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I. Contractible manifolds and aspherical manifolds. 

Suppose that M n is a compact, contractible n-manifold with boundary. 

These assumptions imply that the boundary of M has the homology of an 

(n-l)-sphere; however, they do not imply that it is simply connected. If 

n ~ 3, then for M n to be homeomorphic to a disk it is obviously necessary 

that ~M be simply connected. For n ~ 5 this condition is also sufficient 

(cf. [5], [13], [18], [19]). On the other hand, for n ~ 4, there exist 

examples of such M n with non-simply cormected boundary (cf. Ill], [12], [14]). 

In fact, if n ~ 6, then the fundamental group of the boundary can be any group 

G satisfying HI(G) = 0 = H2(G) (cf. [9]). 

A non-compact space W is simply connected at ~ if every neighborhood of 

(i.e., every complement of a compact set) contains a simply connected 

neighborhood of ~. Suppose W is a locally compact, second countable, 

Hausdorff space with one end (i.e., it is connected at ~). Then W can be 

written as an increasing union of compact sets W =~=I Ci where CICC2 ~ 

C..., and where each W - C i is connected. The space W is semi-stable if 

the inverse sequence 

~i (W-C1) + ~i (W-C2) + "'" 

satisfies the Mittag-Leffler Condition, i.e., if there exists a subsequence of 

epimorphisms. (This condition is independent of the choice of Ci.) If W is 

semi-stable, then the isomorphism class of the inverse limit ~T (W) = 

llm ~I(W-Ci) is independent of all choices (including base points). The space 

W is simply connected at ~ if and only if it is semi-stable and ~T (W) is 

trivial (cf. [6], [7], [17]). 

*Partially supported by NSF grant MCS-8108814(AOI). 
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Now suppose that W n is an open contractible n-manifold. If n ~ 3, then 

for W n to be homeomorphic to E n it is obviously necessary that it be simply 

connected at ~. For n ~ 4 this condition is also sufficient (cf. [5],[20]). 

If W n is the interior of a compact manifold M n, then, clearly, W n is 

semi-stable and ~I (W) ~ w I (~M). Hence, in view of our previous remarks, 

there exist examples which are not simply connected at ~, for any n ~ 4. 

(For n = 3, there is a well-known example of Whitehead [22] of an open 

contractible 3-manifold which is not simply connected at ~.) 

A space is aspherlcal if its universal cover is contractible. 

Aspherical manifolds arise naturally in a variety of geometric contexts. 

In such contexts the proof that the manifold is aspherlcal usually consists of a 

direct identification of its universal cover with Euclidean space. As examples 

we have: i) the universal cover of a Riemann surface of genus > 0 is either 

the plane or the interior of the disk, more generally, 2) if M n is any 

complete manifold of non-positive sectional curvature then the exponential map 

exp : T M ÷ M (at any point x ~ M) is a covering projection; hence, the 
x 

universal cover is diffeomorphic to T M ~ I n, and 3) if G is any Lie group 
x 

with maximal compact subgroup K and if F C G is any torsion-free discrete 

subgroup, then the universal cover of the manifold F\G/K is G/K which is 

diffeomorphic to Euclidean space. On the basis of such examples some people 

believed the following well-known conjecture (cf. [7], [8; p. 423]). 

CONJECTURE. The universal cover of any closed aspherical manifold is 

homeomorphic to Euclidean space. 

Of course, the issue here is not the existence of exotic contractible 

manifolds (they exist), but rather the existence of exotic contractible 

manifolds which simultaneously admit a group of covering transformations with 

compact quotient. Some positive results (i.e., non-existence results) have been 

obtained, e.g., in [6], [7], [I0]. 
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This paper, which is an expanded version of my lecture, is basically an 

exposition of some of the results of [3]. We shall discuss a method of [3] of 

using the theory of Coxeter groups to construct a large number of new examples 

of closed aspherical manifolds. Although the construction is quite classical, 

its full potential had not been realized previously. The most striking 

consequence of the construction is the existence of counterexamples to the above 

conjecture in each dimension ~ 4. 

In Section 2 of this paper we give some background material on Coxeter 

groups. In Section 3 we explain the construction in dimension two, where it 

reduces to the classical theory of groups generated by reflections on simply 

connected complete Riemann surfaces of constant curvature. The main results are 

explained in Section 4 where we consider the same construction in higher 

dimensions. In Section 5 we discuss a modification of the construction which 

gives many further examples. This modification is used in Section 6 to prove a 

result (the only new result in this paper) concerning the Novikov Conjecture. 

Finally, in Section 7 we discuss a conjecture concerning Euler characteristics 

of even-dlmensional closed aspherical manifolds. 

2. Coxeter groups. 

In this section we review some standard material on Coxeter groups. For 

the complete details, see [2]. 

Let ~ be a finite graph (i.e., a l-dimenslonal finite simplicial 

complex), with vertex set V and edge set E and let m : E + Z be a function 

which assigns to each edge an integer ~ 2. For each pair (v,w) e V × V put 

m(v,w) = 

1 ; if v = w 

m({v,w}); if {v,w} E E 

; otherwise. 

