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PREFACE 

These are the notes for a series of five lectures which I gave 

in the Transformation Groups Seminar at the Institute for Advanced 

Study during February of 1977. They concern the study of smooth 

actions of the compact classical groups (0(n) jU(n) or Sp(n)) which 

resemble or are "modeled on" the linear representation kDn. In the 

literature such actions have generally been called "regular" 0(n), 

U(n) or Sp(n)-actions; however~ following a suggestion of Bredon, I 

have adopted the terminology "k-axial actions." 

My interest in these actions was ignited by the beautiful theory 

of biaxial actions on homotopy spheres discovered by the Hsiangs~ 

J~nich~ and Bredon. Perhaps the most striking result in area is the 

theorem~ due to the Hsiangs and independently to J~nichj which essen- 

tially identifies the study of biaxial 0(n)-actions on homotopy 

spheres (with fixed points) with knot theory. Also of interest is 

Hirzebruch's observationj that many Brieskorn varieties support canon- 

ical biaxial actions. Such material is discussed in Chapter I° 

In my thesis, I studied the theory of k-axial 0(n), U(n) and 

Sp(n) actions for arbitrary k such that n ~ k. The main result~ 

here called the Structure Theorem~ is proved (in outline) in Chapter 

IV. This theorem implies that (assuming a certain obviously necessary 

condition) any k-axial action is a pullback of its linear model. In 

Chapter VI, I indicate how this result can be combined with Smith 

theory and surgery theory in order to classify all such actions on 

homotopy spheres up to concordance. 

Many proofs are omitted and some are only sketched. In the case 
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of U(n) or Sp(n)-actions the classification up to concordance is joint 

work with W. C. Hsiang. In the case of 0(n)-actions it is joint work 

with Hsiang and J. Morgan. 

I have added two appendices to the original version of these 

notes. The first one deals with the theories of biaxial actions of 

SO(3)~ G 2 or SU(3), which are surprisingly different from the corres- 

ponding theories of biaxial actions of 0(3), S0(7) or U(3). The 

second appendix contains the proof of an important technical lemma 

which was stated in Section A.2 of Chapter V~ but not proved there. 

This lemma deals with the homological relationships between various 

pieces of the orbit spaces of two regular 0(n)-manifolds which have 

the same homology. 

My thanks go to Bill Browder, Glen Bredon, Wu-yi Hsiang, John 

Morgan and Gerry Schwarz for many helpful conversations. I would also 

like to thank Deane Montgomery and the other participants in the 

seminar for their interest and encouragement. I am particularly 

indebted to my thesis advisor, Wu-chung Hsiang, not only for his help 

in that venture, but also for the many continuing discussions I have 

had with him during the past three years. I was supported by NSF 

grant MCS72-05055 A04 while I was at the Institute. 

Columbia University 
November, 1977 
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0. INTRODUCTION 

m . 

Suppose that G is a compact Lie group and that Z is a homo- 

topy m-sphere. We wish to consider smooth actions G × ~ ~ Z of G 

on ~. One reason for studying such objects is that there are natural 

examples; namely, if G C--~0(m + i) is any representation, then G acts 

on the unit sphere in R m+l The action G × S m + S m so obtained is 

called a "linear action." 

One standard approach to this problem is to 

(i) Make some innocent sounding hypothesis (e.g. there is an orbit 

of codimension one or two, the principal orbit type is a Stiefel 

manifold, or that G is simple and dim ~ < dim G) to insure 

that the orbit types of G on ~ will be the same as those of 

some linear action, and then 

(2) try to classify all those smooth actions with the same orbit 

types as some given linear action. 

This approach was first explicitly formulated by the Hsiangs. 

Problems (i) and (2) are closely related and often solved by the same 

person (or persons) in a single paper; however, we shall concentrate 

on (2). 

If one wants to consider a relatively large group G, then the 

first representation one might try in the above program is the stan- 

dard representation of 0(n) on R n. Historically, this was the repre- 

sentation that was first considered. Next one might consider the 

standard representation of U(n) on ~n or Sp(n) on ;I n (If = quaternions). 

We will use the notation 
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Pn: Gd (n): > 0 (dn) 

to denote one of these representations, where Gd(n) = 0(n), U(n) or 

Sp(n) as d = i, 2 or 4. Finally one might consider other representa- 

tions such as the adjoint representation or multiples of the standard 

representation. In these lectures I will deal only with smooth 

actions which are modeled on multiples of the standard representation 

(i.e., "modeled on k~n"). 

Definitions: Suppose that G acts smoothly on M. The slice repre- 

sentation at x 6 M is the action of G on the subspace of T M which 
x x 

is perpendicular to the orbit~ i.e., on 

sx = T~/T x (G (x)) 

where G is the isotropy group and G(x) is the orbit passing through 
x 

x. Let F be the subspace of S left pointwise fixed by G and let 
x x x 

V x = Sx/F x • 

The Gx-mOdule V x is called the normal representation at x. There is 

an equivalence relation on pairs of the form (Gx,Vx) induced by 

conjugation on the subgroup and equivariant linear isomorphisms on 

the vector space. The equivalence class of (Gx,V x) is called the 

normal orbit type of x. 

Let W be any G-module. We shall say that M is modeled on W 

if the normal orbit types of G on M occur among the normal orbit 

types of W. M is a k-axial Gd(n)-manifold if it is modeled on kPn. 

The following material concerns such actions. 



I. SOME HISTORY 

Bredon has written a survey article [4], largely devoted to mono~ 

axial and biaxial actions on homotopy spheres. The interested reader 

is also referred to [5], [12] and [14]. Let us note that [4] and [5] 

contain excellent bibliographies. 

A. Actions modeled on iPn. 

1. The example of Montgomery and Samelson: In 1961 in [19]~ 

Montgomery and Samelson considered the following construction. Let 

B m be a smooth contractible manifold with boundary. Let 

X = D n × B m. 

we can let 0(n) act on X via the standard representation on D n and 

trivially on B m. Let us make a few observations. 

The action on X is modeled on iDn. 

~X is simply connected. 

I) 

2) 

3) So, by the h-cobordism Theorem~ 

possibly when m = 3 and n = i) . 

X is a disk (except 

4) Dn/0(n) _~ [0,i] and, therefore, X/0(n) ~_ [0,i] x B m. 

5) S i n c e  ~X = S n - 1  × B m U Dn × ~ Bm 

~X/0(n) ~ B m U [0, i] × ~B m _~ B m 

6) The fixed point set of 0(n) on ~X is diffeomorphic to 

~B m (which can be an arbitrary integral homology sphere bounding 

a contractible manifold). 

7) Thus, there are infinitely many inequivalent monoaxial 

0 (n) -actions on S n+m-I which are distinguished from one another 

by their orbit spaces (or by the fundamental groups of their 



fixed points sets). 

The same construction works for U(n) or Sp(n) by replacing D n by 

D 2n or D 4n (the unit disk is the standard representation). 

These examples are not really so different from the linear action 

S n+m-I B m Dn + ml on (where = Dm). In fact, we shall see that this 

type of phenomenon of replacing the linear orbit space with a space 

whose strata have the correct homology, can always happen. The action 

on ~X is "concordant to the linear action" (since it extends to an 

action on X which is a disk). To see this~ remove a small disk 

sn+m-i about a fixed point in X to obtain an action on × [0~i] which 

is the original action on 5X on one end and equivalent to the linear 

action on the other end. 

2. Wu-yi Hsiang's thesis: In his thesis which appeared as [16], 

Wu-yi Hsiang proved that every effective~ smooth S0(n)-action (or 

0(n)-action) on a ~-manifold of sufficiently small dimension (compared 

to n) was monoaxia!. In a related joint paper with W. C. Hsiang [13], 

it was proved that a smooth Gd(n)-action on a homotopy sphere was 

monoaxial provided the principal orbits were spheres (of dimension 

(dn-l)). Similar "regularity" theorems had been proved earlier by 

Bredon [3], Wang, Montgomery, Samelson and Yang (see [4]~ [9] and [17] 

for further discussion). 

Wu-yi Hsiang also showed that the examples of Montgomery and 

S amelson were the only possibilities of monoaxialactions on homotopy 

spheres (and hence that no exotic sphere admits a monoaxial Gd(n) - 

action). 



Theorem i (W. Y. Hsiang) : There is a bijecti°n (assuming d ~ I and 

n~ 1 

/equivariant diffeomorphism~ 

classes of monoaxial 

G d (n) -actiOns on homotopy 

spheres of dimension 

d n +  m - 1 
/ 

< > I 
" dif feomorph ism 1 

manifolds with ~t 

< boundary / 

More precisely~ Hsiang showed that if Gd(n) acts monoaxially on 

dn+m-i 
, then 

(i) ~/Gd(n) = B m is a contractible manifold with boundary. 

(2) Z and ~' are equivalent if and only if their orbit 

spaces B and B' are diffeomorphic. 

Let us now prove statements (i) and (2). The ideas of the proof 

will occur again in our considerations of general multiaxial actions. 

Proof of (i): First, why is B a manifold with boundary? (It is 

certainly not generally true that the orbit space of an arbitrary 

smooth G-manifold is a manifold.) In our case, if x is a fixed 

point, then it follows from the Differentiab!e Slice Theorem that 

dn m-i 
has an invariant neighborhood in E of the form R + R where 

Gd(n) a c t s  v i a  1Pn on R dn and t r i v i a l l y  on R m-1 S ince  

(R dn + Rm-1)/Gd(n) ~ [0,~) X R m-l, B is a manifold with boundary 

near n(x) e B. If x is not a fixed point, then it again follows 

from the Slice Theorem~ that x has an invariant neighborhood of the 

m 
form S dn-I X R ; and hence~ ~(x) has a neighborhood isomorphic to R m. 

D 
Now to finish the proof that B is contractible we show that 



(a) B is simply connected. 

(b) B is acyclic. 

First we need two lemmas. 

Lemma 2: I_~f d = 2 o_~r 4, then the fixed point set F = Z Gd(n) is an 

integral homoloqy (m-1)-sphere. In the 0(n) case, if n is even 

then F is also an integral homology (m-1)-sphere. 

Proof: Let T be a maximal torus of Gd(n). The lemma will follow 

T 
from P. A. Smith's Theorem if we can show that F = Z . It suffices 

to check this on each orbit and since each orbit occurs as an orbit 

in the linear model it suffices to check it there. But clearly 

F(Gd(n),R dn) = [0] = F(T~Rdn), except in the case of 0(n) when n is 

odd (in which case F(T,R n) = F(0(n-l), R n) ~ . 1 
© 

Lemma 3: Suppose G acts smoothly on M with precisely one orbit 

type. say, G/H. Then G/H -~ M -~ M/G is a smooth fiber bundle with 

structure group N~H. Moreover a the associated principal bundle can 

be identified with NH/H ~ M H -~ MH/NH = M/G. 

Proof: This is a well-knwon and important lemma (see, for examplej 

[5]). That M -~ M/G is a smooth fiber bundle follows from the Slice 

Theorem. The structure group is the group of equivariant diffeomor- 

phisms of G/H which is easily seen to be NH/H (~ is the normalizer 

of H in G). The last sentence is also an easy exercise. 

Proof of (a): Since B is a manifold with boundary, to show that B 

is 1-connected it suffices to show its interior int B is 1-connected. 

By Lemma 2, we have a fiber bundle S dn-I ~ Z - F + int B. Except in 



the case Gd(n) = 0(i)~ S dn-I is connected so ~i(~ - F) + nl(int B) 

is an epimorphism. But we have the commutative diagram 

~I(Z - F) > ~l(int B) = nl(B) 

\ /  
~1 (r.) 

II 

0 

It follows that ~IB() = 0. 

B 

Proof of (b) (that B is acyclic): We will use the symbols X - Y 
Z 

to mean that X and Y have the same integral homology. Now let 

X = 7.rtubular nbhd. of F 

E1 = xG (n-l) 

= X/G(n) _~ B-collar of ~B 

(F is the fixed point set). By Lemma 2, E 1 is a principal Gd(1) - 

bundle over B (Gd(1) = N d /Gd(n-l)) . In the U(n) and Sp(n) cases 

G (n-l) 
we use Len~na 1 to show that 

and therefore 

X ~ S dn-1 

E 1 ~ S d-l. 

So it follows from a simple spectral sequence argument that B ~ pt. 

In the 0(n) case we argue as follows. First E 1 is the trivial 0(i) 

bundle since B is simply connected. Since X is an associated 

bundle 



X = S n-I × B . 

Now~ we have 2 cases: 

sm-i sn-i n is even: First, F ~ by Lenm~a I. Therefore~ X ~ by 

Alexander Duality and so, B (and hence B) is acyclic. 

• S m . n is odd: Let A = 0(n-l) By Lemma i, A ~ A is a 0(1)-mani- 

fold where 0(i) = N0(n_l)/0(n-I ) . The fixed point set of 0(I) on A 

is F (which is of codimension one in A) and A/0(1) _~ B. In [20], 

Yang proved that if 0(i) acts on an integral homology sphere with 

fixed point set of codimension one, then the orbit space is acyclic. 

Here is an argument. Consider the exact sequence of the pair (A,F) . 

For i ~ 0 or m, we have H i(A,F) _~ Hi_I(F ) . Since 0(i) acts trivially 

on F, it acts trivially on H i(A,F). On the other hand by excision, 

Hi(A~F) _~ Hi(El,~E I) 

__H i((~) × o(i)) 

_~ Hi(B,~B) + Hi(B,~B). 

Since 0(i) operates on these last terms by switching factors and 

since it acts trivially on Hi(A,F), it follows that Hi(B,~B) = 0, 

i ~ m. Thus B is acyclic. This completes the proof of (i). Argu- 

ments similar to this are due to Borel and Bredon (see [I] and [2]). 

O 
NOW, we turn to the proof of (2). Actually, we can prove the 

following. 

Propq.siti0n 4: Suppose that M and M' are monoaxial Gd(n) manifolds 

over B an__~d B'. Suppose further that the bundles of principal 



orbits are trivial (this is implied for example by B and B' ~in@ 

~cyclic). Then M and M' are equivariantly diffeomorphic if and 

only if B and B' are diffeomorphic. 

Proof: If M + M' is an equivariant diffeomorphism, then the ~nduced 

map B + B' is a diffeomorphism. 

In the other direction we would like to say that if f: B + B' is 

a diffeomorphism, then there exists an equivariant diffeomorphism 

~: M + M' covering f. 

T 
M >M' 

B ~B' 

In fact, this is true; however, proving that ~ is differentiable 

near a fixed point is a somewhat subtle point (essentially involving 

the Covering Isotopy Theorem, see [5]). we proceed a little 

differently. 

Let N be the normal bundle of the fixed point set F in M. 

First we claim that N is a trivial Gd(n)-vector bundle. The fiber 

of N is R dn and the structure group can be reduced to the centrali- 

zer of iPn. This centralizer is GLd(1), the general linear group over 

R, ~, or ~. Picking an invariant metric for N we can actually 

reduce the structure group to Gd(1). Let E 0 + F be the associated 

principal bundle. Consider the unit sphere bundle of N 

~N = S dn-I XG(1) E 0. 

Let El(~N) = ~N G(n-l) be the total space of the principal bundle 
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associated to the orbit bundle ~N ~ ~N/G(n). Then 

EI(~N) = G(1) ×G(1) E0 

--~ E 0 • 

Now pick equivariant tubular neighborhoods T : N + M and ~': N' ~ M' 

covering collared neighborhoods ~B × [0, i] + B and ~B' × [0,i] ~ B' 

Let B = B-collared neighborhoods. Then T induces a bundle isomor- 

phism EI(~N ) ~ EI(M) I~ , where El(M ) ~ B is the principal bundle 

associated to the bundle of principal orbits. Since B is contract- 

ible, El(M ) is the trivial bundle, i.e. El(M) ~ G(1) × B. Thus, 

EI(~N) and E 0 are also trivial G (1) -bundles and consequently 

N ~ R dn × F. 

We may assume that f: B ~ B' is a product map on the collared 

sdn-I neighborhoods. Pick any equivariant diffeomorphism f: x 

S dn-I × B' covering f. 

S dn-I × B ~ $sdn-i × B' 

g m f > B' 

Consider the restriction of to ~N = S dn-I × ~B. This is a bundle 

map and on each fiber it is multiplication by an element of Gd(1). 

Since the action of Gd(1) on S dn-I is scalar multiplication, ~I~N 

extends to a linear map bf disk bundles N + N'. Using this extension 

we get an equivariant diffeomorphism ~: M + M'. [] 



B. Actions modeled on 2Pn. 

Things began to heat up with the work of Bredon, the Hsiangs, 

and J~nich on biaxial actions. We shall first consider 0(n)-actions 

and then discuss the U(n) and Sp(n) cases (which are similar). 

i. Bredon's examples: These examples are similar to the linear 

action 2Pn: 0(n) X S 2n-I + S 2n-l. This action has two types of orbits. 

The principal orbits are second Stiefel manifolds 0(n)/0(n-2) and the 

singular orbits are spheres 0(n)/0(n-l). The orbit space is a 2-disk. 

If we consider biaxial actions on homotopy (2n - l)-spheres, then an 

argument similar to the one which we gave for monoaxial actions shows 

that the orbit space is a contractible 2-manifold, hence, a 2-disk. 

However, the other part of our argument does not work, since it is not 

true that any equivariant diffeomorphism of the normal sphere bundle 

of the singular orbits extends to the disk-bundle. 

Bredon's program was to classify Lie group actions on homotopy 

(2n-l)-spheres with orbit space D 2. In 1965 in [3], he shows that 

for each nonnegative integer k, there is a biaxial 0(n) manifold 

2n-i with the following properties. M k 

M2n-i . D 2 . 
(i) k /0 (n) _~ 

(2) For n odd and k odd, M 2n-I is homeomorphic to S 2n-!.- 

3 is the lens space L 3(k,l). (3) M k 

2n-i , 
(4) M k is highly connected and for n even, 

(S 2n-l) ~ Z 
Hn-i k -- k" 

(5) The fixed point set of 0(i) on M 2n-I is equal to 

2n-3 
M k 

2 
(6) These are the only biaxial actions with orbit space D . 
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Remarks: Actua!lyj Bredon only constructed these examples for k 

2 M2n-1 odd. Also, in his notation Mkn-i is what we call 
2k+l" 

Of course, it later developed (as was shown by Hirzebruch [12]) 

that Bredon's examples coincided with certain natural actions on 

Brieskorn varieties. To be more specific, let 

(z2) 2 2 f(z) = (zl)k + +...+ (Zn+l) 

and let 

2n-i s2n+l 
Ek = f-i (0) N 

The linear action of 0(n) operating on the last n coordinates leaves 

the intersection invariant. It is not hard to check that this action 

is biaxial with orbit space D 2. Since these actions are classified~ 

2n-i 2n-i 
they coincide with Bredon's examples and,in fact, _~ = ~k 

It was shown by Hirzebruch [12] and independently by the 

[15] that for n odd, M~ n-I is the Kervaire sphere if k Hsiangs ±3 E 

mod 8 and it is the standard sphere if k ~ ~i mod 8. In particular, 

2n-i is not concordant to the linear action. In this means that M 3 

fact~ it is not too difficult to see that the integer k is a 

concordance invariant (k - 1 essentially is an index-type invariant). 

2. T,he classification theorem of the Hsian~s and J~nich for 

actions with two types of orbits: In an important paper [14], the 

~ . 

Hsiangs, and independently Janlch in [18], gave a different proof of 

Bredon's classification theorem. Their proof also generalized to 

give a classification theorem for certain kinds of actions over a 

given orbit space with exactly two types of orbits. This classifica- 
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tion was in terms of a certain invariant called the "twist invariant" 

by the Hsiangs and the "characteristic reduction" by J~nich. 

The Hsiangs applied this result to biaxial U(n) or Sp(n) actions 

2dn-i 2dn-i 
on homotopy (2dn-l)-spheres. If Gd(n)- x T ~ Z is biaxial, 

then it follows that the fixed point set is empty and that the orbit 

space B d+l is a contractible manifold with boundary (of dimension 3 

in the U(n) case and of dimension 5 in the Sp(n) case). The biaxial 

actions over a given orbit space were again classified by the non- 

negative integers (if B d+l is a disk, then these actions are the 

M2dn-l. 
restriction to Gd(n) of the 0(dn)-action on k ). However, only 

the action corresponding to the integer 1 is a homotopy sphere. Thus, 

the Hsiangs showed that for d = 2 or 4 biaxial Gd (n) -actions on homo- 

topy (2dn-l)-spheres were in 1 - 1 correspondence with contractible 

(d+l)-manifolds. Furthermore, these actions are concordant to the 

linear action. 

3. Knot manifolds: In the same two papers [14] and [18] ~ the 

Hsiangs and J~nich also considered biaxial 0(n)-actions with fixed 

points. Here, the linear action they had in mind was 20n + (m+l) l 

(two times the standard representation plus the (m+l)-dimensional 

trivial representation) of 0(n) on S 2n+m. This has three types of 

orbits: Stiefel manifolds 0(n)/0(n-2), spheres 0(n)/0(n-l), and 

fixed points 0(n)/0(n). The orbit space is a (m+3)-disk with the 

fixed point set S m embedded in the boundary. With the natural smooth 

structure on the orbit space there is a singularity along the fixed 

point set. 
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m 
S 

More generally, one can show that if 7 
2n+m 

is a biaxial 0(n)- 

that is, 

sphere, then the orbit space B has as similar structure, 

i) B 2 = int B is a contractible (m+3)-manifold, and 

2) if n is even, B 0 ~ S m, (that is, B 0 is an integral 

homology sphere) while 

2') if n is odd, the double branched cover of ~B along 

B 0 is an integral homology sphere. 

Conversely, the Hsiangs showed that given any such B, there is a 

2 n+m 
unique biaxial 0 (n) -action on a homotopy sphere ~ with ~/0(n) = B 

(as a stratified space). 

So, for example, we could let B = D m+3 and let B 0 be any knotted 

homotopy sphere in ~B and obtain a unique 0(n)-manifold with this as 

orbit space. Hence, the term "knot manifolds. " 

Some of these knot manifolds can also be realized as Brieskorn 

varieties (again, see [12]). For example, let 

f(z) = (Zl)P + (z2)q + (z3)2 +...+ (Zn+2)2 

where p and q are odd and relatively prime, and let 2n+l(p,q) = 

f-l(0) A $2n+3. Then 72n+l(p,q) is a homotopy sphere and supports a 
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biaxial 0 (n)-action with orbit space D 4 and with the fixed point set a 

torus knot of type (p,q) in ~D 4 = S 3 (See [12].) 

Since the Brieskorn examples were known to have exotic differen- 

tial structures, this raised the question of how the differential 

structure on ~ was related to the knot. It turned out that this 

relationship was the obvious one, that is, there are notions of 

Kervaire invariant and index for knots and if Z corresponds to a 

knot, then it equivariantly bounds a parallelizable manifold of the 

corresponding index or Kervaire invariant. This result is due to 

Hirzebruch and Erle [9] and [7] 

Also, roughly speaking, 

I~ oncordance classes t { 
f knot manifolds 

for m = 1 and to Bredon [5] for m > I. 

>~knot coDordism 

~classes of knotsl 

This is true for n even, but for n odd we must replace knot 

cobordism by a "double branched cover knot cobordism" (analogous to 

condition 2'), above). More will be said about concordance in 

Chapter VI. 

4. U(n) and Sp(n ) knot manifolds: suppose that d = 2 or 4 and 

that 2dn+m is a biaxial Gd(n)-manifold. Let B = z/Gd(n). Again it 

is not hard to show that 

B is a contractible manifold of dimension m + d + 2, I) 

and that 

2) B 0 Z sm. 

However, for d ~ 2, not every such space can occur as the orbit space 

of a biaxial Gd(n)-action. Also, at least when m = I, a biaxial 
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Gd(n)-action (d ~ 2) on a homotopy sphere is not determined by its 

orbit space. (The negation of both of these facts was asserted in 

[14].) W. C. Hsiang and D. Erle in [ii], found these mistakes and 

showed that such a B occurs as an orbit space if and only if B 0 

bounds a parallelizable submanifold of ~B. Bredon completed the 

classification of these U(n) and Sp(n) actions on homotopy spheres 

in 1973 in [6] by showing that the actions over a fixed orbit space 

are classified by framed cobordism classes of submanifolds of ~B co- 

bounding B 0. (This result will be proved in III.D.) 
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II. SOME PRELIMINARY FACTS CONCERNING THE LINEAR 

MODEL AND ITS ORBIT SPACE 

A. The linear r e~reseptation kPn. 

Any information one can obtain concerning the orbit structure 

and orbit space of a linear representation will prove useful in the 

study of smooth transformation groups. Since we are interested in 

smooth actions with normal orbit types occurring among those of kPn , 

it will help us to take a close look at this representation, and to 

see, at least, which normal orbit types we are considering. 

First--some notation. Let G(n) stand for either 0(n), U(n) or 

Sp(n) and let • stand for either R, ~, or ~. Let M(n,k) be the 

vector space of (n × k)-matrices over ~, i.e., let 

M(n,k) = Hom~(~k,En) . 

The natural action G(n) × M(n,k) ~ M(n,k) (given by matrix multipli- 

cation) can be identified with kPn (i.e., with the direct sum of k 

copies of the standard representation). There is a natural G(n)-in- 

variant inner product on M(n,k), namely, 

<x~y> = tr(x*y) 

where x* is the conjugate transpose of x. In the next proposition we 

compute the normal orbit types of G(n) on M(n,k). 

Proposition i: Let x e M(n,k), let G x be the is0trqpv ~roum ~ 

and let V x be the normal representation at x. The__.._nn 

i) G is the subgroup which fixes (pointwise) the subsDa¢_~ 
X . . . . .  ~ .... 

n 
im (x) c K • 
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2) V x = HomE(ker(x),im(x)l). Here we are regarding 

Hom~(ker(x) jlm(x)') as a subspace of M(n,k) _~ Tx(M(n~k) ) . 

Remark: If the rank of x is i, 

(im(x) denotes the image of x). 

equivalent to (G (n-i) ,M (n-i,k-i)) . 

then im(x) ~ Ki and ker(x) ~ ~n-i 

It follows that the pair (Gx,Vx) is 

The i-stratum of M(n,k) (denoted by M(n,k) i) is the submanifold 

of M(n,k) consisting of those matrices x such that rk(x) = i. 

Proof of Proposition: The first statement is obvious. To prove the 

second, suppose that x has rank i. By the Slice Theorem~ x has 

an invariant neighborhood of the form G ×G S x where the slice repre- 
x 

sentation S x consists of those tangent vectors normal to the orbit. 

