Cohomology of Coxeter groups with group ring coefficients MICHAEL DAVIS

(joint work with Jan Dymara, Tadeusz Januszkiewicz, Boris Okun)

Suppose (W, S) is a Coxeter system. For $T \subset S$, W_T denotes the subgroup generated by T. T is *spherical* if W_T is finite. S denotes the set of spherical subsets of S.

Let X be a CW complex and $(X_s)_{s \in S}$ a family of subcomplexes. For each $x \in X$, put $S(x) := \{s \in S \mid x \in X_s\}$. Define $\mathcal{U}(W, X) (= \mathcal{U})$ to be the quotient space $(W \times X) / \sim$, where \sim is the equivalence relation defined by $(w, x) \sim (w', x')$ if and only if x = x' and $wW_{S(x)} = w'W_{S(x)}$. W acts on \mathcal{U} and X is a strict fundamental domain (i.e., $\mathcal{U}/W = X$). A W-action on a space is a *reflection* group if it is equivariantly homeomorphic to $\mathcal{U}(W, X)$ for some X. The action is proper and cocompact if and only if X is a finite complex and S(x) is spherical for each $x \in X$. Henceforth, assume this.

For each $w \in W$, put

$$In(w) := \{ s \in S \mid l(ws) < l(w) \}$$

$$In'(w) := \{ s \in S \mid l(sw) < l(w) \},$$

where l() is word length. It is a basic fact that for any w, both $\operatorname{In}(w)$ and $\operatorname{In}'(w)$ (= $\operatorname{In}(w^{-1})$) are spherical subsets of S. Let $A := \mathbb{Z}W$ be the group ring and $\{e_w\}_{w\in W}$ its standard basis. For each $T \in S$, define elements a_T and h_T in A by

$$a_T := \sum_{w \in W_T} e_w$$
 and $h_T := \sum_{w \in W_T} (-1)^{l(w)} e_w$.

Let A^T denote the right ideal $a_T A$ and H^T the left ideal Ah_T . (If $T \notin S$, set $A^T = H^T = 0$.) A_T is the set of finitely supported functions on W which are constant on each right coset in $W_T \setminus W$. Put

$$b'_w := a_{\operatorname{In}'(w)} e_w, \qquad b_w := e_w h_{\operatorname{In}(w)}$$

Then $\{b'_w \mid \ln'(w) \supset T\}$ is a basis for A^T and $\{b_w \mid \ln(w) \supset T\}$ is a basis for H^T . So, if we define $\widehat{A}^T := \operatorname{Span}\{b'_w \mid \ln(w) = T\}$ and $\widehat{H}^T := \operatorname{Span}\{b_w \mid \ln(w) = T\}$, we have direct sum decompositions of abelian groups:

$$A^T = \bigoplus_{U \supset T} \widehat{A}^U$$
 and $H^T = \bigoplus_{U \supset T} \widehat{H}^U$.

Theorem.

$$H_*(\mathcal{U}) \cong \bigoplus_{T \in \mathcal{S}} H_*(X, X^T) \otimes \widehat{H}^T$$
$$H_c^*(\mathcal{U}) \cong \bigoplus_{T \in \mathcal{S}} H_*(X, X^{S-T}) \otimes \widehat{A}^T.$$

The first formula was originally proved in [1], the second in [2]. We give a different proof in [6] by using the identifications of these (co)homology groups with certain equivariant (co)homology groups: $H^W_*(\mathcal{U}; \mathbf{Z}W) = H_*(\mathcal{U})$ and $H^*_W(\mathcal{U}; \mathbf{Z}W) =$ $H^*_c(\mathcal{U})$ and then using a direct sum decomposition of the coefficient system on Xinduced by $\mathbf{Z}W$. This point of view leads to a computation of the W-module structures on $H_*(\mathcal{U})$ and $H^*_c(\mathcal{U})$ in the following sense. We have a decreasing filtration of right W-modules $A = F_0 \supset \cdots \supset F_p$, where $F_p := \sum_{|T| \ge p} A^T$. This leads to a filtration of cohomology. (Similarly, there is a decreasing filtration of left W-modules for homology.) Put

$$A^{>T} := \sum_{U \supseteq T} A^U$$
 and $H^{>T} := \sum_{U \supseteq T} H^U$.

With this terminology, we can state the following result of [6].

Theorem. In filtration degree p, the associated graded term in homology is the left W-module,

$$\bigoplus_{|T|=p} H_*(X, X^T) \otimes H^T / H^{>T},$$

while in compactly supported cohomology it is the right W-module,

$$\bigoplus_{T|=p} H_*(X, X^{S-T}) \otimes A^T / A^{>T}$$

These formulas were suggested by our work in [5] on weighted L^2 -cohomology of Coxeter groups (see [3] for an abstract).

If \mathcal{U} is acyclic, then $H_c^*(\mathcal{U}) = H^*(W; \mathbb{Z}W)$. Moreover, there is a particularly nice choice of a contractible \mathcal{U} . We usually denote it Σ and its fundamental chamber K [2, 4, 6]. This leads to a formula for $H^*(W; \mathbb{Z}W)$ with each associated graded term a sum of terms of the form $H^*(K, K^{S-T}) \otimes A^T/A^{>T}$. A consequence is the following.

Corollary. $H^*(W; \mathbb{Z}W)$ is always finitely generated as a W-module.

Question. Suppose a group Γ is virtually type FP. Is $H^*(\Gamma; \mathbf{Z}\Gamma)$ always a finitely generated Γ -module?

References

- M.W. Davis The homology of a space on which a reflection group acts, Duke Math. J. 55 (1987), 97–104.
- [2] _____, The cohomology of a Coxeter group with group ring coefficients, Duke Math. J. 91 (1998), 297–314.
- [3] _____, Weighted L^2 -cohomology of Coxeter groups, Oberwolfach Reports 3, No. 2 (2006).
- [4] _____, The Geometry and Topology of Coxeter Groups, London Math. Soc. Monograph Series, Vol. 32, Princeton Univ. Press, Princeton, to appear.
- [5] M.W. Davis, J. Dymara, T. Januszkiewicz and B. Okun, Weighted L²-cohomology of Coxeter groups, preprint 2004.
- [6] _____, Cohomology of Coxeter groups with group ring coefficients: II, Algebraic & Geometric Topology 6 (2006), 1289–1318.