
THE EULER CHARACTERISTIC OF A NONPOSITIVELYCURVED, PIECEWISE EUCLIDEAN MANIFOLDRuth CharneyandMi
hael Davis0. Introdu
tion.A 
onje
ture of H. Hopf states that ifM2n is a 
losed, Riemannian manifold of nonposi-tive se
tional 
urvature, then its Euler 
hara
teristi
, �(M2n), should satisfy (�1)n�(M2n) �0. In this paper, we investigate the 
onje
ture in the 
ontext of pie
ewise Eu
lidean man-ifolds having \nonpositive 
urvature" in the sense of Gromov's CAT(0) inequality. In this
ontext, the 
onje
ture 
an be redu
ed to a lo
al version whi
h predi
ts the sign of a \lo
alEuler 
hara
teristi
" at ea
h vertex. In the 
ase of a manifold with 
ubi
al 
ell stru
ture,the lo
al version is a purely 
ombinatorial statement whi
h 
an be shown to hold underappropriate 
onditions.The original 
onje
ture of Hopf, and a similar 
onje
ture for nonnegative 
urvature(whi
h we shall not be 
on
erned with here), are true in dimensions 2 and 4, by the Chern-Gauss-Bonnet Theorem: in both 
ases the 
urvature 
ondition for
es the Gauss-Bonnetintegrand to have the 
orre
t sign. This is immediate in dimension 2. Chern [Ch℄ givesa proof in dimension 4 and attributes the result to Milnor. A result of [Ge℄ shows that,in dimensions � 6, the 
urvature 
ondition does not for
e the Gauss-Bonnet integrandto have the 
orre
t sign; hen
e, the same argument does not work in higher dimensions.(However, the hypothesis that the 
urvature operator is negative semide�nite does for
ethe integrand to have the 
orre
t sign).Here we are 
on
erned with the analogous 
onje
ture for pie
ewise Eu
lidean manifolds.In order to make sense of this, two points bear further dis
ussion: (1) the meaning of\nonpositive 
urvature" for pie
ewise Eu
lidean spa
es, and (2) the 
ombinatorial analogueof the Gauss-Bonnet Theorem for su
h spa
es.As for the �rst point, \nonpositive 
urvature" makes sense for a more general 
lass ofmetri
 spa
es than Riemannian manifolds, namely, it makes sense for \geodesi
 spa
es"(also 
alled \length spa
es"). For geodesi
 spa
es the notion of nonpositive 
urvatureis de�ned via Gromov's \CAT(0) inequality" (see [G: p.106℄). A pie
ewise Eu
lidean 
ellBoth authors were partially supported by NSF Grant DMS 9208071 and the Institute for Advan
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omplex naturally has the stru
ture of a geodesi
 spa
e (
f. (1.3)) so nonpositive 
urvaturemakes sense in this 
ontext. Asso
iated to a vertex v of su
h a 
ell 
omplex, there is apie
ewise spheri
al 
omplex 
alled the \link of v". It is homeomorphi
 to the topologi
allink; its metri
 is determined by the solid angles at v in the 
ells whi
h 
ontain v. Thereis an in�nitesimal version of nonpositive 
urvature, due to Gromov, whi
h is equivalent tothe previous version: the link of ea
h vertex must be \large". (By de�nition, a pie
ewisespheri
al spa
e is large if there is a unique geodesi
 between any two points of distan
e lessthan �).In dimension 2, in the 
ase of a pie
ewise Eu
lidean surfa
e M2, these ideas are quitewell-known. For a vertex v of M2, let �(v) denote the sum, over all 2-
ells 
ontaining v,of the interior angles at v. The link of v is then a 
ir
le of length �(v); it is large if andonly if �(v) � 2�.As for the se
ond point, there is a well-known analogue of the Gauss-Bonnet formula forpie
ewise Eu
lidean 
ell 
omplexes. It has the form �(X) =P�(v), where the summationis over the verti
es of X and where �(v) depends only on the link of v. (The pre
isede�nition of �(v) is given in (3.4.3)). It is shown, rather 
onvin
ingly, in [CMS℄ that �(v)is the 
orre
t analogue of the Gauss-Bonnet integrand in this 
ontext.In 
ontrast with the smooth 
ase, we 
onje
ture that, in all dimensions, the in�nitesimalversion of nonpositive 
urvature should for
e �(v) to have the 
orre
t sign.For a vertex v of a pie
ewise Eu
lidean surfa
e, �(v) = 1 � (2�)�1�(v). Hen
e, indimension 2, our 
onje
ture is true: �(v) � 2� implies �(v) � 0.In general, it is diÆ
ult to 
he
k that a pie
ewise spheri
al spa
e L is large. However,if L is a simpli
ial 
omplex and if ea
h edge of L has length �=2, then Gromov has given asimple 
ombinatorial 
ondition whi
h is ne
essary and suÆ
ient for L to be large: it mustbe a \
ag 
omplex". (The de�nition is given in (2.7)). Su
h L (i.e., simpli
ial 
omplexeswith edge lengths �=2) arise as links in any pie
ewise Eu
lidean 
ell 
omplex whose 
ellsare regular 
ubes. Furthermore, for su
h L, the quantity �(L) is easily seen to be given bythe formula: �(L) = 1 +X(� 12 )i+1fi;where fi is the number of i-simpli
es in L. Hen
e, the lo
al form of the Hopf Conje
turefor pie
ewise Eu
lidean 
ubi
al manifolds is the following, purely 
ombinatorial 
onje
ture,
alled Conje
ture D in Se
tion 4.Conje
ture D. Suppose that L is a simpli
ial 
omplex homeomorphi
 to S2n�1 and that�(L) is de�ned by the formula above. If L is a 
ag 
omplex, then (�1)n�(L) � 0.This 
onje
ture is �rst interesting in dimension 3. For any triangulation L3 of S3, theLower Bound Theorem of [W℄, states that f1 � 4f0� 10. In this dimension, Conje
ture Dis equivalent to the statement that if, in addition, L3 is a 
ag 
omplex, then f1 � 5f0�16.Given an arbitrary simpli
ial 
omplex L, we 
onstru
t, in Se
tion 6, a �nite, pie
ewiseEu
lidean, 
ubi
al 
omplex so that the link of ea
h vertex is L. If L is a 
ag 
omplex,then the 
ubi
al 
omplex is nonpositively 
urved. If L is homeomorphi
 to a sphere, the
ubi
al 
omplex is a manifold. Hen
e, Conje
ture D is equivalent to the Hopf Conje
turefor pie
ewise Eu
lidean manifolds 
ellulated by 
ubes (
f. Proposition 6.5).2



