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CONVEX POLYTOPES, COXETER ORBIFOLDS
AND TORUS ACTIONS

MICHAEL W. DAVIS AND TADEUSZ JANUSZKIEWICZ

0. Introduction. An n-dimensional convex polytope is simple if the number of
codimension-one faces meeting at each vertex is n. In this paper we investigate
certain group actions on manifolds, which have a simple convex polytope as orbit
space. Let P" denote such a simple polytope. We have two situations in mind.

(1) The group is Z, M" is n-dimensional and
(2) The group is T", M2n is 2n-dimensional and M2"/T" P".
Up to an automorphism of the group, the action is required to be locally

isomorphic to the standard representation of Z. on
in the second case. In the first case, we call M2" a "small cover" of P"; in the second,
it is a "toric manifold" over P. First examples are provided by the natural actions
of Z. and T" on RP" and CP", respectively. In both cases the orbit space is an
n-simplex.

Associated to a small cover of P", there is a homomorphism 2" Z’ Z, where
m is the number of codimension-one faces of P". The homomorphism 2 specifies an
isotropy subgroup for each codimension-one face. We call it a "characteristic
function" of the small cover. Similarly, the characteristic function ofa toric manifold
over pn is a map Z --) 7/". A basic result is that small covers and toric manifolds
over P" are classified by their characteristic functions (see Propositions 1.7 and 1.8).
The algebraic topology of these manifolds is very beautiful. The calculation of

their homology and cohomology groups is closely related to some well-known
constructions in commutative algebra and the combinatorial theory of convex
polytopes. We discuss some of these constructions below.

Let f denote the number of/-faces of P" and let h denote the coefficient of "-
in f(t 1). Then (fo, f,) is called the f-vector and (ho, h,) the h-vector of
P". The f-vector and the h-vector obviously determine one another. The Upper
Bound Theorem, due to McMullen, asserts that the inequality h < (,-,{-x), holds
for all n-dimensional convex polytopes with m faces of codimension one. In 1971
McMullen conjectured simple combinatorial conditions on a sequence (h0, h,)
of integers necessary and sufficient for it to be the h-vector of a simple convex
polytope. The sufficiency of these conditions was proved by Billera and Lee and
necessity by Stanley (see [Bronsted] for more details and references). Research on
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such problems, particularly that of R. Stanley, has led to the injection of some
heavy-duty commutative algebra and algebraic geometry into the theory of convex
polytopes. We focus on the following three aspects of this.

(A) The proof of the Upper Bound Theorem in [Bronsted] is free of machinery.
The first step in the argument is that one can choose a vector in [n which is generic
in the sense that it is never tangent to a proper face of Pn. The choice of such a vector
allows one to attach an integer-valued index to each vertex (called the "in-valence")
so that the number of vertices of index is h.

(B) The Upper Bound Theorem was reproved and generalized in [Stanley 1l, by
studying the "face ring" of the simplicial complex K, dual to the boundary complex
of P". The fundamental result here is Reisner’s Theorem [Reisner]. This states that
the face ring is Cohen-Macaulay if and only if K satisfies certain homological
conditions (see Theorem 5.1). Such a K is called a "Cohen-Macaulay complex".

(C) In [Stanleyl], the necessity of McMullen’s condition is established by study-
ing a certain quasi-smooth projective variety associated to P, called a "toric
variety". McMullen’s conditions then follow from the existence of a K/ihler class.

Aspects of (A), (B) and (C) have the following topological interpretations.
(A’) A generic vector for P can be used to define a cell structure on any small

cover M with one cell of dimension for each vertex of Pn of index i. Thus the
number of/-cells is h. This cell structure is perfect in the sense of Morse theory: the
h are the mod 2 Betti numbers ofM. (In fact a generic vector can be used to produce
a perfect Morse function on M" with one critical point of index for each vertex of
in-valence i.) Similar statements hold for toric manifolds over P, except that in this
case all cells are even-dimensional and the h are the even Betti numbers of M2n.
These facts are proved in Section 3. (A version of this Morse-theoretic argument
appears already in [Khovanskii].)

(B’) A standard construction in transformation groups is the Borel construction,
(or the homotopy quotient). We denote by BP" the result of applying this construc-
tion to a small cover M of P; that is,

BP" EZ xz M

where EZ. is a contractible CW-complex on which Z acts freely. A definition of
BP" can be given which is independent of the existence of a small cover; in fact, BP"
depends only on Pn. The fundamental group of BP" is a Coxeter group (cf. Lemma
4.4). We prove in Theorem 4.8 that the cohomology ring of BP" (with coefficients
in 7/2) can be identified with the Stanley-Reisner face ring of K. The orbit space of
EZz, denoted by BZ., is homotopy equivalent to the n-fold Cartesian product of
Rpoo; its 7]

2 cohomology ring is 7’2[X1, Xn]. The small cover M induces a
fibration M" BP" BZz. The Morse theoretic argument in (A’) shows that the
spectral sequence of this fibration degenerates: H*(BP") H*(M") (R) H*(BZ), (the
coefficients are in 7]2). This proves that the face ring of K is Cohen-Macaulay,
without resort to Reisner’s Theorem. There are deeper connections to (B). By
definition, a graded algebra over a field is Cohen-Macaulay if and only if it admits
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a "regular sequence" (see Section 5). Since BZz is the Eilenberg-Maclane space
K(Z, 1), the homotopy class of the map BP" BZz is given by a sequence 21,
2n of elements of HI(BP"; Z). When the map is the projection map of the fibration
M" BP" BZz, the sequence (2, 2) can be identified with the dual map to
the characteristic function of M; furthermore, 2, 2n is a regular sequence of
degree-one elements for the face ring. The converse is also true. Thus, the set of
characteristic functions for small covers is naturally identified with the set of regular
sequences of degree-one elements for the face ring. The 7/2 cohomology ring of M
is the quotient of the face ring by the ideal generated by the 2i (cf. Theorem 4.14).
Therefore, although it follows from (A’) that the additive structure of H*(M; 7/z)
depends only on P, the ring structure depends on the characteristic function. Again,
similar statements hold for toric manifolds. In this case the cohomology of the Borel
construction can be identified with the face ring over 7/. Explanations for the
statements in this paragraph can be found in Sections 4 and 5.

(C’) Nonsingular toric varieties are toric manifolds in the sense of this paper;
however, the converse does not hold. For example, Cp2:CP2 is a toric manifold,
but it does not admit an almost complex structure. In fact, the characteristic function
of a toric variety is encoded in the "fan" (see l-Oda] for definition) as follows. The
codimension-one faces of the quotient M2"/T are in one-to-one correspondence
with the vertices of the triangulation of the sphere given by the fan. The value
of the characteristic function at a face F is the primitive integral vector on the
ray passing through the vertex corresponding to F. This family of characteristic
functions is rather restricted. (In Section 7, we describe the analogous statement in
the symplectic category, based on a paper by Delzant.) Thus, a Kihler class is one
important tool which is missing in the case of general toric manifolds.
With regard to (C’), it should be mentioned that most of the results of this paper

are well known in the case of toric varieties. However, it follows from this paper
that, to a large extent, these results on cohomology of toric varieties are topological,
and algebraic geometry need not be brought into the picture (unless one wants
information about algebraic objects like the Chow ring, etc.).
The notions of f-vector, h-vector and face ring make sense for arbitrary finite

simplicial complexes. This suggests that one should generalize the concepts of small
cover and toric manifold as well as the results described in (B’). Such a generalization
is accomplished in Sections 2, 4, and 5. Suppose that K is an (n 1)-dimensional
simplicial complex. One can define an n-dimensional polyhedral complex P which
is "dual" to K. The concepts of a small cover or toric space over P make sense. As
in (B’), one defines a space BP, the cohomology ring of which is the face ring of K.
If Y is a small cover ofP, then there is a fibration Y BP BZ., and the projection
map is determined by a sequence 2, 2 of elements in H(BP; 7/2). It follows
from Reisner’s Theorem that the spectral sequence of the fibration degenerates
if and only ifK is Cohen-Macaulay over 7/2 (cf. Theorem 5.9). One can deduce from
this that if Y is a small cover of the dual of a Cohen-Macaulay complex, then the
h-vector gives the mod 2 Betti numbers of Y. (A Morse theoretic proof of this fact,
along the lines of (A’), would yield a new proof of Reisner’s Theorem.)
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The identification of the face ring of an arbitrary finite simplicial complex with
the cohomology ring of a space has a concrete application: it allows us, in Theorem
4.11, to give a simple formula for the cohomology ring of any right-angled
Coxeter group.

In Section 6 we consider the tangent bundle of small covers and toric manifolds.
We prove that that tangent bundle of a small cover M is stably isomorphic to a
sum of real line bundles. It follows that the Pontriagin classes of M" vanish and
that one can give an explicit formula (see Corollary 6.9) for the Steifel-Whitney
classes. Similarly, the tangent bundle of a toric manifold is stably isomorphic, as a
real vector bundle, to a sum of complex line bundles, and this leads to formulae for
its characteristic classes.
The authors would like to thank Ruth Charney, John McCleary and Walter

Neumann for some very helpful conversations.

1. Definitions, examples and constructions. An n-dimensional convex polytope
pn is simple if precisely n codimension-one faces meet at each vertex. Equivalently,
pn is simple if the dual of its boundary complex is an (n 1)-dimensional simplicial
complex. For example, a dodecahedron is simple; an icosahedron is not.
As d 1 or 2, let :a stand for R or C, respectively, and let Ga stand for Z2 or S

respectively. (Ga is regarded as the group of elements of :a of norm 1.) The natural
action of Ga on :a is called the standard one-dimensional representation. The orbit
space of that action is naturally identified with + and the orbit map is the norm.
Let :, and G, denote the n-fold cartesian products. The natural action of G, on
is again called the standard representation. The orbit space is ..

Suppose that G acts on a manifold Man. A local isomorphism of Man with the
standard representation consists of

(i) an automorphism 0: G G,
(ii) G-stable open sets V in Man and W in : and
(iii) a 0-equivariant homeomorphism f: V W (i.e., f(ov) O(#)f(v)).
One says that Man is locally isomorphic to the standard representation ifeach point

of M is in the domain of some local isomorphism.
Now let pn be a simple convex polytope. By a G-manifold over pn we will mean
(a) a G,-action on a manifold Man locally isomorphic to the standard

representation
(b) a projection map n" Man pn such that the fibers of n are the G orbits.
Note that (b) says that the orbit space of G, on Man is homeomorphic to
Suppose that rl" Mn pn, r2: M2n pn are two G,-manifolds over pn. An

equivalence over pn is an automorphism 0 of G,7, together with a 0-equivariant
homeomorphism f: Mt M2, which covers the identity on
When d 1, G is Zz. In this case pn inherits the structure of an orbifold. In fact

it is a right-angled Coxeter orbifold, which means nothing more than that it is locally
isomorphic to the orbifold Rn/Zz. The map n: Mn pn is then a regular orbifold
covering of pn with Z] as the group of covering transformations. We will call
: Man pn a small cover of the orbifold pn. "Small" here refers to the fact that any
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cover of pn by a manifold (= nonsingular orbifold) must have at least 2 sheets. It
can be proved that any 2n-sheeted orbifold covering of pn by a manifold is regular
with the group of covering transformations Z.
When d 2, G Tn, and an interesting class of examples arises in algebraic

geometry under the name of "nonsingular toric varieties". Good references are
[Danilov] and [Oda]. We will say that 7: M2n - pn is a toric manifold.
Example 1.1 (Products of d-spheres). The group Z2 acts on S by a complex

conjugation. The orbit space is an interval I. The group S acts on S2 by rotation
about an axis. The orbit space is again the interval. Thus, Sd is a Gd-manifold over
I. Taking the n-fold product of this example, we have a G-manifold over the n-cube.
When d 1, Z acts on S x x S as a group generated by reflections. (A
reflection is a locally smooth involution whose fixpoint set separates the manifold.)
We shall see later that this reflection group property means that n: T I is trivial
in a certain sense. The next examples are not trivial in this sense.

