
THE EULER CHARACTERISTIC OF A NONPOSITIVELYCURVED, PIECEWISE EUCLIDEAN MANIFOLDRuth CharneyandMihael Davis0. Introdution.A onjeture of H. Hopf states that ifM2n is a losed, Riemannian manifold of nonposi-tive setional urvature, then its Euler harateristi, �(M2n), should satisfy (�1)n�(M2n) �0. In this paper, we investigate the onjeture in the ontext of pieewise Eulidean man-ifolds having \nonpositive urvature" in the sense of Gromov's CAT(0) inequality. In thisontext, the onjeture an be redued to a loal version whih predits the sign of a \loalEuler harateristi" at eah vertex. In the ase of a manifold with ubial ell struture,the loal version is a purely ombinatorial statement whih an be shown to hold underappropriate onditions.The original onjeture of Hopf, and a similar onjeture for nonnegative urvature(whih we shall not be onerned with here), are true in dimensions 2 and 4, by the Chern-Gauss-Bonnet Theorem: in both ases the urvature ondition fores the Gauss-Bonnetintegrand to have the orret sign. This is immediate in dimension 2. Chern [Ch℄ givesa proof in dimension 4 and attributes the result to Milnor. A result of [Ge℄ shows that,in dimensions � 6, the urvature ondition does not fore the Gauss-Bonnet integrandto have the orret sign; hene, the same argument does not work in higher dimensions.(However, the hypothesis that the urvature operator is negative semide�nite does forethe integrand to have the orret sign).Here we are onerned with the analogous onjeture for pieewise Eulidean manifolds.In order to make sense of this, two points bear further disussion: (1) the meaning of\nonpositive urvature" for pieewise Eulidean spaes, and (2) the ombinatorial analogueof the Gauss-Bonnet Theorem for suh spaes.As for the �rst point, \nonpositive urvature" makes sense for a more general lass ofmetri spaes than Riemannian manifolds, namely, it makes sense for \geodesi spaes"(also alled \length spaes"). For geodesi spaes the notion of nonpositive urvatureis de�ned via Gromov's \CAT(0) inequality" (see [G: p.106℄). A pieewise Eulidean ellBoth authors were partially supported by NSF Grant DMS 9208071 and the Institute for AdvanedStudy Typeset by AMS-TEX1



omplex naturally has the struture of a geodesi spae (f. (1.3)) so nonpositive urvaturemakes sense in this ontext. Assoiated to a vertex v of suh a ell omplex, there is apieewise spherial omplex alled the \link of v". It is homeomorphi to the topologiallink; its metri is determined by the solid angles at v in the ells whih ontain v. Thereis an in�nitesimal version of nonpositive urvature, due to Gromov, whih is equivalent tothe previous version: the link of eah vertex must be \large". (By de�nition, a pieewisespherial spae is large if there is a unique geodesi between any two points of distane lessthan �).In dimension 2, in the ase of a pieewise Eulidean surfae M2, these ideas are quitewell-known. For a vertex v of M2, let �(v) denote the sum, over all 2-ells ontaining v,of the interior angles at v. The link of v is then a irle of length �(v); it is large if andonly if �(v) � 2�.As for the seond point, there is a well-known analogue of the Gauss-Bonnet formula forpieewise Eulidean ell omplexes. It has the form �(X) =P�(v), where the summationis over the verties of X and where �(v) depends only on the link of v. (The preisede�nition of �(v) is given in (3.4.3)). It is shown, rather onviningly, in [CMS℄ that �(v)is the orret analogue of the Gauss-Bonnet integrand in this ontext.In ontrast with the smooth ase, we onjeture that, in all dimensions, the in�nitesimalversion of nonpositive urvature should fore �(v) to have the orret sign.For a vertex v of a pieewise Eulidean surfae, �(v) = 1 � (2�)�1�(v). Hene, indimension 2, our onjeture is true: �(v) � 2� implies �(v) � 0.In general, it is diÆult to hek that a pieewise spherial spae L is large. However,if L is a simpliial omplex and if eah edge of L has length �=2, then Gromov has given asimple ombinatorial ondition whih is neessary and suÆient for L to be large: it mustbe a \ag omplex". (The de�nition is given in (2.7)). Suh L (i.e., simpliial omplexeswith edge lengths �=2) arise as links in any pieewise Eulidean ell omplex whose ellsare regular ubes. Furthermore, for suh L, the quantity �(L) is easily seen to be given bythe formula: �(L) = 1 +X(� 12 )i+1fi;where fi is the number of i-simplies in L. Hene, the loal form of the Hopf Conjeturefor pieewise Eulidean ubial manifolds is the following, purely ombinatorial onjeture,alled Conjeture D in Setion 4.Conjeture D. Suppose that L is a simpliial omplex homeomorphi to S2n�1 and that�(L) is de�ned by the formula above. If L is a ag omplex, then (�1)n�(L) � 0.This onjeture is �rst interesting in dimension 3. For any triangulation L3 of S3, theLower Bound Theorem of [W℄, states that f1 � 4f0� 10. In this dimension, Conjeture Dis equivalent to the statement that if, in addition, L3 is a ag omplex, then f1 � 5f0�16.Given an arbitrary simpliial omplex L, we onstrut, in Setion 6, a �nite, pieewiseEulidean, ubial omplex so that the link of eah vertex is L. If L is a ag omplex,then the ubial omplex is nonpositively urved. If L is homeomorphi to a sphere, theubial omplex is a manifold. Hene, Conjeture D is equivalent to the Hopf Conjeturefor pieewise Eulidean manifolds ellulated by ubes (f. Proposition 6.5).2