These data give a presentation of a group: 

r = <V;(vw) m(v'w) = i>, (v,w) ~ V x V. 
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Let (ev)v& V be the standard basis for the vector space 

symmetric hilinear form B on E V by 

E V. Define a 

B(ev,e w) = - cos(~/m(v,w)) 

(where ~/= is interpreted as 0). For each v ~ V, let o denote the 
v 

~V 
linear reflection on defined by Ov(X) = x - 2B(ev,X)e v and let ~ be the 

of GL(R v) generated by (av)v& V. (Note that ~ leaves the form B subgroup 

invariant.) 

Suppose that v,w are distinct elements of V, that P is the plane 

spanned by e and e and that m = m(v,w). The restriction of B to P is 
v w 

positive semi-definite and it is positive definite if and only if m # =. 

Moreover, if m is finite, then OvlP and OwlP are the orthogonal 

reflections through the lines orthogonal to ev and to ew, respectively, and 

these lines make an angle of ~/m. Hence, OvOwIP is a rotation through and 

angle of 2~/m and OvlP and OwlP generate a dihedral group of order 2m. 

Since o o fixes p_t, it follows that o o has order m. If m = ~, then 
V W V W 

one can easily show that c c has order m. 
v w 

It follows that the map 

the canonical representation of 

shows that a) the natural map 

order of i(v)i(w) is equal to m(v,w) 

Henceforth, we identify V with i(V). 

and F is a Coxeter group. The graph 

edges is the associated labelled sraph. 

v ÷ o extends to an isomorphism F + ~, called 
v 

F. The construction of this representation 

i : V + F is an injection, and that b) the 

(rather than just dividing m(v,w)). 

The pair (F,V) is a Coxeter system 

together with the labelling of its 

It follows from property b) above that 

the correspondence between labelled graphs and isomorphism classes of Coxeter 

systems is bijective. 

There is another way to record the same information as is contained in the 

associated labelled graph. Let ~' be the graph with the same vertex set V 

as ~ but with edge set E' obtained by first deleting the elements of E 
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labelled 2 and then adding edges for each unordered pair of distinct 

vertices {v,w} not in E (i.e., with m(v,w) = ~). As a notational 

simplification the edges labelled 3 are usually left unmarked. The graph ~' 

together with the labelling of its edges is called the Coxeter diagram of 

(F,V). A Coxeter system is irreducible if its Coxeter diagram is connected. 

Suppose that (F,V) is a Coxeter system. For any subset S of V 

denote by FS the subgroup generated by S. (It turns out that the pair 

(Ps,S) is also a Coxeter system.) If the Coxeter diagram of (P,V) has k 

components with vertex sets VI,...,Vk, then P = FVI × ... × FVk. 

Finite Coxeter groups. A Coxeter group P is finite if and only if the form B 

is positive definite. Suppose that this is the case. Let C be the simpliclal 

cone in ~V defined by the equations: B(ev,X) ~ 0, v ~V. Thus, (ev)v~ V is 

the set of inward pointing unit normals to the "panels" (i.e., codimension one 

~V 
faces) of C. Moreover, C is a closed fundamental domain for F on in 

the sense that it intersects each F-orbit in exactly one point. (It follows 

that the orbit space ~V/F is homeomorphlc to C.) 

Still supposing that P is finite, we have that order (vw) = m(v,w) < ~ 

for each pair (v,w) of vertices. Hence, the associated graph ~ is the 

1-skeleton of the simplex with vertex set V. On the other hand, it turns out, 

that each component of the Coxeter diagram ~' is a tree. The well-known list 

of Coxeter diagrams of irreducible Coxeter systems of finite Coxeter groups is 

given below. The list contains one infinite family 12(p) in dimension 2 

(where 12(P) denotes the dihedral group of order 2p), three families A A, B£, 

D~ in each dimension £ (with a few restrictions in low dimensions), and 6 

additional groups. 

Many of these groups have other convenient descriptions. For example, A A 

is the symmetric group on ~ + i symbols, while A3, B3, H 3 are the full 

groups of motions of regular solids, namely, the tetrahedron, the octahedron, 

and the icosahedron, respectively. 
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Coxeter Diagrams of Irreducible Finite Coxeter Groups 

A A 

Bp~ 

E 6 

E 7 

E 8 

Y 4 

R 3 

H 4 

12(P) 

. . . . .  (£ ~ I vertices) 

4 
(£ ~ 2 vertices) 

(£ ~ 4 vertices) 6 O 1 

i 
4 

(p ~ 5) 

3. The construction in dimension two. 

In dimension two all our constructions reduce to well-known classical 

results. We shall now review these results. 

Let X be a polygon. We shall find it convenient to work with the graph 

which is the dual of ~X. Thus, if V denotes the vertex set of ~ and E 

the edge set, then 

V = {edges of ~X} 

E = {{v,w}Iv,w ~ V, v ~ w, v~ w ~ ~}. 

