

A Hyperbolic 4-Manifold

Michael W. Davis

Proceedings of the American Mathematical Society, Vol. 93, No. 2. (Feb., 1985), pp. 325-328.

Stable URL:

http://links.jstor.org/sici?sici=0002-9939%28198502%2993%3A2%3C325%3AAH4%3E2.0.CO%3B2-R

Proceedings of the American Mathematical Society is currently published by American Mathematical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at <u>http://www.jstor.org/journals/ams.html</u>.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

A HYPERBOLIC 4-MANIFOLD

MICHAEL W. DAVIS¹

ABSTRACT. There is a regular 4-dimensional polyhedron with 120 dodecahedra as 3-dimensional faces. (Coxeter calls it the "120-cell".) The group of symmetries of this polyhedron is the Coxeter group with diagram:

· <u>5</u>· _ · __·

For each pair of opposite 3-dimensional faces of this polyhedron there is a unique reflection in its symmetry group which interchanges them. The result of identifying opposite faces by these reflections is a hyperbolic manifold M^4 .

1. Some Coxeter groups. For $0 \le n \le 4$ let G_n denote the Coxeter group of rank n + 1 with diagram as indicated below:

$$G_0 \cdot , G_1 \cdot \frac{5}{2} \cdot , G_2 \cdot \frac{5}{2} \cdot \underline{-} \cdot , G_3 \cdot \frac{5}{2} \cdot \underline{-} \cdot \underline{-} \cdot , G_4 \cdot \frac{5}{2} \cdot \underline{-} \cdot \underline{-} \cdot \frac{5}{2} \cdot \underline{-} \cdot \underline{-} \cdot \frac{5}{2} \cdot \underline{-} \cdot$$

Obviously, $G_0 \subset G_1 \subset G_2 \subset G_3 \subset G_4$. The first four of these groups are finite and have canonical representations as subgroups of O(n + 1) (cf. [1]). In fact, for $1 \leq n \leq 3$, G_n is the group of isometries of S^n generated by the orthogonal reflections across the faces of a certain spherical *n*-simplex Δ^n (a "fundamental chamber"). The group G_4 can be represented as a discrete cocompact subgroup of O(4, 1), the group of isometries of hyperbolic 4-space H^4 [1, Exercise 15, p. 133]. Its fundamental chamber is a certain hyperbolic 4-simplex Δ^4 . For $1 \le n \le 4$ let x_n be a vertex of Δ^n such that the isotropy subgroup of G_n at x_n is G_{n-1} . The translates of Δ^n under G_{n-1} fit together at x_n to give the barycentric subdivision of a convex polyhedron X^n (in S^n if $n \leq 3$ or in H^4 if n = 4). The translates of X^n under G_n then give a tessellation of S^n ($n \leq 3$) or H^4 (n = 4) by congruent copies of X^n . The full group of symmetries of this tessellation is G_n . For $1 \le n \le 3$ the convex hull of the vertex set of this tessellation of S^n is a convex polyhedron Y^{n+1} in \mathbb{R}^{n+1} . X^1 is a circular arc (of length $2\pi/5$), S¹ is tessellated by 5 copies of it, and Y² is a pentagon. X^2 is a spherical pentagon, S^2 is tessellated by 12 copies of it, and Y^3 is a dodecahedron. X^3 is a spherical dodecahedron, S^3 is tessellated by 120 copies of it, and Y^4 is the 4-dimensional regular polyhedron called the "120-cell" in [3]. X^4 is a hyperbolic 120-cell, and H^4 is tessellated by an infinite number of copies of it (cf. [2]). The orders of these Coxeter groups are as follows: $|G_0| = 2$, $|G_1| = 10$, $|G_2| = 120$, $|G_3| = 14400 \ (= (120)^2), \ |G_4| = \infty.$

©1985 American Mathematical Society 0002-9939/85 \$1.00 + \$.25 per page

Received by the editors July 27, 1983.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 51F15.

¹Partially supported by NSF grant MCS-8102686.

The group G_n and its fundamental chamber Δ^n can be recovered from the tessellation as follows. Choose a chain of cells in the tessellation: $C^0 \subset C^1 \subset \cdots \subset C^n = X^n$, where C^j has dimension *j*. Let v_j denote the center of C^j (so that $v_n = x_n$). The vertices v_0, \ldots, v_n span an *n*-simplex which we can take to be Δ^n . For $0 \leq j \leq n$ let r_j denote the reflection across the "hyperplane" (i.e., great subsphere if $1 \leq n \leq 3$ or hyperbolic hyperplane if n = 4) supported by the face of Δ^n which is opposite to v_j . The family $(r_j)_{0 \leq j \leq n}$ is denoted by R_n and called a "fundamental system of reflections" for G_n . Its elements correspond to the nodes of the corresponding diagram (where the nodes are numbered from left to right).

