REFLECTION GROUPS AND CAT(0) COMPLEXES WITH EXOTIC LOCAL STRUCTURES

MICHAEL W. DAVIS *
Department of Mathematics
The Ohio State University
231 W. 18th Ave
Columbus, OH 43210, USA
E-mail: mdavis@math.ohio-state.edu

JOHN MEIER†
Department of Mathematics
Lafayette College
Easton, PA 18042, USA
E-mail: meierj@lafayette.edu

We show that, in contrast to the situation for the standard complex on which a right angled Coxeter group W acts, there are cocompact W-actions on CAT(0) complexes such that the local topology of the complex is distinctly different from the end topology of W.

1. Introduction

If \tilde{X} is a contractible n-manifold or homology n-manifold, then, since it satisfies Poincaré duality, its cohomology with compact supports, $H^*_c(\tilde{X})$, is concentrated in dimension n and is isomorphic to \mathbb{Z} in that dimension. It follows that the homology at infinity of \tilde{X} is concentrated in dimension $n - 1$ and is isomorphic to \mathbb{Z} in that dimension (see [5] for definitions and references for homology at infinity). More particularly, recall that a simplicial complex is a homology n-manifold if and only if the link of each vertex is a “generalized homology $(n-1)$-sphere” (i.e., a homology $(n-1)$-manifold with the same homology as S^{n-1}). So, the above argument shows that if the link of each vertex in an aspherical simplicial complex X is

*Davis was partially supported by NSF grant DMS-0104026.
†Meier thanks The Ohio State University for hosting him while on sabbatical.
a generalized homology \((n - 1)\)-sphere, then the homology at infinity of its universal cover \(\tilde{X}\) is concentrated in dimension \(n - 1\) and hence, \(\tilde{X}\) is \((n - 2)\)-acyclic at infinity. This shows that hypotheses concerning the local topology of an aspherical space can have implications for the end topology of its universal cover.

There are other local-to-asymptotic results for nonpositively curved complexes. If \(L\) is a simplicial complex, we let \(S(L)\) denote the set of all closed simplices of \(L\), including the empty simplex. Let \(\tilde{X}\) be a (locally finite) CAT(0) cubical complex, and for each vertex \(x \in \tilde{X}\), let \(L_x\) denote its link. If for each vertex \(x\) and for each closed simplex \(\sigma \in S(L_x)\), \(L_x - \sigma\) is \(m\)-connected (resp., \(m\)-acyclic), then \(\tilde{X}\) is \(m\)-connected (resp., \(m\)-acyclic) at infinity (see [2] and the references cited there). We call the complexes \(L_x - \sigma\) the punctured links of \(\tilde{X}\).

In recent work [5], we have shown there is a close connection between local topology and end topology of the standard complexes on which Coxeter groups act. The nerve of a Coxeter system \((W, S)\) is the simplicial complex \(L\) with one vertex for each element of the generating set \(S\) and one simplex for each subset of \(S\) which generates a finite subgroup of \(W\). As explained in [3, 4 or 5], associated to \((W, S)\) there is natural cell complex, here denoted \(|W|\), such that \(|W|\) is a model for \(\mathbb{E}W\) and such that the link of each of its vertices is isomorphic to \(L\) (see [7] for the definition of \(\mathbb{E}G\)). This implies, for example, that if \(L\) is a triangulation of an \((n - 1)\)-sphere, then \(|W|\) is a contractible \(n\)-manifold.

If \(S\) is finite (which we shall henceforth always assume), then \(L\) is a finite complex and the quotient space \(|W|/W\) is compact. It is proved in [6] and [8] that the natural piecewise Euclidean metric on \(|W|\) is CAT(0). In [5] the authors established a direct correspondence between the topological properties of \(L\) and the asymptotic topological properties of \(|W|\) (or of any locally finite building with associated Coxeter system \((W, S)\)). For example:

Theorem 1.1. (See 4.1, 4.2 and 4.3 in [5]) Let \(W\) be a finitely generated Coxeter group with associated nerve \(L\). Then