Equivalently, E is the set of vertices of X. Choose a labelling 

m : E ÷ {2,3,...}. Thus, we label the vertices of X by integers ~ 2. 
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m(v,w) 

W 

The labelled graph ~ defines a Coxeter system (F,V). For each x in X, 

let V(x) denote the set of v in V such that x ~ v. Let FV(x) be the 

subgroup generated by V(x). (By convention P~ is the trivial group.) Thus, 

if x belongs to the interior of X, then FV(x) is trivial; if x belongs 

to the interior of an edge v, then PV(x) is the cyclic group of order 2 

generated by v; and if x is a vertex, then PV(x) is the dihedral group 

generated by the edges containing x. 

There is an obvious method for constructing a F-space "L( by pasting 

together copies of X, one for each element of P. To be precise, 

put q~= (F×X)/~,s where the equivalence relation ~" is defined by 

(g,x) ~ (h,y) <==> x = y and g-lh e FV(x). 

Let [g,x] denote the equivalence class of (g,x). There is a natural F-action 

on ~ defined by h[g,x] = [hg,x]. The isotropy group at [g,x] is clearly 

-i 
grv(x)g Since each of these isotropy groups is finite, it is easy to see 

that the action is proper. It is also not difficult to see that q~ is a 

2-manifold. (At each edge two copies of X fit together. At a vertex labelled 

m the picture is locally isomorphic to the canonical action of the dihedral 

group of order 2m on ~2.) 

mnm 
/\ }\/ 

\/\ 

\/\ 
/\/ 

-& 

/ 
\. 
/ 
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The surface ~ is simply connected. This can be seen geometrically using 

the developing map. (See Remark 1 at the end of this section or [21].) It also 

follows from the results of the next section. There is also a direct argument 

using covering space theory. (Let p :~+ ~ be the universal cover of "~, 

let ~ be a component of p-l(x), and let s : X + ~ be the inverse of the 

homeomorphism plX. Lift each involution v in V to an involution ~ on 

such that the fixed set of ~ contains the corresponding edge of X. This 

defines a lift of the F-action to . The mapping s: X ÷ X, then extends to a 

F-equivariant section ~÷ ~. Hence, the covering is trivial and rg~-is 

simply connected.) 

Since ~ is a simply connected surface, it is homeomorphic either to S 2 

or to ~2 The case ~ = S 2 occurs if and only if r is finite. By the 

classification of finite Coxeter groups described in the previous section, this 

happens if and only if X is a triangle and the set of labels {p,q,r} is 

either {2,2,r}, {2,3,3}, {2,3,4}, or {2,3,5} (corresponding, respectively, to 

the groups A 1 × 12(r),A3,B 3, or H3). 

The moral to be drawn from the above discussion is that apart from a few 

exceptional cases this construction always leads to a contractible 2-manifold 

~. As we shall see in the next section, virtually the same construction works 

in any dimension. The surprising fact is that, under a mild restriction, the 

resulting manifold is also contractible. 

At this point we have not yet constructed any closed aspherical manifolds. 

The problem is that the transformation group F does not act freely on ~,~. 

This can be remedied as follows. Suppose F is infinite and let r' be any 

torsion-free subgroup of finite index in F. (There are various algorithms for 

finding such subgroups; however, in general, none of them are very satisfactory. 

However, as we have seen in the previous section any Coxeter group is a subgroup 

of some linear group; hence, it follows from Selberg's Lemma (cf. [15]) that any 

Coxeter group is virtually torsion-free.) Since each F-isotropy group is 

finite, each F'-isotropy group is trivial; hence, ~÷ ~/r' is a covering 
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projection. Since [F:F'] < =, ~/r' is compact; hence, 2£/F' is a closed 

aspherical surface. 

REMARK I. Since the local picture in ~ near a vertex in X labelled m is 

isomorphic to the canonical action of the dihedral group of order 2m on R 2, 

we should think of the label as specifying an interior angle of ~/m at this 

vertex. Depending on whether the sum of this interior angles is greater than, 

equal to, or less than ~(Card V -2), X can be realized as a convex polygon 

in, respectively, S 2, the Euclidean plane R2, or the hyperbolic plane H 2 

with interior angles as specified by the labels. There is then a well-defined 

homomorphism from F onto ~, the group generated by the orthogonal 

reflections through the sides of this convex polygon. Using the F-actions, we 

obtain a map ~÷ M 2, where M 2 denotes the appropriate choice of S2,R 2, or 

H 2. This map is easily seen to be a covering projection. Since M 2 is simply 

connected, this map is a homeomorphism. It follows that ~ is discrete and 

isomorphic to F. 

The classification of finite Coxeter groups in dimension 3 can then be 

recovered from the facts that i) any convex polygon in S 2 with non-obtuse 

interior angles is a spherical triangle and 2) the sum of the interior angles 

in such a triangle is > ~. 

REMARK 2. In higher dimensions the situation with cocompact geometric 

reflection groups is as follows. In the spherical case, the group r is a 

finite Coxeter group and the fundamental chamber X is a spherical simplex. In 

the flat case, there is also a complete classification of possible Coxeter 

groups (cf. [2, p. 199]); moreover, X is a product of Euclidean simplices, one 

for each irreducible factor of F. In the hyperbolic case, the Coxeter group F 

must be irreducible; however, the chamber X need not be a simplex (as we have 

seen already in dimension 2). If it is a simplex, then there are only a few 

possibilities: 9 in dimension 3, 5 in dimension 4, and none in higher 

dimensions (cf. Exercise 15, p. 133 in [2]). In the general hyperbolic case, 

the situation is as follows. 
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In dimension 3 there is a rich theory and complete result due to Andreev (cf. 