Example 1.2 (Projective spaces). Identify G, with G+I/D where D is the diagonal
subgroup D ((g, g, /) G+ }. Then G acts on the projective space :apn in
the usual manner. It is easy to check that this action is locally isomorphic to the
standard representation. Furthermore, CPn/T Pn/Zz is an n-simplex. Thus, the
projective space is a G,7-manifold over the simplex. Note that Z, n > 2, does not
act on Pn as a group generated by reflections, since the fixed set ofa basic generator
of Z is a disjoint union of a point and a codimension-one projective space, and
hence does not separate.

Notation. If F is a k-face of pn, then denote n- (F) by Mk.

LEMMA 1.3. Suppose that 7: Man -, P" is a G-manifold over pn. Let Fk be a k-face
of pn. Then

(i) Mk is a connected submanifold of Man of dimension dk and
(ii) Mk -, Fk is naturally a G-manifold over Fk.

Proof. That Mdk is a submanifold of dimension dk follows from the fact that
Mn is locally isomorphic to :. Let us show thatMk is connected. Let int(Fk) denote
the relative interior of Fk. First, suppose that d 2. Then n-(int(Fk)) int(Fk) is
a trivial Tn/Tn-k bundle. Since n-(int(Fk))= Tk x int(Fk) is connected, so is its
closure Mk. Suppose d 1. Then n-(int(Fk)) is homeomorphic to zk2 x int(Fk).
Hence, M.k consists of 2k copies of Fk glued together on their boundaries. At any
vertex of Fk all 2k copies meet; hence, Mk is connected. This proves (i).

Let x n-(int(Fk)) c Mk and let Gx denote the isotropy subgroup at x. Then
Gx is isomorphic to G-k. The intersection of the fixed set ofG with Mk is an open
and closed submanifold of Mk; since it is connected, G fixes Mk. Hence, G c Gy
for any y Mk. Identifying G with G-k and Gdk with G/G-k, we obtain an
Gk-action on Mk with orbits the fibers of 7: Mk -- Fk.

Remark. It is easy to see that any G,-manifold Md can be given a smooth
structure in which the G-action is smooth.
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LEMMA 1.4. Suppose that Ma"- P" is a G-manifold over the simple convex
polytope pn. There is a continuous map f: G x P" - Man so that for each p e P", f
maps G x p onto r-x (p).

Proof. This is fairly obvious for d 1. For in this case, consider the restriction
of n to the interior of P", r-X(int(P")) - int(P"). Since int(P") is simply connected,
this is a trivial covering. Let int(C) be a component of zt- (int(P")) and let C denote
its closure. Then it is easy to check that nlc: C--, P" is a homeomorphism. Let
s (nlc)-. The map f: Z. x P" M" can then be defined by f(g, p) gs(p), where
g Zz and p P".

In the case of toric manifolds we must proceed somewhat differently. We may
assume that T" acts smoothly on Mz". In general, when a compact Lie group G acts
smoothly on a manifold M with orbit space B, there is a procedure for "blowing up
the singular strata" of M to obtain a smooth G-manifold with boundary M with
only principal orbits and with the orbit space B. The manifold M is equivariantly
diffeomorphic to the complement of the union of tubular neighbourhoods of the
singular strata. However, the definition ofM is more canonical. Roughly speaking,
one begins by removing the minimal stratum and replacing it by the sphere bundle
ofits normal bundle. One continues in this fashion, blowing up minimal strata, until
only the top stratum is left. It is clear from this construction that there is a natural
map M M which is the identity on top stratum, and which collapses each sphere
bundle to its base space. The details of the construction can be found in [Davis1],
p. 344. Now suppose that M2" is a smooth T"-manifold locally modelled on the
standard representation^ with the orbit spa..ce B. Then B is an n-manifold with
corners. In this case, B (the orbit space of M) is canonically identified with B. In
our particular case, B P", a convex polytope. Since pn is contractible, : jr2. _. p,
is trivial T" bundle; i.e., there is an equivariant diffeomorphism b: T" x P" 2,
inducing the identity on P". Composing b with the natural collapse 2, M2,, we
obtain the map f.
For d 1, 2, let Ra denote the ring 7/2 or 7/, respectively, and let R denote the

free Ra-module of rank n. By a k-dimensional unimodular subspace of R, we will
mean a submodule of rank k which is a direct summand. (If d 1, any submodule is
a direct summand). The set of subgroups of G,, which are isomorphic by an element
of Aut(G,7) to the standard copy of G,, is naturally parametrized by the set of
k-dimensional unimodular subspaces ofR. In particular, the subgroups ofG which
are isomorphic to G are parametrized by the lines in R, i.e., by elements of PR,
the set of primitive vectors in R,] modulo { _+ 1 }. We note that PR"x R] {0}
7/’ {0}. Thus, for d 1, rank-one subgroups ofZ correspond to nonzero vectors
in R. For d 2 we can for now safely ignore + 1; thus, a rank-one subgroup of T"
is determined by a primitive vector in R 7/".

Suppose that P" is a simple convex polytope and that n: Ma" P" is a G-
manifold over P". Let Fk be a k-face of P". By Lemma 1.3, for any x n-(int Fk),
the isotropy group at x is independent of the choice of x; denote it by Ge. If Fn-1 is
a codimension-one face, Gv is a rank-one subgroup; hence, it is determined by a
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primitive vector v e R,], (well defined up to a sign). In this way we obtain a function
2 from the set of codimension-one faces of P", denoted by -, to primitive vectors
in R,]. This function 2: R is called the characteristic function of Ma". The
characteristic function obviously determines the group associated to any face. In
fact, suppose F is a face of codimension l. Since P is simple, F F1 o...n Ft,
where F are the codimension-one faces which contain F. Then GF is the subgroup
corresponding to the subspace spanned by 2(F1) ,2(Ft). We therefore see that
the characteristic function satisfies the following condition, which we will call (.).

(.) Let F F c... c F be any codimension-/face of P. Then 2(F), 2(F)
span an/-dimensional unimodular subpspace of R,].

In particular, if Fx, F, are the codimension-one faces meeting at some vertex
of P" then 2(Fa), 2(F,) is a basis. We will now show that the characteristic
function determines the G-manifold over P" and that any function satisfying (.)
can be realized as the characteristic function of some such G,7-manifold over P".

1.5. The basic construction. Let P be a simple convex polytope, - the set of
codimension-one faces ofP and 2: o" R a function satisfying condition (.). The
function 2 provides the necessary information to reverse the construction in the
proof of the Lemma 1.4: one starts with G x P and then uses 2 to "blow down"
each G x F to a singular stratum. The construction goes as follows. For each face
F of P", let GF be the subgroup of G, determined by 2 and F. (Thus, if F F1 c... c
F, Gr is the rank-/subgroup determined by the span of 2(F), 2(Ft)). For each
point p e P, let F(p) be the unique face ofP which contains p in its relative interior.
We define an equivalence relation on G x P: (g, p) (h, q) if and only if p q and
g-h e Gvtp). We denote the quotient space G, x P"/,- by Man(2) and the quotient
map by f: G x P" Ma"(2). The action of G by the left translations descends to
a G-action on Ma"(2), and the projection onto the second factor ofG x P" descends
to a projection zr: Ma"(2) P". We claim that this is a G-manifold over P". To show
this, we need to see that Ma"(2) is a manifold and that the action is locally isomorphic
to the standard representation. Both these facts are local and follow easily from the
next lemma, the proof of which we omit.

LEMMA 1.6. Let i" R"+ -, : be the inclusion. Define an equivalence relation on

G x "+ by: (g, x) (h, y). x y and g-Xh e Gitx) where Gitx) denotes the isotropy
subgroup of G at i(x). Then the natural map G x "+ -, : given by (g, x) -, gi(x)
descends to a homeomorphism (G x ["+)/. -, :.
We summarize the above construction in the following result.

PROPOSITION 1.7. Let P" be a simple convex polytope, 2 the set of codimension-
one faces, and 2: --, R a function satisfying (,). Then the result of Construction
1.5, 7: Ma"(2)-, P", is a G-manifold over P".

The next result also follows from Lemma 1.6.
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PROPOSITION 1.8. Let r: Man - pn be a G-manifold over pn, let 2" - R be its
characteristic function, and let r: Man(2) pn be the result of applying the Construc-
tion 1.5 to 2. Let f: G x pn _.. Man be the map constructed in Lemma 1.4. Then f
descends to an equivariant homeomorphism Man(2) Man covering the identity on
Thus Man is determined up to equivalence over pn by its characteristic function.
COROLLARY 1.9. Let Z: M2n -- pn be a toric manifold. Then there is an involution

"c on M2n called "conjugation", with fixed point set Mn, such that rlM,: M pn is a
small cover. Moreover, the characteristic function ofM is the mod 2 reduction of the
characteristicfunction of M2n.

Proof. We may assume that M2n MEn(,) where 2 is the characteristic function
of MEn. Consider the involution on T x pn defined by (g, p)- (g-l, p). The
fixpoint set of is Z x pn. One checks easily that - descends to the involution
on M2n(,) with the fixpoint set homeomorphic to Mn(), where -: ff --. 7/z is the
mod 2 reduction of 2.

Remark. When M2n CPn, "c is the complex conjugation, and M is iPn.

1.10 Cartesian products. The cartesian product of a G-manifold over pn and a

Gn-manifold over pm is a G+’-manifold over pn x P’.

1.11. Equivariant connected sums. Suppose that rl" M2n - P’ and rr2" M2
P are G-manifolds. Let vi be a vertex of Pi and V be its preimage in Mn. Changing
the action by an element of Aut(G) if necessary, we may assume that G,7-actions
are equivalent in a neighbourhood of V. One can then perform the connected sum
equivariantly near the fixpoint; the result is a G,-manifold M $M2. Its quotient
space, Pt : P2, is formed by removing a small ball around vi from P and gluing the
results together. This space is not canonically identified with a simple convex
polytope but is almost as good in that its boundary complex is dual to some PL
triangulation of Sn-.