2. The tessellation of S^3 by dodecahedra and its symmetry group. In this section we discuss several facts about G_3 . A good general reference for Coxeter groups is [1]; in particular, Exercise 12 on p. 231 gives an interesting method of proving some properties of G_3 .

Let \mathscr{D} be the set of dodecahedra in the previously mentioned tessellation of S^3 . For each $D \in \mathscr{D}$ let

> -D = the face opposite to D, v_D = the center of D, S_D = the great 2-sphere orthogonal to v_D , s_D = the orthogonal reflection across S_D .

Clearly, $s_D = s_{D'}$ if and only if D' = D or -D.

(2.1) For each $D \in \mathcal{D}$, the reflection s_D belongs to G_3 . Moreover, $(s_D)_{D \in \mathcal{D}}$ is the family of all reflections in G_3 .

The above fact is proved in [3, p. 227]. (Alternatively, it follows from the exercise in [1] mentioned above.)

Next suppose, as in §1, that $C^0 \subset C^1 \subset C^2 \subset C^3 = X^3$ is a chain of cells and, for $0 \leq j \leq 3$, v_j is the center of C^j , S_j is the 2-sphere supported by the face of Δ^3 opposite to v_j , and r_j is the orthogonal reflection across S_j . Put $D = C^3$.

(2.2) For $0 \le j \le 2$ the 2-spheres S_D and S_j make a dihedral angle of $\pi/2$. The 2-spheres S_D and S_3 make a dihedral angle of $2\pi/5$.

PROOF. For $0 \le j \le 2$, S_j contains v_3 (= v_D); hence, S_D and S_j intersect orthogonally. The 2-sphere S_3 is spanned by the spherical pentagon C^2 . The circular arc from v_3 to v_2 has length $\pi/10$ [4, p. 35]; hence, S_D and S_3 make an angle of $\pi/2 - \pi/10 = 2\pi/5$.

For any two reflections r, r' in a Coxeter group, let m(r, r') denote the order of rr'. As an immediate corollary of (2.2) we have the following fact.

(2.3) With notation as above put $s = s_D$. For $0 \le j \le 2$, $m(r_j, s) = 2$, while $m(r_3, s) = 5$.

For $0 \le i \le 3$ let $T_i = (R_3 - \{r_i\}) \cup \{s\}$ (where $R_3 = \{r_0, r_1, r_2, r_3\}$) and let H_i be the subgroup of G_3 generated by T_i .

(2.4) The pair (H_i, T_i) is a Coxeter system.

SKETCH OF PROOF. Since H_i is generated by reflections, it is a Coxeter group [1, Théorème 1, p. 74]. For $0 \le i \le 3$ let \hat{H}_i be the Coxeter group whose diagram is indicated below.

326

From (2.3) it is clear that there is a surjective homomorphism $\hat{H}_i \rightarrow H_i$. The meaning of (2.4) is that this map is an isomorphism. This can be proved on a case-by-case basis. The only two case which present any difficulties are H_0 and H_1 . The first step is to show that the subgroup H generated by $\{r_2, r_3, s\}$, which is a quotient of G_2 , is actually isomorphic to G_2 . This follows from the fact that the orientation-preserving subgroup of G_2 is the simple group A_5 . Next one can show that H_0 is irreducible and conclude that $\hat{H}_0 \cong H_0$ by arguing that no other irreducible Coxeter group of rank 4 has H as an isotropy subgroup. Similarly, for H_1 .

From (2.4) and on p. 20 [1, Théorème 2(i)], one can immediately deduce the following fact.

(2.5) Let T be any proper subset of $R_3 \cup \{s\}$ and let H_T be the subgroup of G_3 generated by T. Then (H_T, T) is a Coxeter system.

3. A torsion-free subgroup of G_4 . Let $\mathscr{D}(X^4)$ denote the set of 3-dimensional faces of the hyperbolic polyhedron X^4 (of course, $\mathscr{D}(X^4)$ can be identified with \mathscr{D}). For each $D \in \mathscr{D}(X^4)$, let r_D be the reflection of H^4 across the hyperplane supported by D, let s_D be the reflection of H^4 across the hyperplane through x_4 (the center of X^4) which is orthogonal to the geodesic ray from x_4 to the center of D, and let $t_D = r_D s_D$. It is clear that r_D belongs to G_4 , s_D belongs to G_3 (the isotropy subgroup of G_4 at x_4) and, hence, t_D belongs to G_4 . Let K denote the subgroup of G_4 generated by the family $(t_D)_{D \in \mathscr{D}(X^4)}$. The transformation t_D takes -D to D, and it takes X^4 to the adjacent 4-cell across D. Hence, X^4 is a fundamental domain for K. Since X^4 is the union of 14400 copies of Δ^4 , K has index 14400 in G_4 . The orbit space $M^4 = H^4/K$ is obviously the space formed from X^4 by identifying D with -D via s_D for each $D \in \mathscr{D}(X^4)$.