There is a beautiful generalization, due to G. Moussong [M℄, of Gromov's ombinatorialondition for largeness of pieewise spherial simpliial omplexes with edges of length �=2.Moussong gives an analogous ondition in the ase where the edge lengths are � �=2 whihis partly ombinatorial and partly metri (see (2.9), (2.10)). This leads to a onjeture forsuh L, analogous to Conjeture D, alled Conjeture C in Setion 4.Setion 5 provides some evidene for Conjetures C and D. First, we show that Conje-ture D holds for some wide lasses of ag omplexes whih arise as subdivisions. Then weshow in Proposition (5.7) that Conjeture D implies Conjeture C (in the ase where theunderlying simpliial omplex is a ag omplex). The proof uses a formula of [CMS℄ forthe �rst derivative of �(t), where �(t) = �(Lt) for some 1-parameter family Lt of pieewisespherial simpliial omplexes.Finally, in Setion 7, we disuss an equivalent form of Conjeture D, of interest toombinatorialists.1. Pieewise Eulidean and pieewise spherial ell omplexes.(1.1) A Eulidean ell is a onvex polytope in some Eulidean spae. A onvex polyhedralone in Rn (with vertex at the origin) is any intersetion of a �nite number of linear half-spaes whih ontains no line. The spherial ell assoiated to a onvex polyhedral one isits intersetion with Sn�1. A onvex polyhedral one is a simpliial one if this intersetionis a spherial simplex.(1.1.1) If P is a Eulidean ell and F is a fae of P , then the normal one of F in Pis the onvex polyhedral one N(F; P ) onsisting of all inward pointing normal vetors toF . Its dimension is the odimension of F in P . The assoiated spherial ell is alled thelink of F in P and denoted Lk(F; P ). Thus, Lk(F; P ) is the \solid angle" of P along F .Similarly, if F is a fae in a spherial ell P , then Lk(F; P ) is de�ned to be the link of theassoiated polyhedral ones.(1.1.2) A pieewise Eulidean ell omplex is a spae X formed by gluing together Eu-lidean ells via isometries of their faes together with the deomposition of X into ells.A pieewise spherial ell omplex is de�ned similarly using spherial ells. We assumethroughout that all ell omplexes are loally �nite. We also assume that there is a posi-tive lower bound on the heights of all ells of X. (The height of a ell C is the minimumdistane between disjoint faes of C.)(1.1.3) If F1 and F2 are faes of a Eulidean (resp. spherial) ell P and F1 � F2, thenLk(F1; F2) is anonially identi�ed with a fae of Lk(F1; P ). It follows that if F is a ellin a pieewise Eulidean (resp. spherial) omplex X, then the set of all Lk(F; P ), P aell of X whih ontains F , �t together to give a pieewise spherial ell omplexLk(F;X) = [F�P Lk(F; P )alled the link of F in X.(1.1.4) An n-ell P is simple if preisely n odimension-one faes of P meet at eahvertex. Equivalently, P is simple if Lk(F; P ) is a simplex for eah proper fae F of P . For3



example, a simplex is simple, so is a ube; an otahedron is not. If eah ell of a pieewiseEulidean ell omplex X is simple, then Lk(F;X) is a simpliial ell omplex for eah ellF in X.(1.1.5) A note on terminology. \Simpliial omplex" is not synonymous with \simpliialell omplex". In a simpliial ell omplex the intersetion of two simplies is a union offaes, while in a simpliial omplex suh an intersetion is either empty or a single simplex.(1.2) A omplete metri spae Y is a geodesi spae (or \length spae") if, given pointsy1; y2 in Y , there is a path  from y1 to y2 with `() = d(y1; y2). Suh a distane minimizingpath is alled a geodesi.(1.3) Suppose X is a pieewise Eulidean or pieewise spherial ell omplex. Then \arlength" makes sense in eah ell; hene, the length ` of a path in X is well-de�ned. Givenpoints x and y in X, de�ne d(x; y) = inf f`()g, where the in�mum is over all paths from x to y of �nite length. (If x and y are in distint path omponents, put d(x; y) =1).Under the assumptions of (1.1.2), Moussong ([M℄) showed that d is a omplete, geodesimetri on X. It is loally isometri with the given Eulidean or spherial metris on theindividual ells. A pieewise Eulidean (resp. pieewise spherial) spae is the metri spaeunderlying suh a pieewise Eulidean (resp. pieewise spherial) ell omplex.2. The in�nitesimal version of nonpositive urvature.(2.1) A geodesi spae is nonpositively urved, abbreviated (NP), if, loally, geodesitriangles satisfy the CAT(0)-inequality (see [G, p. 106℄). The (NP) ondition has somestrong onsequenes. For example, if a spae is (NP), then it is loally ontratible and itsuniversal overing spae is ontratible.(2.1.1) A pieewise spherial spae is a large if there is a unique geodesi between anytwo points of distane < �.The following result is due to Gromov. For a proof, see [B℄ or [Br℄. (See also Theorem3.1 and the appendix of [CD1℄.)(2.2) Theorem (Gromov). A pieewise Eulidean ell omplex is (NP) if and only ifthe link of eah vertex is large.In some ases, when the ell struture on a pieewise spherial spae is simpliial, thereare ombinatorial onditions whih are neessary and suÆient for it to be large. In orderto state these onditions, it is �rst neessary to develop some terminology and elementaryfats about spherial simplies.(2.3) Let � be a spherial n-simplex in Sn with vertex set V , a set of linearly indepen-dent unit vetors in Rn+1 . The assoiated osine matrix, (�) = (vv0); v; v0 in V is thesymmetri V by V matrix of inner produts: vv0 = v � v0. We note that (�) is positivede�nite.(2.3.1) For v 6= v0, let `vv0 be the length of the edge (v; v0) of �. Put `vv = 0. Thenvv0 = os(`vv0).(2.3.2) Conversely, suppose we are given a V by V symmetri matrix (`vv0) satisfying:`vv = 0 and `vv0 2 (0; �) for v 6= v0. If the assoiated osine matrix , de�ned by vv0 =os(`vv0), is positive de�nite, then we an �nd a basis V for Rn+1 , unique up to isometry,4



