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4.2 Aspherical manifolds not covered by Euclidean space

4.3 Background on the Double Suspension Theorem

4.4 Nonpositively curved manifolds not covered by Rn

5. Hyperbolization

5.1 The basic idea
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Introduction.

At the turn of the century Poincaré showed how to associate to any topological
space X a group, π1(X), called its fundamental group. Any group π is isomorphic
to π1(X) for some space X. In fact, there is a particularly good choice of X,
namely, the classifying space Bπ of π. The space Bπ is a CW complex and it is
aspherical (meaning that its higher homotopy groups vanish) and, up to homotopy,
it is characterized by these properties. Thus, the study of aspherical spaces lies at
the center of the intersection of topology and group theory.

In an influential paper, [G1], Gromov focused attention on those groups which
arise as the fundamental groups of nonpositively curved, compact manifolds or
spaces. The nonpositive curvature condition has many group theoretical implica-
tions. For example, the word problem and conjugacy problem can be solved for such
groups and any solvable subgroup of such a group must be virtually abelian (i.e.,
it must contain an abelian subgroup of finite index). The case where the curvature
is required to be strictly negative is even more interesting. The negative curvature
property can be defined in completely group theoretic terms and this leads to the
notion of “word hyperbolic groups”.

A second aspect of Gromov’s paper was that he described many new techniques
for constructing examples of nonpositively curved spaces, in particular, he gave
many examples of nonpositively curved polyhedra. It is this second aspect which
we shall focus on in these notes. For the most part we ignore the group theoretical
implications of nonpositive curvature. Our focus is on the construction of examples.

In low dimensional topology aspherical manifolds and spaces play an impor-
tant role. Aspherical 2-manifolds are the rule rather than the exception and here
asphericity is always caused by nonpositive curvature. In dimension 3, it is a
consequence of the Sphere Theorem that the prime 3-manifolds with infinite fun-
damental group are aspherical (with a few exceptions). The content of Thurston’s
Geometrization Conjecture is that these prime manifolds can further decomposed
along tori into geometric pieces, the most significant type of which are negatively
curved.

These notes reflect the material which was presented in lectures (by the first
author) and recitations (by the second author) at the Turán Workshop on Low
Dimensional Topology, Budapest, Hungary in August 1998. There is a substantial
overlap of this material with [D6].
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Chapter I: Nonpositively Curved Spaces.

1. Basic facts and definitions.

1.1 Aspherical CW complexes. Suppose that X is a connected topological
space and that it is homotopy equivalent to a CW complex. Let X̃ denote its
universal covering space. A basic fact of covering space theory is that the higher
homotopy groups of X (that is, the groups πi(X) for i > 1) are equal to those of
X̃. Hence, the following two conditions are equivalent:

(i) πi(X) = 0 for all i > 1, and

(ii) X̃ is contractible.

If either condition holds, then X is said to be aspherical. (Sometimes we also
say that X is a “K(π, 1)-space”, where π = π1(X).)

For any group π there is a standard construction of an aspherical CW complex
X with fundamental group π. Moreover, if X ′ is another such K(π, 1)-complex,
then X and X ′ are homotopy equivalent. (However, in general it is not possible to
choose X to be a finite CW complex or even a finite dimensional one.)

Examples of aspherical spaces. (All spaces here are assumed to be connected.)

• Dimension 1. Suppose X is a graph. Its universal cover X̃ is a tree, which is
contractible. Hence, any graph is aspherical. Its fundamental group is a free group.

• Dimension 2. Suppose that X is a closed orientable surface of genus g where
g > 0. It follows from the Uniformization Theorem of Riemann and Poincaré that
X can be given a Riemannian metric so that its universal cover X̃ can be identified
with either the Euclidean or hyperbolic plane (as g = 1 or g > 1, respectively).
Hence, any such X is aspherical.

• Dimension 3. It follows from Papakyriakopoulos’ Sphere Theorem that any closed,
irreducible 3-manifold with infinite fundamental group is aspherical. (“Irreducible”
means that every embedded 2-sphere bounds a 3-ball.)

• Tori. The n-dimensional torus Tn(= Rn/Zn) is aspherical, since its universal
cover is Rn. The same is true for all complete Euclidean manifolds.

• Hyperbolic manifolds. The universal cover of any complete hyperbolic n-manifold
X can be identified with hyperbolic n-space Hn. Since Hn is contractible, X is
aspherical. (In other words, X = Hn/Γ where Γ is a discrete, torsion-free subgroup
of Isom(Hn), the isometry group of Hn).

• Manifolds of nonpositive sectional curvature. More generally, complete Riemann-
ian manifolds of nonpositive sectional curvature are aspherical. This follows from
the Cartan–Hadamard Theorem stated below. (The “sectional curvature” of a Rie-
mannian manifold is a function, derived from the curvature tensor, which assigns a
number to each tangent 2-plane. In dimension 2 it coincides with the usual Gauss-
ian curvature. For the purpose of reading these notes it is not necessary to know
much more about the definition.)
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Cartan–Hadamard Theorem. Suppose that Mn is a complete Riemannian man-
ifold of nonpositive sectional curvature. Then for any x ∈Mn the exponential map,
exp : TxMn →Mn is a covering projection.

In particular, since the vector space TxMn is contractible, this theorem implies
that Mn is aspherical.

Our initial goals in this chapter will be to broaden the definition of “nonposi-
tive curvature” to include singular metric spaces, i.e., metric spaces which are not
Riemannian manifolds (in fact, which need not even be topological manifolds) and
then to give examples of some singular spaces with nonpositively curved polyhedral
metrics.

1.2. Spaces of constant curvature.

• Euclidean n-space, En. The standard inner product on Rn is defined by x · y =
Σxiyi. Euclidean n-space is the affine space associated to Rn with distance d defined
by d(x, y) = |x− y| = [(x− y) · (x− y)]

1
2 .

• The n-sphere, Sn. Set Sn = {x ∈ Rn+1 | x · x = 1}. Given two vectors x and y
in Sn, define the angle θ between them by cos θ = x · y. The (spherical) distance d
between x and y is then defined by d(x, y) = θ = cos−1(x · y).

• Hyperbolic n-space, Hn. Minkowski space Rn,1 is isomorphic as a vector space
to Rn+1 but it is equipped with an indefinite symmetric bilinear form of signature
(n, 1) (i.e., a “Lorentzian inner product”). If (x0, x1, . . . , xn) are coordinates for a
point x ∈ Rn,1, then the Lorentzian inner product is defined by

x · y = −x0y0 +
n∑

i=1

xiyi.

Hyperbolic n-space is defined by Hn = {x ∈ Rn,1 | x · x = −1 and x0 > 0}. (The
hypersurface x · x = −1 is a 2-sheeted hyperboloid, Hn is one of the sheets.)

Figure 1.2.1. Hyperbolic n-space

The formula for distance is given by d(x, y) = cosh−1(−x · y).
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The spaces En and Sn are clearly Riemannian manifolds. Since the restriction of
the Lorentzian inner product to TxHn is positive definite for any x ∈ Hn, hyperbolic
space also has a natural Riemannian structure (and d(x, y) = cosh−1(−x · y) is the
associated metric). It turns out that in each case the sectional curvature is constant:
for Hn, Rn and Sn these constants are, respectively, −1, 0 and +1. If we rescale the
metric on Sn by a factor of λ, then the new metric has curvature λ−2. Similarly,
rescaling by λ changes the metric on Hn to one of curvature −λ−2. It is a classical
theorem of Riemannian geometry that these spaces are the only simply connected
complete Riemannian manifolds of constant sectional curvature, up to isometry.

Notation. For each real number ε and integer n ≥ 2, let Mn
ε denote the complete

simply connected Riemannian n-manifold of constant curvature ε. Thus, Mn
0 = En

and for ε 6= 0, Mn
ε is equal to Hn or Sn with rescaled metric as ε is < 0 or > 0,

respectively.

1.3. Geodesic spaces.

Suppose (X, d) is a metric space and that γ : [a, b] → X is a path. The length
of γ, denoted by `(γ), is defined by

`(γ) = sup

{
n∑

i=1

d(γ(ti−1), γ(ti))

}

where (t0, . . . , tn) runs over all possible subdivisions of [a, b] (i.e., a = t0 < t1 <
· · · < tn = b). It follows immediately from the triangle inequality that d(γ(a), γ(b))
≤ `(γ).

Definition 1.3.1. The path γ : [a, b] → X is a geodesic if it is an isometric
embedding: d(γ(s), γ(t)) = |s− t|, for any s, t ∈ [a, b]. Similarly, a loop γ : S1 → X
is a closed geodesic if it is an isometric embedding. Here S1 denotes the standard
circle equipped with its arc metric (possibly rescaled so that its length can be
arbitrary).

Remark. Suppose that γ : [a, b]→ X is any path such that `(γ) = d(γ(a), γ(b)). It
then follows that for any subinterval [s, t] ⊂ [a, b], `(γ|[s,t]) = d(γ(s), γ(t)). Hence,
if we reparametrize γ by arc length we obtain a geodesic.

Definition 1.3.2. Suppose (X, d) is a metric space. Then X is a length space if
for any x, y ∈ X, d(x, y) = inf{`(γ) | γ is a path from x to y}. (Here we allow∞ as
a possible value of d.) X is a geodesic space if the above infimum is always realized
and is 6= ∞, i.e., if there is a geodesic segment between any two points x and y
in X.

Example 1.3.3. Suppose X is the boundary of a convex polytope in Euclidean
space. For any path γ : [a, b]→ X define its “piecewise Euclidean length”, `PE(γ)
by

`PE(γ) = sup

{
n∑

i=1

|γ(ti−1)− γ(ti)|

}

where the subdivisions a = t0 < · · · < tn = b are such that γ([ti−1, ti]) is always
contained in some face of X. Then define a distance function on X by
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d(x, y) = inf{`PE(γ) | γ is a path from x to y}.

It is easily checked that (X, d) is a geodesic space. Furthermore, the metric is
compatible with the topology of X.

1.4. The CAT (ε)-inequality.

Suppose that (X, d) is a geodesic space, that ε is a real number and that M2
ε is

the 2-dimensional space of curvature ε, as in 1.2.

Definition 1.4.1. A triangle T in X is a configuration of three geodesic segments
(“edges”) connecting three points (its “vertices”). A comparison triangle for T is
a triangle T ∗ in M2

ε with the same edge lengths. For such a triangle to exist when
ε > 0, it is necessary to assume `(T ) ≤ 2π/

√
ε, where `(T ) is the sum of edge

lengths of T . (The number 2π/
√

ε is the length of the equator in a 2-sphere of
curvature ε). When ε > 0 we shall always make this assumption on `(T ).

If T ∗ is a comparison triangle for T , then for each edge of T we have a well
defined isometry, denoted by x→ x∗, which takes the given edge of T isometrically
onto the corresponding edge of T ∗. With a slight abuse of language, we use the
same notation for all three mappings.

Definition 1.4.2. Given a real number ε, a metric space X satisfies CAT (ε) (or
is a CAT (ε)-space), if the following two conditions hold:

(a) there exists a geodesic segment between any two points in X of distance less
than π/

√
ε apart if ε > 0, and between any two points if ε ≤ 0;

(b) the CAT (ε)-inequality: for any triangle T in X (with `(T ) < 2π/
√

ε if ε > 0)
and for any two points x, y in T we have that

d(x, y) ≤ d∗(x∗, y∗)

where d∗ denotes distance in M2
ε and x∗, y∗ are the corresponding points in the

comparison triangle T ∗.

Figure 1.4.1. Triangle comparison

Remark. Condition (a) says that X is a geodesic space if ε ≤ 0 (which in particular
implies that X is connected). However, if ε > 0, then X need not be connected; only
its connected components are required to be geodesic spaces. We shall see later that
certain naturally arising CAT (1)-spaces may be disconnected, cf. Theorem 2.2.3.
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Definition 1.4.3. Suppose that X is a geodesic space and γ1, γ2 are two arc length
parametrized geodesic segments in X with a common initial point x = γ1(0) =
γ2(0). The Aleksandrov angle between γ1 and γ2 at x is defined as

lim sup
s,t→0

α(s, t)

where α(s, t) is the angle at the vertex corresponding to x of the comparison triangle
in M2

0 (= E2) for the triangle with vertices at x, γ1(s) and γ2(t).

Figure 1.4.2. Aleksandrov angle

Remark. Using the exponential map it is easy to see that in the Riemannian case
the Aleksandrov angle equals the usual infinitesimal concept of angle.

The following characterization of CAT (ε)-spaces in terms of angles is due to
Aleksandrov. Its proof is left to the reader as an exercise in elementary geometry.
Details may be found in Troyanov’s article in [GH].

Proposition 1.4.4. A metric space X satisfies CAT (ε) if and only if condition
(a) of Definition 1.4.2 and the following condition (b′) hold:

(b′) The Aleksandrov angle between each pair of edges of any triangle in X (of
perimeter < 2π/

√
ε if ε > 0) does not exceed the corresponding angle of the com-

parison triangle in M2
ε .

Remark. It turns out that in CAT (ε) -spaces the function α(s, t) of Definition 1.4.3
is monotone non-decreasing, so its limsup is actually a limit. In fact, this property
of α(s, t) may serve as another equivalent version of condition (b) of Definition
1.4.2, cf. [GH].

Definition 1.4.5. The space X has curvature ≤ ε (written as κ(X) ≤ ε or κ ≤ ε)
if CAT (ε) holds locally in X.

The justification for the above definition is the following Comparison Theorem.
(For a proof see the article by Troyanov in [GH].)

Theorem 1.4.6. (Aleksandrov, Toponogov) A complete Riemannian manifold has
sectional curvature ≤ ε if and only if the CAT (ε)-inequality holds locally.

Remark. The reader may easily verify (using, say, Proposition 1.4.4 and the Laws
of Cosines, cf. 1.6, below) that M2

ε satisfies CAT (δ) for all δ ≥ ε. Thus, κ(X) ≤ ε
implies κ(X) ≤ δ if δ ≥ ε, which justifies the notation.
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Historical Remarks. In the 1940’s and 50’s Aleksandrov introduced the idea of a
length metric (also called an “intrinsic” or “inner” metric) and the idea of curvature
bounds on length spaces. He was primarily interested in nonnegative curvature,
κ ≥ 0 (defined by reversing the CAT (0)-inequality). His motivation was to prove
the result that a complete geodesic metric on a 2-manifold has κ ≥ 0 if and only if
it is isometric to the boundary of a convex set in E3. He proved this is the case of
polyhedral metrics and then used the technique of polyhedral approximation to get
the same result for arbitrary geodesic metrics. About the same time, Busemann [Bu]
was studying geodesic spaces satisfying a weaker version of the CAT (0) condition
(although he also required that geodesics be uniquely extendible). The subject
of nonpositively curved geodesic spaces was repopularized by Gromov in the mid-
1980’s in [G1] in the context of providing examples of “coarse hyperbolic” metric
spaces and “word hyperbolic groups”.

Remark. Although much of the theory of CAT (ε)-spaces can be carried out in
greater generality (cf. [BH]), we here make the blanket assumption that all metric
spaces which we consider are locally compact and complete. This allows us the
possibility of sketching simple proofs of some of the key theorems in Chapter I.
Moreover, our examples and constructions will only involve such spaces.

1.5. Some consequences of the CAT (ε) conditions.

Here we discuss some properties of any CAT (ε)-space X. We are mainly inter-
ested in the cases when ε = 0 or ε = 1.

• There are no nondegenerate digons (of perimeter < 2π/
√

ε if ε > 0). By a digon
in X we mean a configuration of two geodesic segments connecting two points in
X. The digon is nondegenerate if the segments are distinct. Indeed, given any such
digon (of perimeter < 2π/

√
ε if ε > 0) by introducing a third vertex in the interior

of one segment we obtain a triangle in X. Its comparison triangle is degenerate
(i.e., it is a line segment); hence, the digon must also be degenerate. In particular,

• If X is CAT (1), then there is a unique geodesic between any two points of dis-
tance < π. Similarly, the length of any closed geodesic in X must be ≥ 2π.

• If X is CAT (0), then there is a unique geodesic between any two points.

By the Arzelà–Ascoli Lemma about equicontinuous sequences of maps between
compact metric spaces, these (unique) geodesic segments vary continuously with
their endpoints. Thus, by moving points along geodesics to an arbitrarily chosen
base point we obtain a (continuous) homotopy, the so-called geodesic contraction.
As a consequence we have the following.

Theorem 1.5.1. (i) Any CAT (0)-space is contractible.

(ii) Similarly, if X is a CAT (1)-space, then the open ball of radius π about any
point is contractible.

Remark. Complete geodesic spaces satisfying CAT (0) are sometimes also called
“Hadamard spaces” instead of CAT (0) spaces.

A real-valued function f on a geodesic space is convex if its restriction to any ge-
odesic segment is a convex function. If X is a geodesic space, then so is X×X (with
the product metric). Moreover, geodesics in X×X are of the form t 7→ (γ1(t), γ2(t)),
where γ1 and γ2 are constant speed reparametrizations of two geodesics in X (al-
lowing the possibility that one of γ1 and γ2 is constant). It follows that a function
f : X×X → R is convex if and only if for any two (of constant, but not necessarily
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unit, speed) geodesics γ1 : [0, 1] → X and γ2 : [0, 1] → X, the function [0, 1] → R
defined by t 7→ f(γ1(t), γ2(t)) is a convex function. Another property of CAT (0)
spaces is the following (see Ballmann’s article in [GH]).

• If X is a CAT (0) space, then the distance function d : X ×X → R is convex.

The proof of this statement is essentially a direct application of the CAT (0)-
inequality to a configuration consisting of two triangles, see Figure 1.5.1. Details
are left to the reader.

Figure 1.5.1. Convexity of metric

The following generalization of the Cartan–Hadamard Theorem was first stated
by Gromov in [G1].

Theorem 1.5.2. (Gromov’s version of the Cartan–Hadamard Theorem) Suppose
X is a locally compact and complete geodesic space with κ(X) ≤ ε, where ε ≤ 0. If
X is simply connected, then it is a CAT (ε) space.

Corollary 1.5.3. If X is a complete, nonpositively curved geodesic space, then it
is aspherical.

