
NONPOSITIVE CURVATURE OF BLOW-UPSM. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTT0. IntroductionConsider the following situation: MC is a complex manifold of complex dimen-sion n, and DC is a union of smooth complex codimension-one submanifolds (i.e.,DC is a smooth divisor). Examples of this situation include: (1) arrangements ofprojective hyperplanes in C Pn , as well as various blow-ups of such arrangementsalong intersections of hyperplanes, (2) nonsingular toric varieties (where DC isthe complement of the (C � )n-orbit), and (3) certain compacti�cations of point-con�gurations in C P1 (where DC is the complement of the nondegenerate con-�gurations). In such examples there is often a \real version" of (MC ; DC ) whichwe will denote by (M;D). By this we mean that M is the �xed point set of asmooth involution on MC which is locally isomorphic to complex conjugation onC n and that D = DC \M . Thus, M is a smooth n-manifold and D is a unionof codimension-one smooth submanifolds. Our primary interest in this paper isthe geometry and topology of the pair (M;D). The examples in which we areinterested will have the features discussed in (A), (B), and (C) below.(A) Cellulations by polytopes. The divisor D cuts M into regions, called cham-bers, which are combinatorially equivalent to convex polytopes. In this case, wesay D gives a cellulation of M . In addition, D will be locally isomorphic to anarrangement of hyperplanes. (If D has the last property, then each dual cell in Mwill be a \zonotope".)(B) The associated cellulation by cubes. If the above cellulation is by simplepolytopes (an n-dimensional polytope is simple if n-edges meet at each vertex),then so is its dual cellulation. Moreover, these cellulations will have a commonsubdivision by cubes.(C) Nonpositive curvature and asphericity. Any cubical cell complex K has anatural piecewise-Euclidean structure in which each cell is identi�ed with a regularEuclidean cube of some �xed size (say, of edge length 1). This then de�nes a \lengthmetric" on each component of K: the length of a linear path in some cell is itsEuclidean length, and the distance between two points in K is the in�mum of thelengths of all piecewise linear paths between them. It follows that any two pointsin the same path component of K can be connected by a geodesic segment (ageodesic segment is the image of an interval under an isometric embedding). ByFirst author partially supported by NSF grant DMS9505003.Second author partially supported by a KBN grant.1



2 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTTcomparing small geodesic triangles in K with the corresponding triangles of thesame edge lengths in the Euclidean plane, it then makes sense to ask if K hasnonpositive curvature in the sense of Aleksandrov. Gromov has shown that for acubical complex K, there is a simple combinatorial condition that is necessary andsu�cient for this to be the case. The condition is that the link of each vertex inK is a \ag complex" (see Section 1.6). Gromov has also shown that the universalcover of a nonpositively curved space is contractible. Thus, if the link of eachvertex in a cubical complex K is a ag complex, then K is aspherical. In otherwords, it is a K(�; 1)-complex. (For a more detailed discussion of this material,see [G] or [D3].) One of the main points of this paper is to show that for many ofthe examples in which we are interested, Gromov's condition holds. Thus, thesemanifolds admit piecewise Euclidean metrics of nonpositive curvature, and hence,are aspherical spaces.0.1. Real subspace arrangements. Let V be a �nite dimensional real vectorspace. Let H1; : : : ; Hm be a collection of linear hyperplanes in V , and let H bethe collection of all possible intersections of these hyperplanes. We call H thehyperplane arrangement generated by fH1; : : : ; Hmg. Let S(V ) denote the spherein V and P(V ) the projective space of V . For 1 � i � m, P(Hi) is a projectivesubspace of codimension-one in P(V ); thus D = P(H1) [ � � � [ P(Hm) is a divisorin P(V ). The arrangement H is essential if H1 \ � � � \ Hm = 0. We suppose thatthis is the case. Then the Hi cut V into polyhedral cones and S(V ) into sphericalpolytopes. Since these spherical polytopes occur in pairs, consisting of a polytopeand its image under the antipodal map, we get a similar description of P(V ). Thus,D gives a cellulation of P(V ) as in paragraph (A) above. The arrangement H issimplicial if each cell in this cellulation of P(V ) is a simplex. Next we give someexamples of simplicial arrangements.Example 0.1.1. The coordinate hyperplane arrangement (also called the Booleanarrangement). Let V = Rn+1 and let Hi, i = 1; : : : ; n + 1, be the hyperplanede�ned by xi = 0. Then fHig generates the coordinate hyperplane arrangement.The divisor P(H1) [ � � � [ P(Hn+1) cuts P(V ) (otherwise, known as RPn) into 2nn-simplices. The picture for n = 2 is given in Figure 1.Example 0.1.2. The braid arrangement. Let V be the hyperplane in Rn+2 de�nedby Pxi = 0. For 1 � i < j � n + 2, let Hij denote the hyperplane in V de�nedby xi = xj . Then H = fHijg generates the braid arrangement. The symmetricgroup Sn+2 acts on V by permuting the coordinates. The transposition (ij) actsas orthogonal reection across Hij . The union of the Hij cuts V into simplicialcones, each of which is a fundamental domain for the action of Sn+2. It followsthat the union of the P(Hij) cuts P(V ) apart into (n+2)!=2 simplices. The picturefor n = 2 is also given in Figure 1.Example 0.1.3. Reection arrangements. More generally, suppose that W is a �-nite group of linear transformations of V generated by orthogonal reections. Then
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Coordinate arrangement Braid arrangementFigure 1.W is a Coxeter group. Further, assume that the representation of W on V is es-sential in the sense that the �xed subspace is f0g. Then the arrangement H ofall reection hyperplanes is essential and simplicial. This is a generalization of theprevious two examples: if the Coxeter diagram of W is �{� � � � �{�, then we havethe braid arrangement; if it is � � � � �� �, then we have the coordinate hyperplanearrangement.Blow-ups of projective arrangements. Let A be a linear subspace of V andP(A) the corresponding projective subspace of P(V ). To blow-up P(V ) along P(A),remove P(A) and replace it by the projective space bundle associated to the normalbundle of P(A) in P(V ). The projective space bundle (now a codimension-onesubmanifold of the blow-up) is called the exceptional divisor. If A is a hyperplane,then blowing up along P(A) does not alter P(V ). However, if A is of codimensiongreater than one, then the blow-up along P(A) is a new manifold denoted byP(V )#P(A). Now suppose that H is an arrangement of hyperplanes in V and that Ais some intersection of hyperplanes in H. Then for each subspace B 2 H such thatB 6� A, the blow-up P(B)#P(B\A) can be identi�ed with a smooth submanifold ofP(V )#P(A). This submanifold is called the proper transform of P(B). The union ofthe codimension-one proper transforms of the P(B), B 2 H, and the exceptionaldivisor give a new divisor D# in P(V )#P(A). We can then continue in this fashion,blowing up along iterated proper transforms of elements in H. We denote such aniterated blow-up by P(V )# with corresponding divisor D#.If the arrangement H is essential, then the divisor D gives a cellulation of P(V )by polytopes and D# gives a cellulation of P(V )#P(A). These two cellulations (ofdi�erent manifolds) are related as follows. The cellulation of P(V )#P(A) is ob-tained by truncating each chamber of P(V ) which meets P(A) in a face (of thesame dimension as P(A)) and then gluing this truncated chamber to the antipodal