1.12. Pullbacks. Suppose that Qn and pn are simple convex polytopes and that
f: Qn pn is a continuous map which takes each face of Qn to a face of the same
dimension in pn. Let n: Mdn pn be a G,-manifold over pn. Then f*(Man), the
pullback of Man, is the fiber product of Qn and Man. In other words, f*(Man) is the
subset ofMan x Qn consisting of all (x, q) such that f(q) r(x). The space f*(Man)
is a G,-stable subspace of Man x Qn, where G,7 acts on the first factor. Projection
of Man x Qn onto Qn restricts to a projection r’:f*(Man) Qn. It can be checked
that f*(Man) is a manifold and that the G,-action is locally isomorphic to the
standard representation. Thus, rt’:f*(Man) Qn is a G-manifold over Qn. Let
-Q and ], denote the set of codimension-one faces of Qn and pn, respectively,
and let f:-Q -, be the map induced by f. If 2" -e 9 is the characteristic
function of Mdn, then 2 of is the characteristic function of

Remark 1.13. The notions of the pullback and characteristic function can be
reformulated in terms of the dual complex of the boundary complex of a simple
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convex polytope pn. This dual complex is an (n 1)-dimensional simplicial complex
K,, defined as follows. The vertex set of K, is ’,, the set of codimension-one faces
of P. A set of(k + 1)elements in ,, (Fo, Fk} span a k-simplex in K, if and only
if Fo c... c Fk v O. (This intersection is then a face of pn of codimension (k + 1)).
Thus, the k-simplices of Ke are naturally identified with the codimension-(k + 1)
faces of pn. One can find a face preserving map Qn pn, as in 1.12 if and only if
there is a simplicial map f: KQ K, which restricts to an isomorphism on each
simplex. Such a simplicial map is called nondegenerate. The characteristic function
2 is a function from the vertex set of K, to R. If 2 satisfies (,), then the condition
that f be a nondegenerate simplicial map implies that 2 of also satisfies (,). Thus, if
zt" Mdn pn is a G,-manifold, Qn is another simple polytope, and f: KQ K, is a
nondegenerate simplicial map, then f*(Man) is the G,-manifold over Qn determined
by the characteristic function 2 o f. R,.
The proof of the next lemma is straightforward and is omitted.

LEMMA 1.14. Let : Man - pn be a G-manifold over pn. The following statements
are equivalent.

(i) Man is a pullback of the linear model [[: - Rn+.
(ii) The image of the characteristic function 2 is a basis for R.
(iii) There is a nondegenerate simplicial map ffrom K, to an (n 1)-simplex An-l,

and a bijection 0 of the vertex set of An- with a basis for R so that 2 0 o

Moreover, in the case d 1, any one of these conditions is equivalent to the
condition that Zz act on M as a group generated by reflections.

Example 1.15. (Pullbacks from the linear model.) There are many simple convex
polytopes pn, such that Ke admits a nondegenerate simplicial map onto An-. Here
are two types of examples, discussed in [Davis3].

(1) Suppose that pn is such that Ke is the barycentric subdivision of a convex
polytope Qn; i.e., pn is the dual ofthe barycentric subdivision ofQn. The vertices ofKe
are then identified with faces of Qn. Regard An-: as the simplex on {0, 1, n 1 }
and define D to be the function which associates to each vertex ofKe the dimension
of the corresponding face of Qn. Clearly, D extends to a nondegenerate simplicial
map D: Ke An-.

(2) Suppose that K, is a Coxeter complex of a finite Coxeter group W. Thus, Kp
is a triangulation ofSn- and pn is the dual. Moreover, the orbit map S
is a nondegenerate simplicial map Ke An-1. An explicit geometric realization is
as follows. Let W act on Rn as a linear orthogonal group generated by reflections
and let x e n be a point in the interior of some chamber. Then pn can be identified
with the convex hull of the orbit W(x).
Both types of examples yield G-manifolds Man pn which pullback from the

linear model. An important special case is when pn is a "permutohedron". This is
the specialization of (2), where the Coxeter group is the symmetric group on n + 1
letters. It can also be regarded as a specialization of (1), where Qn An, so that K,
is the barycentric subdivision of the boundary of an n-simplex. As was pointed out



426 DAVIS AND JANUSZKIEWICZ

by [Tomei], the resulting G-manifolds arise in nature: when d 1, the Z-manifold
M" over the permutohedron P" can be identified with an isospectral manifold of
tridiagonal real symmetric (n + 1) x (n + 1) matrices; when d 2, the toric manifold
M2n is an isospectral manifold of tridiagonal hermitian matrices. (See also [Bloch,
et. al.], [Davis 3] and [Fried].)
The following two remarks are useful when considering the examples that follow.

Remark 1.16. Suppose that 2:- R, is a characteristic function and that
F1, Fn are the codimension-one faces meeting at some vertex. After changing
2 by an element of Aut(G), we may assume that {2(F1), 2(F,)} is the standard
basis for R,.

Remark 1.17. Orientations are important when d 2. An orientation for M2n

is determined by an orientation of P" and an orientation of the torus Tn.
Example 1.18. (p2 is a triangle). Suppose p2 A2, a two simplex. When d 1,

there is essentially only one possible characteristic function 2, namely the one
indicated below.

(0,/1)1)

(1, O)

The resulting small cover is [p2.
When d 2, there are two possibilities.

//NN (1, 1 //x(1,-1)

(1, o) (1, o)

The first corresponds to the usual T2-action on CP2 with its standard orientation;
the second to the same action with the reverse orientation of CP2, which we denote
by C/52.
The same considerations apply whenever pn is an n-simplex: any small cover of

An is RP", while any toric manifold over tr is either CP or CPn.
Example 1.19. (p2 is a square). Suppose that p2 is combinatorially a square.

When d 1, up to symmetries of p2 and automorphisms of Z22, there are essentially
only two possibilities for 2:
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(1, O) (1, 1)
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(0, 1) (0, 1) (0, 1) (0, 1)

(1,0) (1,0)

The first is T2 with Z acting as a reflection group; the second one is the Klein
bottle and is equivariantly homeomorphic to p2 g p2 (cf. 1.11).
When d 2, there are more possibilities, for example

(1, p) (1, -2)

(0, 1) (0, 1) (0, 1) (-1, 1)

(1,0) (1,0)

The first picture describes an infinite family of T2-manifolds, Mp*. The second
picture is the equivariant connected sum CP2 CP2. [Orlik and Raymond, p. 552]
have considered these T2-manifolds. They show that M is homeomorphic either
to S2 x $2 or to the nontrivial S2-bundle over S2 (as p is even or odd). The manifolds
Mp4 are equivariantly distinct; they are equivariantly homeomorphic to the natural
actions on the Hirzebruch surface P(L(p) L(p)), where L(p) denotes the complex
line bundle over S2 with the first Chern class p and P(L(p) 9 L(p)) is the associated
projective bundle (see [Oda]). Note that Mx4 is Cp2 --2.

Example 1.20. (p2 is an m-oon). If d 1, then M2 p2 is a surface tiled by 4
copies of an m-gon. Thus, z(M2) 4 m. If m is odd, M2 is the connected sum of
m 2 copies of RP2. If m is even, M2 can be either the connected sum of m 2
copies of Rp2 or the connected sum of (m- 2)/2 copies of T2. The equivariant
connected sum construction applied to Examples 1.18 and 1.19 shows that both
possibilities can occur.
The case d 2 has been completely decided by [Orlik and Raymond, p. 553].

They show that any such toric manifold M4 p2 is an equivariant connected sum
of copies of Examples 1.18 and 1.19. Thus, any toric four-manifold is (nonequi-
variantly) homeomorphic to a connected sum of copies of CP2, --2, and S2 x S2.

Example 1.21. (3-dimensional polytopes). Suppose that p3 is a simple convex
polytope of dimension 3 and let K, be the triangulation of S2 dual to t3Pa. The
Four Color Theorem states that there is a nondegenerate simplicial map from K, to
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the t;3A 3, the boundary of the tetrahedron. Thus, we can find a map f: p3 A3 as
in 1.12 and use it to pullback the Gn3-manifold [FdP3 A3. It follows that every simple
3-dimensional polytope arises as the base space of some G-manifold. Let us
consider the 3-manifolds which arise as small covers of such a p3. If p3 has no
triangles or squares as faces, then it follows from Andreev’s Theorem (cf. [Andreev]
or I-Thurston]) that it can be realized as a right-angled polytope in the hyperbolic
3-space. Hence, any small cover carries a hyperbolic structure. If p3 has no tri-
angular faces, M3 can be decomposed into Seifert-fibered or hyperbolic pieces glued
along tori or Klein bottles arising from square faces. In particular, such an M3 is
aspherical. If p3 has triangular faces, then M3 has a decomposition into such pieces
glued along projective planes. Of course, all this fits with Thurston’s Conjecture.

Nonexamples 1.22. (Duals of cyclic polytopes). For each integer n > 4 and k >
n + 1, there is an n-dimensional convex polytope with k vertices denoted by C, and
called a cyclic polytope, defined as the convex hull of k points on the curve ;(t)
(t, t2, n-l). This is a simplicial polytope (i.e., its boundary complex is a simplicial
complex). Moreover, it is m-neighbourly for m In/2]. This means that the (m 1)-
skeleton ofC coincides with the (m 1)-skeleton of a (k 1)-simplex (see [Bronsted,
13]). In particular, for n > 4, the 1-skeleton of C, is a complete graph. Let Q, be
the simple polytope dual to C,. We claim that for n > 4 and large values of k, the
polytope Q, admits no small cover. Indeed, let k denote the set of codimension-
one faces of Q, and consider a characteristic function 2: k ’* Zz. For any two
codimension-one faces F1 and F2, 2(F) and 2(b1/2) are distinct nonzero vectors in

Z since Ft c F2 :/: . Hence, there can be no such function 2 when k > 2n.
Therefore, the polytope Q admits no small cover whenever n > 4 and k > 2n. This
also implies that such a polytope cannot be the base space of a toric manifold, since
if M2" Q is a toric manifold then the fixed set of the conjugation z on M2 is
a small cover.
On the other hand, every simple polytope is the base space of some toric variety

in the sense of algebraic geometers (see [Oda]).

COROLLARY 1.23. Any toric variety over the dual of a 2-neighbourly polytope with
more than 2 vertices, (such as Q,, n > 4 and k > 2), is singular.

2. The universal G,-space. Construction 1.5 can be generalized to cases where
the base space is more general than a simple polytope. All that is necessary is that
the base space have a face structure which is in some sense dual to a simplicial
complex. We discuss such a generalization below.

Let K be a simplicial complex ofdimension n 1 and let K’ denote its barycentric
subdivision. For each simplex tr K, let F denote the geometric realization of the
poset K>_., {z K]tr < z}. Thus, F, is the subcomplex of K’ consisting of all
simplices of the form tr =tro < tr <’." <trk. We note that F, is a cone (on the
geometric realization of K >,). If tr is a (k 1)-simplex, then we say that F, is a face
of codimension k. Let PK denote the cone on K. The polyhedron PK together with
its decomposition into "faces" {F,},r will be called a simple polyhedral complex.
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Let Ver(K) denote the set of vertices of K and let 2: Ver(K) R] be a function.
For each simplex tr in K, let E, denote the span of 2(v), v tr. Condition (,) of
Section 1 translates as follows: for each (k 1)-simplex tre K, E, is a k-dimensional
unimodular subspace of R.

Suppose that 2: Ver(K) R, is any function satisfying (,). Construction 1.5 goes
through essentially without change. We put Y (G, x PK)/~, where the equivalence
relation is defined exactly as in 1.5; as before, we have a G,-action on Y with the
orbit map : Y PK. We will say that : Y --, Pr is a G-space over Pr.

It is interesting to note that there is an universal G,-space, such that any G,-space
can be obtained as a pullback via the suitable map. The base space of the universal
G-space is dual to a certain (n 1)-dimensional simplicial complex K, which we
will now describe. The vertex set ofK is PR, the set of lines in R,. A k-simplex tr

in K is a collection of lines {1o, Ik}, li PR, which span a (k + 1)-dimensional
unimodular subspace E, of R,. The dual of K will be denoted by U (instead
of Px). There is a tautological characteristic function 2 on Ver(K,) defined by
arbitrarily choosing a primitive vector for each line in Ver(K) (for d 1 there is
no choice involved). The resulting G,-space is denoted by Yan.