Let F x b e  t h e  s u b s p a c e  o f  S x f i x e d  b y  Gx,  a n d  r e c a l l  t h a t  V x i s  t h e  

orthogonal complement of F x in S x. Suppose that y E G ×G Fx" Then 
x 

the G is conjugate to G ; hence, the rank of y is also i. Con- 
y x 

versely, if y e G ×G (Sx - Fx) then rk(y) > i. In other words, F x is 
x 

the subspace of S tangent to the i-stratum. It follows that V may 
x x 

be characterized as the subspace of the tangent space consisting of 

vectors normal to the stratum of x. 

Now consider the exponential map exp: Tx(M(n,k)) ~ M(n,k). This 

may be identified with the map M(n,k) ~ M(n,k) defined by y ~ x + y. 

Suppose that y e Hom(wk,lm(x)) c M(n,k) . Then for small values of y 

Im(x+y) = im(x), hence, y is tangent to the stratum M(n,k) i. Next 

consider the case where y e Hom(ker x~jE n) . Then y* 6 Hom(~n, lm(x*)). 

So, as above, for small values y, ira(x* + y*) = Ira(x*). It follows 

that rk(y) = rk(y*) = rk(x*) = i. Thus, y is again tangent to the 
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stratum. Let E be the subspace of M(n,k) spanned by Hom(Ek, lm(x)) 

and Hom(ker(x)~n) . We have shown that V c E ~ = Hom(ker(x) jlm(x)~) • 
X 

On the other hand, if y e Hom(ker(x)~im(x)~), then im(x + y) = im(x) 

+ im(y). Hence~ y is never tangent to the stratum. Therefore 

V x = Hom(ker (x) , ira(x) ") . 

We now see that the isotropy groups of a k-axial G (n) -manifold 

are conjugate to G(n-i) and the normal representations are equivalent 

to (k-i)Pn_i , where i < min(n,k). 

Definition: Let M be a k-axial G(n)-manifold. The i-stratum of M 

(denoted by Mi) is defined as 

M.1 = Ix 6 M l (Gx,Vx) ~ (G(n-i),M(n-i,k-i))}. 

Thus, the strata of M are linearly ordered and they can be 

indexed by the integers between 0 and min(n,k), inclusive. (We do 

not exclude that possibility that M is the empty set; however, notice 
1 

that M.1 ~ ~ implies Mj ~ ~ for j > i.) It follows from the Slice 

Theorem that M. is a smooth invariant submanifold of M and that its 
l 

image in the orbit space B is also a smooth manifold. Let us denote 

this image by B. and call it the i-stratum of B. Also, notice that 
l 

the above definition of the i-stratum of a G(n)-manifold coincides 

with our earlier definition of the i-stratum of M(n~k). 

B. The orbit space of M(n,k). 

Let H(k) be the vector space of (k x k) ;r-hermitian matrices 

(that is, as ~ = R, ~ or ~, H(k) is either the set of symmetric, 

complex hermitian, or quaternionic hermitian matrices). Let 
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H+(k) c H(k) be the subset of positive semi-definite matrices. Con- 

sider the polynomial map n: M(njk) + H(k) defined by 

(x) = x*x. 

Let us make a few observations: 

i) If n > k, then the image of ~ is H+(k) . 

-i 
2) ~ is constant on orbits, i.e., n(gx) = x*g gx = ~(x) . 

Hence there is an induced map ~: M(n,k)/G(n) -~ H+(k). 

3) If n > k, then ~ is a homeomorphism onto H+(k). (This 

essentially polar decomposition of matrices.) 

• S ii 4) In fact, n is a "smooth isomorphl m onto its image. 

The proofs of i) and 3) are left as exercises. To make sense of 

4), we must consider what should be meant by a "smooth structure" on 

an orbit space. Just as the topology on M/G is defined by identifying 

the continuous functions on M/G with the G-invariant continuous 

functions on M, we should identify the "smooth" functions on M/G 

with the G-invariant smooth functions on M. In other words, 

f: M/G -~ R is smooth if and only if pof is smooth, where p: M ~ M/G is 

the orbit map. This defined a "smooth structure" on M/G. (We do not 

mean, in any way, to imply that M/G is a smooth manifold or even a 

mani fold. ) 

If V is a G-module, then we can also speak of the G-invariant 

polynomials on V. According to a theorem of G. Schwarz, the G- 

invariant smooth functions on V are related to the invariant poly- 

nomials in an obvious way. Before stating this theorem, let us recall 

a result of Hermann Weyl (page 52 in [7]). 
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Theorem 2 (Weyl) : The entries of ~: M(n,k) + H(k) generate the 

invariant polynomials on M(n,k). 

This theorem says that H+(k) is the orbit space of M(n,k) in an 

algebraic sense. The next theorem~ due to Schwarz [6], implies that 

it is also the orbit space in a C a sense. 

Theorem 3 (Schwarz) : Suppose that V is a G-module (over R) and 

that ~i,...,~ s generate the G-invariant polynomials on V. Let 

s s 
= (~l,...,~s): V ~ R • Then the induced map ~: V/G + R is a 

smooth isomorphism onto its image~ i.e. 

s ~ G 
~*C (R) = C (V) 

Notice that our map ~: M(n,k) ~ H(k) is precisely the map ~ in 

the hypothesis of Schwarz's theorem. In this special case, the result 

actually follows from an earlier theorem of G. Glaser [2]. 

The space H+(k) has very nice structure. 

observations about it. 

Let us make a few 

i) If x e M(n,k) and rk(x) = i, then rk(n(x)) = i. Thus, 

the i-stratum of H+(k) = [y 6 H+(k) Irk(y ) = i}. 

2) H (k) is a convex cone. + 

3) H+(k) is homeomorphic (although not smoothly equivalent) 

to Euclidean half-space of dimension k + 1/2 dk(k-l), where 

d = dim E. 
R 

Some Examples (of H+(k) for k < 3) : H+(1) is the half-open ray [0,~) . 

H+(2) is the (open) cone on a disk of dimension d + 1 (i.e., H+(2) 

D3d+2 D d+l X [0,~)/(x,0) N *.) H (3) is a cone over where the + 
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1-stratum is the cone over an ~p2 embedded in ~D 3d+2 (there is a 

singularity along the ~p2). 

F = k = 2 k = 3 

R ~ ~ ~ B P2 

~ ~ ~ ~p2 

H ~ ~ ~  IKP 2 

Facts about H+(k) immediately translate, via the Slice Theorem, 

into local information about orbit spaces of k-axial actions. For 

example, one sees from our description of H+(2), that the local struc- 

ture of knot manifolds is as was asserted in the first lecture. As 

another example, we have the 

Proposition 4: Let B be the orbit space of a k-axial G(n)-manifold, 

where n ~ k. Then B is modeled on H+(k) in the following sense. 

a) B is a topological manifold with boundary. 

b) If x e Bi, then x has a neighborhood of the form 

m R X H (k-i). + 

Proof: Suppose that B = M/G(n) . Pick y e M with n(y) = x. By the 

Slice=Theorem, y has a neighborhood in M of the form G X G Sy, so 
Y 

x has a neighborhood in B isomorphic to (G ×G Sy)/G _~ Sy/Gy 

m Y 
_~ Fy × V/Gy _~ R X H+(k-i). This proves b). Statement a) follows 

from b) and observation 3) above. 
[] 



III. THE NORMAL BUNDLES OF THE STRATA AND TWIST INVARIANTS 

A. The equivariant normal bundle of a stratum. 

Let M be a k-axial G(n) manifold and let B be its orbit 

space. From now on, unless otherwise specified, we will be assuming 

th at 

Let N.1 ~ M.l be the normal bundle of M.i in M. (N i is a G-vector 

bundle.) Rather than consider N.l as a bundle over Mi, we may regard 

it as a smooth fiber bundle over B with projection map, the composi- 
i 

+ M. + B.. The fiber is the G-vector bundle G x H V, where tion N I l l 

G = G(n), H = G(n-i) and V = M(n-i,k-i). The structure group S can 

be taken to be AutG(G X H V), the group of equivariant linear bundle 

automorphisms of G X H V. In general, 

s = NH(G × GT (V))/H 

where H is embedded diagonally in G x GL (V) (in GL(V) via the normal 

representation). In our case, 

S = G(i) × GL(k-i), 

where GL(k-i) = GL(k-i;~) . Here we regard GL(k-i) as the centralizer 

of H in GL(V) and G(i) as the centralizer of H in G (also, 

G(i) = ~/H). If (gl,g2) e G(i) X GL(k-i) and [g,v] £ G X H V, then S 

acts from the right on G X H V in the obvious fashion~ namely, via 

[g,v]- (gl,g2) = [ggl,vg2]. (For further details, see [i]. Also, 

there are similar results in [5] .) 

Now, let Pi(M) + B i be the principal G(i) X GL(k-i) bundle 
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associated to N i + B i. Pi(M) (= Pi ) is called the i-normal orbit 

bundle of M. Notice that Pk is the principal G(k)-bundle associated 

to M k + Bk, that is, Pk is the principal bundle of the bundle of 

principal orbits. It follows from Lemma 1.3 that Pk(M) = F(G(n-k) ;Mk). 

If we choose an invariant metric for N. 
l 

of P. can be reduced to G(i) x G(k-i) c G(i) 
1 

a metric we, therefore, get a principal G(i) 

then the structure group 

× GL(k-i). Given such 

× G(k-i) bundle 

E. (M) ~ B. which can be regarded as a subset of P. (M) . 
1 l l 

B. The mysterious "twist invariants." 

A smooth G-manifold can be decomposed as the union of equivariant 

tubular neighborhoods of the strata. In this way, the basic building 

blocks of a G-manifold are the normal bundles of the strata. In the 

case of multiaxial actions these normal bundles are determined by the 

P.'s (or the E.'s). There are many relationships between these normal 
1 l 

orbit bundles. For example, we will soon show that if Pk is a trivial 

fiber bundle, then so is P0' that is, the normal bundle of the fixed 

set is automatically trivial. (For k = i, this was proved in Chapter 

I.) The most important of these relationships is the relationship 

between each E.l and Pk (= Ek), the bundle over the top stratum. This 

relationship can be expressed as the fact that E. can be identified 
l 

with a reduction of the structure group of E k restricted to a certain 

subset. This reduction of the structure group is essentially what is 

meant by the "twist invariant" (in the Hsiangs' language) or the 

"characteristic reduction" (in the language of Janich and Hirzebruch- 

Mayer). The twist invariant can be used to classify certain kinds of 

actions with two orbit types over a given orbit space (in particular, 
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it classifies monoaxial actions and biaxial actions without fixed 

points). This is the classification theorem of the Hsiangs [3] and 

Janich [4] referred to earlier. It can also be defined in a wider 

context (for example, for k-axial actions), and we shall do so below. 

However, in this general context, the relationship of twist invariants 

to the classification problem is not so obvious. The definitions 

given below will probably seem somewhat unreasonable. My only justi- 

fication for them is that they work. 

First consider the vector bundle N.. Regarded as a G(n)-manifold 
l 

it is k-axial. Hence, we can consider Pk(Ni), the principal bundle 

of its bundle of principal orbits. We assert that 

i) Pk(Ni) ~ G(k) ×G(i)×G(k-i)Pi(M) . 

Proof: First notice that 

Pk(M(n'k)) = F(G(n-k),M(n,k)k ) 

= GL (k) . 

We regard Pk(M(n,k)) as a principal G (k) -bundle (i.e., as a left 

G (k) -space) and also as a right GL (k) -space (where GL(k) = centralizer 

of G(n) on M(n,k)). Next, consider G ~ V, where as before G = G(n), 

H -- G(n-i), V = M(n-i~k-i). In a similar fashion, we have that 

NOW, 

XG (k-i) GL (k-i) . 

N.l __. (G X H V) ×S Pi (M) 

where S = G(i) x GL(k-i) . Hence, 
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Pk(Ni) = Pk(G ~ V) ×S Pi 

= G(k) XG(k_i)GL(k-i) XG(i)xOL(k_i)P. 1 

= G(k) ×G(i)×G(k_i)Pi. [] 

Next, pick an invariant metric for N.. In other words, pick a 
l 

reduction of the structure group of N. to G(i) × G(k-i). In general, 
l 

if X + A is a principal G-bundle, then equivalence classes of reduc- 

tions of the structure group to K are in i-I correspondence with 

homotopy classes of sections of the bundle X/K ~ A. Thus, our metric 

corresponds to a section s: B i + Pi/G(i) X G(k-i). According to 

equation (i), we have a G(i) x G(k-i) equivariant inclusion 

Pi c Pk(Ni) • Moreover, 

Pi/G(i) × G(k-i) = Pk(Ni)/G(k). 

Thus, we have the following commutative diagram 

Ei ~ >Pi c Pk(Ni) 

S BiL >Pi/G(i) X G(k-i). 

We introduce another principal G (k) -bundle F i = Pk(Ni) Is(Bi). So, at 

this point we have a reduction of the structure group of F. to 
l 

G(i) × G(k-i) via E.~--)F.. 
1 1 

If we choose an equivariant tubular map T: NIC--->M , then we get 

an induced map of principal bundles Pk(T): Pk(Ni)~--~Pk(M). In this 

• as the restriction of Pk(M) to s(Bi). way, we can regard F I 

Now to really see what's going on, let us make the following 
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~pothesis: Pk(M) is a trivial fiber bundle. 

Pick a trivialization T: Pk 

diagram 

G(k). Consider the following 

T 
~G (k) Ei( >Fi >Pk 

B i +~(k)/cCi) x ~(k-i). 

Thus, we get a G(i) X G(k-i) equivariant map ~0i: E i + G(k) covering 

~0i: B i + G(k)/G(i) × G(k-i). The homotopy class of ~0 i is what is 

usually called the twist invariant. 

Theorem i: For each i, the equivariant homotopy class of 

~0i: E ~ G(k) 
1 

depends only on the homotopy class of the trivia lizatio n 

T : Pk + G (k) . 

Proof: The only choices involved in the definiton of ~i are the 

metric, the tubular neighborhood and the trivialization T. Since the 

fiber of Pi ~ Pi/G(i) X G(k-i) is GL(k-i)/G(k-i) which is contractible, 

any two sections Bic-gPi/G(i ) × G(k-i) are homotopic. But this 

implies that the two maps Eic_-)P i are equivariantly homotopic. It 

follows from the uniqueness part of the Equivariant Tubular Neighbor- 

hood Theorem, that the choice of tubular map N.C-~M does not effect 
1 

the equivariant homotopy class. Finally, it is clear that if we vary 

the trivialization T: Pk ~ G(k) by a G(k)-equivariant homotopy, we do 

not effect the homotopy class of ~i" O 

Corollary 2: The homotopy class of ~i: Bi + G(k)/G(i) × G(k-i) de____~ 

pends only on the homo topy class of the triyialization. 
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Thus, if M is a k-axial G(n)-manifold with trivial principal 

orbit bundle, we get invariants (of the equivariant diffeomorphism 

class of M). 

[~i ] 6 [Bi: G(k)/G(i) X G(k-i)]/[~,G(k)]. 

A further corollary is the following. 

Corollary 3: Suppose G(n) acts k-axially on M and that Pk(M) is 

trivial. Then E. is a pullback of the canonical bundle over a 
1 

Grassmann (That is~ of G(k) -~ G(k)/G(i) X G(k-i)) • In particular, E 0 

is the trivial bundle (it is the pullback of a bundle over a point). 

C. The classification of biaxial actions without fixed points. 

The twist invariant can be used to classify Bredon's examples of 

biaxial 0(n)-actions with orbit space D 2. Suppose 0(n) acts biaxially 

M 2n-I D 2" D 2 on and M/0(n) = Then P2(M) = 0(2) × and El(M) is an 

0(i) × 0(i) bundle over ~D 2 = S I. The twist invariant construction 

gives us 

E 1 > 0 (2) 

!- l 
1 ~i --= S 1" >0(2)/0(i) × 0(i) 

Thus, the homotopy class ~ of ~01 can be regarded as an element of 

Hl(sl;z) = Z. There are two homotopy classes of trivializations 

0(2) >< D 2 -> 0(2) (0(2) has two components). It is not hard to see 

that the effect of changing the trivialization is to change the sign 

of ~. Thus, l~I is a well-defined invariant of the action. In fact, 

we have the following, 
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2n-1 
Pr.~p.p_~sition 4: Le~ ~k 

k 
manifold defined by (Zl) 

2n-i 
invariant of _ <k is k. 

be the biaxial 0(n)-actions on the Brieskorn 

(z2)2 , . 2 + +...+ (Zn+ I) . Then the twist 

We won't prove this, but it follows from the next theorem and 

a homology computation. 

Theore m 5 (Bredon, the Hsiangs, Janich) : There is a bijection 

I!quivalence classes of (2n-l) 

imensional biaxial 0 (n) ~_I 

anifo!ds with orbit space D~ 

( > [0~ I, 2,...] 

Proof: First we show that we can construct an 0(n)-manifold M~ which 

realizes any twist invariant ~i: S1 ~ 0(2)/0(1) × 0(1). Let E 1 be 

the pullback of the canonical 0(i) × 0(i) bundle over 0(2)/0(1) × 0(I) 

and let ~i: E1 ~ 0 (2) be the map covering <0 I. Set 

M 2 = 0(n)/0(n-2) × D 2 

n-1 
N 1 = (0(n) ×0(n_l) R ) ×0(1)×0(1)El. 

Then ~i defines an equivariant diffeomorphism f: ~N 1 + ~M 2. So, 

define M = M 2 ~f NIO It is easy to check that twist invariant 

associated to M is ~i" 

Secondly~ we must show that if M and M' have the same twist in- 

variant they are equivariantly diffeomorphic. We have an isomorphism 

~: P2(M) _~ 0(2) X D 2 ~_ P2(M') . Since ~I and ~2 are homotopic, it 

follows from the Covering Homotopy Theorem that there is a bundle 

equivalence 8: El(M ) ~ EI(M' ) such that the following diagram commutes 
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up to homotopy 

E l(M) > ~P2 (M) 

E 2 (M') ~ ~P2 (M') 

Hence, we have an isomorphism ×(8): NI(M) + NI(M') which agrees with 

the map induced by % on ~M 2. Putting ×(8) and % together we get 

an equivariant diffeomorphism M ~ M' O 

The same type of result is true for biaxial U(n) actions over D 3 

and biaxial Sp(n) actions over D 5. In the first case, we get a twist 

invariant ~D 3 + U(2)/U(1) × U(1) = S 2 and in the second, we get 

~D 5 + Sp(2)/Sp(1) × Sp(1) = S 4. 

D. Remarks concernin ~ the general classification theorem. 

I have a different use for twist invariants in mind. As ~sual, 

suppose that M is a k-axial G (n) -manifold and the Pk(M) is trivial. 

One of the main theorems, which is proved (in outline) in the next 

chapter, is that there is a "stratified map" f: M + M(n,k). By a 

"stratified map" we mean that f is equivariant, strata-preserving, 

and that it maps the normal bundle of each stratum transversely. In 

fact, we will prove that such an f is unique up to a stratified 

homotopy and a choice of a homotopy class of trivialization of Pk(M) . 

The first thing to observe is that since a stratified map f 

induces bundle maps Pi~f) : Pi(M) ~ Pi(M(n,k)), the twist invariants 

are essentially functors in stratified maps (modulo the ambiguity 

introduced by the choice of trivialization of Pk ) • Thus, as a first 

obstruction to finding a stratified map we see that we must be able 
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to find maps f. : E. (M) + Ei(M(n,k)) 
1 1 

commutes up to equivariant homotopy 

so that the following diagram 

f. 

El(M) .... l ~ Ei(M(n,k)) 

G (k) 

In the next lecture, I will show that E. (M(n,k)) = H (i) × G(k) 
l + i 

• and by left multiplication (where G(i) acts by conjugation on H+(i) l 

on G(k) and G(k-i) also acts by left multiplication on G(k)). We 

will also show that the linear twist invariant H+(i) i x G(k) + G(k) 

is projection on the second factor. Since H+(i) i is contractible, 

this map is an equivariant homotopy equivalence. Thus, on each stra- 

tum there is, up to homotopy, essentially only one way to define the 

map f to make the above diagram commute.. A slightly more careful 
l 

analysis of this argument yields the result. 

We will discuss a more precise version of this theorem and some 

of its applications in the next chapter. 

[i] 

[2] 

[3] 

[4] 

References 

Davis, M., Smooth G-manifolds as collections of fiber bundles, 
(to appear in Pac. J. Math.). 

Glaser, G., Fonctions composees differentiables, Annals of Math. 
77 (1963)~ 193-209. 

Hsiang, W.C. and W.Y. Hsiang, Differentiable actions of the com- 
pact connected classical groups: I, Amer. J. Math. 88(1966), 
137-153. 

Janich, K., Differenzierbare Mannigfaltigkeiten mit Rand als 
Orbitraume differenzierbarer G-Mannigfaltigkeiten ohne Rand, 
Topology 5, 301-329. 



33 

[5] , On the classification of 0 (n) -manifolds, Math. Ann. 
"i76 (1968), 53-76. 

[6] Schwarz, G., Smooth functions invariant under the action of a 
compact Lie group, Topology 14 (1975), 63-68. 

[7] Weyl, H., The Classical Groups, second edition, Princeton Univ- 
ersity Press, Princeton, 1946. 



IV. A STRUCTURE THEOREM FOR MULTIAXIAL ACTIONS 

AND SOME OF ITS CONSEQUENCES 

A. The Structure Theorem. 

1. The twist invariants of the linear model. Let M be a 

k-axial G (n) -manifold, with n > k. In the previous chapter we consi- 

dered Ni, the normal bundle of the i-stratum, which could be regarded 

as bundle over Bi, the i-stratum of the orbit space. The structure 

group of this bundle can be reduced to G(i) × G(k-i). The associated 

principal bundle is denoted by E i (M) ~ B i. The concept of a "twist 

invariant" was defined. Roughly speaking, a twist invariant arises 

from the fact that the principal orbits of N. can be regarded as a 
1 

bundle over ~e interior of Ni/G(n) and also as a bundle over B .i In 

other words, it arises from the fact that the G-manifold N. has the 
1 

finer structure of being a G-vector bundle. 

To be a little more precise, the idea was to make use of an 

invariant inner product for N. and a tubular neighborhood map, to 
1 

push B. into the interior of B. Since N. is isomorphic to a tubular 
1 1 

neighborhood of Mi, B i has a neighborhood in B isomorphic to 

Ni/G(n ) . That is to say, it has a neighborhood isomorphic to a fiber 

bundle with fiber H+(k-i). (Recall that H+(k) is the space of k by 

k positive semi-definite Hermitian matrices.) 

fiber = H+ (k-i) 
/ 

= pushed in 
of B. 

1 

B. 
l 



35 

In the picture B i is the bottom edge of the prism and the pushed in 

copy of B i is the wire running through the center of the prism. We 

were able to identify E i with a G(i) × G(k-i)-equivariant subset of 

Eklwire = F i. (Recall that E k was the principal G(k)-bundle asso- 

ciated to the bundle of principal orbits ~ ~ Bk. ) If E k is a trivial 

bundle, then so is Eklwire. Choosing a trivialization, T: E k + G(k), 

we therefore had for each i, 0 ~ i ~ k, a diagram, 

E .- .... > G (k) 

B i ....... >G(k)/G(i) × G(k-i). 

We showed that the equivariant homotopy class of ~i: Ei + G(k) depends 

only on the equivariant homotopy class of the trivialization 

T: E k ~ G(k). The homotopy class of ~i' which also depends only on 

the homotopy class of T, is a slight generalization of what the 

Hsiangs called the "twist invariant" (however, their definition is 

different from the above). 

Notation: We shall use the following notation for the normal orbit 

bundles of the linear model: 

E i(k) = E i(M(n,k)) . 

Also, we shall denote the base space of E i (k) by B i (k), that is to say, 

B i (k) = [rank i positive semidefinite hermitian matrices] 

= H+ (k) i" 
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PrQ~osition i: 

I) There is a canonical bundle equiva!ence 

Ti: E. (k)l > Bi(i) × G(k), 

where B. (i) X G(k) is regarded as a principal: G(i) × G(k-i) bundle 
1 

as follows. Embed G(i) X G(k-i)t-->G(k) is the standard fashion. G(i) 

acts on Bi(i ) X G(k) by conjugation on Bi(i) (i.e., by g.x = g-lxg) 

an d by left translation on G(k). G(k-i) acts trivially on B i(i) and_ 

by left translation on G(k). 

2) The linear twist invariant ~Pi: El(k) + G(k) can be identified 

with projection on the second f actor~ i.e.~ 

~i = projoT • 

As a corollary to statement 1), we have the following interesting 

description of the base space of E. (k) . 
1 

Corollary 2: 

Bi(k) _~ Bi(i) XG(i)G(k)/G(k-i). 

In other words~ the space of (k × k) positive semi definite hermit ian 

matrices of rank i is diffeomorphic to a bund!e with contractibl 9 

fiber over the Grassmann of i-~lanes in k-space. 

Prqof of the Corollary: Although this follows immediately from state- 

ment i) of the proposition, let us give a more intuitive proof. The 

corollary states that a (k × k)-positive semidefinite hermitian 

matrix of rank i is determined by two pieces of data: 

(i) an i-plane in ~k 
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(ii) an (i × i)-positive definite matrix. 

Let x £ B i(k) . Then ker x is a (k-i)-plane and therefore (ker x) ~ is 

an i-plane. Choosing a basis for (ker x) ~, the restriction of x to 

(ker x) ~ may be regarded as an (i × i) positive definite matrix. 

These two pieces of data clearly determine x. Moreover, the ambi- 

guity introduced by the choice of basis, gives B. (k) the structure of 
l 

the indicated bundle (rather than of a product). 

Example: It follows from this corollary that 

Bl(k) = (0,~) × ~pk-1. 

(Compare this with our description of H+(k) for k <__ 3 in Chapter II.B.) 