There is a beautiful generalization, due to G. Moussong [M℄, of Gromov's 
ombinatorial
ondition for largeness of pie
ewise spheri
al simpli
ial 
omplexes with edges of length �=2.Moussong gives an analogous 
ondition in the 
ase where the edge lengths are � �=2 whi
his partly 
ombinatorial and partly metri
 (see (2.9), (2.10)). This leads to a 
onje
ture forsu
h L, analogous to Conje
ture D, 
alled Conje
ture C in Se
tion 4.Se
tion 5 provides some eviden
e for Conje
tures C and D. First, we show that Conje
-ture D holds for some wide 
lasses of 
ag 
omplexes whi
h arise as subdivisions. Then weshow in Proposition (5.7) that Conje
ture D implies Conje
ture C (in the 
ase where theunderlying simpli
ial 
omplex is a 
ag 
omplex). The proof uses a formula of [CMS℄ forthe �rst derivative of �(t), where �(t) = �(Lt) for some 1-parameter family Lt of pie
ewisespheri
al simpli
ial 
omplexes.Finally, in Se
tion 7, we dis
uss an equivalent form of Conje
ture D, of interest to
ombinatorialists.1. Pie
ewise Eu
lidean and pie
ewise spheri
al 
ell 
omplexes.(1.1) A Eu
lidean 
ell is a 
onvex polytope in some Eu
lidean spa
e. A 
onvex polyhedral
one in Rn (with vertex at the origin) is any interse
tion of a �nite number of linear half-spa
es whi
h 
ontains no line. The spheri
al 
ell asso
iated to a 
onvex polyhedral 
one isits interse
tion with Sn�1. A 
onvex polyhedral 
one is a simpli
ial 
one if this interse
tionis a spheri
al simplex.(1.1.1) If P is a Eu
lidean 
ell and F is a fa
e of P , then the normal 
one of F in Pis the 
onvex polyhedral 
one N(F; P ) 
onsisting of all inward pointing normal ve
tors toF . Its dimension is the 
odimension of F in P . The asso
iated spheri
al 
ell is 
alled thelink of F in P and denoted Lk(F; P ). Thus, Lk(F; P ) is the \solid angle" of P along F .Similarly, if F is a fa
e in a spheri
al 
ell P , then Lk(F; P ) is de�ned to be the link of theasso
iated polyhedral 
ones.(1.1.2) A pie
ewise Eu
lidean 
ell 
omplex is a spa
e X formed by gluing together Eu-
lidean 
ells via isometries of their fa
es together with the de
omposition of X into 
ells.A pie
ewise spheri
al 
ell 
omplex is de�ned similarly using spheri
al 
ells. We assumethroughout that all 
ell 
omplexes are lo
ally �nite. We also assume that there is a posi-tive lower bound on the heights of all 
ells of X. (The height of a 
ell C is the minimumdistan
e between disjoint fa
es of C.)(1.1.3) If F1 and F2 are fa
es of a Eu
lidean (resp. spheri
al) 
ell P and F1 � F2, thenLk(F1; F2) is 
anoni
ally identi�ed with a fa
e of Lk(F1; P ). It follows that if F is a 
ellin a pie
ewise Eu
lidean (resp. spheri
al) 
omplex X, then the set of all Lk(F; P ), P a
ell of X whi
h 
ontains F , �t together to give a pie
ewise spheri
al 
ell 
omplexLk(F;X) = [F�P Lk(F; P )
alled the link of F in X.(1.1.4) An n-
ell P is simple if pre
isely n 
odimension-one fa
es of P meet at ea
hvertex. Equivalently, P is simple if Lk(F; P ) is a simplex for ea
h proper fa
e F of P . For3



example, a simplex is simple, so is a 
ube; an o
tahedron is not. If ea
h 
ell of a pie
ewiseEu
lidean 
ell 
omplex X is simple, then Lk(F;X) is a simpli
ial 
ell 
omplex for ea
h 
ellF in X.(1.1.5) A note on terminology. \Simpli
ial 
omplex" is not synonymous with \simpli
ial
ell 
omplex". In a simpli
ial 
ell 
omplex the interse
tion of two simpli
es is a union offa
es, while in a simpli
ial 
omplex su
h an interse
tion is either empty or a single simplex.(1.2) A 
omplete metri
 spa
e Y is a geodesi
 spa
e (or \length spa
e") if, given pointsy1; y2 in Y , there is a path 
 from y1 to y2 with `(
) = d(y1; y2). Su
h a distan
e minimizingpath is 
alled a geodesi
.(1.3) Suppose X is a pie
ewise Eu
lidean or pie
ewise spheri
al 
ell 
omplex. Then \ar
length" makes sense in ea
h 
ell; hen
e, the length ` of a path in X is well-de�ned. Givenpoints x and y in X, de�ne d(x; y) = inf f`(
)g, where the in�mum is over all paths 
from x to y of �nite length. (If x and y are in distin
t path 
omponents, put d(x; y) =1).Under the assumptions of (1.1.2), Moussong ([M℄) showed that d is a 
omplete, geodesi
metri
 on X. It is lo
ally isometri
 with the given Eu
lidean or spheri
al metri
s on theindividual 
ells. A pie
ewise Eu
lidean (resp. pie
ewise spheri
al) spa
e is the metri
 spa
eunderlying su
h a pie
ewise Eu
lidean (resp. pie
ewise spheri
al) 
ell 
omplex.2. The in�nitesimal version of nonpositive 
urvature.(2.1) A geodesi
 spa
e is nonpositively 
urved, abbreviated (NP), if, lo
ally, geodesi
triangles satisfy the CAT(0)-inequality (see [G, p. 106℄). The (NP) 
ondition has somestrong 
onsequen
es. For example, if a spa
e is (NP), then it is lo
ally 
ontra
tible and itsuniversal 
overing spa
e is 
ontra
tible.(2.1.1) A pie
ewise spheri
al spa
e is a large if there is a unique geodesi
 between anytwo points of distan
e < �.The following result is due to Gromov. For a proof, see [B℄ or [Br℄. (See also Theorem3.1 and the appendix of [CD1℄.)(2.2) Theorem (Gromov). A pie
ewise Eu
lidean 
ell 
omplex is (NP) if and only ifthe link of ea
h vertex is large.In some 
ases, when the 
ell stru
ture on a pie
ewise spheri
al spa
e is simpli
ial, thereare 
ombinatorial 
onditions whi
h are ne
essary and suÆ
ient for it to be large. In orderto state these 
onditions, it is �rst ne
essary to develop some terminology and elementaryfa
ts about spheri
al simpli
es.(2.3) Let � be a spheri
al n-simplex in Sn with vertex set V , a set of linearly indepen-dent unit ve
tors in Rn+1 . The asso
iated 
osine matrix, 
(�) = (
vv0); v; v0 in V is thesymmetri
 V by V matrix of inner produ
ts: 
vv0 = v � v0. We note that 
(�) is positivede�nite.(2.3.1) For v 6= v0, let `vv0 be the length of the edge (v; v0) of �. Put `vv = 0. Then
vv0 = 
os(`vv0).(2.3.2) Conversely, suppose we are given a V by V symmetri
 matrix (`vv0) satisfying:`vv = 0 and `vv0 2 (0; �) for v 6= v0. If the asso
iated 
osine matrix 
, de�ned by 
vv0 =
os(`vv0), is positive de�nite, then we 
an �nd a basis V for Rn+1 , unique up to isometry,4



