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Abstract. We construct two classes of examples of a virtually torsion-
free group G acting properly and cocompactly on a contractible manifold
X. In the first class of examples the universal space for proper actions,
EG, has no model with finitely many orbits of cells. The reason is
that the centralizers of certain finite subgroups of G will not have finite-
type classifying spaces. In the second class of examples X is a CAT (0)
manifold upon which G acts by isometries. It follows that X is a model
for EG. In these examples the fixed point sets of certain finite subgroups
of G are not manifolds and the centralizers of these subgroups are not
virtual Poincaré duality groups.

1. Introduction

A discrete group G is type F if its classifying space BG (also called its
“Eilenberg-Mac Lane space”) has the homotopy type of a finite complex.
(There is a weaker, algebraic version of this condition known as “type FP”;
the definition can be found in [5].) A group of type F (or FP) is necessarily
torsion-free. A virtually torsion-free group G is type VF (resp. type VFP)
if it contains a finite index subgroup of type F (resp. of type FP).

For any discrete group G, there is a CW-complex EG on which G acts
cellularly and properly (i.e., with finite isotropy subgroups) so that for each
subgroup H of G, the fixed set (EG)H is contractible whenever H is finite
(and is empty when H is infinite). EG is called the universal space for
proper G-actions. It is unique up to G-homotopy equivalence. (See [19].)
We say that G is type VF if there is an EG so that the quotient space EG/G
is compact. A group G of type VF is not necessarily virtually torsion-free
(see, for example, [2, p. 493]), but any virtually torsion-free group of type
VF is of type VF. There is also a similar, but weaker, algebraic notion of
a group being of “type VFP”, which will be defined in an appendix to this
article.
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In many of the most well-known examples of groups of type VF or of type
VF , EG is a contractible manifold. For example, suppose that X is a simply
connected, complete Riemannian manifold of nonpositive sectional curvature
(e.g., a symmetric space) and that G is a discrete group of isometries of X.
For each finite subgroup H, the nonpositive curvature condition forces the
fixed set XH to be nonempty and convex and hence, to be contractible.
The same argument works even when the metric is singular, i.e., when X
is a “CAT (0) space”. (See [4] for the definitions and basic facts concerning
CAT (0) spaces.) Thus, if G is a discrete group of isometries of a CAT (0)
X, then X is a model for EG. In particular, if the quotient space X/G is
compact, then G is type VF . We note that, in the Riemannian case, since
the G-action is smooth, each fixed set XH is a smooth submanifold of X.

In [13] the second author and B. Nucinkis produced the first examples of
groups of type VF which were not of type VF . How does one tell that a
given group G is not of type VF ? For any finite subgroup H of G, let VH =
NG(H)/H, where NG(H) stands the normalizer of H in G. Then (EG)H is
the universal space for proper VH -actions and (EG)H/VH is emedded as a
closed subspace of EG/G. It follows from this, first of all, that if G is type
VF , then (since EG/G is compact) there are only finitely many conjugacy
classes of finite subgroups in G. Secondly, if G is type VF , then so is VH . In
particular, if VH contains a torsion-free subgroup of finite index which is not
type F, then G cannot be type VF . In [13] various examples of G of type
VF are constructed which violate both these conditions. The method of [13]
is to combine the construction of Bestvina-Brady [1] with earlier examples
(e.g., of Oliver [17]) of exotic actions of finite groups on contractible finite
complexes.

In [9] the first author showed how the reflection group trick could be used
to promote the Bestvina-Brady examples to examples of Poincaré duality
groups which cannot be finitely presented. In our first class of examples we
show how the same trick can be used to promote the examples of [13] to
examples where the virtually torsion-free group G acts cocompactly on a
contractible manifold, thereby proving the following theorem.

Theorem 1. There are examples of virtually torsion-free groups G such
that G acts properly and cocompactly on a contractible manifold and such
that G is not of type VF .

A discrete group G is a PDn-group (or a “Poincaŕe duality group”) if it
is type FP and if

H i(G; ZG) =

{
Z, if i = n,
0, otherwise.