whih spans a spherial n-simplex with assoiated osine matrix . Hene, (`vv0) is thematrix of edge lengths of a spherial simplex if and only if the assoiated osine matrix ispositive de�nite.(2.4) A spherial simplex is all right if eah of its edges has length �=2; it has size� �=2 if eah of its edges has length � �=2. The assoiated osine matrix of an all rightn-simplex � is the identity matrix. It follows that � is isometri to the regular n-simplexin Sn spanned by the standard basis of Rn+1 . The assoiated osine matrix of a simplexof size � �=2 is \almost negative" in the sense that its o�-diagonal entries are � 0.The following is a result of [M℄.(2.4.1) Lemma. Let � be a fae of a spherial simplex �.(i) If � is all right, then so is Lk(�; �).(ii) If � has size � �=2, then so has Lk(�; �).Proof. Statement (i) is obvious. To prove (ii) �rst note that if �1 � �2 � �, theLk(Lk(�1; �2); Lk(�1; �)) is isometri to Lk(�2; �). Hene, by indution, we an redueto the ase dim � = 0. So, suppose � is spanned by fv0; : : : ; vng and � is the vertex v0.Let p : Rn+1 ! (Rv0)? be orthogonal projetion. Then Lk(v0; �) an be identi�ed withthe spherial simplex in (Rv0)? spanned by ui = p(vi)=jp(v0)j; i = 1; : : : ; n. For i 6= j,p(vi) � p(vj) = (vi � (vi � v0)v0) � (vj � (vj � v0)v0)= vi � vj � (vi � v0)(vj � v0)whih is � 0 sine the osine matrix for � is almost negative. It follows that ui � uj � 0 sothe osine matrix for Lk(v0; �) is almost negative.(2.5) A pieewise spherial simpliial ell omplex is all right (resp. has simplies of size� �=2) if the orresponding property holds for eah of its simplies.(2.5.1) If L is all right or if it has simplies of size � �=2, then, by Lemma (2.4.1), thelink of any simplex in L has the same property.(2.6) A pieewise Eulidean ell omplex has nonaute, simple ells if eah of its ellsis simple (f. (1.1.4)) and the fae angles in eah ell are all � �=2; or equivalently, if thelink of every ell is simpliial with simpliies of size � �=2. It is ubial if eah ell is aregular Eulidean ube. In this ase, links are all right simpliial ell omplexes.(2.7) Let K be a simpliial omplex (no metri struture is assumed). A set V ofverties in K spans a omplete graph if any two distint elements of V span an edge in K.A simpliial ell omplex K is a ag omplex if it is a (genuine) simpliial omplex (f.1.1.5) and if any set of verties whih spans a omplete graph atually spans a simplex.Thus, a ag omplex is a simpliial omplex with no \empty simplies".(2.7.1) Flag omplexes have nie properties. For example,(a) the link of any simplex in a ag omplex is again a ag omplex, and(b) the join of two ag omplexes is a ag omplex.5



The following lemma is proved in [G, p. 122℄.(2.8) Gromov's Lemma. An all right pieewise spherial simpliial ell omplex islarge if and only if it is a ag omplex.(2.8.1) Hene, a pieewise Eulidean, ubial ell omplex is (NP) if and only if the linkof eah vertex is a ag omplex.(2.9) Suppose L is a pieewise spherial simpliial omplex and that V is a set of vertiesof L whih span a omplete graph. As in (2.3), there is assoiated to V a osine matrix,(vv0), where vv0 is the osine of the length of the edge (v; v0). A ell omplex L is a metriag omplex if it is a simpliial omplex and if whenever V is a set of verties suh that (i)V spans a omplete graph, and (ii) the assoiated osine matrix is positive de�nite, thenV spans a simplex of L.The following diÆult generalization of Gromov's Lemma is proved in [M℄.(2.10) Moussong's Lemma. A pieewise spherial simpliial ell omplex with sim-plies of size � �=2 is large if and only if it is a metri ag omplex.(2.10.1) So, a pieewise Eulidean ell omplex with nonaute, simple ells is (NP) ifand only if the link of eah vertex is a metri ag omplex.3. The Gauss-Bonnet Theorem for pieewise Eulidean spaes(3.1) Let C be an n-dimensional onvex polyhedral one and � the assoiated spherial(n � 1)-ell. The outward pointing normals to the supporting hyperplanes of C generateanother onvex polyhedral one C� alled the dual one. (If u1; : : : ; uk are outward point-ing normal vetors to the supporting hyperplanes, then C� is the set of all nonnegativelinear ombinations of the ui). The assoiated spherial ell �� = C� \ Sn�1 is the dualell to �.(3.2) The angle of C at 0, denoted by a(�), is the (n � 1)-dimensional volume of �,normalized so that the volume of Sn�1 is 1, i.e.,a(�) = vol (�)vol (Sn�1) :The exterior angle of C at 0, denoted by a�(�) is the angle of C�, i.e., a�(�) = a(��).(3.3) Let P be a Eulidean n-ell. After hoosing an interior point of P as the origin, onean de�ne the \dual ell" P � whose verties are the normal vetors to the odimension-onefaes of P . For example, the otahedron is dual to the ube. Radial projetion of �P �onto Sn�1 gives a ellulation of Sn�1. The (n�1)-ells in this ellulation are assoiated tothe duals of the normal ones at the verties of P , i.e., eah suh (n� 1)-ell is of the formLk(v; P )� for some vertex v. It follows that P a�(Lk(v; P )) = 1, where the summationis over all verties v of P . (If v = P , then Lk(v; P ) = ;, so we adopt the onventiona�(;) = 1). 6