Proof of the Corollary. By Theorem 1.5.2, the universal cover of X is CAT (0) and
by Theorem 1.5.1, this implies that it is contractible. �

Sketch of proof of Theorem 1.5.2. (based on [BH] and Ballmann’s article in [GH])
The first main step of the proof is existence and uniqueness of geodesics. Our techni-
cal tool in this direction is an adaptation of the so-called “Birkhoff curve-shortening
process” which was classically designed to produce geodesics in Riemannian mani-
folds.

In a nonpositively curved metric space the Birkhoff process consists of iterated
application of a construction that replaces a given rectifiable curve c with a broken
geodesic B(c) as indicated in Figure 1.5.2.

At the start we choose an equidistant subdivision of c which is fine enough so
that nearby division points fall inside a common CAT (0) patch. This ensures that
the Birkhoff step comes together with a homotopy connecting c with B(c). The
Arzelà–Ascoli Lemma implies that the Birkhoff process converges, i.e., the sequence
c,B(c), B(B(c)), . . . is uniformly convergent to a curve c̃. Obviously B(c̃) = c̃,
which implies that c̃ is a geodesic when restricted to suitable neighborhoods of its
points. (Such a curve is called a local geodesic.)
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Figure 1.5.2. Birkhoff curve shortening

It follows from the above argument that in a nonpositively curved metric space
each homotopy class of curves with given endpoints contains a local geodesic. Now
we show that such a local geodesic is unique. Suppose that γ0 and γ1 are local
geodesics homotopic relative to their common endpoints. The Birkhoff process
applied to each stage of a homotopy (relative to endpoints) results in another ho-
motopy (relative to endpoints) γs(0 ≤ s ≤ 1) through local geodesics. Now, if
|s1 − s2| is sufficiently small, then (by an argument similar to the one preceding
Theorem 1.5.2) the function t 7→ d(γs1(t), γs2(t)) is convex. Hence, it is identically
0 which implies that γ0 = γ1.

In summary, we have proved that in a nonpositively curved metric space there
exists a unique local geodesic in any homotopy class of paths with given endpoints.
In particular, if the space is simply connected, then we have a unique local (and
therefore, global) geodesic segment connecting any given pair of points.

Now suppose that X is simply connected with κ(X) ≤ ε ≤ 0. In order to
prove the CAT (ε)-inequality for an arbitrary triangle T , first subdivide T in a way
indicated in Figure 1.5.3 so that each of the small triangles is contained in some
CAT (ε) patch. (This is possible since uniqueness of geodesics implies continuous
dependence of geodesics on their endpoints.)

Figure 1.5.3. Subdivision of T

We use induction to show that larger and larger subtriangles of T satisfy the
angle comparison condition (b′) of Proposition 1.4.4. First join together the small
triangles in succession within each of the narrow triangles in Figure 1.5.3, starting
at the vertex x, then join the narrow triangles together, one by one, eventually
arriving at T . The inductive step in this process is the following Gluing Lemma of
Aleksandrov.

Lemma 1.5.4. (Aleksandrov’s Gluing Lemma) Suppose that in a geodesic metric
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space a triangle ∆ is subdivided into triangles ∆1 and ∆2 by a geodesic segment con-
necting a vertex of ∆ with an interior point of the opposite edge. If the Aleksandrov
angles of ∆1 and ∆2 do not exceed the corresponding angles of their comparison
triangles in M2

ε , then the same is true for ∆.

The Gluing Lemma follows immediately when one applies the following observa-
tion (due to Aleksandrov) to the comparison triangles joined along their common
edge. (The proof of this observation only involves elementary geometry of M2

ε and
is left to the reader as an exercise.)

Suppose that a quadrilateral in M2
ε has a concave angle at vertex v. “Straighten

out” the pair of sides joining up at v, keeping all side lengths unchanged. Then all
three remaining angles increase.

Figure 1.5.4. Aleksandrov’s Lemma

This completes our sketch of the proof of Theorem 1.5.2. �

Let us now turn to the situation where ε > 0. We need a local-to-global type
statement analogous to Theorem 1.5.2. That is, we look for a property of metric
spaces which, together with the condition κ ≤ ε, implies CAT (ε). The following
examples show that simple connectivity is neither necessary nor sufficient here.

• A circle of length ≥ 2π is CAT (1).

• The standard S2 with the interior of a small open triangle removed is simply
connected and is not CAT (1) since the CAT (1)-inequality fails for the boundary
triangle. On the other hand, it will follow immediately from results in Section 2.2
that this space has curvature ≤ 1. (By doubling along boundary we get an example
of a metric of curvature ≤ 1 on the 2-sphere which is not CAT (1).)

These examples suggest that the failure of CAT (1) is caused by the presence of
short closed geodesics. That this is indeed the case in general is the content of the
following companion result to Theorem 1.5.2.

Theorem 1.5.5. (Gromov) Suppose X is a compact geodesic space with κ(X) ≤ ε,
where ε > 0. Then X is CAT (ε) if and only if every closed geodesic has length
≥ 2π/

√
ε.

Sketch of proof. Almost all steps of the proof of Theorem 1.5.2 can be adapted,
with appropriate limitations on lengths of geodesics and sizes of triangles, to cover
the case ε > 0. The only exception is the statement that relies on the convexity
property of the metric (which is false if ε > 0), namely, uniqueness of local geodesics.
In fact, the proof of Theorem 1.5.2 adapted to the case ε > 0 yields the following:

Suppose that X is a compact metric space with κ(X) ≤ ε. Let r(X) denote
the supremum of real numbers d such that there exists a unique geodesic in X
between any pair of points less than distance d apart. (This (positive) number
r(X) is sometimes called the injectivity radius of X.) Then Aleksandrov’s angle
comparison inequalities hold in X for all triangles of perimeter < 2r(X).
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Thus, the correct substitute for uniqueness of geodesics is the following lemma.

Lemma 1.5.6. If κ(X) ≤ ε and r(X) < π/
√

ε, then X contains a closed geodesic
of length 2r(X).

Proof. Take a sequence of nondegenerate digons Dn whose perimeters `(Dn) con-
verge down to 2r(X). By compactness and the Arzelà–Ascoli Lemma we may
assume that the sequence converges uniformly to a digon D. Let dn denote the
distance between midpoints of the two arcs of Dn. Then dn cannot be less than
2r(X)− 1

2`(Dn) (which converges to r(X)) since otherwise angle comparison would
work for both triangles (of perimeter < 2r(X)) into which Dn is subdivided by the
segment connecting the two midpoints; therefore, by Aleksandrov’s Gluing Lemma,
angle comparison would work for Dn which would imply that Dn is degenerate, a
contradiction. The limit digon D is therefore nondegenerate, and a similar argu-
ment shows that the distance between any pair of opposite points of D equals r(X).
This means that D is a closed geodesic of length 2r(X). �

Remark. From the point of view of topology, Corollary 1.5.3 is of great practical
importance since it provides a method of proving asphericity. In fact, if a topological
space is aspherical, then it is very often so because the space can be equipped with
a complete nonpositively curved metric compatible with its topology. However,
this is not always the case, as the following examples show. These examples are
compact aspherical spaces that do not carry any nonpositively curved metric.

• Consider the “dunce hat” D which is obtained from a triangle by identifying
edges as shown in Figure 1.5.5.

Figure 1.5.5. Dunce hat

Suppose that D admits a nonpositively curved metric. Then, since D is contractible,
this metric is CAT (0) by Theorem 1.5.2. Choose two points p and q whose distance
equals the diameter of D. Then geodesic contraction of D−{q} onto p shows that
D − {q} is contractible. But, by inspection, D − {q} is never contractible.

• Consider a compact solvmanifold, i.e., a manifold M of the form M = G/Γ
where G is a noncommutative solvable Lie group and Γ is a cocompact discrete
subgroup. Such examples exist in all dimensions above 2. For example, M can be
any closed 3-manifold with Sol- or Nil- structure (see W. Neumann’s notes in this
volume). It is a well-known fact about groups acting on CAT (0) spaces (see [BH])
that a solvable group can act discretely, isometrically and with compact quotient
on a complete CAT (0) space only if it has an abelian subgroup of finite index. It
follows that such an M does not admit any metric of nonpositive curvature.

1.6. The cone on a CAT (1) space.

If X is a topological space, then the cone on X, denoted CX, is defined to be the
quotient space of X× [0,∞) by the equivalence relation ∼ defined by (x, s) ∼ (y, t)
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if and only if (x, s) = (y, t) or s = t = 0. The image of (x, s) in CX will be denoted
by [x, s]. The cone of radius r is the image of X × [0, r] in CX.

If X is a metric space,then for ε = +1, 0, or −1 we will now define a metric
dε on CX (when ε = +1 we will only consider the cone of radius π/2). The idea
behind this definition is that when X = Sn−1, by using “polar coordinates” and
the exponential map, CX can be identified with En (if ε = 0) or Hn (if ε = −1).
Similarly, the cone of radius π/2 can be identified with a hemisphere in Sn (if
ε = +1). Transporting the constant curvature metric to CSn−1 we obtain a formula
for dε on CSn−1. The same formula then defines a metric on CX for an arbitrary
metric space (X, d).

To write this formula we first need to recall the Law of Cosines in E2, S2 or H2.
Suppose we are given a triangle in M2

ε with edge lengths s, t and d and angle θ
between the first two sides.

Figure 1.6.1. A triangle in M2
ε

Law of Cosines.

• in R2:

d2 = s2 + t2 − 2st cos θ

• in S2:

cos d = cos s cos t + sin s sin t cos θ

• in H2:

cosh d = cosh s cosh t− sinh s sinh t cos θ.

Given two points x, y in X, put θ(x, y) = min{π, d(x, y)}. Given points [x, s]
and [y, t] in CX define the metric d0 by the formula

d0([x, s], [y, t]) = (s2 + t2 − 2st cos θ(x, y))1/2.

Similarly, define d−1 and d+1 so that the appropriate Law of Cosines holds with
d = dε and θ = θ(x, y). Let CεX denote CX equipped with the metric dε. (When
ε = 1, for C1(X) we only consider the cone of radius π

2 .) A proof of the following
theorem can be found in [BH].

Theorem 1.6.1. Suppose X is a complete geodesic space. Then

(i) CεX is a complete geodesic space.
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(ii) Cε(X) is CAT (ε) if and only if X is CAT (1).

Definition 1.6.2. The spherical suspension of X, denoted by SX, is the union of
two copies of C1X glued together along X × π

2 . Equivalently, it can be defined as
a X × [0, π] with both ends X × 0 and X × π pinched to points and with metric
defined by the same formula as for d+1.

If X is CAT (1), then so is SX.

2. Polyhedra of piecewise constant curvature.

2.1 Definitions and Examples.

As ε = +1, 0 or −1,Mn
ε stands for Sn, En or Hn. A hyperplane in Sn or Hn means

the intersection of the model hypersurface with a linear hyperplane. A hyperplane
in En is just an affine hyperplane. A half-space in Mn

ε is the closure of one of the
two components bounded by a hyperplane.

Definition 2.1.1. A subset C of Mn
ε is a convex cell (or a “convex polytope”) if

• C is compact, and

• C is the intersection of a finite number of half-spaces.

When ε = 1 and C ⊂ Sn we shall also require that C contain no pair of antipodal
points.

Definition 2.1.2. An Mε-cell complex is a cell complex which is constructed by
gluing together convex cells in Mn

ε via isometries of their faces.

Terminology. Suppose X is an Mε-cell complex. As ε = +1, 0, or −1 we shall say
that X is piecewise spherical (abbreviated PS), piecewise Euclidean (abbreviated
PE) or piecewise hyperbolic (abbreviated PH).

Next we shall give the definition of a length metric d which is naturally associated
to an Mε cell structure on X. Let dε denote the usual metric on Mn

ε . Given a path
γ : [a, b]→ X define its piecewise Mε-length, `ε(γ), by the formula

`ε(γ) = sup

{
k∑

i=1

dε(γ(ti−1), γ(ti))

}

where (t0, . . . , tk) runs over all subdivisions of [a, b] such that γ(ti−1) and γ(ti) are
contained in the same cell of X. Given two points x, y in X, d(x, y) is then defined
to be the infimum of `ε(γ) over all paths γ from x to y.

Henceforth, we shall make the blanket assumption that any Mε-complex is either
a finite complex or a covering space (in the metric sense) of a finite complex. In
particular, any such complex is locally finite. (It is possible to get away with a
weaker assumption such as only a finite number of isometry classes of cells occur.)

Lemma 2.1.3. Suppose X is a Mε-cell complex and d is the metric defined above.
Then (X, d) is a complete geodesic space. Furthermore, the restriction of d to each
cell of X is locally isometric to the original Mε-metric of the cell.

Question: When is κ(X) ≤ ε?
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Before considering this question in detail let us consider some examples in di-
mension one and two.

One-dimensional examples. A 1-dimensional cell complex is a graph. Giving
it an Mε structure amounts to assigning a length to each edge. Let us call such a
graph with assigned edge lengths a metric graph.

• A metric tree is CAT (ε) for any ε. (Proof: a triangle in such a tree is a
“tripod” which obviously satisfies CAT (ε) for any ε.) Conversely, if ε ≤ 0, then it
follows from Theorem 1.5.1 (i) that any CAT (ε) graph must be a tree.

• It follows that any metric graph X has κ(X) ≤ ε for any ε.

• In the case ε = 1, Theorem 1.5.5 implies that a metric graph X is CAT (1) if
and only if the length of every circuit in X is ≥ 2π.

Two-dimensional examples.

• Suppose X is a CAT (1) graph. Then, by Theorem 1.6.1 (ii), the cone CεX is
CAT (ε) for any ε.

• Next suppose that Y is a 2-dimensional Mε-cell complex and that y ∈ Y .
Does y have a neighborhood which is CAT (ε)? This is automatic if y belongs to
the interior of a 2-cell. It is also easy to see that the answer is yes if y is in the
interior of an edge. However, when y is a vertex, we must examine the situation
more carefully. In this case a sufficiently small neighborhood is isometric to a
neighborhood of the cone point in CεL where L is the so-called “link of y”. That
is to say, L is the graph with an edge for each pair (σ2, y) where σ2 is a 2-cell
containing y and a vertex for each pair (σ1, y) where σ1 is an edge containing y.
The edge corresponding to (σ2, y) is assigned the length θ, the angle of σ2 at its
vertex y. Thus, Y is CAT (ε) in a neighborhood of y if and only if CεL is CAT (ε),
i.e., if and only if the metric graph L is CAT (1). (This idea will be generalized to
higher dimensions in the next section.)

• If a metric graph L is CAT (1), then so is any subgraph L′. (If L has no circuits
of length ≤ 2π, then neither does L′.) It follows that if a 2-dimensional Mε-cell
complex Y has κ ≤ ε, then so does any subcomplex Y ′. (For ε ≤ 0, this is a special
case of Whitehead’s Conjecture that a subcomplex of an aspherical 2-complex is
aspherical.)

• Let us specialize further. Suppose that Y is surface with a Mε-cell structure.
Then κ(Y ) ≤ ε if and only if at each vertex the sum of the angles is ≥ 2π. For
example, the natural PE cell structure on the surface of a cube is not locally
CAT (0) since at each vertex the sum of the angles is 3π

2 .

• Suppose Y is the product of two metric trees. Then Y is naturally a PE
complex where each 2-cell is a rectangle. We claim that Y is CAT (0). Indeed, it
is a general fact that the product of two CAT (0) spaces is CAT (0), but in this
case we can see this by the following local argument. A vertex in Y has the form
(v1, v2) where v1 an v2 are vertices in the factors. The link of (v1, v2) is a complete
bipartite graph (it is the join of the link of v1 with the link of v2). Hence, the
minimum combinatorial length of any circuit is 4. Since each edge is assigned a
length of π

2 , the minimum length of any circuit is 2π; hence, Y is locally CAT (0)
and therefore, it is CAT (0) since it is simply connected.

2.2 Links.

Suppose σn is a convex n-cell (= convex polytope) in Mn
ε and that v is a vertex
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of σ. Let Sv denote the unit sphere in the tangent space Tv(Mn
ε ). The link of v in

σ, denoted Lk(v, σ) , is defined to be the set of unit tangent vectors in Sv which
point into σ, i.e.,

Lk(v, σ) = {x ∈ Sv | x points into σ}.

It is a spherical (n− 1)-cell in Sv (which is isometric to Sn−1). Similarly, if τk is a
k-dimensional face of σn, then choose any point x in τk, and let Sn−k−1

x denote the
set of unit vectors in TxMn

ε which are orthogonal to τk. Let Lk(τk, σn) ⊂ Sn−k−1
x

be the set of inward pointing unit vectors orthogonal to τk. Thus, Lk(τk, σn) is
a spherical (n − k − 1)-cell. Its isometry class obviously does not depend on the
choice of the point x in τk.

Now suppose that X is an Mε cell complex and that v is a vertex of X. If σ is
a cell in X containing v, then we have a spherical cell Lk(v, σ), well defined up to
isometry; moreover, if τ is a face of σ and v ∈ τ , then Lk(v, τ) is naturally identified
with a face of Lk(v, σ). Thus, if σ′ is another such cell and τ is a common face
of σ and σ′, then Lk(v, τ) is naturally identified with a face of both Lk(v, σ) and
Lk(v, σ′). In other words, these spherical cells glue together to give a well-defined
PS complex.

Definition 2.2.1. Given an Mε cell complex X and a vertex v of X, the link of v
in X is the PS cell complex defined by

Lk(v,X) =
⋃

σa cell
inX

Lk(v, σ).

For any cell τ in X one can define Lk(τ,X) in a similar fashion.

The following lemma is intuitively clear (although the proof requires some work).

Lemma 2.2.2. Let v be a vertex in an Mε-cell complex X. Then there is a
neighborhood of v in X which is isometric to a neighborhood of the cone point
in Cε(Lk(v,X)).

Combining this lemma with Theorem 1.6.1 we get the following result.

Theorem 2.2.3. Suppose X is an Mε-cell complex. Then the following statements
are equivalent.

(i) κ(X) ≤ ε.

(ii) For any cell τ of X, Lk(τ,X) is CAT (1).

(iii) For any vertex v of X, Lk(v,X) is CAT (1).

Proof. To see the equivalence of (i) and (ii), first note that any point x in X lies
in the relative interior of some cell τ . If dim τ = k, then a neighborhood of x in
X is isometric to a neighborhood of the cone point in Cε(SkLk(τ,X)) where SkL
denotes the iterated k-fold spherical suspension of L. To see the equivalence of (ii)
and (iii), we note that if τ is a cell of X and v is a vertex of τ , then Lk(τ,X) can
be identified with a link in Lk(v,X), namely,
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Lk(τ,X) ∼= Lk(Lk(v, τ), Lk(v,X)). �

Thus, the problem of deciding if κ(X) ≤ ε reduces to the following.

