 274
isotropy subgroup, 16, 66, 177; finite. See

group, proper action of

Jackson, B., 483
Jaco, W., 120
Jaffe, H., 279
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Januszkiewicz, T., 24, 196, 229, 235, 255, 287,
400, 529

j-isomorphism, 347; on L2
q, 351

Johannson, K., 120
join; of abstract simplicial complexes, 124,

414; of affine subspaces, 412; of cell com-
plexes, 9, 413; of convex polytopes, 412;
poset of cells of a, 413; of spaces, 413;
spherical. See spherical, join

Jones, L., 253, 255, 488
JSJ decomposition, 120

K or K(W, S), 126, 416; is contractible, 127
Kähler; hyperbolic, 553; manifold, 552
Kac-Moody groups, 344
Kaplinskaja, I. M., 111
Kaul, A., 260
Kervaire Conjecture, 156
Kervaire, M. A., 156, 186, 189
Kirby, R., 186, 490, 492
Kneser, H., 120
K(π , 1). See Bπ the classifying space for π
Krammer, D., 246–247, 255
Künneth Formula, 157, 542; in L2-coho-

mology, 542, 544

L or L(W, S), 123, 232
L the L-spectrum, 494
Lafont, J., 228, 230
Lannér group. See reflection, group, simplicial
large. See piecewise spherical, cell complex,

large
large link. See piecewise spherical, cell com-

plex, large
large group, 276, 323
Law of Cosines, 506
Leary, I. J., 156, 165, 225, 228
Leary-Nucinkis examples, 225, 228
length of a path, 499
length space, 231, 499, 510
Leray, J., 459
light cone, 98; positive, 76, 442
limit
direct, 139, 478; inverse, 478
line, 280
line segment, 402
linear isoperimetric inequality, 241
link, 4, 8, 263, 418; geometric, 510; piecewise

spherical structure, 511
Link Condition, 511
Lipschitz map, 522

local coefficients; chains with, 465; cochains
with, 465; cohomology with, 465; homology
with, 465; system of, 288, 465, 489

Local Smith Theorem, 192
locally finite cell complex, 404
locally flat submanifold, 177
locally linear action, 177, 213
Long, D. D., 283
Lower Bound Conjecture, 110
L2-Betti number, 186, 366, 544, 554; of an

amenable group, 550; of Hn, 551; of a map-
ping torus, 548

L2 boundaries, 539
L2 chains, 538
L2 coboundaries, 539
L2 cochains, 538
L2 cocycles, 539
L2 cohomology, 6, 539
L2 cycles, 539
L2 Euler characteristic, 367, 545
L2(�), 532
L2 homology, 6, 186, 539
Lyndon, R., 23, 215
Lyndon’s Theorem, 23, 215
Lück, W., 548, 554
Lück’s Theorem, 548
l(w) word length, 31

manifold, 132; contractible, 185–191; homol-
ogy. See homology manifold; PL. See PL
manifold; three-dimensional. See Thurston’s
Conjecture; prime decomposition, 120

manifold with corners, 180; homology, 199;
mirrored, 181; nice, 180; stratum of, 180

map, 68
mapping torus, 548; L2-Betti numbers of, 548
Margulis, G. A., 121, 276, 280
matrix; almost negative, 525; normalized, 525;

cosine, 101, 116, 232, 245, 283, 338,
433, 515; associated form, 116; Coxeter, 37,
101, 116, 124, 433; of dihedral angles, 515;
Gram. See Gram matrix; indecomposable,
79, 433, 526

Mayer–Vietoris sequence, 288, 542; in L2

(co)homology, 375
Mayer–Vietoris spectral sequence. See spectral

sequence, Mayer–Vietoris
Mazur, B., 492
McCammond, J., 274
McMullen, C., 3
m-connected at infinity, 175, 484
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Meier, J., 340
Mess, G., 156, 215
metric flag complex, 236, 243, 523; extra large,

see piecewise spherical, cell complex, extra
large

metric space; geodesic, 499, 510; length space,
231, 239, 499

Mihalik, M., 171, 173, 483
Millson, J., 279
Milnor, J., 189, 194, 255, 315
Min(g), 514
Minkowski space Rn,1, 76, 97; lightlike sub-