whi
h spans a spheri
al n-simplex with asso
iated 
osine matrix 
. Hen
e, (`vv0) is thematrix of edge lengths of a spheri
al simplex if and only if the asso
iated 
osine matrix ispositive de�nite.(2.4) A spheri
al simplex is all right if ea
h of its edges has length �=2; it has size� �=2 if ea
h of its edges has length � �=2. The asso
iated 
osine matrix of an all rightn-simplex � is the identity matrix. It follows that � is isometri
 to the regular n-simplexin Sn spanned by the standard basis of Rn+1 . The asso
iated 
osine matrix of a simplexof size � �=2 is \almost negative" in the sense that its o�-diagonal entries are � 0.The following is a result of [M℄.(2.4.1) Lemma. Let � be a fa
e of a spheri
al simplex �.(i) If � is all right, then so is Lk(�; �).(ii) If � has size � �=2, then so has Lk(�; �).Proof. Statement (i) is obvious. To prove (ii) �rst note that if �1 � �2 � �, theLk(Lk(�1; �2); Lk(�1; �)) is isometri
 to Lk(�2; �). Hen
e, by indu
tion, we 
an redu
eto the 
ase dim � = 0. So, suppose � is spanned by fv0; : : : ; vng and � is the vertex v0.Let p : Rn+1 ! (Rv0)? be orthogonal proje
tion. Then Lk(v0; �) 
an be identi�ed withthe spheri
al simplex in (Rv0)? spanned by ui = p(vi)=jp(v0)j; i = 1; : : : ; n. For i 6= j,p(vi) � p(vj) = (vi � (vi � v0)v0) � (vj � (vj � v0)v0)= vi � vj � (vi � v0)(vj � v0)whi
h is � 0 sin
e the 
osine matrix for � is almost negative. It follows that ui � uj � 0 sothe 
osine matrix for Lk(v0; �) is almost negative.(2.5) A pie
ewise spheri
al simpli
ial 
ell 
omplex is all right (resp. has simpli
es of size� �=2) if the 
orresponding property holds for ea
h of its simpli
es.(2.5.1) If L is all right or if it has simpli
es of size � �=2, then, by Lemma (2.4.1), thelink of any simplex in L has the same property.(2.6) A pie
ewise Eu
lidean 
ell 
omplex has nona
ute, simple 
ells if ea
h of its 
ellsis simple (
f. (1.1.4)) and the fa
e angles in ea
h 
ell are all � �=2; or equivalently, if thelink of every 
ell is simpli
ial with simpli
ies of size � �=2. It is 
ubi
al if ea
h 
ell is aregular Eu
lidean 
ube. In this 
ase, links are all right simpli
ial 
ell 
omplexes.(2.7) Let K be a simpli
ial 
omplex (no metri
 stru
ture is assumed). A set V ofverti
es in K spans a 
omplete graph if any two distin
t elements of V span an edge in K.A simpli
ial 
ell 
omplex K is a 
ag 
omplex if it is a (genuine) simpli
ial 
omplex (
f.1.1.5) and if any set of verti
es whi
h spans a 
omplete graph a
tually spans a simplex.Thus, a 
ag 
omplex is a simpli
ial 
omplex with no \empty simpli
es".(2.7.1) Flag 
omplexes have ni
e properties. For example,(a) the link of any simplex in a 
ag 
omplex is again a 
ag 
omplex, and(b) the join of two 
ag 
omplexes is a 
ag 
omplex.5



The following lemma is proved in [G, p. 122℄.(2.8) Gromov's Lemma. An all right pie
ewise spheri
al simpli
ial 
ell 
omplex islarge if and only if it is a 
ag 
omplex.(2.8.1) Hen
e, a pie
ewise Eu
lidean, 
ubi
al 
ell 
omplex is (NP) if and only if the linkof ea
h vertex is a 
ag 
omplex.(2.9) Suppose L is a pie
ewise spheri
al simpli
ial 
omplex and that V is a set of verti
esof L whi
h span a 
omplete graph. As in (2.3), there is asso
iated to V a 
osine matrix,(
vv0), where 
vv0 is the 
osine of the length of the edge (v; v0). A 
ell 
omplex L is a metri

ag 
omplex if it is a simpli
ial 
omplex and if whenever V is a set of verti
es su
h that (i)V spans a 
omplete graph, and (ii) the asso
iated 
osine matrix is positive de�nite, thenV spans a simplex of L.The following diÆ
ult generalization of Gromov's Lemma is proved in [M℄.(2.10) Moussong's Lemma. A pie
ewise spheri
al simpli
ial 
ell 
omplex with sim-pli
es of size � �=2 is large if and only if it is a metri
 
ag 
omplex.(2.10.1) So, a pie
ewise Eu
lidean 
ell 
omplex with nona
ute, simple 
ells is (NP) ifand only if the link of ea
h vertex is a metri
 