1. \(W\) is simply connected at infinity if and only if \(L - \sigma\) is simply connected for each \(\sigma \in S(L)\).
2. \(W\) is \(m\)-acyclic at infinity if and only if \(L - \sigma\) is \(m\)-acyclic for each \(\sigma \in S(L)\).
3. \(W\) is \(m\)-connected at infinity if and only if \(L - \sigma\) is \(m\)-connected for each \(\sigma \in S(L)\).
Thus, not only do the connectivity properties of the punctured links $L - \sigma$ determine the connectivity at infinity of W (i.e., of $|W|$), the converse is also true. This leads to speculation that, in the general context of nonpositive curvature, similar asymptotic-to-local results might hold. For example, one might speculate that if X is a nonpositively curved, finite Poincaré complex with, say, extendable geodesics, then the links of vertices in X are forced to be generalized homology spheres (and hence, X is a homology manifold). Similarly, it could be speculated that if X is a nonpositively curved cubical complex (with extendable geodesics) and if X is m-connected (resp., m-acyclic) at infinity, then the punctured links of vertices must be m-connected (resp., m-acyclic). The purpose of this note is to give some examples which set such speculations to rest: there are no general results of this nature. (For further examples illuminating the difficulty of getting asymptotic-to-local results, see [2].)

2. The Construction

The construction of our examples is essentially the same as the construction of [1]. We will show that by making minor modifications in the construction of $|W|$ one gets a model for $\mathbb{E}W$, \mathfrak{M}, with a CAT(0) cubical structure so that the connectivity properties at infinity do not descend to connectivity properties of links. In fact, in all of our examples $|W|$ will be a manifold while \mathfrak{M} will not even be a homology manifold. We show that $|W|$ and \mathfrak{M} are equivariantly proper homotopy equivalent, so if Γ is any torsion-free subgroup of finite index in W, then \mathfrak{M} / Γ is a nonpositively curved Poincaré complex that is not a homology manifold. For simplicity, we restrict our construction to right angled Coxeter groups, which we briefly review below.

Right Angled Coxeter Groups. A simplicial complex L is a flag complex if any complete graph in the 1-skeleton of L is actually the 1-skeleton of a simplex in L. The barycentric subdivision of any cell complex is a flag complex; hence, the condition of being a flag complex imposes no restriction on the topology of L — it can be any polyhedron. The importance of flag complexes in CAT(0) geometry stems from the result of Gromov that the natural piecewise Euclidean metric on a cubical complex is nonpositively curved (= locally CAT(0)) if and only if the link of each vertex is a flag complex [6, p. 122].

Suppose L is a finite flag complex. For each integer $k \geq 0$, let $L^{(k)}$ denote the set of k-simplices in L and as before let $\mathcal{S}(L)$ denote the poset of all simplices in L (including the empty simplex).
Associated to L there is a group W defined as follows. For each $i \in L^{(0)}$ introduce a symbol s_i and set $S = \{s_i\}_{i \in L^{(0)}}$. W is defined by the presentation:

$$W = \langle S \mid s_i^2 = 1, s_is_j = s_js_i \text{ when } \{i,j\} \in L^{(1)} \rangle.$$

(W, S) is called a right angled Coxeter system. Its nerve is L.

The Cubical Complex $|W|$. For each $\sigma \in S(L)$, let W_σ denote the subgroup generated by the elements of S which correspond to vertices of σ. Then $W_\sigma \simeq (\mathbb{Z}_2)^{\dim(\sigma)+1}$. Set

$$WS(L) = \prod_{\sigma \in S(L)} W/W_\sigma.$$

$WS(L)$ is called the poset of spherical cosets (the partial order is given by inclusion). The complex $|W|$ is defined to be the geometric realization of $WS(L)$. There is an obvious left W action on $|W|$. The cubical structure on $|W|$ is defined as follows. There is one vertex of $|W|$ for each element of $W (= W/W_0)$. For each spherical coset wW_σ, we then fill in a Euclidean cube of dimension $\dim(\sigma) + 1$ with vertices corresponding to the elements of wW_σ. (Note that the elements of W_σ can naturally be identified with the vertices of a cube of dimension $\dim(\sigma) + 1$.) The poset of cubes in $|W|$ is $WS(L)$ and the link of each vertex is L.

The geometric realization of the poset $S(L)$ is denoted K. The inclusion $S(L) \hookrightarrow WS(L)$ defined by $\sigma \mapsto W_\sigma$ induces an inclusion $K \hookrightarrow |W|$, and we identify K with its image in $|W|$. Similarly, the orbit projection $WS(L) \twoheadrightarrow S(L)$ defined by $wW_\sigma \mapsto \sigma$ induces a projection $|W| \twoheadrightarrow K$ which factors through a homeomorphism $|W|/W \rightarrow K$. Thus, K is a fundamental domain for the W-action on $|W|$ and the orbit projection $|W| \twoheadrightarrow K$ restricts to the identity on K.