(3.4) Now suppose that X is a �nite pieewise Eulidean ell omplex. Then�(X) =XP (�1)dimP=XP (�1)dimPXv a�(Lk(v; P ))where P runs over the ells of X and v runs over the verties of P . Reversing the order ofsummation gives �(X) =Xv Xv2P(�1)dimP a�(Link (v; P ))(3.4.1) =Xv (1 +X� (�1)dim�+1a�(�))where v runs over the verties of X and � over the ells of Lk(v;X). (Note that the 1 inthe summation arises from the ase P = v). For any �nite, pieewise spherial ell omplexL, de�ne(3.4.2) �(L) = 1 +X� (�1)dim�+1a�(�)where � runs over the ells of L. Then (3.4.1) an be rewritten as(3.4.3) �(X) =Xv �(v);where �(v) = �(Lk(v;X)). This is the desired analogue of the Gauss-Bonnet Theorem forpieewise Eulidean spaes.(3.5) If � is an all right simplex, then �� = � and a�(�) = a(�) = (12)dim �+1. Hene, ifL is an all right, pieewise spherial, simpliial ell omplex, then(3.5.1) �(L) = 1 +X� (� 12 )dim�+1(3.5.2) Let K be a simpliial ell omplex (without metri struture) and fi(= fi(K))the number of i-simplies in K. Put�(K) = 1 +Xi (� 12 )i+1fi:If we endow K with the struture of an all right spherial omplex by delaring eahsimplex to be all right, then �(K) = �(K).(3.6) The following fats onerning � are proved in [CMS, Setion 3℄.7



(3.6.1) If the underlying metri spaes of L1 and L2 are isometri, then �(L1) = �(L2).(3.6.2) If L is isometri to the round sphere, then �(L) = 0.(3.6.3) Suppose �n � Sn and �k � Sk are spherial ells; embed Sn and Sk in orthogonallinear subspaes of Rn+k+2 ; then the orthogonal join � � � is the spherial (n+ k+ 1)-ellspanned by � and � (it is the union of all geodesis in Sn+k+1 from � to �). This extendsto a de�nition of the orthogonal join L1 � L2 of two pieewise spherial ell omplexes L1and L2 (see the Appendix of [CD℄). By [CMS, p. 442℄,�(L1 � L2) = �(L1)�(L2):(3.6.4) If L is homeomorphi to an even dimensional sphere, then �(L) = 0. (Atuallyfor this to be true it is only neessary to assume that �(L) = 2 and �(Lk(�; L)) = 2 foreah odd dimensional ell �).(3.6.5) Let K be a simpliial ell omplex and Lt a 1-parameter family of pieewisespherial strutures onK. For eah edge e inK, let ae(t) be the length of the orrespondingedge et in Lt, normalized so that S1 has length 1. (Thus, ae(t) = (2�)�1`(et), where `is the usual edge length). Put �(t) = �(Lt). The following beautiful formula for the �rstderivative of �(t) is given in [CMS, p. 424℄(3.6.6) �0(t) = �Xe a0e(t)�(Lk(et; Lt)):The proofs of the above fats an be skethed as follows. In [C℄, Cheeger onsidersanother quantity, let us all it �(L), de�ned as the di�erene of the L2-Euler harateristiof the one of radius 1 on L and 12 the L2-Euler harateristi of L. So �(L) dependsonly on the metri and not the ell struture. Using heat equation methods he derivesa formula for �(L) solely in terms of interior angles and ags of odd dimensional ells(formula 3.35 in [CMS℄) and he proves that �(X) = P�(Lk(v;X)). In [CMS, p. 424℄ itis proved that �(L) = �(L). Sine �(L) depends only on the metri, (3.6.1) follows. Theformulas in (3.6.2), (3.6.4) and (3.6.6) follow easily from the formula for �(L); (3.6.3) isan easy omputation.4. Statements of the onjeturesWe are now in position to state preisely the various onjetures whih were mentionedin the Introdution. First, there is the analogue of the Hopf Conjeture.Conjeture A. If M2n is a nonpositively urved, pieewise Eulidean, losed manifold,then (�1)n�(M2n) � 0.Next, suppose that L2n�1 is a (2n � 1)-dimensional pieewise spherial ell omplexwhih is a generalized homology sphere, in the sense that it has the homology of S2n�1and for eah k-ell �; Lk(�; L2n�1) has the homology of S2n�k�2. For example, if L2n�1is homeomorphi to S2n�1, then it is a generalized homology sphere. In view of Gromov'sTheorem (2.2), Conjeture A is implied by the following.8



Conjeture B. If L2n�1 is large (f. (2.1.1)), then (�1)n�(L2n�1) � 0, where � isde�ned by (3.4.2).By Moussong's Lemma (2.10) the following onjeture is a speial ase of Conjeture B.Conjeture C. Suppose that L2n�1 is simpliial and has simplies of size � �=2 (f.(2.5)). If L2n�1 is a metri ag omplex (f. (2.9)), then (�1)n�(L2n�1) � 0.If L is a metri ag omplex with simplies of size � �=2, then the same is true for thelink of eah simplex in L, by Lemma (2.4.1). In the sequel we will want to onsider thestatement that Conjeture C holds for a partiular omplex L and for eah link in L. It istherefore onvenient to state the following equivalent formulation of Conjeture C.Conjeture C0. If L2n�1 is a metri ag omplex with simplies of size � �=2, then(�1)n�(L2n�1) � 0 and for eah simplex � of odimension 2k; (�1)k�(Lk(�; L)) � 0.Finally, we want to onsider the speial ase where L2n�1 is all right. In order to de-emphasize the metri in this ase, we let K2n�1 be a simpliial ell omplex whih is ageneralized homology sphere, as above, and �(K) the quantity de�ned in (3.5.2).Conjeture D. If K2n�1 is a ag omplex, then (�1)n�(K2n�1) � 0.We also have an equivalent reformulation.Conjeture D0. If K2n�1 is a ag omplex, then (�1)n�(K2n�1) � 0 and for eahsimplex � of odimension 2k; (�1)k�(Lk(�;K2n�1) � 0.5. EvideneWe begin by disussing some partial results for Conjeture D.(5.1) Let Om be the (m+1)-fold join of S0 with itself. By (2.7.1), Om is a ag omplexand by (3.6.3), �(Om) = 0. It is alternately desribed as the boundary omplex of the(m+1)-dimensional otahedron (or \ross polytope"). It is the simplest ag omplex whihtriangulates the m-sphere. If we endow it with an all right, pieewise spherial struture,then it is isometri to the round sphere. The link of a k-simplex in Om is isomorphi toOm�k�1. It follows that Conjeture D0 holds for O2n�1.(5.2) Flag omplexes arise naturally as derived omplexes of posets. (Reall that if Ais a poset, then its derived omplex A0 is the abstrat simpliial omplex with simpliesthe �nite hains in A). If A is the poset of ells in a ell omplex, then the geometrirealization of A0 an be identi�ed with the baryentri subdivision of the ell omplex. Inpartiular, if A is the poset of faes of the boundary omplex of a 2n-ell, then A0 is aag omplex homeomorphi to S2n�1. Based on work of R. Stanley, E. Babson showedthat Conjeture D0 holds for suh A0. (For the argument, see (7.3)). Hene, Conjeture D0holds for the baryentri subdivision of the boundary omplex of a Eulidean ell.(5.3) Suppose K is a simpliial omplex (no metri assumed). Reall that for anysimplex � ofK;Lk(�;K) an be identi�ed with the subomplex ofK onsisting of all losedsimplies � , disjoint from �, suh that the join of � and � is a simplex of K ontaining �.(5.3.1) Let e be an edge of K. We shall now de�ne a subdivision of K, alled the edgesubdivision and denoted by Sube(K). Introdue a new vertex ve as the midpoint of e,subdividing e into two new edges, say e+ and e�. Let � be a k-simplex ontaining e. Then� = e � � for some simplex � in Lk(e;K). Introdue a new (k � 1)-simplex �0 = ve � � ,9



