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We show that, in contrast to the situation for the standard complex on which a
right angled Coxeter group W acts, there are cocompact W-actions on CAT(0)
complexes such that the local topology of the complex is distinctly different from
the end topology of W.

1. Introduction

If X is a contractible n-manifold or homology n-manifold, then, since it
satisfies Poincaré duality, its cohomology with compact supports, H, :()? ),
is concentrated in dimension n and is isomorphic to Z in that dimension.
It follows that the homology at infinity of X is concentrated in dimension
n — 1 and is isomorphic to Z in that dimension (see [5] for definitions
and references for homology at infinity). More particularly, recall that a
simplicial complex is a homology n-manifold if and only if the link of each
vertex is a “generalized homology (n — 1)-sphere” (i.e., a homology (n —1)-
manifold with the same homology as S"~!). So, the above argument shows
that if the link of each vertex in an aspherical simplicial complex X is
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a generalized homology (n — 1)-sphere, then the homology at infinity of
its universal cover X is concentrated in dimension n — 1 and hence, X is
(n — 2)-acyclic at infinity. This shows that hypotheses concerning the local
topology of an aspherical space can have implications for the end topology
of its universal cover.

There are other local-to-asymptotic results for nonpositively curved
complexes. If L is a simplicial complex, we let S(L) denote the set of
all closed simplices of L, including the empty simplex. Let X be a (locally
finite) CAT(0) cubical complex, and for each vertex z € X, let L, denote
its link. If for each vertex = and for each closed simplex o € S(L,), L, — o
is m-connected (resp., m-acyclic), then X is m-connected (resp., m-acyclic)
at infinity (see [2] and the references cited there). We call the complexes
L, — o the punctured links of X.

In recent work [5], we have shown there is a close connection between
local topology and end topology of the standard complexes on which Cox-
eter groups act. The nerve of a Coxeter system (W,S) is the simplicial
complex L with one vertex for each element of the generating set S and
one simplex for each subset of S which generates a finite subgroup of W. As
explained in [3, 4 or 5], associated to (W, S) there is natural cell complex,
here denoted |W|, such that |W| is a model for EW and such that the link
of each of its vertices is isomorphic to L (see [7] for the definition of EG).
This implies, for example, that if L is a triangulation of an (n — 1)-sphere,
then || is a contractible n-manifold.

If S is finite (which we shall henceforth always assume), then L is a
finite complex and the quotient space |W|/W is compact. It is proved in
[6] and [8] that the natural piecewise Euclidean metric on || is CAT(0). In
[5] the authors established a direct correspondence between the topological
properties of L and the asymptotic topological properties of |W| (or of any
locally finite building with associated Coxeter system (W, S)). For example:

Theorem 1.1. (See 4.1, 4.2 and 4.3 in [5]) Let W be a finitely generated
Coxeter group with associated nerve L. Then

(1) W is simply connected at infinity if and only if L — o is simply
connected for each o € S(L).

(2) W is m-acyclic at infinity if and only if L — o is m-acyclic for each
oeS(L).

(8) W is m-connected at infinity if and only if L — o is m-connected for
each o € S(L)
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Thus, not only do the connectivity properties of the punctured links
L — o determine the connectivity at infinity of W (i.e., of |IW|), the con-
verse is also true. This leads to speculation that, in the general context of
nonpositive curvature, similar asymptotic-to-local results might hold. For
example, one might speculate that if X is a nonpositively curved, finite
Poincaré complex with, say, extendable geodesics, then the links of ver-
tices in X are forced to be generalized homology spheres (and hence, X
is a homology manifold). Similarly, it could be speculated that if X is a
nonpositively curved cubical complex (with extendable geodesics) and if
X is m-connected (resp., m-acyclic) at infinity, then the punctured links
of vertices must be m-connected (resp., m-acyclic). The purpose of this
note is to give some examples which set such speculations to rest: there are
no general results of this nature. (For further examples illuminating the
difficulty of getting asymptotic-to-local results, see [2].)

2. The Construction

The construction of our examples is essentially the same as the construction
of [1]. We will show that by making minor modifications in the construction
of |W| one gets a model for EW, 20, with a CAT(0) cubical structure so
that the connectivity properties at infinity do not descend to connectivity
properties of links. In fact, in all of our examples |WW| will be a manifold
while 20 will not even be a homology manifold. We show that |W| and
2 are equivariantly proper homotopy equivalent, so if I' is any torsion-free
subgroup of finite index in W, then 20/T" is a nonpositively curved Poincaré
complex that is not a homology manifold. For simplicity, we restrict our
construction to right angled Coxeter groups, which we briefly review below.