4 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTTchamber across P(A). For example, consider the coordinate hyperplane arrange-ment in RP2 in Figure 1. It gives a cellulation of RP2 by 4 triangles (any two ofwhich share the same three vertices). Blow up one of these vertices. The resulting2-manifold is RP2#RP2 , which is a Klein bottle. The truncation of each triangleis a square, so we obtain a cellulation of the Klein bottle by 4 squares. Similarly,we could have blown up all three vertices. The result would be the non-orientablesurface with Euler characteristic �2 cellulated by 4 hexagons.In [DP1], De Concini and Procesi de�ne the notion of a \building set" for ahyperplane arrangement H. Roughly speaking, this is a collection of subspacesin H for which: (1) the iterated blow-up along proper transforms of elements inthis collection does not depend on the order of the blow-ups (for subspaces ofany given dimension), and (2) the resulting divisor D# in P(V )# has normalcrossings. In particular, they show that given any subspace arrangement, there isa maximum building set as well as a minimum one. For a hyperplane arrangement,the maximum building set consists of all intersections of hyperplanes, while theminimum building set consists of the \irreducible" intersections (see Section 3.1).Given a hyperplane arrangementH, we denote the corresponding minimal blow-upP(V )#min and the corresponding maximal blow-up P(V )#max.For the purposes of obtaining manifolds that satisfy conditions (A)-(C) above,we introduce the weaker notion of a \partial building set" for H, dropping therequirement that D# have normal crossings. In Section 3, we will give necessaryand su�cient conditions on a partial building set guaranteeing that the iteratedblow-up P(V )# will be cellulated by simple polytopes (in which case the dualcellulation will be by simple zonotopes). Hence, by (B) and (C) above, these blow-ups will have natural cubical subdivisions and natural piecewise Euclidean metrics.In particular, any building set will satisfy these conditions (the normal crossingcondition (2) is equivalent to the dual zonotopes all being cubes). We shall provethe following two theorems in Section 4 and Section 5.Theorem 0.1.4. Let H be an essential hyperplane arrangement in V . Then themaximal blow-up P(V )#max has a nonpositively curved, cubical structure in thesense of paragraph (C) above. In particular, P(V )#max is aspherical.Theorem 0.1.5. Suppose H is a simplicial hyperplane arrangement in V . Thenthe following statements are equivalent.(i) The arrangement does not admit a decomposition into 3 or more irreduciblefactors.(ii) P(V )#min is aspherical.(iii) The natural cubical structure on P(V )#min is nonpositively curved.Before discussing more speci�c examples of these blow-ups, we need to de�netwo special polytopes, the permutohedron and the associahedron.Pick a point in the complement of the n-dimensional braid arrangement andconsider its orbit under the symmetric group Sn+1. The convex hull of such an orbitis an n-dimensional permutohedron. A 2-dimensional permutohedron is a hexagon.Alternatively, start with an n-simplex and truncate all of its faces of codimension�



NONPOSITIVE CURVATURE OF BLOW-UPS 52. Thus, the maximal blow-up of any simplicial projective hyperplane arrangementis cellulated by permutohedra.Consider the Coxeter diagram of An+1: �{� � � � �{�. Its nodes correspond to thecodimension-one faces of an n-simplex, and proper subsets of the set of nodes cor-respond to proper faces of the simplex. Truncate the faces of the simplex which cor-respond to connected subdiagrams of An+1. The resulting n-dimensional polytopeis the associahedron. For example, a 2-dimensional associahedron is a pentagon.These polytopes were described almost 35 years ago by Stashe� [St] in connectionwith the higher associativity properties of H-spaces.Example 0.1.6. The maximal blow-up of the coordinate hyperplane arrangement inRPn . This is cellulated by 2n permutohedra, all of which meet at any given vertex.There is a dual cellulation by \big cubes" (zonotopes) as in paragraph (A), and acommon subdivision of the two cellulations by \small cubes" as in paragraph (B).The n = 2 picture is shown in Figure 2 with a permutohedron (lightly shaded), bigcube (in grey), and small cube (in black). In the �gure, the blow-up is obtainedby removing the interiors of the 3 white squares and identifying antipodal pointson their boundaries.

Figure 2.



6 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTTExample 0.1.7. The minimal blow-up of the braid arrangement in RPn . This n-manifold, denoted P#min is cellulated by (n + 2)!=2 associahedra, 2n of whichmeet at any vertex. (See [Ka1], section 4.) Again, there is a dual cellulation by bigcubes. For example, when n = 2, P#min is the blow-up of RP2 at 4 points (the triplepoints in Figure 1); hence, it is the nonorientable surface of Euler characteristic�3,cellulated by 12 pentagons (See Figure 3. Again, opposite points on the boundaryof each of the white hexagons are identi�ed.)

Figure 3.Example 0.1.8. Oriented blow-ups and complements of real arrangements. As anapplication of partial building sets, we consider the K(�; 1)-problem for comple-ments of real codimension-2 arrangements. Instead of replacing P(A) in P(V ) withthe associated projective-space bundle of its normal bundle, one could just as wellreplace it with the associated sphere bundle. Topologically, this operation is equiv-alent to removing an open tubular neighborhood of P(A), producing a manifoldwith boundary. As before, we can iterate this blow-up procedure, obtaining a man-ifold with corners which is cellulated by convex cells. We denote this \oriented"blow-up of P(V ) with respect to a partial building set by P(V )�. If E is the setof all codimension � 2 subspaces in the partial building set, then it follows thatP(V )� and the complement P(V )�E are homotopy equivalent. Moreover, we will



NONPOSITIVE CURVATURE OF BLOW-UPS 7show in Section 3.5 that P(V )# is nonpositively curved if and only if P(V )� isnonpositively curved. Using these facts, we prove the following theorem in Section4.4, settling a conjecture of Khovanov [Kh].Theorem 0.1.9. Let E be a W -stable union of codimension-2 subspaces in a realreection group arrangement. Then the natural cubical metric on the oriented blow-up is nonpositively curved; hence, P(V )�E is aspherical.0.2. Toric varieties. Consider the action on C PN of the algebraic torus HNC =(C � )N+1=(C � ). By a nonsingular toric variety, we shall mean a complex subman-ifold MC � C PN that is the closure of an orbit of an n-dimensional algebraicsubtorus HnC � TN (where the orbit has trivial isotropy subgroup). Such anMC is a union of HnC -orbits. Let Tn = (S1)n be the compact subtorus of HnC .Both the algebraic and compact torus act on MC . There is a \moment map"� : MC ! Rn which serves as a quotient map for the Tn-action in the followingsense ([Jur],[A],[GS]); the image is a simple convex polytope P , � is constant onTn-orbits, and the induced map � :MC =Tn ! P is a homeomorphism. Moreover,the preimage of a k-dimensional face of P is a complex k-dimensional submanifoldof MC . In particular, the preimage of the boundary of P , called the toric divisorand denoted DC , is a union of complex codimension-one submanifolds.Let HNR and HnR be the real parts of HNC and HnC , respectively. Let J = Tn\HnR,the maximal compact subgroup of HnR (so J �= (Z2)n and HnR �= J � (R+ )n, whereR+ denotes the positive real numbers). Then HnR acts on MC and we let M denotethe closure of a generic orbit. Each of the 2n components of such an orbit is mappedhomeomorphically by � onto the interior of P , and the restriction � : M ! P isa quotient map for the J-action. It follows that M is cellulated by 2n copies ofP , and since the J-action is locally standard (Section 2.2), the complement of thegeneric orbit is a divisor with normal crossings. As in paragraph (A) there is adual cellulation of M by big cubes and a common subdivision by small cubes.The resulting piecewise-Euclidean metric is nonpositively curved if and only if theboundary complex of P is dual to a ag complex. The following theorem is provedin Section 2.Theorem 0.2.1. Let MC be a smooth (projective) complex toric variety with realpart M and moment polytope P . Then the following statements are equivalent.(i) M is aspherical.(ii) The boundary complex of P is dual to a ag complex.(iii) The dual cubical cellulation of M is nonpositively curved.Example 0.2.2. The closure of a generic torus orbit in a generalized ag manifold.Suppose GC is a complex semisimple Lie group of rank n with maximal torusHC (�= (C � )n) and maximal compact subgroup U . Let HR be a maximal R-splitsubtorus of HC , let GR be the real Lie group corresponding to HR, and let K =U \ GR. Then T = HC \ U and J = HR \K are isomorphic to (S1)n and (Z2)n,respectively. Let BC be the Borel subgroup of GC corresponding to HC , and let