ag 
omplex.3. The Gauss-Bonnet Theorem for pie
ewise Eu
lidean spa
es(3.1) Let C be an n-dimensional 
onvex polyhedral 
one and � the asso
iated spheri
al(n � 1)-
ell. The outward pointing normals to the supporting hyperplanes of C generateanother 
onvex polyhedral 
one C� 
alled the dual 
one. (If u1; : : : ; uk are outward point-ing normal ve
tors to the supporting hyperplanes, then C� is the set of all nonnegativelinear 
ombinations of the ui). The asso
iated spheri
al 
ell �� = C� \ Sn�1 is the dual
ell to �.(3.2) The angle of C at 0, denoted by a(�), is the (n � 1)-dimensional volume of �,normalized so that the volume of Sn�1 is 1, i.e.,a(�) = vol (�)vol (Sn�1) :The exterior angle of C at 0, denoted by a�(�) is the angle of C�, i.e., a�(�) = a(��).(3.3) Let P be a Eu
lidean n-
ell. After 
hoosing an interior point of P as the origin, one
an de�ne the \dual 
ell" P � whose verti
es are the normal ve
tors to the 
odimension-onefa
es of P . For example, the o
tahedron is dual to the 
ube. Radial proje
tion of �P �onto Sn�1 gives a 
ellulation of Sn�1. The (n�1)-
ells in this 
ellulation are asso
iated tothe duals of the normal 
ones at the verti
es of P , i.e., ea
h su
h (n� 1)-
ell is of the formLk(v; P )� for some vertex v. It follows that P a�(Lk(v; P )) = 1, where the summationis over all verti
es v of P . (If v = P , then Lk(v; P ) = ;, so we adopt the 
onventiona�(;) = 1). 6



(3.4) Now suppose that X is a �nite pie
ewise Eu
lidean 
ell 
omplex. Then�(X) =XP (�1)dimP=XP (�1)dimPXv a�(Lk(v; P ))where P runs over the 
ells of X and v runs over the verti
es of P . Reversing the order ofsummation gives �(X) =Xv Xv2P(�1)dimP a�(Link (v; P ))(3.4.1) =Xv (1 +X� (�1)dim�+1a�(�))where v runs over the verti
es of X and � over the 
ells of Lk(v;X). (Note that the 1 inthe summation arises from the 
ase P = v). For any �nite, pie
ewise spheri
al 
ell 
omplexL, de�ne(3.4.2) �(L) = 1 +X� (�1)dim�+1a�(�)where � runs over the 
ells of L. Then (3.4.1) 
an be rewritten as(3.4.3) �(X) =Xv �(v);where �(v) = �(Lk(v;X)). This is the desired analogue of the Gauss-Bonnet Theorem forpie
ewise Eu
lidean spa
es.(3.5) If � is an all right simplex, then �� = � and a�(�) = a(�) = (12)dim �+1. Hen
e, ifL is an all right, pie
ewise spheri
al, simpli
ial 
ell 
omplex, then(3.5.1) �(L) = 1 +X� (� 12 )dim�+1(3.5.2) Let K be a simpli
ial 
ell 
omplex (without metri
 stru
ture) and fi(= fi(K))the number of i-simpli
es in K. Put�(K) = 1 +Xi (� 12 )i+1fi:If we endow K with the stru
ture of an all right spheri
al 
omplex by de
laring ea
hsimplex to be all right, then �(K) = �(K).(3.6) The following fa
ts 
on
erning � are proved in [CMS, Se
tion 3℄.7



(3.6.1) If the underlying metri
 spa
es of L1 and L2 are isometri
, then �(L1) = �(L2).(3.6.2) If L is isometri
 to the round sphere, then �(L) = 0.(3.6.3) Suppose �n � Sn and �k � Sk are spheri
al 
ells; embed Sn and Sk in orthogonallinear subspa
es of Rn+k+2 ; then the orthogonal join � � � is the spheri
al (n+ k+ 1)-
ellspanned by � and � (it is the union of all geodesi
s in Sn+k+1 from � to �). This extendsto a de�nition of the orthogonal join L1 � L2 of two pie
ewise spheri
al 
ell 
omplexes L1and L2 (see the Appendix of [CD℄). By [CMS, p. 442℄,�(L1 � L2) = �(L1)�(L2):(3.6.4) If L is homeomorphi
 to an even dimensional sphere, then �(L) = 0. (A
tuallyfor this to be true it is only ne
essary to assume that �(L) = 2 and �(Lk(�; L)) = 2 forea
h odd dimensional 
ell �).(3.6.5) Let K be a simpli
ial 
ell 
omplex and Lt a 1-parameter family of pie
ewisespheri
al stru
tures onK. For ea
h edge e inK, let ae(t) be the length of the 
orrespondingedge et in Lt, normalized so that S1 has length 1. (Thus, ae(t) = (2�)�1`(et), where `is the usual edge length). Put �(t) = �(Lt). The following beautiful formula for the �rstderivative of �(t) is given in [CMS, p. 424℄(3.6.6) �0(t) = �Xe a0e(t)�(Lk(et; Lt)):The proofs of the above fa
ts 
an be sket
hed as follows. In [C℄, Cheeger 
onsidersanother quantity, let us 
all it �(L), de�ned as the di�eren
e of the L2-Euler 
hara
teristi
of the 
one of radius 1 on L and 12 the L2-Euler 
hara
teristi
 of L. So �(L) dependsonly on the metri
 and not the 
ell stru
ture. Using heat equation methods he derivesa formula for �(L) solely in terms of interior angles and 
ags of odd dimensional 
ells(formula 3.35 in [CMS℄) and he proves that �(X) = P�(Lk(v;X)). In [CMS, p. 424℄ itis proved that �(L) = �(L). Sin
e �(L) depends only on the metri
, (3.6.1) follows. Theformulas in (3.6.2), (3.6.4) and (3.6.6) follow easily from the formula for �(L); (3.6.3) isan easy 
omputation.4. Statements of the 
onje
turesWe are now in position to state pre
isely the various 
onje
tures whi
h were mentionedin the Introdu
tion. First, there is the analogue of the Hopf Conje
ture.Conje
ture A. If M2n is a nonpositively 
urved, pie
ewise Eu
lidean, 
losed manifold,then (�1)n�(M2n) � 0.Next, suppose that L2n�1 is a (2n � 1)-dimensional pie
ewise spheri
al 
ell 
omplexwhi
h is a generalized homology sphere, in the sense that it has the homology of S2n�1and for ea
h k-
ell �; Lk(�; L2n�1) has the homology of S2n�k�2. For example, if L2n�1is homeomorphi
 to S2n�1, then it is a generalized homology sphere. In view of Gromov'sTheorem (2.2), Conje
ture A is implied by the following.8