Suppose that n: Y Pr is a G,-space over a simple polyhedral complex PK
with characteristic function 2" Ver(K) R,. The function 2 yields a nondegenerate
simplicial map ." K K, defined by taking each vertex v K to the line spanned
by 2(v). (It is a tautology that 2 satisfies (,) if and only if . is a nondegenerate
simplicial map.) The following result is now obvious.

PROPOSITION 2.1. Let Pr be the n-dimensional simple polyhedral complex dual to
K. Any G-space re: Y-, Pr is equivalent to the pullback of the universal G$-space
Yn -, U via some nondegenerate simplicial map f: K -, K. In fact the set of equiv-
alence classes of G-spaces over Pr is in this way bijective with the set of nondegenerate
simplicial maps f: K -, K modulo the natural action of Aut(G).
The complex K] has remarkable homotopical properties. In the terminology of

Section 5, the theorem that follows means that K] is a Cohen-Macaulay complex.

THEOREM 2.2. The complex K is (n- 1)-dimensional and (n- 2)-connected.
Moreover, for each i-simplex tr K, the link of tr in K is (n i- 2)-dimensional
and (n- i- 3)-connected.

Proof. The complex K] is closely related to some complexes which have been
considered in algebraic K-theory. Let R be an associative ring. A sequence ofvectors
(v1,..., Vk) in R is unimodular if it spans a k-dimensional direct summand of R.
The set of such sequences is a poset, where the partial ordering is the relation of
being a subsequence. The simplicial complex X(R) associated to this poset was first
studied by Quillen. The main result of [vanderKallen, p. 274] implies that X(R])
is (n 2)-connected for Ra Z or 7/2 and that the similar statement holds for links.
Let K denote the barycentric subdivision of K]. We claim that K is a retract
of X(R]) (and that the similar statement holds for links). The theorem follows
immediately from this claim. To prove the claim, we first note that there is a
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simplicial map r" X(R,) K defined on the vertices by (vl,..., Vk) ---} {l(vl),..., l(Vk)},
where l(v) denotes the line determined by v. Suppose d 1. Order the vectors ofZ
arbitrarily. Define i: K’ ---} X(Z2) by sending {l:, lk} to (v(l),..., V(lk)) where
v(l) is the unique nonzero vector on the line and where (v(l),..., V(Ik)) is written
in increasing order. Obviously, r o id, so that K’x is a retract of X(Z2). For d 2,
there are exactly two primitive vectors on a given line in 7/", and we choose any
convention for picking one v(l). After ordering the set of primitive vectors in Z", we
can define i: K’2 X(Z"), as before. Thus, K is a retract of X(R) and a similar
argument works for links.

3. A perfect cell structure for G-manifolds. Let K be a finite simplicial complex
ofdimension n 1. For 0 < < n 1, let f be the number of i-simplices in K. Then
(fo fn-) is the f-vector of K. Define a polynomial PK(t) of degree n by

n-1

r(t) (t- 1)n+ f/(t- 1)#-1-’
i=O

and let hi be the coefficients of "-i in WK(t); i.e.,

Wr(t hitn-i.
i=o

Then (ho, h,) is called the h-vector of P. Obviously, ho 1, h, Wr(0)=
(- 1)n(1 (K)), and 7=o hi Wr(1) f_a.

If we specialize this to the case where K is the boundary complex of a simplicial
polytope and P" is the dual simple polytope, then f is the number of faces of P" of
codimension + 1, h, 1, and hi is the number of vertices of P".
The main result of this section is the following.

THEOREM 3.1. Let : Man --. Pn be a G-manifold over a simple convex polytope W.
(i) Suppose d 1. Let bi(M) be the ith mod 2 Betti number of Mn; i.e.,

bi(M) dim2 Hi(M; 7/2). Then bi(M) hi(W)
(ii) Suppose d 2. The homology of M2n vanishes in odd dimensions and is free

abelian in even dimension. Let b2i(M2n) denote the rank of H2i(MEn; 7/). Then b2i hi.

Remark 3.2. IfP admits a small cover, then the hi are the mod 2 Betti numbers
of an n-manifold; hence they satisfy Poincar6 duality

h hn_

These equations are the Dehn-Sommerville Relations for the simple convex poly-
topes (cf. I-Bronsted, p. 121]). Hence, they hold for Pn independently of the existence
of a small cover.

Remark 3.3. Let h(t) ho + ...hnt so that h(t) t"Wr(t-) Wr(t), where the
last equation holds by Poincar6 duality. Let u,(t) be the Poincar6 polynomial of
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Ma" with respect to coefficients in Z2 or Q as d 1 or 2. Theorem 3.1 can then be
summarized by the equation

M..(t) h(td).

Remark 3.4. It is somewhat surprising that the Betti numbers of Md" depend
on P" only. It turns out that the structure of the cohomology ring does depend on
the characteristic function 2. (When n 2, one can see this by considering Gff-
manifolds over the square.) We shall calculate the cohomology ring of Md in the
Theorem 4.14 of the next section.

Remark 3.5. For d 1, one can only hope to prove Theorem 3.1 for mod 2 Betti
numbers. One can see this from 2-dimensional examples, say, the small covers of a
square by either a torus or a Klein bottle (cf. Example 1.19). Thus, the rational Betti
numbers of M are not determined by P.

Remark 3.6. Theorem 3.1 does not hold when P is a general simple polyhedral
complex, for example, when K is the disjoint union of two triangulated circles. In
Section 5 we will show that the theorem holds whenever K is a "Cohen-Macaulay"
complex.

Proof of Theorem 3.1. A stronger result than Theorem 3.1 is true: the manifold
Ma has a cell structure which is perfect in the sense of Morse theory, with one cell
for each vertex of P" and with exactly hi cells of dimension di. The first step in our
description of this cell structure makes essential use of the fact that P has the
combinatorial type of a convex polytope. Realize the P as a convex polytope in R"
and then choose a vector w in R which is generic in the sense that it is tangent to
no proper face of P. (This is also the first step in the proof of the Upper Bound
Theorem for convex polytopes given in [Bronsted, 18]). Choose an inner product
in " and let b: " be the linear functional dual to w; i.e., b(x) (x, w).
One could produce the cell structure on Md" by modifying w to get a vector field

on P", which is tangent to each face and which vanishes at the vertices. Pulling back
such a vector field to M", one obtains a gradient-like vector field on Md", the
ascending submanifolds of which give the desired cell structure. (Equivalently, one
could modify b and then pull it back to obtain a perfect Morse function on M".)
However, it is unnecessary to make these modification in order to describe the cell
structure: one can describe it directly in terms of w (or b).
We think of b as a height function on P". Using b, one makes the 1-skeleton of

P" into a directed graph (as in [Bronsted]): orient each edge so that b increases
along it. (Since b is generic, its restriction to an edge is never constant.) Since P" is
simple, each vertex is incident to precisely n edges. For each vertex v of P", let m(v)
denote the number of incident edges which point towards v (so that n m(v) edges
point away). Let F be any face of P" of dimension > 0. Since b is linear, blv assumes
its maximum (or minimum) at a vertex. Since b is generic, this vertex is unique.
Hence, each face F of P" has a unique "top" vertex and a unique "bottom" vertex.
For each vertex v, let Fv be the smallest face ofP" which contains the inward pointing



432 DAVIS AND JANUSZKIEWICZ

edges incident to v. Clearly, dim Fv m(v) and if F’ is a face of P" with top vertex
v then F’ is a face of Fv. (Compare [Bronsted p. 114]).

Let Fo denote the union of the relative interiors of those faces F’, whose top vertex
is v. In other words, F, is just Fo with some faces in the boundary deleted (namely
we delete all faces not incident to v).
The space/? is diffeomorphic to the "quadrant" Rv). A simple combinatorial

argument ([Bronsted, p. 115]) shows that the number of vertices v with re(v)
is h.

Suppose n" Mn" P" is a G-manifold. We are now in the position to describe
the cell structure on M". For each vertex of P", put

e,, 7r.-X (ff,,) M,, rc- (F,,) Mr,
Since fly is diffeomorphic to R(o), eo is equivalent to :’(); i.e., it is a cell of

dimension dm(v). The closure of eo is obviously My, which, by Lemma 1.3, is a
dm(v)-manifold. When d 2, all the cells are of even dimension; hence the cell
structure is perfect, and the homology ofM2" is as claimed in Theorem 3.1. (Lemma
1 of [Khovanskii] is a similar result which is proved by essentially the same
argument as above.)

In general to prove that a cell structure is perfect with respect to 7/2 coefficients,
it is sufficient to show that the closure of each cell is a (pseudo) manifold. To see
this, note that a manifold is a mod 2 cycle. Hence, if the closure of a cell is a manifold,
then its attaching map is trivial on 7/2 homology; thus with regard to 7/2 homology,
it looks like a wedge of spheres; i.e., the cell-structure is perfect. This completes the
proof of Theorem 3.1.

COROLLARY 3.7. Let " M" - P" be a small cover of a convex polytope. Then Z
acts trivially on H*(M"; 7/2).

Proof. Each cell in the perfect cell structure described above is Z-stable.
We note that if the closure of each cell is an orientable manifold, then the same

reasoning shows that the cell-structure is perfect with respect to integral coefficients.
We record this observation in the following result.

COROLLARY 3.8. Let : M" - P" be a small cover of a simple convex polytope
and suppose that for each face F, the submanifold Me (= rc-l(F)) is orientable. Then
Hi(M"; 7/) is a free abelian of rank hi.

If d 2, then MEn has no odd-dimensional cells; hence, we have the following.

COROLLARY 3.9. Any toric manifold over a simple convex polytope is simply
connected.

We now make a start on the study of the cohomology ring of a G,-manifold. A
more complete description is given in Theorem 4.14. Two faces F and F’ of P"
intersect transversely if codim(F c F’) codim F / codim F’. Since P" is simple, it
satisfies the following two properties.
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(1) If F is a k-face of pn and v is a vertex of F, then there is a face F’ of
complementary dimension n k such that F F’ v.

(2) If F is a face of codimension l, then F is the transverse intersection of faces
of codimension one.
For each k-face F of pn, we have a connected dk-dimensional submanifold Mr of

Man. Theorem 3.1 shows that the homology in degree dk of Man is generated by
classes ofthe form [Me], where F is a k-face. We consider some simple consequences
of Poincar6 duality. As is well known, the cup product is Poincar6 dual to intersec-
tion. Hence, the cup product ofthe dual of[Me] with the dual of[Mr] is the dual of
[Menr], if F and F’ intersect transversely, and zero otherwise. From properties (1)
and (2) above we get the following result.

PROPOSITION 3.10. Let re: Man--, pn be a G-manifold over the simple convex
polytope

(i) For each face F of pn, the class [Me] is not zero in
(ii) The cohomology ring H*(Man) is generated by d-dimensional classes. (Coeffi-

cients are in 7/2 or 7/as d 1, 2.)

Proof. (i) By property (1) above, there is a face F’ which intersects F transversely
in a vertex. Since the classes [Me] and [M] are dual under intersection, they are
both nonzero.