It follows that a group of type F is a PDn-group if and only if its classifying
space is a Poincaré complex. A virtually torsion-free group G is a V PDn-
group (a “virtual Poincaré duality group”) if it contains a subgroup of finite
index which is a PDn-group.
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Suppose that G admits a EG which is a manifold with cocompact G-
action (this of course implies that G is of type VF ). If for each finite
subgroup H, (EG)H is also a contractible manifold, then the cohomology
with compact supports of (EG)H is concentrated in the top dimension (and
is isomorphic to Z in that dimension). This dimension is, in fact, cdQ(VH)
(where cdQ(−) stands for “cohomological dimension over Q”). We also note
that the cohomology with compact supports of (EG)H is isomorphic to
H∗(VH ; ZVH) (see Exercise 4, p. 209 in [5]). This motivates the following
definition.

Definition. A group G is a VPD-group if it is type VFP and if for each
finite subgroup H

H i(VH ; ZVH) =

{
Z, if i = cdQ(VH),
0, otherwise.

The above definition relies on the definition of type VFP , which we in-
clude in an appendix, as it is rather technical. We shall apply the above
definition only in the case when G is type VF , which implies that G is type
VFP . Hence the reader who is not interested in algebra will be able to read
the rest of this article without reading the appendix.

In our second class of examples G will be a virtually torsion-free group
acting cocompactly on a CAT (0) manifold X (so G is type VF ) yet G is
not a VPD-group. The point is that for certain finite subgroups H, the fixed
set XH will not be a submanifold and will not satisfy Poincaré duality. In
these examples the group G will be the semidirect product of a right-angled
Coxeter group and a finite group. So, we will have proved the following.

Theorem 2. There are examples of virtually torsion-free groups G such
that G is a discrete, cocompact group of isometries of a CAT(0) manifold
and such that G is not a VPD-group.

2. The equivariant reflection group trick

A simplicial complex L is a flag complex if any finite set of vertices which
are pairwise connected by edges spans a simplex of L.

Suppose we are given as data:
• a space M and a subspace N such that N is triangulated as a finite

dimensional flag complex,
• the action of a discrete group G on M so that G stabilizes N and so

that G acts on N by simplicial automorphisms.
To this data we will associate a right-angled Coxeter group W , a space
U(M,N,G) and an action of the semidirect product W o G on U(M,N,G).
(In practice, in this paper, M will always be a manifold with boundary and
N = ∂M .)

Let I denote the vertex set of the triangulation of N . W is defined by
a presentation as follows. There is one generator si for each i ∈ I. The
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relations are given by s2
i = 1, for i ∈ I, and (sisj)2 = 1 whenever {i, j}

spans an edge of N . The G-action on I induces an action of G on W by
automorphisms. Hence, we can form the semidirect product W o G.

For each vertex i, let Ni denote the closed star of i in the barycentric
subdivision of N . For each x ∈ N , let σ(x) = {i ∈ I|x ∈ Ni} and let
Wx denote the subgroup generated by {si|i ∈ σ(x)}. For x ∈ M − N , let
σ(x) = ∅ and let Wx be the trivial subgroup. The space U(M,N,G) is
defined by

U(M,N,G) = (W ×M)/ ∼
where ∼ is the equivalence relation defined by (w, x) ∼ (w′, x′) if and only
if x = x′ and w−1w′ ∈ Wx. The image of (w, x) in U(M,N,G) is denoted
[w, x]. For [w, x] in U(M,N,G) and (v, g) in W o G, the action of W o G
on U(M,N,G) is defined by

(v, g) � [w, x] = [vw, gx].

(In the case where G is the trivial group, a more general version of this
construction had previously been described by Tits [18] and Vinberg [20].)

Some important features of this construction are:
• If M is contractible, then so is U(M,N,G).
• If M is an n-manifold with boundary and ∂M = N , then U(M,N,G)

is an n-manifold.
• If N is a finite complex and M = Cone(N), the cone on N , then
U(Cone(N), N, G) has a natural CAT (0) cubical structure so that
the link of each vertex is isomorphic to N and so that W o G is a
group of isometries.

The proofs of these facts, in the case where G is the trivial group, can be
found in [8] and [11]. (See also [9], [10] and [12].)