Conje
ture B. If L2n�1 is large (
f. (2.1.1)), then (�1)n�(L2n�1) � 0, where � isde�ned by (3.4.2).By Moussong's Lemma (2.10) the following 
onje
ture is a spe
ial 
ase of Conje
ture B.Conje
ture C. Suppose that L2n�1 is simpli
ial and has simpli
es of size � �=2 (
f.(2.5)). If L2n�1 is a metri
 
ag 
omplex (
f. (2.9)), then (�1)n�(L2n�1) � 0.If L is a metri
 
ag 
omplex with simpli
es of size � �=2, then the same is true for thelink of ea
h simplex in L, by Lemma (2.4.1). In the sequel we will want to 
onsider thestatement that Conje
ture C holds for a parti
ular 
omplex L and for ea
h link in L. It istherefore 
onvenient to state the following equivalent formulation of Conje
ture C.Conje
ture C0. If L2n�1 is a metri
 
ag 
omplex with simpli
es of size � �=2, then(�1)n�(L2n�1) � 0 and for ea
h simplex � of 
odimension 2k; (�1)k�(Lk(�; L)) � 0.Finally, we want to 
onsider the spe
ial 
ase where L2n�1 is all right. In order to de-emphasize the metri
 in this 
ase, we let K2n�1 be a simpli
ial 
ell 
omplex whi
h is ageneralized homology sphere, as above, and �(K) the quantity de�ned in (3.5.2).Conje
ture D. If K2n�1 is a 
ag 
omplex, then (�1)n�(K2n�1) � 0.We also have an equivalent reformulation.Conje
ture D0. If K2n�1 is a 
ag 
omplex, then (�1)n�(K2n�1) � 0 and for ea
hsimplex � of 
odimension 2k; (�1)k�(Lk(�;K2n�1) � 0.5. Eviden
eWe begin by dis
ussing some partial results for Conje
ture D.(5.1) Let Om be the (m+1)-fold join of S0 with itself. By (2.7.1), Om is a 
ag 
omplexand by (3.6.3), �(Om) = 0. It is alternately des
ribed as the boundary 
omplex of the(m+1)-dimensional o
tahedron (or \
ross polytope"). It is the simplest 
ag 
omplex whi
htriangulates the m-sphere. If we endow it with an all right, pie
ewise spheri
al stru
ture,then it is isometri
 to the round sphere. The link of a k-simplex in Om is isomorphi
 toOm�k�1. It follows that Conje
ture D0 holds for O2n�1.(5.2) Flag 
omplexes arise naturally as derived 
omplexes of posets. (Re
all that if Ais a poset, then its derived 
omplex A0 is the abstra
t simpli
ial 
omplex with simpli
esthe �nite 
hains in A). If A is the poset of 
ells in a 
ell 
omplex, then the geometri
realization of A0 
an be identi�ed with the bary
entri
 subdivision of the 
ell 
omplex. Inparti
ular, if A is the poset of fa
es of the boundary 
omplex of a 2n-
ell, then A0 is a
ag 
omplex homeomorphi
 to S2n�1. Based on work of R. Stanley, E. Babson showedthat Conje
ture D0 holds for su
h A0. (For the argument, see (7.3)). Hen
e, Conje
ture D0holds for the bary
entri
 subdivision of the boundary 
omplex of a Eu
lidean 
ell.(5.3) Suppose K is a simpli
ial 
omplex (no metri
 assumed). Re
all that for anysimplex � ofK;Lk(�;K) 
an be identi�ed with the sub
omplex ofK 
onsisting of all 
losedsimpli
es � , disjoint from �, su
h that the join of � and � is a simplex of K 
ontaining �.(5.3.1) Let e be an edge of K. We shall now de�ne a subdivision of K, 
alled the edgesubdivision and denoted by Sube(K). Introdu
e a new vertex ve as the midpoint of e,subdividing e into two new edges, say e+ and e�. Let � be a k-simplex 
ontaining e. Then� = e � � for some simplex � in Lk(e;K). Introdu
e a new (k � 1)-simplex �0 = ve � � ,9



subdividing � into two new k-simpli
es �+ = e+ � � and �� = e� � � . The simpli
es whi
hdo not 
ontain e are not 
hanged.......................................................................................................................................................................
............................................................................................................................................................................................................................................ .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... ..........

.......... ...................................................................................................................................................................
......................................................................................................................................................................................................................................... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... .......... ..........

..............................................................................................................................................................................................................................................................
..�

e�
�

ve�+ [ ���(5.3.2) If K is a 
ag 
omplex, then so is Sube(K). Of 
ourse, we 
ould have subdividedK by introdu
ing a bary
enter of some simplex of dimension > 1 and then 
oning o�;however, this does not preserve the property of being a 
ag 
omplex.(5.3.3) How are the links in Sube(K) related to links in K? Let � be a simplex inSube(K). There are four 
ases to 
onsider:(i) � 
orresponds to a simplex of K whi
h is not in the 
losed star of e,(ii) � 
orresponds to a simplex in the link of e,(iii) there is a simplex �̂ of K whi
h 
ontains e and � = �̂0 (or � = ve),(iv) there is a simplex �̂ of K whi
h 
ontains e and � = �̂+ or � = �̂�.Then Lk(�; Sube(K)) = 8>>><>>>: Lk(�;K) ; in 
ase (i)Sube(Lk(�;K)) ; in 
ase (ii)S0 � Lk(�̂; K) ; in 
ase (iii)Lk(�̂; K) ; in 
ase (iv)(5.3.4) For any set of simpli
es E, put~�(E) =X�2E(� 12 )dim�+1:If � is an open simplex andM a simpli
ial 
omplex, then let E(�;M) be the set of simpli
esin � �M whi
h do not lie in M . Clearly,~�(E(�;M)) = (� 12 )dim�+1�(M):(5.3.5) Lemma: �(Sube(K)) = �(K)� 14�(Lk(e;K)).Proof. To 
onstru
t Sube(K) from K one removes the open star of e and repla
es it bythe open star of ve in ve �S0 �Lk(e;K). The 
ontribution of the simpli
es in the open starof e to �(K) is ~�(E(e; LK(e;K)) = 14�(Lk(e;K)). The 
ontribution of those in the openstar of ve is ~�(E(ve; S0 � Lk(e;K)) = �12�(S0 � Lk(e;K)) = � 12�(S0)�(Lk(e;K)) = 0.The formula follows. 10