The geometric realization of $S(L)_{\geq 0}$ can be identified with the barycentric subdivision L' of L. Thus, K is the cone on L' (the empty set provides the cone point). For each $i \in L^{(0)}$, let K_i denote the geometric realization of $S(L)_{\geq i}$, i.e., K_i is the closed star of i in L'. We call K_i the mirror of K of type i.

Here is another description of $|W|$. For each point $x \in K$ let $\sigma(x)$ be the simplex spanned by $\{i \in L^{(0)} \mid x \in K_i\}$. Then

$$|W| = (W \times K)/\sim$$

where the equivalence relation \sim is defined by $(w, x) \sim (w', x')$ if and only if $x = x'$ and $w^{-1}w' \in W_{\sigma(x)}$.
For a flag complex L that can be decomposed as $L = L_1 \cup L_2$, we will construct a different CAT(0) cubical complex \mathcal{M} on which the associated right angled Coxeter group W acts as a cocompact reflection group. The complexes \mathcal{M} and $|W|$ will have the same pro-homotopy type. However, the topology of the links of vertices in \mathcal{M} can differ dramatically from that of the links of $|W|$.

The construction of \mathcal{M}. Suppose that a finite flag complex L can be decomposed as the union of two full subcomplexes: $L = L_1 \cup L_2$. Set $L_0 = L_1 \cap L_2$. Since L_0, L_1 and L_2 are full subcomplexes of L each of them is a flag complex.

For any simplicial complex L and a point z not in L, let C_zL be the simplicial complex defined by taking the cone on L with cone point z.

Let x_1, x_2 and v be points that are not in L and define new simplicial complexes:

$$\hat{L}_1 = L_1 \cup C_vL_0$$
$$\hat{L}_2 = L_2 \cup C_vL_0$$
$$\hat{K}_1 = C_{x_1}\hat{L}_1$$
$$\hat{K}_2 = C_{x_2}\hat{L}_2$$

Let \hat{K} denote the result of gluing \hat{K}_1 to \hat{K}_2 along C_vL_0.

In Figure 1 we show a simple example that highlights the difference between K and \hat{K}. The original simplicial complex L is a circuit of length 8, and K is the cone on this octagon. We let $L_0 \simeq S^0$ be two antipodal vertices (indicated by dots in the figure on the right), and let L_1 and L_2 be the two simplicial arcs in L which are separated by L_0.

Returning to the case where L is an arbitrary finite flag complex, we note that L is a subcomplex of \hat{K} (we think of it as the boundary of \hat{K}). Also, \hat{K} is contractible (it is the union of two contractible pieces glued along a contractible subcomplex). The space \mathcal{M} is defined by hollowing out each copy of K in $|W|$ and replacing it with a copy of \hat{K}. Since K and \hat{K} are both contractible, $|W|$ and \mathcal{M} are proper homotopy equivalent; hence, \mathcal{M} is also contractible.

Here is a more precise description of \mathcal{M}. Recalling that for $i \in L^{(0)}$, K_i is the closed star of i in the barycentric subdivision of L (which is a subspace of \hat{K}), we see that K_i is identified with a subspace of \hat{K}. So, define \hat{K}_i to be K_i. We then proceed as before. For each point $x \in \hat{K}$, let
Figure 1. The difference between \(K \) (left) and \(\hat{K} \) (right).

\(\sigma(x) \) be the simplex spanned by \(\{ i \in L^0 \mid x \in \hat{K}_i \} \) and let

\[\mathfrak{W} = (W \times \hat{K})/\sim \]

where the equivalence relation \(\sim \) is defined as before.

It is not difficult to define the cubical structure on \(\mathfrak{W} \) and to see that it is CAT(0). The vertex set is \(Wx_1 \coprod Wx_2 \). For \(\alpha = 1, 2 \) and for a spherical coset \(wW_\sigma \in WS(L_0) \), the vertices \(wW_\sigma x_\alpha \) span a cube of dimension \(\dim(\sigma) + 1 \). Also, for each spherical coset \(wW_\sigma \in WS(L_0) \), we have a cube spanned by \(wW_\sigma x_1 \coprod wW_\sigma x_2 \). Its dimension is \(\dim(\sigma) + 2 \). (In particular, corresponding to the case where \(\sigma \) is empty, we have an edge from \(wx_1 \) to \(wx_2 \).) For \(\alpha = 1, 2 \), the link of \(x_\alpha \) in \(\mathfrak{W} \) is \(\hat{L}_\alpha \). Since \(\hat{L}_\alpha \) is a flag complex, the cubical structure is CAT(0). We also note that the punctured link \(\hat{L}_\alpha - v \) is homotopy equivalent to \(L_\alpha \).