Proof of the Proposition: 

I) This is a matter of unraveling some definitions. Let N. be 
1 

the normal bundle of M(n,k) i in M(n,k). We are interested in E. (k)~l 

which is the principal bundle associated to N i ~ Bi(k) . Let N x be 

the fiber of N i ~ Bi(k ) at x. Then 

N x = G ×G Va' 
a 

-1 
where G = G(n)~ a 6 n (x) and V is the normal representation at a. a 

According to Proposition II.1, V a _~ Hom(ker a~ (Im a) ~) . A point in 

E. (k) consists of a pair (x,@) where x E B (k) and where 
1 1 

@: G(n) ×G(n_i)M(n-i,k-i) -~ N x is an automorphism of Euclidean G-bun- 

dles (i.e., 8 is an equivariant isometry). Any such 8 can be 

written in the form 8([qjv]) = [qg-l~L(v)], where g e G(n) is such 

that g-iG(n-i)g- = G and where L: M(n-i,k-i) ~ V is an orthogonal a a 

isomorphism such that for all k 6 G(n-i) and for all v 6 M(n-i,k-i), 
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we have that L(kv) = (g-lkg)L(v). (See Section 1.2 in [7] for further 

-i 
details.) Notice that the choice of a £ ~ (x) is completely 

arbitrary. There is a natural bundle equivalence 

~g: G ×G Va ~ G ×G Vga defined by the pair (g,dg: Va ~ Vga). Hence, 
a ga 

-i 
if we r e p l a c e  a by  g a, 8 i s  r e p l a c e d  by  ~ _1o@. Thus ,  a f t e r  

g 

making this substitution, we may assume that G = G(n-i) and that e a 

is given by a pair (I,L) where L: M(n-i,k-i) ~ V a is an equivariant 

orthogonal isomorphism. 

Now, we can define Ti: El(k) -~ Bi(i) X G(k). First set 

h = aa* 6 B. (i). 
i 

Since h is positive definite, it has a unique positive definite 

square root. Let 
1 
2 

u= h a. 

Then u is a linear transformation from E n + E i = Im(a). Since 

uu* = h-i/2hh -1/2 = i, we see that u is an orthogonal projection 

(the rows of u are an orthogonal basis for (ker u) ~ = (ker a) l). 

Any equivariant orthogonal isomorphism L: M(n-i,k-i) 

Hom(ker a,E n-i) can be written in the form L(v) = voB -I where 

B: ker a + E k-i is an orthogonal isomorphism. Let b = Bop where 

p: E k ~ ker a is orthogonalprojection. Then w = (u,b) : (ker a)~ ker a 

= E k ~ E k is an orthogonal isomorphism. Define 

T~: E~(k) ~ Bi(i) × G(k) by 

It is easily checked that T 
l 

T i (x, @) 

is a G(i) 

= (h,w) . 

× G(k-i) equivariant diffeo- 
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morphism. 

of G (n) 

th at T 

natural 

2) 

Notice that G(k), regarded as the orthogonal centralizer 

on M(n,k)~ acts on E. (k) . It is also not difficult to see 
1 

is equivariant with respect to this action on E (k) and the 
l 

(right) action of G(k) on Bi(i ) >< G(k) . 

We wish to show that the twist invariant ~0i: Ei(k ) ~ G(k) 

is just "projection on the second factor". The twist invariant is 

defined as the composition of several maps, the definitions of 

which depend on a choice of an invariant inner product for N~ 
l 

a choice of tubular map. The standard inner product on M(n~k) 

and on 

defines an inner product on N. and using this metric we get an inclu- 
! 

sion I: E.~(k)C--~Ek(Ni) . If ~: NiC--gM(n,k) is a tubular map~ then it 

induces a map on the k-stratum and consequently a map of the asso- 

ciated principal bundles Ek(~) : Ek(Ni) ~ Ek(k ) . The twist invariant 

~i is a composition of maps as indicated in the following diagram~ 

I E k (T) 
E i(k) ~ E k(N i) ) E k(k) 

G (k) p r o j e c t i o n  
"~Bi(i)  × a ( k ) .  

First let us describe the map 

pal bundle Ek(Ni) can be regarded as a fixed point set, 

Ek(N i) = F(G(n-k) ; (Ni)k) . Let X = F(G(n-i) ;M(n,k) i) . 

to see that the image of I lies in F(G(n-k) ;(Ni)kl x) 

I. According to Lemma 1.3 the princi- 

that is, 

It is not hard 

(actually, this 

last space can be identified with the bundle P. (M(n,k)) defined in 
1 

Chapter II) . Let (x~@) e Ei(k ) and let a e X and B e Hom(ker a,E k-i) 

be as defined in the proof of 1) . If V is the fiber of N~ at a~ 
a 1 

then F(G(n-k)~Va) = Hom(ker a,Ek-i). Therefore~ (a,B) may be regarded 
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as a point in F(G(n-k) ; (Ni)klX) c Ek(Ni) • A little checking through 

definitions shows that, indeed, 

I(x,@) = (a,B) . 

Next, we need to define a tubular map T: N. ~ M(n,k). We would like 
l 

to use the exponential map, exp: N + M(n,k) ; however, since this is 
l 

only a diffeomorphism in some small neighborhood of the zero-section, 

we must scale it down. In other words, define ~ on each fiber V by 
C 

"r(y) = c + ¢c(lyl)y 

where y 6 V c and where ¢c: [0,~) + [0,~) is an appropriately chosen 

smooth function (i.e., ¢c = id near xero and ¢c has small values). 

Therefore 

Ek(T ) (a,B) = a + ¢b, 

where ¢ = Ca(IBl) . Now let us apply T k to A + ¢b e Ek(k) . 

calculate H = (a + cb) (a + cb)* = aa* + tab* + ¢ba* + ¢2bb*. 

First we 

Since 

ker a ~ ker b and Im a ~ Im b, the cross terms vanish. Also~ since 

b is an orthogonal projection bb* = 1 6 Bk_i(k-i ) . 

2 
H = aa* + ¢ . Next we calculate 

1 

2 
u = H (a + cb) 

Thus, 

= u + b = w 

where u and w are as defined in the proof of i) • Then 

Tk(a + cb) = (H,u) . Putting all this together we have shown that the 

following diagram commutes, 
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~J~. a(k)~//~ 

which is exactly what we wanted to show. 

2. Stratified maps. 

E3 

Definition: A smooth equivariant map f: M + M' of G-manifolds is 

stratified if 

(i) G = G 
x f(x); 

(ii) the differential of f induces an isomorphism of normal 

Vf representations V x _ (x) 

Remarks: Stratified maps seem to be the "correct" morphisms for the 

category of smooth G-manifolds (see, for example~ [7] and the paper 

of Browder and Quinn [5]). Notice that a stratified map induces a 

bundle map on each normal orbit bundle. Also notice that equivariant 

diffeomorphisms are stratified. 

3. The Main Theorem: "You should start at the bottom (stratum) 

and work your way up." W. Browder. 

The next theorem is one of our first examples of this important 

principle. 

Suppose that M is a k-axial G (n) -manifold, with n ~ k. Let 

Hom(M,M(n~k)) be the space of stratified maps from M to the linear 
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model (withthe coarse C~-topology). Also, let Hom(Ek(M),G(k)) be the 

space of trivializations of Ek(M ) . Clearly, a necessary condition 

for the existence of a stratified map f: M ~ M(njk) is that the bundle 

Ek(M ) be trivial. In fact, if we fix a trivialization for Ek(k), 

then f induces a trivialization of Ek(M). To be more specific, 

~: Hom(MjM(n,k)) ~ Hom(Ek(M),G(k)) can be defined by defining ~(f) by 

the diagram 

E k (f) 
E k (M) >~k (k) 

(f) • /~k )~~ (k) 
/ 

/ 

Here, Ek(f) is the bundle map induced by f and ~k = pr°j°Tk is the 

linear twist invariant. 

Theorem 3 (The Structure Theorem): The map 

~: Horn (M,M (n, k) ) > Horn (Ek (M) ,G (k)) 

i s a homotopy equivalence. 
r ~  

Remark: In particular, this theorem asserts that if Hom(Ek(M),G(k)) 

is nonempty, then so is Hom(MjM(n,k)) . Thus, the obvious necessary 

condition for the existence of a stratified map is also sufficient. 

In practice, this crude version will be our only use of the theorem. 

Sketch of the proof: We wish to construct a homotopy inverse for ~, 

call it ~: Hom(Ek,G(k)) + Hom(M,M(njk)). That is to say, given a 

trivialization T 6 Hom(Ek,G(k)), we want to produce a stratified map 
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f = ~(T) : M -> M(n,k) in a fairly canonical way. The basic idea is 

simple. Given T, we can define twist invariants ~0i: E i + G(k). Also, 

we have inclusions s.l: G(k) + Bi(i) × G(k) = Ei(k) defined by 

si(g) = (l,g), where 1 £ Bi(i) is the identity matrix. Let 

~i ---- si°~°i: Ei + Ei(k) " Then ~.l defines a map of associated bdndles 

×(~i ) : N i + N i (k). The idea is that on a tubular neighborhood of 

the i-stratum the stratified map f will essentially be defined by 

×(~i ) . The only problem is that these maps agree only up to homotopy 

(and this is what makes the proof complicated). The actual proof 

proceeds, in outline, as follows. 

Step I: We first pick a "good" family of tubular neighborhoods and 

metrics for M(n,k) and for M ("good" means that they match up 

correctly) . 

Step 2: Next, using these tubular maps, we adjust the trivialization 

T so that the following diagram commutes: 

proj 

E k (N i) ) F 
i 

G (k) 

= Eklwire 

T 

We can do this since proj: Ek(N i) ~ Eklwire is a homotopy equivalence 

(the fiber is Bk_i(k-i)~*) , and therefore this diagram always 

commutes up to homotopy. In fact, if we do this adjustment process 

carefully, it defines a homotopy equivalence p: Hom(Ek,G(k)) + A 

where A is the subspace consisting of those trivializations which 

satisfy the above diagram. 
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Step 3: Now we define the stratified map f = ~(T) : M ~ M(n,k). The 

map f will be a bundle map on the prescribed tubular neighborhood 

of each stratum. In the construction we start from the bottom and 

work up (by induction). First we define f on a tubular neighbor- 

hood of the fixed set by x(~0): N O ~ N0(k ) . Next we try to extend 

this to the first stratum. Let El = E1 - El(N0) and ~0EI(ZN0 ) where 

~N 0 is the unit sphere bundle. Then s 0 defines a map 

x(~0) : ~0EI ~ ~0El(k)~ which we would like to extend to E1 ~ E1 (k) 

by using ~i" The trouble is that ~iI ~ ~ ~ x(~0) ; however~ using 
0! 

Step 2, the following diagram commutes: 

It follows that 

x (~ o ) 
~0EI > ~0EI (k) 

~l --> G (k) 

x (ao) 
~0EI > ~0El(k) 

E] ) El(k) 

homotopy commutes. We can tack this homotopy onto a collared neigh- 

borhood of ~0EI in El and then extend X(~0) to El via a I. This new 

map E 1 + El(k ) can then be used to define f on a tubular neighbor- 

hood of the 1-stratum. We continue in this fashion, making sure 

that during our homotopies we do not affect the commutativity of 

diagrams similar to the above, and in this way we define f. 
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Ste~ 4: Finally, we must show that ~: Hom(MjM(n,k)) ~ Hom(Ek,G(k)) 

is a homotopy equivalence. We do this by showing that there are sub- 

spaces B c Hom(M,M(n,k)) and A c Hom(Ek,G(k)) such that the inclu- 

sions are homotopy equivalences and such that a ~IB: B + A is a 

homeomorphism (with inverse ~IA). The subspace A was described in 

Step 2. Roughly speaking, B consists of those stratified maps 

which are bundle maps on the prescribed tubular neighborhoods and 

which have the additional property that they collapse the complement 

of a collared neighborhood of ~E i to G(k) = the zero section of Ei(k). 

The verification that A and B have the desired properties is 

omitted. 

Remark: In a certain sense (about which I do not want to be precise), 

the above theorem shows that the classifying space for k-axial 

G(n)-manifolds with trivial bundle of principal orbits is the linear 

model M(n,k). 

The assumption that Ek(M ) is a trivial fiber bundle is not 

really necessary. In fact~ we could just as easily have proved the 

following 

Theorem 4: Le.__~t Q be any smooth principal G(k) bundle and let 

X = M(n,k) ×G(k) Q" If M is any k-axial G(n)-manifold~ with n ~ k~ 

then there is a homotopy equivalence ~: Hom(M,X) + Hom(Ek(M),Q) 

defined as before. 

In other words, if we can map E k to Q, then we can map M to 

X. In parciular, if Q is the universal bundle EG(k) ~ BG(k), then 

the theorem asserts that any k-axial G(n)-manifold maps to 
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M(n,k) ×G(k) EG(k). 

Thus, this space can be regarded as the full classifying space for 

k-axial G(n)-manifolds with n ~ k. 

B. The Pullback Construction and the Covering Homotopy Theorem: 

In this section, I want to discuss two theorems, which will make 

life much easier for us, and which illustrate a close analogy between 

the theory of smooth G-manifolds and the theory of fiber bundles. 

Unlike our previous results, neither of these theorems is special to 

multiaxial actions. 

By a local G-prbit space we shall mean a Hausdorff space B 

together with local charts to the orbit spaces of smooth G-vector 

bundles of the form G ~ S where S is an H-module, so that the over- 

lap maps are smooth strata-pleserving isomorphisms. It follows that 

a local G-orbit space has a "smooth" structure and a stratification 

by normal orbit types. Local G-orbit spaces are similar to what 

Thurston calls "orbifolds" and G. Schwarz called "Q-manifolds" in his 

thesis; however, we do not require any local lift of the overlap maps 

as part of the structure. We say that the local G-orbit space is 

modeled on H+(k) if the only vector bundles G ~ S which occur are of 

the form G = G(n), H = G(n-i), S = M(n-i,k-i) ~ R m. Notice that in 

m 
this case, (G ~ S)/G _~ S/H _~ H+(k-i) × R • Thus, B is modeled on 

H+(k) if it is locally isomorphic to H+(k-i) × R m (on each component 

of B, dim H+(k-i) + m will be a constant). 

Next we want to define a notion of "stratified map" of local 

G-orbit spaces which will mirror our definition of a stratified map 
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of G-manifolds. First, we observe that once we have defined the 

smooth functions on B, we can define the tangent space T (B) in the 
x 

usual fashion. It follows from Schwarz's Theorem (which we stated 

in II.B) that T (B) is a finite dimensional vector space of constant 

dimension along each stratum. Moreover, the "ordinary" tangent space 

to the stratum is a subspace. Hence, if B is a stratum of B, it 

is possible to define the normal bundle W + B the normal bundle of 

B i__nn B. It is a vector bundle with fiber T x(B)/Tx(B ). A smooth 

strata-preserving map f: B + B' of local G-orbit spaces is stratified 

if for each stratum the induced map W~(B) ~ W (B') is an isomorphism 

when restricted to each fiber. We should point out that an orbit 

space is obviously a local orbit space and that a stratified map of 

G-manifolds induces a stratified map of the orbit spaces. 

Remark: These definitions are written down in much greater detail in 

[7]. However, there I.use the terms "weak local G-orbit space" and 

"weakly stratified map" in place of the above terms. 

The next theorem was first-proved for biaxial actions by Bredon 

in [4]. In my thesis [6], I noticed that the same argument works for 

multiaxial actions; and in [7] I proved it for arbitrary smooth 

G-actions. 

Theorem 5: Suppose that M is a smooth G-manifold over B and that 

B' is a local G-orbit space. If f: B' + B is a stratified map~ then 

the pullback 

f*(M) --- {(x,y) e M × B']rr(X) = f(y)} 

is a smooth G-manifold over B'. Moreover, the natural map f*(M) ~ M 
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is stratified and 

is a Cartesia 9 square. 

f* (M) > M 

B' ~B 

Remark: We could have defined the subset f*(M) c M × B' for any map 

f. It is a G-invariant subset of M × B' (where G acts by the given 

action on M and trivially on B'). The point of the above theorem 

is that if f is stratified, then f*(M) will be a smooth manifold. 

The proof uses Schwarz's result and the Implicit Function Theorem. 

In the statement of the above theoremj the phrase "Cartesian 

square" means that f*(M) satisifes the usual universal property of 

pullbacks. That is to sayj if M' is a G-manifold over B' and 

F: M' + M is a stratified mapj then there exists a stratified map 

~: M' -~ f*(M) making the following diagram commute 

M ! 

~ m 

B' f > B 

It follows from the fact that ~ covers the identity on B', that 

is an equivariant diffeomorphism. (~ is a homeomorphism, since it 

is equivariant and maps each orbit to itself~ and the condition that 

be stratified insures that ~ is smooth and that the differential 

of ~ is an isomorphism at each point.) Thus the relationship 
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between stratified maps and pullbacks can be summed up in the 

following 

Proposition 6: The statement that there exists a stratified map 

M' + M is equivalent to the statement that M' is equivariantly diffeo- 

morphic to some pullback of M. 

Next, I want to mention the following theorem of G. Schwarz, 

which is a smooth version of Palais, Covering Homotopy Theorem [15]. 

Theorem 7 (The Covering Homotopy Theorem): Let M and M' be smooth 

G-manifolds over B and B' and let F: M' + M be stratified. Suppose 

that h: B' × I ~ B is a stratified homotopy with h 0 = f, the map 

induced bY F. Then there is a stratified homotopy H: M' × I + M 

extending F and covering h. 

Remarks: Actually, using the pullback construction, this is a simple 

corollary of the "Covering Isotopy Theorem", which is the special case 

where M' = M, F = id, and h is an isotopy. This was conjectured 

by Bredon and proved by him in [3] for the case of monoaxial actions. 

I proved it for k-axial actions (with n ~ k) in my thesis [6]. 

Bierstone, in [I], proved it for actions of finite groups and also 

gave a different proof for biaxial 0(n)-actions. By generalizing 

Bierstone's ideas on lifting vector fields, G. Schwarz [16] has 

recently proved the-version stated above for arbitrary smooth actions 

of compact Lie groups. 

Let us conclude this section with a little abstract nonsense. 

From now on, by a G-manifol d we shall mean a triple (M,B,p) where G 

acts smoothly on M, B is a local G-orbit space, and p: M + B is a 
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smooth map, constant on orbits, such that the induced map p: M/G + B 

is an isomorphism. (This is analogous to the formalism of fiber 

bundle theory). Suppose that ~ is the category of G-manifolds and 

stratified maps and that ~ is the category of local G-orbit spaces 

and stratified maps. There is a functor n: ~ + ~ which associated 

B to M (B is the "base space"). The existence of pullbacks can 

be reformulated as a statement that "n is a fibered functor". 

If B is any local orbit space, we can form the category ~-I(B), 

called the fiber at B. The objects are G-manifolds with base space 

B and the morphisms are equivariant diffeomorphisms which induce the 

identity on B (such an equivariant diffeomorphism is called an 

e~uivalence over B). The notion of equivalence over B is com- 

pletely analogous to the ordinary notion of equivalence of fiber 

bundles. The Covering Homotopy Theorem is essential to the study of 

-I 
n (B). It can be rephrased as follows: If f and g are homotopic 

maps from B to M/G, then f*(M) and g*(M) are equivalent over B. 

C. A Classification Theorem. 

Let B be a local G (n)-orbit space modeled on H+ (k), and let 

~ equivalence classes of k-axial 1 

Cn, k (B) = ~G (n) -manifolds over B 
\ 

Here, "equivalence classes" refers to equivalence over B. Next, let 

Cn,k(B) l)e the subset of Cn,k(B) consisting of those M such that 

E k (M) is a trivial G (k)-bundle. Also, as usual, we suppose that n > k. 

In the next theorem, which is a corollary of the Structure 

Theorem, we "calculate" C (B). We should think of this theorem as 
n,k 
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being analogous to the fact that fiber bundles are classified by 

homotopy classes, maps of the base space into the classifying space. 

Theorem 8 (The Classification Theorem): There is a bijection 

Cn,k(B)< >~0Hom (B,H+(k))/[Bk,G(k)] . 

Here, n0Hom (B,H+(k)) denotes the set of stratified homotopy classes 

of stratified maps B + H+(k), while [~,G(k)] is the group of ordinary 

homotopy classes of maps ~ + G(k). 

Proof: By the Structure Theorem, every M e Cnjk(B) is a pullback of 

M(n,k) via some map f: B ~ H+(k), the stratified homotopy class of 

which is unique up to the choice of homotopy class of trivialization 

of Ek(M), that is, up to the action of [~,G(k)] on ~0Hom (B,H+(k)). 

Thus, Cn,k(B) + ~0Hom (B,H+(k))/[B,G(k)] is surjective. By the 

Covering Homotopy Theorem, it is also injective. 

In the next lecture we will show that k-axial actions on spheres 

(or disks) have trivial k-normal orbit bundle and therefore the above 

theorem applies. Actually, the condition that Ek(M) is trivial is 

only technical. In fact, using the second version of the Structure 

Theorem, one can prove the following 

Theorem 9: Let EG(k) be the universal G (k) -bundle and let 

X = M(n,k) ×G(k) 

Then there is a bijection 

EG (k) . 

Cn, k (B) < ~ ~0Hom~(B,X/G)/~, 
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where ~ is the set of homotopy classes of bundle equivalences of 

principal G(k)-bundles over ~. 

We can use these theorems to answer two questions: 

i) Given a local G(n)-orbit space B modeled on H (k), is + 

B actually the orbit space of some k-axial action (or of some 

k-axial action with trivial bundle of principal orbits)? By the 

above theorems, this is equivalent to the question of whether 

there exists a stratified map B ~ X/G (or B ~ H (k)) . + 

2) How many elements are there in Cn,k(B) or in Cnjk(B)? 

D. Applicati0ns to Knot Manifolds @nd Other B iaxial Act iqns 

First let us consider a biaxial G(n) action on a homotopy sphere 

of dimension 2dn + m (where d = 1,2 or 4 as G(n) = 0(n), U(n), or 

Sp(n)). In the next chapter we shall show that the dimension of the 

fixed point set is m, and that each stratum of the orbit space B 

has the same homology (with appropriate coefficients) as the corres- 

ponding linear action on S 2dn+m. (In fact, we will show this is 

generally true for k-axial actions on spheres.) In particular, as 

was asserted in the first chapter, 

i) B 2 is a contractible manifold of dimension m + d + 2; 

2) B 1 = ~B - B 0 ~ sd; 

3) B 0 ~ Sm. 

In the 0(n) case, for n odd, statements 2) and 3) are only true with 

Z/2 coefficients; however, in this case the double branched cover of 

~B along B 0 will be an integral homology (m+d+l)-sphere. 

First, we wish to consider an arbitrary local orbit space B 
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satisfying the above conditions and ask whether it is actually the 

orbit space of an action on a homotopy sphere. We can construct such 

a B by starting with a triple of smooth manifolds (A,~A~A0) where 

A is a contractible manifold with a homology sphere embedded in the 

boundary in codimension d + 1 and then by cutting out a tubular 

neighborhood of A 0 in A and pasting back in a bundle over A 0 with 

fiber H+(2) (so that there is a singularity along A0). 

Now suppose that we have a local orbit space B satisfying the 

^ 

above conditions. Since B is contractible, Cn~2(B ) = Cn,2(B) . The 

Classification Theorem asserts that B is an orbit space if and only 

if we can find a stratified map B ~ H+(2). Moreover, Cn, 2(B) 

~0Hom(B,H+(2))/[B2~G(2)]. Let us consider this in a little more 

det ai i. 

The 0(n)-case: In this case H+(2) is a cone on a 2-disk. ~at does 

it mean to find a stratified map B ~ H (2)? First of all, we must + 

map B 0 to 0 e H+(2) . Next we must map a tubular neighborhood of B 0 

into H+(2). This is essentially a trivialization of the normal bundle 

of B 0. Since B 0 c ~B is a knot of codimension two, it is always 

possible to find such a trivialization (B 0 has a neighborhood isomor- 

phic to B 0 × H+(2)). Next remove the 1-stratum of this tubular neigh- 

borhood from B 1 and let ~0BI be the boundary of the complement. Then 

~0BI is a circle bundle over B0. Our trivialization defines a map 

~0B! ~ ~0B!(2) ~ S I. To construct a stratified map we must be able 

to extend this map to B 1 + BI(2 ) ~ S 1 ×[0,~). If we can find such an 

extension~ then we are done, for there is no problem in extending 

first to a collared neighborhood of B 1 and then over all of B 2 (since 



54 

the target in this last extension is B2(2) which is contractible). 

This whole procedure should be reminiscent of one construction of a 

Seifert surface for a knot. In fact, the problem of extending the 

map on ~0BI (to BI) is equivalent, via the Pontriagin-Thom construc- 

tion, to the existence of a Seifert surface for B 0. Since such 

Seifert surfaces always exist for knots in codimension two, we can 

always find the extension to B 1 (possibly after altering the trivial- 

ization of the normal bundle of B0). Therefore, given a local orbit 

space B, the strata of which have the correct homology, we can 

always find a stratified map f: B ~ H+(2). It is then not difficult 

to prove that f*(M(njk)) is a homotopy sphere. 

We should also notice that stratified homotopy classes of maps 

B ~ H+(2) correspond3 via the Pontriagin-Thom construction, to framed 

cobordism classes of Seifert surfaces cobounding B 0. In fact~ any 

two Seifert surfaces are framed cobordant (this can be seen, for 

example, by a relatively simple homotopy theoretic argunent) . There- 

fore, there is a unique biaxial action over any such B. (This is 

the theorem of the Hsiangs and j~nich which we discussed in the 

first lecture.) 

The U(n) and Sp(n ) cases: In these cases H+(2) is either a cone 

over D 3 D 5 . or a cone over Thus~ we are essentially dealing with 

knots of codimension three of five. The analysis of the problem of 

existence of a stratified map is similar to the 0(n) case; however, 

the answer is different. First of all, in the case of codimension 

five knots, I don't believe that the normal bundle is necessarily 

trivial. Even if it is 3 we cannot always find an extension to 
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B 1 ~ Bl(2) = S d X (0,~). (In other words, knots of codimension 

greater than two do not necessarily have Seifert surfaces:) We 

might mention that this is almost exactly how Levine analyzed knots 

in codimension greater than two in [12]. In particular, for knots 

of codimension k he derived an exact sequence, 

Pn+l > @m,n > ~n(Gk'SOk )' } Pn 

where Pn+l is the simply connected surgery group 8 m'n is the group of 

knotted n-spheres in S m, k = m - n, and the map 8 m'n ~ ~n(Gk,SO(k)) is 

precisely the obstruction to finding a stratified map. Although this 

sequence was originally defined for isotopy classes of knotted homo- 

topy n-spheres, it is also valid if we interpret 8 m'n as homology 

h-cobordism classes of knotted homology n-spheres. 

For further details on the above, see Bredon's paper [4]. The 

above discussion constitutes an outline of the following result of 

Bredon (although his proof is slightly different). 