Question. When is a PS complex CAT (1)?

Using Theorem 2.2.3 and induction on dimension, Theorem 1.5.5 shows that the
main issue in this question is to decide when every closed geodesic in a PS complex
L has length ≥ 2π.

2.3 Gromov’s Lemma.

Definition 2.3.1. A cell complex L is a flag complex if

a) each cell in L is a simplex,

b) L is a simplicial complex (i.e., the intersection of two simplices is either empty
or a common face of both), and

c) the following condition holds:

(∗) Given any subset {v0, . . . , vk} of distinct vertices in L such that any two are
connected by an edge, then {v0, . . . , vk} spans a k-simplex in L.

Terminology. Gromov uses the phrase L satisfies the “no ∆ condition” to mean
that the simplicial complex L satisfies (∗). In [D2] and [M] we said L is “determined
by its 1-skeleton” to mean that (∗) held.

Examples 2.3.2.

• An m-gon is a flag complex if and only if m > 3.

• Let P be a poset. A chain (or a “flag”) in P is a linearly ordered subset.
The order complex of P (also called its “derived complex”), denoted by Ord(P),
is the poset of finite chains in P, partially ordered by inclusion. Then Ord(P) is
an abstract simplicial complex in the sense that it is isomorphic to the poset of
simplices in some simplicial complex. Moreover, it is obviously a flag complex.

• Suppose that Y is a cell complex and that Cell(Y ) denotes the poset of cells
in Y . Then Ord(Cell(Y )) can be identified with the barycentric subdivision of Y .
Hence, the barycentric subdivision of any cell complex is a flag complex. We restate
this observation as the following.

Proposition 2.3.3. The condition that L be a flag complex does not restrict its
topological type; it can be any polyhedron.

Definition 2.3.4. A spherical (n − 1)-simplex in Sn−1 is all right if its vertices
form an orthonormal basis for Rn. Similarly a PS cell complex is all right if each
of its cells is (isometric to) an all right simplex.

Examples 2.3.5.

• Let �n denote the regular n-cube [−1, 1]n (of edge length 2) in En. We note
that if v is a vertex of �n, then Lk(v,�n) is an all right (n− 1)-simplex.
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• By a PE cubical complex we mean an M0 complex in which each cell is a
regular cube. If X is a PE cubical complex, then for any vertex v, Lk(v,X) is an
all right PS complex.

Lemma 2.3.6. (Gromov’s Lemma) Suppose L is an all right PS cell complex.
Then L is CAT (1) if and only if it is a flag complex.

Corollary 2.3.7. A PE cubical complex X has κ(X) ≤ 0 if and only if the link
of each of its vertices is a flag complex.

Proof of Lemma 2.3.6. The “only if” implication is easy and left for the reader as
an exercise. The main content of the lemma is the “if” part. Note that the property
being an all right PS flag complex is inherited by all links; therefore, in light of the
last paragraph of Section 2.2, it suffices to prove the following statement:

If L is an all right PS flag complex, then the length of all closed geodesics in L
is ≥ 2π.

Let γ be a closed geodesic in L. Let v be a vertex of L and suppose that γ has
nonempty intersection with the open star O(v, L) of v in L. We then claim that
the intersection of γ with the star St(v, L) of v in L is an arc of γ, denoted by c, of
length π.

To prove this claim we first observe that, due to the all right condition, St(v, L)
is isometrically isomorphic to C1(Lk(v, L)), the spherical cone on the link of v in
L, and we may identify Lk(v, L) with the metric sphere of radius π

2 about v in
L. If γ passes through v, then our claim is obvious. Suppose that γ misses v.
Then consider the surface S ⊂ St(v, L) defined as the union of all geodesic rays of
length π

2 emanating from v and passing through points of γ. S is a finite union of
isosceles spherical triangles of height π

2 with common apex at v, matched together
in succession along γ. Develop S along γ in a locally isometric fashion into the
standard metric 2-sphere S2 . Assume that the image of v is the north pole. Under
the developing map the curve c must be mapped onto a local geodesic, therefore,
onto a segment of a great circle of S2. Since the image of c cuts inside the northern
hemisphere, it must connect two points of the equator and must have length π.
This proves our claim.

If we find two vertices, v and w, such that O(v, L)∩ γ 6= ∅, O(w,L)∩ γ 6= ∅ and
O(v, L) ∩O(w,L) = ∅, then we are done. We show that there always exists such a
pair of vertices. Put V = {v ∈ V ert(L) : O(v, L)∩γ 6= ∅}, then γ is contained in the
full subcomplex of L spanned by V . If O(v, L)∩O(w,L) 6= ∅ held for all v, w ∈ V ,
then all pairs of vertices in V would be connected by an edge in L, therefore V
would span a simplex in L, since L is a flag complex. But a simplex cannot contain
a closed geodesic. �

Chapter II: Cubical Examples.

3. The complex XL.

3.1 A cubical complex with prescribed links.

The point of this subsection is describe a simple construction which proves the
theorem below. (The construction was first described explicitly by Danzer.)

Theorem 3.1.1. Let L be a finite simplicial complex. Then there is a finite PE
cubical complex XL such that the link of each vertex of XL is isomorphic to L.
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Observation 3.1.2. It follows from Gromov’s Lemma that if L is a flag complex,
then XL is nonpositively curved.

The construction of XL is closely related to a standard construction which shows
that any simplicial complex L is a subcomplex of a simplex, namely, the full simplex
on the vertex set of L.

Notation. For any set I, let RI denote the Euclidean space consisting of all func-
tions x : I → R. Let �I = [−1, 1]I denote the standard cube in RI . Suppose that
I = V ert(L), the vertex set of L. If σ is a simplex of L, then let I(σ) denote
the vertex set of σ. Let RI(σ) denote the linear subspace of RI consisting of all
functions I → R with support in I(σ).

The Construction. XL is the subcomplex of �I consisting of all faces of �I

which are parallel to RI(σ) for some σ ∈ Simp(L), the set of simplices in L. In
other words,

XL =
⋃

σ∈Simp(L)

{
faces of �I parallel to RI(v)

}
.

Note that V ert(XL) = {±1}I and that if v ∈ V ert(XL), then Lk(v,XL) ∼= L. This
proves Theorem 3.1.1.

Examples.

• If L is the disjoint union of a 0-simplex and a 1-simplex, then XL is the
subcomplex of a 3-cube consisting of the top and bottom faces and the four vertical
edges. Note that XL is nonpositively curved.

• If L is a triangulation of an (n− 1)-sphere, then XL is an n-manifold.

• Suppose L is a simplicial graph. Then XL is a 2-dimensional complex, each
2-cell is a square and the link of each vertex is L. Thus, XL is nonpositively curved
if and only if L contains no circuits of combinatorial length 3.

In the next subsection we analyze the universal cover and fundamental group
of XL.

3.2 Right-angled Coxeter groups.

We retain the notation L,XL, I, �I from the previous subsection.

Let (ei)i∈I denote the standard basis of RI . For each i ∈ I, let ri : RI → RI be
the linear reflection which sends ei 7→ −ei and ej 7→ ej for j 6= i. The group G of
linear transformations generated by {ri}i∈I is isomorphic to (Z/2)I . The cube �I

is stable under G as is the subcomplex XL.

The subspace [0, 1]I of �I is a fundamental domain for the G-action in the
strong sense that it projects homeomorphically onto the orbit space, i.e., �I/G ∼=
[0, 1]I . Define KL (or simply K) to be the intersection of XL and [0, 1]I . In other
words, K is the union over all simplices σ of L of the cubical faces of the form
(RI(σ) + e) ∩ [0, 1]I , where e = (1, 1, . . . , 1). We note that K is homeomorphic to
the cone on L (the cone point is e). We shall call it the cubical cone on L. Moreover,
XL/G ∼= K.
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For each i ∈ I, put Ki = K ∩{xi = 0}, that is to say, Ki is the intersection of K
with the hyperplane fixed by ri. We note that if i and j are distinct elements of I,
then Ki ∩Kj 6= ∅ if and only if {i, j} ∈ Edge(L) (i.e., if i and j span a 1-simplex in
L). More generally, given a subset J of I, the intersection of the family (Kj)j∈J is
nonempty if and only if J = I(σ) for some simplex σ of L. As we shall see below,
the fact that XL can be nonsimply connected comes from the fact that intersections
of the form Ki ∩Kj can be empty.

Define a “right-angled Coxeter matrix” (mij), (i, j) ∈ I × I, by the formula:

mij =


1 if i = j,

2 if {i, j} ∈ Edge(L),
∞ otherwise.

(“Right-angled” refers to the fact that each off-diagonal entry is either 2 or ∞).
For each i ∈ I, introduce a symbol si, and let S = {si}i∈I . Let W be the group
defined by the presentation:

W = 〈S | (sisj)mij = 1, (i, j) ∈ I × I〉.

It turns out (cf. [B]) that the natural map S →W is injective; moreover, the order
of each si in W is two and the order of sisj in W is mij . Hence, we can safely
identify S with its image in W . The pair (W,S) is called a right-angled Coxeter
system.

For each subset J of I, let s(J) = {sj}j∈J and let WJ denote the subgroup
generated by s(J). (W∅ is the trivial subgroup.) Again it turns out that the
situation is as nice as possible: each (WJ , s(J)) is a right-angled Coxeter system
corresponding to the sub-Coxeter matrix (mij)(i,j)∈J×J (cf. page 20 in [B]).

A construction of Tits and Vinberg. Let Y be a space and (Yi)i∈I a family
of closed subspaces indexed by I (e.g., Y = K). For any point y in Y , let I(y) =
{i ∈ I | y ∈ Yi} and put Wy = WI(y). (In the case Y = K, any nontrivial Wy is
of the form (Z/2)I(σ) for some simplex σ in L.) Give W the discrete topology and
define U(W,Y ) to be the quotient space of W × Y by an equivalence relation ∼,
where (w, y) ∼ (w′, y′) if and only if y = y′ and w−1w′ ∈Wy. Thus, U(W,Y ) is the
space formed by gluing together copies of Y one for each element of w, the copies
w× Y and wsi × Y being glued together along the subspaces w× Yi and wsi × Yi.
The equivalence class of (w, y) in U(W,Y ) is denoted by [w, y]. The natural action
of W on W × Y by left translation descends to a W -action on U(W,Y ). The
map Y → U(W,Y ) defined by y → [1, y] is an embedding and henceforth, we
identify Y with its image. Y is a strong fundamental domain in the sense that
U(W,Y )/W ∼= Y . The W -space U(W,Y ) has the following universal property:
given any W -space Z and any map f : Y → Z such that f(Yi) is contained in the
fixed point set of si on Z, then f extends to a W -equivariant map f̂ : U(W,Y )→ Z.
(The formula is : f̂([w, y]) = wf(y).) The proofs of all the above properties are
easy and the reader should do them as exercises (the proofs can also be found in
[V].) The proof of the next lemma is also left as an exercise for the reader.

Lemma 3.2.1. The space U(W,Y ) is connected if and only if the following two
conditions hold:
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(i) Y is connected,

(ii) for each i ∈ I, Yi is nonempty.

Lemma 3.2.2. The space U(W,Y ) is simply connected if and only if the following
three conditions hold:

(i) Y is simply connected,

(ii) for each i ∈ I, Yi is nonempty and connected,

(iii) Yi ∩ Yj 6= ∅ whenever mij 6=∞.

Proof. Suppose conditions (i) through (iii) hold. Let q : Ũ → U(W,Y ) be the
universal covering. By (i), the inclusion Y → U(W,Y ) lifts to f : Y → Ũ . Lift
each si to an involution s̃i : Ũ → Ũ fixing a point in f(Yi). By (ii), s̃i must
fix all of f(Yi). Then s̃i and s̃j both fix f(Yi ∩ Yj). By (iii), if mij 6= ∞, then
the intersection is nonempty and hence, s̃i and s̃j commute (since they commute
on an open neighborhood of a common fixed point.) Therefore, the W -action
lifts to Ũ . By the universal property of U(W,Y ), the map f extends to a map
f̃ : U(W,Y )→ Ũ which is clearly a section for q. Thus, Ũ = U(W,Y ), i.e., U(W,Y )
is simply connected. Conversely, if any one of conditions (i), (ii) or (iii) fails, then
it is easy to construct a nontrivial covering space of U(W,Y ). �

The universal cover of XL. Now put

UL = U(W,K).

Let ϕ : W → G, G = (Z/2)I , be the homomorphism defined by si 7→ ri and let ΓL

denote the kernel of ϕ. Define a map p : UL → XL by [w, x] 7→ ϕ(w)x. We shall
leave it as an exercise for the reader to check that p is a covering projection. On
the other hand, since K and each Ki are contractible (they are cones), we have the
following corollary to Lemma 3.2.2.

Proposition 3.2.3. UL is the universal cover of XL.

In summary, we have established the following theorem.

Theorem 3.2.4. Suppose L is a flag complex. Then XL is a PE cubical complex
of nonpositive curvature; its universal cover is UL and its fundamental group is ΓL.

4. Applications.

4.1 Background on the Generalized Poincaré Conjecture.

Let Cn be a compact contractible manifold with boundary.

Question 1: Is Cn homeomorphic to the n-disk, Dn?

It follows from Poincaré duality and the exact sequence of the pair (Cn, ∂C),
that the pair has the same homology as (Dn, Sn−1) and that ∂C has the same
homology as Sn−1 (i.e., ∂C is a homology sphere), that is,
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Hi(Cn, ∂C) =
{

0 if i 6= n,

Z if i = n;

Hi(∂C) =
{

0 if i 6= 0, n− 1,

Z if i = 0, n− 1.

Is every homology sphere (of dimension > 1) simply connected? Poincaré pro-
vided a counterexample: the binary icosahedral group G (a finite group of order
120) acts freely on S3 and S3/G is a homology 3-sphere which is not simply con-
nected. In fact, Kervaire [K] showed that in dimensions ≥ 5 any finitely presented
group G satisfying H1(G) = H2(G) = 0, can be the fundamental group of a homol-
ogy sphere. Recently, 3-dimensional homology spheres have been much studied in
3-dimensional topology since interesting invariants (such as the Casson invariant)
can be associated to them.

It is also a fact that every homology (n− 1)-sphere bounds a contractible topo-
logical n-manifold. (For n > 4, this is an easy result using surgery theory; for
n = 4 it follows from the work of Freedman, [F].) Thus, the answer to Question 1
is no: for every n ≥ 4, there are examples of compact, contractible Cn with ∂C not
simply connected.

On the other hand, we have the following result.

Theorem 4.1.1. (The Generalized Poincaré Conjecture)

(i) If Mn−1 is a simply connected homology sphere and n − 1 6= 3, then Mn−1

is homeomorphic to Sn−1.

(ii) If Cn is a compact, contractible manifold with boundary, the boundary is
simply connected and n 6= 3, 4, then Cn is homeomorphic to Dn.

The Generalized Poincaré Conjecture was proved by Smale in the case where
Mn−1 is smooth and of dimension ≥ 6. Subsequently, the result was extended to
dimension 5 and to the PL and topological cases by others (notably Stallings and
Newman). The result in dimension 4 is due to Freedman [F].

Next suppose that Fn is a contractible manifold without boundary.

Question 2: Is Fn homeomorphic to Rn?

Suppose Y is a space which is not compact. A neighborhood of ∞ is the com-
plement of a compact subset of Y . Y is connected at ∞ (or “1-ended”) if every
neighborhood of∞ contains a connected neighborhood of∞. Similarly, Y is simply
connected at ∞ if every neighborhood of ∞ contains a simply connected neighbor-
hood of ∞. For example, Rn is connected at ∞ for n > 1 and simply connected at
∞ for n > 2.

From the earlier discussion we see that the answer to Question 2 is no. Indeed,
we could take Fn =

◦
C n, the interior of Cn. It is then easy to see that Fn is not

simply connected at ∞ if π1(∂C) 6= 1. Furthermore, it is known that the situation
can be much worse than this: Fn need not be “tame” in the sense that it might not
be homeomorphic to the interior of any compact manifold (because the fundamental
groups of neighborhoods of ∞ might not “stabilize” to a finitely generated group).
On the other hand we have the following theorem.
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Theorem 4.1.2. (Stallings [Sta1] for n ≥ 5 and Freedman [F] for n = 4) For
n ≥ 4, if a contractible manifold Fn is simply connected at ∞, then it is homeo-
morphic to Rn.

Question 3: If Fn is the universal cover of a closed aspherical manifold, then is
Fn homeomorphic to Rn?

In view of the above, we see that the issue is not the existence of fake contractible
manifolds (they exist), but rather if such an example can admit a discrete cocompact
group of transformations.

In the next subsection we will show how the construction in Section 3 can be
used to answer Question 3 in the negative.

4.2 Aspherical manifolds not covered by Euclidean space.

As in Section 3, L will denote a flag complex, XL the associated nonpositively
curved cubical complex and UL its universal cover.

Theorem 4.2.1. Suppose Ln−1 is a homology (n − 1)-sphere, with L not simply
connected. Then UL is not simply connected at ∞.

This does not yet answer Question 3 in the negative. The problem is that since
L is only required to be a homology sphere instead of the standard sphere, XL

might not be a manifold. However, XL is very close to being a manifold, it is a
“homology manifold”, as defined below.

Definition 4.2.2. A space X is a homology n-manifold if it has the same local
homology as an n-manifold, i.e., if for each x ∈ X, H∗(X, X − x) ∼= H∗(Rn, Rn −
0). (When X is a polyhedron this is equivalent to the condition H∗(Lk(v,X)) ∼=
H∗(Sn−1) for each vertex v of X.)

The idea is to modify the cubical complex XL of Theorem 4.2.1 to be a manifold.
Recall that UL = U(W,K) and that XL = UL/ΓL, where K is homeomorphic to
the cone on L. As was mentioned in the previous subsection, since L is a homology
(n−1)-sphere, it is always possible to find a contractible n-manifold K̂ with ∂K̂ = L.
For each i ∈ I put K̂i = Ki ⊂ ∂K̂ and set

X̂L = U(W, K̂)/ΓL.