subdividing � into two new k-simplies �+ = e+ � � and �� = e� � � . The simplies whihdo not ontain e are not hanged.......................................................................................................................................................................
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ve�+ [ ���(5.3.2) If K is a ag omplex, then so is Sube(K). Of ourse, we ould have subdividedK by introduing a baryenter of some simplex of dimension > 1 and then oning o�;however, this does not preserve the property of being a ag omplex.(5.3.3) How are the links in Sube(K) related to links in K? Let � be a simplex inSube(K). There are four ases to onsider:(i) � orresponds to a simplex of K whih is not in the losed star of e,(ii) � orresponds to a simplex in the link of e,(iii) there is a simplex �̂ of K whih ontains e and � = �̂0 (or � = ve),(iv) there is a simplex �̂ of K whih ontains e and � = �̂+ or � = �̂�.Then Lk(�; Sube(K)) = 8>>><>>>: Lk(�;K) ; in ase (i)Sube(Lk(�;K)) ; in ase (ii)S0 � Lk(�̂; K) ; in ase (iii)Lk(�̂; K) ; in ase (iv)(5.3.4) For any set of simplies E, put~�(E) =X�2E(� 12 )dim�+1:If � is an open simplex andM a simpliial omplex, then let E(�;M) be the set of simpliesin � �M whih do not lie in M . Clearly,~�(E(�;M)) = (� 12 )dim�+1�(M):(5.3.5) Lemma: �(Sube(K)) = �(K)� 14�(Lk(e;K)).Proof. To onstrut Sube(K) from K one removes the open star of e and replaes it bythe open star of ve in ve �S0 �Lk(e;K). The ontribution of the simplies in the open starof e to �(K) is ~�(E(e; LK(e;K)) = 14�(Lk(e;K)). The ontribution of those in the openstar of ve is ~�(E(ve; S0 � Lk(e;K)) = �12�(S0 � Lk(e;K)) = � 12�(S0)�(Lk(e;K)) = 0.The formula follows. 10



(5.4) Now suppose K2n�1 is a ag omplex and a generalized homology sphere. Let ebe an edge of K.(5.4.1) Proposition. If Conjeture D holds for K and for Lk(e;K), then it also holdsfor Sube(K).Proof. If (�1)n�(K) � 0 and (�1)n�1�(Lk(e;K)) � 0, then (�1)n�(Sube(K)) =(�1)n�(K) + 14 (�1)n�1�(Lk(e;K)) � 0.Using this, (5.3.2) and (5.3.3), we immediately dedue the following.(5.4.2) Proposition. If Conjeture D0 holds for K, then it also holds for any omplexobtained from K by repeated edge subdivisions.(5.4.3)Corollary. Conjeture D0 holds for any omplex obtained from O2n�1 by repeatededge subdivisions.(5.4.4) Proposition (5.4.2) also follows from formula (3.6.6). Let L0 be K with anall right pieewise spherial struture. Let Lt be the 1-parameter family where the edgeorresponding to e has length (1+ t)�=2 and all other edges have length �=2. By indutionon dimension, (�1)n�1�(Lk(et; Lt)) � 0. Hene, by (3.6.6), (�1)n�(Lt) is a non-dereasingfuntion of t. But L1 is just the all right struture on Sube(K). Proposition (5.4.2) follows.(5.5) A k-iruit inK is a iruit of k edges. A 3-iruit is empty if it is not the boundaryof a 2-simplex. Similarly a 4-iruit is empty if it is not the boundary of the union of twoadjaent 2-simplies.(5.5.1) The inverse operation of edge subdivision is \edge ollapse." Suppose e is an edgeof K whih is not part of an empty 3-iruit. (This is automati if K is a ag omplex).To ollapse e, one �rst removes the open star of e. The resulting boundary is isomorphito S0 � Lk(e;K). One then ollapses this to Lk(e;K). The result is a simpliial omplexKe whih is a quotient spae of K. If K is PL-homeomorphi to S2n�1, then so is Ke. IfK is a ag omplex, then Ke is also a ag omplex if and only if e is not part of an empty4-iruit. Hene, one an try to simplify K by performing edges ollapses on edges whihare not part of empty 4-iruits.(5.5.2) At one point we thought it might be possible, given a ag omplex Km, PL-homeomorphi to Sm, to perform edge ollapses to redue it to Om. This is true form = 1; 2, however, there is a ounterexample for m = 3. (Conjeture D holds for thisounterexample).We turn now to Conjeture C0.(5.6) Suppose L0 and L1 are two pieewise spherial strutures on a simpliial ellomplex K. For a simplex � in K, let �i; i = 0; 1, be the orresponding spherial simplexin Li. Let (�i); i = 0; 1, be the assoiated osine matrix (f. (2.3)).(5.6.1) We shall now de�ne a 1-parameter family Lt of pieewise spherial simpliial ellomplexes Lt whih interpolates between L0 and L1. Put t(�) = t(�1) + (1 � t)(�0).Sine a onvex ombination of positive de�nite matries is positive de�nite, t(�) > 0. Itfollows that, for eah t 2 [0; 1℄, there is a orresponding spherial simplex �t. These �ttogether to give Lt. The family Lt is alled the anonial deformation from L0 to L1. Ife is an edge of K, then let `e(t)(= `(et)) be the length of the orresponding edge in Lt.Then os(`e(t)) = t os(`1) + (1� t) os(`0), where `i = `e(i); i = 0; 1.11