Theorem i0 (Bredon) : Let B be a local G(n)-orbit space modeled on 

H+(2) . Then there is a bijection C 2(B)< ) ~/[B2,G(2) ] where 
n, 

framed cobordism classes of submanifolds 1 

= ~of ~B cobounding B 0 

Notice that if B 2 is contractible, then [B2,G(2)] is the trivial 

in the U(n) and Sp(n) cases and is isomorphic to Z/2 in the 0(n) case. 

il . 

Remark: The original proofs of the Hsiangs [9] and Janlch [I0] in 

the 0(n)-knot manifold case was different from the above. Their idea 
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was to use the classification theorem for actions with two orbit 

types to classify the part of the knot manifold lying over B - B 0. 

As we showed in the second lecture, such actions are classified by 

their twist invariant in HI(BI,Z)/Z 2 ~ [0,1,2...}. Since the action 

D2dn must be equivalent to the product action on × B 0 = tubular 

nbhd of B0, the twist invariant must be i. They then studied the 

problem of gluing the tubular neighborhood of the fixed point set 

back in. It turned out~ rather fortuitously, that for 0(n) there was 

essentially only one way to do this; hence, the theorem follows. In 

the U(n) and Sp(n) cases the analysis of this gluing (i.e., of 

equivariant diffeomorphisms of the normal sphere bundle) proved to be 

more difficult (see [4], [6]). 

This type of approach is an example of "starting from the top 

and working down". It is analogous to trying to do obstruction theory 

by defining the map on the cells of highest dimension and then trying 

to extend across the lower skeleta. It should be clear that as the 

number of strata increases, this approach leads to insurmountable 

difficulties. On the other hand, the proof I outlined above using 

the Classification Theorem is an example of "starting from the bottom 

and working up" 

E. Applications to Triaxial Actions without Fixed Points. 

Herej we are interested in G(n)-actions modeled on 3~n on homo- 

topy spheres of dimension 3dn - i. The orbit space B has 3 non- 

empty strata. (It follows from ths assumption on the dimension that 

the fixed point set is empty.) In the next lecture we shall show 

that 
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i) B 3 is a contractible manifold of dimension 3d + 2; 

2 
2) B 2 = ~B - B 1 ~ KP ; 

2 
d) B 1 ~ ~p . 

(Recall that the symbol X ~ Y means that X and Y have the same 

integral homology.) In the 0(n) case, for n even, there is the 

additional requirement that the double branched cover of ~B along B 1 

2 
is an integral homology ~P . 

We first investigate the problem of finding a stratified map 

B ~ H+(3) . Since B has no 0-stratum, we may assume that the image 

of B is contained in the image of the unit sphere in H+(3), that 

is, that the image is in 

A = Ix 6 H+(3) Itr(x ) = i]. 

If B is any local orbit space modeled on H+(3), then it can be 

shown that the 1-stratum has a neighborhood in B - B 0 isomorphic to 

a fiber bundle over B 1 with fiber H+(2) and with structure group 0(2) 

(acting by conjugation on H+(2)). This bundle is denoted by CI(B) 

and is called the normal cone bundle of B I. The first question is 

whether CI(B ) is a pullback of CI(A) , the normal cone bundle in the 

linear model. Just as in the knot manifold case, this reduces to a 

question about the normal bundle of B 1 in ~B. This question was 

investigated and solved by Massey in [14]. 

Proposition ii (Massey) : Suppose X 2d ~ ~p2. f d = 4, also suppose 

that the first Pontria~in class Pl(X) = 2.@enerator of H4(X). Let 

Xc-gY 3d+l be any embedding of X in an integral homology sphere Y. 

Then the normal bundle of X i__nn Y is independent of the embedding 
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and of the homolQ~y sphere. 

Remark: The normal bundle of X in Y is stably equivalent to the 

stable normal bundle of X. Massey showed that it was determined 

(unstably) by certain characteristic classes described below. 

i) If d = i, the normal bundle of ~P2C-9 Y4 is determined 

by the fact that its first Stiefel-Whitney class is nonzero 

and by the fact that its twisted Euler class is 

2.generator of H2(Rp2,z twisted)" 
2) If d = 2, the normal bundle of a homology ~p2 in a 

homology 7-sphere is determined by the fact that w I = 0, 

w 2 ~ 0 and Pl = -3u2 where u is the generator of H2(X) 

3) If d = 4, the bundle is determined by the Pontriagin 

classes of X. Therefore, in all three cases, given B, we can 

find a bundle map CI(B) ~ CI(A ) covering a degree-one map 

B1 + A1 = ~p2. 

Remark: The Pontriagin classes of the quaternionic projective plane 

are given by Pl = 2u and P2 = 7u2" where u is the generator of 

4 
H (~P2,Z). An arbitrary integral homology ~p2,X may have quite 

different Pontriagin classes (although they are still subject to a 

the Index Theorem, namely, (7P2-p~)[X] = 45. On the relation from 

other hand, it is not hard to see that if CI(B ) pulls back from CI(A) , 

Pl(Bl) = 2-generator of H4(BI ) . Therefore, a necessary condition then 

for a homology ~p2,x to ocour as the 1-stratum of the orbit space 

of a triaxial act!on ' on a homotopy sphere is that Pl(X) = 2.generator. 

Thus, not every such X can occur. One can also show that this is 

a sufficient condition. 
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A bundle map CI(B ) ~ Cl(A ) restricts to a map ~IB2 + ~IA2 . In 

order to findaa stratified map B + A, we must extend this to a map 

B 2 + A 2 (by Corollary 2 in section A, A 2 is homotopy equivalent to 

~p2). This extension problem turns out to be very difficult. If 

we could solve it, however, there is no problem in finishing the 

construction of the stratified map (since A 3 is contractible). In 

the 0(n) and U(n) cases one can show that such an extension always 

exists. The answer in the Sp(n) case is unknown. In fact, Massey 

wrote to me that he didn't believe anyone had ever solved a homotopy 

theoretic problem of this level of difficulty. Thus, for 0(n) and 

U(n) there is the following theorem (which I proved in my thesis). 

Theorem 12: Suppose G(n) = 0(n) or U(n). Let B be a local orbit 

space satisfying the conditions on the homology of its strata given 

at the be~innin q of this section. Then there exists a stratified 

map f: B ~ A c H+(3). Moreover~ the pullback is a homotopy sphere. 

Finally, we come to the problem of calculaing Cn,3(B), i.e., of 

computing the homotopy classes of stratified maps B + A. Again, this 

turns out to be tractable only in the 0(n) and U(n) cases. For 0(n), 

~n,3(B) _~ Z/2 × H, where H is the torsion in the second cohomology 

of the double branched cover of ~B. For U(n)j I am about 90 percent 

certain that Cn, 3(B) is a singleton. Let us finish this section 

with a 

Problem: In the case of triaxial actions without fixed points find 

some interpretation of ~0Hom(B,A) analogous to its interpretation as 

framed cobordism classes of Seifert surfaces in the knot manifold 

case. 
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F. Some "Counterexamples." 

Of course it is not generally true that every smooth G-action 

on a homotopy sphere which is modeled on some linear representation 

is the pullback of its linear model. For example~ it is not true 

for k-axial G(n) actions when k > n. (Our proof certainly breaks 

down since the twist invariants are not even defined.) The simplest 

example of this failure is the following. 

Biaxial U(1)-act~ons. Here we are considering semifree sl-actions 

with fixed point set of codimension four. Levine [13] studied such 

m+4 
actions on homotopy spheres Z He showed that the orbit space B 

was a homotopy m + 3 sphere with fixed point set B 0 a homology m- 

sphere. Moreoverj he showed that any such pair (B, B0) is the orbit 

space of a unique action on a homotopy sphere. But we cannot always 

find a stratified map from B to the linear model. Forj as we 

showed in Section D, this would imply that B 0 has a Seifert surface 

in B and there are knots in codimension three without this property. 

Thus~ there are biaxial U(1)-actions on spheres which do not pull 

back from M(I,2) = ~2. In particular, this implies that there are 

biaxial U(1) actions on spheres which do not extend to biaxial 

U(2)-actions. 

The question arises: Does the Structure Theorem hold for k- 

axial SO(n)-actions and k-axial SU(n)-actions? It turns out that 

ii , 

for n ~ k + 2 the answer is yes. In fact, as Janlch observed in [ii], 

in this range there is no difference between k-axial SO(n)-actions 

(respectively~ SU(n)) and k-axial O(n)-actions (respectivelyz U(n)), 

that is to say, for n ~ k + 2 every k-axial SO(n)-action extends to 
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a unique k-axial O (n) -action. From another angle, the proof of the 

Structure Theorem is valid for SO(n), since as before we can define 

the normal orbit bundles E i with structure groups O(i) × O(k-i) . 

However, for k = n or n - 1 the situation is completely different. 

This is certainly not surprising when k = n; for then in the linear 

model SO(n) × M(n,n) ~ M(n,n) we can really not distinguish between 

the n-strattaa and the (n-l)-stratum(i.e., G x = [13 if rk(x) = n or 

rk(x) = n - I). For k = n - 1 the reason is much more subtle. In 

this case the bundle E k has structure group SO(n), while in the O(n) 

case it has structure group O(k) = O(n-l) (this discrepancy essen- 

tially arises from the fact that SO(l) = {i} but 0(i) ~ [I]). Just 

as before we can go ahead and assume that the bundle of principal 

orbits is trivial and define the twist invariants. However, the 

i-twist invariant will lie in some quotient of SO(n), while the 

i-stratum of the linear orbit space will still be homotopy equivalent 

to the Grassmann O(n-l)/O(i) × O(n-l-i). Thus, there is no reason 

to expect (n-1)-axial SO(n)-actions to all pull back from the linear 

model (and in fact they don't). Similar remarks apply to SU(n). 

Biaxial SO(3)-actions. This discrepancy is already apparent in the 

study of biaxial SO(3)-actions (as Bredon has observed). First of 

all, in his 1965 paper [2], Bredon showed that any two biaxial SO(3)- 

actions on S 5 were equivalent. To be more precise, there are only 

two equivalence classes of SO(3)-actions on the Brieskorn manifolds 

5 
Z k defined by (zl)k + (z2)2 + (z3)2 + (z4)2 depending on whether k 

is even or odd (however, as O (3) -actions they are inequivalent for 

5 ° 
distinct nonnegative values of k). Since ~3 is the Kervaire sphere, 
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this gives a completely transformation group theoretic proof that the 

5-dimensional Kervarie sphere is standard. 

The case of biaxial SO(3)-actions with fixed points is even more 

interesting. Bredon told me about the following example of Gromoll 

and Meyer [8]. Consider Sp(2) as a subset of 2 × 2 quaternionic 

matrices. Let Sp(1) act on Sp(2) by left multiplication on the first 

column and conjugation on the second column. They show that the orbit 

7 
space ~ is the generator of the group of exotic 7-spheres. They also 

observe that the centralizer of this action in Sp(2) is SO(3) × 0(2). 

Hence SO(3) × 0(2) acts smooth on Z. The restriction of this action 

to S0(3) is biaxial. Moreover, ~/SO(3) is a 4-disk with ~0 an 

unknotted circle in the boundary. It follows that Z cannot be a 

pullback of the linear SO (3) -action on M(3,2) . For if it were, then 

the action would extend to 0(3) (with ~/S0(3) = Z/O(3)). But by the 

classification of knot manifolds any 0(3) action with this orbit 

space is equivalent to the linear action on S 7, which is impossible 

since 7 ~ S 7. However, there is a theorem for biaxial SO(3)-actions 

which is analogous to the Structure Theorem. Consider the quater- 

nionic projective plane ~p2. Since the group of automorphisms of 

is S0(3), the groups act on ~p2. The action is biaxial and the fixed 

point set is RP 2. The orbit space X is homeomorphic to a 5-disk. 

As a stratified space X ~ W+(3) = [x 6 H+(3) Itr(x) = i]. This is 

also the orbit space mf sll by the linear triaxial SO(4) action; how- 

ever, the strata have a different indexing set. Moreover, the 

following theorem is true. 

Theorem 13: Let B be a local orbit space modeled on H+(2). Then 
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every b iaxial SO(3)-action over B with trivial bundle of principal 

orbits is a pullback of ~p2. In fact; such S0(3) manifolds are bi- 

jective with ~0Hom(B,X)/[B2,SO(3)] . 

Remark: In light of this theorem the fact that k-axial O (n) -actions 

pull back from M(n,k) seems more coincidental. 

Question: What is the classifying space for (n-l)-axial SO(n)- 

actions (n > 3) with trivial bundle of principal orbits? 

For further examples of biaxial SO(3)-actions on homotopy 7- 

spheres and for a further discussion of the above theorem, see 

Appendix i. 

G. Further Classification Theorems: 

Suppose that G = ~G i where each G i is of the form O(ni) ~ U(n i) 

or Sp(ni). Further, suppose that ~ = ~i is a representationj where 

each ~i = kiPn. with n i ~ k i. Then analogous version of the Structure 
l 

Theorem and the Classification Theorem are true for smooth G-manifolds 

modeled on ~. The proof is essentially the same. 

For example, consider T n actions modeled on the standard repre- 

sentation of T n ~n = on (T n U(1) n). Then all such T n actions with 

trivial bundle of principal orbits pull back from the linear action 

on ~n. 

The method of twist invariants is also applicable to actions of 

disjoint and near adjoint type. These are actions modeled on certain 

irreducible representations (such as the adjoint representation). 

Twist invariants can be defined for these actions, and many times can 



64 

be used to prove that these actions pull back from their linear 

models. These theorems will be discussed in a future joint paper 

with the Hsiangs. 
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V. ACTIONS ON SPHERES 

In the previous chapter we sketched a proof of a Structure 

Theorem stating that if M is a k-axial G (n) -manifold (n > k) with 

trivial bundle of principal orbits, then M is a pullback of the 

linear model M(n,k). It was further asserted that any k-axial action 

on a homotopy sphere 7. has trivial bundle of principal orbits Zk+ Bk; 

and hence, that the Structure Theorem applies. This assertion will 

be proved in this chapter showing that B k is, in fact, contractible. 

Along the way we will verify the orbit space of Z is in a certain 

sense "homologically modeled" on the orbit space of the linear k-axial 

action on the sphere of the same dimension (as we asserted in the 

previous chapter in sections IV.D and IV.E). More precisely, at 

least for G(n) = U(n) or Sp(n), one can give necessary and sufficient 

conditions on a stratified map f: B + H+(k) so that the pullback will 

be a homotopy sphere (or a disk). For example, for G(n) = U(n) or 

Sp(n) the pullback will be a homotopy sphere if and only if the 

following conditions are satisfied. 

i) B is simply connected, 

2) B 0 is an integral homology sphere, and 

3) For i > 0, fib . : B i + H+(k) i induces an isomorphism on 
1 

integral homology. 

These results should be thought of as being analogous to the facts 

M 2 n+ 1 that any free circle action on is the pullback of the linear 

action on S 2n+l via a map g: M/S1 ~ ~pn and that the pullback is a 

homotopy sphere if and only if g is a homotopy equivalence. 
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A. The homology of the strata 

i. The U(n) and Sp(n) cases. The result which we will prove in 

this section is not only more difficult to prove for k-axial 0(n)- 

manifolds but also more difficult to state. For the unitary and 

symplectic groups the result is the following° 

Main Lemma i: Let G(n) = U(n) or Sp(n). Let F: M ~ M' be a strati- 

fied map of k-axial G(n)-manifolds covering f: B ~ B'. Then F 

induces an isomorphism on integral homology if and only if fiB. induces 
1 

an isomorphism on integral homology for each i, 0 ~ i ~ min(n,k). 

The proof is an application of Smith theory, Mayer-Vietoris 

sequences, and the Comparison Theorem for spectral sequences. Smith 

theory comes into play via the following lemma (which we essentially 

proved in section I.A.2). 

Lemma 2: Let G(n) = U(n) o_/_r Sp(n) and let F: M ~ M' be a stratified 

map of k-axial G(n) manifolds. Further suppose that F induces an 

isomorphism on homoloqy. Then for each i, the restriction of F to 

the fixed set of G(n-i), F G(n-i) M G(n-i) M 'G(n-i) : ~ is also a homo- 

loqy isomorphism° 

Proof: Let T be a maximal torus of G(n-i). We first claim that 

M G (n-i) = M T. It clearly suffices to check this on each orbit. But 

each orbit is isomorphic to an orbit in the linear model, and in this 

case, M(n,k) G(n-i) = M(i,k) = M(n,k) T. (This argument is false for 

0 (n).) 

Next, let C(F) be the mapping cone of F. By hypothesis C (F) is 

acyclic. G(n) acts on C(F)o Since F is stratified the fixed set 
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of the mapping cone is just the mapping cone of the map on the fixed 

sets, i.e., 

C(F)G(n-i) = C(F G(n-i)) . 

On the other hand, by the assertion in the first paragraph, 

C (F) G(n-i) = C(F) T 

By P. A. Smith's Theorem, C(F) T is acyclico Therefore, F G(n-i) is a 

homology isomorphism. Q 

Proof of the Main Lemma: First suppose that F,: H,(M) ~ H,(M') is a 

isomorphism. We wish to show that for each i, 

(fiB.),: H,(Bi) ~ H,(B~) is also an isomorphism° The proof is by 
l 

= F G(n) so t h i s  induction on i. For i = 0, B 0 = M 0 = M G(n) and fib 0 

case f o l l o w s  f rom t h e  pr~_vious  lemma. Now s u p p o s e ,  by i n d u c t i o n ,  t h a t  

fiB. is a homology isomorphism for each j < i. We make note of the 

3 
following principle. If P ~ B. and P' + B~ are orientable fiber 

3 3 

bundles (with the same fiber) and g: P ~ P' is a bundle map covering 

fiB., then by the Comparison Theorem, g is also a homology isomor- 

3 
phism. Consider the orbit bundle M + B.. The associated principal 

1 l 

space [Mi ]H, where H = G(n-i). But {Mi ~H can bundle has total be 

identified with the complement of tubular neighborhoods of the lower 

strata in ~, that is 

[Mi ]H = ~ - U{Nj] H 

[Nj]H ]H MH. where is the normal bundle of [Mj in Since F is strati- 

fied it can be altered by an equivariant isotopy so that FIN . is a 

3 
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bundle map. Hence, we may assume that F H preserves all the pieces 

decomposition of [Mi]H. Hence, we may assume that F H pre- in this 

)H serves all the pieces in this decomposition of [M i . By the 

Comparison Theorem and the inductive hypothesis, FH: [Nj] H ~ (N~ H 

is a homology isomorphism. Moreover, if j < ~ < i then [Nj} H n [N~] H 

is a bundle over B. and the restriction of F H to this piece is also a 
3 

bundle map. So, by the above principle, F H is also a homology iso- 

morphism on all intersections. (Notice that the structure group of 

every bundle involved in this argument is connected, so there is 

problem with twisted coefficients.) Thus, a simple Mayer Vietoris 

argument shows that FH'i" [Mi]H ~ [M~]H is a homology isomorphism. 

Finally we use the Comparison Theorem again to show that this map is 

a homology isomorphism on the base space, i.e., that (fiB.), is an 
1 

isomorphism. 

The proof in the other direction is similar. We must show that 

if each (fiB.), is an isomorphism, then so is F,. By the Comparison 
1 

Theorem, again, F is a homology isomorphism on each N. as well as 
1 

on their intersections. So, essentially the same argument with Mayer 

Vietoris sequences shows that F is a homology isomorphism on 

M = UN i. 

2. T_he 0(n~ case: First let us see what Smith theory tells us 

in the case of k-axial 0 (n)-actions° There is the following analogue 

of Lemma 2. 

Lemma 3: Let F: M ~ M' be a stratified mal~ of k-axial 0 (n) -manifolds. 

Suppose that F is a homoloqy isomorphism with coefficients in Z/2. 
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_ F 0 (n-i) M 0 (n-i) 0 (n-i) 
Then for each i, 0 ~ i < n, : ~ M' is also a 

homology isomorphism with coefficients in Z/2. 

Proof: The proof is the same as Lemma 2; however, we use a maximal 

Z/2-torus of 0(n-i) (consisting of the diagonal matrices in 0(n-i)) 

rather than the maximal torus. 

For many of our purposes Z/2 coefficients are not good enough. 

We need the following improvement. 

Lemma 4: Let F: M ~ M' be a stratified map of k-axial 0 (n) -manifolds. 

Suppose that 

Then for each 

F is a homology isomorphism with coefficients in Z. 

- . F 0(n-i) i such that n i is even, is also a homology 

isomorphism with coefficients in Zo 

Proof: When n - i is even we can repeat the argument of Lemma 2. For 

if T is a maximal torus of 0(n-i), then M T M 0(n-i) = , as before. 

(However, if n - i were odd, then a maximal torus T of 0(n-i) would 

also be a maximal torus of 0(n-i-l). Hence, in this case 

M T = M 0(n-i-l) ~ M 0(n-i) .) 

Remark: This lemma cannot be improved. For consider the Brieskorn 

sphere E2n+l(k,2, ...,2) where n is even. This supports a biaxial 

0 (n) -action with fixed point set the circle y l(k,2). Moreover, the 

fixed point set of 0(n-i) is E2i+l(k,2,2, ...,2). Let W 2n+l be the 

2n+l 
complement of a disk about a fixed point in T (k,2,...,2) and let 

D 2n+l be another small linear disk centered about a fixed point in 

W 2n+l. Then W 2n+l is a disk and the inclusion D 2n+l W 2n+l is a 

homology isomorphism. However, for i odd, W 2i÷I has Hi(W2i+l) = Z/k. 
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Hence, the induced map on the fixed point set of 0(n-i), D2i+l~-~W 2i+l 

is not a homology isomorphism. 

By using Lemma 3 instead of Lemma 2, the proof of the Main Lemma 

in the unitary and symplectic cases yields the following. 

Weak Version of Main Lemma 5 (0 (n)-case): Let F: M + M' be a strati- 

fied map of k-axia___~l 0(n)-manifolds coverin 9 f: B ~ B'. The n 

F,: H,(M;Z/2) + H,(M' ;Z/2) is an isomorphism if and only if for each 

i, 0 ~ i <__ min(n,k), (fib),: H,(Bi;Z/2 ) ~ H,(BI;Z/2 ) is an isomor- 
l 

phism. 

What we actually want, however, is to use Lemma 4 to prove a 

version of this lemma with integral coefficients. In order to state 

this analogue of the Main Lemma in the 0(n) case, we first need the 

notion of the "double branched cover of B i U Bi_ 1 along Bi_ I. " 

Let M be a k-axial 0 (n) -manifold. Let 0(i) × 0(n-i) c 0(n) 

be the standard embedding. Then 0(i) acts on M 0(n-i) and, in fact, 

M 0(n-i) is a k-axial 0(i)-manifold. (To see that the action is k- 

axial consider the linear model.) Let H(i;M) be the union of the top 

two strata of M 0(n-i), i.e., let 

Si 1}0 (n-i) H(i;M) = [M i U 

Then H(i;M) is clearly a smooth 0 (i) -manifold. Moreover, 

H(i;M)/0(i) = B i U Bi_ I. Consider the action of S0(i) on H(i;M) o 

Since 0(i) acts freely on [Mi ]0(n-i), S0(i) also operates freely on 

this part. The isotropy group of 0(i) at x e[M i_l ]0(n-i) is conju- 

gate to 0(I). Since S0(i) A 0(I) = [13, S0(i) also operates freely 

on this part. Hence, define 
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D. (M) = H(i;M)/S0(i) . 
l 

Then D. (M) is a smooth manifold supporting an action of 
l 

Z/2 = 0(i)/S0(i). Clearly, Di(M) Z/2 = Bi_ 1 and Di(M)/(Z/2) = BiU Bi_ I. 

Thus, it makes sense to call D. (M) the double branched cover of 
1 

B i U Bi_ 1 alonq Bi_ I. By convention, set D0(M) = B 0 and Dk+I(M) = B k. 

Notice that a stratified map F: M + M' induces a Z/2-equivariant map 

Di(F): Di(M) + Di(M'). The strong version of the Main Lemma in the 

0(n) case is the following. 

Main Lemma 6 (0 (n) -case) : Let 

axial 0 (n) -mani folds. Then F 

F: M + M' be a stratified map of k- 

iS an integral homology isomorphism 

if and 0nly if for each i, 0 ~ i ~ k+l, such that n - i is even, 

Di(F) : Di(M ) ~ Di(M' ) is an integral homology isomorphism. 

The basic idea in proving this lemma is the same as in the uni- 

tary and symplectic case only now we want to take M apart two strata 

at a time. However, the technicalities involved make the proof an 

order of magnitude more difficult and we will postpone the proof to 

Appendix 2. 

Remark: If f: X ~ Y is an equivariant map of Z/2-manifolds and f 

is an integral homology equivalence, then Smith theory tells us that 

the maps 

xZ/2 >yZ/2 

X - xZ/2-->Y - yZ/2 

(X - xZ/2)/(Z/2) ..... --->(Y - YZ/2)/(Z/2) 
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are all homology equivalence with coefficients in Z/2. There is one 

case in which we can say more--when the fixed point sets are of codi- 

mension one. In this case all of the above maps are integral homo- 

logy equivalences. The proof of this was essentially given in section 

I.A.2 (see [5]). In particular, in regard to Main Lemma 6, if 

Dk(M) ~ Dk(M') is an integral homology equivalence then so are 

B k ~ ~ and Bk_ 1 ~ B~_ I. Since the map is always a homology equiva- 

lence on either Dk(M ) or Dk+I(M) = Bk, we conclude that if F: M + M' 

is a homology equivalence, then so is the induced map on the top 

stratum fib k B k B~. 

B. An Application of Borel's Formula 

A linear k-axial G(n)-action on a sphere is a linear action of 

G(n) on S dkn+m-l, where S dkn+m-I is the unit sphere in M(n,k) × R m 

(and where d = 1,2 or 4 as G(n) = 0(n), U(n) or Sp(n)). Suppose that 

G(n) acts k-axially on a homology sphere ~. If the fixed point set 

is nonempty, then by Smith theory it is also homology sphere of some 

dimension, say, m - i. Since the normal representation at a fixed 

point is equivalent to M(n,k) it follows that 

dim Z = dim M(n,k) + dim ~0 

= dkn + m - 1 

and that each stratum of Z has the same dimension as the corres- 

ponding stratum of S dkn+m-l. 