It should now be clear that X̂L is a manifold (the problem at the cone point
has disappeared). We have a map K̂ → K which is the identity on ∂K̂ and a
homotopy equivalence rel ∂K̂. Using the universal property of the U construction,
we see that this map extends to a W -equivariant proper homotopy equivalence
U(W, K̂)→ U(W,K). Thus, U(W, K̂) is also contractible.

Since the property of being simply connected at ∞ is a proper homotopy in-
variant, we see that U(W, K̂) is also not simply connected at ∞. Thus, U(W, K̂)
is a contractible n-manifold which is not homeomorphic to Rn. Since nonstandard
homology (n− 1)-spheres exists whenever n− 1 ≥ 3, we get the following corollary
to Theorem 4.2.1.

Corollary 4.2.3. ([D1]) In each dimension n ≥ 4, there exist closed aspherical
n-manifolds which are not covered by Rn.



26 M. W. DAVIS, G. MOUSSONG

Next we sketch two slightly different proofs of Theorem 4.2.1. The idea in both
cases is to calculate π1(UL − Ci) where C0 ⊂ C1 ⊂ · · · is an increasing family of
compact subsets which exhaust UL (i.e., UL = ∪Ci). First we sketch the approach
of [D1].

Combinatorial picture. Order the elements of W : w0, w1, w2, . . . so that `(wi) ≤
`(wi+1) where `(w) denotes the word length of w with respect to the generating set
S. Put

Ci = w0K ∪ · · · ∪ wiK.

Using the combinatorial theory of Coxeter groups developed in [B], one shows that
wiK ∩ Ci−1 is a union of subspaces of the form (wiKj)j∈J , where WJ is finite. It
follows that this intersection is homeomorphic to an (n − 1)-disk in the boundary
of wiK. Thus, Ci is the “boundary connected sum” of copies of K and ∂Ci is the
connected sum of i + 1 copies of L. Furthermore, UL − Ci is homotopy equivalent
to ∂Ci. Thus, π1(UL−Ci) is the free product of i + 1 copies of π1(L) and (with an
appropriate choice of base points) the map π1(UL − Ci+1)→ π1(UL − Ci) induced
by the inclusion is the projection which sends the last factor to 1. It follows that
UL is not simply connected at ∞.

The second approach is that of [DJ].

CAT (0) picture. Choose a base point x in UL and let Sx(r) denote the metric
sphere of radius r about x. Let {v0, . . . , vm} be the set of vertices inside the ball,
Bx(r). (Assume that we have chosen r so that no vertices lie on Sx(r).) It is shown
in [DJ] that Sx(r) is homeomorphic to the connected sum,

Lk(v0)# · · ·#Lk(vm) = L# · · ·#L.

Also, geodesic contraction provides a homotopy equivalence between UL − Bx(r)
and Sx(r). Thus, if we choose an increasing sequence of real numbers, (ri), with
lim ri =∞ and set Ci = Bx(ri), we reach the same conclusion as before.

The second approach suggests the following question which was first posed by
Gromov.

Question 4: Is every CAT (0) manifold homeomorphic to Rn?

In Section 4.4 we will show that the answer to this is again no. As before, the
idea is to modify the construction of XL in Theorem 4.2.1 to make it a topological
manifold while preserving its feature of nonpositive curvature.

4.3 Background on the Double Suspension Theorem.

Definition 4.3.1. A simplicial complex S is a PL n-manifold if the (combinatorial)
link of each vertex is piecewise linearly homeomorphic to Sn−1.

It turns out that a simplicial complex X can be a topological manifold without
satisfying the above definition.

Suppose that a simplicial complex L is a PL manifold and a homology sphere and
that π1(L) 6= 1. Then CL, the cone on L, is a homology manifold and a manifold
except in a neighborhood of the cone point (since any deleted neighborhood of
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the cone point is not simply connected). Similarly, SL, the suspension of L, is
not a manifold in neighborhoods of the suspension points. On the other hand,
algebraic topology does not provide us with any reason why the double suspension
S2L(= SSL) should not be a manifold. At a topology conference in 1963, Milnor
listed this question as one of the seven most difficult problems in topology. In 1977
the question was settled in the affirmative by Edwards in many cases and in full
generality by Cannon [Ca].

Theorem 4.3.2. (The Double Suspension Theorem of Edwards and Cannon) Sup-
pose that Ln is a homology n-sphere. Then S2L is a manifold (and therefore, by
the Generalized Poincaré Conjecture, it is homeomorphic to Sn+2).

The definitive result in this direction is the following result of [E]. (A good place
to find the proofs of these results is Daverman’s book [Da].)

Theorem 4.3.3. (Edwards’ Polyhedral Homology Manifold Recognition Theorem)
Suppose Xn is a polyhedral homology n-manifold, n ≥ 5. Then Xn is a topological
manifold if and only if the link of each vertex is simply connected.

We will use this result in the next subsection to find the desired modification
of XL.

4.4 Nonpositively curved manifolds not covered by Rn.

As in 4.2, L is a PL homology (n−1)-sphere and K is the cone on L. To answer
Question 4 we want to replace K by a CAT (0) manifold with boundary K̂.

First we need the following lemma (a proof can be found in [DT].)

Lemma 4.4.1. If n − 1 ≥ 4, then there is a PL submanifold Mn−2 in Ln−1

such that Mn−2 is a homology sphere and such that π1(Mn−2) normally generates
π1(Ln−1).

Think of Mn−2 as the “equator” of Ln−1. It separates Ln−1 into two components
N1 and N2, that is,

L = N1

⋃
M

N2.

For i = 1, 2, put

Λi = Ni

⋃
M

CM.

Van Kampen’s Theorem implies that Λi is simply connected. Furthermore, it is a
homology (n− 1)-manifold with the same homology as Sn−1.

Now triangulate Ln−1 as a flag complex so that Mn−2 is a full subcomplex. For
j = 1, 2, let K̂j denote the cubical cone on Λj and put

K̂ = K̂1
⋃
CM

K̂2.
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Then ∂K = ∂K̂ so we can put K̂i = Ki, i ∈ I, and define

X̂L = U(W, K̂)/ΓL.

In the construction of K̂ there are now two cone points, one with link Λ1 and the
other with link Λ2. Since both of these are simply connected, Edwards’ Theorem
4.3.3 implies that K̂ is a contractible manifold with boundary and that U(W, K̂) is
a manifold. The cubical structure on K̂ extends to a cubical structure on U(W, K̂)
in which the vertices are the translates of the two cone points. Since both links
are flag complexes, this cubical structure is CAT (0). Therefore we have proved the
following.

Theorem 4.4.2. ([ADG]) In every dimension n ≥ 5, there exist nonpositively
curved, PE n-manifolds with universal covers not homeomorphic to Rn.

We should note that the construction above does not work for n = 4. The reason
is that Lemma 4.4.1 is not valid for n = 4: for then dim L = 3,dim M = 2, so M
must be a 2-sphere (so its fundamental group cannot normally generate π1(L)).

Thus, the following questions remains open in dimension 4. (Although it is
proved in [Thp] that the answer is affirmative if the manifold has at least one
“tame point”.)

Question 5. Is every CAT (0) 4-manifold homeomorphic to R4?

5. Hyperbolization.

5.1 The basic idea.

In [G1] Gromov described several functorial procedures for converting a cell
complex into a nonpositively curved PE or PH cell complex. Further expositions
of this idea are given in [DJ] and [CD2]. We denote such a procedure by X 7→ h(X)
and call h(X) a “hyperbolization” of the cell complex X. Since X is arbitrary and
h(X) is aspherical, h(X) cannot be homeomorphic to X. The rough idea is that one
constructs h(X) by gluing together nonpositively curved manifolds with boundary
in the same combinatorial pattern as the cells of X are glued together.

Next we describe some properties which such a procedure should have. Let C
be a category, the objects of which are cell complexes (possibly with some addi-
tional requirements) and with morphisms embeddings onto a subcomplexes (i.e., a
morphism is the composition of an isomorphism and an inclusion). Let P be a cat-
egory, the objects of which are nonpositively curved polyhedra and the morphisms
of which are isometric embeddings onto locally convex subpolyhedra.

Desired properties of h(X).

1) (Functoriality) h : C → P is a functor.

2) (Preservation of local structure) If σ is a k-cell in X, then h(σ) should
be a k-manifold with boundary and Lk(σ,X) should be PL homeomorphic to
Lk(h(σ), h(X)).

3) If σ is a point, then h(σ) = σ.

4) (Orientability) For any cell σ, h(σ) should be an orientable manifold with
boundary.
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Properties 1) and 2) imply that there is a map f : h(X)→ X such that for each
cell σ in X, f sends h(σ) to σ. Moreover, f is unique up to a homotopy through
such maps. Property 3) then implies that f∗ : H∗(h(X); Z/2) → H∗(X; Z/2) is
surjective. Moreover, if 4) holds, then f∗ is surjective with integral coefficients.
(Exercise: prove the statements in this paragraph.)

In the next subsection we shall describe a construction of Gromov which satisfies
properties 1), 2) and 3). Gromov [G1] also described a hyperbolization procedure
satisfying 4), but the construction is a little more complicated and we shall not
discuss it here.

5.2 Gromov’s Möbius band hyperbolization procedure.

Let Cn denote the category of cubical cell complexes of dimension ≤ n and let
Pn denote the category of nonpositively curved PE cubical complexes of dimension
≤ n. In both cases morphisms are as in the previous subsection. We shall now define
a functor Cn → Pn by induction on n. If dim X = 0, then if we want property 3) to
hold there is only one possible definition h(X) = X. Now suppose by induction that
we have defined h(X) for dim X < n. Next we want to define the hyperbolization
of an n-cube, �n. Let a : �n → �n denote the antipodal map (i.e., the central
symmetry). Define

h(�n) = (h(∂�n)× [−1, 1])/(Z/2)

where Z/2 acts by h(a) on the first factor and by reflection on the second. Note
that ∂h(�n) is equal to (h(∂�n) × {−1, 1})/(Z/2) which is canonically identified
with h(∂�n).

Now suppose that dim X = n and that Xn−1 denotes its (n − 1)-skeleton. We
define h(X) by attaching, for each n-cell �n in X, a copy of h(�n) to h(Xn−1) via
the canonical identification of ∂h(�n) with the subset h(∂�n) of h(Xn−1), i.e.,

h(X) = h(Xn−1) ∪
⋃

�n⊂X

h(�n).

We leave it as an exercise for the reader to check that (a) h(X) is a nonpositively
curved cubical complex and (b) X 7→ h(X) is a functor. (For (a) show that h(X)
has a natural cubical structure with the same vertex set as the cubical structure
on X; moreover, the link of a vertex in h(X) is the barycentric subdivision of its
original link in X.)

Examples 5.2.1.

• h (1-cell)= 1-cell.

• If X is a graph, then h(X) = X.

• h(�2) = (∂�2 × [−1, 1])/(Z/2), which is a Möbius band (hence, our terminol-
ogy).

• h(∂�3) is the result of replacing each of the six faces of a cube by a Möbius
band, in other words, the surface h(∂�3) is the connected sum of six copies of RP 2.

Here is an application of the above construction.
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Theorem 5.2.2. (Gromov [G1]) Any triangulable manifold is cobordant to an as-
pherical manifold.

Proof. Given a manifold Mn, triangulate it and then form the cone CM . Thus,
CM is a simplicial complex. Let c denote the cone point. Any simplicial complex
can be subdivided into cubes as indicated in Figure 5.2.1 below.

Figure 5.2.1. Subdivision of a simplex into cubes in dimensions 2 and 3

Do this to CM and then apply the Möbius band hyperbolization procedure.
Let Star(h(c)) denote the union of all open cubes in h(CM) which contain the
vertex h(c) in their closure. By property 2), CM − Star(h(c)) is a manifold with
two boundary components. One component is h(M). The other component is
Lk(h(c), h(CM)), which is just the barycentric subdivision of M . �

5.3 Blow-ups of hyperplane arrangements in real projective space.

In this subsection we discuss some results from [DJS]. The point is that some
manifolds constructed using the Möbius band hyperbolization procedure and similar
constructions occur in “nature”.

Suppose that Nn−k is a smooth submanifold of codimension k in a smooth
manifold Mn. Let ν denote its normal bundle, E(ν) the total space of ν and P (ν)
the associated projective space bundle over N . Thus, the fiber of P (ν) → N is
RP k−1. Let λ denote the canonical line bundle over P (ν) and E(λ) its total space.
Let E0(λ) and E0(ν) denote the complements of the 0-sections in E(λ) and E(ν),
respectively. There is a natural identification of E0(λ) with E0(ν).

The real blow-up M} of M along N is defined as follows. As a set M} is the
disjoint union of M −N and P (ν). M} is given the structure of a smooth manifold
as follows. By the Tubular Neighborhood Theorem an open neighborhood of N in
M can be identified with E(ν). We then glue M −N to E(λ) along an open subset
of both via the identification E0(λ) ∼= E0(ν).

Now suppose that H is a finite collection of linear hyperplanes in Rn+1 (H is a
“hyperplane arrangement”). LetM be a collection of intersections of elements inH.
For each subspace E ∈M, let P (E) denote the corresponding subprojective space
of RPn. Let RPn

}M denote the result of blowing up RPn along the submanifolds
{P (E)}E∈M. (There are some conditions thatM must satisfy for this construction
to be independent of the order of blowing-up.)

The hyperplanes in H divide Sn into spherical cells. This cellulation of Sn

descends to a cellulation of RPn. One then has a dual cellulation of RPn by “dual
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cells”. (The i-cells in the dual cellulation are in bijective correspondence with the
(n−i)-cells in the original cellulation.) The blowing-up process can be described by
a procedure analogous to the Möbius band procedure (and which, in fact, sometimes
coincides with the Möbius band procedure).

Example 5.3.1. Suppose H is the set of coordinate hyperplanes in Rn+1, i.e.,
H = {Hi}1≤i≤n+1, where Hi is the hyperplane xi = 0. The hyperplanes in H
then divide Sn into all right spherical simplices, triangulating it as the boundary of
the (n + 1)-dimensional octahedron. The dual cellulation is as the boundary of an
(n+1)-cube. The dual cellulation descends to the cellulation of RPn as (∂�n+1/a,
where a is the antipodal map. LetM denote the set of all nonzero intersections of
elements of H. Then it is not hard to see the following theorem.

Theorem 5.3.2. ([DJS])

RPn
}M = h(∂�n+1/a).

(HereM denotes the set of all non-zero subspaces determined by coordinate hyper-
planes arrangement and h is Gromov’s Möbius band procedure.)

Remarks. (i) The manifold RPn
}M occurs in nature as the closure of a generic

“torus” orbit in a flag manifold. To be precise consider the flag manifold F =
GL(n + 1, R)/B where B is the subgroup of all upper triangular matrices. Let
H = (R∗)n+1 denote the “torus” of all diagonal matrices in GL(n + 1, R). (Note
that H is not connected, it is isomorphic to (R+ ×Z/2)n+1, where R+ denotes the
positive reals). As shown in [DJS] the closure of the H-orbit on F of any point gB,
where the eigenvalues of g are distinct, is diffeomorphic to RPn

}M. It follows from
the results of the previous subsection (i.e., essentially from Gromov’s Lemma) that
these manifolds are nonpositively curved.

(ii) The blow-ups of many other hyperplane arrangements also give nonpositively
curved cubical complexes. For example, if H is any arrangement in Rn+1 and
M is the maximal family of all nonzero intersections, then, as shown in [DJS],
RPn

}M is nonpositively curved. As another example, if H is a simplicial hyperplane
arrangement in Rn+1 which cannot be decomposed into 3 or more factors and
if Mmin is the family of all “irreducible” intersections, then RPn

}Mmin
is again

nonpositively curved. Furthermore, many of these blow-ups occur in nature, for
example, as compactifications of certain moduli spaces.

Chapter III: Non-cubical examples.

6. Reflection groups.

6.1 Geometric reflection groups.

The first picture to understand is the action of the dihedral group Dm of order
2m on R2. Suppose that `1 and `2 are two lines through the origin in R2 making
an angle of π/m, where m is an integer ≥ 2. Let s1 and s2 denote the orthogonal
reflections across `1 and `2, respectively. Then s1s2 is a rotation through an angle
of 2π/m. Thus, s1s2 has order m and the dihedral group Dm generated by s1 and
s2 is a group order 2m. It is also not hard to see that a sector, bounded by rays
starting at the origin in the directions `1 and `2, is a fundamental domain for the
action (in the strong sense).
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Next we move onto the general situation. Suppose that K is a convex polytope
in Mn

ε , n ≥ 2 and that {Ki}i∈I is the set of codimension-one faces of K (I is some
index set). If Ki ∩Kj is a codimension-two face, let us also assume the following
“angle condition”:

The dihedral angle along Ki ∩Kj has the form π/mij where mij is an integer ≥ 2.

If Mn
ε = Sn, then the condition that all the dihedral angles are ≤ π/2 forces K

to be a simplex. (This is an easy argument in linear algebra, see pages 77-78 in [B].)
In the Euclidean and hyperbolic cases we can apply this observation to conclude
that the link of each vertex is a simplex. (A polytope with this property is called
simple.)

Let si denote reflection across the hyperplane in Mn
ε spanned by Ki. Let W =

〈si〉 be the subgroup of Isom(Mn
ε ) generated by the si. Our analysis of the dihedral

group shows that the following relations hold in W :

s2
i = 1, (ssj)mij = 1.

Introduce symbols si, i ∈ I, and put S = {si}i∈I . Define a group W by the
presentation:

W = 〈S | s2
i = 1, (sisj)mij = 1〉

where i ∈ I and (i, j) ranges over all pairs of distinct elements such that Ki∩Kj 6= ∅.
Let ϕ : W →W be the homomorphism defined by si 7→ si.

We define the Tits-Vinberg construction U(W,K) just as in Section 3.2. Thus,
for each x ∈ K, I(x) = {i ∈ I | x ∈ Ki}, Wx is the subgroup generated by the
generators corresponding to I(x) and U(W,K) = (W × K)/ ∼, where (w, x) ∼
(w′, x′) if and only if x = x′ and w−1w′ ∈Wx.

Theorem 6.1.1. (i) W ∼= W .

(ii) W is a discrete subgroup of Isom(Mn
ε ).

(iii) Mn
ε is tessellated by {wK}w∈W .

Sketch of proof. Put U = U(W,K). Define p : U → Mn
ε by [w, x] 7→ ϕ(w)x.

