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A HYPERBOLIC 4-MANIFOLD 

ABSTRACT.There is a regular 4-dimensional polyhedron with 120 dodecahedra as 
3-dimensional faces. (Coxeter calls it the "120-cell".) The group of symmetries of 
this polyhedron is the Coxeter group with diagram: 

For each pair of opposite 3-dimensional faces of this polyhedron there is a unique 
reflection in its symmetry group which interchanges them. The result of identifying 
opposite faces by these reflections is a hyperbolic manifold M ~ .  

1. Some Coxeter groups. For 0 < n < 4 let G, denote the Coxeter group of rank 
n + 1with diagram as indicated below: 

Obviously, Go c G l  c G,  c G,  c G4. The first four of these groups are finite and 
have canonical representations as subgroups of O(n + 1) (cf. [I]). In fact, for 
1 n < 3, G, is the group of isometries of S n  generated by the orthogonal 
reflections across the faces of a certain spherical n-simplex An (a "fundamental 
chamber"). The group G4 can be represented as a discrete cocompact subgroup of 
O(4, I), the group of isometries of hyperbolic 4-space H~ [I, Exercise 15, p. 1331. Its 
fundamental chamber is a certain hyperbolic 4-simplex A4. For 1g n g 4 let xn be a 
vertex of An such that the isotropy subgroup of G, at x ,  is Gn-, .  The translates of An 
under G,-I  fit together at x ,  to give the barycentric subdivision of a convex 
polyhedron X n  (in S n  if n g 3 or in H~ if n = 4). The translates of X n  under G, then 
gyve a tessellation of S n  (n < 3) or H 4  (n = 4) by congruent copies of X n .  The full 
group of symmetries of this tessellation is Gn.For 1 ,< n G 3 the convex hull of the 
vertex set of thls tessellation of S n  is a convex polyhedron Y"" in Rn+l .  X 1  is a 
circular arc (of length 2 ~ / 5 ) ,  S 1  is tessellated by 5 copies of it, and y2is a pentagon. 
X 2  is a spherical pentagon, S 2  is tessellated by 12 copies of it, and y3 is a 
dodecahedron. x3is a spherical dodecahedron, S 3  is tessellated by 120 copies of it, 
and Y 4  is the 4-dimensional regular polyhedron called the "120-cell" in [3]. x4is a 
hyperbolic 120-cell, and H 4  is tessellated by an infinite number of copies of it (cf. 
[2]). The orders of these Coxeter groups are as follows: IGoI = 2, IGII = 10, IG21 = 120, 
1G31 = 14400 (= (120),), IG41 = 00. 
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The group G, and its fundamental chamber An can be recovered from the 
tessellation as follows. Choose a chain of cells in the tessellation: C0 c C1 c . . . c 
C n  = Xn,where CJ  has dimension j. Let u, denote the center of CJ  (so that u, = x,). 
The vertices vO, . . . ,u, span an n-simplex which we can take to be An. For 0 g j g n 
let r, denote the reflection across the "hyperplane" (i.e., great subsphere if 1 g n g 3 
or hyperbolic hyperplane if n = 4) supported by the face of An which is opposite to 
u,. The family (r,),,,,, is denoted by Rn  and called a "fundamental system of 
reflections" for G,. Its elements correspond to the nodes of the corresponding 
diagram (where the nodes are numbered from left to right). 

2. The tessellation of S 3by dodecahedra and its symmetry group. In this section we 
discuss several facts about G,. A good general reference for Coxeter groups is [I]; in 
particular, Exercise 12 on p. 231 gives an interesting method of proving some 
properties of G,. 

Let 9 be the set of dodecahedra in the previously mentioned tessellation of S3. 
For each D E 9 let 

-D = the face opposite to D, 
u, = the center of D, 
S, = the great 2-sphere orthogonal to u,, 
s, = the orthogonal reflection across S,. 

Clearly, s, = s,, if and only if D' = D or -D. 
(2.1) For each D E 9 , the reflection s, belongs to G,. Moreover, (s,),,, is the 

family of all reflections in G,. 
The above fact is proved in [3, p. 2271. (Alternatively, it follows from the exercise 

in [I]mentioned above.) 
Next suppose, as in $1,that C0 c C1 c c2c c3= x3is a chain of cells and, for 

0 < j < 3, u, is the center of CJ, S, is the Zsphere supported by the face of A3 
opposite to u,, and r, is the orthogonal reflection across S,. Put D = C3. 

(2.2) For 0 ,< j < 2 the Zspheres S, and S, make a dihedral angle of a/2. The 
2-spheres S, and S, make a dihedral angle of 2a/5. 

PROOF. For 0 G j g 2, Sj contains u, (= v,); hence, S, and Sj intersect orthogo- 
nally. The 2-sphere S, is spanned by the spherical pentagon C2. The circular arc 
from u, to v, has length n/10 [4, p. 351; hence, S, and S, make an angle of 
m/2 - a/10 = 2m/5. 

For any two reflections r, r '  in a Coxeter group, let m(r, r') denote the order of 
rr'. As an immediate corollary of (2.2) we have the following fact. 

(2.3) With notation as aboueput s = s,. For 0 < j ,< 2, m(r,, s )  = 2, while m(r,, s )  
= 5. 