However, it is not clear, a priori, that the same phenomenum per- 

sists if the fixed point set is empty. The only linear action with 
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empty fixed point set is the action on S dkn-I (the unit sphere in 

M(n,k)). If G(n) acts k-axially on a homology sphere Z and if the 

fixed point set is empty, then the natural conjecture is that 

dim Z = dkn - I, that ~± ~ ~ for i > 0, and that each ~i has the same 

dimension as the i-stratum of S dkn-l. In fact this is true and it 

was proved by the Hsiangs in [2] by using Borel's formula (see [i]). 

Theorem 7 (Borel's Formula): Suppos e G is a torus ~actin ~ on an 

i nteqral h pmology sphere s of dimension s. I_~f H c G is a subtorus 

H H 
then by smith theory, Z is a homology sphere. Let r(h) = dim Z . 

(If ~ H is empty set r(H) = -I.) Then 

s - r(G) = /~ r(H) - r(G) 

H 

where H runs through all toral subgroups of G of codimension one. 

This identity remains valid if ~ is a mod p homo!ogy sphere, G i~s 

an elementary abelian p-group (a "z/p-torus") an__~d H is a subgroup 

of index p. 

Theorem 8 

s 
sphere 

Then 

(the Hsiangs) : Let G(n) , n > I, ac___~t k-axially on a homology 

of dimension s, and let r = dim ~0 (se__~t r = -i if ~0 = ~) " 

s = dkn + r. 

Furthermore, Ei has the same dimension as the i-stratum of S dkn+r. In 

particular, ~i ~ ~ for i > 0. 

Proof: If G(n) = U(n) or Sp(n) let T c G(n) be the standard maximal 

torus. If G(n) = 0(n), let T be the maximal Z/2-torus. Let x c 7 
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= T Q G(n) x. We see that T is corank one if and only and consider T x x 

if G(n) x = G(n)e , where G(n) is the isotropy group of the standard 
e. 

l l 
representation at a standard basis vector e e En. (G(n) is con- 

l e. 
1 

jugate to G(n-l).) Thus, T x is corank one if and only if T x = Ti, 

where Ti = T N G(n)e. (Ti consists of all diagonal matrices with 1 
1 

in the i th position). Borel's formula yields 

i=n 

s - r = >. (r(Ti)-r) . 

i=l 

Since the T.l's are conjugate in G(n), r(T I) = r(T 2) =...= r(Tn). Thus, 

s - r = n(r(T I) - r}. 

implies that G(n-l) ~ ~. For otherwise r = -i = r (T !) , in This 

which case s = -i. 

G (n-l) T1 
Next, let x 6 = ~ , and let T be the tangent space of 

at x. By the Slice Theorem, dim G(n-l) = dim G(n-l). The nor- 

mal representation at x is M(n-!),k-l). The representation of 

G(n-l) on the tangent space to the orbit at x = T(S dn-l) is equiva- 

d-i 
lent to l~n_l + (d-l) l on M(n-l,l) + R Hence, the part of 

which is acted on nontrivia!ly by G(n-l) is equivalent to 

M(n-l),k-l) + M(n-l,l) _~ M(n-l,k) o It follows that 

G (n-l) 
r (TI) = dim 

= s - dk(n-l). 

Substituting this in Borel's formula 

(s-r) = n(s-dk(n-l)-r) 
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(n-l) (s-r) = ndk(n-1) 

s - r = dkn . 

To prove the last two sentences in the theorem, let S = S dkn+r. Our 

calculation of the dimension of G(n-l) shows that dim G 
(n-l) 

= dim S G(n-l) and hence, that dim 71 = dim S I. Since the dimension 

of ~i is the same as the dimension of the i-stratum of the normal 

bundle of ZI' it follows that dim ~i = dim S.. 
i D 

Remark: Actually this is only a small part of the theorem proved by 

the Hsiangs in pages 744-750 of [2]. They use Borel's Formula and 

representation theory to show that if Gd(n) acts smoothly on a homo- 

topy sphere and if the principal orbit type is a Stiefel manifold 

Gd(n)/Gd(n-k), ~ < n, then (under some dimension restrictions) the 

action must be k-axial. These dimension restrictions were later 

removed in [3] . Thus, they proved that if the principal orbit 

type of G(n) o_~n Z is a Stiefel manifold s then th e action is auto- 

m aticall~ multiaxial. The proof of this used Wu-yi Hsiang's theory 

of "geometric weight systems" which is a systematic generalization of 

the ideas behind Borel's Formula. 

C. The bundle of principal 00rbits of a k-axial agtion on a sphere 

is trivial, if n ~ k. 

Proposition 9: Suppose that G(n) acts k-axially on a bomoloqy sphere 

Z and that n Z k. Then Bk, the top stratum of the orbit space a is 

acyclic over the integers. 
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Proof: Suppose that the dimension of the fixed point set is m - i. 

Then dim ~ = dkn + m - i. We will prove the proposition except in the 

case where m = 0 and n = k. 

Case l, m > 0: In this case the fixed point set is a (nonempty) homo- 

logy sphere. Hence, it contains at least two points, say x and y. 

Let S be a slice at x, i.e., let S be an invariant Euclidean 

neighborhood of x such that the action on S is equivalent to the 

linear action on M(n,k) X R m-I Then the inclusion S c ~ - {Yl is a 

homology equivalence. Let L = S/G(n) . Then the top stratum of L is 

contractible. Hence, by Lemmas 1 and 6 and the remark at the end of 

section A.2, the top stratum of (Z - [y})/G(n) is acyclic. But the 

top stratum of ~ - [y} is equal to the top stratum of Z. Hence, B k 

is acyclic. 

Case 2, m = 0 and n > k: To prove this case, we restrict the action 
ii ...... 

to G(n-1). Let A = ~/G(n-l) . The dimension of ~ is dk(n-1) 

+ dk - i; hence, by the result of the previous section, A 0 is a non- 

empty homology sphere (of dimension dk - i) . Since n - 1 > k, Case 1 

applies, so ~ is acyclic. Since A is a manifold with boundary with 

interior Ak, this implies that A is acyclic. Consider the natural 

surjection p: A ~ B, which sends a G(n-l) orbit to its orbit under 

G(n). We propose to show that B (and hence ~) is acyclic by show- 

ing that point inverse images under p are acyclic (in fact, they 

are disks). A G(n)-orbit is a Stiefel manifold Vn_ i = G(n)/G(n-i). 

The inverse image of this orbit in A is isomorphic to Vn, i/G(n-l). 

Hence, our assertion follows from the following lemma. 
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Lemma I0: Let G(n-l) c G(n) be the standard inclusion and let 

#: G(n-1) × V ~ V be the restriction of the canonical transi- 
n, i n, i 

tiv_~e G(n) -action to G(n-1) . Then Vn, i/G(n-1) = D di. 

Proof: Let q: ~n + K be projection on the first factor and let 

(Xl,...,x i) be an i-frame. Define f: Vn_ i + i by 

f(xl,...,xi) = (q(xl),...,q(xi)) . The image of f is clearly the 

unit disk D di. If g £ G(n-1), then f(gxl,...,gx i) = f(xl,...,xi); 

hence f induces a map f: Vn, i/G(n ) + D di. We claim that f is 

injective and therefore, a homeomorphism. To see this suppose that 

f(xl, ...,x i) = f(yl,...,yi ) . If X = (Xl,...,X n) E ~n set 

X' = (X2,...,Xn) £ ~n-l. Since x. and x are orthogonal vectors 
3 

Thus, 

0 ---- X..X 
3 

= x'..x' + q(xj)q(x ). 
3 

x'..x' =-q(xj)q(xL) 
3 

= -q (Yj) q (Y~) 

= Yj Y~" 

If two i-tuples of vectors in ~n-i , , , , (Xl, ...,xi) and (YI''" "'Yi ) have 

all dot products equal, then they differ by a unitary transformation, 

! 
i.e., there is g 6 G(n-l) such that (gx~,...,gx~) = (Yl'''''Yi)" In 

other words, (Xl,...,xi) and (ylj...,yi) lie in the same orbit under 

G(n-l). Thus, f is injective and therefore, a homeomorphism. 

D 

This completes the proof of the Proposition except in the case 

m = 0 and n = k. The analysis in this case is similar, but more 



79 

subtle and we omit it. 

Corollary Ii: Suppose G(n) 

sphere Z and that n > k. 

trivial G (k) -bundle. 

act_.__.~sk-axially on an integral homology 

Then the k-orbit bundle Pk ~ ~ is a 

Proof: B k is acyclic by the above proposition. Thus Pk ~ G(k) X 

by obstruction theory. 

Q 

Therefore, provided n ~ k9 the Structure Theorem applies to k- 

axial G(n)-actions on homology spheres. In particular, there is a 

stratified map ~ + M(n,k). 

Now suppose that a closed oriented manifold M supports a k- 

axial G(n)-action with n ~ k. Further suppose that the k-orbit 

bundle of M is trivial. If M 0 is empty, then the stratified map 

M ~ M(n,k) has image contained in M(n,k) - [0}. Hence we can assume 

that the image is contained in the unit sphere S dkn-I c M(n,k). 

Otherwise, let dim M 0 = m - i. Consider the linear action on 

S dkn+m-l. Let L be its orbit space. Notice that except for the 

fixed point set each stratum of S dkn+m-I is homotopy equivalent to 

the corresponding stratum of M(n,k). In fact, the i-stratum of 

S dkn+m-I is equivalent to M(n,k) i × R m-I Choose any map 

F0: M 0 ~ S m-1. The above observation together with the proof of the 

Structure Theorem shows that F 0 can be extended to a stratified map 

F: M + S dkn+m-l. As in the Structure Theorem, such an F is unique 

up to stratified homotopy, and a choice of trivialization of the 

bundle of principal orbits, only now we are free to choose F 0. In 

particular, we can choose F 0 to be of degree one. I claim that if F 0 
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! 
is of degree one, then so is F. For let N O and N O be the normal 

b u n d l e s  o f  M 0 i n  M a n d  o f  S m - 1  i n  S d k n + m - 1 ,  r e s p e c t i v e l y .  T h e n  F 

induces a map of Thom spaces T(N0) ~ T(N~) which is an isomorphism on 

t h e  t o p  h o m o l o g y  c l a s s .  H e n c e ,  c o n s i d e r a t i o n  o f  t h e  c o m m u t a t i v e  

diagram 

M F vsdkn+m-1 

| 

collapse I I collapse 

T (~0) --~T (~) 

shows that F is of degree one. These remarks lead us to the 

following. 

Proposition 12: Suppose that n ~ k and that G(n) acts k-axially on 

an inteqral homoloqy sphere ~ of dimension dkn + m - i. 

exists a stratified map F: ~ ~ S dkn+m-l. Furthermore, F 

Then there 

can be 

chosen to be of de~ree ~i except possibly in the case w he[9 

G(n) = 0(n), m = 0, k is even~ and n is odd. 

Proof: For m > 0, the Proposition follows immediately from the pre- 

ceding remarks. If m = 0, the map F: ~. ~ S dkn-l, given by the 

Structure Theorem, is unique up to a stratified homotopy and choice 

of trivialization of the k-orbit bundle. Hencej its degree is pre- 

determined (at least up to sign). Let f: B ~ L be the induced map 

of orbit spaces. Consider the restriction of f to the 1-stratum. 

First notice that L 1 = EP k-I (where E = R, ~ or ~ as G(n) = 0(n), 

U(n) or Sp(n)) . 

If G(n) = U(n) or Sp(n), then Z G(n-l) N S dk-I by Smith theory 
Z 

and therefore, B 1 ~ Epk-l. On the other handj the G (1)- bundle 
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G(n-l) + B1 is just the pullback of S dk-1 + EP k-I via f. It follows 

that f must pull back the Euler class of this bundle to a generator 

of Hd(BI;Z ) . Hence, (flBl),: H,(B1) ~ H,(LI) and 

(F G (n-l)),: H, (S G (n-l)) ~ H, (S dk-l) are isomorphisms. A simple 

argument using the Thom space of the normal bundle of G(n-l) similar 

to the one given above, now shows that F has degree ~i. 

Next consider the case G(n) = 0(n). If n is even, we can 

essentially use the above argument. For by Smith theory 

0(n-2) NZ s2k-l' and therefore, ~0(n-2)/S0(2) = DI(S) has the integral 

cohomology of ~pk-l. So as above, 0(n-2) + s2k-i is of degree one 

and then by the Thom space argument F is of degree one. 

If n is odd and k is odd, we can use a different argument. 

Again, Smith theory yields S 0(n-l) N S k-I and B 1 ~ Rpk-l. Also, 
z z[z 2] 

~pk-i 
DI(~) Z/2 • But this implies that DI(~) is a rational homology 

complex projective space. Therefore, we can calculate the G-signature 

of the involution on D l(S). This involution on DI(S) has fixed point 

set B I. Let 9 be the normal bundle of B 1 in DI(7)° This has a 

twisted Euler class X(9) e Hk-I(Rpk-I;z_). Since k is odd, 

Hk-I(Rpk-I;z ) = Z. (Here Z denotes twisted coefficients.) Since 

DI(F) is stratified, f must pull back the linear twisted Euler 

class to X(9). On the other hand, we can calculate X(9) by using the 

G-signature Theorem (see page 188 in [4]). In fact, X(~) is a 

generator of Hk-I(Rpk-I,z ). It follows that fib has twisted degree 

+i, from which we deduce that F0(n-l) : S 0(n-l) ~ Ik-I and 

F: 7 + S kn-I are both of degree +i. - Q 

2n-I 
Remark: When n is odd consider the Brieskorn sphere S (~,2,...,2). 



82 

The classifying map z2n-I(L,2,...,2 ) ~ S 2n-I has degree ~. Suppose 

we can write n = tn'. Consider the embedding t~n,: 0(n') + 0(n). 

2n-i 
Restricting the 0(n)-action on ~ (L,2,...,2) to 0(n') gives a fixed 

point free 2t-axial 0(n')-action. The classifying map 

2n-i 
(~,2,...,2) ~ S 2tn'-I again has degree ~. Notice that in these 

examples t must be odd. Hence, fo_~r n odd and k ~ 2 (mod 4) there 

kn-i 
are k-axial 0(n)actions on homotopy sphere ~ with the 

classifyin~ map of any odd degree. For n odd and k m 0 (4), one can 

show by using surgery theory and results in Chapter VI that the 

classifying map must have degree ~i (mod 8). We conjecture that any 

such degree can occur. 

The next question is to decide if we can recognize when Z is 

simply connected (and hence, a homotopy sphere) by looking at its 

orbit space. It turns out that the fundamental group of ~ is deter- 

mined by the fundamental group of the top stratum of B. 

Proposition 13: Suppose that M is a k-axial G (n) -manifold with 

n > k. I__~f G (n) = 0 (n) further Suppose that n > k + 2. Let B = M/G (n). 

Then M is simply connected ~ B k is simply connected. 

Remark: In the case where G(n) = 0(n) and n = k or n = k + i, the 

proposition is still true provided we assu~ne that M is a homology 

sphere. However, this requires a separate argument, which we shall 

not give here. A separate argument is also needed when G(n) = U(n) 

and n = k. 

proof of the Proposition: (=) suppose M is 1-connected. Consider 

the bundle M k + B k. The fiber is G(n)/G(n-k), which is connected; 

hence, nl(Mk) + ~l(Bk) is surjective. Next consider the inclusions 
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M k c M and B k c B. Since B is a manifold with boundary with 

int(B) = BkJ it follows that nl(BK) _=. nl(B ) . The diagram 

0 = ~l (M) ------~ n I (B) 

T T 
onto 

n I (M k) .................... -~ n I (B k) 

now shows that ~l(Bk) = 0. 

(0) Suppose nl(Bk) = 0. Since ~l(G(n)/G(n-k)) = 0 (provided 

G(n)/G(n-k) ~ O(n)/O(1), 0(n) or U(n)), it follows that ~i(~ ) = 0. 

the hypotheses, it can be shown that the union of the lower strata 

has codimension greater than two (except when G(n) = U(n) and n = k); 

and hence, that nl(M) = ~l(Mk). To see this, note that the (k-l)- 

stratum has normal representation M(n-k+l,l); so that the union of 

the lower strata has codimension d(n-k+l) and d(n-k+l) > 2. (When 

G(n) = U(n) and n = k, then d(n-k+l) = 2, so this case requires a 

separate argument~ which is left as an exercise.) 

In summary, we have the following theorem. 

@ 

From 

Theorem 14: Suppose n ~ k and that G(n) acts k-axiall Z on a closed 

manifold M. Suppose that the bundle 0f principal orbits of M i_~s 

trivial and that the fixed point set is nonempty and of dimension 

m - I. Then dim M = dkn + m - 1 and 

(I) There exists a stratified map F: M ~ S dkn+m-I of degree one. 

Suppose F g,,overs the map f: B ~ L of orbit spaces. Then M is a 

homology sphere if and only if F, $.s. an isomorphism a i.e.~ if and 

only if 
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(2) For G(n) = U(n) o__rr Sp(n), fiB. is a homology isomorphism 
l 

for each i, 0 <__ i < k. 

(3) For G(n) = 0(n) ~ then D i(F) : D i(M) ~ D i(S) is a homology 

isomorphism for each ij 0 < i <__ k + i, such that n - i i_~s 

even. 

Moreover, M is a homotopy sphere if and only if I in addition, B 

is simply connected. 
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VI. CONCORDANCE CLASSES OF ACTIONS ON SPHERES 

Let us review the situation. Suppose that n >__ k and that G(n) 

acts k-axially on a homotopy sphere Z. Let B be its orbit space. 

In the previous lecture we showed that ~ is the pullback of the 

linear model M(n,k) via some map f: B + H+(k) . Furthermore, we showed 

that B is simply connected and that it is "homologically modeled" 

on the orbit space of the linear action on the sphere of the same 

dimension as Z. Moreover, by the Classification Theorem of Lecture 

3, k-axial G (n) -manifolds over B are classified by the set of 

stratified homotopy classes of maps from B to H+(k) . (B k is con- 

tractible, so for G(n) = U(n) or Sp(n) there is, up to homotopy, only 

one trivialization of Pk ~ Bk; however~ for G(n) = 0(n)~ we must 

divide n0Hom(B;H+(k)) by the action of Z/2 = [Bk;0(k)] .) • Also, at 

least in the U(n) and Sp(n) cases, we can recognize %~hen the pullback 

f*M(n,k) is a homotopy sphere. For in these cases, necessary and 

sufficient conditionsare that B 0 is an integral homology sphere and 

that fib . : B i ~ H+(k) i induces an isomorphism in integral homology 
l 

for all i > 0. 

Although this is in some sense a complete classification of such 

actions on homotopy spheres, it is unsatisfactory in several ways. 

First of all, we don't yet have a good method of constructing such 

G's together with stratified maps f: B ~ H+(k). Secondly, the calcu- 

lation of the set of stratified homotopy classes of maps from B to 

H+(k) is a problem of considerable difficulty. Thirdly, since the 

fundamental groups of the lower strata do not have to be correct; 

there are some trivial ways to modify the orbit space of a linear 
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action to introduce more fundamental group into the lower strata 

(similar to the construction of Montgomery and Samelson in Chapter i) 

and we would like to ignore these trivial modifications. Finally, we 

would .like to be able to decide the differential structure on ~ from 

B and from f. All these problems are solved by introducing the 

notion of concordance. 

Roughly speaking~ two k-axial G (n) -actions ~: G(n) × M ~ M and 

~0': G(n) × M' ~ M' are concordant if there is a k-axial G (n) -action 

~: G(n) × S × [0jl] -~ M × [0jl] such that #(G(n) × S × [i]) = M X {i}, 

i = 0~i, and such that the restriction of # to M × {0] is equivalent 

to (M,~) while its restriction to M × {i~ is equivalent to (M',~0'). 

Actually in order to make concordance classes of actions on 

homotopy spheres into a group we need some orientation conventions. 

For G(n) = U(n) or Sp(n), it is only necessary to modify the above 

definition by requiring that are manifolds be oriented, that "equiva- 

lence" be interpreted as "orientation preserving equivariant diffeo- 

morphism", and that (M × {0], ~I M × [0]) be equivalent to (M,~), 

while (M X {i], ~I M X [i] ) be equivalent to -(M',~0'). We could try 

to require other strata to be oriented; however, for U(n) and Sp(n), 

it is not hard to see that an orientation for the total space induces 

an orientation for each stratum. 

For G(n) = 0(n), this is not true. It turns out however, that it 

is only necessary to specify an orientation for M and one for M0(1) . 

Thus, an (M,~) is oriented if we specify both of these orientations. 

(These two orientations determine orientations for all the double 

branched covers Di(M ) .) Also, for G(n) = 0(n), "equivalence" should 

be interpreted as an equivariant diffeomorphism preserving both 
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orientations. To quote Bredon [3], "we will not attempt the difficult 

and pointless task of tracing these conventions through our 

constructions. " 

If M and M' are two oriented k-axial G(n)-manifolds of the 

same dimension with nonempty fixed point sets~ then it is an easy 

exercise to define the equivariant connected sum M # M', also an 

oriented k-axial G (n) -manifold. 

Now we come to our main object of study. Let 

8 d (k, n, m) 

denote the set of concordance classes of k-axial Gd (n) -actions on 

homotopy sphere of dimension dkn + m - I. (It follows that m - 1 

is the dimension of the fixed point set.) 

Theorem i: The set 8d(k,n~m) is an abelian group under connected sum. 

G d A k-axial action ~: (n) × ~ ~ ~ on a homotopy sphere ~ represents 

the zero element of this ~roup if and , only if ~ extends to a k-axial 

action on a disk: The inverse is ~iven by reversal of orientation 

(or both orientations when d = i) . 

PrQof: The standard arguments work. See, for example, [7] or page 

339 in [i]. 

A. T h e plan of attack. 

Suppose Gd(n) acts k-axially on a homotopy sphere dkn+m-i and 

that n ~ k. Let D be the unit disk in Md(n,k) × R m and let S = ~D. 

In the previous chapter it was shown that there is a degree one 

stratified map F: Z ~ S. (It follows that F is a homotopy 
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equivalence.) In section B we will prove that Z bounds a parallel- 

izable k-axial G(n)-manifold V such that F can be extended to a 

stratified map of pairs F: (V,Z) ~ _(D,S). 

Let f: (A,B) ~ (K,L) be the map of orbit spaces induced by F. 

First suppose that G(n) = U(n) or Sp(n). It follows frQm the Main 

Lemma 1 and Proposition 13 of the previous chapter that F is a homo- 

topy equivalence on the boundary if and only if ~I(B) = 0 and 

fiB . : B.~ + L.l is an integral homology equivalence for each i _> 0. 
l 

Moreover 3 V will be a disk precisely when ~I(A) = 0 and when fiA . is 
1 

a homology equivalence for all i ~ 0 (provided dim V ~ 5). 

Therefore, we try to do "surgery" on f rel B to get a new 

orbit space A' together with a new map f': A' ~ K so that nl(A') = 0 

and so that f'IA~ is a homology equivalence. If we succeed then 
l 

V' = f'*(D) will be a contractible manifold with 5V ~ Z. Hence, if 

d 
this surgery is possible, Z represents zero in 8 (k,n,m). The con- 

verse is also true. In [5], W. C. Hsiang and I showed that for U(n) 

and Sp(n), the only obstruction to doing this surgery is the index or 

Kervaire invariant of the fixed point set V 0 = A 0. Furthermorg; if 

k is odd~ this obstruction automatically vanishes. On the other 

hand, it will follow from the Realization Theorem for surgery obstruc- 

tions that for k even, any index (divisible by 8) or Kervaire 

invariant can occur. Alternatively, for k even, it can be seen 

that all possible nonzero obstructions are realized by actions on 

Brieskorn spheres. 

The situation for G(n) = 0(n) is analogous. Except that now we 

only know at the outset that ~I(B) = 0 and that for each i, with 

i m n (mod 2), Di(F) : Di(~) ~ Di(S) is a homology equivalence. (This 



89 

implies that fiB. is a Z(2 ) homology equivalence.) Similar conditions 
l 

must be satisfied in order to construct a contractible V'. One 

approach would be to try to do surgery rel B on f to a Z(2)-homology 

equivalence on each stratum. If this is possible we obtain V'~ acyclic 

over Z(2 ) . Thus such a surgery theory leads to calculation of the 

group of k-axial 0(n) actions on Z/2-homology spheres (with trivial 

bundle of principal orbits) modulo actions on "Z/2-homology h-cobor- 

disms." However, to calculate actual concordance classes we are 

forced to do Z/2 equivariant surgery on the "double branched covers", 

Di(V). The calculation of these surgery obstructions in the 0(n) 

case is an order of magnitude more difficult than before. It will 

appear as joint work with Wu-chung Hsiang and John Morgan [6]. 

By "surgery", we essentially mean surgery on a stratified space 

(as in [4]). This type of surgery is a generalization of surgery on 

a manifold with boundary (which has two strata). The way in which the 

surgery obstructions are computed can also be illustrated by consid- 

eration of this example. So suppose that ~: (M,~M) + (N,~N) is a 

normal map and also suppose for simplicity that ~I(N) = ~I(~N) = 0. 

If the boundary is nonempty~ it is well-known that we can complete 

surgery to a homotopy equivalence of pairs. One way to see this is 

as follows. First we do surgery on ~I~M" There is no obstruction 

(i.e.~ no index or Kervaire invariant), since ~I~M is a boundary (of 

~). In this argument we are "looking up one stratum." One continues 

by trying to do surgery rel boundary on M U X where X is the trace 

of the surgery on the boundary. Again, we might meet an obstruction. 

If so we simply change the cobordism X by adding the negative of 

this obstruction. Hence~ surgery will again be possible. In this 
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argument we are "going down one stratum and changing the cobordism." 

The problem of doing surgery on orbit spaces is analogous. For 

G(n) = U(n) or Sp(n), we must solve a sequence of (ordinary) simply 

connected surgery problems indexed by [0,1,...,k}. In these cases 

we use the fact that ~iAi+l ~ A.1 is a fiber bundle with fiber 

~pk-i-i ~pk-i+l. 
or If k - i - 1 is even, we can look up one stratum 

and conclude that the surgery obstruction at the ith stage vanishes. 

If k - i - 1 is odd the obstruction is indeterminacy (by going down 

one stratum and changing the cobirdism) . One of these arguments 

always works except possibly in the case where k is even and i = 0. 

In this case we would like to go down one stratum, but there is no 

lower stratum. Hence, we are left with a legitimate obstruction 

(which can be realized by a Brieskorn example). 