[I] or [21]). In dimensions > 3 there are a few isolated examples but no 

general understanding of the possibilities; while in very high dimensions 

(something like dimensions > 30) Vinberg has apparently proved that cocompact 

hyperbolic reflection groups do not exist. In summary, relatively few Coxeter 

groups have representations as cocompact geometric reflection groups and in 

these cases, at least in dimensions > 3, there are very few combinatorial 

types of convex polyhedra which can occur as fundamental chambers. As we shall 

see in the next section, if we drop our geometric requirements, then the 

situation reverts to its original simplicity. 

4. The construction in dimension n. 

Let X be a compact, contractible n-manlfold with boundary and let L be 

a PL-triangulatlon of its boundary. The slmpllclal complex L will be used for 

two purposes. First, a Coxeter system will be constructed by labelling the 

edges of the 1-skeleton of L. Second, ~X will be given the structure of the 

dual cell complex to L. 

Let V be the vertex set of L, E the edge set, and ~ the 1-skeleton. 

There are two conditions which we want our labelling m : E + {2,3,...} to 

satisfy. The first condition is the following: 

(*) For each simplex S • L the subgroup rS, generated by S, is finite. 

This means that for any S ~ L if we discard the edges labelled 2, then the 

resulting labelled graph is the Coxeter diagram of a finite Coxeter group. For 

example, if L is an octahedron we could label its edges as below. In general, 

for any simplicial complex L if we label every edge by 2, then condition 

(*) holds, since in this case for each S G L we will have r S = (X/2X) S. 

The second condition is the converse to the first: 

(*~) If S is a subset of V such that F S is finite, then S • L. 
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I = A\ 
i v 

L is an octahedron with a vertex at ~. 

Since by construction an unordered pair of vertices {v,w} belongs to E if 

and only if m(v,w) < ~, this condition is vacuous for subsets of cardinality 

less than 3. Hence, condition (**) means that if ~ contains a suhgraph 

with vertex set S which is isomorphic to the 1-skeleton of a simplex and which 

is not equal to the 1-skeleton of a simplex in L, then the edge labels must be 

such that F S is infinite. For example, if L is the suspension of a 

triangle, then the labels p,q,r on the edges of the triangle must satisfy 

-i -I -i 
p +q +r < i. 

L is the suspension of a triangle with a vertex at m. 
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If any subgraph of ~ which is isomorphic to the l-skeleton of a simplex is 

equal to the l-skeleton of some simplex in L, then condition (**) 

holds vacuously. For example, the octahedron has this property as does any 

polygon with more than 3 edges. More generally, if L is any simplicial 

complex, then its barycentric subdivision has this property (cf. Lemma 11.3 in 

[3]). Therefore, conditions (*) and (**) are always satisfied if we replace 

L by its barycentric subdivision and label each edge 2 (or in any other 

fashion which satisfies (*)). We now assume that we have labelled the edges of 

L in some fashion so that conditions (*) and (**) hold and we let (r,V) 

denote the resulting Coxeter system. 

Next we cellulate ~X as the dual cell complex. Thus, for example, if L 

is an octahedron, X will be a cube. For each v • V, let X denote the 
v 

dual cell of {v} and for each simplex S ~ L, let X S be the dual cell of 

S. Thus, 

X S = v~ES Xv 

(The Xv, which are faces of codimension one in X, are called the panels of 

X.) Also, for each subset S of V put 

Xo(s) = v~,S Xv. 

If S is actually a simplex of L, then 

S in the barycentric subdivision of L. 

(D) If S E L, then the union of panels 

zero in 3X. 

For each xE X let V(x) = {v ~ Vlx ~ X } 
v 

x and let FV(x) be the subgroup generated 

X (S) is a regular neighborhood of 

Hence, 

X (S) is a disk of codimension 

be the set of panels which contain 

V(x). As before, we define a 
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F-space ~= (F×X)/-~, where the equivalence relation --J is defined exactly 

as in the previous section. The map x + [l,x] induces an embedding X + 2~. 

which we regard as an inclusion. Observe that a) X is a fundamental domain 

for F on ~ and that b) for each x e X the isotropy subgroup is FV(x). 

We claim that: 

(I) F acts properly on 2~. 

(2) ~ is a manifold and F acts locally smoothly. 

(3) ~ is contractible. 

(4) If L (=ax) is not simply connected, then 

connected at =. 

Basically, (I) is equivalent to condition (*), 

condition (**). 