First show that U can be given the structure of a Mn
ε -manifold so that p is a

local isometry. Then show that U is complete and that p is a covering projection.
Since Mn

ε is simply connected, one can conclude from this that p is an isometry.
In particular, ϕ is an isomorphism so (i) holds, (ii) is immediate and since p is
homeomorphism (iii) holds (since the same statement is clearly true for U). �

In the spherical and Euclidean cases Coxeter classified all such geometric re-
flection groups. The main qualitative result is that in the spherical case, K is a
spherical simplex while in the Euclidean case K must be (metrically) a product of
Euclidean simplices. The possible dihedral angles are given by the “Coxeter dia-
gram” of (W,S). This is a labeled graph with one vertex for each element of I. One
connects distinct vertices i and j by an edge if mij 6= 2 and one labels the edge by
mij if mij 6= 3. The possible spherical and Euclidean reflection groups are listed in
the table below. (In both cases it suffices to list only the “irreducible” groups, that
is, those groups for which the diagram is connected.
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Table 6.1.1. Irreducible finite and affine Coxeter groups

Example 6.1.2. (Triangle groups) Suppose that K is a 2-simplex ∆ and I =
{1, 2, 3}. Given three integers m12, m23 and m13 each ≥ 2, can we realize ∆ as a
2-simplex in M2

ε with angles π/m12, π/m23 and π/m13? As is well known, we can
always do this either in S2, E2 or H2 depending on whether the sum of the angles
is > π, = π or < π. Thus, any three such integers m12, m23 and m13 determine a
triangle group W and this group is spherical, Euclidean, or hyperbolic as the sum
(m12)−1 + (m23)−1 + (m13)−1 is > 1, = 1 or < 1, respectively.

Example 6.1.3. (Polygon groups) Now suppose K is a k-gon, k ≥ 4. The question
of whether K with given angles can be realized in S2, E2 or H2 comes down to the
question of whether the sum of the angles is > π(k− 2), = π(k− 2) or < π(k− 2).
Since all the angles are ≤ π/2 and k ≥ 4, the spherical case does not occur. In fact,
the only possible Euclidean case is the rectangle where all four angles are π/2. (This
is the Coxeter group Ã1 × Ã1 with diagram

∞
◦(

∞
◦(.) It is not hard to see that

given any other assignment of angles π/mi, one can realize K as a convex polygon
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in H2. (Proof: subdivide K into triangles.) The conclusion that we reach from
this example and the previous one is that given any assignment of angles π/mij to
an abstract polygon K, we can realize it as a fundamental chamber of a geometric
reflection group; moreover in almost all cases this reflection group is hyperbolic. In
the next subsection we will see that a similar result also holds in dimension three.

Example 6.1.4. (Simplicial Coxeter groups) The case where K = ∆n is an
n-simplex can also be analyzed in a relatively straightforward way. Put I =
{1, . . . , n + 1} and suppose we are given integers mij ≥ 2 for each unordered
pair of distinct elements in I. Form the associated cosine matrix (cij). It is the
symmetric I × I matrix defined by

cij =
{

1 if i = j,

− cos(π/mij) if i 6= j.

If ∆n can be realized as a geometric simplex in Mn
ε then (cij) is the Gram matrix of

inner products (ui · uj) where ui denotes the outward pointing unit normal vector
to the face of ∆n corresponding to i. If ε = 1 then the (ui)i∈I are a basis for Rn+1;
hence, the matrix (cij) is positive definite. Similarly, if ε = −1 then the (ui)i∈I

are a basis for Rn,1 and hence, (cij) is indefinite of type (n, 1). Moreover, since
the link of each vertex must be spherical it follows that each n by n minor of (cij)
must be positive definite. Similarly, in the irreducible Euclidean case, (cij) must be
semidefinite of type (n, 0) and each n by n minor must be positive definite. It is also
not difficult to establish the converse (see pages 100-101 [B]). Thus, the assignment
{i, j} 7→ mij corresponds to a geometric reflection group with fundamental chamber
an n-simplex if and only if each n by n minor of the associated cosine matrix (cij)
is positive definite. Moreover, the reflection group is then spherical, Euclidean
or hyperbolic as (cij) is positive definite, positive semidefinite of type (n, 0), or
indefinite of type (n, 1), respectively. Coxeter’s classification then amounts to listing
the possibilities for when (cij) is positive semidefinite. It is also not difficult to
classify the remaining hyperbolic reflection groups with fundamental chamber a
simplex. It turns out that such examples can occur only in dimensions 2, 3 and 4.
The 2-dimensional examples are the hyperbolic triangle groups of Example 6.1.2.
There are 9 more examples in dimension 3 and 5 more in dimension 4.

6.2 Andreev’s Theorem.

Theorem 6.2.1. (Andreev [A]) Let K3 be a simple (combinatorial) 3-dimensional
polytope different from a tetrahedron, let E be the set of edges in K and let Θ : E →
(0, π/2] be any function. Then K can be realized as a convex polytope in H3 with
dihedral angles prescribed by Θ if and only if the following three conditions hold:

(i) At each vertex, the three edges which meet there satisfy Θ(e1) + Θ(e2) +
Θ(e3) > π.

(ii) If three faces intersect pairwise but do not have a common vertex then the
angles at the edges of intersection satisfy Θ(e1) + Θ(e2) + Θ(e3) < π.

(iii) Four faces cannot intersect cyclically with all angles π/2 unless two of the
opposite faces also intersect.

(iv) If K is a triangular prism, then the angles along base and top cannot all
equal π/2.

Moreover, when the polytope is realizable it is unique up to an isometry of H3.
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Corollary 6.2.2. Suppose K3 is a 3-dimensional combinatorial polytope and that
eij denotes the edge Ki ∩Kj. Given an angle assignment Θ : E → (0, π/2] of the
form Θ(eij) = π/mij, where mij is an integer ≥ 2, then K3 can be realized as the
fundamental chamber of a geometric reflection group W on H3 if and only if the
Θ(eij) satisfy Andreev’s conditions. Moreover, W is unique up to conjugation in
Isom(H3).

This result is actually a special case of Thurston’s Geometrization Conjecture
and it provided some of the first substantial evidence for its truth. The uniqueness
statement in Corollary 6.2.2 is a special case of the Mostow Rigidity Theorem.
We begin by giving topological reasons for the necessity of Andreev’s conditions in
Corollary 6.2.2. (This explanation is due to Thurston.)

Proof of the necessity of Andreev’s conditions. Condition (i) in Theorem 6.2.1 is
just the condition that the link of each vertex be a spherical simplex. It then insures
that in Corollary 6.2.2 the isotropy subgroup at each vertex is a finite reflection
group. Next suppose we have three faces, say K1,K2,K3, which intersect pairwise
but which don’t have a common vertex. If π/m12 + π/m23 + π/m13 > π, then the
subgroup F generated by s1, s2, s3 is a spherical reflection group and hence, finite.
This gives a decomposition of W as an amalgamated free product: W = W ′ ∗F W ′′,
where W ′ and W ′′ are the subgroups generated by the faces of K on the two sides of
the triangle transverse to K1,K2 and K3. In geometric terms, if Γ is a torsion-free
subgroup of finite index in W , and if M3 = H3/Γ, then a component of the inverse
image of this triangle in M3 gives a separating 2-sphere in M3. Thus such an M3

would be a nontrivial connected sum. Similarly, if π/m12 + π/m23 + π/m13 = π,
then we get a Euclidean triangle group embedded in W (and hence, a copy of Z×Z
in W ) and an incompressible torus in M3. If condition (iii) fails then we again get
a Euclidean group (with fundamental chamber a square) embedded in W and an
incompressible torus in M3. The failure of condition (iv) leads to a decomposition
W = W ′ ×D∞ and again (a copy of Z×Z and) an incompressible torus in M3. �

A proof of Andreev’s Theorem can be found in [A] and a more geometric argu-
ment in Thurston’s notes [Th]. Although we will not attempt to give its proof, let
us indicate a suggestive dimension count.

Let MK denote the space of convex polytopes in H3 of the same combinatorial
type as K, modulo the action of Isom(H3). A hyperplane (or half-space) in H3

is determined by its unit normal vector. The space of such unit normal vectors
is a 3-dimensional submanifold of R3,1. Let f, e and v denote, respectively, the
number of faces, edges and vertices of K. A convex polytope in H3, being an
intersection of half-spaces in H3, is determined by its f outward pointing unit
normal vectors. Since the polytope is simple these half-spaces intersect in general
position; hence, any small perturbation of these normal vectors will yield a polytope
of the same combinatorial type as K. It follows that MK is a manifold of dimension
3f − 6. (Isom(H3) is a Lie group of dimension 6.) On the other hand, the space
of angle assignments Θ : E → (0, π/2 + ε) is an open subset of Euclidean space of
dimension e. Since three edges meet at each vertex 3v = 2e and since the Euler
characteristic of the 2-sphere is 2, f − e + v = 2; hence 3f − 6 = e. Thus, MK is a
manifold of the same dimension e as the space of angle assignments. The content of
Andreev’s Theorem is then that the map from MK to the space of allowable angle
assignments is a homeomorphism.

There is no analog to Andreev’s Theorem for hyperbolic reflection groups in
higher dimensions. One way to see this is that the preceding dimension count fails
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in dimensions > 3. Indeed, Vinberg has shown that there do not exist cocompact
hyperbolic reflection groups in dimensions > 30. In other words, there do not exist
convex, compact polytopes Kn ⊂ H3 with all dihedral angles submultiples of π, if
n > 30.

A dual formulation of Andreev’s conditions.

Suppose L is the boundary of the dual polytope to K3. Thus L is a triangulation
of S2 such that the i-faces of L correspond to the (2−i)-faces of ∂K, with inclusions
reversed. The dual form of Andreev’s conditions are then as follows.

(i)′ For any 2-simplex in L with edges e12, e23 and e13, (m12)−1 + (m23)−1 +
(m13)−1 > π.

(ii)′ If e12, e23, e13 is any “empty” 3-circuit in L, then (m12)−1 + (m23)−1 +
(m13)−1 < 1. (“Empty” means that it is not the boundary of a 2-simplex.)

(iii)′ There does not exist an “empty” 4-circuit e12, e23, e34, e14 with all mij = 2.
(Here “empty” means that it is not the boundary of the union of two adjacent
2-simplices.

(iv)′ L is not the suspension of a triangle with all edges at the suspension points
labeled 2.

Remark. There is also a version of Andreev’s theorem for convex polytopes of fi-
nite volume in H3. Roughly speaking, one allows Euclidean reflection groups as
subgroups but only at the cusps.

6.3 Coxeter groups.

The theory of abstract reflection groups was developed by Tits (who introduced
the terminology “Coxeter groups” for these objects).

Let I be a set (usually a finite set.) A Coxeter matrix M = (mij) over I is a
symmetric I by I matrix with entries in N ∪ {∞} such that mii = 1 and mij ≥ 2
whenever i 6= j. If J is any subset of I, then MJ denotes the J by J matrix formed
by restricting M to J . We now repeat some of the material from 3.2. Introduce
symbols si, i ∈ I, and put S = {si}i∈I . Let s : I → S be the bijection i 7→ si. The
Coxeter group W (or W (M)) is the group defined by the presentation:

W = 〈S | (sisj)mij = 1, (i, j) ∈ I × I〉.

The pair (W,S) is a Coxeter system. For each subset J of I let WJ denote the
subgroup generated by s(J). It turns out that the natural map from W (MJ) to
WJ is an isomorphism, i.e., WJ is also a Coxeter group. The subset J is called
spherical if WJ is a finite group.

Given a space X and a family of closed subspaces {Xi}i∈I one defines the
Vinberg–Tits construction U(W,X) exactly as in 3.2 or 6.1.

Definition 6.3.1. A group action G× Y → Y is a reflection group action if there
is a Coxeter group W with generators indexed by I and a space X with closed
subspaces {Xi}i∈I so that G = W and Y is W -equivariantly homeomorphic to
U(W,X).

Remark. It is more common to define a “reflection group” to be a group generated
by “reflections” on a linear space or on a manifold and then to prove that (possibly
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after making some additional hypotheses) the group is a Coxeter group and the
space has the form U(W,X). However, it seems simpler just to take this as the
definition.

Let Sf denote the set of spherical subsets of I; it is partially ordered by inclusion.
(Note: ∅ ∈ Sf ).) The subposet Sf

>∅ consisting of the nonempty elements of Sf is
an abstract simplicial complex which we denote by L and call the nerve of W (or
of M). (Thus, I is the vertex set of L and a nonempty subset J of I spans a simplex
if and only if it is spherical.)

The poset of spherical cosets is defined by

WSf =
∐

J∈Sf

W/WJ .

Again, the partial ordering is inclusion.

6.4 The complex Σ.

The goal of the next four subsections will be to explain the proof of the following
generalization of Theorem 3.2.4.

Theorem 6.4.1. ([M]) For any finitely generated Coxeter group W , there is a
CAT (0), PE complex Σ on which W acts as an isometric reflection group with
finite isotropy subgroups and with compact orbit space.

The difficult part of this theorem is the proof that Σ is CAT (0). Before giving
the definition of Σ we need to make a few general remarks about the geometric
realization of a poset.

Let P be a poset. Its order complex, Ord(P), is then a simplicial complex
(see 2.3). The geometric realization of P, denoted geom(P), is the underlying
topological space of Ord(P). Given an element p ∈ P we define a subposet P≥p

by P≥p = {x ∈ P | x ≥ p}. The subposets P≤p, P>p, P<p are defined similarly.
It follows that we have two decompositions of geom(P) into subcomplexes; both
decompositions are indexed by P. One decomposition is {geom(P≤p)}p∈P and the
other is {geom(P≥p)}p∈P . The subcomplexes geom(P≤p) are the faces of geom(P),
while the geom(P≥p) are its dual faces.

Definitions 6.4.2.

Σ = geom(WSf ),

K = geom(Sf ),
Ki = geom(S≥{i}), i ∈ I.

The natural inclusion Sf → WSf defined by J → 1WJ induces an inclusion
K → Σ. The image of K is called the fundamental chamber of Σ. In fact, K is
just the dual face geom(WSf

≥W∅
). The group W acts naturally on WSf and hence

on Σ: the translates of K are also called chambers. The subcomplex Ki is a mirror
of K. The proof of the next lemma is left as an exercise for the reader.
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Lemma 6.4.3. The natural map U(W,K) → Σ is a W -equivariant homeomor-
phism. Thus, W is a reflection group on Σ.

In the next two subsections we show that the faces of Σ are naturally identified
with certain convex polytopes in Euclidean space. (In the right-angled case these
polytopes are cubes.) This will then define the PE structure on Σ.

6.5 Finite Coxeter groups.

In this subsection, we suppose that Card(I) = n. As we indicated already in
Example 6.1.4, there is the following lemma.

Lemma 6.5.1. The following statements are equivalent.

(i) The group W is finite;

(ii) W is an orthogonal linear reflection group on Rn;

(iii) W is a geometric reflection group on Sn−1;

(iv) The cosine matrix (cij), defined by cij = − cos(π/mij), is positive definite.

Proof. (ii) and (iii) are equivalent since Isom Sn−1 = O(n). The equivalence of
(iii) and (iv) is indicated in Example 6.1.4. To see that (i) ⇔ (iv), one first shows,
as in [B], that W acts on Rn preserving the bilinear form corresponding to (cij).
If (iv) holds, then the group of all linear transformations preserving this form is
isomorphic to the compact group O(n) and since W is discrete in this group it must
be finite. In the converse direction one shows that if W is irreducible then, up to
scalar multiplication, there is a unique W -invariant symmetric bilinear form on Rn.
(cf. page 66 in [B]). If W is finite, we can always find an invariant inner product,
i.e., we can find such a form which is positive definite. Thus, (i) ⇒ (iv). �

Definition 6.5.2. If σn−1 is a spherical (n − 1)-simplex in Sn−1 then its it dual
simplex σ∗ is the simplex in Sn−1 spanned by the outward pointing unit normal
vectors to σ.

In particular, if ∆ denotes a fundamental simplex for a finite reflection group W
on Sn−1, then ∆∗ is a simplex with the property the Gram matrix (ui · uj) of its
vertex set is just the cosine matrix associated to (mij).

Now suppose W is a finite reflection group on Rn. Choose a point x in the interior
of a fundamental chamber (such an x is determined by specifying its distance to
each of the bounding hyperplanes, i.e., by an element of (0,∞)I).

Definition 6.5.3. The Coxeter cell C associated to W is the convex hull of Wx,
the W -orbit of x.

Examples 6.5.4. (i) If W = Dm is the dihedral group of order 2m, then C is a
2m-gon. (It is a regular 2m-gon if x is equidistant from the two bounding rays.

(ii) If W = (Z/2)n and x is equidistant from the bounding hyperplanes, then C
is a regular n-cube.

(iii) If W = A3, the symmetric group on 4 elements, then C is the “permutohe-
dron” pictured below.

The proof of the following lemma is left as an exercise for the reader.
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Figure 6.5.1. Permutohedron

Lemma 6.5.5. Suppose W is finite and C is a Coxeter cell for it. Let Face(C)
denote the poset of faces of C. Then the correspondence w 7→ wx induces an
isomorphism of posets WSf ∼= Face(C). (In other words a subset of W is the
vertex set of a face of C if and only if it is a coset of WJ for some J ⊂ I.)

It follows that the order complex of WSf is naturally identified with the barycen-
tric subdivision of C. Thus, when W is finite we define a PE structure on Σ by
setting C = Σ. We note that we then have Lk(v,Σ) = Lk(v, C) = ∆∗.

6.6 The PE cell structure on Σ.

We return to the situation where the Coxeter group W is arbitrary. Choose a
function f : I → (0,∞) which will be used to determine the shape of Coxeter cells.
For each spherical subset J of I, let CJ denote the Coxeter cell corresponding to
WJ and f |J . Lemma 6.5.5 shows that for any spherical coset α = wWJ ∈WSf , we
have that the poset WSf

≤α is naturally isomorphic to Face(CJ). In other words the
faces of WSf are naturally convex polytopes. This defines a PE structure on Σ:
we identify each geom(WSf

≤α), α = wWJ , with CJ . The W -action on Σ is then
clearly by isometries.