Let us say that the G-action on N is admissible if for every simplex σ of
N , the setwise and pointwise stabilizers of σ are equal. (This can always
be achieved by passing to the barycentric subdivision of N , cf., [3, p. 116].)
Assume that the G-action on N is admissible. For any subgroup H of G,
let WH denote the subgroup of W generated by the vertices of N which are
fixed by H (i.e., WH is the Coxeter group corresponding to the flag complex
NH). Then for any finite subgroup H of G we have the following:

• The fixed set of H on U(M,N,G) is U(MH , NH , VH), where, as
before, VH = NG(H)/H.

• WH o VH = NWoG(H)/H.

3. The equivariant Bestvina-Brady construction

We recall the construction of [1] and its extension in [13]. This time,
suppose we are given as data:

• A finite flag complex L.
• A group Q of admissible symmetries of L.
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To this data we will associate a right-angled Artin group AL and a CAT (0)
space XL on which AL o Q is represented as a discrete, cocompact group of
isometries (so XL = EG where G = AL o Q). We will also have a subgroup
BL of AL and a subspace YL of XL so that BL acts cocompactly on YL.

Let I denote the vertex set of L. The group AL has generating set {ai}i∈I

and a relation of the form [ai, aj ] = 1, whenever {i, j} spans an edge of L.
Let φ : AL → Z be the homomorphism which sends each generator ai to 1.
The kernel of φ, denoted by BL, is the Bestvina-Brady group associated to L.
The Q-action on I induces a Q-action on AL (through automorphisms) and
the subgroup BL is Q-stable. Hence, we can form the semidirect products
AL o Q and BL o Q. The homomorphism φ extends to a homomorphism
(also denoted by φ) from AL o Q to Z by sending Q to 0. As in [6], AL is a
cocompact group of isometries of a CAT (0) cubical complex XL. Since AL is
torsion-free, XL/AL = BAL. The Q-action on L induces an isometric action
on XL/AL and it is easily checked that the group of all lifts of this action
to XL is just AL o Q. As in [1], there is a φ-equivariant map f : XL → R.
In general, the homotopy type of the level set f−1(t) will vary as t varies
in R; however, there is one important case when it does not: when L is
contractible. In any case, fix a t ∈ R and let YL denote the level set f−1(t).

Assume that the Q-action on L is admissible. As explained in [13], in the
above construction, the process of taking fixed sets of Q works as one might
predict, i.e.,

(XL)Q = XLQ

(YL)Q = YLQ

It was proved in [7] that the subgroup of AL fixed by Q is ALQ and then
observed in [13] that it follows from this that the subgroup of BL fixed by
Q is BLQ . If we regard Q as a subgroup of BL o Q and if VQ stands for
NBLoQ(Q)/Q, then VQ = BLQ (cf., [13]).

The main result of [1] is that BL is type F if and only if L is contractible.
The main idea of [13] is that if L is contractible but the Q-action is such
that LQ is not contractible, then BL o Q will not be type VF (since VQ will
not be type VF). In addition, it is proved in [13] that if LQ = ∅, then BL oQ
contains an infinite number of conjugacy classes of subgroups isomorphic to
Q (all of which are conjugate in AL o Q). Furthermore, there are many
examples of such Q-actions on contractible finite simplicial complexes L; for
example, see [3] and [17]. We describe one of them below.

Example 1. Poincaré’s homology 3-sphere, M3, can be constructed by iden-
tifying opposite faces of a dodecahedron via a π/5 rotation. Let Q be the
group of orientation preserving symmetries of the dodecahedron. (Q is iso-
morphic to A5, the alternating group of degree 5.) It is well-known (e.g., see
[3, pp. 55–58]) that Q acts on M3 with precisely one fixed point (the center
of the dodecahedron). Hence, Q acts on L, where L is defined as the com-
plement of the interior of the dodecahedron in M3. The subcomplex L is a
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2-dimensional cell complex with pentagonal 2-cells. Since M3 is a homology
sphere, L is acyclic. Since we have deleted the fixed point, LQ = ∅. Finally,
Q-equivariantly triangulate L as a flag complex (for example, by taking its
barycentric subdivision). This gives an example to which we can apply the
equivariant Bestvina-Brady construction as above.