Remark. In [1] the above construction was used only in the case where \(L \) is a homology sphere and \(L_0 \subset L \) is a homology sphere embedded in codimension one.

In the following examples we will always choose \(L \) to be a triangulation of an \(n \)-sphere and \(L_0 \) to be a codimension one submanifold triangulated as a full subcomplex. \(L_1 \) and \(L_2 \) will then be \(n \)-manifolds with boundary. (However, \(L_0, L_1 \) and \(L_2 \) need not be connected.) Since \(L \simeq S^n \), \(|W| \) is a contractible \((n + 1)\)-manifold; however, \(\mathfrak{W} \) need not be a manifold.

Example 2.1. Suppose that \(L \) is a 2-sphere, that \(L_1 \) is an annulus (a collared neighborhood of the equator) and that \(L_2 \) is the disjoint union of the two 2-disks (neighborhoods of the north and south poles). Then \(L_0 = L_1 \cap L_2 \) is the disjoint union of two circles, and \(\hat{L}_1 \) is an annulus.
with its boundary coned off. So, \(\hat{L}_1 \) is homeomorphic to a 2-sphere with two points identified. In particular, the link \(\hat{L}_1 \) is not simply connected \((\pi_1(\hat{L}_1) \cong \mathbb{Z}) \). Similarly, \(\hat{L}_2 \) is the wedge of two 2-spheres. The punctured links \(L_1 \) and \(L_2 \) are also not simply connected. Nevertheless, the theorem quoted at the beginning implies that \(|W| \) (and hence \(\mathcal{W} \)) is simply connected at infinity, since the nerve \(L \) is a 2-sphere.

Example 2.2. Suppose \(L \) is an \(n \)-sphere and \(L_0 \) is a codimension one submanifold separating \(L \) into two pieces \(L_1 \) and \(L_2 \). Then \(\mathcal{W} \) is \((n-1) \)-connected at infinity by the theorem quoted at the beginning. On the other hand, \(H_*(\hat{L}_1) \cong H_*(L_1, L_0) \) can be nonzero in any dimension \(< n \). Similarly, the homology of the punctured link \(L_1 \) is fairly arbitrary.

A true optimist might believe that these examples occur because there are two \(W \)-orbits of vertices, and that if \(W \) acts transitively on the 0-skeleton, then such examples disappear. The following modified version of our construction shows that this speculation is also false.

A construction with only one vertex orbit. Suppose \(L_0 \) is a subcomplex of \(L_1 \) and that \(t \) is a simplicial involution on \(L_0 \). Let \(L \) denote the result of gluing together two copies of \(L_1 \) along \(L_0 \) via the map \(t \). Call the two copies \(L_1 \) and \(L_2 \). Then \(t \) extends to an involution on \(L \) (also denoted \(t \)) that interchanges \(L_1 \) and \(L_2 \). Let \(W \) be the right angled Coxeter group associated to \(L \). Let \(G \) denote the semidirect product, \(G = W \times \mathbb{Z}_2 \). Here \(\mathbb{Z}_2 \) acts on the vertex set of \(L \) (the generating set of \(W \)) via \(t \). The \(W \)-action on \(\mathcal{W} \) extends to a \(G \)-action. Now there is only one \(G \)-orbit of vertices.

Example 2.3. Suppose that \(L_1 \) is the solid torus, \(L_1 = D^2 \times S^1 \) and that \(L_0 \) is its boundary, \(L_0 = S^1 \times S^1 \). Let \(t : S^1 \times S^1 \to S^1 \times S^1 \) be the involution which switches the factors. Then \(L = S^3 \) and \(\mathcal{W} \) is 2-connected at infinity.

The link of each vertex is isomorphic to \(\hat{L}_1 \). However, \(H_2(\hat{L}_1) \cong \mathbb{Z} \) and although \(\pi_1(\hat{L}_1) \cong \mathbb{Z} \), for the punctured link, \(L_1 \), we have \(\pi_1(L_1) \cong \mathbb{Z} \).

Remark. We note that there is a simple method of altering the local topology of \(|W| \) so that the connectivity of the links does not coincide with the connectivity at infinity: Form \(|W'| \) by attaching a copy of \([0,1]\) (or \([0,\infty)\)) to each vertex of \(|W| \). If one attaches unit intervals, then the resulting complex does not have extendable geodesics; if one attaches half lines, then the resulting complex is not cocompact. Further, while the complex \(|W'| \) deformation retracts onto \(|W| \), \(|W| \) does not sit as a retract inside \(\mathcal{W} \).
References