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Abstract. We show that, in contrast to the situation for the standard com-

plex on which a right angled Coxeter group W acts, there are cocompact
W -actions on CAT(0) complexes such that the local topology of the complex

is distinctly different from the end topology of W .

If X̃ is a contractible n-manifold or homology n-manifold, then, since it satisfies
Poincaré duality, its cohomology with compact supports, H∗

c (X̃), is concentrated in
dimension n and is isomorphic to Z in that dimension. It follows that the homology
at infinity of X̃ is concentrated in dimension n− 1 and is isomorphic to Z in that
dimension (see [?] for definitions and references for homology at infinity). More
particularly, recall that a simplicial complex is a homology n-manifold if and only
if the link of each vertex is a “generalized homology (n−1)-sphere” (i.e., a homology
(n− 1)-manifold with the same homology as Sn−1). So, the above argument shows
that if the link of each vertex in an aspherical simplicial complex X is a generalized
homology (n− 1)-sphere, then the homology at infinity of its universal cover X̃ is
concentrated in dimension n − 1 and hence, X̃ is (n − 2)-acyclic at infinity. This
shows that hypotheses concerning the local topology of an aspherical space can
have implications for the end topology of its universal cover.

There are other local-to-asymptotic results for nonpositively curved complexes.
If L is a simplicial complex, we let S(L) denote the set of all closed simplices of L,
including the empty simplex. Let X̃ be a (locally finite) CAT(0) cubical complex,
and for each vertex x ∈ X̃, let Lx denote its link. If for each vertex x and for
each closed simplex σ ∈ S(Lx), Lx−σ is m-connected (resp., m-acyclic), then X̃ is
m-connected (resp., m-acyclic) at infinity (see [?] and the references cited there).
We call the complexes Lx − σ the punctured links of X̃.

In recent work [?], we have shown there is a close connection between local
topology and end topology of the standard complexes on which Coxeter groups
act. The nerve of a Coxeter system (W,S) is the simplicial complex L with one
vertex for each element of the generating set S and one simplex for each subset of
S which generates a finite subgroup of W . As explained in [?], [?] or [?], associated
to (W,S) there is natural cell complex, here denoted |W |, such that |W | is a model
for EW and such that the link of each of its vertices is isomorphic to L (see [?] for
the definition of EG). This implies, for example, that if L is a triangulation of an
(n− 1)-sphere, then |W | is a contractible n-manifold.
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If S is finite (which we shall henceforth always assume), then L is a finite complex
and the quotient space |W |/W is compact. It is proved in [?] and [?] that the nat-
ural piecewise Euclidean metric on |W | is CAT(0). In [?] the authors established
a direct correspondence between the topological properties of L and the asymp-
totic topological properties of |W | (or of any locally finite building with associated
Coxeter system (W,S)). For example:

Theorem. (See 4.1, 4.2 and 4.3 in [?]) Let W be a finitely generated Coxeter group
with associated nerve L. Then

(1) W is simply connected at infinity if and only if L − σ is simply connected
for each σ ∈ S(L).

(2) W is m-acyclic at infinity if and only if L−σ is m-acyclic for each σ ∈ S(L).
(3) W is m-connected at infinity if and only if L − σ is m-connected for each

σ ∈ S(L)

Thus, not only do the connectivity properties of the punctured links L − σ
determine the connectivity at infinity of W (i.e., of |W |), the converse is also true.
This leads to speculation that, in the general context of nonpositive curvature,
similar asymptotic-to-local results might hold. For example, one might speculate
that if X is a nonpositively curved, finite Poincaré complex with, say, extendable
geodesics, then the links of vertices in X are forced to be generalized homology
spheres (and hence, X is a homology manifold). Similarly, it could be speculated
that if X is a nonpositively curved cubical complex (with extendable geodesics)
and if X̃ is m-connected (resp., m-acyclic) at infinity, then the punctured links
of vertices must be m-connected (resp., m-acyclic). The purpose of this note is
to give some examples which set such speculations to rest: there are no general
results of this nature. (For further examples illuminating the difficulty of getting
asymptotic-to-local results, see [?].)

The construction of our examples is essentially the same as the construction of
[?]. We will show that by making minor modifications in the construction of |W | one
gets a model for EW , W, with a CAT(0) cubical structure so that the connectivity
properties at infinity do not descend to connectivity properties of links. In fact, in
all of our examples |W | will be a manifold while W will not even be a homology
manifold. We show that |W | and W are equivariantly proper homotopy equivalent,
so if Γ is any torsion-free subgroup of finite index in W , then W/Γ is a nonpositively
curved Poincaré complex that is not a homology manifold. For simplicity, we restrict
our construction to right angled Coxeter groups, which we briefly review below.