The 0(n) case is more complicated. The strata are not simply 

connected and half of the time they are nonorientable. It turns out, 

however, the entire obstruction is concentrated in the bottom two 

strata. Here the analysis involves sometimes looking up two strata 

and sometimes showing that the obstructions are indeterminacy by going 

down two strata. The final result will be stated more precisely in 

section C. 

B, Multiaxial actions bound. 

Suppose that B is a local orbit space. Since this means that 

we know the "smooth functions" on B for any b £ B, we can define the 

tangent space Tb(B). In general the dimension of Tb(B) will not be 

constant. However, as we noted in Lecture 3 for any x e H+(k), 

Tx(H+(k)) = H(k). (H(k) is the vector space of all (k × k) hermitian 
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matrices.) It follows from this observation that if B is modeled 

on H+(k), then 

T (B) = U T b (B) 
boB 

is a vector bundle over B. The next proposition was observed by 

Bredon [3] in the case k = 2 and in fact, his proof works in general. 

Proposition 2 (Bredon) : Suppose that M is a k-axial G(n)-manifol_dd, 

n ~ k, wit h orbit s~ac ~ B. If the bundl 9 of principal orbits is 

trivial~, then the follqwinq four conditions are equiva!ent.* 

(1) M is stably parallelizable. 

(2) T(Bk) is trivial. 

(3) T(B) is trivial. 

(4) As a G(n)-yector bundle, T(M) is stably equivalent to the 

product~bundle M X M(n,k) . 

Proof: we will show that (1) = (2) = (3) = (4) = (I). 

(1) = (2): Since M is stably parallelizable, T(Mk) is stably 

trivial. But M k = G(n)/G(n-k) X B k. Since Stiefel manifolds are 

stably parallelizable, it follows that so is ~. But ~ is the 

interior of a manifold with nonempty boundary, hence, B k is actually 

parallelizable. 

(2) = (3): The inclusion B k c B is a homotopy equivalence. 

Hence, T(B) is trivial ~ T~ = TBIB k is trivial. 

(3) = (4): By the Structure Theorem M is equivalent to the 

*Assuming the action has more than one nonempty stratum. Otherwise 
we would only have that T(Bk) and T(B) are stably trivial. 
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pullback of M(n~k) via f: B + M(n,k). Thus, we may identify M with 

the subset ~-I(0) c M(n,k) x Bj where ~: M(n,k) x B ~ H(k) is defined 

by ~(x,b) = ~(x) - f(b) • It is not hard to see that 0 £ H(k) is a 

regular value of ~ (in fact, this is how the Pullback Theorem is 

proved). Therefore, the normal bundle of M in M(n,k) × B, being 

the pullback of the normal bundle of 0 £ H (k), is trivial. It follows 

that up to stable equivalence of G (n) -vector bundles 

T (M) _~ T(M(n,k) × B) I -i(0 ) 

_~ M x M(n,k) . 

(4) = (i) : Trivial. 

Theorem 3: Suppose that n > k and that a k-axial G (n) -manifold M is 

a .pullback. of the linear model M(njk). Then there is a k-axial G(n)- 

manifold V, also a Pullback of the linear model; with ~V = M. More- 

over if M is stably parallelizuablet then so i@ V. 

We shall give three different proofs. 

Proof i: Suppose that M = f*(M, (n,k)) where f: B ~ H+(k) . Define a 

sequence of manifolds 

M(k) c M(k + i) c... M(m) c.. • 

where M(m) = f*(M(m,k)), m >_ k. M(m) is a k-axial G(m)-manifold over 

B. Notice that M(n) = M. Also~ M(n + i) G(1) = M(n) . Let 

F: M(n + i) ~ M(n + l,k) be the canonical map. Since F is equivar- 

iant, F(M(n)) c M(n + l,k) G(1) = M(n,k) . Hence, F restricts to a 

map F: M(n + i) - M(n) ~ M(n + 1,k) - M(n,k) . Since F is stratified, 
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it maps the normal bundle of M(n) transversely to the normal bundle of 

M(njk) . Notice that M(n + 1,k) - M(n,k) = (S(l,k) - {03) X M(n,k) . 

Let p: (M(l,k) - [03) X M(n~k) ~ S dk-I be projection onto the first 

factor followed by radial projection onto the unit sphere 

S dk-I c M(ijk) - {0~o The map p is invariant with respect to the 

G (n) -action on M(n + l,k) - M(n,k) . Hence, poF: M(n + i) - M(n) 

S dk-I is also invariant with respect to the G (n) -action. Let 

x 0 e S dk-I be a regular value of poF. Then V = (poF)-l(x 0) is a 

G(n)-invariant submanifold of M(n + l,k) with trivial normal bundle. 

Let V be the closure of V. It is easy to verify that the action 

on V is k-axial and that ~V = M. Furthermore~ F maps V to 

Rx 0 × M(njk), %here Rx 0 is the line in M(ijk) through x 0. Hence, 

is a pullback of M(n~k). If M is stably parallelizable, then by 

the previous proposition T(B) is trivial and hence, M(m) is stably 

parallelizable for all m > k. In particularj since M(n + i) is stably 

parallelizable and the normal bundle of V c M(n + i) is trivial3 it 

follows that V is stably parallelizable. 

Proof 2: This next proof only works when the fixed point set is non- 

empty and M is closed and stably parallelizable. In this case we 

know by Proposition 2 in section V.C that there is a degree one stra- 

tified map F: M ~ S where S is a linear sphere of the same dimen- 

sion as M. F can be covered by a map of the stable normal bundles 

since TM is stably trivial. Thus~ F is a "transverse linear iso- 

variant normal map" in the sense of Browder and Quinn [4]. According 

to them e the "isovariant normal invariant of F" is given by the 

homotopy class of a map L ~ G/0 where L = S/G (n). But L is 
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contractible. Hence, F is normally cobordant to the identity. Sewing 

in a linear disk along id: S ~ S, the result follows. Even if the 

fixed point set is empty, this argument will (usually) work when M is 

a homology sphere. 

Proof 3: If x E H+(k) j let el(x ) ~ e2(x) ~...~ ek(k) ~ 0 be the 

eigenvalues of x, arranged in decreasing order. Let T i c H+(k) be 

the manifold defined by 

Th us, 

T.I = {xlei <x) > ei+l(X) = ei+2(x) ..... ek(x) }. 

~T i = [xle i (x) > 0, ei+l(X) ..... ek(x) = 0] 

= H+ (k) i" 

For example, T O is the ray of scalar matrices in H+(k) . 

Next, consider the map s: H+(k) × [0,~) ~ H+(k) defined by 

s(x,t) = x + tI, where I is the identity matrix. The eigenvalues of 

s(x,t) are the roots of det(x+(t-X)l). It follows that 

ej(s(x,t)) = ej(x) + t. Suppose that x has rank i. Then 

ei+l(S(X~t)) ..... ek(s(x,t)) = t, i.e., s(x,t) 6 Ti. In other words, 

s(H+(k) i × [0,~)) = T..I 

Now suppose that M = f*(M(n,k)), where f: B ~ H+(k) . We can move 

f by a small stratified homotopy so that it is transverse to each T.. 
i 

Define A c B X H+(k) X [0~) by A = { (b,x,t) I f(b) = s(x~t) }. In other 

words, A is the formal pullback of s: H+(k) X [0,~) ~ H+(k) via f, 

i ' f ~s 

B > H (k) + 
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Notice that A N (B × H+(k) x [0]) _~ B and that the restriction of 

to this intersection can be identified with f. Since f is trans- 

verse to each Ti, it follows that A has the structure of a local 

orbit space modeled on H+ (k) . For i < k, the i-stratum of A can be 

identified with f-l(Ti). Thus, the stratification on A is such that 

~: A ~ H+(k) x [0,~) is stratified. 

Let PI: H+(k) X [0,~) 4 H+(k) be projection on the first factor 

and let g = PlOf. Set V = g*(M(njk)). The boundary of V is the 

part of V lying over A N (B X H+(k) X (0]) • Thus, ~V = M. 

Finally, consider the projection q: A ~ B. If b e B, 

q-l(b) -- [(x,t) Is(xjt) = f(b)] _~ [0,¢] where ¢ is the maximum t 

such that f(b) - tI 6 H+(k). It follows that as a topological space 

A is homeomorphic to B X [0~I]. Thus, if TB is trivial, then TA is 

also trivial. Hence, if M is stably parallelizable, then so is V. 
O 

Remark: I prefer the third proof since it gives the clearest picture 

of the orbit space A. Also, in this construction we have an exten- 

sion of the classifying map f: B ~ H+(k) to a classifying map 

g: A ~ H+(k) . 

Using this and an argument similar to the proof of Proposition 12 

in Chapter V.C, we have the following 

Corollary 4: Suppose that n _~> k and that G(n) acts k-_axially on a 

homoloqv sphe re  d k n + m - t  Then I~ e q u i v a r i a n t l y  bounds a p a r a l l e l i -  
~ ,, L . • ' • 

z able k-axial G(n) manifold V and there is a stratified map 

m 

F: (VjE) ~ (D,S), where D is the unit disk in M(n,k) X R • More- 

over, except in the case where G(n) = 0(n), m = 0, k is even and n 

is odd, F can bechosen to be of degree one. 
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C. The calculation of_sd(k,n,m). 

As usual suppose that G(n) acts k-axially on a homotopy sphere Z 

of dimension dkn + m - i. Let V be the parallelizable manifold with 

~V = ~, and with F: (V,Z) + (D,S) a stratified normal map. Let 

f: (A,B) + (K,L) be the induced map of orbit spaces. To avoid the 

difficulties of 4-dimensional surgery we need to assume that no stratum 

of A has dimension 4. 

hypotheses that 

and 

This will be implied, for example, by the 

m ~ 0,4 

m + d(k-1) + 1 > 4. 

These conditions will be assumed for the remainder of this section. 

Let us first discuss the easy case where G(n) = U(n) or Sp(n). 

N 
Pick a framing ~: TA ~ A X R • Consider the map of fixed point sets 

f0: (A0'B0) ~ (K0,L0). Since f is stratified the normal bundle 

A 0 in A is the pullback of the normal bundle N O (K) of K 0 in K. 

Hence, ,~ induces a framing ~0:TA0 ~ f0*(N0 (K)) ~ RN" Since f01B0 

is a homology isomorphism, (f0,#0) is a surgery problem in the sense 

of Wall [9]. Since (K0,L0) = (Dm,Sm-l), the surgery obstruction lies 

in 

1/8 the index of f0 

Lm(1) = ~ervalre invariant of f01 

m m 0 (4) 

m ~ 2(f) 

otherwise. 

Let G0 e Lm(1 ) be this obstruction. The main result of [5] is the 

following. 
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Theorem 5: Let d = 2 or 4. The map ~0: 8d(k'n'm) + Lm(1) is a 

homomor~hism. If k is even, a 0 is an isomorphism ,. ....... If k is odd, a0 

is the zero map. 

For further details in the unitary and symplectic cases see [ 5]. 

In the orthogonal case there is some difference between the cases 

where k ~ 2 and where k = 2 (the knot manifold case). The basic reason 

for this is that for k ~ 2, each stratum of the linear orbit space K 

has either trivial fundamental group or fundamental group Z/2 ; while 

for k = 2~ ~l(Kl) = Z. So let us first discuss the special case of 

knot manifolds. 

2 n+m - 1 
Suppose that a homotopy sphere 7 supports a biaxial 0(n) 

action with orbit space Bo First~ consider the case where n is 

sm-I sm+l. even. Then B 0 ~ and ~B ~ Suppose that 7 equivariantly 

bounds a contractible manifold V with orbit spsce A. Then A 0 ~ D m, 

N D m+2 A 1 U A 0 Z . It follows that B 0 is a "homology slice knot". More 

let ~m-I denote the group of knotted homology (m-l)-spheres precisely, 

in homology m + 1 spheres up to "homology knot cobordism", (where the 

homology (m+l)-sphere is required to bound a contractible manifold). 

It is fairly clear that for n even, @l(2'njm) = ~m-l" On the other 

hand, it is well-known that for m - 1 ~ 1,3, ~m-1 = Cm-I where Cm_ 1 is 

the ordinary knot cobordism group. Also, by work of Kervaire and 

Levine, Cm_ 1 = 0 if m - 1 is even and not equal to 2, and for m - 1 

odd and m - i ~ 1,3, Cm_ 1 = G¢, ¢ = (-i) m/2, where G¢ is the group of 

"cobordism classes of Seifert matrices" as defined by Levine in [8]. 

Thus, for n even~ m ~ 2,4, @l(2,n,m) = G . 

S m-I ~ S m+l S m+l . 
For n odd, B 0 Z/2 ~B ~ and D 1 (~) ~ Here DI(~) 
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is the double branched cover of ~B along B 0. If ~ equivariantly 

bounds a contractible manifold Vj then its orbit space A satisfies 

similar conditions. It follows that for n odd~ 81(2,n~m) = Cm_I(Z/2), 

where Cm_I(Z/2) is defined as follows. Consider pairs (~BjB0) where 

(i) B 0 is a Z/2-homology (m-l)-sphere. 

(2) ~B is an integral homology (m+l)-sphere which bounds 

a contractible manifold. 

(3) The double branched cover of ~B along B 0 is an integral 

homology sphere. 

The equivalence relation is "Z/2-homology knot cobordism" such that 

the double branched cover of the cobordism is an "integral homology 

h-cobordism." The set of such equivalence classes is an abelian 

group denoted by Cm_I(Z/2 ) . Levine told me that Cm_I(Z/2) is the 

"other knot cobordism", i.e., for m - 1 even and m - 1 ~ 2, 

Cm_I(Z/2) = 0; while for m - 1 odd and m - 1 ~ 1,3, Cm_I(Z/2) = G ¢ 

where ¢ = (-i) m/2+l. The proof of this result will appear in [6]. 

(Note that Cm_I(Z/2 ) ~ Cm+l. ) Therefore we have the foll~ving. 

Theorem 6: I_~f m > 4, then, 

@i (2,n,m) 
I 
'G+l; m + 2n - 0 (rood 4) 

0 ; m + 2n ~ 1 (rood 4) 

= I G-l; m + 2n - 2 (rood 4) 
/ 
~0 ; m + 2n =- 3 (rood 4). 

Remark: For n even, this result is essentially due to Bredon [2], 

[33 • 
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It turns out that for k ~ 2, the concordance class of the 0(n~- 

action on 7 is determined by the simply connected surgery obstruc- 

tions of the map (v0(n),~ 0(n)) ~ (D0(n) js 0(n)) and of the map 

(V 0(n-l),Z 0(n-l)) ~ (D 0(n-l) ,S 0(n-l) ), i.e. ~ only the obstructions 

on the bottom two strata matter (all the others either vanish or are 

indeterminacy). If n is even the first map is an integral homology 

equivalence on the boundary and the second is a homology equivalence 

with coefficients in Z(2 ) . If n is odd, the reverse is true. Notice 

that the dimension of V 0 (n) is m and that the dimension of V 0 (n-l) 

is m + k. If m is odd, there is no surgery obstruction for 

(v0(n),~ 0(n)) ~ (D0(n),s0(n)). If m = 2(rood 4), the only possible 

obstruction is the Kervaire invariant. If m - 0 (mod 4) and n is 

even, the obstruction is one eighth the index of the intersection form 

on Hl/2m(V0(n), 0(n) ;Z) . If m =- 0 (mod 4) and n is odd, the inter- 

section form is only nonsingular over Z(2). Hence, the obstruction 

lies in the Witt ring of even symmetric bilinear forms over Z 
(2) " 

Similar remarks apply to the surgery obstruction for 

(v0(n-l) j~ 0(n-l)) ~ (D 0(n-l) S 0(n-l) ) There are now several 
j 

different cases. 

First of all, just as in the unitary and symplectic cases, for 

k odd, these obstructions always vanish (by "looking up" one or two 

Hence, if k is odd~ T is always concordant to the linear strata) . 

action. 

If k is even and m is odd~ then both V 0 (n) and V 0 (n-l) are 

odd dimensional; hence there are no surgery obstructions. 

If k - 0 (rood 4), then dim V 0(n-l) = dim V 0(n) + k = m + k -- m 

(mod 4). Hence, if m - 0 (mod 4) we have two even symmetric forms, 
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one for V 0(n) and one for v 0(n-l) • one of these will be nonsingular 

over Z while the other will be nonsingular over Z(2). If m - 2 

(rood 4) then dim V 0 (n-l) • - 2 (rood 4). Thus, in this case we are 

only concerned with (possibly two) Kervaire invariants. However, the 

Kervaire invariant of V 0(n-l) automatically vanishes. 

If k ~ 2 (mod 4), then dim V 0(n-l) = dim V 0(n) + k = m + k ~ m + 2 

(mod 4). Hence, if m is even,exactly one of the manifolds V 0(n-l) 

v 0 (n) or will have dimension divisible by four. 

Let W be the Witt ring of nonsingular even, symmetric• bilinear 

forms over Z(2 ) . The Witt ring of nonsingular~ even, symmetric, 

bilinear forms over Z is isomorphic to the integers• where the 

1 
isomorphism is defined by a + ~ (index of a) ; however, W is much 

larger. If a E Wj it can be represented by an integral matrix A 

of odd determinant. This determinant modulo 8 depends only on a. 

Consider the homomorphism #: W + Z/2 defined by ~(a) = 0 if det A = ~i 

(mod 8) and ~(a) = 1 if det(A) = ~3 (mod 8). ~(a) is the Kervaire 

invariant of a. Let g = ker ~. Then 81(k•n,m) is calculated as 

follows. 

Theorem 7 : 

(i) If k is odd, then 81(k,n,m) = 0. 

(2) If k - 0 (mod 4), then 

1 
@ (k,n,m)= 

i 
Z +W ; m_-- 0 

0 ; m-_- 1 

I Z/2 ; m m 2 
\ 

k0 ; m-_- 3 

(mod 4) 

(mod 4) 

(mod 4) 

(mod 4) 
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1 
@ (k~n,m) = 
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and k ~ 2~ then 

i W 

; m + 2n --_ 0 (rood 4) 

; m + 2n - 1 (mod 4) 

; m + 2n =- 2 (mod 4) 

0 ; m + 2n - 3 (mod 4) 

The details of this calculation will appear in [6]. 

If k - 2 (mod 4), these calculations show that up to concordance 

every k-axial action on a homotopy sphere is obtained by restricting 

some biaxial action (that is, a knot manifold) to a subgroup. More 

precisely, if k = 4~ + 2 and Z admits a k-axial 0 (n) action, then 

up to concordance the action is the restriction of a biaxial 0 (m)- 

action where m = (2~+i)n. (Notice that there are natural epimorphisms 

G+I ~ Z and G_I ~ W. ) 

On the other hand for k - 0 (mod 4) and m = 0 (mod 4), the group 

1 
8 (kjnjm) contains new examples of actions (that is, actions which 

are not restrictions of biaxial actions). At present our construc- 

tion of these examples is not very explicit as it involves doing 

repeated surgery. It would be interesting to have nice descriptions 

of these actions. For example, the question arises: is there a nice 

description of a 4-axial 0(n)-action so that the index of V 0(n) is 

not equal to the index of V 0(n-l)? 

As a further corollary to the calculations in Theorems 6 and 7 

we have the following. 

Theorem 8: Let ~: %d(k,n~m) -~ %d(kjn-l,m+dk) be the homomor~hism 

defined by restricting a G d (n) -action to G d(n-1). Then ~ is an 
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isomorphism. 

This result is particularly interesting in the orthogonal case. 

It is also possible to compute many other homc~norphisms induced by 

restriction of the action to a subgroup, but I shall not do it here. 

[i] 
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APPENDIX l: BIAXIAL ACTIONS OF S0(3) , G2, 

AND SU(3) ON HOMOTOPY SPHERES 

Preliminaries: We begin by recalling some well-known facts. Let 

be the quaternions and let C be the Cayley numbers. Let S 3 denote 

the quaternions of length one (S 3 = Sp(1)). There is an epimorphism 

~: S 3 ~ Aut(m) defined by ~(x)y = xyx -I The kernel of ~ is {~l~. 

Thus~ 

Aut(m) ~_ SO (3) . 

The action of SO(3) on ~ leaves the real numbers fixed and it acts on 

the perpendicular 3-dimensional subspace by rotation. In other words, 

the action of S0(3) on ~ is equivalent to i~3 • i, 

The group of automorphisms of the Cayley numbers is called G 2. 

It is a compact simply connected simple Lie group of dimension 14. 

As before, every automorphism fixes the R1 c C and G 2 acts orthogon- 

ally and irreducibly on the perpendicular 7-dimensional subspace. 

7 
This action of G 2 on R is called the standard representatipn.,p.f G 2. 

As a module over the complex numbers C ~ 4 The subgroup of G 2 

which fixes ~l is isomorphic to SU(3) and N(SU(3))/SU(3) ~ 0(i). 

The induced action of 0(i) on ~i is by complex conjugation. As a 

2 
module over the quaternions C ~ ~ The subgroup which fixes H 1 is 

isomorphic to SU(2) and N(SU(2))/SU(2) ~ S0(3). Of course, the 

induced action of SO(3) on ~I = C sU(2) 

note that the restriction of G 2 on C 

iP3 + 2; while the restriction to SU(2) 

Pi 

is by ~-automorphisms. Also 

to SU(3) is equivalent to 

is equivalent to iP2 + 4. Here 

denotes the standard representation of SU(i) on ~i. 
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Now, let G' = 0(3)~ S0(7) or U(3) as G = S0(3)~ G 2 or SU(3). 

3 7 
Let ~': G' × V + V denote the standard representation of G' on R z R , 

or 3 and let p: G × V + V be the restriction of ~' to G. The orbits 

of G on V are equal to the orbits of G' on V (in both cases 

the nonsingular orbits are spheres of codimension one). Thus, 

V/G = V/G' ~ [0,~). Also, it is trivial to check that the actions 

2p: G × V 2 + V 2 and 2~ : G' × V 2 V 2 ' ~ have the same orbits. Thusj 

V2/G = V2/G '. From this we immediately deduce the following. 

Proposition I: Let G' = 0(3)~ S0(7) o__~r U(3) a__ss G = S0(3) , G 2 o__rr SU(3). 

Then every smooth biaxial G'-action restricts to a biaxial G- action 

with the same orbit spac e . 

However, it is false that every biaxial G-action extends to a 

biaxial G'-action. Furthermorej if such an extension exists it may 

not be unique. Recall that it was shown in Chapter III that for 

G' = 0(3) or S0(7) ~ a biaxial G'-action on a homotopy sphere is deter- 

mined by its orbit space. For G = S0(3) or G2, we will give examples 

in the next section of an infinite number of biaxial G actions on 

homotopy spheres (of dimension 7 or 15) with the same orbit space as 

the linear action. 

Some Concrete Examples: It is well-known that n3(S0(4)) ~ ~ + 2Z and 

that ~7(S0(8)) _~ ~ + 2Z. Explicit isomorphisms are given as follows. 

i j 4 
Define £0ij: S 3 -~ S0(4) by ~ij(x)y = x yx where y 6 ~ ~ R • Simi- 

^ S 7 ^ S 7 larly, define ~0ij: ~ S0(8) by ~ij(x).y = (x~y)x j Here x £ is 

8 
regarded as a unit Cayley number and y 6 C _=- R • Then (i, j) + [~ij] 

and (i,j) ~ [~ij ] define isomorphisms Z + ~. ~ ~3(S0(4)) and 



105 

S 4 ~ + 2Z_~ n7(S0(8)). Let ~ij be the 4-plane bundle over with 

characteristic map ~0ij. Similarly, let ~ij be the 8-plane bundle 

over S 8 with characteristic map ~ij" Let E(~ij) and E(~ij) be the 

total spaces of the associated disc bundles and let E0(~i j) and 

E0(~ij) be the total spaces of the associated sphere bundles. Let 

D 4 c • be the unit disk. Then E(~ij) is the union of two copies of 

S 3 D 4 3 D 4 D 4 × D 4 via the attaching map %ij: × ~ S × defined by 

@ij(x,y) = (x~ij(x)y). If ~ 6 S0(3) = Aut(H), then 

@ij (c~, ~Y) = (ax,~0i j (cux) ay) 

= (c~x, (~x) i (my) (~x) J) 

= (~x,~(xlyx 3) ) 

= (~x, ~(~0ij (x) y) ) . 

Consequently, the attaching map 8i j is equivariant with respect to 

the canonical biaxial S0(3) action on S 3 × D 4. Therefore, S0(3) acts 

biaxially on ~ij through bundle maps. In a similar fashion the 

^ S 7 D 8 S 7 D 8 ^ attaching map @ij: × ~ × defined by (x,y) ~ (~,~ij(x)y) is 

equivariant with respect to the canonical biaxial G 2 action. There- 

fore we have proved the following. 

Theorem 2: Eyery 4-plane bundle over S 4 canonically ha s the structure 

of an SO (3)-vector bundle. The action on the base isu. the linear action 

o_~f SO (3) o nn S 4 = ~pl. Also/ every 8-plane bundle., over S 8 canonically 

has the structure of a G2-vector bundle. 

S 8 1 the linear action of G 2 on = CP 

On the base the action is 

Of course, the manifolds E0(~ij) were first considered by Milnor 
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[6]. The Euler class of the bundle is (i+j) times a generator of 

H4(S4;Z~. Thus, if i + j = +i, E0(~ij) is homeomorphic to S 7 (No- 

tice the ~i,0 is the Hopf-bundle.) Milnor showed that for some pairs 

(i,j) with i + j = i, E0(~ij) was not diffeomorphic to S 7. His cal- 

culations were later refined by Eells and Kuiper [2]. In fact, they 

showed that E0(~2•_I) was the generator of @7 the group of exotic 

7-spheres (@7 -~ ~/28) . (As we pointed out in section F of Chapter 

III the S0(3) action of E0(~2,_I) was first noticed in [3] .) In a 

similar fashion• if i + j = i, the manifolds E0(~ij) are homotopy 

15-spheres. It is known [5] that 815 = bPl6 + ~/2, where bPl6 is 

the subgroup of homotopy spheres which bound w-manifolds 

(bPl6 _~ ~/8128). It follows from work of Wall [8] • that if a homo- 

topy 15-sphere bounds a 7-connected 16-manifold• then it also bounds 

a n-manifold. Also, it follows from [2], that E0(~2,_I) is the 

generator of bPl6. 

Now we consider the actions on these bundles in more detail. 