We now come to the crucial issue of showing that Σ is CAT (0). An argument
similar to the proof of Lemma 3.2.2 shows that Σ is simply connected. So, by
Theorems 1.5.2 and 2.2.3, the problem reduces to showing that the link of each
vertex is CAT (1). What are the vertices of Σ? They correspond to cosets of
the trivial subgroup W∅, i.e., they correspond to elements of W . Since W acts
transitively on the vertices of Σ, it suffices to consider the vertex v corresponding
to 1 ·W∅. There is a cell of Σ properly containing v for each element of Sf

>∅, i.e.,
Lk(v,Σ) is simplicially isomorphic to the complex L. What is the PS structure
on L? For each J ∈ Sf , we have that Lk(v, CJ) = ∆∗

J , the dual simplex to a
fundamental simplex for WJ . So, Theorem 6.4.1 comes down to showing that this
PS structure on L is CAT (1).

6.7 A generalization of Gromov’s Lemma.

Let σn−1 ⊂ Sn−1 be a spherical n− 1 simplex with vertex set {v1, . . . , vn}. Set
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`ij = d(vi, vj) = cos−1(v1 · vj) and
cij = cos(`ij) = v1 · vj ,

where d(vi, vj) denotes the length of the circular arc from vi to vj . The cosine matrix
(cij) is then positive definite since {v1, . . . , vn} is a basis for Rn. Conversely, given
a symmetric matrix (`ij) with entries in (0, π), we can define a cosine matrix (cij)
by the above formula and if (cij) is positive definite then (`ij) is the matrix of
edge lengths of a spherical simplex. (Proof: choose a basis (v1, . . . , vn) for Rn with
Gram matrix (cij).)

Definition 6.7.1. A spherical simplex has size ≥ π/2 if the length of each of its
edges is ≥ π/2 (or equivalently, if each off-diagonal entry of (cij) is nonpositive).

Suppose that L is a PS cell complex and that each cell is a simplex of size ≥ π/2.

Definition 6.7.2. L is a metric flag complex if it is a simplicial complex and if
the following condition (∗) holds.

(∗) Suppose {v0, . . . , vk} is a set of vertices of L any two of which are connected
by an edge. Put cij = cos−1(d(vi, vj)). Then {v0, . . . , vk} spans a simplex in L if
and only if (cij) is positive definite.

In other words L is a metric flag complex if and only if L is “metrically deter-
mined by its 1-skeleton.”

Example 6.7.3. Suppose L is the nerve of a Coxeter group with PS structure
described above. Suppose ui, uj are vertices of L which are connected by an edge.
Since d(ui, uj) = π− π/mij which is ≥ π/2, we see that each simplex in L has size
≥ π/2. Furthermore, by Lemma 6.5.1 a subset J of I is spherical if and only if the
associated cosine matrix is positive definite. Thus, L is a metric flag complex.

The following result of [M] generalizes Gromov’s Lemma.

Lemma 6.7.4. ([M]) Suppose L is a PS cell complex in which all the cells are
simplices of size ≥ π/2. Then L is CAT (1) if and only if it is a metric flag
complex.

Corollary 6.7.5. ([M]) Σ is CAT (0).

Proof of Lemma 6.7.4. Just as in the case of Gromov’s Lemma 2.3.6 the “only
if” implication is easy and left as an exercise for the reader. We sketch a simple
proof of the other implication found recently by Krammer [Kra]. It is based on
the following characterization of CAT (1) spaces given by Bowditch. We say that
a closed rectifiable curve in a metric space is shrinkable if it can be homotoped
through a family of closed rectifiable curves in a way that the lengths of these
curves do not increase and do not remain constant during the homotopy. (Note
that a shrinkable closed curve in a compact space is always shrinkable to a constant
curve.) Bowditch in [Bow] uses the Birkhoff curve-shortening process to prove the
following.
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Lemma 6.7.6. (Bowditch) Let X be a compact metric space of curvature ≤ 1.
Suppose that every nonconstant closed rectifiable curve of length < 2π is shrinkable
in X. Then X satisfies CAT (1).

Let now L denote a metric flag complex in which all simplices have size ≥ π/2.
These properties are inherited by all links; therefore, by induction on dimension
we may assume that L has curvature ≤ 1. Suppose that L is not CAT (1). Then
by Bowditch’s Lemma there exists a nonconstant, nonshrinkable, closed curve of
length < 2π in L. Choose a shortest possible among such curves, then this curve,
denoted by γ, is a nonshrinkable closed geodesic of length < 2π. As L consists of
simplices of size ≥ π/2, for each vertex v of L the closed π/2-ball Bv about v is
isometric to the spherical cone C1(Lk(v, L)) and is contained in the star St(v, L).
It is easy to see that L is covered by the interiors of balls Bv, v ∈ V ert(L). As in
the proof of Gromov’s Lemma we see that γ ∩Bv is an arc of length π whenever γ
meets the interior of Bv.

Suppose that v is a vertex of L such that γ meets the interior of Bv and does
not pass through v. Then let us perform the following modification on γ: replace
the segment γ ∩Bv with the union of the two geodesic segments from v to γ ∩∂Bv.
This modification can clearly be achieved via a homotopy through curves that
have constant length. It follows that the modified closed curve continues to be a
nonshrinkable closed geodesic of same length.

Repeated application of such modifications results in a nonshrinkable closed
geodesic that passes through the maximum number of vertices. Such a curve is
necessarily contained in the 1-skeleton of L. Since all edges have length ≥ π/2, the
curve is a 3-circuit in the 1-skeleton. But in a metric flag complex every 3-circuit
with edges of total length < 2π is the boundary of a 2-simplex; therefore, it cannot
be a closed geodesic, a contradiction. �

6.8 When is Σ CAT (−1)?

Sometimes the phrase “large space” is used synonymously with “CAT (1) space”.
Call a CAT (1) space L extra large if there is a constant δ > 0 so that the length of
every closed geodesic in L is ≥ 2π + δ.

In this subsection we shall state (without proofs) some results from [M].

Lemma 6.8.1. ([M]) Suppose X is a PE cell complex with κ(X) ≤ 0. Then the
metric can be deformed to a PH structure with κ(X) ≤ −1 if and only if the link
of each vertex is extra large.

Lemma 6.8.2. ([M]) Suppose that L(= L(W )) is the nerve of a Coxeter group W .
Then L is extra large if and only for any subset J of I the following two conditions
hold:

• WJ 6= WJ1 ×WJ2 where both factors are infinite.

• WJ is not a Euclidean reflection group with Card(J) ≥ 3.

Corollary 6.8.3. ([M]) The following statements are equivalent:

(i) W satisfies the condition in Lemma 6.8.2;

(ii) Σ can be given a PH structure which is CAT (−1);

(iii) W is “word hyperbolic” in the sense of Gromov, [G1];
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(iv) W does not contain a subgroup isomorphic to Z× Z.

The logic for the proof of this corollary is as follows. Lemma 6.8.1 and 6.8.2
show that (i) ⇒ (ii). If a group acts properly, isometrically and cocompactly on
a connected metric space, then the group and the space are in a certain sense
“quasi-isometric”, a CAT (−1) space is certainly coarsely hyperbolic (= negatively
curved); so a group acting on such a space is word hyperbolic; hence, (ii) ⇒ (iii).
(For definitions and discussion of terms in the previous sentence, see [G1].) Word
hyperbolic groups do not contain subgroups isomorphic to Z×Z (see [GH]). Thus,
(i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i).

7. Convex hypersurfaces in Minkowski space.

7.1 Minkowski space.

Minkowski space Rn,1 is the vector space Rn+1 with coordinates x = (x0, x1, . . . ,
xn) but equipped with the indefinite symmetric bilinear form, denoted by (x, y) 7→
x · y, and defined by

x · y = −x0y0 +
n∑

i=1

xiyi.

Let ϕ : Rn+1 → R denote the corresponding quadratic form, i.e., ϕ(x) = x · x.
There are three special hypersurfaces in Rn,1:

Hn = ϕ−1(−1) ∩ {x0 > 0},
Sn−1

1 = ϕ−1(1),

Ln = ϕ−1(0).

We have already discussed hyperbolic n-space Hn in 1.2. Sn−1
1 is called the de Sitter

sphere ; it is a Lorentzian manifold in the sense that its tangent space, equipped
with the induced bilinear form, is isometric to Rn−1,1. Ln is the light cone.

Let E be a (k+1)-dimensional linear subspace of Rn,1, then E is spacelike if ϕ|E
is positive definite; it is timelike if ϕ|E is of type (k, 1); and it is lightlike if ϕ|E is
degenerate. Similarly, a nonzero vector v ∈ Rn,1 is spacelike, timelike or lightlike as
v · v is > 0, < 0, or = 0, respectively.

7.2 The Gauss Equation.

Suppose that Mn is a smooth hypersurface in an (n+1)-dimensional affine space.
Then Mn is convex if it lies on one side of each of its tangent hyperplanes. The
following is one of the classical results of differential geometry.

Theorem 7.2.1. (Hadamard) Suppose Mn is a smooth complete hypersurface in
En+1. Then the sectional curvature of Mn (with the induced Riemannian metric)
is ≥ 0 if and only if Mn is convex.

Sketch of proof. Using a unit normal vector field one defines the “second funda-
mental form” ` : TxM × TxM → R. One shows that ` is essentially the Hessian of
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Figure 7.1.1. Rn,1

a locally defined function f : Rn → R such that near x, Mn is equal to the graph
of f . It follows that Mn is a convex hypersurface if and only if ` is positive semi-
definite or negative semidefinite (depending on the two possible choices of the unit
normal field). The following equation (the “Gauss Equation”) is the main content
of Gauss’ Theorema Egregium:

κ(u, v) = (n · n)
(
`(u, u)`(v, v)− `(u, v)2

)
,

where n is the unit normal vector to TxMn, u and v are two orthogonal unit vectors
in TxMn and κ(u, v) is the sectional curvature of the 2-plane spanned by u and v.
Hence, ` is semidefinite if and only if κ(u, v) ≥ 0. �

Now suppose that Mn is a smooth hypersurface in Rn,1. Given x ∈Mn, TxMn

is spacelike if and only if each nonzero normal vector nx is timelike (i.e., nx ·nx < 0).
We shall say that Mn is spacelike if TxMn is spacelike for each x ∈ Mn. If this is
the case, then the restriction of ϕ to TxMn gives Mn a Riemannian structure. As
before, Mn is convex if and only if ` is semidefinite. The Gauss Equation remains
valid (see page 101 in [O]) except that now the term (n · n) becomes −1 instead of
+1. Thus, we have the following result.

Theorem 7.2.2. Let Mn be a smooth spacelike hypersurface in Rn,1. Then the
sectional curvature of Mn is nonpositive if and only if Mn is convex.

Example 7.2.3. Hn is a spacelike convex hypersurface in Rn,1.
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Similarly, if Mn−1 is a spacelike convex hypersurface in Sn−1
1 , then its sectional

curvature is ≤ 1.

7.3 Convex polyhedral hypersurfaces in Rn,1.

Suppose that V is a finite dimensional vector space and that X is a closed convex
subset of V with nonempty interior. An affine hyperplane P in V is a supporting
hyperplane of X if X lies in one of the half-spaces bounded by P and P ∩X 6= ∅.
The boundary ∂X of X consists of those points of X which lie on some supporting
hyperplane. ∂X is called a convex hypersurface in V .

The convex set X is a convex polyhedral set (abbreviated cps) if it is the in-
tersection of a collection of closed half-spaces whose boundary hyperplanes form
a locally finite family in V . The faces of a cps X are subsets of the form X ∩ P
where P is a supporting hyperplane of X. Each face is a cps when viewed as a
subset of its affine span (called its tangent space). A cps X is a convex polyhedral
cone (abbreviated cpc) if, in addition, there is a point x which lies in each of its
supporting hyperplanes. (Note that in this case X is the intersection of a finite
number of half-spaces.) If X contains no line, then the cone X is “pointed”, i.e.,
the point x is unique. It is called the vertex of the cpc; usually we will take the
vertex to be the origin. If X is a cps, then ∂X is a convex polyhedral hypersurface
(abbreviated cph).

We now take V = Rn,1. A convex hypersurface Y = ∂X in Rn,1 is spacelike if
each supporting hyperplane is spacelike. If we exclude the case where X is a region
bounded by two parallel hyperplanes, then Y is homeomorphic to Rn. If a cph Y
is spacelike, then the tangent spaces to each of its faces are spacelike. Thus each
face of such a Y is naturally identified with a convex set in a Euclidean space, that
is to say, Y has a PE structure.

Similarly, suppose that X is a cpc (with vertex at the origin) and that Y = ∂X is
spacelike. Then the intersection of each face of Y with Sn−1

1 is naturally a spherical
cell. Thus, L = Y ∩ Sn−1

1 is naturally a PS cell complex. Also note that in this
case Y is isometric to the Euclidean cone C0L, defined in 1.6.

Theorem 7.3.1. ([CD4]) (i) Suppose L = Y ∩ Sn−1
1 , where Y is the spacelike

boundary of a pointed cpc, as above. Then L is an extra large PS complex.

(ii) Suppose that Y is a spacelike cph in Rn,1. Then Y is a CAT (0), PE space
(not necessarily complete). Moreover, the link of each vertex is extra large.

We omit the proof but simply observe that by Theorem 1.6.1 (ii) statements (i)
and (ii) are equivalent.

Remark. The second author has generalized this theorem to arbitrary spacelike
convex hypersurfaces.

Corollary 7.3.2. ([CDM]) Any complete hyperbolic manifold admits a nonposi-
tively curved PE cell structure with extra large links.

Sketch of proof. A complete hyperbolic manifold Mn can be written as Mn = Hn/Γ
where Γ is a discrete subgroup of Isom(Hn). We note that Isom(Hn) is a subgroup
of index two in O(n, 1), the group of linear transformations of Rn,1 which preserve
ϕ. Thus, Γ can be considered as a subgroup of O(n, 1). Let p : Hn → Mn be the
covering projection. Choose a net V in Mn (i.e., V ⊂ Mn is discrete and there
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is a constant c such that d(x, V ) ≤ c for all x ∈ Mn). Put Ṽ = p−1(V ). Let
X be the convex hull of Ṽ in Rn,1 and Y = ∂X. Since the subset Ṽ is stable
under Γ, Γ acts on X and hence, on Y . Radial projection provides a Γ-equivariant
homeomorphism Hn → Y . It is not hard to see (cf. [CDM]) that the fact that V is
a net guarantees that Y is a cps and each face of Y is spacelike. Thus, Y/Γ is the
desired PE structure on Mn. �

This corollary raises the following two questions.

Question 1: Suppose Mn is a nonpositively curved Riemannian manifold. Does
Mn admit a nonpositively curved PE cell structure?

Question 2: Suppose Mn is a Riemannian manifold and that it is strictly neg-
atively curved, i.e., κ(Mn) ≤ δ < 0. Does Mn admit a nonpositively curved cell
structure? With extra large links?

Leeb showed in [Le] that the answer to Question 1 is no in general. A similar
result is proved in [DOZ]. Leeb generalized Gromov’s Rigidity Theorem to geodesic
spaces (with extendible geodesics): Suppose Mn is a compact, locally symmetric
Riemannian manifold of noncompact type. (This means that Mn is covered by
G/K where G is a noncompact semisimple Lie group and K is a maximal compact
subgroup.) Suppose further that G/K is irreducible and of rank ≥ 2. Let X be
a compact, nonpositively curved geodesic space with extendible geodesics (in Gro-
mov’s version one assumes that X is a nonpositively curved Riemannian manifold).
The result of [Le] states that if π1(M) ∼= π1(X), then X and M are isometric. In
particular, this shows that the metric on X cannot come from a PE structure, since
G/K is not locally isometric to Euclidean space.

The answer to Question 2 is not known but is probably no. For example, it
seems unlikely that complex hyperbolic or quaternionic hyperbolic manifolds admit
nonpositively curved polyhedral metrics.

7.4 Dimension 2: uniqueness.

In the case of nonnegative curvature there is the following classical result.

Theorem 7.4.1. (Aleksandrov, Pogorelov) Suppose that X denotes the 2-sphere
equipped with a nonnegatively curved length metric (i.e., X satisfies the reverse
CAT (0)-inequality). Then X is isometric to the boundary of a convex body in E3

(allowing the possibility that X is the double of a convex 2-disk). Moreover, this
convex body is unique up to an isometry of E3.

In the case of curvature bounded from above the corresponding results are much
more recent.

Theorem 7.4.2. (Rivin [RH]) Suppose that X is a PS cell complex homeomorphic
to the 2-sphere and that X is CAT (1) and extra large. Then X is isometric to a
spacelike convex polyhedral hypersurface in S2

1 (as in Theorem 7.3.1. (i)). Moreover,
the hypersurface is unique up to an isometry of R3,1.

The corresponding result for Riemannian metrics was proved by Schlenker [Sc1].
This theorem has recently been extended to general length metrics on the 2-sphere
by the second author by using Rivin’s Theorem and ideas of Aleksandrov.

Next suppose that M2 is a closed orientable surface of genus ≥ 2 equipped with
a Riemannian metric. The Uniformization Theorem implies that the metric on M2
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is conformally equivalent to an essentially unique hyperbolic metric. That is to say
the conformal structure on M2 gives an embedding of Γ = π1(M2) into O(2, 1),
well-defined up to conjugation.

Theorem 7.4.3. (Schlenker [Sc2]). Suppose that M2 is a closed Riemann sur-
face with κ(M2) < 0. Then, with notation as above, its universal cover M̃2 is
Γ-equivariantly isometric to a smooth, spacelike convex hypersurface in R2,1. Fur-
thermore, this hypersurface is unique up to an isometry of R2,1.

Remark. I. Iskhakov has made progress on a similar result for nonpositively curved
PE structures on surfaces.

7.5 Some open questions in dimension 3.

The uniqueness results of the previous subsection will not hold in higher di-
mensions; however, Thurston’s Geometrization Conjecture suggests that something
should be true in dimension 3.

Suppose that M3 is a closed, nonpositively curved, PE 3-manifold with extra
large links of vertices.

Question 3: Is M3 homeomorphic to a hyperbolic 3-manifold?

Remarks. Nonpositive curvature implies that the universal cover M̃3 is homeomor-
phic to R3 and hence, that M3 is irreducible. The condition that the links are extra
large implies that M̃3 does not admit an isometric embedding of R2. Then a result
of Gromov implies that π1(M3) is word hyperbolic (and in particular, that π1(M3)
does not contain a subgroup isomorphic to Z × Z). Thus, the Geometrization
Conjecture implies that the answer to Question 3 is yes.

One approach to Question 3 is through the following.