space of, 76; spacelike subspace of, 76, 98;
timelike subspace of, 76, 98

Mio, W., 210
mirror, 63, 88; structure, 63, 102, 181, 250,

270, 361; tautological, 179, 442; W-finite,
66, 295, 444

mirrored CW complex, 63, 136, 290, 459
mirrored homology manifold with corners, 199
mirrored manifold with corners, 181, 213
mirrored space, 63
mirrored subspace, 150
Mittag-Leffler Condition. See semistable
Möbius Inversion Formula, 317
M-operation, 40, 315
Mostow, G.D., 121
Mostow Rigidity Theorem, 104, 121, 487
Moussong, G., 4, 136, 344, 531
Moussong’s Condition, 242, 341
Moussong’s Lemma, 523–527
Moussong’s Theorem, 165, 238, 369
Mühlherr, B., 259, 260, 274
Munkres, J., 492

nerve, 123, 142, 232; of an almost negative ma-
trix, 526; of a category, 464; of a cover, 145,
201, 277, 461, 505; of a Coxeter system, 4,
123, 142, 232, 250; of a mirror structure, 63,
125, 142, 250, 459; punctured, 153, 160

Newman, M.H.A., 187–189, 192
Neumann, W., 274
Newman’s Theorem, 192
N (�), 535
Niblo, G., 254
Nikolaev, I., 24
no �-condition. See flag complex
no �-condition, 235, 341, 521
nonpositive curvature, 24, 312, 315
Novikov, S., 497
Novikov Conjecture, 253, 496–497

n(r, s), 33, 38
Nucinkis, B., 156, 225

octahedral group, 92, 95, 404, 425
Okun, B., 307, 315, 374, 400
On the n-octahedron, 95, 134, 403, 413,

425, 508
O(n) the orthogonal group, 26, 74, 75, 77, 88
O(n, 1) and O+(n, 1), 77, 109
one-ended, 482
Ontaneda, P., 488
operator norm, 531
orbifold, 85, 106
orbihedron. See complex, of groups
order complex. See flag complex, of a poset
orientation character, 474
Out(w), 54

Par(W, S). See parabolic subgroup
parabolic closure, 246
parabolic isometry. See isometry, parabolic
parabolic subgroup, 52, 71, 246, 260; rank of,

52, 260; spherical, 260, 446; normalizer of,
60, 163, 208, 264

parallelizable, 185; stably, 185
Paulin, F., 24
PDn-group. See Poincaré duality group
PDn-Group Conjecture, 217, 488; relative ver-

sion, 490, 496
Perelman, G., 22, 104, 121, 188, 275, 488
Perelman’s Theorem. See Poincaré Conjecture,

Thurston’s Conjecture
permutahedron, 130
�(s), 31, 32, 34, 39, 40
PHSn. See punctured sphere property
π∞1 ( ). See fundamental group, at infinity
piecewise Euclidean cell complex. See

polyhedron, piecewise Euclidean
piecewise Euclidean metric, 24, 231
piecewise hyperbolic cell complex, 242–246
piecewise spherical cell complex; extra large,

242, 512, 523, 527, 532; large, 512
PL manifold, 132, 135, 194, 195, 415, 529
PM, type. See Coxeter, group, type PM
Pogorelov, A. V., 531
Poincaré, H. 186
Poincaré complex, 489
Poincaré Conjecture, 22, 121, 185, 188,

191, 275; Generalized, 188
Poincaré duality, 310; for L2-cohomology, 546;

for weighted L2-cohomology, 370–374
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Poincaré duality group, 206, 217, 229, 274,
474; in dimension 2, 547; not finitely pre-
sented, 225; orientable, 474; virtual, 206,
221, 226–228, 237, 311, 475, 548; over R,
209

Poincaré homology sphere. See homology
sphere, Poincaré’s

Poincaré pair, 214, 216, 218, 489; orientable,
489; over π , 229, 489

polar dual of a spherical polytope, 232, 516
polygon, 410; generalized, 331, 334; opposite

vertices in, 334
polygon group, 87, 245, 283, 373, 399; growth

series of, 322; triangle. See triangle group
polyhedral cone, 75, 78, 404; essential, 75, 78,

404; inXn, 78; link of a vertex in, 78; tangent
cone of, 78

polyhedron, 405, 411; nonpositively curved,
24; piecewise constant curvature, 510, 508–
511; piecewise Euclidean, 231, 243, 248,
253, 311, 510; piecewise hyperbolic, 510;
piecewise spherical, 312, 510

polytope, 402; combinatorially isomorphic,
407; convex. See convex polytope; Coxeter.
See Coxeter, polytope; cross. See On the n-
octahedron; dual, 95, 407, 516; Euclidean,
74; generalized. See generalized polytope;
hyperbolic, 76; with nonobtuse angles, 78;
regular. See regular polytope 15, 96; right an-
gled, 78; simple, 80, 516; spherical, 75, 419;
spherical dual, 232, 311, 516; Xκ -polytope,
508