(ii) The cohomology in degree dl is generated by Poincar6 duals of classes of the
form [Me], codim F l. By property (2), F is the transverse intersection of faces of
codimension one. Hence, the Poincar dual of [Me] is the product of cohomology
classes of lowest dimension d.

4. The Borel construction and the face ring. Suppose that n: Man- pn is a
G,7-manifold over a simple convex polytope. The Borel construction (or "the homo-
topy quotient" of G, on Man) is the space

BaPn EG x Man

where EG is a contractible space on which G acts freely. When d 1, we shall
sometimes drop it from the notation and simply write BP, and we sometimes use

BT instead of B2.
When d 1, P is a right-angled Coxeter orbifold and BP is its classifying space

in the sense of [Haefliger]. We shall show that the space BaP does not depend on
the G-manifold over P, but only on P and its face structure. Indeed, a construction
of BaP can be made independent of the existence of a G-manifold over P: BaP can
be constructed whenever P is a simple polyhedral complex (cf. Section 2). To
establish this we shall present in 4.1 and 4.2 two different constructions of BaP.
The main point of this section is that the cohomology ring H*(BaP) can be

identified with the face ring, a certain graded ring associated to the combinatorial
type of pn (see [Stanley3]).
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We return now to the generality of Section 2. Let K be an (n- 1)-dimensional
simplicial complex and let P be the simple polyhedral complex dual to K. We shall
suppose that K is a finite complex.

4.1. A 9eneral construction of BnP. Let - Ver(K) denote the set of codimen-
sion one faces of P. Suppose ff- (F1, F,,). Let (el, e,} be the standard
basis for R’ and define 0"--R by O(Fi)- ei. Using 0, we get a Gn-space

(G’f x P)/. as in Construction 1.5. The dimension of is n + m(d 1). When
d 1 and P" is a simple polytope, is the universal abelian cover of the right-
angled orbifold P". (This is also true for more general P provided we replace the
word "orbifold" by "orbihedron", cf. [Gromov, 4.5].)

Put

BnP EG’f x G’ .
We claim that this agrees with our previous definition. Indeed, suppose Y- P is
the G-space associated to a characteristic function 2: - L Regarding R’ as a
free module generated by , the map 2 extends linearly to a surjection ," R’ - Rso that the following diagram commutes.

0 R

Let H be the subgroup of G’ corresponding to the kernel of2 (note that H
_

G’-").
Clearly, Y /H. Thus,

BaP EG xw2 ,. EG x rl Z/(G/H)= E7 x (Z/H)/(GT/H)= EG x o Y

where G G/H. That is, the two Borel constructions are homeomorphic. It follows
that BaP is defined independently of the existence of a small cover or a T-space
over P and that its homotopy type depends only on P.
A more natural way to see this would be to give a local construction of BdP. We

outline such a construction below.

4.2. A local construction of BnP. Let P be a simple polyhedral complex. Thus,
P is the cone on the barycentric subdivision of a simplicial complex K. The cone
on the barycentric subdivision of a k-simplex tr is isomorphic to the standard
subdivision of a (k + 1)-cube. It follows that P is naturally a cubical complex; it is
decomposed into cubes indexed by the simplices of K.
We regard the k-cube as the oribit space of a Gdk-action on the dk-disk

D {(x,, x,,)e tvJ. Ix, < }.
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For d 2, D2k is the standard polydisk in Ck, for d 1 it is a k-cube. For each
(k 1)-simplex tr K, let I, be the corresponding k-cube in P, and, D, the dk-disk
with Gk-action, and let BdI, EGkd xG D,. If a is a face of z, then BdI, is canonically
identified with a subset of BdI. In this way the BaI, fit together to yield BP.

4.3. The fundamental group. Let P be a simple polyhedral complex dual to a
simplicial complex K. The right-angled Coxeter group W associated to P is the
Coxeter group with one generator for each element of Ver(K) and relations s2 1,
s Ver(K), and (St)2 1 whenever {s, t} Edge(K).

LEMMA 4.4. Let P be a simple polyhedral complex dual to K and let W be the
associated Coxeter group. Then

(1) n (BP) is isomorphic to W and
(2) Ha (BP; 2) - 7/, where m is the number of vertices of K (= the number of

codimension-one faces of P).

Proof. Let e (W x P)/~, where the equivalence relation is defined by (w, x)
(v, y),-x y and w-av belongs to a subgroup generated by the codimension-one
faces which contain x. Since each codimension-one face is connected and since
whenever two generators of W commute, the corresponding codimension-two face
is nonempty, it follows from [Davis 2, Theorems 10.1 and 13.5] that is simply
connected. Clearly, BP EW xw . Hence, we have fibration BP--, BW with
simply connected fiber e. Thus, statement (1) follows. Since the abelianization of
W is obviously Z’, statement (2) also holds.

COROLLARY 4.5. Let Y be a small cover of P. Let : Z" -, Z2 be the map induced
by the characteristic function and let ’W--, 7/2 the composition of , with the
projection W -. Wab. Then ha(Y) ker .

Proof. Since BP EZz Xz Y, we see that Y is homotopy equivalent to the
covering space of BP corresponding to ker

LEMMA 4.6. Let P be a simple polyhedral complex. Then BrP is simply connected.

Proof. BTP is the union of contractible spaces, namely the BTI,, cr K, and any
two of these subspaces have nonempty connected intersection.

4.7. The face ring. Let K be a simplicial complex with vertex set
and let R be a commutative ring. Form the polynomial ring R[va, v,,] where
the v are regarded as indeterminates. Let I be the homogenous ideal generated by
all square free monomials of the form vl v,, where {vl, v,} does not span a
simplex in K. The face rin9 (or the Stanley-Reisner rin9), denoted by R(K), is
R Iv a,..., v,,]/1. If P is the simple polyhedral complex which is dual to K, then we
shall put R(P) R(K). Of course, we are particularly interested in the coefficient
rings 72 and 7/, denoted by Ra and Rz, respectively. We shall regard the indeter-
minates v in Ra Ira, v] as being of degree one, while in R2 [Vl, vm] the v
are of degree two. In this way, Rn(P) becomes a graded ring. Recall that BG is the
m-fold cartesian product :npo x x :dP. Thus, we can identify the cohomology
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ring H*(BG, Rd) with the polynomial ring Rd[vl, v,,]. By 4.1 we have a fibration
p: BdP BG’ and hence, a homomorphism p*: H*(BG’) H*(BP; Rd).

THEOREM 4.8. Let P be a simple polyhedral complex and for d 1, 2 let R(P) be
the associated face rin#. The map p*: H*(BG’) H*(BdP; Ra) is surjective and
induces an isomorphism of #faded rin#s H*(BdP; Ra) Rd(P).

The proof of this theorem comes down to analyzing the case, where K is the
boundary of the simplex. So suppose a is a (k 1)-simplex with the vertices v,
Vk. Let P, and P, be the polyhedral complexes dual to a and da, respectively. Then
BP, is a Dak-bundle over BG and BaP, is the associated sphere bundle. The
associated vector bundle is EG x BG, where G G. Since G acts diagonally
on , this vector bundle is a sum of line bundles L ... L (these are real
line bundles if d 1 and complex line bundles if d 2). Let c stand for the
th Stiefel-Whitney or Chern class (as d 1 or 2). Our notation is such that
c(L) vi Ha(BG; Rd). The mod 2 Euler class if d 1 (or the Euler class if d 2)
of the vector bundle is given by the formula, Ck Ck(Lx "" Lk). By the Whitney
product formula Ck V Vk. Consider the Gysin sequence

H*(BG) U, H,+e.(BG) H,+e.(Bpa)

Ra[v,.. Vk] Ra[V,...,Vk].

From this one deduces the following lemma.

LEMMA 4.9: With notation as above, H*(BdP,;Rd)=Rd[vl,...,Vk-I and
H*(BdPo,; Ra) Ra[v, Vk]/(V Vk). Thus Theorem 4.8 holds when P is dual to
a simplex or to a boundary of the simplex.

Proof of Theorem 4.8. The proof is by induction on the dimension of K. If
dim K 0, then K is a disjoint union of vertices v, v,, and P is the cone on K.
Hence, BdP is a bouquet of m copies of :gpoo. Thus, in degree zero H*(BdP; Rd) is
Ra, while in degrees > 1 it is isomorphic to Ra[)l] ’" ") Ra[)m]. In other words,
H*(BdP; Ra) is Ra[vx,..., Vm-I/I where I is the ideal generated by all square free
monomials in more than one variable. Thus, the theorem holds if dim K 0.
Now suppose that dim K n 1. By inductive hypothesis, the theorem is true

for the (n 2)-skeleton of K. We add (n 1)-simplices one at a time to the (n 2)-
skeleton and use Lemma 4.9 and the Mayer-Vietoris sequence to get the conclusion
of the Theorem 4.8.

Remark 4.10. Suppose that K is a simplicial complex and that L is a subcomplex.
Let Pr and PL be the corresponding duals. The inclusion L c K induces a homo-
morphism Ra(K) Ra(L). If K and L have the same vertex set, the induced map is
surjective. We also have an inclusion i" BdP, -o BaPx. The proof of Theorem 4.8



POLYTOPES, ORBIFOLDS, TORUS ACTIONS 437

shows that i* induces the canonical map of face rings. More generally, if f: L K
is a simplicial map, then there is an induced homomorphism f: R(K) R(L) of
face rings. Iff is a surjective, nondegenerate simplicial map, thenf is injective. Thus
the face ring provides a contravariant functor from the category of simplicial
complexes to the category of graded commutative rings. The map f: L K also
induces a map f: BaPL - BdPt, well defined up to homotopy. Thus BaPr provides
a functor from simplicial complexes to the category ofhomotopy types of topological
spaces, such that upon taking cohomology we retrieve the face ring functor.
Lemma 4.4 and Theorem 4.8 can be combined to calculate the cohomology

ring of any right-angled Coxeter group. Suppose that (W, S) is a Coxeter system,
with W right-angled and with {v,..., v} the set of fundamental generators

reflections). Define Nerve(W, S) to be the abstract simplicial complex with vertex
set S and with simplices the nonempty subsets of S which generate finite subgroups.

THEOREM 4.11. Let W be a right-angled Coxeter group, as above.
(1) With coefficients in 7/2, the cohomology ring of W is isomorphic to the face ring

associated to the Nerve(W, S); i.e.,

H*(W; 7/2) 7/211)1, Vm]/I

where I is the ideal generated by all square free monomials of the form vii %, where
at least two of the vj do not commute when regarded as elements of W.

(2) H(W; 7/) is 2-torsion for j > 1.

Proof. Let P be the dual of the Nerve(W, S) and let (W x P)/~ be the space
constructed in the proof ofLemma 4.4(i). By [Davis2, 14], is contractible. Hence
BP EW Xw is homotopy equivalent to BW(=K(W, 1)). Thus (1) follows from
Theorem 4.8.
To prove (2), we note that the polyhedron P is acyclic and the fibers of BP P

are of the form Bzk2, for some k. This implies (2).

The face ring RI(P) is a graded ring and it is generated by elements of degree one.
Let H: N be the associated Hilbert function; i.e., H(k) is the dimension of the
part of RI(P) in degree k. An easy calculation [Stanley 1, Prop. 3.2] shows that

*- 71(1) H(k) ,=o f(k ), for k > 1

fork 0.