(5.6.2) In partiular, suppose L0 is all right and L1 has simplies of size � �=2. Thenfor eah edge e, `e(0) = �=2 and `e(t) 2 [�=2; �). So, `e(t) = os�1(t), where  = os(`1).Hene, `0e(t) = �(1� 2t2)� 12 , whih is � 0 (sine  � 0). Similarly, if ae(t) = (2�)�1`e(t)is the normalized length, then a0e(t) � 0.(5.7) Proposition. Let L2n�1 be a pieewise spherial simpliial omplex with simpliesof size � �=2 whih is a generalized homology sphere, and let K2n�1 be the underlyingsimpliial omplex. Suppose K2n�1 is a ag omplex. If Conjeture D0 holds for K2n�1,then Conjeture C0 holds for L2n�1.Proof. Let L0 be the all right struture on K, let L1 = L, and let Lt be the anonialdeformation. We assume that Conjeture D0 holds for K, i.e., that Conjeture C0 holds forL0. We may also assume, by indution on n, that Conjeture C holds for the link of eahodd dimensional simplex in Lt. In partiular, for eah edge et, (�1)n�1�(Lk(et; Lt)) � 0.By (3.6.6), (�1)n�0(t) = (�1)n�1X a0e(t)�(Lk(et; Lt))whih is � 0 (using 5.6.2). Hene, (�1)n�(t) is nondereasing. Thus, (�1)n�(0) � 0implies (�1)n�(1) � 0.(5.8) Remark. In a forthoming paper [CD2℄. we �nd further evidene for ConjetureB. Suppose that X2n is a onvex polytope of �nite volume in hyperboli 2n-spae. Its\ompleted polar dual" L2n�1 is large. Moreover, (�1)n�(L2n�1) is twie the volume ofX2n (suitably normalized). Hene, Conjeture B holds in this ase.6. Examples from Coxeter groupsIn this setion we review the work of G. Moussong [M℄ (also, see [D1℄, [G, x4.6℄). Inpartiular, we show how to assoiate to eah Coxeter system (W;S) a pieewise spheri-al, simpliial omplex Nerve (W;S) and a ontratible, nonpositively urved, pieewiseEulidean ell omplex ~Y with W -ation so that the link of eah vertex of ~Y is Nerve(W;S). Moreover, any �nite, all right, ag omplex an be realized as Nerve (W;S) forsome (W;S).(6.1) Suppose S is a �nite set and m = (mss0) is a symmetri S by S matrix, withentries positive integers or 1, satisfying mss = 1 and mss0 � 2, for s 6= s0. This givesa presentation for a group W = hSj(ss0)mss0 = 1i. The pair (W;S) is a Coxeter systemand W is a Coxeter group. The rank of (W;S) is the ardinality of S. The group W isright-angled if mss0 = 2 or 1 for all s 6= s0. Assoiated to m, there is an S by S osinematrix  = (ss0) de�ned by ss0 = � os(�=mss0). (Here os(�=1) = os(0) = 1).(6.2) The group W is �nite if and only if the osine matrix is positive de�nite (f. [Bo℄).Suppose this is the ase. Then W an be represented as a group generated by orthogonallinear reetions on Rn , where n is the rank of (W;S). We reall how this works. Sine is positive de�nite, one an �nd a basis (us)s2S for Rn suh that us � us0 = ss0 . Letrs be reetion aross the linear hyperplane Hs normal to us. Then W is identi�ed withthe group hrsi generated by the rs and this group is �nite. The fundamental one C(=12



C(W;S)) is the simpliial one de�ned by us � x � 0; s 2 S. (So the Hs are the supportinghyperplanes of C). Then C is a fundamental domain for W on Rn . Its intersetion withSn�1 is the fundamental simplex �(= �(W;S)). As in (3.1), de�ne C�(= C�(W;S)), thefundamental dual one, and its intersetion with Sn�1; ��(= ��(W;S)), the fundamentaldual simplex. Thus, �� is the spherial simplex spanned by the us and its assoiated osinematrix (f. 2.3) is . Let �s = � \Hs. Note that the dihedral angle of � along �s \ �s0 is�=mss0 and that the length of the edge in �� from us to us0 is �(1� (mss0)�1).(6.2.1) The W -translates of � give a triangulation of Sn�1. The underlying simpliialomplex is alled the Coxeter omplex of W .(6.2.2) Choose a funtion � : S ! (0;1). Let x be the interior point of C de�ned byx � us = ��(s), i.e., the Eulidean distane from x to Hs is �(s). The onvex hull of theW -orbit of x is denoted by P (= P (W;S)) and alled a Coxeter ell. One heks easily that(i) the verties of P are the W -translates of x,(ii) P is a simple n-ell and the normal one at any vertex is C�(W;S), and(iii) �P is the dual of the Coxeter omplex. The verties wx and w0x are onneted byan edge if and only if w0 = ws, for some s in S, and the Eulidean length of suhan edge is 2�(s).
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(6.2.3) Examples(i) Suppose S = fs; s0g;m = mss0 , and W is the dihedral group of order 2m. Then Pis a 2m-gon and it is regular if and only if �(s) = �(s0).(ii) Suppose W = (Z=2)n. Then P is a produt of intervals Q[��(s); �(s)℄; s 2 S; P isa regular n-ube if and only if � is onstant.13