Right Angled Coxeter Groups. A simplicial complex L is a flag complex
if any complete graph in the 1-skeleton of L is actually the 1-skeleton of
a simplex in L. The barycentric subdivision of any cell complex is a flag
complex; hence, the condition of being a flag complex imposes no restriction
on the topology of L — it can be any polyhedron. The importance of flag
complexes in CAT(0) geometry stems from the result of Gromov that the
natural piecewise Euclidean metric on a cubical complex is nonpositively
curved (= locally CAT(0) ) if and only if the link of each vertex is a flag
complex [6, p. 122].

Suppose L is a finite flag complex. For each integer k > 0, let L(*)
denote the set of k-simplices in L and as before let S(L) denote the poset
of all simplices in L (including the empty simplex).
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Associated to L there is a group W defined as follows. For each i €
L introduce a symbol s; and set S = {s;};cr. W is defined by the
presentation:

W =(S | s?=1,s;8; = s;5; when {i,j} € LW)
(W, S) is called a right angled Cozeter system. Its nerve is L.

The Cubical Complex |W|. For each o € S(L), let W, denote the
subgroup generated by the elements of S which correspond to vertices of
0. Then W, ~ (Z)4m(@)+1  Get

wsw) = [ w/w, .
g€eS(L)

WS(L) is called the poset of spherical cosets (the partial order is given by
inclusion). The complex |W| is defined to be the geometric realization of
WS(L). There is an obvious left W action on |IW|. The cubical structure
on |W]| is defined as follows. There is one vertex of || for each element of
W (= W/Wy). For each spherical coset wW,, we then fill in a Euclidean
cube of dimension dim(o) + 1 with vertices corresponding to the elements
of wW,. (Note that the elements of W, can naturally be identified with
the vertices of a cube of dimension dim(o) + 1.) The poset of cubes in ||
is WS(L) and the link of each vertex is L.

The geometric realization of the poset S(L) is denoted K. The inclusion
S(L) — WS(L) defined by o — W, induces an inclusion K — |[W|
and we identify K with its image in |[W|. Similarly, the orbit projection
WS(L) - S(L) defined by wW, ~ o induces a projection |IW| - K which
factors through a homeomorphism |W|/W— K. Thus, K is a fundamental
domain for the W-action on |[W| and the orbit projection |W| — K restricts
to the identity on K.

The geometric realization of S(L)~¢ can be identified with the barycen-
tric subdivision L' of L. Thus, K is the cone on L' (the empty set provides
the cone point). For each i € L let K; denote the geometric realization
of S(L)>ys, i-e., Kj is the closed star of ¢ in L'. We call K; the mirror of
K of type .

Here is another description of |W|. For each point z € K let o(x) be
the simplex spanned by {i € L(©) | z € K;}. Then

W[ = (W x K)/ ~

where the equivalence relation ~ is defined by (w,z) ~ (w',z') if and only
if e =2"and wtw' € Wo(2)-
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For a flag complex L that can be decomposed as L = L; U Ly, we will
construct a different CAT(0) cubical complex 20 on which the associated
right angled Coxeter group W acts as a cocompact reflection group. The
complexes 20 and |W| will have the same pro-homotopy type. However,
the topology of the links of vertices in 20 can differ dramatically from that
of the links of |I¥|.

The construction of 2J. Suppose that a finite flag complex L can be
decomposed as the union of two full subcomplexes: L = Ly U Ly. Set
Ly = LyNLs. Since Ly, Ly and Lo are full subcomplexes of L each of them
is a flag complex.

For any simplicial complex L and a point z not in L, let C,L be the
simplicial complex defined by taking the cone on L with cone point z.

Let x1,z5 and v be points that are not in L and define new simplicial
complexes:

L,=L,UC,Ly
L,=L,UC,Ly
Ky =Cy Ly
K, = Cy,Lo

Let K denote the result of gluing K 1 to I/(\'g along C, L.

In Figure 1 we show a simple example that highlights the difference
between K and K. The original simplicial complex L is a circuit of length
8, and K is the cone on this octagon. We let Ly ~ S° be two antipodal
vertices (indicated by dots in the figure on the right), and let L; and L» be
the two simplicial arcs in L which are separated by Lg.

Returning to the case where L is an arbitrary finite flag complex, we
note that L is a subcomplex of K (we think of it as the boundary of K )-
Also, K is contractible (it is the union of two contractible pieces glued along
a contractible subcomplex). The space 20 is defined by hollowing out each
copy of K in |[W| and replacing it with a copy of K. Since K and K are
both contractible, || and 20 are proper homotopy equivalent; hence, 20
is also contractible.