?~ is not simply 

while (3) is equivalent to 

Proof of (i) and (2). To say that the cells of a polyhedron intersect in 

general position means that the dual polyhedron is a simplicial complex. Hence, 

the panels of X intersect in general position. This means that for each 

x e X we can find a neighborhood U of x in X of the form Rm × cV(x) 
x 

where gm is a neighborhood of x in ~(x) and where C v(x) is the standard 

simplicial cone in R V(x) Let W be the corresponding neighborhood • x = rv(x)Ux 

of x in ~. Recall that an action of a discrete group is proper if and only 

if (i) the orbit space is Hausdorff, (ii) each isotropy group is finite and 

(iii) each point has a neighborhood which is invariant under the isotropy 

subgroup and which is disjoint from all other translates of itself• 

Since 7~/r m X, (i) holds. Condition (*) implies (ii). Also, gW x is a 

neighborhood of [g,x] satisfying (iii). Hence, r acts properly. Since 

FV(x) is a finite Coxeter group, a fundamental chamber for its canonical action 

on Z V(x) is C v(x). Hence, rv(x)CV(X) m R V(x) and Wx = rv(x)Ux 

R m x l v(x). This shows that ~ is locally Euclidean and that the action is 

locally linear, proving (2). 

Proof of (3) and (4). For any g • F let £(g) denote its word length with 

respect to the generating set V. Let V g denote the set of "reflections" 

through the panels of gX (i.e., V g = gvg-l.) Put 
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C(g) = {w ~ vgl£(wg) < £(g)} and 

B(g) = (v ~ V I £(gv) < £(g)} = g-iC(g)g. 

(C(g) is the set of reflections across panels of gX such that the reflected 

image of gX is closer to X than is gX. B(g) is the set of reflections 

across these same panels after they have been translated back to X.) Also, put 

~(gX) = gX (B(g)), 

i.e., 6(gX) is the union of those panels of gX which are indexed by C(g). 

LEMMA A (cf. [3, Lemma 7.12] or [16, p. 108]). 

PB(g ) is finite. 

For any g ~ F, th___£e subgroup 

Sketch of Proof. Finite Coxeter groups are distinguished from inf~nlte Coxeter 

groups by the fact that each finite one has a unique element of longest length. 

It is not hard to see that rB(g ) has such an element. Explicitly, let h be 

the (unique) element of shortest length in the coset 

from Exercises 3 and 22, p. 43, in [2] that a = gh -I 

length in rB(g ). 

gFB(g ). Then it follows 

is the element of longest 

Q.E.D. 
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Next order the elements of F, 

gl,g2, .... 

so that ~(gi+l ) ~ A(gi). Since 1 is the unique element of length O, 

gl = I. For each integer m ~ I, put 

X = 6X = 6(gmX), m gm X' m 

m 

= ~Jx i. Tm i= I 

The next lemma asserts that the chambers intersect as one would expect them to. 

(For a proof see [3, Lemma 8.2].) 

LEMMA B. For each integer m ~ 2, XmO Tm_ 1 = 6X m. 

Thus, Tm is obtained from Tm_ 1 by pasting on a copy of X along a certain 

union of panels. 

By Lemma A, for each g • P the group rB(g ) is finite. Condition (**) 

implies that B(g) ~ L. Statement (D) then implies that the union of panels 

Xo(B(g)) is a disk of codimension zero in ~X for each g &r. Since 6x m = 

gmXo(B(gm ), this means that 6Xm is a disk of codimension zero in 8Xm. Hence 

T is the boundary connected sum of m copies of X. Since X is 
m 

contractible, so is Tm. Since ~ = Um=l T m, ~ is contractible, which 

proves 3). 

Since ~ is formed by successively pasting on copies of X (which are 

contractible) to T along disks, Z~- T is homotopy equivalent to ~T . 
m m m 

Since ~T is the connected sum of m copies of ~X, we have (provided 
m 

dim X ~ 3) t h a t  ~l(~Tm) i s  t h e  f r e e  p r o d u c t  of m c o p i e s  of ~ I (~X) .  
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Moreover, the map ~l(~-Tm+l) ~ ~l(~Tm+l) ÷ ~l(?~!-Tm) ~ ~I(~T m) induced by 

inclusion can clearly be identified with the projection onto the first m 

factors of the free product. In particular, this map is onto for each m ~ i. 

Thus, ~ is semi-stable and the inverse limit ~i (?'~) is the "projective 

free product" of an infinite number of copies of ~I (~X). Hence, if ~I(~X) 

is not trivial, then this inverse limit is not trivial (or even finitely 

generated). This proves (4). 

REMARK I. As we have previously remarked, F always contains torsion-free 

subgroups of finite index and any such subgroup F' leads to a closed 

aspherical manifold U/F' In view of the fact that ~X may be non-simply 

connected whenever dim X ~ 4, statement (4) implies that the conjecture of 

Section 1 is false in dimensions ~ 4. 

REMARK 2. In the special case where (F,V) is obtained by labelling each edge 

of a graph by 2, there is any easy construction of a torsion-free subgroup 

r'. Let (H,V) be the Coxeter system defined by setting m(v,w) = 2 for each 

pair {v,w} of distinct vertices in V. Thus, H is the finite Coxeter group 

(Z/2Z) V. There is a natural epimorphism ~ : F + H which is the identity on 

V. Let F' be the kernel of ~. If S is any subset of V such that F S 

is finite, then F s m ((Z/2Z) S = HS; hence, for any such S, ~ I F  s is an 

isomorphism onto H S. Since any finite subgroup of r is contained in some 

isotropy group and is consequently conjugate to a subgroup of some FS, we have 

that F' is torsion-free. (Incidentally, F' is the commutator subgroup.) If 

= (F×X)/~ , then there is an alternative description of the quotient 

~/F'. Namely, ~/F' ~ (H×X)/N' where (g,x)~' (h,x) ~ g-lh eHv(x). 