Right Angled Coxeter Groups. A simplicial complex L is a flag complex if
any complete graph in the 1-skeleton of L is actually the 1-skeleton of a simplex
in L. The barycentric subdivision of any cell complex is a flag complex; hence, the
condition of being a flag complex imposes no restriction on the topology of L —
it can be any polyhedron. The importance of flag complexes in CAT(0) geometry
stems from the result of Gromov [?, p. 122] that the natural piecewise Euclidean
metric on a cubical complex is nonpositively curved (= locally CAT(0) ) if and only
if the link of each vertex is a flag complex.

Suppose L is a finite flag complex. For each integer k ≥ 0, let L(k) denote the
set of k-simplices in L and as before let S(L) denote the poset of all simplices in L
(including the empty simplex).



EXOTIC LOCAL STRUCTURES 3

Associated to L there is a group W defined as follows. For each i ∈ L(0) introduce
a symbol si and set S = {si}i∈L(0) . W is defined by the presentation:

W = 〈S | s2
i = 1, sisj = sjsi when {i, j} ∈ L(1)〉 .

(W,S) is called a right angled Coxeter system. Its nerve is L.

The Cubical Complex |W|. For each σ ∈ S(L), let Wσ denote the subgroup
generated by the elements of S which correspond to vertices of σ. Then Wσ '
(Z2)dim(σ)+1. Set

WS(L) =
∐

σ∈S(L)

W/Wσ .

WS(L) is called the poset of spherical cosets (the partial order is given by inclusion).
The complex |W | is defined to be the geometric realization of WS(L). There is an
obvious left W action on |W |. The cubical structure on |W | is defined as follows.
There is one vertex of |W | for each element of W (= W/W∅). For each spherical
coset wWσ, we then fill in a Euclidean cube of dimension dim(σ) + 1 with vertices
corresponding to the elements of wWσ. (Note that the elements of Wσ can naturally
be identified with the vertices of a cube of dimension dim(σ) + 1.) The poset of
cubes in |W | is WS(L) and the link of each vertex is L.

The geometric realization of the poset S(L) is denoted K. The inclusion S(L) ↪→
WS(L) defined by σ 7→ Wσ induces an inclusion K ↪→ |WL| and we identify K
with its image in |W |. Similarly, the orbit projection WS(L) � S(L) defined by
wWσ 7→ σ induces a projection |W | � K which factors through a homeomorphism
|W |/W→ K. Thus, K is a fundamental domain for the W-action on |W | and the
orbit projection |W | → K restricts to the identity on K.

The geometric realization of S(L)>∅ can be identified with the barycentric sub-
division L′ of L. Thus, K is the cone on L′ (the empty set provides the cone point).
For each i ∈ L(0), let Ki denote the geometric realization of S(L)≥{i}, i.e., Ki is
the closed star of i in L′. We call Ki the mirror of K of type i.

Here is another description of |W |. For each point x ∈ K let σ(x) be the simplex
spanned by {i ∈ L(0) | x ∈ Ki}. Then

|W | = (W ×K)/ ∼

where the equivalence relation ∼ is defined by (w, x) ∼ (w′, x′) if and only if x = x′

and w−1w′ ∈ Wσ(x).
For a flag complex L that can be decomposed as L = L1∪L2, we will construct a

different CAT(0) cubical complex W on which the associated right angled Coxeter
group W acts as a cocompact reflection group. The complexes W and |W | will
have the same pro-homotopy type. However, the topology of the links of vertices
in W can differ dramatically from that of the links of |W |.

The construction of W. Suppose that a finite flag complex L can be decomposed
as the union of two full subcomplexes: L = L1∪L2. Set L0 = L1∩L2. Since L0, L1

and L2 are full subcomplexes of L each of them is a flag complex.
For any simplicial complex L and a point z not in L, let CzL be the simplicial

complex defined by taking the cone on L with cone point z.
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Let x1, x2 and v be points that are not in L and define new simplicial complexes:

L̂1 = L1 ∪ CvL0

L̂2 = L2 ∪ CvL0

K̂1 = Cx1L̂1

K̂2 = Cx2L̂2

Let K̂ denote the result of gluing K̂1 to K̂2 along CvL0.
In Figure ?? we show a simple example that highlights the difference between

K and K̂. The original simplicial complex L is a circuit of length 8, and K is the
cone on this octagon. We let L0 ' S0 be two antipodal vertices (indicated by dots
in the figure on the right), and let L1 and L2 be the two simplicial arcs in L which
are separated by L0.

Figure 1. The difference between K (left) and K̂ (right)

Returning to the case where L is an arbitrary finite flag complex, we note that L

is a subcomplex of K̂ (we think of it as the boundary of K̂). Also, K̂ is contractible
(it is the union of two contractible pieces glued along a contractible subcomplex).
The space W is defined by hollowing out each copy of K in |W | and replacing it
with a copy of K̂. Since K and K̂ are both contractible, |W | and W are proper
homotopy equivalent; hence, W is also contractible.