Here is a more precise description of 20. Recalling that for i € L(©),
K; is the closed star of i in the barycentric subdivision of L (which is a
subspace of K ), we see that K; is identified with a subspace of K. So,
define IAQ to be K;. We then proceed as before. For each point x € IA(, let
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=

Figure 1. The difference between K (left) and K (right)

o(z) be the simplex spanned by {i € L(¥ | z € I?Z} and let
W= (W x K)/ ~

where the equivalence relation ~ is defined as before.

It is not difficult to define the cubical structure on 20 and to see that it
is CAT(0). The vertex set is Wy [[ Was. For a = 1,2 and for a spherical
coset wW, € WS(Ly), the vertices wW,z, span a cube of dimension
dim(o) + 1. Also, for each spherical coset wW, € WS(Lg), we have a cube
spanned by wW,z1 [ wW, 2. Its dimension is dim(o) + 2. (In particular,
corresponding to the case where ¢ is empty, we have an edge from wz; to
wws.) For a = 1,2, the link of z, in 27 is Ea. Since Za is a flag complex,
the cubical structure is CAT(0). We also note that the punctured link
Za — v is homotopy equivalent to L.

Remark. In [1] the above construction was used only in the case where
L is a homology sphere and Ly C L is a homology sphere embedded in
codimension one.

In the following examples we will always choose L to be a triangulation
of an n-sphere and Ly to be a codimension one submanifold triangulated
as a full subcomplex. L, and Ly will then be n-manifolds with boundary.
(However, Lo, L; and L need not be connected.) Since L ~ S™, [W] is a
contractible (n + 1)-manifold; however, 20 need not be a manifold.

Example 2.1. Suppose that L is a 2-sphere, that L; is an annulus (a
collared neighborhood of the equator) and that L, is the disjoint union
of the two 2-disks (neighborhoods of the north and south poles). Then
Ly = L N Lo is the disjoint union of two circles, and 21 is an annulus
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with its boundary coned off. So, El is homeomorphic to a 2-sphere with
two points identified. In particular, the link El is not simply connected
(my (El) ~ 7). Similarly, L, is the wedge of two 2-spheres. The punctured
links Ly and Lo are also not simply connected. Nevertheless, the theorem
quoted at the beginning implies that || (and hence 29) is simply connected
at infinity, since the nerve L is a 2-sphere.

Example 2.2. Suppose L is an m-sphere and Lg is a codimension one
submanifold separating L into two pieces Ly and Lp. Then 20 is (n — 1)-
connected at infinity by the theorem quoted at the beginning. On the
other hand, H, (Zl) ~ H,(L1, Ly) can be nonzero in any dimension < n.
Similarly, the homology of the punctured link L, is fairly arbitrary.

A true optimist might believe that these examples occur because there
are two W-orbits of vertices, and that if W acts transitively on the O-
skeleton, then such examples disappear. The following modified version of
our construction shows that this speculation is also false.

A construction with only one vertex orbit. Suppose Ly is a subcom-
plex of L; and that t is a simplicial involution on Ly. Let L denote the
result of gluing together two copies of L; along Lo via the map ¢. Call the
two copies Ly and Ls. Then ¢ extends to an involution on L (also denoted
t) that interchanges L; and Lo. Let W be the right angled Coxeter group
associated to L. Let G denote the semidirect product, G = W x Z». Here
Z+ acts on the vertex set of L (the generating set of W) via t. The W-action
on 2 extends to a G-action. Now there is only one G-orbit of vertices.

Example 2.3. Suppose that L, is the solid torus, L; = D? x S' and that
Ly is its boundary, Ly = S'x S'. Let t : S' xSt — S'x S be the involution
which switches the factors. Then L = S and 20 is 2-connected at infinity.
The link of each vertex is isomorphic to El. However, H2(Zl) ~ 7 and
although 71 (L1) ~ 0, for the punctured link, L;, we have m (L) ~ Z.

Remark. We note that there is a simple method of altering the local
topology of |W| so that the connectivity of the links does not coincide
with the connectivity at infinity: Form |W| by attaching a copy of [0, 1]
(or [0,00)) to each vertex of |IW|. If one attaches unit intervals, then the
resulting complex does not have extendable geodesics; if one attaches half
lines, then the resulting complex is not cocompact. Further, while the
complex |W|" deformation retracts onto |IW|, |W| does not sit as a retract
inside 20.
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