(5.4) Now suppose K2n�1 is a 
ag 
omplex and a generalized homology sphere. Let ebe an edge of K.(5.4.1) Proposition. If Conje
ture D holds for K and for Lk(e;K), then it also holdsfor Sube(K).Proof. If (�1)n�(K) � 0 and (�1)n�1�(Lk(e;K)) � 0, then (�1)n�(Sube(K)) =(�1)n�(K) + 14 (�1)n�1�(Lk(e;K)) � 0.Using this, (5.3.2) and (5.3.3), we immediately dedu
e the following.(5.4.2) Proposition. If Conje
ture D0 holds for K, then it also holds for any 
omplexobtained from K by repeated edge subdivisions.(5.4.3)Corollary. Conje
ture D0 holds for any 
omplex obtained from O2n�1 by repeatededge subdivisions.(5.4.4) Proposition (5.4.2) also follows from formula (3.6.6). Let L0 be K with anall right pie
ewise spheri
al stru
ture. Let Lt be the 1-parameter family where the edge
orresponding to e has length (1+ t)�=2 and all other edges have length �=2. By indu
tionon dimension, (�1)n�1�(Lk(et; Lt)) � 0. Hen
e, by (3.6.6), (�1)n�(Lt) is a non-de
reasingfun
tion of t. But L1 is just the all right stru
ture on Sube(K). Proposition (5.4.2) follows.(5.5) A k-
ir
uit inK is a 
ir
uit of k edges. A 3-
ir
uit is empty if it is not the boundaryof a 2-simplex. Similarly a 4-
ir
uit is empty if it is not the boundary of the union of twoadja
ent 2-simpli
es.(5.5.1) The inverse operation of edge subdivision is \edge 
ollapse." Suppose e is an edgeof K whi
h is not part of an empty 3-
ir
uit. (This is automati
 if K is a 
ag 
omplex).To 
ollapse e, one �rst removes the open star of e. The resulting boundary is isomorphi
to S0 � Lk(e;K). One then 
ollapses this to Lk(e;K). The result is a simpli
ial 
omplexKe whi
h is a quotient spa
e of K. If K is PL-homeomorphi
 to S2n�1, then so is Ke. IfK is a 
ag 
omplex, then Ke is also a 
ag 
omplex if and only if e is not part of an empty4-
ir
uit. Hen
e, one 
an try to simplify K by performing edges 
ollapses on edges whi
hare not part of empty 4-
ir
uits.(5.5.2) At one point we thought it might be possible, given a 
ag 
omplex Km, PL-homeomorphi
 to Sm, to perform edge 
ollapses to redu
e it to Om. This is true form = 1; 2, however, there is a 
ounterexample for m = 3. (Conje
ture D holds for this
ounterexample).We turn now to Conje
ture C0.(5.6) Suppose L0 and L1 are two pie
ewise spheri
al stru
tures on a simpli
ial 
ell
omplex K. For a simplex � in K, let �i; i = 0; 1, be the 
orresponding spheri
al simplexin Li. Let 
(�i); i = 0; 1, be the asso
iated 
osine matrix (
f. (2.3)).(5.6.1) We shall now de�ne a 1-parameter family Lt of pie
ewise spheri
al simpli
ial 
ell
omplexes Lt whi
h interpolates between L0 and L1. Put 
t(�) = t
(�1) + (1 � t)
(�0).Sin
e a 
onvex 
ombination of positive de�nite matri
es is positive de�nite, 
t(�) > 0. Itfollows that, for ea
h t 2 [0; 1℄, there is a 
orresponding spheri
al simplex �t. These �ttogether to give Lt. The family Lt is 
alled the 
anoni
al deformation from L0 to L1. Ife is an edge of K, then let `e(t)(= `(et)) be the length of the 
orresponding edge in Lt.Then 
os(`e(t)) = t 
os(`1) + (1� t) 
os(`0), where `i = `e(i); i = 0; 1.11



(5.6.2) In parti
ular, suppose L0 is all right and L1 has simpli
es of size � �=2. Thenfor ea
h edge e, `e(0) = �=2 and `e(t) 2 [�=2; �). So, `e(t) = 
os�1(
t), where 
 = 
os(`1).Hen
e, `0e(t) = �
(1� 
2t2)� 12 , whi
h is � 0 (sin
e 
 � 0). Similarly, if ae(t) = (2�)�1`e(t)is the normalized length, then a0e(t) � 0.(5.7) Proposition. Let L2n�1 be a pie
ewise spheri
al simpli
ial 
omplex with simpli
esof size � �=2 whi
h is a generalized homology sphere, and let K2n�1 be the underlyingsimpli
ial 
omplex. Suppose K2n�1 is a 
ag 
omplex. If Conje
ture D0 holds for K2n�1,then Conje
ture C0 holds for L2n�1.Proof. Let L0 be the all right stru
ture on K, let L1 = L, and let Lt be the 
anoni
aldeformation. We assume that Conje
ture D0 holds for K, i.e., that Conje
ture C0 holds forL0. We may also assume, by indu
tion on n, that Conje
ture C holds for the link of ea
hodd dimensional simplex in Lt. In parti
ular, for ea
h edge et, (�1)n�1�(Lk(et; Lt)) � 0.By (3.6.6), (�1)n�0(t) = (�1)n�1X a0e(t)�(Lk(et; Lt))whi
h is � 0 (using 5.6.2). Hen
e, (�1)n�(t) is nonde
reasing. Thus, (�1)n�(0) � 0implies (�1)n�(1) � 0.(5.8) Remark. In a forth
oming paper [CD2℄. we �nd further eviden
e for Conje
tureB. Suppose that X2n is a 
onvex polytope of �nite volume in hyperboli
 2n-spa
e. Its\
ompleted polar dual" L2n�1 is large. Moreover, (�1)n�(L2n�1) is twi
e the volume ofX2n (suitably normalized). Hen
e, Conje
ture B holds in this 
ase.6. Examples from Coxeter groupsIn this se
tion we review the work of G. Moussong [M℄ (also, see [D1℄, [G, x4.6℄). Inparti
ular, we show how to asso
iate to ea
h Coxeter system (W;S) a pie
ewise spheri-
al, simpli
ial 
omplex Nerve (W;S) and a 
ontra
tible, nonpositively 
urved, pie
ewiseEu
lidean 
ell 
omplex ~Y with W -a
tion so that the link of ea
h vertex of ~Y is Nerve(W;S). Moreover, any �nite, all right, 
ag 
omplex 
an be realized as Nerve (W;S) forsome (W;S).(6.1) Suppose S is a �nite set and m = (mss0) is a symmetri
 S by S matrix, withentries positive integers or 1, satisfying mss = 1 and mss0 � 2, for s 6= s0. This givesa presentation for a group W = hSj(ss0)mss0 = 1i. The pair (W;S) is a Coxeter systemand W is a Coxeter group. The rank of (W;S) is the 
ardinality of S. The group W isright-angled if mss0 = 2 or 1 for all s 6= s0. Asso
iated to m, there is an S by S 
osinematrix 
 = (
ss0) de�ned by 
ss0 = � 
os(�=mss0). (Here 
os(�=1) = 
os(0) = 1).(6.2) The group W is �nite if and only if the 
osine matrix is positive de�nite (
f. [Bo℄).Suppose this is the 
ase. Then W 
an be represented as a group generated by orthogonallinear re
e
tions on Rn , where n is the rank of (W;S). We re
all how this works. Sin
e
 is positive de�nite, one 
an �nd a basis (us)s2S for Rn su
h that us � us0 = 
ss0 . Letrs be re
e
tion a
ross the linear hyperplane Hs normal to us. Then W is identi�ed withthe group hrsi generated by the rs and this group is �nite. The fundamental 
one C(=12