Thus, H acts a reflection group on 2~/F' with quotient X. 

REMARK 3. The construction of this section suggests several questions 

concerning fundamental groups at =. First of all, R. Geoghegan has conjectured 

that if the universal cover of a finite complex has one end, then it must be 
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semi-stable. After seeing the above construction, H. Sah and R. Schultz both 

asked if the fundamental group at = of the universal cover of a closed 

aspherical manifold can ever be non-trivial and finitely generated (i.e., can 

the universal cover be stable at ~ without being simply connected at ~). 

REMARK 4. There is some flexibility in the main construction of this section. 

First of all, for ~ to be contractible it is not necessary that each face of 

X be a cell. All that the proof requires is that X be contractible and that 

each proper face be acyclic. (For example, we can change a panel of X by 

taking connected sun with a homology sphere.) Secondly and more interestingly, 

it is not necessary for the simplicial complex L to be a PL triangulation of 

a homology sphere. All that is required is that L have the homology of an 

(n-1)-sphere and that it be a polyhedral homology manifold (i.e., the link of 

each k-simplex must have the homology of an (n-k-2)-sphere). Any such L can 

then be "dualized" (i.e., "resolved") to produce a contractible n-manifold X 

with contractible faces. This X can then be used to produce a contractible 

as before. If one is interested in constructing proper, locally smooth 

actions of a discrete group generated by "reflections" on a contractible 

manifold with compact quotient, then there is no further flexibility. That is 

to say, with the above two provisos, every cocompact reflection group on a 

contractible manifold can be constructed as above (cf. [3]). However, as we 

shall see in the next section, there is quite a bit more flexibility if we are 

only interested in producing more examples of aspherical manifolds. 

5. ~ seneralization. 

We begin this section by considering a modification of our construction in 

dimension 2. Rather than starting with the underlying space of X a 2-disk, 

let it be any compact surface with nonempty boundary. Take a polygonal sub- 

division of the boundary and label the vertices by integers ~ 2. For example, 

X could be one of the "orbifolds" pictured below with random labels on the 

vertices. The polygonal subdivision of the boundary together with the labelling 
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defines a Coxeter system (F,V). As before, paste together copies of X to 

obtain a surface Z~ (=(F×X)/~) with F-action. The surface Z~ will no 

longer be contractible, but it will be aspherical provided X is not a 2-disk. 

(After all, almost every surface is aspherical.) If T' is any closed 

torsion-free subgroup of finite index in F, then U/F' will be a closed 

aspherical surface. 

Next let us try to make the same modification in an arbitrary dimension. 

Let X be a compact aspherical n-manifold with boundary. (The boundary need 

not be aspherical.) Let L be a triangulation of BX. After possibly 

replacing L by its barycentric subdivision, we can find a labelling of its 

edges so that the resulting Coxeter system (F,V) satisfies conditions (*) and 

(**). As in Section 4, there results an n-manifold ~ with proper F-action. 

The proof of Claim (3) in Section 4 shows that ~( is homeomorphic to the 

infinite boundary connected sum of copies of X. Since X is aspherical, so is 

(the wedge of two aspherlcal spaces is again aspherical). The fundamental 

group of ~ is an infinite free product of copies of Wl(X). If F' is a 

torsion-free subgroup of finite index in F, then ~/F' is a closed 

aspherical manifold; its fundamental group is, of course, an extension of r' 

by ~i (~). 

REMARK. One can imagine situations where it would be convenient if one could 

double a compact aspherical manifold along its boundary and obtain a closed 

aspherical manifold as the result. However, the doubled manifold is not 
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aspherical unless the boundary is aspherical and its fundamental group injects 

into the fundamental group of the original manifold. The method described above 

can be viewed as a fancy method of doubling so that the result will be 

aspherieal. 

In [21] Thurston considers the above construction for certain compact 

aspherical 3-manifolds. (In fact, the discussion in [21] inspired the results 

of Sections 4 and 5.) Thurston shows that with a few more hypotheses the 

3-dimensional orbifold can be given a hyperbolic structure. This allows him to 

"double" certain hyperbolic 3-manifolds along their boundaries (or actually 

sub-surfaces of their boundaries). This "orbifold trick" plays an important 

technical role in the proof of his famous theorem on atoroidal Haken 

3-manifolds. 

6. An observation concerning the Novikov Conjecture. 

A group is geometrically finite if it is the fundamental group of an 

aspherical finite complex (or equivalently, if it is the fundamental group of an 

aspherical compact manifold with boundary). 