8 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTTBR = GR \ BC . Then GC =BC = U=T and GR=BR = K=J are both compactmanifolds.There are natural left actions of HC on GC =BC and HR on GR=BR. Moreover,there are projective embeddings into C PN and RPN , resp., such that these torusactions are restrictions of actions of subgroups of the diagonal (see, for example,[FH]). Let MC (resp., M) be the closure of a generic HC -orbit (resp., HR-orbit).ThenMC is a nonsingular toric variety with real partM . The image of the momentmap can be identi�ed with a \generalized permutohedron", i.e., the convex hullof an orbit of the Weyl group action on Rn . Since the boundary complex of ageneralized permutohedron is a ag complex (c.f., Lemma 1.6.4), M is alwaysnonpositively curved.For example, if GC = SL(n + 1; C ), then HC is the set of diagonal matrices.Let BC denote the Borel subgroup corresponding to HC . Then MC = GC =BC(resp., M = GR=BR) is the variety of full ags in C n+1 (resp., in Rn+1 ). Thecorresponding Weyl group orbit is the generic one, and the convex hull of an orbitis the n-dimensional permutohedron. Thus, M is cellulated by 2n copies of thepermutohedron. Since the dual polytope of the permutohedron is a ag complex,M is aspherical. These manifolds M are interesting for a number of reasons. Forexample, they support a \Toda ow" which has recently been studied by Kodamaand Ye [KY].0.3. Point con�gurations and Chow quotients. The minimal blow-up of thebraid arrangement in Pn (Example 0.1.7) has been shown by Kapranov in [Ka1]and [Ka2] to coincide with some other spaces of classical importance. These include(1) certain compacti�cations of (n + 3)-point con�gurations in RP1 , and (2) the\Chow quotient" of the Grassmannian G(2; n + 3) of 2-planes in Rn+3 by thediagonal (R� )n+3-action. We give a rough summary here.Let U denote the set of generic GL(2;R)-orbits in (RP1)n+3 (where the actionis diagonal). Let U 0 be the set of generic (R� )n+3-orbits in G(2; n + 3). Thereis a bijection U ! U 0 (the Gelfand-MacPherson correspondence [GM]) given asfollows. The GL(2;R)-orbit of the point ([x1; y1]; : : : ; [xn+3; yn+3]) in (RP1)n+3corresponds to the (R� )n+3-orbit of the 2-plane spanned by x = (x1; : : : ; xn+3)and y = (y1; : : : ; yn+3). The set U (respectively, U 0) is naturally realized as asubset of the Chow variety C (resp., C0) which parameterizes generic GL(2;R)-orbit closures in (RP1)n+3 (resp., generic (R� )n+3-orbit closures in G(2; n + 3)).The closures of U and U 0 in these Chow varieties are called Chow quotients, anddenoted (RP1)n+3==GL(2;R) and G(2; n+ 3)==(R�)n+3.Theorem 0.3.1. (Kapranov [Ka1] and [Ka2]) For all n � 1, the following vari-eties are isomorphic.(i) The minimal blow-up of the braid arrangement in RPn .(ii) The Chow quotient G(2; n+ 3)==(R�)n+3.(iii) The Chow quotient (RP1)n+3==GL(2;R).(iv) The real points of the Grothendieck-Knudsen moduli space for stable (n+ 3)-pointed curves of genus 0.



NONPOSITIVE CURVATURE OF BLOW-UPS 90.4. Blowing up zonotopal cell complexes and Gromov's M�obius bandhyperbolization procedure. A zonotope is a convex polytope whose poset offaces is dual to the face poset of a hyperplane arrangement (the precise de�nitionis given in Section 1.4). A key property of zonotopes is that they are centrally sym-metric. As we explained in 0.1, a projective hyperplane arrangement in RPn dividesit into cells. The dual cells are zonotopes. Blowing up subspaces corresponds to aprocess of truncating cells, and the dual cells become simpler zonotopes. In fact,one can describe this process directly in terms of the dual cellulation by zonotopes.For example, in the braid arrangement of Figure 1, the dual cell to a triple pointis a hexagon P . To blow-up the triple point, one removes the interior of P andreplaces it by the M�obius band (@P � [�1; 1])=Z2, where Z2 acts on @P via thecentral symmetry and on [�1; 1] via t 7! �t. It turns out that the best way toview the blowing-up procedure is as an operation of the above type on the dual cellstructure. This is the point of view we take in Section 3. One reason for doing thisis that the construction can then be generalized to \zonotopal cell complexes".Another reason for taking this viewpoint is that it generalizes the \M�obiusband hyperbolization procedure" introduced by Gromov ([G], Section 3.4): givena cubical cell complexK, Gromov described a functorial procedure for constructinga new cubical cell complex h(K) which is nonpositively curved. One of our initialobservations when we began the research for this paper was that the manifoldobtained by performing Gromov's hyperbolization to the boundary of the (n+1)-dimensional cube and then dividing by the central symmetry is the same as theclosure of a generic orbit in the ag manifold SL(n + 1;R)=B (Example 0.2.2).Furthermore, it follows from the theory of toric varieties that this generic orbitclosure coincides with the maximal blow-up of the coordinate arrangement in RPn(Example 0.1.6). (Proofs of these coincidences will be given in Section 4.2.) Theconstructions in Section 3 show that these are not just coincidences. The dualcellulation of RPn corresponding to the coordinate arrangement is the boundaryof the (n + 1)-cube divided by the central symmetry, and taking the maximalblow-up is the same as applying Gromov's M�obius band procedure.A cubical cell complex is a special case of a more general type of cell complexin which all of the cells are combinatorially equivalent to zonotopes. A naturalcategorical framework for all of the real blow-ups in this paper is that of zonotopalcell complexes. In this setting, the blow-up procedure can be described as a functorwhich, given a zonotopal cell complex K and a suitable collection M of cells,produces another zonotopal cell complex K#M. In particular, if M is the set ofall cells of K, then K#M is called the maximal blow-up, and if K is a cubical cellcomplex, this maximal blow-up is precisely Gromov's hyperbolization h(K). Wewill show in Section 4 that the maximal blow-up of any zonotopal cell complex isnonpositively curved.
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NONPOSITIVE CURVATURE OF BLOW-UPS 111. Nonpositively curved metrics on zonotopal cell complexes1.1. Cells and cell complexes. Let P be a partially ordered set (i.e., a poset).A ag in P is a �nite totally ordered subset of P . The set Fl(P) consisting of allags in P is itself partially ordered inclusion and is called the order complex (or\derived complex") for P .A cell or polytope P is the convex hull of a �nite set of points in some real vectorspace. The set of faces, partially ordered by inclusion, forms a poset P . For everyface F of P , let vF denote the barycenter of F ( any point in the relative interiorwould su�ce). Then any ag � = (F1 < � � � < Fk) in Fl(P) can be identi�ed withthe simplex with vertex set fvF1 ; : : : ; vFkg, and this decomposition of P will becalled the barycentric subdivision. Thus, the poset Fl(P) is precisely the partiallyordered set associated to the barycentric subdivision. Two cells are combinatoriallyequivalent if their posets are isomorphic; in this case, the bijection between theirsets of barycenters extends to a piecewise linear homeomorphism between the cells.We will call such a homeomorphism the realization of a combinatorial equivalence.By a cell complex we shall mean a space K formed by gluing together cellsvia certain (geometric realizations of) combinatorial equivalences of their faces,together with the decomposition ofK into cells. We shall also assume that di�erentfaces of the same cell are not identi�ed; thus, each cell will be homeomorphic toits image in K. Let P(K) denote the associated poset of cells. Two cell complexesK and L are combinatorially equivalent, written K �= L, if the correspondingposets are isomorphic. By passing to barycentric subdivisions, two combinatoriallyequivalent cell complexes are homeomorphic via a homeomorphism which restrictsto a linear map on each simplex.Convention. We will drop the word \cell" if the intersection of two cells is eitherempty or a single cell. (Thus, in a simplicial complex every simplex is determinedby its vertex set, while this need not be the case for an arbitrary simplicial cellcomplex.)A cell complex is a cubical cell complex if its cells are combinatorially equivalentto cubes.The boundary of a cell P is the union of all proper faces of P . It is naturally acell complex, and we denote it by @P . Given a convex polytope P , there is a dualpolytope �P which has the property that P(@ �P ) = P(@P )op, where Pop denotesthe opposite poset of P , in which the order relation is reversed.If F is a k-dimensional face of an n-dimensional cell P and x is a point of F , thenthe link of F in P , denoted by Lk(F; P ) is the spherical (n� k� 1)-cell consistingof all unit tangent vectors to P at a point x 2 F which are inward pointing andnormal to F . Up to a linear isomorphism, the link of F is independent of thepoint x, so we omit x from the notation. If F is a cell in a cell complex K, thenLk(F;K) is the union of all Lk(F; P ), where P is a cell of K which contains F .Since any spherical cell Lk(F; P ) is combinatorially equivalent to a (Euclidean)cell, Lk(F;K) is equivalent to a cell complex.