Since (D 4 X D4) S0(3) = { (x,y) I x and y are real} and since 

(D 4 × D4) S0(2) = [ (x,y) I x and y are complex}, we see that 

E(~ij) S0(3) is a band with (i+j) half twists (i.e., a cylinder if 

. . . .  )s0(3) 
i + j is even and a Moeblus band if i + j is odd) ; while E(~ij 

is the 2-disk bundle over S 2 with Euler class = (i+j) times a genera- 

tor of H2($2;~ . In a similar fashion, for the G2-action on E(~i j) 

we have that 

SU(2) 
E(~ij) = E(~ij) 

E(~ij)SU(3) = E(~ij)S0(2) 

(~.ij)% G2 ) SO (3) E = E (~ij 
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These equations lead us to suspect that the G2-action on E({ij) is 

determined by the S0(3)-action on E(~ij). More generally~ one has 

the following. 

Theorem 3: The functor M ~ M SU(2) is an equivalenc@ of categories 

from the gategory of biaxial G2-actions and stratified maPS,utO the 

_cateq°rY of biaxial S0(3)-actions and ..... stratified maps. More oyer~ this 

functor takes integral hom0!o~ spheres to integral homology spheres. 

It is trivial to check that M/G 2 ~ MSU(2)/S0(3) . It then 

follows from the Covering Homotopy Theorem and the fact that the 

normal orbit bundles of M have the same structure groups as the 

corresponding normal orbit bundles of M SU(2) that the natural inclu- 

sion Hom(M,N) ~ Hom(M SU(2),N SU(2)) is a homeomorphism. Here Hom( , ) 

denotes the space of (equivariant) stratified maps. There are many 

similar theorems of this type.* 

It is not difficult to see that the orbit space of S0(3) on 

E(~ij) is homeomorphic to a 5-disk. The boundary of this 5-disk is 

4 D 4 D 4 D+ U where is the union of the singular orbits and where D 4 

is the orbit space of the sphere bundle E0(~ij). The fixed set is a 

band with i + j half twists embedded in D 4. This band can be pushed 

into S 3 to be a (possibly non-orientable) Siefert surface for the 

fixed set of E0(~ij). The boundary of a twisted band in S 3 is a 

torus link of type (2,i+j). In particular~ if i + j = ~i, this is an 

m m 
*Let #: G × R + R be a representation with principal orbit type G/H. 
Let K = N(H)/H and let ~: K × (Rm) H ~ (Rm) H be the induced represen- 
tation. Then it follows from Schwarz's proof of the Covering Homo- 
topy Theorem that for "most" ~ the functor M ~ M H is an equivalence 
from the category of G-actions modeled on # to the category of 
K-actions modeled on ~o 
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unknotted circle, we observe that more generally the orbit space of 

S0(3) on E0(~ij) is the isomorphic to the orbit space of S0(3) on the 

Brieskorn manifold z7(i+j,2,2,2,2). Similar remarks apply to G 2 on 

E0(~ij). Thus~ we have the following theorem. 

Theorem 4: Suppose i + j = i. Then E0(~ij) (respectivelv, E0(~ij) ) 

is a homotopy 7-sphere (respectively, 15-sphere), The orbit space of 

S0(3) on E0(~ij) (respectively , G 2 o nn E0(~ij) ) i s isomprphic to the 
linear 

..... S 7 orbit space of the--~biaxial S0(3) action on (respectively, G 2 o_nn 

S 15) • that ' is to say ~ the orbit space is a 4-disk with fixed point 

set an unknotted circle embedded in the boundary. 

We can also obtain biaxial S0(3) or G 2 actions over the linear 

orbit space by taking equivariant equivariant connected sums (at 

fixed points) of the above examples. 

Let us simplify the notation. Let 

7 

= E0(~h~h_ I) 
h 

and 
15 

^ 

= E0(~h,h_l). 
h 

Then E1 and ~5 are equivalent to the linear actions on S 7 and S 15. 

Since the disk bundles are spin manifolds~ one can define the 

invariant of their boundaries. It is computed by Eells and Kuiper 

[2] as 
7 

( Z ) = ~ (h-1)/28 
h 

15 
( Z ) = ~(h-i)/8128 

h 
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If a closed spin manifold admits an sl-action its A-genus vanishes. 

It follows that these rational numbers are invariants of the S0(3) 

G2) action on ~ (or ~5). (See page 351 in [I] .) In particular (or 

numerator ~(h-l) is an invariant of the action. Notice that for the 

h = 2~ 2~(h-l) = i. As G = S0(3) or G2, let d = 3 or 7. Let £2d+i 

2d+l 
be the cyclic group of biaxial G-actions generated by Z2 (under 

connected sum). Since the ~-invariant is additive~ it follows from 

the above remarks that ~2d+l is infinite cyclic. We state this as 

the following. 

Theorem 5: A_~s G = S0(3) or G2, let d = 3 or 7. There is an infinite 

cyclic group of oriented biaxial G-actions on homotopy (2d+l)- 

spheres so that the orbi t space is isomorphic to the orbit space of 

s2d+l the linear action on 

In fact G2d+ 1 is the group of all biaxial G-actions over the 

linear orbit space. We shall indicate the proof of this in the next 

section. Next consider what happens when we restrict these SO (3)- 

actions to S0(2) and these G2-actions to SU(3). The restriction of 

a biaxial S0 (3) -action to S0(2) is biaxial, i.e.~ it is a semifree 

sl-action with fixed point set of codimension 4. Clear!y~ 

(7)S0(3) = S 3. Also, it is trivial to check that E7/S0(3) _ S 6 . 

Recall that Haefliger defined a group E 6"3 of knotted 3-spheres in 

S 6 and proved in [4] that 

633 
--~. 

6~3 
Also: Montgomery and Yang [7] proved that for every c~ 6 E 

is a unique semifree sl-action on a homotopy seven sphere 

there 

so that 
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1 
= (~/S1,Z S ) • It is possible to compute that the S0(2) action on 

7 
~2 corresponds to a generator of 6,3. Therefore, we have the 

following. 

Theorem 6: The bomomorphism G7 + E 6'3 which sends the generator ~ 

to l, sl 
-- ) is a 9 isomorphism. Thus, each of Montgomery a~nd 

Yanq!s. semifree sl-action on homotopy 7-spheres extends uniquely* to 

a biaxial S0(3) action. 

15 
The orbit space of SU(3) on Zh Is closely related to the orbit 

space of S0(2) on ~. In fact, Z~5/SU(3) is a 7-disk and the sings- 

isomorphic to ~/S0(2) . Therefore, as a corollary to lar set is 

Theorem 6 we have the following theorem. 

Theorem 7: Given any ~ 6 6,3 there is a biaxial SU(3) action on a 

homotopy 15-sphere such that the singular set of the orbit space 

corresponds to ~. 

corQ~llary 8: There are biaxial SU(3)-actions on homotopy 15-spheres 

which do not extend to biaxial U(3)-actions. 

Proof: The orbit knot of a biaxial U(3) action has an orientable 

Siefert surface (which must be parallelizable) ° According to Haefliger 

the knotted 3-spheres which admit orientable Siefert surfaces form a 

subgroup of X 6J3 of index 2. O 

G 2 

Of course, Corollary 8 makes good sense since for G = S0(3) or 

2d+l 
the actions on m Z2 do not extend to biaxial G' actions 

*Uniqueness will follow from results of next section. 
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(G' = 0(3) or S0(7)). Since Z~5 is a generator of bPl6 , the forgetful 

homomorphism G15 ~ bPl6 is onto. At this point it still seems 

possible (although unlikely) that there are biaxial SU(3)-actions on 

homotopy 15-spheres which up to concordance are neither the restric- 

tion of a U(3)-action or of a G2-action. Thus, for examplej the 

question of the existence of a 15 with 15 ~ bPl6 ' such that 15 

admits a biaxial SU(3)-action, remains open. 

Structure Theorems and Classification Theorems: 

Let G = S0(3), G 2 or SU(3). Since biaxial G-actions with 

trivial bundle of principal orbits do not necessarily pull back from 

their linear models, the question arises: is there some other uni- 

versal G-manifold which classified them and if so what is it? The 

answer is somewhat surprising. Since S0(3) is the group of automor- 

phisms of the quaternions, it acts on the quaternionic projective 

plane. The action is clearly biaxial. In a similar fashion G 2 acts 

biaxially on the Cayley projective plane CP 2. Hence SU(3) also acts 

(by restriction) on CP 2. It turns out that these are the universal 

examples we seek. 

Let us consider these actions in more detail. 

Let X 

First, notice that 

(Cp2)SU(2) = ~p2 

(Cp2)SU(3) = (~p2)S0(2) = ~p2 

G 2 (Cp2) = (~p2)S0(3) = ~p2. 

denote the orbit space of S0(3) on ~p2o By Theorem 3, 

X _~ Cp2/G2 . 
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Also, let Y be the orbit space of SU(3) on CP 2. 

Proposition 9: As a stratified space X is isomorphic to the orbit 

space of the linear triaxial S0(4) action on sl~ and Y is isomor- 

phic to the orbit space of the linear triaxial U(4) action on S 23. 

More explicitly, 

i) X 0 = RP 2~ X 0 ~ X 1 ~ S 4 ,  X 2 = D 5 a n d  X 1 i s  a 2 - p l a n e  b u n d l e  

2 
over RP • 

2) Y0 = ~p2, Y0 U Y1 --~ $7' Y2 -- D8 and Y1 is a 3-plane bundle 

2 
over ~P . 

Ii ii 
Proof: Consider 304: S0(4) × S ~ S We have the inclusion 

i01: Sp(1) ~ ~S0(4) of a normal subgroup. Clearly, sll/sp(I) = ~IP 2, 

and the induced action of S0(4)/Sp(1) _~ S0(3) on the quotient is 

equivalent to the action described above. Consequently, X _=- SII/s0(4). 

The result for Y is a little more complicated. We shall prove that 

Y1 and Y0 are correct and leave it to the reader to show that Y2 is 

a disk. We have 

~Y = Y1 U YO 

= (Cp2) SU (2)/U (i) 

= ~p2/S0 (2) 

_ SII/u (2) 

S ll . where U(2) acts triaxially on This is the desired result. 

Theorem l0 (A Structure Theorem) : Le___~t G = S0(3), G 2 o_~r SU(3) . Let 

M be a biaxial G-manifold and suppose that the orbit bundle over the 

.top stratum is a trivial fiber bundle. If G = SO (3), then there is 
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f ied map M ~ CP 2. 
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If G = G 2 o_rr SU(3) then there is a strati- 

Remark: There are stronger versions of this theorem analogous to 

the results in Chapter IV, Section A.3. 

This theorem is proved in the same manner as the Structure 

Theorem of Chapter IV~ that is 3 it is proved using twist invariants. 

The difference is the structure groups of the normal orbit bundles 

are not the same as they were for biaxial 0(3), S0(7) or U(3) actions. 

Let S. denote the structure group of the i-normal orbit bundle. For 
l 

examplej for G = SO (3)~ S. is the group of orthogonal G-bundle auto- 
1 

morphisms of 

S0(3) ×S0(3-i) S(3-i,2-i) . 

We compare these structure groups for biaxial G-actions and the 

corresponding G'-actions in the following tables 

S O 

S 1 

S 2 

a=s0(3) G' = 0(3) 

0(2) 0(2) 

0 (2) 0 (i) ×0 (i) 

s0(3) o(2) 

S O 

S 1 

S 2 

G = SU(3) G' = U(3) 

U(2) U(2) 

U(2) U (1) XU (1) 

SU(3) U(2) 
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The groups for G = G 2 and G' = S0(7) are the same as in the first 

table. 

The proof of Theorem i0 now follows from the next proposition as 

in Chapter III. 

Proposition ll: A_~s G = S0(3)~ G 2 o_~r SU(3) le_~t N denote the "univer- 

sal- G-manifold ~p2 Cp2 or Cp2. Then for i = 0,i~2, the i-twist 

invariant can be defined for a biaxial G-manifold and the i-twist 

invariant for N is an S.-equivariant homotopy equivalence to S 2. 

The proof of this proposition is left to the reader. The Struc- 

ture Theorem now follows as in Chapter IV. 

We now turn to classification. Let B be a local orbit space 

modeled on H+(2) and let CG(B ) be the set of oriented equivalence 

classes of biaxial G-manifolds over B. Let CG(B) be the subset 

consisting of those M with trivial bundle of principal orbits. Then 

as a corollary to Theorem i0~ we have the following. 

Theorem 12 (Classification Theorem): There are bijections 

CS0 (3) (B)e-----~ ~G2 (B) ~ >n 0 (Horn (B;X))/[B;S0 (3) ] 

^ 

CSU(3 ) (B)~---->n 0(Hom(B;Y))/[B;SU(3)] • 

Here, as usual j Hom ( ; ) denotes the space of stratified maps. 

If B is contractible (as is the case when the total space is 

a homotopy sphere), then there is no ambiguity introduced by choice 

of trivialization of the bundle of principal orbits and we can forget 

the terms [B;S0(3)] and [B;SU(3)]. 
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Of course, the above theorem is not easy to work with~ since it 

is generally very tricky and difficult to compute the set of homotopy 

classes of stratified maps. However, one can use it to prove the 

following result which we mentioned in the last section. 

Theorem 13: Let L denote the linear orbit space $7/S0(3). Then 

CS0(3 ) (L) = ~7 -~ 2Z and CG2(L ) = G15 _~ ~z.. Here ~2d+l is the group 

2d+l 
generated by ~2 

Sketch of Proof: Let f: L ~ X be a stratified map. Then L 0 = S 1 

and X 0 = RP 2. The map flL0: L 0 + X 0 is null-homotopic since the 

normal bundle of L 0 in L is orientable (it is, in fact, trivial). 

Hence, after a homotopy we may assume fIL 0 is constant. Next 

= S 1 S 1 BoL 1 × and ~0Xl is a sl-bundle over RP 2. BoL 1 + ~oXI is a 

bundle map. The map composition BoL 1 + ~0Xl c X 1 N R P2. is homo- 

topic to the map ~(x,y) = ~(x) where (x,y) 6 S 1 × S 1 and ~: S 1 + R P2 

represents the generator of nI(RP 2) . Hence, we may assume fl is 
BoL 1 

8. Since L 1 = D 2 × S I, the problem now comes down to computing homo- 

topy classes of maps g: (D 2 × SI,s I × S I) ~ RP 2 relative to 

= 8. A little argument shows this set is ~2 (QRP2) = n3 RP2 -~ ~" gl 1 S I×S 

(Here g = fil I ) If the g represents O, then f is homotopic to 

the map for the linear action. Although there were some choices, 

the above argument at least shows that CS0(3 ) (L) is a quotient of ZZ . 

On the other hand, 2Z ~_ £7 c CS0(3) (L) . Therefore, CS0(3) (L) = 

CG2 (L) _~ Z~ Now a (complicated calculation shows that the map class- 

ifying 7 represents a generator of ~2(GRp2)" 

corollary 14: A__ss G = S0(3) o.z_r G 2 let G' = 0(3) o_.~r S0(7) and let 
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d = 3 or 7. Then every oriented biaxial G-action on a hpmotopy 

(2d+l)-sphere can be written uniKuely as the connected sum of the 

a biaxial G'-action and some multiple of E~ d+l (the restriction of 

~enerator of G2d+l). 

Theorem 12 should have applications to other biaxial actions 

of S0(3), G 2 or SU(3) on homotopy spheres of other dimensions. For 

example, it appears that elements of n (~RP 2) give rise to biaxial 
m 

S0(3)-actions on homotopy (6+m-l) spheres over the linear orbit space 

$6+m-I/s0(3). However, at this point, I am still unsure about the 

calculations. 
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APPENDIX 2: THE HOMOLOGY OF THE STRATA IN 

THE 0 (n) CASE 

Our goal is to prove the following result~ which was stated as 

Lemma 6 in Chapter V. 

Mairl Lemma: Let F: M + M' be a stratified map of k-axial 0(n)-mani- 

fQ!ds. Then a necessary and sufficient condSt$on for F to be 

acyclic* (ove r z) is. that for each i with 0 ~ i ~ k+l and n-i 

even, the induced map of double branched covers, Di(F ) : Di(M) ~ Di(M') 

is acyclic. 

Remark l: 

empty set, that is, 

We adopt the usual convention for the homology of the 

H i(~;A) = ; for i = -i 

0 ; for i ~ -i . 

Notice that in the above lemma there is no hypothesis that any of the 

strata be nonempty. In particular~ it is not assumed that n ~ k. Of 

course~ as a consequence of the Main Lemma and the above convention 

one can deduce that if F: M ~ M' is acyclic, then a stratum of M is 

nonempty if and only if the corresponding stratum of M' is nonempty. 

Remark 2: That condition that Di(F): Di(M ) ~ Di(M' ) be acyclic over 

! 

Z implies that both of the maps fIB':l B.l + B~l and fiB i_l: Bi-1 ~ Bi-I 

a r e  a c y c l i c  o v e r  Z / 2 .  H e r e  3 a s  u s u a l ,  f :  B ~ B '  d e n o t e s  t h e  m a p  o f  

orbit spaces induced by F. That is to sayj the Main Lemma implies 

*Recall that a map is acyclic over a ring A if it induces an iso- 
morphism on homology with coefficients in A. 
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Lemma 5 (the weak version of the Main Lemma) in Chapter V. (To see 

this consider the action of Z/2 = 0(i)/S0(i) on Di(F) : Di(M) + Di(M') 

and apply the Smith-Gysin sequence.) However, we need to use Lemma 

5 in our proof; thus, at several points we need to use the fact that 

H,(flB ;Z) is an odd torsion group. 
l 

Notation: If 0 ~ j ~ k, then 

M(j) is the complement in M of the union of open tubular 

neighborhoods of the strata of index less than j. 

N. 
J 

X , 
J 

Y, 
J 

P , 
J 

ej 

~Xj 

is a tubular neighborhood of M. in M(j). 
3 

is a regular neighborhood of Mj U Mj_ 1 in M, i.e.~ 

Xj = Nj U Nj_ I. 

Nj ~J- • 
is the intersection of Nj and Nj_l, i.e., Yj = I IM j 

is ~Nj, the unit sphere bundle associated to Nj. 

is ZNj_ 1 - Yj, and 

is that portion of the boundary of X. which is made up of 
J 

the two sphere bundles, i.e., ~Xj = Pj U Qj. 
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Picture of X, 

/ 
N. 

~ ' X .  
3 

J J 

~ ej 

Legion 

• ~ ----- N. M3 3 

= Pj ~ = Nj_ 1 

= Y. 
3 

=Q. 
3 

The manifolds N',3j X3' Y'J' P'J~ Q"3 and VX'.3 are defined in a similar 

fashion using M' . 

After an equivariant isotopy we may assume that the stratified 

map F: M ~ M' is a bundle map on the prescribed tubular neighborhoods. 
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Hence, we may assume that F maps each of the above submanifolds of 

M to corresponding submanifolds of M' and that F restricts to 

bundle maps ' Qj N[ Y + Y' ~ e Pj, ~ Q[. 
N~ 3' J J' Pj 3 

The proof of the main result will be based upon the following 

lemma. 

Lemma i: Suppos e that F: M ~ M' is stratified map of k-axial 0(n)- 

manifolds. Further suppose, that for a fixed i with n - i even, 

the map Di(F) : Di(M) ~ Di(M') is acyclic. Then each of the following 

three ma~s is als0. acyclic: 

l) 

2) 

3) 

FIx x. ~ x' 
, l l 
l 

(FIx .,FI.~X.) : (Xi,~Txi) -> (X~,VX~) 
l l 

F[ x- Vxi vx . 
l 

First let us see how this lemma implies the Main Lemma. Rather 

than take M apart (or assemble it) one stratum at a time as in the 

U(n) and Sp(n) cases (Lemma 1 in Chapter V), the idea is to use the 

above lemma to take M apart (or assemble it) two strata at a time. 

Proof of the Main Lemma: First we prove sufficiency. So suppose 

that Di(F ) : Di(M) ~ Di(M') is acyclic whenever n - i is even. For 

any integer j with n - j even, set J. = M(j-I), ioe., 
3 

J. =M - UX 
3 

where the union is taken over all ~, with ~ < j and n - ~ even. 

Clearly, if n is even, then J0 = M and if n is odd Jl = M. Let 

t' = min(n,k) be the index of the top nonempty stratum of M. Set 

t = t' if n - t' is even and t = t' + 1 if n - t' is odd. Clearly, 
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Jt = Xt 

(since Jt has at most two nonempty strata). Hence, by Lemma i, FIj t 

is acyclic. The proof now proceeds by downward induction. So, assume 

inductively that FIJi+2:Ji+2 + Jl+2 is acyclic, where n - i is even. 

Consider the pair (JiJXi+2). By excision, H,(Ji,Xi+ 2) =_ 

H,(Ji+2~Xi+2). By Lemma 17 FIXi+ 2 and FI~Xi+2 are acyclic. Hence, 

(FIji+ 2 ) 0 = H~ , FIVXi+2 

H.(FIj i, Flxi+ 2) 

_~ H.(FIj ) 
l 

This completes the inductive step and therefore proves sufficiency. 

Next we prove necessity. So, suppose F: M + M' is acyclic, and 

that n - i is even. By Lemma 4 in Cha~JJter V, tthe induced map of fixed 

point sets F 0(n-i) M0(n-i) 0(n-i) : ~ (M') is also acyclic. Notice that 

this map is a stratified map of k-axial 0(i)-manifolds. Recall that 

by definition Di(M) is the quotient (by S0(i)) of the union of the 

top two strata of M 0(n-i) In particular, D i(M) = D i(M 0(n-i)) and 

D i(F) = D i(F 0(n-i)) . Thus, to prove that D.I(F) is acyclic it suffices 

to consider the case where F: M + M' is an acyclic stratified map of 

k-axial 0(i)-manifolds, with i < k. The proof now proceeds by induc- 

tion. If i = 0 or i, then M = D (M) and F = D. (F) so the result 
1 l 

follows trivially. Suppose by induction that Dj(F) is acyclic for 

all j < i with i - j even. Let J. be defined as above, i.e., 
3 

J3" = M - UX • N o t e  t h a t  J.1 i s  t h e  u n i o n  o f  t h e  t o p  t w o  s t r a t u m  o f  

By reversing the above argument we prove by another induction that 

M. 
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FIj " is acyclic and, in particular, that FIj" is acyclic. But Ji is 
3 l 

a S0 (i) -bundle over D (M) and F I is a bundle map covering Di(F ) . 
1 J. 

1 

Hence, it follows from the Comparison Theorem (for spectral sequences) 

that D. (F) is acyclic. Q 
1 

The remainder of this appendix is devoted to the proof of Lemma 

1. The conclusion of this lemma asserts that the maps 

l) F I x  . :  x .  ~ x~ 
1 1 

1 

2) (FIx . ,FI~TX" ): (Xi,VXi) -> 
l l 

3) FIVX. : VX. + ~TX 
l l 

l 

(x i ,  vx ) 

are each acyclic. Notice that it follows from the exact sequence of 

the pair that if any two are acyclic, then so is the third. Thus, 

it suffices to show the first two are acyclic. Each of these maps 

is the union of two bundle maps. For example, FIX . = FIN . U FIN i 
1 l l -- 

where FIN. is a bundle map covering fl B, : B~3 + B!. We propose to 
• , 3 
3 3 

compute the homology of the map* from the Mayer Vietoris sequence of 

the pair and the Serre spectral sequence of each fiber bundle in 

the decomposition. That is to say, the following two techniques 

will be used in our homology computation. 

Technique l: If 

g: (X U Y,X,Y,X n Y) I (X' U Y',X',Y',X' N Y') 

is a map of 4-tuples, then there is a Mayer-Vietoris sequence 

*The homology of a map is equal to the homology of the mapping cone. 
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~H,(glxQY) >H,(glx) + H,(gIy) >H,(g) > .... 

Similarly, if h: (X U Y,C U D) ~ (X' U Y',C' U D') is a map which 

preserves all pieces and all their intersections, then there is a 

relative Mayer-Vietoris sequence 

---> H .  ( h i x Q y , h I c n D )  

H e r e  C c X a n d  D c Y. 

>H.(hIx.hlc) + H.(hly.hID) > H, (hIxuy,hlcuD) --) • 

Technique 2: Suppose that (X,Y) + C is a bundle pair with fiber pair 

(H,J), that (X',Y') ~ C' is another such bundle pair with the same 

fiber and that g: (X,Y) ~ (X'jY') is a bundle map covering 

g: C ~ C'. Then there is a spectral sequence with E2-term 

Hp (g;Hq CHjJ) ) 

converging to Hp+q(g,gly) " 

The proof of Lemma 1 is now in three steps. 

step l: D. (M) is a manifold with involution and as such it can be 
l 

written as the union of two pieces; namely~ a tubular neighborhood of 

the fixed point set and the complement of this tubular neighborhood. 

The fixed point set is Bi_ 1. Let ~ denote a tubular neighborhood 

of Bi_ 1 in D i(M) and let B'l = D.I(M) - ~. Then Bi/Z/2 ~ B..i Also, let 

~i-iBi = B'l N v be the unit sphere bundle associated to v. To simpli- 

fy notation, let f = Di(F)IB. and let f = Di(F) I . Step 1 consists 
V 

1 

of applying the Mayer-Vietoris sequence to the maps 
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D. (F) = f D f 

= FIN. U FINi_l FIX i l 

and 

(F ~ ,Fl.~X" -- (FIN 
l i i 

uFl .FIp UFIQ) 
Ni-i i l 

in order to deduce the following three lemmas. 

Lemma 2: Di(F ) is acyclic if and onlv if 

H.(~I~i_l~i ) ---->H.(f) + H.(f ) 

is an isomorphism. 

Lemma 3: FIxiiS acyclic if and only if 

H,(FIy }----> H, (F I N .) + H,(F I ) 
i i Ni-i 

is an isomorphism. 

Lemma 4: (F ~ ,FIvx.) isacyclic if and only if 
l l 

H,(FIy ,Fl~y.) )H,(FIN ,FIp ) + H,(FIN i l~FIQi ) 
1 1 1 1 -- 

is an isomorphism. 