Question 4: Let M3 be as above. Can the metric on M3 be deformed (say,
through nonpositively curved PE metrics) so that M̃3 is isometric to a spacelike
cph in R3,1?

Casson has also suggested a direct approach to the Geometrization Conjecture
along the above lines. He suggested that one put an arbitrary PH simplicial metric
on a 3-manifold and then try to deform it, through PH metrics to be smooth (by
making the link of each edge have length 2π).

Question 5: (Casson) Suppose M3 is an irreducible 3-manifold and that Z× Z is
not contained in π1(M3). Can every PH or PE metric be deformed to a (smooth)
hyperbolic metric on M3?

Chapter IV: L2-homology and Euler Characteristics.

8. The Euler characteristic of a closed aspherical manifold.

8.1 The Euler Characteristic Conjecture.

In this section we shall discuss various formulations of the following conjecture.

Conjecture 8.1.1. (Chern, Hopf, Thurston) Suppose M2n is a closed, aspherical
2n-dimensional manifold. Then (−1)nχ(M2n) ≥ 0. (Here χ denotes the Euler
characteristic.)
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Remark 8.1.2. There is no odd dimensional analog of the above conjecture, since if
M2n+1 is any odd dimensional closed manifold then it follows from Poincaré duality
that χ(M2n+1) = 0.

Suppose that Y is a cell complex and that G is a discrete group acting cellularly
on Y . Throughout this chapter we will make the following assumptions:

• Y/G is compact;

• the stabilizers of cells are finite, that is, for any cell σ, the subgroup Gσ = {g ∈
G | gσ = σ} is finite.

The quotient space Y/G is called an “orbihedron” or an “orbifold” in the case
where Y is a manifold. We shall not attempt a complete definition of these terms
here except to say that the word “orbihedron” encompasses more structure than
just the topological space Y/G; in particular, it includes the local isomorphism type
of the action of the isotropy subgroup Gy on a Gy-stable neighborhood of y, for
any y ∈ Y . For example, if H a normal subgroup of G which acts freely on Y and
Z = Y/H, then Z/(G/H) and Y/G are the same orbihedron; furthermore, Z is an
“orbihedral covering space” of Y/G. If Y can be chosen to be contractible, then
Y/G is an aspherical orbihedron.

Definition 8.1.3. The orbihedral Euler characteristic of Y/G is the rational num-
ber defined by the formula

χorb(Y/G) =
∑

σ

(−1)dim σ

|Gσ|
,

where σ ranges over a set of representatives for the G-orbits of cells.

Suppose H is a subgroup of finite index in G. The main property of the orbihedral
Euler characteristic is that it is multiplicative with respect to coverings, i.e.,

χorb(Y/H) = [G : H]χorb(Y/G).

We might as well expand Conjecture 8.1.1 to the following:

Conjecture 8.1.4. Suppose X2n is a closed, aspherical orbifold of dimension 2n.
Then (−1)nχorb(X2n) ≥ 0.

Example 8.1.5. Suppose G = WL, the right-angled Coxeter group with nerve L,
and that Y = UL, the CAT (0) cubical complex of 3.2. There is one WL-orbit of
cubes for each element J in Sf . Furthermore, the dimension of a corresponding
cube is Card(J) and its stabilizer is isomorphic to (Z/2)J . Hence,

χorb(U/WL) =
∑

J∈Sf

(−1)Card(J)

2Card(J)

= 1 +
∑

σ

(−1)dim σ+1

2dim σ+1

= 1 +
dim L∑
i=0

(−1
2
)i+1fi ,
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where fi denotes the number of i-simplices in L. The focus of the remainder of this
chapter will be on Conjecture 8.1.4 in the special case where L is a triangulation
of the (2n− 1)-sphere (so that UL is a 2n-manifold).

8.2 The Chern-Gauss-Bonnet Theorem.

Theorem 8.2.1. (Chern, Gauss, Bonnet) Suppose M2n is a closed, 2n-dimensional
Riemannian manifold. Then

χ(M2n) =
∫

κ

where κ is a certain 2n-form on M2n called the “Euler form”. (κ is a constant
multiple of the Pfaffian of the curvature).

The theorem was proved in dimension two by Gauss and Bonnet; in this case κ is
just the Gaussian curvature (times 1/2π). Versions of the higher dimensional result
were proved by Poincaré, Hopf and Allendoerfer–Weil. The “correct” differential
geometric proof in higher dimensions is due to Chern. On the basis of Theorem
8.2.1, Hopf (as reported by Chern in [C]) asked if the following special case of
Conjecture 8.1.1 holds.

Conjecture 8.2.2. Suppose M2n is a closed, Riemannian manifold of dimension
2n of nonpositive sectional curvature. Then (−1)nχ(M2n) ≥ 0.

Later Thurston asked about the same conjecture under the weaker assumption
that M2n is aspherical so we have added his name to Conjecture 8.1.1.

Remark 8.2.3. The naive idea for proving Conjecture 8.2.2 is to show that the
condition that the sectional curvature be ≤ 0 at each point forces the Chern-Gauss-
Bonnet integrand κ to have the correct sign, i.e., (−1)nκ ≥ 0. In dimension 2, κ is
just the Gaussian curvature (up to a positive constant), so this naive idea works.
As shown by Chern [C] (who attributes the result to Milnor) the naive idea also
works in dimension 4. Later Geroch [Ge] showed that in dimensions ≥ 6 the naive
idea does not work (that is, the condition that the sectional curvature be ≤ 0 at a
point does not imply that κ has the correct sign.)

8.3 The Flag Complex Conjecture.

We begin this subsection by discussing a combinatorial version of the Chern-
Gauss-Bonnet Theorem.

Let σn−1 be a convex polytope in Sn−1. If u1, . . . , uk are the outward point-
ing unit normal vectors to the codimension-one faces of σ, then the convex hull of
{u1, . . . uk} is a convex polytope in Sn−1, denoted by σ∗, called the dual cell to σ.
The angle determined by σ, denoted a(σ), is its (n − 1)-dimensional volume, nor-
malized so that the volume of Sn−1 is 1, i.e., a(σ) = vol(σ)/vol(Sn−1). Its exterior
angle, a∗(σ), is defined by a∗(σ) = a(σ∗).

Now suppose that L is a finite PS cell complex. Define κ(L) by the formula

κ(L) = 1 +
∑

σ

(−1)dim σ+1a∗(σ).
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Example 8.3.1. Suppose σ is an all right, spherical (n−1)-simplex. Since Sn−1 is
tessellated by 2n copies of σ we have that a(σ) = ( 1

2 )n. Since σ∗ is isometric to σ,
a∗(σ) is also equal to ( 1

2 )n. Hence, if L is an all right PS simplicial complex, then

κ(L) = 1 +
dim L∑
i=0

(−1
2
)i+1fi

where fi denotes the number of i-simplices in L. (Compare this to the formula in
Example 8.1.5.)

Now suppose that X is a PE cell complex. For each vertex v of X put κv =
κ(Lk(v,X)).

Theorem 8.3.2. (The Combinatorial Gauss-Bonnet Theorem, [CMS]). If X is a
finite PE cell complex, then

χ(X) =
∑

v∈V ert(X)

κv.

The proof is based on the geometrically obvious fact that for any Euclidean
convex polytope C,

∑
a∗(Lk(v, C)) = 1, where the summation is over all vertices

of C. The proof of the formula in Theorem 8.3.2 is then left as an exercise for the
reader.

In contrast to Geroch’s result, it is conjectured in [CD3] that for PE manifolds,
Conjecture 8.1.1 should hold for local reasons. That is to say, we have the following:

Conjecture 8.3.3. Suppose that L2n−1 is a PS cell structure on the (2n − 1)-
sphere. If L is CAT (1), then (−1)nκ(L) ≥ 0.

Again, this conjecture is obviously true if L is a circle, for then κ(L) = 1 −
(2π)−1`(L). Hence, if κ(L) is CAT (1), then `(L) ≥ 2π and so, κ(L) ≤ 0.

The special case of this conjecture where L is an all right, PS simplicial cell
complex will here be called the “Flag Complex Conjecture”.

Conjecture 8.3.4. (The Flag Complex Conjecture of [CD3]). Suppose that L2n−1

is an all right, PS simplicial cell structure on S2n−1. If L is a flag complex, then
(−1)nκ(L) ≥ 0, where as before,

κ(L) = 1 +
2n−1∑
i=0

(−1
2
)i+1fi .

Theorem 8.3.5. ([CD3]). The Flag Complex Conjecture is equivalent to the Euler
Characteristic Conjecture (Conjecture 8.1.1) for nonpositively curved, PE cubical
manifolds.

Proof. It follows immediately from the Combinatorial Gauss-Bonnet Theorem, that
the Flag Complex Conjecture implies the Euler Characteristic Conjecture. Con-
versely, suppose that L2n−1 is a triangulation of S2n−1 as a flag complex. Let XL
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be the PE cubical manifold constructed in 3.1. Then χ(XL) = 2f0κ(L), (where f0

denotes the number of vertices in L). Thus, κ(L) and χ(XL) have the same sign,
so the Euler Characteristic Conjecture implies the Flag Complex Conjecture. �

The easiest way to find a flag triangulation of S2n−1 is to take the barycen-
tric subdivision of the boundary of a convex polytope. In this situation, Babson
observed that a result of Stanley [St] implies the conjecture.

Theorem 8.3.6. (Babson, Stanley). The Flag Complex Conjecture holds for L
the barycentric subdivision of the boundary of a convex polytope.

For further details on these conjectures the reader is referred to [CD3].

In the sequel we will discuss an approach to the Flag Complex Conjecture due to
the first author and B. Okun. In particular, this will yield a proof of the conjecture
in dimension three.

9. L2-homology.

9.1 Basic definitions.

Suppose G is a countable discrete group. We denote by `2(G) the vector space
of real-valued L2 functions on G, i.e.,

`2(G) =

f : G→ R |
∑
g∈G

f(g)2 <∞

 .

Define an inner product 〈 , 〉 : `2(G)× `2(G)→ R by

〈f1, f2〉 =
∑
g∈G

f1(g)f2(g).

Thus, `2(G) is a Hilbert space. The group ring RG can be identified with the
dense subspace of `2(G) consisting of all functions of finite support. (N.B. RG is
a ring; however, its multiplication does not extend to `2(G).) For any h ∈ G, let
eh : G→ R be the characteristic function of {h} (defined by eh(g) = δ(h, g) where
δ( , ) is the Kronecker delta). Then (eh)h∈G is a basis for RG and an orthonormal
basis for `2(G) (in the Hilbert space sense). There are two actions of G on `2(G)
(by left translation and by right translation). Both actions are by isometries.

Now suppose that Y is a CW complex equipped with a cellular G-action (a
G-CW complex, for short). As usual we assume that the action is cocompact
(i.e., Y/G is compact) and proper (i.e., cell stabilizers are finite). Define C

(2)
i (Y )

to be the vector space of (infinite) cellular i-chains on Y with square summable
coefficients. Equivalently,

C
(2)
i (Y ) = Ci(Y )⊗ZG `2(G)

= Ci(Y ; `2(G)).

where Ci(Y ) denotes the ordinary i-chains on Y . As a ZG-module, Ci(Y ) can be
decomposed as
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Ci(Y ) =
∑

G-orbits
of i-cells σ

Z(G/Gσ)

where Z(G/Gσ) denotes the permutation module ZG ⊗ZGσ
Z. Similarly, C

(2)
i (Y )

decomposes as
∑

`2(G/Gσ), where `2(G/Gσ) = `2(G) ⊗RGσ
R can be thought of

as the Hilbert space of all L2 functions on G/Gσ.

Since dual Hilbert spaces are canonically isomorphic, there is a canonical iso-
morphism between L2-chains and L2-cochains: C

(2)
i (Y ) ∼= Ci

(2)(Y ). Define the

boundary map, di : C
(2)
i (Y ) → C

(2)
i−1(Y ), by the usual formula. Its adjoint δi−1 =

d∗i : C
(2)
i−1(Y )→ C

(2)
i (Y ) is the coboundary map. Both d1 and δi are bounded linear

operators. Define subspaces of C
(2)
i (Y ):

Z
(2)
i (Y ) = Ker di, Zi

(2)(Y ) = Ker δi,

B
(2)
i (Y ) = Im di+1, Bi

(2)(Y ) = Im δi+1,

called the L2-cycles, -cocycles, -boundaries and -coboundaries, respectively. The
corresponding quotient spaces

H
(2)
i (Y ) = Z

(2)
i (Y )/B

(2)
i (Y ) and Hi

(2)(Y ) = Zi
(2)(Y )/Bi

(2)(Y )

are the (unreduced) L2-homology and cohomology groups. Here an important dis-
tinction from the finite dimensional case occurs, the subspaces B

(2)
i (Y ) and B

(2)
i (Y )

of C
(2)
i (Y ) need not be closed. Thus, the unreduced L2-homology and cohomology

groups need not be Hilbert spaces. This is remedied by the following:

Definition 9.1.1. The reduced L2 homology of Y is defined by

Hi(Y ) = Z
(2)
i (Y )/B

(2)

i (Y )

(where B
(2)

i denotes the closure of B
(2)
i ).

Harmonic cycles. (the Hodge–de Rham decomposition). To simplify notation,
we omit “Y ” and instead of C

(2)
i (Y ), Z

(2)
i (Y ), we write C

(2)
i , Z

(2)
i , etc. We have

the orthogonal direct sum decomposition:

C
(2)
i = Im di+1 ⊕ (Im di+1)⊥

= B
(2)

i ⊕Ker d∗i+1

= B
(2)

i ⊕ Zi
(2).

Similarly,
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C
(2)
i = B

i

(2) ⊕ Z
(2)
i .

Since 〈δi−1x, di+1y〉 = 〈x, didi+1y〉 = 0, we see that the subspaces B
i

(2) and B
(2)

i

are orthogonal. Thus,

C
(2)
i = B

(2)

i ⊕B
i

(2) ⊕ (Z(2)
i ∩ Zi

(2)).

An element of Z
(2)
i ∩Zi

(2) is called a harmonic cycle ; it is a chain (=cochain) which
is simultaneously both a cycle and a cocycle. It follows from the above formula that
the closed subspace Z

(2)
i ∩Zi

(2) maps isomorphically onto the reduced L2-homology

(or cohomology) Hi. Henceforth, we identify Z
(2)
i ∩ Zi

(2) with Hi.

Examples 9.1.2.

• Suppose Y = R, cellulated as the union of intervals [n, n+1], n ∈ Z. A 0-chain
is just an L2 function on the set of vertices, i.e., an element of `2(Z). If it is a
0-cocycle, it must be constant and since it is square summable, the constant must
be 0. Thus, H0

(2)(R) = 0 = H0(R). Similarly, any 1-cycle must be a constant

function on the set of edges; hence, H
(2)
1 (R) = 0 = H1(R). (On the other hand,

the unreduced 0th homology and 1st cohomology groups are not zero.)

• More generally, the same reasoning shows that whenever the vertex set of Y is
infinite and Y is connected, then H0(Y ) = 0.

• Suppose Y is the infinite regular trivalent tree. Let α be the 1-cycle pictured
below. (This figure is copied from [G2].)

Figure 9.1.1. L2 1-cycle

We have

|α|2 = 1 + 4(
1
2
)2 + 8(

1
4
)2 + 16(

1
8
)2 + · · ·

which converges, so α is L2. Since there are no 2-cells, α is automatically a cocycle
and therefore, harmonic. Thus, H1(Y ) 6= 0.
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9.2 Von Neumann dimension and L2 Betti numbers.

The Von Neumann algebra N(G) associated to `2(G) is the set of all bounded
linear operators from `2(G) to itself which are equivariant with respect to the left
G-action. The right action of RG on `2(G) shows that RG ⊂ N(G). Moreover,
N(G) is naturally embedded in `2(G) by the map which sends ϕ ∈ N(G) to ϕ(e1).
We define a trace function trG : N(G) → R by taking the “coefficient of e1,” i.e.,
by the formula

trG(ϕ) = 〈ϕ(e1), e1〉.

If A is a G-equivariant bounded linear endomorphism of `2(G)n, n ∈ N, then we
can represent A as an n by n matrix (Aij) with coefficients in N(G). Define

trG(A) =
n∑

i=1

trG(Aii).

Now suppose that that V is a closed G-invariant subspace of `2(G)n. Let pV :
`2(G)n → `2(G)n denote the orthogonal projection onto V . The Von Neumann
dimension of V is defined by

dimG V = trG(pV ).

Next we list some basic properties of dimG which are fairly easy to verify.

Properties of Von Neumann dimension.

• dimG V is a nonnegative real number.

• dimG V = 0 if and only if V = 0.

• dimG(V1 ⊕ V2) = dimG V1 + dimG V2.

• dimG(`2(G)) = 1.

• If H is a subgroup of finite index m in G, then dimH V = m dimG V .

• Suppose H is a subgroup of G (possibly of infinite index) and that E is a
closed H-invariant subspace of `2(H)n. Then `2(G) ⊗RH E is naturally a closed
G-invariant subspace of `2(G)n and dimG(`2(G)⊗RH E) = dimH E.

• If H is a finite group and E is R with trivial H-action, then dimH E = 1/|H|.
(This follows from the two previous properties.)

Definition 9.2.1. The ith L2-Betti number of Y is defined by

b
(2)
i (Y ;G) = dimGHi(Y ).

We list some basic properties of L2-Betti numbers which follow easily from the
above properties of dimG.
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Properties of L2-Betti numbers.

• b
(2)
i (Y ;G) = 0 if and only if Hi(Y ) = 0.

• If H is of finite index m in G, then b
(2)
i (Y ;H) = mb

(2)
i (Y ;G).

• Suppose X is a CW complex with a cocompact, proper H-action where H is
a subgroup of G. Let G×H X denote the quotient space of G×X by the H-action
defined by h ·(g, x) = (gh−1, hx). Then G×H X is a G-CW complex (it is a disjoint
union of copies of X) and

b
(2)
i (G×H X;G) = b

(2)
i (X;H).

9.3 Basic facts about L2-homology.

As usual, we deal only with G-CW complexes which are proper and cocompact.
We list some basic properties of L2-homology.

1) (Homotopy invariance) Suppose f : Y1 → Y2 is an equivariant cellular map
of G-CW complexes. If f is a homotopy equivalence, then H∗(Y1) and H∗(Y2) are
isomorphic.

2) (Atiyah’s Theorem):

χorb(Y/G) = Σ(−1)ibi(Y ;G).