12 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTTBy a cellulation of a manifold M , we shall mean a cell complex K togetherwith a homeomorphism K ! M . One says that K is a PL n-manifold if for eachk-cell P of K, Lk(P;K) is piecewise linearly homeomorphic to Sn�k�1. In allcases of interest to us, a stronger condition will hold: Lk(P;K) is combinatoriallyequivalent to the boundary complex of a convex (n� k)-cell. When this happenswe will say that K is a nice PL-manifold. (A recent result of Mnev and Mani [MM]states that any nice PL-manifold admits a canonical smooth structure.)If K is a nice PL-manifold, then there is a dual cell complex �K de�ned asfollows. Let P(K) denote the poset of nonempty cells of K and for each P 2P(K), let P(K)�P (resp., P(K)>P ) denote the subposet of cells which contain(resp., properly contain) P . Thus, P(K)>P is isomorphic to the poset of cellsin Lk(P;K). Since K is nice, there is a dual cell D(P ) with the property thatP(@D(P )) = P(Lk(P;K))op. �K is de�ned to be the union of the D(P ) in a naturalway. To be explicit, let K 0 denote the barycentric subdivision of K. Then thebarycentric subdivision of D(P ) is naturally a subcomplex of K 0, and K 0 is theunion of the D(P ). The two cell complexes K and �K are combinatorially dual inthe sense that P(K) is isomorphic to P( �K)op. For example, if P is a convex n-cell,then @P and @ �P give dual cellulations of Sn�1.1.2. The standard cubical subdivision of a simple cell complex. SupposeP is a poset and a 2 P . If a; b 2 P and a � b, then the interval [a; b] is thesubposet P�a\P�b. Let I(P) denote the poset of intervals of P (partially orderedby inclusion).Let e1; : : : ; en be the standard basis of Rn . Denote the power set of f1; : : : ; ngby Sn. For each J 2 Sn, set eJ =Xi2J ei:(If J = ;, then eJ = 0.) Then feJg is the vertex set of the unit n-cube [0; 1]n.For each interval [J1; J2] 2 I(Sn), let 2[J1;J2] denote the face of 2n (= [0; 1]n)spanned by feJgJ2[J1;J2]. It is a cube of dimension Card(J1 � J2). Hence, P(2n)is isomorphic to I(Sn) via the isomorphism 2[J1;J2] $ [J1; J2].If � = (J0 < � � � < Jk) is a ag in Sn, let �� be the simplex spanned byeJ0 ; : : : ; eJk . The standard simplicial subdivision of 2n is the subdivision consistingof all simplices ��, � 2 Fl(Sn).An n-dimensional polytope P is simple if exactly n codimension-one faces meetat each vertex. For example, a cube is simple, an octahedron is not. Equivalently,P is simple if @ �P is a simplicial complex. A cell complex is simple if each cell is asimple polytope.Let P be a simple polytope and let P be its poset of faces. Let fvF gF2P bea collection of barycenters. For each ag � 2 Fl(P), let �� be the correspondingsimplex in the barycentric subdivision of P . For each interval [F1; F2] in P , let2[F1;F2] be the subcomplex of the barycentric subdivision of P consisting of allsimplices ��, � 2 Fl([F1; F2]). Then 2[F1;F2] is simplicially isomorphic to thestandard simplicial subdivision of the cube of dimension dimF2 � dimF1. The



NONPOSITIVE CURVATURE OF BLOW-UPS 13subdivision of P into f2[F1;F2]g[F1;F2]2I(P) is called the standard cubical subdivisionof P , denoted by P2. The subcomplexes 2[F1;F2] are called small cubes. We notethat any combinatorial automorphism of P induces a simplicial automorphism ofthe barycentric subdivision of P and this automorphism induces an automorphismof the standard cubical subdivision (since intervals of P are taken to intervals by anautomorphism). If K is a simple cell complex, then its standard cubical subdivision,denoted K2 is constructed by taking the standard cubical subdivision of each cell.The proofs of the next two lemmas are straightforward unwindings of the de�-nitions.Lemma 1.2.1. Let x be the barycenter of a simple polytope P . Then there is asimplicial isomorphism between Lk(x; P2) and the simplicial complex @ �P .Lemma 1.2.2. Let K be a simple cell complex and x a vertex of K2. Then x isthe barycenter of some cell Px of K andLk(x;K2) = @ �Px � Lk(Px;K):(Here � is used to denote the join of two simplicial cell complexes. See Section3.3.)If a simple cell complex K is a nice PL manifold, then the dual cell complex isalso simple. Moreover, the standard cubical subdivisions K2 and �K2 coincide.1.3. Arrangements. Let V be a real vector space. A �nite collection A of sub-spaces in V is a subspace arrangement if it is closed under intersections (thisis slightly nonstandard, but simpli�es the notation). A subspace arrangement ispartially ordered by inclusion, and two arrangements A1 and A2 are equivalent,written A1 �= A2 if there is an isomorphism of posets A1 ! A2 which preservesthe dimension of subspaces. An arrangement is essential if it contains the zerosubspace. An arrangement is a hyperplane arrangement if every element is an in-tersection of codimension-one subspaces. An essential hyperplane arrangement Hcuts V into polyhedral cones. The set of these cones, partially ordered by inclusion,is the face poset of H.Let V � be the dual space of V and for any subspace A � V , let A? be thesubspace of V � de�ned by fw 2 V �jw(A) = f0gg (the annihilator of A). For anycollection of subspaces A in V , let A? denote the collection of subspaces A?,A 2 A. Thus, the posets A and A? are anti-isomorphic.1.4. Zonotopes. Associated to an essential arrangement of hyperplanes H in areal vector space V , there is a convex polytope ZH, called the \associated zono-tope". Let H1; : : : ; Hk be the hyperplanes in H and let w1; : : : ; wk be linear formsin V � such that Hi = w�1i (0).De�nition 1.4.1. The standard zonotope ZH associated to H (and to w1; : : : ; wk)is the image of the cube [�1; 1]k in Rk under the linear map from Rk to V � whichsends ei to wi.