Here is a more precise description of W. Recalling that for i ∈ L(0), Ki is the
closed star of i in the barycentric subdivision of L (which is a subspace of K̂),
we see that Ki is identified with a subspace of K̂. So, define K̂i to be Ki. We
then proceed as before. For each point x ∈ K̂, let σ(x) be the simplex spanned by
{i ∈ L(0) | x ∈ K̂i} and let

W = (W × K̂)/ ∼
where the equivalence relation ∼ is defined as before.

It is not difficult to define the cubical structure on W and to see that it is
CAT(0). The vertex set is Wx1

∐
Wx2. For α = 1, 2 and for a spherical coset

wWσ ∈ WS(Lα), the vertices wWσxα span a cube of dimension dim(σ)+1. Also, for
each spherical coset wWσ ∈ WS(L0), we have a cube spanned by wWσx1

∐
wWσx2.

Its dimension is dim(σ) + 2. (In particular, corresponding to the case where σ is
empty, we have an edge from wx1 to wx2.) For α = 1, 2, the link of xα in W is L̂α.
Since L̂α is a flag complex, the cubical structure is CAT(0). We also note that the
punctured link L̂α − v is homotopy equivalent to Lα.

Remark. In [?] the above construction was used only in the case where L is a
homology sphere and L0 ⊂ L is a homology sphere embedded in codimension one.

In the following examples we will always choose L to be a triangulation of an
n-sphere and L0 to be a codimension one submanifold triangulated as a full sub-
complex. L1 and L2 will then be n-manifolds with boundary. (However, L0, L1 and
L2 need not be connected.) Since L ' Sn, |W | is a contractible (n + 1)-manifold;
however, W need not be a manifold.
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Example 1. Suppose that L is a 2-sphere, that L1 is an annulus (a collared neigh-
borhood of the equator) and that L2 is the disjoint union of the two 2-disks (neigh-
borhoods of the north and south poles). Then L0 = L1 ∩ L2 is the disjoint union
of two circles, and L̂1 is an annulus with its boundary coned off. So, L̂1 is homeo-
morphic to a 2-sphere with two points identified. In particular, the link L̂1 is not
simply connected (π1(L̂1) ' Z). Similarly, L̂2 is the wedge of two 2-spheres. The
punctured links L1 and L2 are also not simply connected. Nevertheless, the theo-
rem quoted at the beginning implies that |W | (and hence W) is simply connected
at infinity, since the nerve L is a 2-sphere.

Example 2. Suppose L is an n-sphere and L0 is a codimension one submanifold
separating L into two pieces L1 and L2. Then W is (n − 1)-connected at infinity
by the theorem quoted at the beginning. On the other hand, H̃∗(L̂1) ' H∗(L1, L0)
can be nonzero in any dimension < n. Similarly, the homology of the punctured
link L1 is fairly arbitrary.

A true optimist might believe that these examples occur because there are two
W -orbits of vertices, and that if W acts transitively on the 0-skeleton, then such
examples disappear. The following modified version of our construction shows that
this speculation is also false.

A construction with only one vertex orbit. Suppose L0 is a subcomplex of
L1 and that t is a simplicial involution on L0. Let L denote the result of gluing
together two copies of L1 along L0 via the map t. Call the two copies L1 and
L2. Then t extends to an involution on L (also denoted t) that interchanges L1

and L2. Let W be the right angled Coxeter group associated to L. Let G denote
the semidirect product, G = W o Z2. Here Z2 acts on the vertex set of L (the
generating set of W ) via t. The W -action on W extends to a G-action. Now there
is only one G-orbit of vertices.

Example 3. Suppose that L1 is the solid torus, L1 = D2 × S1 and that L0 is
its boundary, L0 = S1 × S1. Let t : S1 × S1 → S1 × S1 be the involution which
switches the factors. Then L = S3 and W is 2-connected at infinity. The link of
each vertex is isomorphic to L̂1. However, H2(L̂1) ' Z and although π1(L̂1) ' 0,
for the punctured link, L1, we have π1(L1) ' Z.

Remark. We note that there is a simple method of altering the local topology of
|W | so that the connectivity of the links does not coincide with the connectivity at
infinity: Form |W |′ by attaching a copy of [0, 1] (or [0,∞)) to each vertex of |W |.
If one attaches unit intervals, then the resulting complex does not have extendable
geodesics; if one attaches half lines, then the resulting complex is not cocompact.
Further, while the complex |W |′ deformation retracts onto |W |, |W | does not sit as
a retract inside W.
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