(iii) If W is the symmetri group on n+1 letters, then the n-ell P is sometimes alleda \permutohedron."(6.2.4) A Coxeter blok B(= B(W;S)) is the onvex n-ell de�ned by, B = P \ C. It isombinatorially equivalent to an n-ube. Call the origin the inside vertex of B; its link is�. Call x the outside vertex of B; its link is ��. Note that WB = P .(6.3) We return to the general situation where W may be in�nite. For any subset T ofS, let WT denote the subgroup generated by T . (In fat, (WT ; T ) is a Coxeter system).Assoiate to (W;S) an abstrat simpliial omplex Nerve (W;S) as follows: the vertex setis S; a proper subset T of S is a simplex if and only if WT is �nite.(6.3.1) There is a natural pieewise spherial struture on Nerve (W;S) de�ned as fol-lows. The simplex T is given the struture of the spherial simplex assoiated to the osinematrix of (WT ; T ). Thus, the simplies of Nerve (W;S) are isometri to the fundamentaldual simplies �T = ��(WT ; T ) orresponding to the �nite Coxeter subgroups of W . Itfollows that Nerve (W;S) has simplies of size � �=2 and, by (6.2), that it is a metri agomplex.(6.3.2) If (W;S) is right-angled, then Nerve (W;S) is an all right ag omplex. Con-versely, given any �nite, all right ag omplex K, there is a right-angled Coxeter systemwith Nerve (W;S) = K: simply, let S be the vertex set of K and de�ne mss0 , for s 6= s0,by mss0 = � 2; if (s; s0) is an edge1; if (s; s0) is not an edge.(6.4) We de�ned a fundamental hamber Y (= Y (W;S)). Let N = Nerve(W;S), N 0 thebaryentri subdivision of N , and Y the one on N 0 with one point x. For eah simplexT in N , let vT be its baryenter. Eah point y in N 0 lies in the open star of a (unique)vT . Put Wy =WT . For y in Y �N 0, let Wy be the trivial subgroup.(6.4.1) De�ne an equivalene relation � on W � Y by: (w1; y1) � (w2; y2) if and onlyif y1 = y2 and w1Wy1 = w2Wy2 . Let ~Y (= ~Y (W;S)) be the quotient spae (W � Y )= �.Then ~Y is naturally a simpliial omplex, and W ats properly on ~Y with orbit spae Y .(6.4.2) Put pieewise Eulidean strutures on Y and ~Y as follows. Choose a funtion� : S ! (0;1). For eah simplex T in N , let BT be the Coxeter blok de�ned as in (6.2.4)by using �jT . (So the length of the edge from the outside vertex of BT to the hyperplaneorresponding to t is �(t).) We an identify the subomplex Cone (�0T ) of Y with BTin suh a fashion that vT orresponds to the inside vertex of BT and x orresponds tothe outside vertex. This de�nes a pieewise Eulidean struture on Y suh that Lk(x; Y )is Nerve (W;S) with its natural pieewise spherial struture. The spae ~Y inherits apieewise Eulidean struture from Y .(6.4.3) The map y ! (1; y) from Y to W � Y indues an identi�ation of Y witha subomplex of ~Y . Then WTBT is a subomplex of ~Y isometri to the Coxeter ellP (WT ; T ). It follows that ~Y is ellulated by the Coxeter ells wP (WT ; T ), where w 2 Wand T is a simplex in N . The verties of these ells are the W -translates of the one pointx and the link of eah vertex is isometri to Nerve (W;S). By Moussong's Lemma (2.10)suh links are large. This gives the following result of [M℄.14



(6.4.4) Theorem (Moussong). For any Coxeter system (W;S), the pieewise Eulideanell omplex ~Y (W;S) is (NP). Moreover, the link of eah vertex is isometri to Nerve(W;S).(6.4.5) We an �nd �nite, pieewise Eulidean ell omplexes with the same property bytaking the quotient of ~Y by a torsion-free subgroup � of �nite index inW . Thus, X = ~Y =�also satis�es the onlusions of Theorem (6.4.4).(6.4.6) Sine (�T )� is a fundamental simplex for WT ; a�(�T ) = jWT j�1. Hene,(6.4.7) �(Nerve(W;S)) =X(�1)Card(T )jWT j�1where the summation is over all subsets T of S suh that WT is �nite. We note that theright hand side of (6.4.7) is the usual expression for the Euler harateristi of W (that is,the \orbihedral Euler harateristi" of Y ) and that �(X) = [� :W ℄P(�1)Card(T )jWT j�1.(Compare [D2℄.)(6.4.8) Let L be any all right ag omplex and let (W;S) be the right-angled Coxetersystem orresponding to L (f. (6.3.2)). Let ~Y and X be as above. The onlusion is thatthere is a �nite, pieewise Eulidean, ubial ell omplex X suh that the link of eahvertex is isometri to L. This gives the following.(6.5) Proposition. Conjeture A holds for all pieewise Eulidean manifolds ellulatedby regular ubes if and only if Conjeture D holds.7. The h-polynomial(7.1) Combinatorialists, interested in the poset of faes assoiated to a onvex ell, havemade the following de�nitions. Suppose K is a �nite simpliial omplex of dimensionm�1,that fi is the number of i-simplies in K, and that f�1 = 1. The f -vetor of K is them-tuple (f�1; f0; : : : ; fm�1) and the h-vetor (h0; : : : ; hm) is de�ned by the equation(7.1.1) mXi=0 fi�1(t� 1)m�i = mXi=0 hitm�iPolynomials f(t)(= fK(t)) and h(t)(= hK(t)) are de�ned byf(t) = mXi=0 fi�1ti(7.1.2) h(t) = mXi=0 hiti(7.1.3)Formula (7.1.1) an then be rewritten as(7.1.4) h(t) = (1� t)mf( t1� t )15