4. The first class of examples

Let YL be one of the examples of [13]. To simplify notation, set Ỹ = YL,
Γ = BL o Q and Y = YL/BL = Ỹ /BL. Thus, Y is a finite complex with
fundamental group BL and with universal cover Ỹ ; the finite group Q acts
cellularly on Y and the group of all lifts of the Q-action to Ỹ is Γ.

We want to Q-equivariantly “thicken” Y to a compact manifold M with
boundary N . There are at least two methods for doing this. One is to use a
theorem of Mostow [16] to Q-equivariantly embed Y in a linear representa-
tion of Q on some Euclidean space Rn. (A proof of Mostow’s Theorem can
be found in [3, pp. 110–112].) Then choose a Q-equivariant triangulation of
Rn and let M be a regular neighborhood of Y in Rn. Another method is
to give Y the structure of a Q-CW complex and then, as in [17], build the
thickening M by using Q-handles attached by maps, which are Q-homotopic
to the attaching maps for Y . In either case, we obtain a Q-action on M ,
a compact manifold with boundary, such that M equivariantly deformation
retracts onto Y . Equivariantly triangulate the boundary N as a flag com-
plex. Let M̃ denote the universal cover of M and let Ñ denote the inverse
image of N in M̃ (give Ñ the induced triangulation). The group of all lifts
of the Q-action to M̃ is Γ (since this is true for the Q-action on Y and Y is
Q-homotopy equivalent to M .)

Now we apply the equivariant reflection group trick of Section 2. First
consider the manifold U(M,N,Q). The group which acts on it is W o Q
where W is the right-angled Coxeter group associated to N . The commuta-
tor subgroup T of W is a torsion-free subgroup of finite index. The manifold
U(M̃, Ñ , Γ) is clearly a covering space of U(M,N,Q). It is contractible since
M̃ is. The group which acts on U(M̃, Ñ , Γ) is W̃ o Γ, where W̃ is right-
angled Coxeter group associated to Ñ . The quotient space is M/Q which
is compact. Let T̃ denote the inverse image of T in W̃ . It is a torsion-free
subgroup of finite index in W̃ . So, T̃ oBL is a torsion-free subgroup of finite
index in W̃ o Γ. Thus, W̃ o Γ is type VF. This gives the following more
precise version of Theorem 1.

Theorem 3. The virtually torsion-free group W̃ o Γ acts properly and co-
compactly on the contractible manifold U(M,N,Q). Moreover,

(1) If LQ is empty, then W̃ o Γ contains infinitely many conjugacy
classes of finite subgroups isomorphic to Q.
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(2) If LQ is nonempty and not contractible, then NfWoΓ
(Q)/Q contains

a torsion-free subgroup of finite index which retracts onto BLQ and
hence is not type F

So, in either case, W̃ o Γ is not type VF .

Proof. If LQ = ∅, then Γ contains infinitely conjugacy classes of subgroups
isomorphic to Q and therefore, the same is true for the semidirect product
W̃ o Γ. As explained in Section 2,

NfWoΓ
(Q)/Q = W̃Q o VQ

and as explained in Section 3, VQ = BLQ . Hence, for a suitable torsion-free
subgroup T̃Q of finite index in W̃Q, the subgroup T̃Q o BLQ retracts onto
BLQ . �

5. The second class of examples

In this section, the finite group will act on a sphere rather than on a
contractible complex. Again we use the equivariant reflection group trick
of Section 2. Suppose that N is a triangulation of the (n − 1)-sphere as a
flag complex and that a finite group G acts admissibly, by simplicial au-
tomorphisms on N . So, Cone(N) will be an n-disk. To simplify notation,
set Σ = U(Cone(N), N, G). Then Σ is an n-dimensional CAT (0) manifold
equipped with an isometric action of W o G. As we noted in the Introduc-
tion, this implies that W o G is type VF .

For any finite subgroup H of G we have

ΣH = U(Cone(NH), NH , VH)

where VH = NG(H)/H. One of the main results of [9] is a calculation of the
cohomology with compact supports of such spaces. In particular, Theorem
A of [9] yields

H i
c(Σ

H) =
∑

w∈W H

H
i−1(NH − σ(w))

where σ(w) is a certain simplex of NH depending on w ∈ WH . It follows
from this formula (cf., Theorem B in [9]) that the subgroup H of W o G
satisfies the condition of the definition in Section 1 if and only if NH is a
“generalized homology sphere”, in that sense that it is a homology manifold
with the same homology as a sphere. So, we have proved the following.