14 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTTThat is to say, ZH is the \Minkowski sum" (or vector sum) of the line segments[�w1; w1]; : : : ; [�wk; wk], de�ned byZH = fX tiwijti 2 [�1; 1]; 1 � i � kg:Any polytope combinatorially equivalent to ZH will also be called a zonotope.The main property of a zonotopes is stated as the following lemma. (A proofcan be found as Prop. 2.2.2, p. 54, in [BLSWZ].)Lemma 1.4.2. The poset of faces, P(ZH), is anti-isomorphic to the face poset ofH.Examples 1.4.3. (i) An m-gon is a zonotope if and only if m is even.(ii) The n-dimensional cube [�1; 1]n is the zonotope corresponding to the ar-rangement of coordinate hyperplanes in Rn .(iii) More generally, a cartesian product of zonotopes is a zonotope (since aproduct of hyperplane arrangements is a hyperplane arrangement).(iv) Any face of a zonotope is a zonotope.(v) If H is the braid arrangement in Rn , then the corresponding zonotope iscalled the permutohedron.(vi) More generally, if W is a �nite reection group on Rn (i.e., a �nite Coxetergroup), then the zonotope corresponding to the arrangement of reection hyper-planes is called in [D3] a Coxeter cell. We denote it ZW .The dual polytope XH to ZH is a convex polytope in V . The poset P(@XH) iscanonically isomorphic to the poset of nonzero faces of H, i.e., @XH is combinatori-ally equivalent to the cellulation of the unit sphere in V cut out by the hyperplanesin H. It follows that the order complexes Fl(P(XH)) and Fl(P(ZH)) are canon-ically isomorphic. This means that the barycentric subdivisions of XH and ZHare canonically simplicially isomorphic. In what follows, we shall often use this toidentify subcomplexes of the barycentric subdivision of XH with subcomplexes ofthe barycentric subdivision of ZH.Parallel faces and subspace pieces. Let H be an essential hyperplane ar-rangment in V with associated standard zonotope Z. Let C (= H?) be the collec-tion of subspaces dual to H. If F is a face of Z which is not a vertex, then the a�nesubspace spanned by F is parallel to a unique subspace AF 2 C. Let CZ denotethe set of parallel classes of faces of Z. Note that the dimension of an element ofCZ is well-de�ned as the dimension of any representative. The natural bijection[F ]$ AF between C and CZ induces a partial order on CZ . This partial order canbe described as follows. Given f1 and f2 in CZ , f1 � f2 if and only if f1 and f2 haverepresentatives F1 and F2, respectively, such that F1 is a face of F2. If bC = C [f0gand bCZ = CZ [f0g (where 0 denotes the equivalence class of vertices in Z), then bCand bCZ are isomorphic lattices. Thus, any two elements f1; f2 2 bCZ have a greatestlower bound, f1 \ f2, as well as a least upper bound, f1 + f2 (called the span of



NONPOSITIVE CURVATURE OF BLOW-UPS 15f1 and f2). If dim(f1 + f2) = dim f1 + dim f2 (equivalently, if dim(f1 \ f2) = 0),then we write f1 � f2 for f1 + f2.A decomposition of a zonotope Z is a subset ff1; : : : ; fkg of CZ such that forall g 2 CZ , f1 \ g; f2 \ g; : : : ; fk \ g 2 CZ and g = (f1 \ g) � � � � � (fk \ g). IfFi is a representative for fi, 1 � i � k, this means that Z is isomorphic to theproduct F1 � � � � � Fk. Z is irreducible if it cannot be decomposed into more thanone factor.We shall now show that the parallel relation on P(Z) can be de�ned combi-natorially. First suppose that dimZ = 2. Then Z is a 2m-gon and two edges areparallel if and only if they are opposite (i.e., if there are exactly m � 2 edgesbetween them). This generates an equivalence relation on the set of edges of ann-dimensional zonotope Z: two edges e and e0 are parallel if and only if we can �nda sequence of 2-dimensional faces F1; : : : ; Fm and pairs (ei; e0i) of opposite edgesin Fi such that e = e1, e0 = e0m, and e0i�1 = ei for 1 < i � m. This combinatorialde�nition of parallelism can then be extended to faces as follows. Given a face Fof Z, let E(F ) denote the set of parallel classes of edges of Z which are representedby edges of F . Then F and F 0 are parallel if and only if E(F ) = E(F 0). From thefact that we can de�ne parallelism combinatorially, we immediately deduce thefollowing.Lemma 1.4.4. Parallelism is preserved by combinatorial isomorphisms of zono-topes.If F1 and F2 are parallel faces of a (standard) zonotope Z in V �, then there isa translation of V � which takes F1 onto F2. This induces a combinatorial isomor-phism cF1;F2 , called the canonical isomorphism, between P(Z)�F1 and P(Z)�F2 .As we shall see in the proof of the next lemma, this isomorphism can be de�nedcombinatorially.Lemma 1.4.5. If � : P(Z)! P(Z 0) is an isomorphism and F1 and F2 are parallelfaces of Z, then c�(F1);�(F2) = � � cF1;F2 � ��1.Before proving this lemma, we de�ne \subspace pieces" in Z, the notion dual tothat of parallel classes of faces. For any f 2 CZ , let A be the corresponding elementof C. Then the collection of quotient spaces C=A = fB=AjA � B; B 2 Cg is thedual (lattice) of a hyperplane arrangement in A?. Let Zf denote the correspondingzonotope in V �=A. We have natural identi�cations C=A �= C�A �= (CZ)�f . De�nea subposet P(Z)�f of P(Z) byP(Z)�f = fF 2 P(Z)j[F ] � fg;where [F ] denotes the parallel class of F . Then there is a natural isomorphismof posets P(Z)�f �= P(Zf ) (which takes a face F of Z to the face of Zf corre-sponding to the subspace AF =A in C=A). This isomorphism induces an injectionof order complexes Fl(P(Zf )) ! Fl(P(Z)) and, hence, a simplicial embedding ofbarycentric subdivisions Z 0f ! Z 0. The image Pf is called the subspace piece dualto f (or dual to A). If dim f = 1, then Pf is called a hyperplane piece. Figure 4shows a zonotope (the permutohedron) with one of its hyperplane pieces shaded.



16 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTTRemark 1.4.6. Suppose X is the polytope dual to Z and E is the subspace in Vdual to A. Then X \ E is naturally a subcomplex of the barycentric subdivisionof X . That is, E \ @X is a subcomplex of @X , and E \ X is the cone on thissubcomplex. Since X and Z are dual, we can identify E \X with a subcomplex ofthe barycentric subdivision of Z. This subcomplex is precisely the subspace piecePf de�ned above. For this reason we will also use E\X to denote the subcomplexassociated to E, relying on the context to determine whether it is a subcomplexof X 0 or a subcomplex of Z 0. As a subcomplex of Z 0, E \X intersects each of thefaces in f in its barycenter.

Subspace piece in a zonotopeFigure 4.If L is a line in C, then an orientation for L induces an orientation on each edgeparallel to L. This can be said combinatorially as follows. If e and e0 are edgesparallel to L and v and v0 are vertices of e and e0, respectively, then v and v0 havethe same orientation if they lie on the same side of the hyperplane piece dual toL.Proof of Lemma 1.4.5. Let n = dimZ. We will show by induction on n thatthe canonical isomorphism between two faces of Z can be de�ned combinatorially.This is obvious if n = 1. Let F1 and F2 be parallel faces of Z and let l be theparallel class of an edge of F1. Then P(Z)�l is isomorphic to the poset of facesof the zonotope Zl of dimension n � 1. Moreover, the subposets (P(Z)�l)�F1and (P(Z)�l)�F2 correspond to parallel faces of this zonotope. By induction, thecanonical isomorphism can be combinatorially de�ned on (P(Z)�l)�F1 . Hence, itcan be de�ned on all faces in P(Z)�F1 of dimension > 0. Now suppose that v is avertex of F1. We may as well assume that v is a vertex of an edge e in l and that