(7.2) Let �(K) be the quantity de�ned in (3.5.2). Clearly, �(K) = fK(� 12). By substi-tuting t = �1 into (7.1.4) we get(7.2.1) h(�1) = 2mf(� 12) = 2m�(K):Therefore, �(K) and h(�1) have the same sign. So Conjeture D is equivalent to thefollowing.Equivalent Form of Conjeture D. Suppose K2n�1 is a generalized homology sphere(as in Setion 4). If K is a ag omplex, then (�1)nhK(�1) � 0.(7.3) In this paragraph, we disuss an observation of E. Babson (as ommuniated tous by L. Billera) whih proves (5.2). For any \Eulerian poset" A, ombinatorialists havede�ned the \d-index" �A(; d), a ertain polynomial in two (nonommuting) variables(e.g. see [S2℄). It is a re�nement of the h-vetor of the derived omplex A0. In partiular,it follows diretly from its de�nition that(7.3.1) �A(0;�2) = hA0(�1):Stanley [S2℄ has proved (in slightly greater generality) that if A is the boundary omplexof a onvex m-ell, then the oeÆients of �A are all nonnegative. In partiular, form = 2n;�A(0;�2) is (�2)n times the oeÆient of dn. It follows that Conjeture D holdsfor the baryentri subdivision of the boundary omplex of a 2n-ell.(7.4) The following well-known formulas hold for any Km�1 whih is a generalizedhomology (m� 1)-sphere. h(t) = tmh(t�1)(7.4.1) hi � 0; for 0 � i � n:(7.4.2)Formula (7.4.1) (whih means that hi = hm�i) is equivalent to the Dehn-SommervilleRelations. These relations are a onsequene of the fats that �(K) = �(Sm�1) and thatfor any i-simplex �; �(Lk(�;K)) = �(Sm�i�2). Thus, (7.4.1) holds for any K whih isan \Euler sphere" in the above sense. The inequalities in (7.4.2) hold whenever K is a\Cohen-Maaulay omplex" in the sense of [S1℄. In partiular, both formulas hold forgeneralized homology spheres.Conjeture E. If Km�1 is a generalized homology sphere and a ag omplex, then h(t)has no roots of modulus 1, exept possibly �1.(7.5) Lemma. Conjeture E implies Conjeture D.Proof. Suppose that m = 2n. Fator h as a produt of moni polynomials, h = h1h2,where the roots of h1 are real and those of h2 are not. We list the non-real roots of h as:�1; : : : �k; �1; : : : ; �k. Sine h2(t) = Q(t � �i)(t � �i); h2(�1) = Q(�1 � �i)(�1 � �i) =Q j � 1 � �ij2 whih is � 0. Hene, we need only show h1(�1) has the orret sign.By (7.4.1), if  is a root then so is �1. If j�j 6= 1, then ��1 6= �. Supposing thatConjeture E holds, we see that k is even. By (7.4.2) the real roots of h are negative. If16



h(�1) = 0, then Conjeture D holds. So, suppose h(�1) 6= 0. List the real roots of h as:�1; : : : ; �n�k; (�1)�1; : : : (�n�k)�1, where �1 < �i < 0. Sineh1(�1) =Y(�1� �i)Y(�1� (�i)�1);the sign of h1(�1) is (�1)n�k whih is equal to (�1)n (sine k is even).Referenes[B℄ W. Ballman, Singular spaes of non-positive urvature, Chapitre 10 in \Sur les Groupes Hyper-boliques d'apres Mikhael Gromov," edited by E. Ghys and P. de la Harpe, Progress in Math. 81,Birkh�auser, Boston, Basel, Berlin, 1990.[Bo℄ N. Bourbaki, \Groupes et Algebr�es de Lie," Chapitres IV-VI, Hermann, Paris, 1968.[Br℄ M.R. Bridson, Geodesis and urvature in metri simpliial omplexes, in \Group Theory froma Geometrial Viewpoint," edited by E. Ghys, A. Haeiger, and A. Verjovsky, World Sienti�,Singapore, 1991, 373-463.[CD1℄ R. Charney and M.W. Davis, Singular metris of nonpositive urvature on branhed overs ofRiemannian manifolds, Amer.J. Math. 115 (1993), 929-1009.[CD2℄ , The polar dual of a onvex polyhedral set in hyperboli spae, to appear in MihiganMath. J.[C℄ J. Cheeger, Spetral geometry of singular Riemannian spaes, J. Di�erential Geometry 18 (1983),575-657.[CMS℄ J. Cheeger, W. M�uller, and R. Shrader, On the urvature of pieewise at spaes, Commun.Math. Phys. 92 (1984), 405-454.[Ch℄ S.S. Chern, On urvature and harateristi lasses of a Riemannian manifold, Abh. Math. Sem.Univ. Hamburg, 20 (1956), 117-126.[D1℄ M.W. Davis, Groups generated by reetions and aspherial manifolds not overed by Eulideanspae, Ann. of Math., 117 (1983), 293-324.[D2℄ , Coxeter groups and aspherial manifolds, in \Algebrai Topology Aarhus 1982,"edited by I. Madsen and B. Oliver, Springer Le. Notes in Math., 1051, Springer-Verlag, NewYork and Berlin, 1984, 197-221.[Ge℄ R. Geroh, Positive setional urvature does not imply positive Gauss-Bonnet integrand, Pro.Am. Math. So., 54 (1976), 267-270. 17
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