C(W;S)) is the simpli
ial 
one de�ned by us � x � 0; s 2 S. (So the Hs are the supportinghyperplanes of C). Then C is a fundamental domain for W on Rn . Its interse
tion withSn�1 is the fundamental simplex �(= �(W;S)). As in (3.1), de�ne C�(= C�(W;S)), thefundamental dual 
one, and its interse
tion with Sn�1; ��(= ��(W;S)), the fundamentaldual simplex. Thus, �� is the spheri
al simplex spanned by the us and its asso
iated 
osinematrix (
f. 2.3) is 
. Let �s = � \Hs. Note that the dihedral angle of � along �s \ �s0 is�=mss0 and that the length of the edge in �� from us to us0 is �(1� (mss0)�1).(6.2.1) The W -translates of � give a triangulation of Sn�1. The underlying simpli
ial
omplex is 
alled the Coxeter 
omplex of W .(6.2.2) Choose a fun
tion � : S ! (0;1). Let x be the interior point of C de�ned byx � us = ��(s), i.e., the Eu
lidean distan
e from x to Hs is �(s). The 
onvex hull of theW -orbit of x is denoted by P (= P (W;S)) and 
alled a Coxeter 
ell. One 
he
ks easily that(i) the verti
es of P are the W -translates of x,(ii) P is a simple n-
ell and the normal 
one at any vertex is C�(W;S), and(iii) �P is the dual of the Coxeter 
omplex. The verti
es wx and w0x are 
onne
ted byan edge if and only if w0 = ws, for some s in S, and the Eu
lidean length of su
han edge is 2�(s).
................................................................
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(6.2.3) Examples(i) Suppose S = fs; s0g;m = mss0 , and W is the dihedral group of order 2m. Then Pis a 2m-gon and it is regular if and only if �(s) = �(s0).(ii) Suppose W = (Z=2)n. Then P is a produ
t of intervals Q[��(s); �(s)℄; s 2 S; P isa regular n-
ube if and only if � is 
onstant.13



(iii) If W is the symmetri
 group on n+1 letters, then the n-
ell P is sometimes 
alleda \permutohedron."(6.2.4) A Coxeter blo
k B(= B(W;S)) is the 
onvex n-
ell de�ned by, B = P \ C. It is
ombinatorially equivalent to an n-
ube. Call the origin the inside vertex of B; its link is�. Call x the outside vertex of B; its link is ��. Note that WB = P .(6.3) We return to the general situation where W may be in�nite. For any subset T ofS, let WT denote the subgroup generated by T . (In fa
t, (WT ; T ) is a Coxeter system).Asso
iate to (W;S) an abstra
t simpli
ial 
omplex Nerve (W;S) as follows: the vertex setis S; a proper subset T of S is a simplex if and only if WT is �nite.(6.3.1) There is a natural pie
ewise spheri
al stru
ture on Nerve (W;S) de�ned as fol-lows. The simplex T is given the stru
ture of the spheri
al simplex asso
iated to the 
osinematrix of (WT ; T ). Thus, the simpli
es of Nerve (W;S) are isometri
 to the fundamentaldual simpli
es �T = ��(WT ; T ) 
orresponding to the �nite Coxeter subgroups of W . Itfollows that Nerve (W;S) has simpli
es of size � �=2 and, by (6.2), that it is a metri
 
ag
omplex.(6.3.2) If (W;S) is right-angled, then Nerve (W;S) is an all right 
ag 
omplex. Con-versely, given any �nite, all right 
ag 
omplex K, there is a right-angled Coxeter systemwith Nerve (W;S) = K: simply, let S be the vertex set of K and de�ne mss0 , for s 6= s0,by mss0 = � 2; if (s; s0) is an edge1; if (s; s0) is not an edge.(6.4) We de�ned a fundamental 
hamber Y (= Y (W;S)). Let N = Nerve(W;S), N 0 thebary
entri
 subdivision of N , and Y the 
one on N 0 with 
one point x. For ea
h simplexT in N , let vT be its bary
enter. Ea
h point y in N 0 lies in the open star of a (unique)vT . Put Wy =WT . For y in Y �N 0, let Wy be the trivial subgroup.(6.4.1) De�ne an equivalen
e relation � on W � Y by: (w1; y1) � (w2; y2) if and onlyif y1 = y2 and w1Wy1 = w2Wy2 . Let ~Y (= ~Y (W;S)) be the quotient spa
e (W � Y )= �.Then ~Y is naturally a simpli
ial 
omplex, and W a
ts properly on ~Y with orbit spa
e Y .(6.4.2) Put pie
ewise Eu
lidean stru
tures on Y and ~Y as follows. Choose a fun
tion� : S ! (0;1). For ea
h simplex T in N , let BT be the Coxeter blo
k de�ned as in (6.2.4)by using �jT . (So the length of the edge from the outside vertex of BT to the hyperplane
orresponding to t is �(t).) We 
an identify the sub
omplex Cone (�0T ) of Y with BTin su
h a fashion that vT 
orresponds to the inside vertex of BT and x 
orresponds tothe outside vertex. This de�nes a pie
ewise Eu
lidean stru
ture on Y su
h that Lk(x; Y )is Nerve (W;S) with its natural pie
ewise spheri
al stru
ture. The spa
e ~Y inherits apie
ewise Eu
lidean stru
ture from Y .(6.4.3) The map y ! (1; y) from Y to W � Y indu
es an identi�
ation of Y witha sub
omplex of ~Y . Then WTBT is a sub
omplex of ~Y isometri
 to the Coxeter 
ellP (WT ; T ). It follows that ~Y is 
ellulated by the Coxeter 
ells wP (WT ; T ), where w 2 Wand T is a simplex in N . The verti
es of these 
ells are the W -translates of the 
one pointx and the link of ea
h vertex is isometri
 to Nerve (W;S). By Moussong's Lemma (2.10)su
h links are large. This gives the following result of [M℄.14