Let $C^0 \subset C^1 \subset C^2 \subset C^3 \subset C^4 = X^4$ be a chain of cells in the tessellation of H^4 and let $R_4 = \{r_0, r_1, r_2, r_3, r_4\}$ be the corresponding set of fundamental reflections for G^4 . Define a map from R_4 to G_3 by sending r_i to itself for $0 \le i \le 3$ and by sending $r_4 (= r_D)$ to s_D (where $D = C^3$). It follows from (2.3) that this map extends to a homomorphism $f: G_4 \to G_3$ which restricts to the identity on G_3 . The kernel of fis K, since K is clearly contained in this kernel and since both groups have the same index in G_4 . Thus, G_4 is the semidirect product of G_3 and K. Every finite subgroup of G_4 is conjugate to a subgroup of some "standard subgroup" of G_4 (where "standard subgroup" means a subgroup generated by some proper subset of R_4). It follows from (2.5) that each standard subgroup of G_4 is mapped monomorphically by f. Hence, K is torsion-free. Consequently, K acts freely on H^4 , and M^4 is a hyperbolic 4-manifold.

Since K is normal in G_4 , the quotient group G_3 acts isometrically on M^4 . The orbit space of this action is Δ^4 (the orbit space of G_4 on H^4). The fixed point set of any reflection s_D in G_3 on M^4 is a hyperbolic 3-manifold M^3 obtained by gluing D to the

polyhedron formed by intersecting X^4 with the hyperplane in H^4 which is fixed by s_D . Hence, M^3 is 2-sided and connected. It is easy to see that the complement of M^3 in M^4 is connected. Therefore, M^3 represents a nonzero homology class. It follows that the first Betti number of M^4 is ≥ 1 . (This Betti number is also ≤ 60 , since K is generated by 60 elements and their inverses.)

The Euler characteristic of M^4 is 26. One way to see this is to compute the rational Euler characteristic of G_4 , as in [6, p. 111], obtaining $\chi(G_4) = 26/14400$.

REMARKS. In [7] Weber and Seifert constructed a hyperbolic 3-manifold by identifying opposite faces of a dodecahedron. In several respects the construction of M^4 seems simpler. The tessellation of H^4 by copies of X^4 is described by Coxeter in [2]. The apparently new fact is the existence of the torsion-free subgroup K with X^4 as its fundamental domain. Coxeter also describes two other tessellations of H^4 by regular 120-cells. Their symmetry groups are

 $\cdot \underline{5} \cdot \underline{-} \cdot \underline{-} \cdot \underline{-} \cdot and \cdot \underline{5} \cdot \underline{-} \cdot \underline{-} \cdot \underline{4} \cdot \underline{-} \cdot$

These have rational Euler characteristics 1/14400 and 17/28800, respectively [6, p. 111]. Hence, the second one does not admit a torsion-free subgroup of index 14400; however, the first one quite possibly does. In this vein it might be interesting to find further examples of hyperbolic 4-manifolds formed by identifying faces of a 120-cell. The analogous question in dimension 3 has recently been completely solved in [5] with the aid of a machine.

References

1. N. Bourbaki, Groupes et algèbres de Lie, Chaps. IV-VI, Hermann, Paris, 1968.

2. H. S. M. Coxeter, Regular honeycombs in hyperbolic space, Twelve Geometric Essays, Southern Illinois Univ. Press, Carbondale, Ill., 1968, pp. 200-214.

3. _____, Regular polytopes, 3rd ed., Dover, New York, 1973.

4. _____, Regular complex polytopes, Cambridge Univ. Press, Cambridge, 1974.

5. J. S. Richardson and J. H. Rubinstein, Hyperbolic manifolds from regular polyhedra, preprint, 1982.

6. J.-P. Serre, *Cohomologie des groupes discrets*, Prospects in Mathematics, Ann. of Math. Stud., Vol. 70, Princeton Univ. Press, Princeton, N. J., 1971, pp. 77–169.

7. C. Weber and H. Seifert, Die Beiden Dodekaederräuime, Math. Z. 37 (1933), 237-253.

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210

328