NONPOSITIVE CURVATURE OF BLOW-UPS 17l is oriented. Then cF1;F2 takes e to an edge e0 of F2 parallel to e. Let v0 be thevertex of e0 with the same orientation as v. Then de�ne cF1;F2 on v to be v0.Central symmetry of a zonotope. It follows from the de�nition that mul-tiplication by �1 stabilizes any (standard) zonotope in V �. Hence, it gives a well-de�ned combinatorial symmetry a 2 Aut(P(Z)). The next lemma shows that theinvolution a can be de�ned combinatorially.Lemma 1.4.7. The involution a lies in the center of Aut(P(Z)).In view of this, a will be called the central symmetry of Z.Proof. It su�ces to give a combinatorial de�nition of a. Furthermore, it su�cesto give the de�nition on the vertex set of Z. We shall do this by induction on thedimension n of the zonotope. If n = 1, then Z is the line segment and a switches itstwo vertices. Now suppose n > 1 and a combinatorial de�nition has been given forall zonotopes of dimension n� 1. Let v be a vertex of an n-dimensional zonotopeZ. Choose an edge e containing v and let l be the parallel class of e. Then theintersection of e and the hyperplane piece Pl = Im(Zl ! Z) is a vertex w of Zl.By induction, the central symmetry al of Zl is de�ned. Let a(e) be the edge of Zwhich is dual to Pl and which intersects Pl in al(w). Then a(e) has two verticesv0 and v00. One of these, say v0 lies on the opposite side of Pl from v. De�nea(v) = v0. Since hyperplane pieces are de�ned combinatorially (Lemma 1.4.4),this de�nition is combinatorial and clearly agrees with the linear de�nition. Thelemma follows.1.5. Zonotopal cell complexes. A cell complex K is zonotopal if each cell is(combinatorially isomorphic to) a zonotope. For example, any cubical cell complexis zonotopal and simple. We will call the cells of a cubical complex K \big cubes"to distinguish them from the \small cubes" of the standard subdivision K2.A Cartesian product of zonotopal cell complexes is a zonotopal cell complex.Any subcomplex of a zonotopal cell complex is zonotopal.Example 1.5.1. (i) If Z is an n-dimensional zonotope, then @Z is a zonotopalcomplex homeomorphic to Sn�1.(ii) The central involution a : @Z ! @Z freely permutes the cells of @Z. Hencethe orbit space P(Z) = @Z=ais a zonotopal cell complex, homeomorphic to RPn�1 .(iii) The blow-up of Z at its center, denoted by Z#, is the quotient of @Z�[�1; 1]by the involution ba de�ned by ba(z; t) = (a(z);�t), i.e.,Z# = @Z �Z2 [�1; 1]:In other words, Z# is the total space of the canonical interval bundle over P(Z). Z#is naturally a zonotopal complex: the cells are restrictions of the interval bundle



18 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTTto cells of P(Z), so a cell of Z# is a zonotope of the form F � [�1; 1]. We also notethat the barycentric subdivision of P(Z) is naturally identi�ed with a subcomplexof the barycentric subdivision of Z#. This subcomplex is called the zero-section orexceptional divisor. The zero section is a \hyperplane" in the sense that any cellF � [�1; 1] of Z# intersects the zero section in the hyperplane piece F � 0.Example 1.5.2. (The dual cell complex and its blow-up.) Suppose, as in Section1.4, that Z is the zonotope associated to an essential hyperplane arrangement inRn and that X is the dual polytope. Then @X is isomorphic to the cellulation ofSn�1 cut out by the hyperplanes, andP(X) = @X=ais the dual cell complex to P(Z). Let X# denote the total space of the canonicalinterval bundle over P(X): X# = @X �Z2 [�1; 1]:The cells of X# are restrictions of the interval bundle to the cells of P(X). Hence,the n-cells of X# are in one-to-one correspondence with the (n� 1)-cells of P(X).The process of constructing X# from X can be thought of as follows. SubdivideX as the cone on @X so that each cell C in @X determines a cone whose vertexis the center of X . Truncating the vertex of each such cone, we obtain a cell ofthe form C � [0; 1]. A cell of X# is obtained by gluing the two cells C � [0; 1] and�C � [0; 1] by identifying C � 0 and �C � 0 via the antipodal map.Example 1.5.3. (Modi�ed Coxeter complexes.) There is a zonotopal complex asso-ciated to any Coxeter system (W;S) (as in [Bo], W is the Coxeter group and Sis a distinguished set of generators). The details of the following construction canbe found in [CD2] or [D3]. For each subset T of S, let WT denote the subgroupgenerated by T . Let Sf = fT jT � S and CardWT < 1g and let WSf be theset of all cosets of the form wWT , with w 2 W and T 2 Sf , partially orderedby inclusion. The subposet (WSf )�wWT is isomorphic to the poset of faces of theCoxeter cell associated to (WT ; T ). Thus, the geometric realization � of WSf isnaturally a zonotopal complex. One of the principal features of this construction isthat W acts simply transitively on the vertex set of �. This implies that the linksof any two vertices in � are isomorphic. Other examples of zonotopal complexescan be constructed by the following two operations: (1) taking a subcomplex of �and (2) taking the quotient by a torsion-free subgroup � of W .Example 1.5.4. (Salvetti complexes.) Let H be a hyperplane arrangement in areal vector space V and ZH the corresponding zonotope. Salvetti [Sal] de�ned azonotopal cell complex, which we will denote SalH, such that (a) each cell in SalHis combinatorially equivalent to a face of ZH and (b) SalH is a deformation retractof the complement of the union of the complexi�ed hyperplanes in V 
 C . Tode�ne SalH we �rst construct its poset SH of cells. SH is the set of all pairs ofthe form (F; v) where F is a face of ZH and v is a vertex of F . The partial orderon SH is described as follows. For each subspace E in H, let H�E be the (usually



NONPOSITIVE CURVATURE OF BLOW-UPS 19nonessential) hyperplane arrangement consisting of all subspaces containing E.An E-sector is a chamber for H�E . For example, if E = 0, then an E-sector is achamber for H; if E is a hyperplane, then an E-sector is a half space. In general,an E-sector is an intersection of half-spaces. If F is a face of ZH, then let EFdenote its dual subspace in H. If v is a vertex of ZH, then Cv denotes its dualchamber. For each (F; v) 2 SH, we de�ne Sec(F; v) to be the EF -sector whichcontains Cv . (If F = v is a vertex, then put EF = V and Sec(F; v) = V .) Thepartial order on SH is now de�ned as follows: (F 0; v0) � (F; v) if and only if F 0 � Fand Sec(F; v) � Sec(F 0; v0).It is straightforward to see that given (F; v) 2 SH and a face F 0 of F , there isa unique vertex v0 of F 0 such that (F 0; v0) � (F; v). It follows that (SH)�(F;v) �=P(ZH)�F . In other words each subposet (SH)�(F;v) is isomorphic to the poset offaces of a polytope (in fact, a zonotope).We call such a poset an abstract cell complex. It has a geometric realization asa cell complex where, up to combinatorial equivalence, the cells are determinedby the poset. In the case at hand, the geometric realization of SH is the Salvetticomplex SalH. Salvetti [Sal] proved that the complex hyperplane complement ishomotopy equivalent to SalH. One way to see this is to construct a cover of thehyperplane complement in V 
 C by open convex sets indexed by the elementsof SH so that the nerve of the covering is the order complex of SH. See [Sal] and[CD2].)In [De] Deligne proved that if H is a simplicial arrangement, then the complexhyperplane complement is aspherical. In other words, if ZH is simple, then SalHis aspherical. For example, if dimV = 1, then ZH is the interval [�1; 1] and SalHis the boundary of a digon (which is homeomorphic to a circle). Hence, if H is aproduct of one-dimensional arrangments (i.e., if H is the coordinate hyperplanearrangement in Rn ), then SalH is an n-torus, cellulated by 2n n-cubes. On theother hand, it follows from Remark 2.3.2 in [CD2], that if ZH is simple but not acube, then the cubical structure, described below, on the zonotopal cell complexSalH will not be nonpositively curved.Classes of parallel faces and subspaces in zonotopal cell complexes.The equivalence relation of parallelism on the set of faces of a zonotope extendsnaturally to zonotopal cell complexes. That is, two cells F and F 0 of a zonotopalcell complex K are parallel if there exists a sequence of cells Z1; : : : ; Zk and pairsof parallel faces Fi; F 0i � Zi such that F = F1, F 0 = F 0k, and Fi+1 = F 0i , for1 � i � k � 1. Note any such sequence determines an isomorphism F ! F 0, butthis isomorphism is no longer canonical since it depends on the \path" Z1; : : : ; Zk.Given a zonotopal cell complex K, we let CK denote the set of equivalence classesof parallel faces. It is clear that any class has a well-de�ned dimension.For any parallel class in CK , there is a dual notion of an immersed \subspace"in the barycentric subdivision of K. On any given cell Z of K, such a subspacewill restrict to a union of subspace pieces in the barycentric subdivision of Z. Letf be a parallel class in CK . We shall de�ne (a) a subcomplex bEf of the barycentric