(6.4.4) Theorem (Moussong). For any Coxeter system (W;S), the pie
ewise Eu
lidean
ell 
omplex ~Y (W;S) is (NP). Moreover, the link of ea
h vertex is isometri
 to Nerve(W;S).(6.4.5) We 
an �nd �nite, pie
ewise Eu
lidean 
ell 
omplexes with the same property bytaking the quotient of ~Y by a torsion-free subgroup � of �nite index inW . Thus, X = ~Y =�also satis�es the 
on
lusions of Theorem (6.4.4).(6.4.6) Sin
e (�T )� is a fundamental simplex for WT ; a�(�T ) = jWT j�1. Hen
e,(6.4.7) �(Nerve(W;S)) =X(�1)Card(T )jWT j�1where the summation is over all subsets T of S su
h that WT is �nite. We note that theright hand side of (6.4.7) is the usual expression for the Euler 
hara
teristi
 of W (that is,the \orbihedral Euler 
hara
teristi
" of Y ) and that �(X) = [� :W ℄P(�1)Card(T )jWT j�1.(Compare [D2℄.)(6.4.8) Let L be any all right 
ag 
omplex and let (W;S) be the right-angled Coxetersystem 
orresponding to L (
f. (6.3.2)). Let ~Y and X be as above. The 
on
lusion is thatthere is a �nite, pie
ewise Eu
lidean, 
ubi
al 
ell 
omplex X su
h that the link of ea
hvertex is isometri
 to L. This gives the following.(6.5) Proposition. Conje
ture A holds for all pie
ewise Eu
lidean manifolds 
ellulatedby regular 
ubes if and only if Conje
ture D holds.7. The h-polynomial(7.1) Combinatorialists, interested in the poset of fa
es asso
iated to a 
onvex 
ell, havemade the following de�nitions. Suppose K is a �nite simpli
ial 
omplex of dimensionm�1,that fi is the number of i-simpli
es in K, and that f�1 = 1. The f -ve
tor of K is them-tuple (f�1; f0; : : : ; fm�1) and the h-ve
tor (h0; : : : ; hm) is de�ned by the equation(7.1.1) mXi=0 fi�1(t� 1)m�i = mXi=0 hitm�iPolynomials f(t)(= fK(t)) and h(t)(= hK(t)) are de�ned byf(t) = mXi=0 fi�1ti(7.1.2) h(t) = mXi=0 hiti(7.1.3)Formula (7.1.1) 
an then be rewritten as(7.1.4) h(t) = (1� t)mf( t1� t )15



(7.2) Let �(K) be the quantity de�ned in (3.5.2). Clearly, �(K) = fK(� 12). By substi-tuting t = �1 into (7.1.4) we get(7.2.1) h(�1) = 2mf(� 12) = 2m�(K):Therefore, �(K) and h(�1) have the same sign. So Conje
ture D is equivalent to thefollowing.Equivalent Form of Conje
ture D. Suppose K2n�1 is a generalized homology sphere(as in Se
tion 4). If K is a 
ag 
omplex, then (�1)nhK(�1) � 0.(7.3) In this paragraph, we dis
uss an observation of E. Babson (as 
ommuni
ated tous by L. Billera) whi
h proves (5.2). For any \Eulerian poset" A, 
ombinatorialists havede�ned the \
d-index" �A(
; d), a 
ertain polynomial in two (non
ommuting) variables(e.g. see [S2℄). It is a re�nement of the h-ve
tor of the derived 
omplex A0. In parti
ular,it follows dire
tly from its de�nition that(7.3.1) �A(0;�2) = hA0(�1):Stanley [S2℄ has proved (in slightly greater generality) that if A is the boundary 
omplexof a 
onvex m-
ell, then the 
oeÆ
ients of �A are all nonnegative. In parti
ular, form = 2n;�A(0;�2) is (�2)n times the 
oeÆ
ient of dn. It follows that Conje
ture D holdsfor the bary
entri
 subdivision of the boundary 
omplex of a 2n-
ell.(7.4) The following well-known formulas hold for any Km�1 whi
h is a generalizedhomology (m� 1)-sphere. h(t) = tmh(t�1)(7.4.1) hi � 0; for 0 � i � n:(7.4.2)Formula (7.4.1) (whi
h means that hi = hm�i) is equivalent to the Dehn-SommervilleRelations. These relations are a 
onsequen
e of the fa
ts that �(K) = �(Sm�1) and thatfor any i-simplex �; �(Lk(�;K)) = �(Sm�i�2). Thus, (7.4.1) holds for any K whi
h isan \Euler sphere" in the above sense. The inequalities in (7.4.2) hold whenever K is a\Cohen-Ma
aulay 
omplex" in the sense of [S1℄. In parti
ular, both formulas hold forgeneralized homology spheres.Conje
ture E. If Km�1 is a generalized homology sphere and a 
ag 
omplex, then h(t)has no roots of modulus 1, ex
ept possibly �1.(7.5) Lemma. Conje
ture E implies Conje
ture D.Proof. Suppose that m = 2n. Fa
tor h as a produ
t of moni
 polynomials, h = h1h2,where the roots of h1 are real and those of h2 are not. We list the non-real roots of h as:�1; : : : �k; �1; : : : ; �k. Sin
e h2(t) = Q(t � �i)(t � �i); h2(�1) = Q(�1 � �i)(�1 � �i) =Q j � 1 � �ij2 whi
h is � 0. Hen
e, we need only show h1(�1) has the 
orre
t sign.By (7.4.1), if 
 is a root then so is 
�1. If j�j 6= 1, then ��1 6= �. Supposing thatConje
ture E holds, we see that k is even. By (7.4.2) the real roots of h are negative. If16



h(�1) = 0, then Conje
ture D holds. So, suppose h(�1) 6= 0. List the real roots of h as:�1; : : : ; �n�k; (�1)�1; : : : (�n�k)�1, where �1 < �i < 0. Sin
eh1(�1) =Y(�1� �i)Y(�1� (�i)�1);the sign of h1(�1) is (�1)n�k whi
h is equal to (�1)n (sin
e k is even).Referen
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