Compactly supported cohomology of buildings MICHAEL DAVIS

(joint work with Jan Dymara, Tadeusz Januszkiewicz, Boris Okun)

Suppose (W, S) is a Coxeter system. A subset $T \subset S$ is *spherical* if it generates a finite subgroup of W. S denotes the poset of spherical subsets of S. Let Φ be a building in the sense of [6] (i.e., Φ is a set of chambers, equipped with a family of adjacency relations indexed by S and a W-valued distance function, $\Phi \times \Phi \to W$).

Let A denote the set of finitely supported **Z**-valued functions on Φ (i.e., A is the free abelian group on Φ). For each $T \in S$, A^T denotes the set of $f \in A$ which are constant on all residues of type T. If $U \supset T$, then $A^U \subset T$. We show that the quotient, $D^T := A^T / \sum_{s \in S - T} A^{T \cup \{s\}}$, is free abelian. Let \hat{A}^T be a summand of A^T which projects isomorphically onto D^T .

Decomposition Theorem. For each $T \in S$,

$$A^T = \bigoplus_{U \supset T} \hat{A}^U$$

Suppose X is a CW complex and that $\{X_s\}_{s\in S}$ is a mirror structure over S on X (defined in [2, p.63]). For a cell c of X or point $x \in X$, put

 $S(c):=\{s\in S\mid c\subset X_s\},\quad S(x):=\{s\in S\mid x\in X_s\}.$

The X-realization of Φ is the quotient space $\mathcal{U}(\Phi, X) := (\Phi \times X)/\sim$, where \sim is the equivalence relation defined by $(\phi, x) \sim (\phi', x')$ if and only if x = x' and ϕ, ϕ' belong to the same S(x)-residue. (Here Φ has the discrete topology.) For each $T \subset S$, put

$$X_T := \bigcap_{s \in T} X_s$$
 and $X^T := \bigcup_{s \in T} X_s$.

We are primarily interested in the case where X = K, the geometric realization of the poset S and where K_s is the geometric realization of $S_{>\{s\}}$ (cf. [2, Chap.7]).

For any subgroup B of A and $T \subset S$, put $B^T := B \cap A^T$. We have a "coefficient system" $\mathcal{I}(B)$ on X, giving a cochain complex

$$\mathcal{C}^{i}(X;\mathcal{I}(B)) := \bigoplus_{c \in X^{(i)}} B^{S(c)},$$

where $X^{(i)}$ denotes the set of *i*-cells in X. Let $\mathcal{H}^*(X; \mathcal{I}(B))$ denote the cohomology groups of this cochain complex. The Decomposition Theorem gives us a direct sum decomposition of coefficient systems

$$\mathcal{I}(A) = \bigoplus_{T \in \mathcal{S}} \mathcal{I}(\hat{A}^T),$$

leading to the following.

Theorem.

$$\mathcal{H}^*(X;\mathcal{I}(A)) = \bigoplus_{T \in \mathcal{S}} \mathcal{H}^*(X;\mathcal{I}(\hat{A}^T)) = \bigoplus_{T \in \mathcal{S}} H^*(X,X^{S-T}) \otimes \hat{A}^T.$$

If X is compact and if, for each cell $c \subset X$, S(c) is spherical, then $\mathcal{H}^*(X; \mathcal{I}(A)) = H^*_c(\mathcal{U}(\Phi, X))$. This gives our main result, the following corollary.

Corollary. (cf. [3, 4]).

$$H^*_c(\mathcal{U}(\Phi, K)) = \bigoplus_{T \in \mathcal{S}} H^*(K, K^{S-T}) \otimes \hat{A}^T.$$

When Φ is an irreducible affine building, this corollary is the classical computation of Borel-Serre [1]. When $\Phi = W$ (the thin building) or when Φ is right-angled, proofs can be found in [3]. A version of the general result is claimed in [5]; however, there is a mistake in the proof.

Our proof of the Decomposition Theorem is modeled on a homological argument from [4] for a similar result. The key to the proof is a calculation for the standard realization of Φ where X is the simplex Δ of dimension Card(S) - 1 with its codimension-one faces indexed by S. The Decomposition Theorem follows from the next result (and some similar statements).

Theorem. $\mathcal{H}^*(\Delta; \mathcal{I}(A))$ is concentrated in the top degree (= Card(S) - 1) and is a free abelian group.

We also need versions of this which assert the concentration in the top degree of $\mathcal{H}^*(\sigma, \sigma^U; \mathcal{I}(A))$, where σ ranges over the spherical faces of Δ and U over the subsets of S.

References

- A. Borel and J.-P. Serre, Cohomologie d'immeubles et de groupes S-arithmétiques. Topology 15 (1976), 211–232.
- [2] M.W. Davis The Geometry and Topology of Coxeter Groups, London Math. Soc. Monograph Series, vol. 32, Princeton Univ. Press, 2007.
- [3] M.W. Davis, J. Dymara, T. Januszkiewicz and B. Okun, Cohomology of Coxeter groups with group ring coefficients: II, Algebraic & Geometric Topology 6 (2006), 1289–1318.
- [4] _____, Weighted L^2 -cohomology of Coxeter groups, Geometry & Topology 11 (2007), 47–138.
- [5] M.W. Davis and J. Meier, The topology at infinity of Coxeter groups and buildings, Comment. Math. Helv. 77 (2002), 746–766.
- [6] M. Ronan, *Lectures on Buildings*, Perspectives in Mathematics, vol. 7, Academic Press, San Diego, 1989.