For 0 g i g 3 let T, = (R, - { r , ) ) ~{ s )  (where R, = {ro,rl,r, ,r3)) and let Hi 
be the subgroup of G, generated by T .  

(2.4) The pair (Hi, T,) is a Coxeter system. 
SKETCHOF PROOF. Since Hi is generated by reflections, it is a Coxeter group [I, 

ThCoreme 1, p. 741. For 0 g i g 3 let H~be the Coxeter group whose diagram is 
indicated below. 
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ir, . 5 . . 
From (2.3) it is clear that there is a surjective homomorphism Hi+ H,. The meaning 
of (2.4) is that this map is an isomorphsm. T h s  can be proved on a case-by-case 
basis. The only two case which present any difficulties are H, and H,. The first step 
is to show that the subgroup H generated by { r , ,  r,, s ) ,  which is a quotient of G,, is 
actually isomorphic to G,. This follows from the fact that the orientation-preserving 
subgroup of G ,  is the simple group A,. Next one can show that Ho is irreducible and 
conclude that H0= Ho by arguing that no other irreducible Coxeter group of rank 4 
has H as an isotropy subgroup. Similarly, for Ii,. 

From (2.4) and on p. 20 [I, ThCor$me 2(i)], one can immediately deduce the 
following fact. 

(2.5) Let T be any proper subset of R ,  U { s )  and let H,  be the subgroup of G ,  
generated by T .  Then ( HT, T ) is a Coxeter system. 

3. A torsion-free subgroup of G4.Let 9( X 4 ) denote the set of 3-dimensional faces 
of the hyperbolic polyhedron X4 (of course, 9( X 4 )can be identified with 9). For 
each D E 22 ( X 4 ) ,let rDbe the reflection of H 4  across the hyperplane supported by 
D, let s ,  be the reflection of H4 across the hyperplane through x4 (the center of X 4 )  
which is orthogonal to the geodesic ray from x4 to the center of D, and let 
t ,  = rDsD.It is clear that r, belongs to G4, s ,  belongs to G ,  (the isotropy subgroup 
of G4at x , )  and, hence, t ,  belongs to G4.Let K denote the subgroup of G4generated 
by the family ( tD)DE9(X41.The transformation t ,  takes -D to D,and it takes X4 to 
the adjacent 4-cell across D.Hence, X4 is a fundamental domain for K .  Since X4 is 
the union of 14400 copies of A4, K has index 14400 in G4. The orbit space 
M 4  = H 4 / K  is obviously the space formed from x4by identifying D with -D via s ,  
for each D E 9( X 4 ) .  

Let C 0  c C 1  c c2c c3c C 4  = X4 be a chain of cells in the tessellation of H 4  
and let R 4  = {r , ,  r,, r,, r,, r 4 )  be the corresponding set of fundamental reflections 
for G 4 . Define a map from R 4  to G, by sending ri to itself for 0 ,< i ,< 3 and by 
sending r4 (= r,) to s ,  (where D = c3).It follows from (2.3) that this map extends 
to a homomorphism f :  G4 + G, which restricts to the identity on G,. The kernel off 
is K ,  since K is clearly contained in this kernel and since both groups have the same 
index in G4.Thus, G4 is the semidirect product of G, and K .  Every finite subgroup 
of G4 is conjugate to a subgroup of some "standard subgroup" of G4 (where 
"standard subgroup" means a subgroup generated by some proper subset of R,) .  It 
follows from (2.5) that each standard subgroup of G4 is mapped monomorphically 
by f.  Hence, K is torsion-free. Consequently, K acts freely on H ~ ,and M 4  is a 
hyperbolic 4-manifold. 

Since K is normal in G4,the quotient group G ,  acts isometrically on M 4 .The orbit 
space of t h s  action is A4 (the orbit space of G4 on H ~ ) .The fixed point set of any 
reflection s ,  in G, on M 4  is a hyperbolic 3-manifold M 3  obtained by gluing D to the 



328 M. W. DAVIS 

polyhedron formed by intersecting X4 with the hyperplane in H 4  which is fixed by 
s,. Hence, M~is 2-sided and connected. It is easy to see that the complement of M 3  
in M 4  is connected. Therefore, M 3  represents a nonzero homology class. It follows 
that the first Betti number of M~is 2 1. (Thls Betti number is also G 60, since K is 
generated by 60 elements and their inverses.) 

The Euler characteristic of M4 is 26. One way to see this is to compute the rational 
Euler characteristic of G,, as in [6, p. 1111, obtaining x(G4) = 26,44400. 

REMARKS. Seifert constructed hyperbolic 3-manifold by In [7] Weber and a 
identifying opposite faces of a dodecahedron. In several respects the construction of 
M 4  seems simpler. The tessellation of H 4  by copies of x4is described by Coxeter in 
[2]. The apparently new fact is the existence of the torsion-free subgroup K with x4 
as its fundamental domain. Coxeter also describes two other tessellations of H 4  by 
regular 120-cells. Their symmetry groups are 

These have rational Euler characteristics 1/14400 and 17/28800, respectively [6, p. 
1111.Hence, the second one does not admit a torsion-free subgroup of index 14400; 
however, the first one quite possibly does. In t h s  vein it might be interesting to find 
further examples of hyperbolic 4-manifolds formed by identifying faces of a 120-cell. 
The analogous question in dimension 3 has recently been completely solved in [S] 
with the aid of a machine. 
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