The Poincar6 series of R1 (P) is then =o H(k)tk. Another easy calculation shows
that there is an identity of formal power series

(2) (1 t)" H(k)tk= ho + hit +"’+
k=0

where (ho, h.) is the h-vector of P defined in the beginning of Section 3.
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Next we deduce some consequences of Theorem 4.8 for small covers and toric
manifolds and show that (2) has a simple algebraic topological interpretation.

Let r" Ma" --, P" be a G-manifold over a simple polytope P". We have a projection
map p: BaP --* BG which classifies the principal G,-bundle EG x Ma" B,P. The
map p is a Serre fibration with fiber EG x Ma" which is homotopy equivalent to
Md. The Serre spectral sequence of this fibration has E2-term

E.q H’(BG; Hq(Ma")).

Here the coefficients of Hq(Ma") are in Ra.

THEOREM 4.12. Let : Ma" P" be a G-manifold and let p: BaP BG be
the associated fibration. Then the Serre spectral sequence of p deoenerates:
E’q Egq.

Proof. Let us take coefficients in 7/2 if d 1, or Q if d 2. First, we must see
that the fundamental group of the base (=BG) acts trivially on the cohomology
of the fiber (= Md"). When d 2, BG CP x x CP is simply connected.
When d 1, rx(BG)=Zz, which acts trivially by Corollary 3.7. Thus,
E’ =HP(BG)(R) H(Mn). The Poincar6 series of H*(BG) is 1/(1- ta)". The
Poinear6 series of H*(Mn") is h(tn), where h(t) ho + ha + + h,t" (cf. Remark
3.3). Hence, the Poinear6 series of E2(=k(p+q=k dim E’)tk) is h(td)/(1 -tn)".
Comparing this with (2), we have that the Poincar6 series of E2 is k H(k)tdk, i.e.,
the Poinear6 series of the face ring Rd(P). By Theorem 4.8, this is the Poincar6 series
ofH*(BdP), i.e., of Eo. Since Eoo is in general an iterated subquotient of E2 and since
they have the same Poincar6 series, they are equal. (When d 2, we initially only
have this conclusion with Q coefficients, but since both E2 and Eo are free abelian
the result also holds in the integral ease.)

COROLLARY 4.13. With the hypotheses as in Theorem 4.12, let j: M" BdP be
inclusion of the fiber. Then j*: H*(BaP - H*(Md") is onto.

We shall now use this corollary to determine the ring structure of H*(Ma"). We
have natural identifications Ha(BdP)= H,(BG’)= R and Ha(BG)= R]. (Recall
that m is the number of codimension-one faces of P"). Moreover, p,: Ha(B,P)
H,(BG) is naturally identified with the characteristic function 2: R’ R,].
(Here R’ is regarded as the free Rn-module on the set of codimension-one faces
of P").
The map p*: Hn(BG) Hn(BnP) is then identified with the dual map 2*: R’* --.

R,]*. Regarding the map 2 as an n m matrix 2ij, the matrix for 2* is the transpose.
Column vectors of 2" can then be regarded as linear combinations of v 1, v,,, the
indeterminates in the face ring. Put
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We have a short exact sequence

0 Ha(BG) * Ha(BaP) J" Hd(Mdn) 0

439

(R)* ;’,, (RT)*.

Let J be the homogeneous ideal in Ra[vl Vm] generated by the 2i and let J
be its image in the face ring. Since j*: Ra(P) ---, H*(Man) is onto and Jis in its kernel,
j* induces a surjection Rd(P)/J --, n*(Man).

THEOREM 4.14. Let : Mdn-* pn be a G-manifold. Then H*(Mdn; R) is the
quotient of the face ring by J; i.e.,

H*(Man; Ra) R,[vl,..., Vm]/I + J.

Proof. We know that H*(BG) is a polynomial ring on n generators, and H*(BP)
is the face ring. Since the spectral sequence degenerates, H*(BP)-H*(BG)(R)
H*(Mdn). Furthermore, p*: H*(BG)--, H*(BP) is injective and is identified with
the image of p*. Thus, H*(Mn) H*(BP)/J Rd[v, Vm]/I + J.

In the case of toric varieties, the above result is known as the Danilov-Jurkiewicz
Theorem.

5. Cohen-Macaulay rings and complexes. We begin this section by reviewing
some commutative algebra. Our exposition is taken from [Stanley3].

Suppose that R is an [-graded algebra over a field k. The Krull dimension of R
is the maximal number of algebraically independent elements of R. Suppose that
the Krull dimension of R is n. A sequence (2x, 2n) of homogenous elements of
R is called homogenous system ofparameters, if the Krull dimension of R/(21,..., 2n)
is zero. A homogenous system of parameters (2:, 2n) is called a regular sequence
if 2i+ is not a zero divisor in R/(21,..., 2). Equivalently, 21, 2n is a regular
sequence if the 2 are algebraically independent and if R is a finite-dimensional free
k[2 ,2hi-module. The k-algebra R is Cohen-Macaulay if it admits a regular
sequence. It can be proved that if R is Cohen-Macaulay then any homogenous
system of parameters is a regular sequence.

Suppose that R is generated by elements of degree 1. If k is infinite, then it is a
consequence of Noether’s Normalization Lemma that there exists a homogeneous
system of parameters 2,..., ’’n, where each 2 is of degree one. Such a sequence will
be called a degree-one homogenous system of parameters. Similarly, if such 21,
2n is a regular sequence, then it is a degree-one regular sequence. We shall see in
Example 5.3 below, that when k is finite, degree-one regular sequences may fail to
exist.



440 DAVIS AND JANUSZKIEWICZ

As in Section 4, let K be an (n 1)-dimensional simplicial complex on vertices
v1,..., v, and let k(K) be its face ring. The Krull dimension of k(K) is n. In [Reisner-I
the following fundamental result is proved.

THEOREM 5.1 ([REISNER]). The followingl conditions are equivalent.
(i) k(K) is Cohen-Macaulay.
(ii) Hi(K; k) 0 for < n 1 and for each simplex tr K, Hi(Link(a, K); k) 0

for < dim Link(a, K).

A simplicial complex K satisfying condition (ii) of the theorem is a Cohen-
Macaulay complex over k. Examples of Cohen-Macaulay complexes are

(a) a triangulation of a sphere,
(b) a spherical building,
(c) the universal complex K] constructed in Section 2.
For the remainder of this section, k will be 7/2 if d 1 or Q if d 2. Let P be the

simple polyhedral complex dual to K and BdP the space constructed in Section 4.
In Theorem 4.8 we identified the cohomology ring of BdP with the face ring of K.
We shall now investigate the connection between G-spaces over P and degree-one
homogenous systems of parameters for k(K).

Suppose 21, 2n is a sequence of degree one elements k(K). (If k Q,
after multiplying by a scalar we may assume that each 2i 7/(K).) Since
k(K) - H*(BP; k), we may view 2i as an element ofHd(BaP; k). Such a cohomology
class is the same thing as a map to an Eilenberg-Maclane space 2i: BdP K(Ra, 1),
where K(Z2, 1) poo BZ2, and K(Z, 2) CP BT. Thus, (21, 2n) can be
regarded as a map 2: BaP BG. The homotopy theoretic fiber of 2 need not have
the homotopy type of a finite complex; however, it does when 2 arises from a
G-space over P.

Let us recall how this works. Suppose Y is a G,7-space over P. Its characteristic
function can be viewed as a homomorphism 2" R’ R, (R’ is identified with the
free Ra-module on the set of codimension-one faces of P.) If d 2, we tensor with
Q to obtain a map Qm

_
Q,, which we shall again denote by 2. Taking the Borel

construction on Y, we get a fibration

Y B,P BG

where the projection map BaP BG is identified with 2 as above. These observa-
tions lead to the following lemma.

LEMMA 5.2. Let P be the dual of an (n 1)-simplicial complex K and let Y - P
be a G-space over P with characteristic function 2 (21, 2): k’ k. If d 1,
let us further assume that Zz acts trivially on H*(Y; Z2). Then re#ardin(I 2i as a de#ree-
one element of k(K), we have that (21, 2) is a de#ree-one homogenous system of
parameters for k(K).

Proof. The cohomology of BdP is a module over H*(BG), as is each Ej in the
Serre spectral sequence (with coefficients in k) of the fibration Y BP BG. In
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particular, E2 H*(Y)(R) H*(BG) is a finite-dimensional free k[21, 2,I-module.
Since E2 is therefore a Noetherian module over k[21, 2.], the same is true for
its iterated subquotient Eoo. Since, by hypothesis, the fundamental group of the base
acts trivially on the cohomology of the fiber, the Serre spectral sequence converges
and hence, H*(BaP) is a finitely generated k[21, 2,I-module. This implies that
(21, 2.) is a homogenous system of parameters.

We do not know if the converse to this lemma is true in general; however, a
converse is true for regular sequences. This will be established in Lemma 5.3 below.
Before stating it, we need some more terminology.

Let el, em be the standard basis for k and denote the dual basis for (kin)* by
vl,..., v,. If tr {vi,, vi,} is a (1- 1)-simplex in K, then let k denote the l-
dimensional subspace of k spanned by el, e,. A linear map 2 (21,..., 2,):
k k" is nondegenerate over K if for each a K, 21k-: k" k" is injective. We note
that if 2: k k" arises from a characteristic function of a G-space over the dual
of K, then it is nondegenerate over K.

If 21,..., 2, is a degree-one homogenous system of parameters for k(K), then each
2 is a linear combination of the vj, say, 2 2il vl + + iimVm Regarding the vj
as linear functions on k", we have that 2i: km--- k is linear; hence, (21,..., 2n) is
a linear map 2: k

LEMMA 5.3. Suppose that K is an (n 1)-dimensional simplicial complex and that
each maximal simplex of K is (n 1)-dimensional. Let (21 ,2,) be a degree-one
regular sequence for k(K) and let 2 (21, 2,): k k" be the resultin# linear map.
Then 2 is nonde#enerate over K.

Proof. Suppose 2 is degenerate. Then 21ko is not an isomorphism for some
maximal simplex tr. Without loss ofgenerality, we may suppose, that tr {vl, v, }.
For 1 < < n, put ,i 2ilV +... + 2nV,, so that 2lk, (2, ...,/,): k k". Since
21k, is not onto, some nontrivial linear combination of the 2i is zero, say, c, 0.
Consider the nonzero element w vl v, in k(K). By definition, vw 0 when-
ever j > n. Hence, (ci2i)w (ci,i)w 0. We may assume without loss of
generality, that e, # 0. The above equation then says that 2, is a zero divisor in
k(K)/(21,..., 2,-1), contradicting the definition of a regular sequence.

Example 5.4. Degree-one regular sequences may fail to exist. Suppose that k is
a finite field with q elements. Let K be the boundary complex of the n-dimensional
cyclic polytope with m vertices, n > 4. By the argument in 1.22., if m > qn, then any
linear map k k is degenerate over K. Hence, for such a K the face ring k(K)
admits no degree-one regular sequence.

Now suppose that Y P is a small cover, where P is the dual ofK. Let cOP denote
the union of faces of P of codimension > 1 (dP IK[). Define an element A in the
group ring 7/2[Z] by A , where the summation is taken over all elements
9 s Z. If is a simplex in dP, then it is fixed by some nontrivial element 9 s Zz;
since the coefficients are in 7/2, it follows thatA 0, and therefore that A induces a
chain map A: C,(P, dP; 7/2) C,(Y; 7/2). Let A, be the induced map in homology.
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We have a map c,: H,(Y) H,(Y, Y- int P) - H,(P, OP), where the last iso-
morphism is excision. Obviously, c,A, id. Thus, A, is a monomorphism. We
apply this observation to calculate the top homology of Y.