Pontryagin surface, 239
Pop. See poset, opposite
poset, 123, 406; of cells, 406; of a join, 413; of

faces, 406; flag complex of, 409; geometric
realization of, 410; interval in, 406; of in-
tervals, 406; opposite, 406, 451; of spherical
cosets, 125; of spherical subsets, 123

power set, 124, 406
Prasad, G., 121
Prassidis, S., 274
prefundamental subset, 56
presentation of a group, 18, 223, 241
principal submatrix, 98
product of polytopes, 403
product metric, 507
pro-epimorphic. See semistable
pro-isomorphism, 477
projective class group, 473, 490; reduced, 473,

490

projective plane, 331
Prokhorov, M., 122
proper action of a group. See group, proper

action of; of W, 66
proper map, 482
Property FA, 452
pseudomanifold, 135, 235, 263, 422, 543;

gallery connected, 263; orientable, 263; top-
dimensional cycle, 370; with boundary, 270;
in weighted L2-homology, 370

pseudoreflection, 115
punctured nerve. See nerve, punctured
punctured sphere property
in homology, 202

quasi-isometry, 239
Quinn, F., 210, 495

R the region of convergence, 321
rank; of a parabolic subgroup. See parabolic

subgroup, rank of; of a projective QG-
module, 308

ray; geodesic. See geodesic, ray; in a topologi-
cal space, 482; proper, 482

reduced expression, 31, 39, 40, 44, 69, 334
reduced; M-reduced word, 40, 330, 331
Reduced Projective Class Group Conjecture,

218, 253, 490
reduced; (T ,∅)-reduced, 47, 293
reduced; (T , T ′)-reduced, 47, 358, 361, 364
reduced word, 40
Reeves, L., 254
reflection, 33, 46–47, 88; Euclidean, 74; funda-

mental reflection, 33; geometric, 77; hyper-
bolic, 77; linear, 73; locally linear, 177; on a
manifold, 177; prereflection, 30; pseudore-
flection, 115; rigidity; of finite Coxeter
groups, 260; of 2-spherical groups, 260;
spherical, 75

reflection group, 68; abstract, 2; on an acyclic
manifold, 182; Euclidean, 1, 84, 237, 242,
246, 276, 283, 434; geometric, 84, 72–122,
124, 143; hyperbolic, 84, 283, 434; on a
homology manifold, 197–201; on a homol-
ogy sphere, 182; on a manifold, 177–211;
simplicial, 283, 433; spherical, 1, 84

reflection system, 2, 33, 33, 90; prereflection
system, 30, 90

regular polytope, 1, 94–96, 424, 424–426; do-
decahedron, 86, 95, 425; right-angled, 115;
icosahedron, 86, 95, 425, 432; n-cube, 95,
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regular polytope (cont.)
425; n-simplex, 95, 425; 120-cell, 96, 425,
432; right-angled, 111, 115; Platonic solid,
86; polygon, 95, 425; 600-cell, 96, 425 432;
symmetry group, 86, 94, 424, 425; 24-cell,
96, 425, 432

regular tessellations, 426; of Euclidean space,
432; of hyperbolic space, 87, 433; of the
sphere, 427

Reid, A., 283
relations, 18; in a Coxeter group, 37; in a

dihedral group, 28
representation; canonical, 118; geometric. See

geometric representation; induced, 534; reg-
ular, 532

residually finite action, 279
residually finite group, 215, 280
residue, 329; spherical, 330
retraction, 50, 71, 166; of building onto an

apartment, 333; T-retraction, 50; topologi-
cal, 71

ρ the radius of convergence, 322
right-angled Artin group, 223; classifying

space of, 223
right-angled building. See building, right-

angled
right-angled Coxeter system, 4, 8, 125, 132,

250, 287; cohomology of, 288; Euler char-
acteristic of, 310

right angled family of half-spaces, 78
right angled polytope, 78; polygon group, 374;

polytype, 78
rigid reflection set, 257
rigidity, 255; reflection, 257; of dihedral

groups, 258; strong, 255; strong reflec-
tion, 257; theorem. See Mostow Rigidity
Theorem