If M n is a manifold with boundary with fundamental group 7, then there 

is a surgery map ~ : [(M,~M);(G/TOP,*)] ÷ Ln(Z). The map s need not be a 

homomorphism; however, it is if we replace M by M × D i, i > O, and ~M by 

B(M×Di). 

The Novikov Conjecture for a geometrically finite group ~ asserts that if 

M n is any aspherical compact manifold with fundamental group ~, then o : 

[MxI,B(Mxl),(G/TOP,*)] + Ln+l(Z ) becomes a monomorphism after tensoring with 

the rationals. A stronger version of this asserts that o is a monomorphism. 

(See [4] for a discussion of these conjectures.) 

PROPOSITION. If the Novikov Conjecture (resp. the strong version of the Novikov 

Conjecture) holds for the fundamental group of every closed aspherical manifold, 

then it holds for every geometrically finite group. 

*The fact that the construction of the previous section could be used to prove 
this proposition first came up during a conversation with John Morgan. 
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Proof. Let (X,~X) be an aspherical compact manifold with fundamental group 

~. Triangulate ~X, take the barycentric subdivision, and label each edge by 

2 to form a Coxeter system (F,V). Let H = (Z/2%) V, F' = ker(F+H), 

Z~ = (FxX)/~, and gg' = ~/F' = (H×X)/-w', be as in Remark 2 of Section 4. 

There is a commutative diagram 

[ (X ,~X) ,  (G/TOP,*)]  O'-~ L (~) 
n 

+ A* + i, 

[~/,. ' ,  G/TOP] o L ( ~ ' )  
n 

where A : U' ÷ X/~X is the map which collapses everything outside X to a 

point, where ~' = Zl('~'), and where i, is the map induced by the inclusion 

= ~I(X)~-+ ~I(Z~') = ~'.The proposition follows easily from the next claim. 

(If o is not a homomorphism, then replace X by X × D 4, ~X by ~(X×D4), ~' 

by ~' × D 4 and [Z~',G/TOP] by [(~'xD 4, Z4.'×$3); (G/TOP,*)].) 

CLAIM. The map A : [(X,~X),(G/TOP,*)] + [~',GITOP] is a monomorphism. 

Proof of Claim. We first proved the corresponding statement in cohomology° The 

argument is based on the existence of an "alternation map" (cf. Section 9 in 

[3]). If ~ is a singular chain in X, then we can "alternate" it to form the 

chain 

A(cO = ~ ( - 1 ) £ ' h ' h (  ~ • c~ 
h•H 

in ~'. The map ~ ÷ A(=) clearly vanishes on C,(~X); hence, there is a 

C chain map A : C,(X,~X) ÷ ,(Z4J ). This induces a homomorphism A : H (~') ÷ 

* , * * , 

H (X,~X) which is a splitting for A : H (X,~X) + H (Z~'). Hence, A is a 

split monomorphism on cohomology (with arbitrary coefficients). Since for any 

4* * 
space Y, [Y,G/TOP] ~ ~ m ~ H (Y;~), this is enough to prove that A is 

rationally a monomorphism on [(X,~X),(G/TOP,*)]. (Hence, the proposition holds 

for the weak version of the Novikov Conjecture.) According to Sullivan's 

calculation of the homotopy type of G/TOP, showing that A is a monomorphism 
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is equivalent to showing that it is a monomorphism on H ( ,Z(2)) and on 

KO ( ) ~ Z[½]. We have a l r e a d y  proved i t  f o r  o r d i n a r y  cohomology w i t h  

arbitrary coefficients. To prove the corresponding statement for an 

extraordinary cohomology theory we first need to make some small modifications. 

Let R be a ring in which IHI is invertible (i.e., in which 2 is 

invertible). Put 

~ = IHI -I Z (-l)£(h)h ~ R[H]. 
hEH 

For any R[H]-module M define a submodule M Alt = {z~Mlvz = -z,Vv~V}. 

easily checked that 

(a) ~2 = 

(b) MAlt = Image(~:M+M). 

For an arbitrary cohomology theory it is not clear how to split 

However, suppose ~*( ) is a cohomology theory with value in 

that 2 is invertible in R (e.g. ~*( ) = KO ( ) ~ Z[½]). 

the singular set. By excision, 

(c) ~*(~',Z) m Z ~ (X,~X) from which it follows that 
h~H 

(d) ~*(Zg',Z) Alt * 2@ (x, ~x). 

Using (a), (b), and the sequence of the pair (~',Z), we find that 

~*(ZL,)AIt * , Z) Alt. 7~ (~ , Hence, there is a map 

A . 

It is 

R-modules and 

Let Z C Z4 be 

: ~*(7~') + ~*(Z~') Alt = ~ (X,~X) 

which splits A . This proves the claim and consequently, the proposition. 

7. The rational Euler characteristic and some conjectures. 

Associated to any orbifold there is a rational number, called its "Euler 

characteristic," which is multiplicative with respect to orbifold coverings (cf. 

[21]). If the orbifold is cellulated so that each stratum is a subcomplex, then 

this is defined as the alternating sum of the number of cells in each dimension 
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where each cell is given a weight of the inverse of the order of its isotropy 

group. 