LEMMA 5.5. Let K be an (n 1)-dimensional simplicial complex, P its dual and
Y - P a small cover. Then A,: Hn(P, tgP; 7/2) - Hn(Y; 7/2) is an isomorphism. In
particular, Zz acts trivially on the top-dimensional homololy of Y with 7/2 coefficients.

Proof. The proof is by induction on the number of (n- 1)-simplices in K. If
there are no (n 1)-simplices, then both Hn(P, tgP) and Hn(Y) vanish. IfK is a single
(n 1)-simplex trn-l, then P I, is an n-cube, and Y is a linear n-disk. If there is at
least one (n 1)-simplex, then we can decompose K as K K’ w tr, where a is an
(n 1)-simplex and K’ K int(tr). Let P P’ I and Y Y’ w D be the corre-
sponding decompositions of P and Y. By induction, the result holds for Y’. The
theorem follows by comparing the Mayer-Vietoris sequences for P and Y.

Remark 5.6. A similar argument shows that if Y- P is a Tn-space, then
H2n(Y; 7/) - Hn(P, t3P; 7/).

The goal of the remainder of this section is to show that results of Sections 3 and
4 for G-manifolds over simple polytopes go through for G-spaces over duals of
Cohen-Macaulay complexes. Suppose that K is Cohen-Macaulay, that P is its dual
and that r: Y--} P is a G-space. Each (l- 1) simplex tr in K corresponds to a
codimension-/face F of P, where F is the dual of Link(a, K). Thus, F is the dual of
Cohen-Macaulay complex of dimension n 1. Let Yr denote the inverse image
of F in Y. First, we prove the analog of the Corollary 3.7.

LEMMA 5.7. Suppose that K is an (n 1)-dimensional Cohen-Macaulay complex
over 7/2, P is its dual, and that Y --} P is a small cover.

(i) The homolooy of Y is "generated by faces" in the followin9 sense: the
natural map H(YF; 7/2)-} H(Y; 7/2) is onto, where the summation ranges over all
i-dimensional faces of P.

(ii) The 9roup Zz acts trivially on H,(Y; 7/2).

Proof. (i) In this proof the coefficients are in 7/2. We have a filtration Y Y =
Y-I = Yo, where Y is the inverse image of the union of all j-dimensional faces
of e. By excision, H,(Y, Y_x) - n,((F, tgF) x 7/) where the summation is over
all j-faces of P. Since each such F is the dual of an (j- 1)-dimensional Cohen-
Macaulay complex, the homology of (F, OF) vanishes except in dimension j. Thus,
Hj-I(Y-) --} Hj_x (Y)is onto and H(Y_x) Hi(Y)is an isomorphism for < j 1.
This implies, that H(Y) H(Y) is onto. Since Y is the union of the/-dimensional
complexes YF, F an/-face, and since these intersect along lower-dimensional com-
plexes, the statement of (i) follows.

(ii) Since each/-face F is dual to a Cohen-Macaulay complex, it follows from
Lemma 5.5, that Z2 acts trivially on H(Yr), hence so does Z (the extension of Z2
by the stabilizer of F). Thus, the statement of (ii) follows from (i).
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Remark 5.8. The proof of (i) shows that the situation is analogous to the
standard argument that the cellular homology of a CW complex is isomorphic to
its singular homology. Put Cj Hj(Y, Y-I; 7/2). Then, 0 Cn Cn-1 "" Co is
a chain complex and H,(C) H,(Y).

THEOREM 5.9. Let K be an (n- 1)-dimensional Cohen-Macaulay complex over
Z2, P its dual and (21, 2,) a sequence of elements in HI(BP). Then the following
statements are equivalent.

(1) (21, 2) is a degree-one regular sequence.
(2) Regarded as a linear map, 2 (21 ,2): 7/ - 7/ is the characteristic func-

tion of a small cover.
Morever, if either of these conditions hold, then the Serre spectral sequence of the

resulting fibration 2: BP --, BZ2 degenerates: E’q Eg. (Again everything is with
7/2 coefficients.)

Proof. The implication (1) => (2) follows from Lemma 5.3. Suppose that (2) holds
and that Y P is the small cover corresponding to 2. By Lemma 5.7(ii), Zz acts
trivially on H*(Y); hence, Lemma 5.2 implies that (21, 2,) is a degree-one
homogeneous system of parameters. But any homogenous system of parameters is
a regular sequence; so (2)=:, (1).
We consider the Serre spectral sequence of the fibration Y BP BZ. Since

the fundamental group of BZ acts trivially on H,(Y), the spectral sequence con-
verges, and E2 H,(Y)(R) 7/2121, 2,]. The fact that (21, 2,) is a regular
sequence means that there are homogenous elements r/1,..., r/t in H*(BP) such that
every element of H*(BP) can be written uniquely in the form
where Pi is some polynomial. We claim that this means that every class in
E’ H*(Y) survives to Eoo and that we may take r/1 rh to be a homogenous
basis for H*(Y). By induction, we may suppose that this is true for E2 o, with j < p.
Let be a class in HP(Y) and d a differential. Then d has the form r/pi(21,..., 2n).
By uniqueness, this expression cannot represent 0 in Eoo; hence, d must be zero.
Thus, every differential vanishes on H*(Y), and consequently, HP(Y) must have a
basis consisting of the r/ of degree p. It follows that E2 Eoo.
A similar argument gives the following result for T-spaces.

THEOREM 5.10. Let K be an (n- 1)-dimensional Cohen-Macaulay complex, P
its dual, and Y P a T-space over P. Then the Serre spectral sequence with
coefficients of Y BrP BT degenerates: E2 Eoo.
Remark 5.11. Suppose k(K) admits a degree-one homogenous system ofparam-

eters (21, 2,). If the resulting spectral sequence degenerates, then (21, 2) is
obviously a regular sequence. Hence, k(K) is Cohen-Macaulay if and only if the
spectral sequence degenerates.

From the last two theorems one can prove the following analog of Theorem 3.1
and Theorem 4.14 without resorting to the perfect cell structure argument.
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THEOREM 5.12. Let k be 7/2 or ( aS d 1, 2. Let K be an (n- 1)-dimensional
Cohen-Macaulay complex over k, P its dual, and Y --, P a G-space. Let (ho, h,)
be the h-vector of P defined as in Section 3.

(i) Suppose d 1. Let bi(Y) be the i-th mod 2 Betti number of Y. Then bi(Y) hi.
(ii) Suppose d 2. Then the homology of Y vanishes in odd dimensions and

b2i(Y) hi, where b2i now denotes the rational Betti number.
The cohomology ring of Y is given by the formula in Theorem 4.14; i.e.,

H*(Y; k) k[v, Vm]/I + J

where I and J are defined as in the Section 4, and the vi are of degree d.

Using Theorem 2.2, we have the following application of Theorems 5.9 and
5.12.

COROLLARY 5.13. As in Section 2, let Y --, U’ be the universal small cover and
let K] be the simplicial complex dual to U.

(1) K] is a Cohen-Macaulay complex and the Serre spectral sequence of Y -, U
degenerates.

(2) The h-vector of U gives the mod 2 Betti numbers of Y.

6. Vector bundles.
6.1. The canonical line bundles. Let K be an (n- 1)-dimensional simplicial

complex and P the simple polyhedral complex dual to K. For each codimension-
one face of P, we shall define a line bundle over BdP, where "line bundle" means a
real line bundle if d 1 and a complex line bundle if d 2.

Let {Vl, Vm} be the vertex set ofK and let Fi denote the codimension-one face
ofP corresponding to vi. As before, we use the vi to denote the generators ofHa(BaP).
Recall that H*(BdP)= Rd[vl, Vm]/I. We follow the notation of Section 4.1"

(G’f x P)/~ and BP EGy x o, . Let Pi: G’ G be the projection onto the
i-th factor and let Za(pi denote the corresponding 1-dimensional_ representation
space of G’. Define a trivial equivariant line bundle Li over e by Li :n(Pi) x .
Taking the Borel construction on Li, we get a line bundle Li over BdP

(1) Li EG’ x,y Li.

The characteristic class of Li, denoted by c (Li), is the first Stiefel-Whitney class
if d 1, or first Chern class if d 2, in Hn(BnP; Rn). It is straightforward to see
that

(2) cl(Li) vi.

The bundle Li is called the canonical line bundle correspondin9 to Fi. Since the i-th
factor acts freely on the complement of the inverse image of Fi in , it follows that
the restriction of Li to BaP BdFi is the trivial line bundle.
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6.2. Line bundles associated to a G-space. Suppose that Y-* P is a G-space
with the characteristic function 2: R’ - R. We have the fibration

Y BP BG

where the homomorphism p.: Hd(BaP) Hd(BG) can be identified with 2. Choose
a basis el, e. for R,]; let e’, e.* be the dual basis for Hn(BG) (R)*, and let
i be the line bundle over BG corresponding to e’.

Define a line bundle over BnP by Ei P*(t). Then

(3) cx (E) 2

where 2 2v + + iiml)m is the class in Ha(BaP) defined by the formula (3) of
Section 4. On the level of line bundles this means that

(4)

Now suppose that Y P is a pullback of the linear model. This means that
the characteristic function 2 maps {F1, F,,} onto some basis of R], which we
will continue to write as el, e.. We therefore have a partition of the set of
codimension-one faces into n subsets (2-(et)) <<. and a corresponding partition
of the set of indices {1, m} into subsets (S)x <,<., where St {jIF 2-1(e,)}.
Now formula (4) becomes

E, 1-I
jS

For each 1 < < n, consider the vector bundle Dt over BaP defined by

(6) D, Lj.
jSi

Let p(i) Card St 1 and let e’ denote the trivial vector bundle of dimension
p(i). Using the fact that the codimension-one faces in 2-(e) are pairwise disjoint,
one can construct a bundle isomorphism f: E e") D. If F e 2- (e), then the
map f is such that when restricted to BnF, it maps Et to the k-th component of
and it maps ’")to the other components. (E restricts to L over BnF and D restricts
to L e,0). Thus,

It follows that
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This gives the following criterion for deciding if Y is a pullback of the linear model.

PROPOSITION 6.3. Suppose that the G-space Y-, P is a pullback of the linear
model. Then the bundle j*(L1 03 L,,) is trivial.

Proof. Since j*c(Ei) O, Ei pulls back to the trivial line bundle over Y. The
proposition then follows from (8).

6.4. The "tangent bundle" of BdP. Now suppose that pn is a simple convex
polytope. Then is a smooth G,-manifold of dimension n + m(d 1). The Borel
construction on the tangent bundle of e yields a vector bundle z over BdP

(9) z EG’f x o,2 T.

When d 2, we will only be interested in z as a stable (real) vector bundle. The
reason for this is explained by the next lemma.

LEMMA 6.5. Let Mdn P" be a G-manifold over P" and let z’ denote the Borel
construction on TM.

(i) If d 1, then z z’.
(ii) If d 2, then z z’ ) e’-, where "- denotes the trivial real vector bundle

of dimension m n.