20 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTTsubdivision of K, (b) a connected zonotopal complex Ef , and (c) an \immersion"i : Ef ! K such that the image of i is bEf (generically, i will be an injection).We will say that i : Ef ! K is a (codimension-k) subspace of K (a hyperplane ifk = 1).Let f be a (k-dimensional) parallel class of cells in K. Let Kf denote the set ofpairs (Z; P ), where Z is a cell in K and P is a subspace piece in Z correspondingto a parallel class g 2 CZ with g � f . (Restricting f to Z will, in general, be aunion of parallel classes, and g is one of them.) We will say that (Z1; P1) is a faceof (Z2; P2), written (Z1; P1) � (Z2; P2), if Z1 is a face of Z2 and P1 = P2. Thesubcomplex bEf is de�ned by bEf = [(Z;P )2Kf P:Note that it might happen that Kf contains two pairs of the form (Z; P1) and(Z; P2) where P1 6= P2. In this case P1 \ P2 is also a subspace piece in Z. Tode�ne Ef , we desingularize bEf by removing these extraneous intersections. Firstform the disjoint union of the P , where (Z; P ) 2 Kf . Then glue P1 to P2 along acommon face P0 if and only if there is a (Z0; P0) in Kf that is a common face of(Z1; P1) and (Z2; P2). Let i : Ef ! bEf � K be the natural map.The codimension-0 subspaces of a zonotopal complex K are precisely the con-nected components ofK. Hence, a cell in a zonotopal cell complex is a codimension-0 subspace piece of itself. A subspace is proper if its codimension is positive.The next lemma follows immediately from the de�nitions.Lemma 1.5.5. (Isomorphic links.) Let i : Ef ! K be a subspace in a zono-topal complex K and let (Z; P ) 2 Kf . Then Lk(P;Ef ) is naturally identi�ed withLk(Z;K).Corollary 1.5.6. If a zonotopal complex is a PL-manifold, then so is any sub-space.Remark 1.5.7. If each cell of a zonotopal complex K is simple, then the image bEfof any subspace is a subcomplex of the standard cubical subdivision of K.1.6. Nonpositively curved cubical complexes. A metric space X is nonposi-tively curved (in the sense of Aleksandrov) if (a) any two points of X can be joinedby a geodesic segment and (b) any su�ciently small triangle in X is \thinner"than the corresponding comparison triangle in R2 (in other words, for every pointx 2 X there exists a small �-ball B about x such that any geodesic triangle in Bsatis�es the CAT(0)-inequality of [G], p. 107). If X is nonpositively curved, thenany two points in its universal cover eX can be connected by a unique geodesicsegment. It follows that eX is contractible and hence, that X is aspherical (seeSection 4 of [G]).Examples of such nonpositively curved X are given by polyhedra which admitcertain piecewise Euclidean metrics. For example, if K is a cubical cell complex,



NONPOSITIVE CURVATURE OF BLOW-UPS 21then there is an obvious way to give K a metric in which each cell is isometric toa Euclidean cube of unit edge length. Any piecewise-linear path in K is given alength by adding the (Euclidean) lengths of the segments of the path in each cell.The distance between two points in K is then de�ned to be the in�mum of thelengths of all piecewise-linear paths joining the two points.It turns out that there is a simple combinatorial condition on links of cells whichis necessary and su�cient for a cubical complex K to be nonpositively curved.Since the link of a face in a cube is a simplex, the link of any cell in a cubical cellcomplex is a simplicial cell complex. To formulate the condition on these links, weneed the de�nition of a \ag complex". We will say that a subcomplex of a cellcomplex L is an empty simplex if it is isomorphic to the 1-skeleton of a simplexbut does not span a simplex of L.De�nition 1.6.1. A simplicial cell complex L is a ag complex if it is a simpli-cial complex and any �nite set fv0; : : : ; vmg of pairwise joinable vertices spans asimplex in L (two vertices are \joinable" if they span a simplex). Equivalently, Lis a ag complex if and only if it is a simplicial complex and contains no emptysimplices of dimension � 2.Example 1.6.2. (i) An m-gon is a ag complex if and only if m > 3.(ii) The order complex of any poset is a ag complex. In particular, the barycen-tric subdivision of any cell complex (in the sense of Section 1.1) is a ag complex.In the following lemma we collect some standard properties of ag complexes.Lemma 1.6.3. (i) A join of two simplicial complexes K and L is a ag complexif and only if both K and L are ag complexes.(ii) The link of any simplex in a ag complex is a ag complex.(iii) A full subcomplex of a ag complex is a ag complex (a subcomplex L � K isfull if L contains all simplices of K which are spanned by vertices in L.)Another class of ag complexes is provided by the following lemma.Lemma 1.6.4. ([Bro], p. 29) Let H be a simplicial arrangement and XH thesimplicial polytope de�ned in Section 1.4. Then @XH is a ag complex.We now state the fundamental result on nonpositive curvature for cubical com-plexes.Lemma 1.6.5. (Gromov [G], p. 122) The natural piecewise Euclidean metric on a(connected) cubical complex is nonpositively curved if and only if the link of everyvertex is a ag complex.Corollary 1.6.6. Suppose that K is a simple cell complex and that K2 is itsstandard cubical subdivision. Then the natural piecewise Euclidean metric d2 onK2 is nonpositively-curved if and only if the following two conditions are satis�ed:(i) For each vertex v of K, Lk(v;K) is a ag complex.(ii) For each cell P in K, @ �P (the boundary of the dual simplicial polytope) is aag complex.



22 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTTProof. By Lemma 1.2.2, any vertex x of K2 is the barycenter of a unique cellPx in K and Lk(x;K2) = Lk(x; Px) � Lk(Px;K) �= @ �Px � Lk(Px;K):By Gromov's Lemma (Lemma 1.6.5), K2 is nonpositively curved if and only ifLk(x;K2) is a ag complex for each vertex x. Suppose this is the case. Takingx to be a vertex of K we see that (i) holds. By Lemma 1.6.3(ii), Lk(P;K) is aag complex for any cell P in K (since Lk(P;K) can be identi�ed with a link inLk(v;K) for any vertex v of P ). Therefore, taking x to be the barycenter of a cellP , we see by Lemma 1.6.3(i), that (ii) holds. Conversely, if (i) and (ii) hold, thenLk(x;K2) is a ag complex since both @ �Px and Lk(Px;K) are.By Lemma 1.6.4, condition (ii) is superuous in the case of a simple zonotopalcell complex. This gives the following corollary.Corollary 1.6.7. Suppose that K is a simple zonotopal cell complex. Then d2 isnonpositively curved if and only if the link of every vertex in K is a ag complex.Corollary 1.6.8. Supppose that a simple cell complex K is an n-dimensional nicePL-manifold and that its dual cell complex �K is zonotopal. Then d2 is nonpositivelycurved if and only if for each n-cell P of K, @ �P is a ag complex.1.7. Totally geodesic immersions. If K is a simple zonotopal complex andi : E ! K is an immersed subspace, then E is a simple zonotopal complex andi maps the standard cubical subdivision of E onto a subcomplex of the standardcubical subdivision of K.We can abstract this situation as follows. Suppose K 0 and K are cubical com-plexes. A map i : K 0 ! K is an immersion if(i) For each cell P in K 0, i(P ) is cell of K and the restriction P ! i(P ) is acombinatorial isomorphism.(ii) For each vertex v of K 0, the induced simplicial map Lk(i) : Lk(v;K 0) !Lk(i(v);K) is a simplicial embedding.Next equip K 0 and K with their natural cubical metrics. Then the immersioni : K 0 ! K is totally geodesic if each point x in K 0 has a geodesically convexneighborhood Ux such that ijUx is an isometric embedding.Proposition 1.7.1. An immersion i : K 0 ! K is totally geodesic if and only iffor each vertex v of K 0, the embedding Lk(i) maps Lk(v;K 0) onto a full subcomplexof Lk(i(v);K).Proof. Given a point x in a (locally �nite) piecewise Euclidean cell complexX , let Cx denote the cone on the piecewise spherical polyhedron Lk(x;X). Thus,Cx = ([0;1) � Lk(x;X))= � where the equivalence relation identi�es all pointswith �rst coordinate 0. The distance d between points (r1; �1) and (r2; �2) in Cx