3) (The Künneth Formula): Suppose Yi is a G1-CW complex and Y2 is a G2-CW
complex. Then Y1 × Y2 is a G1 ×G2-CW complex and

bm(Y1 × Y2;G1 ×G2) =
m∑

i=0

bi(Y1;G1)bm−i(Y2, G2).

4) (The exact sequence of a pair): Suppose that X is a G-invariant subcomplex
of Y . Then Hi(Y, X) is defined as usual (as the relative harmonic cycles which
vanish on X) and the following sequence is weak exact

→ Hi(X)→ Hi(Y )→ Hi(Y, X)→ Hi−1(X)→ .

(“Weak exactness” means that the image of one map is dense in the kernel of the
next.)

5) (The Mayer-Vietoris sequence): Suppose that a G-CW complex U can be
written as U = Y1 ∪ Y2 with X = Y1 ∩ Y2, where Y1, Y2 and X are all G-CW
complexes. Then the following sequence is weak exact:

→ Hi(X)→ Hi(Y1)⊕Hi(Y2)→ Hi(U)→ .

6) (Poincaré duality): Suppose the G-CW complex is an n-manifold Mn. Then

Hi(Mn) ∼= Hn−i(Mn).

Similarly, if Mn is a manifold with boundary, then
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Hi(M,∂M) ∼= Hn−i(M).

7) (Hyperbolic space): The reduced L2-homology of hyperbolic space, Hi(Hn)
vanishes, unless n = 2k and i = k (in which case it is not zero).

Before stating the last two properties let use make one observation using homo-
topy invariance. If G is capable of acting properly and cocompactly on a contractible
CW complex Y , then by 1), Hi(Y ) is independent of the choice of Y . This leads
to the following notation.

Notation. Suppose G is capable of acting properly and cocompactly on a con-
tractible CW complex Y . Then put

H(2)
i (G) = Hi(Y ) and

b
(2)
i (G) = b

(2)
i (Y ;G).

8) (Bounded geometry, [CG1]): Suppose M is a complete, contractible Riemann-
ian manifold and that G is a discrete group of isometries of M . Further assume
that M has bounded geometry, i.e., |κ(Y )| ≤ constant (bounded sectional cur-
vature) and InjRad(M) ≥ constant > 0 (the injectivity radius is bounded away
from 0). If V ol(M/G) <∞, then

Hi(G) = Hi(M) and

b
(2)
i (G) = dimGHi(M).

9) (Amenable groups, [CG2]): If G is an amenable group with K(G, 1) a finite
CW complex, then b

(2)
i (G) = 0 for all i.

In the next theorem we list a few well-known consequences of some of the above
properties.

Theorem 9.3.1.

(i) Hi(En) = 0 for all i.

(ii) b
(2)
i (Zn) = 0 for all i.

(iii) If Hn/G is a complete hyperbolic manifold or orbifold of finite volume, then

b
(2)
i (G) =

{ 0 if i 6= n
2

(−1)kχ(G) if n = 2k and i = k.

Proof. Statement (i) follows from the Künneth formula and the calculation in Ex-
ample 9.1.2. Statement (ii) is equivalent to (i) ((ii) is also implied by 9)). Con-
sider statement (iii). By 7) and 8), b

(2)
i (G) vanishes unless n = 2k and i = k.

The formula b(2)(G) = (−1)kχ(G) follows from Atiyah’s Theorem (2). (Here
χ(G) = χorb(Hn/G).) Hence, (iii) holds. �
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We end this subsection with a proof of Atiyah’s Theorem which we have taken
from [Ec].

Proof of Atiyah’s Theorem. To simplify the notation let us assume that G acts
freely so that Y/G is again a CW complex. Let ai denote the number of i-cells in
Y/G. Thus, ai = dimG C

(2)
i (Y ). Therefore,

χ(Y/G) = Σ(−1)iai

= Σ(−1)i dimG C
(2)
i (Y ).

The Hodge–de Rham decomposition gives C
(2)
i = B

(2)

i ⊕B
i

(2)⊕Hi. The orthogonal

complement of Zi−1
(2) in C

(2)
i−1 is B

(2)

i−1 and δi−1 takes it isomorphically onto Bi
(2).

This means that B
(2)

i−1 and B
i

(2) are “weakly isomorphic”, which implies that they

are isomorphic, cf. [Ec]. Therefore, dimG B
(2)

i−1 = dimG B
i

(2). Thus,

∑
(−1)i dimG C

(2)
i =

∑
(−1)i dimGHi

+
∑

(−1)i dimG B
(2)

i +
∑

(−1)iB
i

(2)

=
∑

(−1)b(2)
i (Y ;G),

since the terms in the last two summations cancel. �

Since χorb(Y/G) is always a rational number, Atiyah’s Theorem suggests the
following well-known conjecture.

Conjecture 9.3.2. (Atiyah) The L2-Betti numbers b
(2)
i (Y ;G) are rational.

A elementary reference for most of the material in this subsection is [Ec]. For a
better overall picture the reader is referred to [G2] and [CG2].

9.4 Singer’s Conjecture.

Suppose Mn is a closed aspherical manifold (or orbifold) with fundamental group
π and with universal cover M̃ . In the late seventies Singer asked if the following
conjecture was true.

Conjecture 9.4.1. (Singer) Hi(M̃n) = 0, except possibly in the case n = 2k and
i = k. In other words,

(i) if n = 2k + 1 is odd, then b
(2)
i (π) = 0 for all i, while

(ii) if n = 2k is even, then

b
(2)
i (π) =

{
0 if i 6= k,

(−1)kχorb(M2k) if i = k.
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Since L2 Betti numbers are nonnegative, we have that Singer’s Conjecture implies
the Euler Characteristic Conjecture (Conjecture 8.1.1 or 8.1.4).

As evidence let us consider some examples where Conjecture 9.4.1 is true.

Examples 9.4.2.

• dim M = 1. Then M = S1, π1(M) = Z, M̃ = R, and as we have seen already,
b
(2)
0 (Z) = b

(2)
1 (Z) = 0. Similarly, if π = D∞, the infinite dihedral group, then

b
(2)
0 (D∞) = b

(2)
1 (D∞) = 0.

• dim M = 2. Suppose M2
g is the orientable surface of genus g, g > 0. Then

b
(2)
0 (π) = 0 (since π is infinite),

b
(2)
2 (π) = 0 (by Poincaré duality),

b
(2)
1 (π) = χ(M2

g ) = 2− 2g (by Atiyah’s Theorem).

Similarly, if X2 is an aspherical 2-dimensional orbifold, then b
(2)
0 and b

(2)
2 vanish

and b
(2)
1 (π) = χorb(X2).

• dim M = n. If Mn is flat or hyperbolic (i.e., if it is Riemannian and covered
by En or Hn), then Singer’s Conjecture holds by Theorem 9.3.1.

In the last subsection we will discuss some recent work of the first author and
B. Okun, which gives a proof of the following theorem.

Theorem 9.4.3. ([DO]) Suppose Mn = XL, where L is a flag triangulation of
Sn−1 and XL is the PE cubical manifold constructed in 3.1. Then Singer’s Con-
jecture holds for Mn for n = 3 or 4.

10. L2-homology of right-angled Coxeter groups.

10.1 Notation and calculations.

As in Chapter II, L is a flag complex, WL is the associated right-angled Coxeter
group and ΣL (= UL) is the CAT (0), PE cubical complex on which WL acts.

Recall that a subcomplex A of a simplicial complex J is said to be full if whenever
v0, . . . , vk are vertices in A such that {v, . . . , vk} spans a simplex in J , then that
simplex lies in A.

If A is a full subcomplex of a flag complex L, then A is also a flag complex and
its associated Coxeter group WA is naturally a subgroup of WL. (The point is that
two fundamental generators s1 and s2 of WA are connected by a relation for WA if
and only if it is also a relation for WL.) It follows that ΣA is naturally a subcomplex
of ΣL and that the translates of ΣA in ΣL give an embedding WL ×WA

ΣA ⊂ ΣL.
(In fact, it is not difficult to see that ΣA is a locally convex subcomplex of ΣL.)
In this way we have associated to each flag complex L a space ΣL with WL-action
and to each full subcomplex A ⊂ L a subspace WL ×WA

ΣA. We can then try to
calculate the L2-homology of these spaces.

Notation.
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hi(L) = Hi(ΣL)

βi(L) = b
(2)
i (WL)

hi(L,A) = Hi(ΣL,WL ×WA
ΣA)

βi(L,A) = dimWL
hi(L,A)

Calculations.

a) Suppose L is a single point. Then WL = Z/2, β0(L) = 1
2 and βi(L) = 0 for

i > 0.

b) Suppose L = S0 (2 points). Then WL = Z/2 ∗ Z/2 = D∞, ΣL = R, and
βi(L) = 0 for all i.

c) Suppose L is the disjoint union of 3 points. Then WL = Z/2 ∗ Z/2 ∗ Z/2 and
ΣL is a trivalent tree. Moreover, χ(WL) = χorb(ΣL/WL) = 1 − 3/2 = − 1

2 (see
Example 8.1.5). Since WL is infinite, β0(L) = 0, and since ΣL is 1-dimensional,
βi(L) = 0 for i > 1. Hence, β1(L) = 1

2 by Atiyah’s Theorem.

d) More generally, if L is the disjoint union of m points, m > 1, then β1(L) =
(m− 2)/2 and βi(L) = 0 for i 6= 1.

e) If L is a k-simplex, then WL = (Z/2)k+1,ΣL = �k+1, β0(L) = ( 1
2 )k+1 and

βi(L) = 0 for i > 0.

f) If l is the join of two flag complexes L1 and L2, then WL = WL1 ×WL2 and
ΣL = ΣL1 × ΣL2 . Hence, the Künneth Formula gives βn(L) = Σβi(L1)βm−i(L).

g) In particular, if L is the join of two copies of the complex consisting of three
points, then β2(L) = 1

4 and βi(L) = 0, i 6= 2.

h) If L is an m-gon, m > 3, then ΣL is a CAT (0) 2-manifold and χ(WL) =
1 −m/2 + m/4 = 1 −m/4. Hence, β0(L) = 0, β2(L) = 0 (Poincaré duality) and
β1(L) = (m− 4)/4. Thus, Singer’s Conjecture holds in this case.

i) Let CL (the cone on L) denote the join of L with a point. Then WCL =
WL×Z/2. Hence, the Künneth Formula gives βi(CL) = 1

2βi(L). (This also follows
from the fact that WL is index 2 in WCL.) We also have that ΣCL = ΣL × �1

and that the involution s corresponding to the cone point acts by reflection on the
interval �1. It follows that the sequence of the pair breaks into short exact sequences
0 → hi+1(CL,L) → hi(L) → hi(CL) → 0. (In fact, hi(CL) and hi(CL,L) can be
identified with the +1 and −1 eigenspaces of s on hi(L).) Thus, we also have
βi+1(CL,L) = 1

2βi(L).

j) Let SL (the suspension of L) denote the join of L with 2 points. Then
WSL = WL ×D∞, so by the Künneth Formula, βi(SL) = 0 for all i.

10.2 Variations on Singer’s Conjecture.

From now on we suppose that L is a triangulation of Sn−1 as a flag complex and
that A is any full subcomplex of L. In this subsection we are going to consider sev-
eral statements, I(n), II(n), III(n) and III ′(n) which depend on the dimension n
of the manifold ΣL. The first one is simply a restatement of Singer’s Conjecture
for ΣL.
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I(n): If n = 2k is even, then βi(L) = 0, for all i, with i 6= k. If n = 2k + 1 is odd,
then βi(L) = 0, for all i.

II(n): If n = 2k, then βi(L, A) = 0 for all i, with i ≥ k + 1. If n = 2k + 1, then
βi(A) = 0 for all i, with i ≥ k + 1.

Lemma 10.2.1. II(n) implies I(n).

Proof. If n = 2k, take A = ∅. Then II(2k) implies βi(L) = 0 for i ≥ k+1 and then
by Poincaré duality, βi(L) = 0 for i ≤ k − 1. If n = 2k + 1, take A = L. Again,
II(2k + 1) means βi(L) = 0 for i ≥ k + 1 and then by Poincaré duality, βi(L) = 0.
for all i. �

If v is a vertex of L, then let Lv be the combinatorial link of v in L and let Dv

denote the complement of the open star of v (i.e., Dv is the full subcomplex of L
spanned by V ert(L)− v). Thus, (Dv, Lv) is a triangulation of (Dn−1, Sn−2).

III(2k + 1): For any vertex v, in the exact sequence of the pair (L,Lv), the map
hk(Lv)→ hk(L) is the zero map.

III ′(2k + 1): For any vertex v, in the Mayer-Vietoris sequence for L = Dv ∪ CLv,
the map

Hk(Lv)→ Hk(Dv)⊕Hk(CLv)

is injective.

Lemma 10.2.2. (i) I(2k + 1) implies III(2k + 1).

(ii) Statements III(2k + 1) and III ′(2k + 1) are equivalent.

Proof. (i) If I(2k + 1) holds, then h∗(L) vanishes so hk(Lv)→ hk(L) is zero.

(ii) There is an excision isomorphism h∗(L, Lv) ∼= h∗(Dv, Lv)⊕ h∗(CLv, Lv). It
then follows from Poincaré duality that the sequence of the pair (L,Lv) and the
Mayer-Vietoris sequence are dual sequences:

→ hk(Lv)
ϕ−→ hk(Dv)

⊕
hk(CLv) → hk(L)→

||o ||o ||o
← hk(Lv) θ←− hk+1(Dv, Lv)

⊕
hk+1(CLv, Lv) ← hk+1(L)←

The vertical isomorphisms are given by Poincaré duality. Hence, ϕ is injective
if and only if θ is weakly surjective (i.e., has dense image) if and only if hk(Lv)→
hk(L) is the zero map. �

10.3 Inductive arguments.

The idea is to try to prove I(n) by induction on dimension n. To this end we
have the following.

Lemma 10.3.1. (i) II(2k − 1) implies II(2k).

(ii) Statements I(2k) and III ′(2k + 1) imply II(2k + 1).
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If we examine Lemmas 10.2.1, 10.2.2 and 10.3.1 we see that we have reduced the
problem to proving III(2k+1). Indeed, after proving the above lemma, we will have
basically shown that the odd-dimensional case implies the result in the next higher
dimension. Thus, if we know that I(n) holds for n < 2k, then we have I(2k − 2)
and I(2k − 1)⇒ I(2k − 2) and III ′(2k − 1)⇒ II(2k − 1)⇒ II(2k)⇒ I(2k). On
the other hand, if we know I(n) holds for n < 2k + 1, then we still need to prove
III(2k + 1) in order to conclude I(2k + 1).

Proof of Lemma 10.3.1. (i) Assume II(2k − 1) holds. We want to prove II(2k):
that hi(L,A) vanishes for i ≥ k + 1 and A any full subcomplex of L. The proof
is by induction on the number of vertices in L − A. Now suppose by induction
that II(2k) holds for a full subcomplex B and let v be a vertex of B. Let A the
the full subcomplex spanned by the vertices in B − v. So, B = A ∪ CA0, where
A0 = Lk(v,B). Consider the exact sequence of the triple (L,B,A),

→ hi(B,A)→ hi(L,A)→ hi(L,B)→

where i ≥ k + 1. By excision, hi(B,A) = hi(CA0, A0). Also, βi(CA0, A0) =
1
2βi−1(A0), which is 0, by II(2k−1) (since i−1 ≥ k). By the inductive hypothesis,
hi(L,B) = 0. Therefore, hi(L,A) = 0.

(ii) Assume I(2k) and III ′(2k + 1) hold. We want to prove II(2k + 1): that
hi(A) = 0 for i ≥ k +1. This time we use induction on the number of vertices in A.
It is clearly true for A = ∅. We assume inductively that it holds for A and we try to
prove it for B, the full subcomplex spanned by A and another vertex v. As before,
B = A∪CA0. We compare the Mayer-Vietoris sequences for B and L = Dv ∪CLv.

hk+1(Lv, A0)
↓

0→ hk+1(B) → hk(A0)
e−→hk(A)

⊕
hk(CA0)

↓ f ↓
hk(Lv)

g−→hk(Dv)
⊕

hk(cLv)

By I(2k), hk+1(Lv, A0) = 0; hence, f is injective. By III ′(2k + 1), g is injective;
hence, e is injective. Therefore, hk+1(B) = 0. The Mayer-Vietoris sequence also
shows that hi(B) = 0 for i > k + 1. �

Lemma 10.3.2. I(3) is true.

Proof. Basically this follows from Andreev’s Theorem. Let L be a flag triangulation
of the 2-sphere. Consider Andreev’s condition (∗) below:

(∗) Every 4-circuit in L is either the link of a vertex or the boundary of the union
of two adjacent 2-simplices. Furthermore, L is not the suspension of a polygon.

Suppose L satisfies (∗). Let L̂ denote the full subcomplex of L spanned by the
vertices whose links are circuits of length > 4. By Andreev’s Theorem, L̂ is the
dual of a right-angled polytope of finite volume in H3 (the ideal points correspond
to the missing vertices). By Theorem 9.3.1 (iii), h∗(L̂) vanishes. It then follows
from the Mayer-Vietoris sequence (since h∗(S0 ∗ S0) = 0), that h∗(L) = 0.

If L does not satisfy (∗), then we can find a 4-circuit T which separates it into
two pieces L1 and L2. Put Li = Li ∪ CT . Since Li has fewer vertices than L,
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we may assume by induction that h∗(Li) = 0. Then by a Mayer-Vietoris sequence
h∗(L) = 0, as before. �

An immediate corollary of this lemma is Theorem 9.4.3 which we restate as the
following.

Corollary 10.3.3. I(n) holds for n ≤ 4.

Corollary 10.3.4. The Flag Complex Conjecture (8.3.4) holds for triangulations
of the 3-sphere. Hence, the Euler Characteristic Conjecture (8.1.1) holds for 4-
dimensional cubical manifolds.

The above arguments also show that in fact II(n) holds for n ≤ 4. For n = 3
we state this as follows.

Corollary 10.3.5. Suppose L2 is a flag triangulation of the 2-sphere and that A
is a full subcomplex. Then h2(A) = 0.

Corollary 10.3.6. Suppose that A is a simplicial graph without 3-circuits. If A is
a planar graph, then h2(A) = 0.

Proof. If A is planar, then we can embed it as a full subcomplex of some flag
triangulation of the 2-sphere. �
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