Proof. We prove (ii); the proof of (i) is similar. Taking notation from Section
4.1, we let H be the subgroup of T corresponding to the kernel of 2" 7/" - 7/". Then
H acts freely on , Tm/H - T, and M2n /H. Thus, e is a principal H-bundle
over M2n with projection map q: --, M2n. We have that Te q*(TM2n) F,
where F is the tangent bundle along the fibers. In general, the tangent bundle along
the fibers of a principal H-bundle is the pullback of a vector bundle over M2n,
associated to the principal bundle via the adjoint representation of H. Since in our
case H is abelian, this bundle is the trivial bundle of appropriate dimension, and
the statement (ii) follows.

THEOREM 6.6. Let P" be a simple convex polytope. Then the vector bundles z and
L1 09 ) L" are stably isomorphic as real vector bundles over BdP.

Proof. It suffices to show that the bundle T and L1 L" are G’-
equivariantly isomorphic, after possibly adding trivial bundle of the form 8k, where
8k k X ,. with the trivial G-action on k. To this end we define bundle maps
: Li- T 0)ea" and O: T- n*TP", where rc’- P" is the projection. Let
dz: T TP be the differential of . If F is a face of P", x e int(F), and z e n-(x),
then dnz maps Tze surjectively onto TF. Let O" T *TP be the map induced
by dt. (N,zB. the rank of 0 is not constant). Put e n-(Ft).~ We have that

Tel.- LI, Tt. Hence, we can find a bundle map t" Lt- T such that i
takes Ltl, monomorphically onto the normal bundle oft and such that is zero
on the_complement of a small tubular neighbourhood of t. Regard Sam as [F le.
Since Lil-, I-,, we can find a map fit: t - ed" such that on tl,, fit is the
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zero map and such that it maps Ltl-, monomorphically onto the i-th factor
of eam. Put t (0q, fit): "[,t -* T ,dm and t: t --* T ) ,dm. Since the
normal bundle ofFt in P" is a trivial line bundle, there is a map x P" - TP" which
takes x Ft onto the normal bundle and is zero off a collared neighbourhood of
Ft. Pulling back to , we get a map co cot: e - n* TP".
Now suppose that d 1. Then it is easy to see that we have the short exact

sequence of vector bundles

Since pn is a convex polytope, TP is trivial; hence, n*TP e. This proves the
result when d 1.
The argument must be modified when d 2 to take into account the fact that

the kernel of O: T. n*TP contains the tangent spaces of Tin-orbits. As in
Proposition 1.8, there is an equivariant map T x P . This induces a bundle
map 7" em --* T, which takes each fiber of e surjectively onto the tangent space
along the orbit. Thus, when restricted to t, maps the i-th factor of e to zero.
Regard /2m as e e and let ," e - e2m be cot: e --, e followed by inclusion into
the first summand. Put 7’ 7" em - e2m and 6 (7, 7’)" e" - T e2m. As before
it is easy to check that the sequence is exact

where the map 0 co:/32m -- n* TP" is the zero map on the first summand ofm )/3m
and co on the second. This completes the proof.

COROLLARY 6.7. Let P" be a simple convex polytope and z the vector bundle over

BdP defined by (9).
(i) Suppose d 1. The total Stiefel-Whitney class co(z) of z is given by

w(z) I-I (1 +
i=1

The Pontriagin classes of z all vanish.
(ii) Suppose d 2. The total Pontriagin class p(z) is given by

p(z) I-I (1 vZ).
i=1

The Stiefel-Whitney classes are given by the formula

w(z) I-I (1 + vt)mod 2.
i=1
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Proof. (i) By Theorem 6.6, w(z) w(L1 "" Lm) H (1 + vi). The last sen-
tence .in (i) follows since a real line bundle has vanishing Pontriagin class.

(ii) The total Pontriagin class of LI .’. Lm is the total Chern class of the
complexification. Since Li (R) C Li 3 Li, we have c(Li (R) C) (1 + vi)(1 vi)
1 v; hence p(z) I-I (1 v2). The last formula is the standard fact that the total
Stiefel-Whitney class of a complex vector bundle is the mod 2 reduction of its total
Chern class, cf. [Milnor-Stasheff, Problem 14-B, p. 171].

COROLLARY 6.8. Let Man- pn be a G-manifold over a simple convex polytope
pn and let j: Man BaPn be inclusion of the fiber.

(i) If d 1, then

w(Mn) J* Vl (1 + vi) and
i=1

p(Mn) 1.

(ii) If d 2, then

w(M2n) J* 1--I (1 + vi) mod 2 and
i=1

P(M2n) J* 1-I (1 v).

Remark 6.9. Our "canonical" line bundles do not agree with the algebraic
geometers’ in the case of toric varieties. For example, if M2n is a nonsingular toric
variety, then l-Oda, Theorem 3.12] would seem to predict c(M
for the total Chern class; however, this is not true. For example, when M CP
we have j*(1 + v)(1 + v2) 1 (by Proposition 6.3), while c(CP) - 0. The differ-
ence is a matter of a sign conventions.

We have one final corollary to Theorem 6.6 and Proposition 6.3.

COROLLARY 6.10. Suppose that the G-manifold Man - pn is the pullback of the
linear model : - R+. Then Man is stably parallelizable.

Remark. In fact this last result could have been proved directly without resort-
ing to Theorem 6.6 and Proposition 6.3. Indeed, it follows from the definition of
pullback that Mdn is a smooth submanifold of :, x P, with trivial normal bundle
(compare [Davis 3, Prop. 1.4]).

COROLLARY 6.11. Suppose that a small cover M - pn is a pullback of the linear
model. Then Hi(M"; Z) is free abelian of rank hi.

Proof. For each face F of pn, the submanifold Mr is stably parallelizable and
therefore orientable. Hence, the result follows from Corollary 3.8.
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7. Further questions and remarks.
7.1. Toric orbifolds. Suppose that pn is a simple convex polytope with m faces

of codimension one and that K is the dual simplicial complex. Let em+n be the T
manifold constructed in Section 4.1: m+n T enid. Further, suppose that a
linear map 2: ([m ln is nondegenerate over K. Changing 2 by homothety, we may
assume that it is induced by a homomorphism from 7/m to 7/n, which we continue
to denote by 2. This homomorphism need not satisfy the condition (,) of Section 1:
if a is an (l 1)-simplex of K, and 7/" is the corresponding summand of 7/% then
although 2(27) is of rank 1, it need not be a direct summand. Let N be the subgroup
of T corresponding to the kernel of 2. Then N acts on en+m with finite isotropy
groups. We denote the orbit space of N on n+m by Q2n(2) and call it the toric

orbifold corresponding to 2. (If 2 satisfies (,), then N acts freely and Q2n(2) is the
toric manifold corresponding to 2.) Singular toric varieties are toric orbifolds in this
sense.
A toric orbifold QZn over pn leads to a fibration BQ" BrP --,, B.", where the

n+m Theprojection map BrP B7/n is induced by 2, and where BQ2n EN x
space BQ2n is the classifying space for the orbifold Qn in the sense of I-Haefliger-I.
Since the fibers ofBQ2n

---} Q" are rationally acyclic, the rational cohomology rings
of BQ" and Qn are isomorphic. In particular H*(BQ"; Q) is finite dimensional.

It is easy to see that any simple polytope pn is the base space ofsome toric orbifold:
realize the dual complex K as the boundary complex of a simplicial polytope in
The fact that K is simplicial means that its vertices are in general position. Hence,
if we make a small perturbation of the vertices and take the convex hull, the
boundary of the resulting polytope will be combinatorially equivalent to K. By
making such a small perturbation we can assume that the vertices of K lie in
This gives a map vert(K) n, which extends linearly to 2: m n. Since K is
embedded in n, the map 2 is nondegenerate over K. From such a 2, one constructs
a toric orbifold as above.
With the exception of the previous paragraph, all of the above obviously extends

to the case where K is an arbitrary simplicial complex. The following improved
version of Theorem 5.10 is now clear.

THEOREM 7.2. Suppose that K is an (n 1)-dimensional Cohen-Macaulay complex
over , that P is its dual, and that (At,..., 2n) is a sequence of elements in H2(BrP; ).
The following statements are equivalent.

(i) (2, 2n) is a regular sequence for the face rinff Q(K).
(ii) 2 (2, An): m

_
n is nonde#enerate over K.

(iii) Up to a homothety, 2 is a characteristic function of a toric orbihedron Q2n.
Moreover, if any of these condition holds, then the resulting spectral sequence, with

rational coefficients, degenerates.

7.3. Hamiltonian actions. Suppose that M2n is a symplectic manifold with a
Hamiltonian action of Tn. (There is rather extensive literature on this subject; the
reference most convenient for us is [Delzant], one can find there definitions and
further references.)
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One defines then a "momentum map"/: M2n t*, where t* denotes the dual of
the Lie algebra of Tn. The momentum map is constant on the Tn-orbits and its
image is a simple convex polytope W. It can be shown that the T-action is locally
modelled on the standard representation of T on C" and that identifies M2n/T
with W. Thus #: M2 P is a toric manifold.

Nonsingular toric varieties fit into this picture. Indeed, the Kihler form on
such a toric variety is a symplectic form with respect to which the Tn-action is
Hamiltonian.

In [Delzant] the following theorem, reminiscent ofour Proposition 1.8, is proved.

THEOREM 7.4 ([DELZANT]). Suppose that (M1, 0)), (M2, 0)2) are two symplectic
manifolds with Hamiltonian T-actions such that the images of the momentum maps
coincide (perhaps after translation). Then Mt is equivariantly symplectomorphic to
M2

Delzant also gives complete characterization of the convex polytopes arising as
images of momentum maps.

THEOREM 7.5 ([DELZANT]). A convex polytope P in t* is the image of the
momentum map for some symplectic manifold (MEn, 0)) with Hamiltonian T-action

if and only iffor each vertex p P, there are n points qi, lying on the rays obtained
by extending the edges emanating from p, so that n vectors {qi P} constitute a basis
of (Z")* t*.

It is a byproduct of Delzant’s result, that every symplectic 2n-manifold with a
Hamiltonian T-action is equivariantly diffeomorphic (but not symplectomorphic) to
a toric variety. Thus one sees that the characteristic functions of the Hamiltonian
toric manifolds constitute rather restricted family. One may still ask the following
topological question.

Problem 7.6. Let Pn be a simple polytope with m codimension-one faces, and
2: Z 7/" a characteristic function and M2(2) the resulting toric manifold. Find
conditions on 2 so that M2(2) admits a T invariant almost complex structure.

7.7. Tridiagonal isospectral manifolds. As in Example 1.15, let M2n be an iso-
spectral manifold of tridiagonal hermitian (n + 1) x (n + 1) matrices, and W the
pemutohedron. Then M2 P is a toric manifold. The manifold M2 is naturally
a submanifold of U(n)-orbit of a diagonal matrix. This orbit is identified with the
flag manifold U(n)/T. The left T-action on the flag manifold is Hamiltonian and
the moment map/: U(n)/T" R can be identified with the (restriction of the)
projection onto the diagonal matrices. In this case it is a classical theorem of Schur
and Horn, that the image of # is the permutohedron, viewed as the convex hull of
all permutations of a diagonal matrix in the orbit. Unfortunately, the restriction
of the symplectic form on the flag manifold to M2 is degenerate, and the image of
the restriction of the momentum map is not convex.

Recently, it has been shown in [Bloch, et. al.] how to remedy this problem. There
is a different imbedding of M2n into the flag manifold so that the restriction of
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symplectic form is nonsingular and such that the image of M2n coincides with pn.
Hence, the isospectral manifolds fit into the context of 7.3.
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