Rips, I., 24, 240
Rips complex, 24, 241, 530
Rivin, I., 532
Rn, 73, 401; inner product on, 74; standard

basis for, 73
Ronan, M., 344
root. See half-space, of W; basis, 447; system,

447
Rosas, E., 274
ruin, 385
R(u, v), 46, 278

S or S(W, S), 123, 126, 169
Sageev, M., 254

Schläfli symbol, 95, 422, 425, 429; final part
of, 429; initial part of, 429

Schläfli, L., 95, 425
s-cobordism, 490
s-Cobordism Theorem, 490
Scott, P., 450
scwol, 307, 455; edge set, 455; geometric real-

ization of, 456; vertex set, 455
sector, 49, 69, 148; retraction onto a, 148; of U ,

69; of W, 49, 60, 247
Seifert–van Kampen Theorem. See van

Kampen’s Theorem
Selberg’s Lemma, 120, 206
semidirect product, 27, 168; construction, 168–

170, 221, 227
semilocally simply connected, 152
semisimple isometry. See isometry
semisimple representation, 88, 119
semistable, 478; group, 484; inverse sequence,

173, 478; space, 170, 173, 483; homologi-
cally, 174, 481

Serre, J-P., 344, 450, 471, 472
Shad(x, u). See infinitesimal shadow
Shalen, P., 120
Siebenmann, L., 186, 254, 483, 490, 492
Siefert fiber space, 121
� or �(W, S), 126, 126–133, 169, 197, 231,

360; CAT(0) structure on, 230–238; cell
structure of, 131; chambers of, 133; cofaces
in, 133; cohomology with compact supports
of, 153, 303; is contractible, 144; half-space
of, 268; semistability of, 171, 173; homolog-
ical, 175; simply connected at infinity, 171;
subspace of, 261; codimension of, 261; wall
of, 261, 268, 276

Signature Theorem, 496
simple complex of groups, 454; associated to a

Coxeter system, 455; fundamental group of,
455; universal cover of, 455

simplex, 95, 102, 408; affine, 402, 403; di-
mension of, 408; Euclidean. See Euclidean,
simplex; face of a, 408; of groups, 454;
spherical. See spherical, simplex; standard
n-simplex, �n, 95, 102, 403, 414, 425,
508

simplicial complex, 404, 407, 508; abstract,
123, 407; edge of, 408; geometric realization
of, 408; k-skeleton of, 408; standard geomet-
ric realization, 408; vertex set of, 407

simplicial cone, 78, 404; in Xn, 78
simplicial Coxeter group, 102–103, 433
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simplicial graph, 16, 243, 284
simplicial map, 408
simplicial prism, 111
simply connected at infinity, 170, 484
Singer, I., 547
Singer Conjecture, 547–548; for Coxeter

groups, 374; implies Euler Characteristic
Conjecture, 547

skeleton; of a cell complex, 405; of a CW
complex, 406; of a simplicial complex, 408;
0-skeleton of a graph, 16
S(L) the poset of simplices, 406, 416; cofaces

of, 416; its cubical structure, 416
Smale, S., 188
Smith Theory, local, 192
Smith, P. A., 24, 178
Sn−1,1 the de Sitter sphere, 108
Solomon, L., 305
Solvable Subgroup Theorem, 515
special subgroup, 44, 123; normalizer of, 60–

62, 163, 208, 264; spherical, 123
spectral sequence, 459; associated to a double

complex, 460; associated to a filtration, 460;
first quadrant, 459; Mayer–Vietoris, 461–
463

Sn, n-sphere, 75, 73–77, 311, 499
Sphere Theorem, 22
spherical coset, 125
spherical join, 507, 512, 527
spherical reflection, 75
spherical simplex, 96–97; dual, 516
spherical special subgroup, 123
spherical subset, 3, 123
spherical suspension, 507
Spieler, B., 274
Spivak, M., 493
Spivak normal fibration, 216, 493
splitting, 452
Stallings, J., 159, 188, 189, 471
standard basis for Rn, 73, 403, 407
standard free abelian subgroup, 246
Stanley, R., 307, 315
Stanley–Reisner ring. See face, ring
star, 280; open, 419
star of a vertex, 519
starlike subset of W, 50, 148; extreme element