B is a bundle with fiber Step 2: Notice that N i i 

Z.1 = 0(n) X0( n_i)D(n-i,k-i)J 

where D(n-i,k-i) denotes the unit disk in M(n-i~k-i). 

regarded as a bundle in two ways. First, 

Y, can be 
l 

Yi = Nil~i_iB i" 
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Y. can also be regarded as a sub-bundle of the unit sphere bundle 
1 

~Ni_ 1 + Bi_ I. Thus, Yi is a bundle over ~i_lBi and also a bundle over 

• ) with Bi_ 1 We have spectral sequences E(FIy. ), E(FIN. ) ~ E(FINi 1 
1 1 - 

E 2 t e r m s  

~2 fl ) 
p,q(FIYi) = Hp( ~i_iBi;Hq(Zi) 

E2 q(FIN ) = Hp(flB" ;Hq(Z i)) 
l l 

E~.q (F I Ni_ 1 ) _  = ~p(fl Bi_ 1 ;Hq (Zi_l)) • 

These converge to Hp+q (FIy.) , Hp+q (FIN.) and Hp+q (FI Ni_ l) , respective- 
1 1 

ly. Here f: B ~ B' denotes the induced map of orbit spaces. Since 

the inclusion YiC-~Ni is a bundle map and YiC9 Ni_ 1 is a Sub-bundle, 

there is an induced map of spectral sequences 

converging to 

~(FIy) > E(FI~) +E(rIN ) 
l l i-I 

~,(Flx .) ~ H,(Flm) + ~,(FI~ i 1 )" 1 1 -- 

Of course, the idea is to prove that if D. (F) is acyclic, then the map 
l 

o f  s p e c t r a l  s e q u e n c e s  i s  an  i s o m o r p h i s m  a t  t h e  E 2 - 1 e v e l  and  t h e r e f o r e ,  

by the Comparison Theorem~ that it converges to an isomorphism. Lemma 

3 will then imply that FIX . is acyclic. That the map is an isomor- 
l 

p h i s m  a t  t h e  E 2 - 1 e v e l  w i l l  b e  p r o v e d  f rom c a l c u l a t i o n s  o f  H . ( Z i ) ,  

H,(Z i_! ) and the map H,(Zi) ~ H,(Zi_I) . 

Remark 3: At this point the reader's natural reaction should be that 

what we are trying to prove in Step 2 is false. Indeed~ since Z i is 
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homotopy equivalent to the Stiefel manifold V • of i-frames in n- 
n 3 1 

space and since H,(Vnji) ~ H,(Vnji_l) it appears to be false that 

Lemma 2 implies that 

Hp(f I ;H (Vn, i)) ~ Hp(flBi;Hq(Vn, i) ) + H (fl ;H (Vnj i i)). 
~i_iBi q P Bi_ 1 q - 

However, we are saved by two facts: 

i) The coefficients are twisted. 

2) H*(fIBi )' H*(fl~i-IBi) and H,(f IBi_l) are all odd 

torsion groups. Thus,, the 2-torsion in the homology of the 

Stiefel manifolds plays no role. 

Step 3: Next we verify the second part of Lemma Ij that is, we show 

that if Di(F ) is acyclic then so is (FIx.,FI~TX). The proof will be 
1 1 

similar to S t e p  2 ,  o n l y  now we m u s t  u s e  t h e  r e l a t i v e  M a y e r - V i e t o r i s  

• F I ~Zy. )' sequence of Lemma 4 and the spectral sequences E(FIy i l 

E(FIN ,FIp ) , E(F I ,FIQ ) with E2-terms: 
1 l Ni-i l 

~'~,q(FIy. ,FI y.) 
1 1 

= HP(fl ~i-iBi;Hq (Zi, BZi) ) 

E 2 
p,q(FIN jFIp .) = H p ( f l B  ~ ;Hq(Zi,~Zi)) 

1 1 1 

E;, q (F I N i_l, F i Qi) = Hp (fl B i-1 ;Hq (Z i_l, Wi-1 ) " 

Here Wi_ 1 is the submanifold of ~Zi_ 1 defined as 

Wi_ 1 = 0(n) ×0(n_i+l)U(n-i+l,k-i+l), 

where U(n,k) is the complement of a tubular neighborhood of the 

1-stratum of ~D(n,k). Thus~ to complete Step 3 we must also know 
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something about H. (Zi, ~Z i) j H. (Zi_l,Wi_l) and the map 

H.(Zi,~Z i) ~ H.(Zi_I,Wi_I). 

Now we proceed with the calculations necessary to complete Steps 

2 and 3. 

Lemma 5: Set k' = k - i + i. Suppose that Di(F) is acyclic. We 

consider the action of Z/2 = 0(i)/S0(i) on Di(M)o 

i) If k' is even, then Z/2 acts trivially on H.(~) and on 

H.(~[~i_iBi )N . (Here, ~ = Di(F) [~i.) 

2) I_~f k' is odd s then H.(~) + = 0, also H.(f[~i_l~i)+ - 

.... ~i_iBi ) - _ . )+ 
H.(f[ ) and H.(~[ N ~ H.(~) Here H.( is the subgroup 

Bi_ 1 
on which Z/2 acts trivially and H. ( )- is the sub@roup on which Z/2 

acts via multiplication bY -Io 

Proof: Let v + Bi_ 1 be the normal disk bundle of Bi_ 1 in Di(M) and 

let Z9 be the associated sphere bundle. The fiber is D k' and Z/2 

acts on v via the antipodal map on each fiber. This has degree 

(-i) k' on each fiber. Hence if k' is even, Z/2 acts trivially on 

H.(f ,fu]~ ) and on H.(f I~ ) . By excision, 

H.(f ,f IZ ) --~ H.(Di(F),f) 

--~ H._I (~) " 

Hence, Z/2 acts trivially on H.(~). Since fg[~v = ~l~i_iBi' Z/2 is 

also trivial on H.(~I~ R )" This proves i). 
Wi_l- i 

Let T be the nontrivial element of Z/2. If t is odd 3 then 

T. is multiplication by -I on 
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H,(f ,f IZv) ~- H._t(flBi_l ) ® Ht(Dt,st). 

As before it follows from excision and the sequence of the pair 

(Di(F),f) that H,(f ~f l~v) ~ H,(f) . Hence T, is also multiplication 

by -i on this group. Next consider the sequence of the pair 

). Since D. (F) is acyclic, we conclude that (D i (F) 'fl Bi_l 1 

H*(fl B ) -~ H*+l(Di(F) fl ) 
i -i ' Bi-i 

N N 

-- H.+l(f,f I~i_IBi ) ' 

Since Bi_ 1 is the fixed point set 3 T, acts trivially on H.(flBi_l) ; 

hence, it also acts trivially on H.(f,f I ~ ). Finally, by consid- 
~i -iBi 

ering the sequence of (f, fl~i_lBi ), we conclude that 

- ~i_iBi ) ~i_iBi ) =" H.+l(f, fl 

and th at 

which proves 2). 

=- H. (fl ) 
-- Bi-i 

H,(~l~i_iBi )- ~ H,(f), 

O 

Lemma 6: As before~ let k' = k - i + 1 and suppose that D. (F) is 

acyclic. Let Z ~ denote the system of twisted intg~er ' coefficients 

associated~ to the double covering Bi ~ Bl. 

i) If k' is even~ then 

H.(fIB ;Z ~) _~ 0 ~ H.(f I ;Z ~) 
i - ~i-iBi 

H.(flB. ;Z) __~ H.(~;Z) 
1 
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2) 

H. (fl ~i_iBi 

l_~f k' is odd a then 

;Z) __=" H. (fl ~i_iBi ;Z). 

H.(f]B" ;Z 7) __~ H.(~;Z) 
i 

H. (fl ;ZT) 
-- ~i_iBi 

H.(fIB. ;Z) = o 
i 

Proof: Let X ~ X 

H.(f]~i_iBi;Z) _~ H.(fIB i_l;Z) . 

be a double covering. There is an exact sequence 

H.(X;Z/n) ~H.(X;Z/n) ~H.(X;ZT/n). 

If n is odd, this sequence is short exact and 

N 

If g: X ~ X' 

and 

H.(X;Z/n) _~ H.(X;Z/n) + 

H.(X;ZT/n) _~ H.(X;Z/n)- 

is a map of double covers, covering g: X + X', 

H. (g ;Z/n) _~ H. (g ;Z/n) + 

H.(g;ZT/n) _~ H.(g;Z/n)-, 

then 

whenever n is odd. 

formulas imply that 

If, in addition, H.(g;Z/2) = 0 then these 

H.(g;Z) _~ H.(~;Z) + 

H.(g;Z T) _ H.{g,Z)- 
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The lemma now follows from this observation and the calculations in 

Lemma 5. 

and structure Remark 4: Suppose that E + B is a bundle with fiber F 

group H. The E2-term of the Serre spectral sequence is 

E 2 = H (B;Hq(F)) . The coefficients may be twisted. Thus we must 
P,q P 

keep track of the action of ~I(B) on H,(F). Let us describe this 

action in terms of the structure group H. Let H' c H be the kernel 

of the action of H on H,(F) . Notice that H' contains the identity 

component of H. Let E be the associated principal H-bundle. Then 

E/H' + B is a nontrivial regular covering associated to the homomor- 

phism ~I(B) ~ H/H' given by the action of ~I(B) on H,(F). 

In our problem all the bundles involved are associated to normal 

orbit bundles (see Chapter III.A) . Thus, for example, N. + B. and 
1 1 

(-NiJPi) ~ B i have structure group O(i) × 0(k-i) and are both associated 

to the principal bundle E. ~ B . Under the assumption n - i is even, 
1 1 

we will show that S0(i) × 0(k-i) is the subgroup which acts ineffec- 

tively on H,(Zi) and that is also the subgroup which acts ineffectively 

on H,(Zi,~Zi). Thus, in both cases the local coefficients are 

associated to the double covering Ei/S0(i) × 0(k-i) = Bi + Bi" 

In the case of the bundles Ni_ 1 + Bi_ 1 and (Ni_l,Qi) + Bi_l, we 

will show~ again under the assumption that n - i is even, that the 

whole group 0(i-l) × 0(k-i+l) acts trivially on H,(Zi_ I) and on 

H,(Zi_I,Wi_I) and hence~ that the coefficients are untwisted in 

these cases. 

We now turn to the problem of computing the necessary information 

concerning the homology of the fibers. 
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Notation: Let T.(X) denote the torsion subgroup of H,(X) and let 

F,(X) = H,(X)/T,(X) be the free part. 

Lemma 7: Let V be the Stiefel manifold of i-frames in n-space. 
n,i 

Le t p: Vn, i + Vn~i_ 1 be the natural projection (which associates an 

(i-!)-frame to an i-frame by forge ttin~ the last vector. Let 

Z/2 = 0(i)/S0(i). Then 

i) T,(Vnji) is 2-torsion. 

2) If n - i i s odd~ then Z/2 acts trivially on H,(Vn, i). 

3) f n - i i s even, then p.: F.(Vn, i )+ + F.(Vn,i_l ) is an 

+ 
isomorphism. Here F,(Vnj i) denotes the subqroup fixed by Z/2. 

Proof: Statement l) is well-known. 

The map p: Vn, i + Vn, i_ 1 is the projection map of a sphere bundle 

with fiber S n-i. Without loss of generality we may represent the 

nontrivial element of Z/2 = 0(i)/S0(i) by 

T = / ° 1 
\ 

' ,  0 - 1  

where T is the diagonal i by i 

entry except the last which is -1. 

following diagram commutes 

V 
nji 

matrix with l's in every diagonal 

For this choice of T the 

.T >v 
n,i //J 

V 
n,i-i 



132 

The action is the antipodal map of each fiber. Consider the Serre 

spectral sequence of the sphere bundle. The E2-term is 

• - -S n-i- Hp (Vn, i-i ;Hq (sn-1)) In n i is odd, then T, is trivial on H,( ) ; 

hence, Z/2 acts trivially at the E2-1evel and therefore, trivially on 

H,(Vn, i ) . This proves 2) . 

If n - i is even, then T, is multiplication by -I on H n i(sn-l) " 

It follows that the Euler class of the sphere bundle has order two. 

Therefore, 

Hence, 

F,(Vn, i) --~ F,(Vn,i_ I) ® H,(S n-l) . 

F,,-n,i )+ F,(Vn, i_ I) ~ H0(S n-l) 

_~ F, (Vnj i_l ) , 

which proves 3). ~_ 

Lemma 8: Let (Zi,~Zi) be as in St e~s 2 and 3. Let H' c 0(i) × 0(k-i) 

be the subgroup which acts ineffectively on H,(Z i) and let 

H" c 0(i) × 0(k-i) be the subgroup that acts ineffectively on 

H,(Zi,~Zi). ,Then, if n - i is even 3 H' = H" = S0(i) × 0(k-i) . 

Proof: Recall that (Zi,~Zi) = 0(n) ×0(n-i) (D,~D) where D = D(n-i,k-i). 

We see that Z. is a vector bundle over V and that 0 (k-i) acts 
l n,i 

trivially on V . . Hence, S0(i) × 0(k-i) c H' On the other hand, 
n,l 

by part 3) of the previous lemma, 0(i)/S0(i) acts nontrivially on 

H,(Vn, i) ; therefore, H' = S0(i) × 0(k-i) . 

Now consider H,(Zi,~Zi) o 0(k-i) acts on (Zij~Z i) by multipli- 

cation (from the right) on (D,~D), and the effect of the action on 

homotopy is independent of choice of T' £ 0 (k-i) - SO (k-i) . Let 
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1 

1 

i £ 0 (k-i) . 

1 / / 

Then T' acts by multiplying the first column of D(n-i,k-i) by -i and 

n-i 
trivially on the other columns. Hence, T' is of degree (-I) = 1 on 

D. SO, as before, S0(i) × 0(k-i) c H". By the Thorn Isomorphism 

Theorem, H,(Zij~Z i) ~ H.(Vn, i) ~ H.(D,~D). Since 0(i)/S0(i) acts non- 

trivially on H,(Vn, i) it is also nontrivial on H,(Zi,~Zi). Hence 

H" = S0(i) x 0(k-i). Q 

Lemma 9: Le_~t Zi_ 1 and Wi_ 1 b e as in steps 2 and 3. Then; if n - i 

is even, 0(i-l) x 0(k-i+l) acts trivially on H,(Zi_ I) and on 

F, (Zi_l,Wi_l) . 

Proof: Since Z£_ I 

trivially on H.(Zi) 

is a disk bundle over Vn, i_l, 0(i) x 0(k-i) 

by part 2) of Lemma 7. Recall that 

acts 

Wi_ 1 = 0(n) x 0(n_i+l)u(n-i+l,k-i+l) 

where U(n,k) is the complement of a tubular neighborhood of the l- 

stratum in ~D(n,k). Thus, Wi_ 1 is also a bundle over Vn, i_ 1 and 

therefore, by Lemma 7, 0(i-l) acts trivially on H.(Wi_ I) . That 

0(k-i+l) also acts trivially will follow from the spectral sequence 

and the next lemma which asserts that 0 (k-i+l) acts trivially on 

H, (U (n-i+l j k-i+l) )/2-torsion. 

Lemma i0- Let U(n,k) be the complement of a tubular neighborhood of 
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~D(n~k) 1 i__nn ~D(n~k). Then T,(U(n,k)) is 2-torsion. If 

then 

Fj(U(n~k)) m I~ ; J = 0,~-i 

; otherwise 

where 

= I~ (n-l) ~ if k is even 

k-l) (n-l) ; if k is odd 

n is odd, 

Moreover, provided n is od___~d, 0(k) acts trivially on F,(U(n,k)). 

Proof: 5D(n,k) 1 is a bundle over its image in the orbit space. The 

fiber is S n-I and the structure group 0(I) . The associated principal 

bundle can be identified with 5D(n,k) 0(n-l) = ~D(Ijk). Therefore 

= S n-I sk-i 
~D (n,k) 1 X0(1) 

where 0(1) acts via the antipodal map on both factors. Modulo 2- 

torsion, H,(~D(n,k)1 ) is therefore just the invariant part of 

H "S n-I S m-l) ,( X . In particular this implies that T,(~D(n,k) l) and 

T,(U(n,k)) are both 2-torsion. Assuming that n is odd, 0(i) 

reverses the orientation of S n-l. Therefore, if k is even, 

H,(S n-I X sk-l) 0(I) is nonzero only in dimensions 0 and k-l; while 

if k is odd~ it is nonzero only in dimensions 0 and n + k - 2. 

Thus, Fj(~D(n~k)i) = Z precisely when j = 0 or k - 1 (if k is even) 

or when j = 0 or n + k - 2 (if k is odd). Since U(n,k) is the 

complement of ~D(n,k) l in the sphere ~D(njk), it follows from Alexander 

duality that Fj(U~n~k)) ~ Z precisely when j = Oj~ - i, where 



135 

£ = 

I n(k-1) ; k even 

(n-l) (k-l) ; k odd. 

Let v e F.(~D(njk) l ) be a generator of the infinite cyclic group (in 

di ension n + k - 2 or k - i) and let u e F.(U(n,k)) be its Alexander 

dual. Pick a reflection T' £ 0(k) - S0(k) , say~ 

T' = 
i i ° 1 

..... , o i / 

Since n is odd T~[~D(n,k)] = -[~D(n,k)]. Next, notice that T' acts 

= S k-I S r-I S k-I by a reflection on and trivially on on ~D(n,k) 1 ×0(i) 

S n-I . Therefore, 

and hence, by duality, 

T~V = -V, 

T~u = u. 

Thus, the action of 0(k) on F.(U(n,k)) is trivial. Q 

Lemma i!: Let j: (Zi,~Z i) -~ (Zi_l,Wi_l) be the inclusion of a fiber 

of the normal bundle of the 1-stratum of ~Zi_ I. Suppose n - i is 

even. Then the qroups T.(Zi) , T.(Zi~Zi)~ T.(Zi_l) and T.(Zi_I,Wi_ I) 

are 2-torsion. Furthermore a the maps 

i) j.: F.(Zi)+ ~ F.(Zi_I) 

+ 
2) j.: F.(Zi,SZi) -~ F.(Zi_I,Wi_I) 

are isomorphism s. - Here F.( ) is the free part 0~f the homoloqy and 
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F,(Zi)+ and F,(Zi,BZi )+ are the subgroups fixed by Z/2 = 0(i)/S0(i) . 

Proof: The homology of a Stiefel manifold has no odd torsion. 

Since Zl is a disk bundle over a Stiefel manifold and (Zi,~Zi) is the 

Thom space of this disk-bundle, T,(Zi) and T,(Zi,~Zi) are-2-torsion. 

By the previous lemma, if n - i is even, then (Zi_l,Wi_l) also has 

the homology of the Thom space of a disk bundle over Vn, i_ 1 (at least, 

modulo 2-torsion). Hence, T,(Zi_I,Wi_I) is also 2-torsion. 

The following diagram clearly commutes 

(Zi,~Zi) J ) (Zi_l,Wi_ I) 

1 ; P 
Vn, i > Vn~i-l" 

the fact that the first map j,: F,(Zi)+ ~ F,(Zi_ l) is Therefore, an 

isomorphism, is immediate from part 3) of Lemma 7. 

Next, set 

k' =k - i+ 1 

n' = n - i + 1. 

Recall that (Zi,~Zi) = 0(n) ×0(n-i) (D,~D) where D = D(n'-l,k'-l) is a 

disk of dimension (n'-l) (k'-l). 

Assertion: 

F, (Z i , ~Zi) 
+ _=- ~F,(Vn, i )+_ ~ H,(D,~D) ; if k' is odd 

QF,(Vn, i) ~ H,(D,~D) ; if k' is even. 

Here F, (Vnj i ) denotes the subgroup on which Z/2 acts by multiplica- 

tion by-I. Let [gjx] denote the image of (g,x) in 0(n) ×0(n_i)D. 
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Inclusion of the fiber i: (DjS) -~ (ZiJ~Zi) is defined by i(x) = [e,x]. 

Let T e 0(i) - S0(i) and let h 6 0(n-i) be a reflection. Regard T 

and h as elements in 0(n) via the standard inclusion 0(i) × 0(n-i) 

c 0(n). Then [T,x] = [Th,h-lx] = Th[e,h-lx] where Th 6 S0(n). Let 

y be the image of the fundamental class of (D,~D) in H,(Z,~Z), i.e., 

y = i.[D] e H(n._l) (k'-l) (Zi'~Zi)" Since S0(n) is connected) transla- 

tion by Th is homotopic to the identity; consequently 

T,y = (Th).(h -1).y = (h -1).y. Since h -I is a reflection it has degree 

(-l) k'-i on D. Thus 

k'-i 
T,y = (-i) y. 

+ 
Since F,(Zi~Zi) is the subgroup fixed by T,, the Assertion follows. 

Next, let 

D' = D(n'jk') 

and 

U = U(n',k') c ~D'. 

Let E be a tubular neighborhood of ~D~ in ~D'. The bundle E ~ ~D{ 

k'-i 
is (-I) orientable. By excision, H,(EjbE) ~ H,(~D',U) . Consider 

F,(D',U). This is nonzero only in dimension Z and in this dimension 

it is infinite cyclic, where, by Lemma 10, 

= I 
k' (n'-l) ; if k' is even 

(k'-l) (n'-l) ; if k' is odd. 

We now analyze the cases where k' is odd or even separately. 

Suppose that k' is odd. Then Z = dim D and E + ~D{ is an 

orientable bundle with fiber D. Consequently, the inclusions of 
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the fiber (D, ~D)C---~ (Zi, ~Zi) and (D, 5D)t---> (E, ~E) induce isomorphisms 

of infinite cyclic groups H (Dj~D) _~ H (Zi,~Zi) and 

H (D,~D) _~ H (E,~E) . Consequently, the inclusions 

(D~D) C (ZijSZ i) c (E,~E) c (SD',U) c (D',U) induce isomorphisms 

H (D,~D) _~ H (Zi,~Zi) ~ H (E,~E) _~ Hz(~D',U) _~ H (D',U) _~ ~.. There- 

fore, by part 3) of Lemma 7, 

F, (Zi~ 5Zi) _~ F,(Vn, i) + ~ H,(D, SD) 

--~ F,(Vnji_ I) e F,(D',U) 

_~ F, (Zi_l,Wi_ I) 

where the isomorphism are induced by the inclusion 

(Zi,SZi)C--~(Zi_l,Wi_l)- 

(D,S) (D' ,U) 

(Z i,~Z i) £--) (Zi_l,Wi_ l) 

$ p $ 
Vn, i ~ Vnji-1 

Finally, suppose k' is even. In this case E is nonorientable 

and ~ = k' (n'-l) = (n'-l) + dim D. Rather than regard (Zi,SZi) as a 

bundle over Vn, i, regard it as a bundle over Vn, i_ 1 with projection 

map Zi ~ Vnji ~ Vn, i_l and with fiber 0(n') ×0(n,_l)D. Then 

F,(Zi,~Zi )+ _~ F,(Vn, i_l) ® F,(0(n') X0(n. i ) (D,~D)) + 

even~ F,(0 (n') is non-zero only in Also, since k' is ×O(n, i) (Dj~D)) + 

dimension ~ and 
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F (0(n') ×0(n'-l) (D3~D))+ (sn'-l) --~ Hn'-i ~ H(n'-!) (k'-l) (D~D) 

_~ F (N,~N) 

_~ F (D',U). 

Thinking of (Zi,~Zi) c (Zi_l,Wi_ I) as inclusion of a sub-bundle, we 

conclude that F.(Zi,~Zi )+ ~ F,(Zi_I,Wi_I) . 

0(n') ×0 (n'-l) (D, ~D) t~_> (D' ~U) 

(Zi~ 5Z i ) ~--9 (Zi_l~Wi_l) 

n, i - 1  
Q 

Proof o 4 Lemm a 3: It remains to use Lemmas 6 and ii to verify Steps 

2 and 3. As usual k' = k - i + 1. 

C ase !~ k' is even: 

H,(f I ~i_lBi;Z T) = 0. 

By Lemma 6, H,(flB" ;Z T) = 0 and 
l 

C o n s e q u e n t l y ,  

E2p,q(FIy .) ~ Hp(fl ;Fq(Zi)+) 
l -- 5i -IBi 

E2,q(FIN ) --~ Hp(fIB" ;Fq(Zi )+) • 
l l 

~i_iBi ) ) are odd Here we are using the facts that H,(f I and H,(flB i 

torsion and that T,(Zi) is 2-torsion to replace Hq(Zi)+ by its free 
+ 

part Fq(Zi) Also~ by Lemma 9~ the coefficients of 

E2p~q(FINi-I) -~ HP(flBi-I ;Fq(Zi-l)) 

are untwisted. By Lemmas 2 and 6)Hp(fl~i_iBi) ~ HP(flB')I + HP(flBi-I ) 

is an isomorphism. Since by Lemma llj Fq(Zi)+ ~ Fq(Zi_l) is an iso- 

morphism, it follows that E2(FIy ) E2(F + E 2 
-~ ] N i) (F ] N i_l ) is an 
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isomorphism. Consequently H, (F I Y'l ) ~ H, (F I N.I ) + H, (F 1Ni_l ) is an 

isomorphism and therefore FIX . is acyclic by Lemma 2. That 
1 

(FIxi,FIvxi) is also acyclic is proved similarly. 

Case 2, k' is odd: Using Lemma 6, 

E2 q(FIN ) = Hp(flB" ;Fq(Z i)-) 
l l 

and E2 q(FIy ) = C+ ~ C_~ where 
l 

= ;F (Zi) +) C+ Hp(f I ~i_iBi q 

C = Hp(f I ;F (Z i) ). 
- ~i_IBi q 

By Lemma 6, E 2 (FIy) ~ E~ P,q ,q(FINi) restricts to an isomorphism 
1 

C_ ~ E (FIN). By Lemmas 6 and ii, it restricts to an isomorphism 
l 

C+ ~ E (F I ). Consequently FIX is acyclic in the case also. 
- Ni-I i 

The proof that (FIx ,FI~x. ) is acyclic is similar. Q 
l l 

Finally~ we should mention a proposition which is a corollary 

to Le.~t~a I. 

Proposition 12: Suppose that F: (M,~M) ~ (M',~4') is a stratified 

map of k-axial 0 (n)-manifolds. Fix an inte.qer i, wit____~h 0 < i <. k + 1 

an___~d n - i even. Further suppose that F I 5M is acyclic and that for 

each j < i with n - j even the map Dj(M) ~ Dj(M') is acyclic. Then 

the~ ~D i(M) ~ ~D i (M') is acyc.lic. 

Proof: We have that ~Di(M ) is the union of Di(~M) and manifolds of 

the form NXj)/S0(i)~ where X. is a regular neighborhood of the union 
] 

of the j and (j-l) strata of M 0 (n-i) . By the Main Lemma and Lemma I, 
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the induced map is acyclic on each piece. Consequently, the proposi- 

tion follows from Mayer-Vietoris sequences in the usual fashion. 

D 

This proposition is necessary to doing the inductive surgery in 

Chapter VI. Its use will be made more explicit in a joint paper with 

Hsiang, Morgan, in which the results of Chapter VI are proved. 
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