We suppose, as usual, that X n 

L is a triangulation of ~X, that 

is a compact n-manifold with boundary, that 

(F,V) is a Coxeter system obtained by 

labelling the edges of L, that condition (*) of Section 4 is satisfied, and 

that ?.~: (FxX)/~. For each S • L, let X S ~ ~X be the dual cell of S. 

Let e(X) be the ordinary Euler characteristic of the underlying topological 

space of X minus that of 8X. The rational Euler characteristic of X is 

then defined by 

(I) x(X) : e(X) + 
dim X S 1 

E ( - i )  
S£L - ~ -  

= e(X) + (-i) n E (-I) Card(S) 1 

S6L T~T 

where IFSI denotes the order of F S • 

torsion-free subgroup of finite index in F, then 

Also, if ?J- is contractible, then x(X) = X(F), 

Euler characteristic as defined in [16]. 

then 

It is then clear that if F' is a 

x(ZUF') = [r:r']x(X). 

where X(F) is the rational 

For example, if X is a triangle and ~ is the (p,q,r)-triangle group, 

3 1 1 1 1 -I 
x(X) = i - ~ + (T~p + 7~q + ~7r ) = 7 ((p +q-1+r-t)-1)" 

If M 2 is a closed surface which is aspherical, then x(M 2) ~ 0. 

follows that if N 2k 2 2 = M I x ... x M k is a product of closed aspherical 

surfaces, then (-I)kx(M 2k) > 0. 

A well-known conjecture of Hopf is the following: 

It 

CONJECTURE 1 (Hopf). If M 2k is a closed manifold of non-positive sectional 

curvature, then (-I)kx(M 2k) > 0. 
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This was proved by Chern for 4-manifolds and by Serre [16] for local symmetric 

spaces. Recently, H. G. Donnelly and F. Xavier have established it under a 

hypothesis of pinched negative curvature. 

More generally W. Thurston has asked if the following conjecture is true. 

CONJECTURE 2 (Thurston). If M 2k 

(-1)k×(M 2k) > O. 

is a closed aspherical manifold, then 

It should be pointed out that this conjecture contradicts another conjecture of 

Kan-Thurston which asserts that any closed manifold has the same homology as 

some closed aspherical manifold. 

Conjecture 2 implies the following conjecture. 

CONJECTURE 3. Le___~t x2k,~,~ be as above and let ×(X) denote the rational 

Euler characteristic. If ~J. i__ss aspherical, then (-l)k×(x 2k) ~ 0. 

One might try to construct a 4-dimensional counterexample to the above 

conjecture as follows. Let X be a 4-cell and L some specific triangulation 

of S 3. Label the edges in L in some fashion so that conditions (*) and 

(**) hold and calculate ×(X) using (i). After making a number of such 

calculations and having the result invariably come out non-negative, I now 

believe Conjectures 2 and 3 are true. A more or less random example of such a 

calculation is included below. 

EXAMPLE. Let J be a triangulation of S 2 and let L be the suspension of 

J. Label each edge in J by 2 and each edge in L-J by 3. This satisfies 

(*). If J is not the boundary of a tetrahedron and if each circuit of length 

three in J bounds a triangle then it also satisfies (**). Let a i denote 

the number of i-simplices in J. Let us calculate ×(X) using 

(i) x(X) = 1 + E (-I)Card(S)IPSI-I 

S~L 
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i 
There are (a0+2) vertices in L each of weight ~; hence, the vertices 

1 
contribute - ~ (ao+2). There are two types of edges: a I of type " (weight 

i 1 1 
) and 2a 0 of type ~ (weight ~); hence, the edges contribute ~ a I + ~ a 0. 

1 
There are two types of triangles: a 2 of type °'" (weight ~) and 2a I of 

type = ~ = (weight i__) i i 24 ; hence the triangles contribute - (~ a2+ T~ a3). 

i 
There are 2a 2 tetrahedron each of type ~ (weight i-~); hence, the 

i 
tetrahedra contribute ~ a 2. Thus, 

1 1 1 1 1 1 
x(X) = i - ~(a0+2 ) + (5 al+ ~ a0) - (8 a2+ ~al) + ~ a2 

1 ii 
= ~(-a0+al- ]-~a2). 

Since a 0 - a I + a 2 = 2 and 3a 2 = 2a 1, we can rewrite this as 

1 (5ai_2). 
x(X) = ~ 24 

If this is to be < 0, then we must have 

1 
a I ~ 9, then the equation a 0 - ~ a I = 2 

or (5,9). The first case can only happen if 

hedron and the second only if J 

triangle. In either case (**) 

X(x) > O. 
1 

The geometric picture of X 

cellulated as the dual polyhedron to 

Combinatorially, X is y x I; 

and y x {i} meet each (face of 

48 
a I !--~ < i0. Thus, a I ~ 9. If 

implies that either (a0,a 1) = (4,6) 

J is the boundary of a tetra- 

is the suspension of the boundary of a 

does not hold; while in every other case 

is as follows. Let Y be a 3-cell with 

J and with all dihedral angles 90 ° . 

~Y 

however, the top and bottom faces y x {0} 

Y) ~ I at a dihedral angle of 60 ° . 
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