of, 50, 148
Steinberg, R., 319
Stiefel-Whitney class, 288
Stone, D., 532
Strebel, R., 23, 274

subcomplex, 408; full, 408; of a simplicial
complex, 408

subspace of �. See � or �(W, S), subspace of
Sullivan, D., 488, 494
support, of a point in a simplicial complex, 417
surface, 22
surface group, 282
surgery; exact sequence, 494; group, 493; spec-

trum, 494
S(w), 44
Swan, R., 471
Świa̧tkowski J., 235, 255
symmetric group, 92, 95, 130, 425
symmetric space, 551
symmetrization, 137, 292
system of coefficients, 290, 461
systole, 512

tangent cone, 418
tangent space, 401
tensor product, completed, 533
Thurston, W., 104, 229, 315, 400
Thurston’s Conjecture, 105, 120, 229, 488
Tits, J., 2, 40, 56, 72, 315, 344, 440, 446, 447
Tits cone, 3, 274, 277, 442
Tits Lemma, 59, 440
Tits system, 335, 396
Toponogov, 501
torsion-free, virtually, 3, 154, 221, 225
trace; Kaplansky, 308; tr� . See �-trace
translation length, 514
tree, 331; group action on, 276–282, 451; vir-

tual action on, 276–278
tree of groups. See graph of groups
triangle; comparison, 500; in a metric space,

240, 500
triangle group; Euclidean, 86; hyperbolic, 87;

spherical, 86, 133; Tits cone for, 442
triangulation, 405
trivial intersection property, 277
Troyanov, M., 255
Tschantz, S., 483
twisted product, 19, 287, 542
twisting, 258
two-sided element of S, 277
type HM, 245–246
type of a chain of cells, 421
type of a simplex, 421

U or U(W, X), 64, 63–71, 144, 146, 179, 183,
213, 250, 271, 361, 444, 455; cohomology
with compact supports of, 146–150, 300;
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U or U(W, X) (cont.)
homology of, 137–140, 300; universal prop-
erty of, 68, 127, 184, 271, 444

U(�, X), 336
Uniformization Theorem, 22
universal space. see Eπ the universal space for
π ; for proper actions, see EG the universal
space for proper actions

van Kampen’s Theorem, 19, 167, 188, 453, 458
vcd. See cohomological dimension, virtual
Vert(L) the vertex set of L, 30, 408
vertex, 402
set, 402, 408
Vinberg, E. B., 3, 72, 110, 111, 255, 276, 280,

447
virtual cohomological dimension. See

cohomological dimension, virtual
virtual properties 153, 440
virtually abelian, 276, 515; subgroup of a Cox-

eter group, 237, 247
virtually fibering over S1, 400
virtually free, 154
virtually infinitely cyclic, 158
virtually solvable, 515
virtually torsion-free. See torsion-free,virtually
visual boundary, 527–530
von Neumann algebra, 531, 535; associated to

a group, 535; associated to a Hecke algebra,
350

von Neumann dimension, 536, 544; in case of
buildings, 394; of a HilbertNq-module, 352,
366

Waldhausen, F., 120
wall, 32, 38, 69, 88, 179; of a chamber, 89; of
�, 32; of �, 261, 276; of U , 69

Wall, C.T.C., 450, 473, 493
Wall’s finiteness obstruction, 473, 490, 496
weak exact sequence, 533
weak isomorphism, 533
weak surjection, 533
weak topology, 531
weighted L2-Betti number, 366
weighted L2-cohomology, 389–394; for W type

HM, 370; in dimension 0, 368–369; in the
top dimension, 370

weighted L2-Euler characteristic, 367
Weinberger, S., 24, 186, 210, 216, 495
Weiss, R., 344
Whitehead, J.H.C., 21, 128, 156, 191, 454
Whitehead group, 490, 491
Whitehead Group Conjecture, 218, 253, 491
Whitehead torsion, 490
Whitehead’s Conjecture, 156
Whitehead’s Theorem, 21, 128
without inversions, 451
word, 16, 31; length, 18, 31; metric, 17, 239;

minimal, 29; problem, 40–42, 241, 315; for
CAT(0) groups, 513; unsolvable, 216; re-
duced, 29, 31, 40

word hyperbolic group. See group, word hyper-
bolic

WS, 125, 126
WT , 55, 140, 317
W-valued distance function, 330

Xκ -polyhedral complex, 508
Xκ -polytope, 508

Z-set, 529; compactification, 529; of a group,
532
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