Theorem 4. The group W o G is a virtual Poincaré duality group. It is
a VPD-group if and only if NH is a generalized homology sphere for each
finite subgroup H of G.

Since there are many examples of finite group actions on spheres where
the fixed sets do not have the homology of a sphere (see [3]), Theorem 4
implies Theorem 2. We give a concrete example below.
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Example 2. Let N(a1, . . . , an) denote the link of the origin in the complex
hypersurface

(z1)a1 + · · ·+ (zn)an = 0.

It is a smooth manifold of dimension 2n− 3, called a “Brieskorn manifold”.
As Brieskorn showed, it is often homeomorphic to S2n−3, see [15]. For
example, N = N(3, 2, 2, 2) is diffeomorphic to S5. If ζ denotes a sixth root
of unity, then define an action of Z/6 on N by the formula

ζ � (z1, z2, z3, z4) = (ζ2z1, ζ
3z2, z3, z4).

The fixed set of Z/3 on N is N(2, 2, 2) which is RP 3, the fixed set of Z/2
is N(3, 2, 2) which is a 3-dimensional lens space with fundamental group
Z/3 and the fixed set of Z/6 is N(2, 2) which is the disjoint union of two
circles. Equivariantly triangulate N as a flag complex and form the CAT (0)
6-manifold Σ as above. For any subgroup H of Z/6, let ṼH = WH o VH

be the group corresponding to H. For H = Z/3 or Z/2, ṼH has cdQ = 4
and H4(ṼH ; ZṼH) = Z. However, H3(ṼH ; ZṼH) is either an infinite sum of
Z/2’s (when H = Z/3) or of Z/3’s (when H = Z/2). For H = Z/6, the
group ṼH is of cohomological dimension 2 and its second cohomology group
is free abelian of infinite rank. So, W o G is not a VPD-group.

6. Appendix: type VFP

The orbit category, O(G), of a discrete group G is the category whose
objects are the G-sets G/H for H any subgroup of G, with morphisms the
G-maps between these G-sets. This is equivalent to a category whose objects
are all transitive G-sets. The proper orbit category, O or O(G,F), is the
full subcategory of O(G) whose objects are the transitive G-sets G/H for
H finite. This is equivalent to a category whose objects are all transitive
proper G-sets. A Bredon coefficient system for proper G-spaces or a ZO-
module is a contravariant functor from O to abelian groups, and a morphism
of ZO-modules is a natural transformation between two such functors. The
category of ZO-modules is an abelian category.

The trivial ZO-module Z is defined to be the constant functor on O that
sends every object to Z and every morphism to the identity map of Z. For
each object G/H of O, define a ZO-module PG/H by

PG/H(−) = ZMapG(−, G/H),

so that the value of PG/H on G/K is the free abelian group with basis the
G-maps from G/K to G/H. It may be shown that each PG/H is projective,
and that any ZO-module is the homomorphic image of some direct sum of
these modules. Call PG/H the free ZO-module of rank one based at G/H,
and define a finitely generated free ZO-module to be a finite direct sum
of modules PG/H . A finitely generated projective ZO-module is a direct
summand of a finitely generated free ZO-module.
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Definition. A group G is type VFP (resp. type VFL) if the trivial ZO-
module Z admits a finite resolution by finitely generated projective ZO-
modules (resp. finitely generated free ZO-modules).

For a G-space X, the H-fixed points XH may be identified with the space
MapG(G/H, X), and the map

G/H 7→ MapG(G/H, X)

describes a contravariant functor from O to spaces. For a G CW-complex,
the map

G/H 7→ C∗(MapG(G/H, X))

describes a chain complex of free ZO-modules, which are finitely generated
if X contains finitely many orbits of cells. This construction yields a free
resolution of Z when applied to EG, and hence any group of type VF is of
type VFL.

For more information concerning the category of ZO-modules, see [14],
which contains proofs of all the statements made in this section.
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