NONPOSITIVE CURVATURE OF BLOW-UPS 23is given by the usual formula for Euclidean distance in polar coordinates,d2 = r21 + r22 � 2r1r2 cos �where � = minf�; d(�1; �2)g and d(�1; �2) is the distance in Lk(x;X). It followsfrom this formula that a geodesic segment from (r1; �1) to (r2; �2) goes throughthe origin (= the cone point) if and only if � = �. Now suppose that X 0 is asubcomplex of X containing x, and that C 0x is the cone on Lk(x;X 0). Then C 0x is aconvex subset of Cx if and only if the following condition holds: (�) given any twopoints �1, �2 in Lk(x;X 0), and a geodesic segment  in Lk(x;X) between them,then if the length l() of  is < �,  is contained in Lk(x;X).Since the metric on X is such that a small ball about X is isometric to asmall ball about the origin in Cx, for X 0 to be totally geodesic in X , we need tocheck (�) at each point x 2 X 0. In the case at hand, X 0 = K 0 and X = K arecubical complexes. The link of a k-face in an (n+k)-cube is an \all right" (n�1)-simplex. (This means that it is isometric to the spherical simplex spanned by thestandard basis in Rn .) Similarly, links in cubical complexes are all right simplicialcell complexes in the sense that each simplex is all right. Hence, the followinglemma veri�es condition (�) and completes the proof of the proposition.Lemma 1.7.2. Let L0 be a full subcomplex of an all right simplicial cell complexL. Let �1, �2 be points in L0, and let  be a geodesic segment in L connecting them.Then if l() < �, then  lies in L0.Proof. For i = 1; 2, �i belongs to the relative interior of some simplex in L0. LetVi denote the vertex set of this simplex. Let V be the set of vertices v such that intersects the open star of v in L. (The open star is the same as the open ballof radius �=2 about v.) Then V = V1 [ V2. (If v 2 V � (V1 [ V2), then, by theargument on p. 122 of [G],  must intersect the ball of radius �=2 about v in asegment of length �, contradicting the assumption that l() < �.) Obviously,  iscontained in the full subcomplex of L spanned by V1 [ V2. But since L0 is a fullsubcomplex and V1 [ V2 � L0, this complex (and hence ) lies in L0.Corollary 1.7.3. Suppose that K is a simple zonotopal cell complex and thati : E ! K is a subspace as in Section 1.5. Taking standard cubical subdivisions,we get an immersion i : E2 ! K2. This immersion is totally geodesic.Proof. Let v be a vertex of E2. Let Z be the cell of K determined by the vertexi(v) 2 K2 (Lemma 1.2.2). The link of i(v) in K is naturally identi�ed with the joinLk(i(v); Z) � Lk(Z;K). By Lemma 1.5.5, the image of Lk(v; E2) is ; � Lk(Z;K)which is a full subcomplex. The corollary then follows from Proposition 1.7.1.Remark 1.7.4. Suppose K2 is nonpositively curved and that i : K1 ! K2 is atotally geodesic immersion. Then



24 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTT(i) K1 is nonpositively curved.(ii) If K2 is simply connected (and hence CAT(0)), then any totally geodesicimmersion is an embedding onto a geodesically convex subspace.(iii) Let eK1 and eK2 denote the universal covers of K1 and K2, respectively. Theimmersion eK1 ! K1 ! K2 lifts to an immersion ei : eK1 ! eK2 and by (ii) thismust be an embedding.(iv) It follows that the induced map i� : �1(K1)! �1(K2) is a monomorphism.(v) When K2 is a 3-manifold and K1 is a surface, condition (iv) means that K1 isan immersed incompressible surface. For nonpositively curved cubical structureson 3-manifolds, this fact has been examined by Aitchison and Rubinstein in [AR].1.8. Splitting fundamental groups of nonpositively curved zonotopalcell complexes. In [Ca], Cappell de�ned G0 to be the smallest class of groupsthat contains the trivial group and that is closed under amalgamated products andHNN-extensions. This class includes fundamental groups of surfaces of genus > 0,as well as the fundamental groups of Haken 3-manifolds. (Cappell proved that theNovikov Conjecture holds for groups in G0.)Theorem 1.8.1. Suppose K is a connected, �nite, simple zonotopal cell complex.Suppose further that K2 is nonpositively curved and that each hyperplane in K isembedded. Then �1(K) is in Cappell's class G0.Proof. Let H be any hyperplane in K. Cut K open along H and denote theresult by bK2. Since, locally, H is a convex subspace, bK2 is also a nonpositivelycurved cubical complex. If H 0 is any other hyperplane in K, then any componentof its image in bK2 is again a totally geodesic subspace, which we continue to calla \hyperplane".If bK2 has two connected components (i.e., if H separates), then �1(K) is anamalgamated product. If H is two-sided and nonseparating, then �1(K) is anHNN-extension. If H is one-sided, then, letting H0 denote its normal S0-bundle,we have that �1(H0) is a subgroup of index two in �1(H) and that �1(K) is theamalgamated product of �1( bK2) and �1(H) along �1(H0). We continue this pro-cess, cutting along a hyperplane in bK2. The process terminates after we have cutalong the images of all the original hyperplanes in K, after which all components,as well as all hyperplanes, have become contractible. (Such a component is theclosed star of the barycenter of a maximal cell of K.) Hence, �1(K) is in G0.Remark 1.8.2. The above theorem applies to all of the nonpositively curved blow-ups of projectivized hyperplane arrangements which we consider in Section 4 sincein these cases the hyperplanes are indeed embedded.Further properties of groups acting on simply-connected, nonpositively curvedcubical cell complexes can be found in [NR] and [Sag].



NONPOSITIVE CURVATURE OF BLOW-UPS 252. Toric varieties2.1. Toric manifolds. As an application of the previous section (and a as warmup for the next), we consider the question of asphericity for some manifolds re-lated to toric varieties. Since we are only interested in the topology of nonsingularexamples, the generality of \toric manifolds" and \small covers" studied in [DJ1]seems to be the most appropriate context.Let MC be a smooth 2n-manifold on which an n-dimensional torus Tn = (S1)nacts with quotient homeomorphic to a convex polytope P . The quotient map is fur-ther assumed to be locally modeled on the quotient map of the standard Tn-actionon C n , i.e., the map C n ! (R�0 )n which takes (z1; : : : ; zn) to (jz1j2; : : : ; jznj2). Inother words, any point m 2 MC has a Tn-stable neighborhood which is equivari-antly homeomorphic (up to an automorphism of Tn) to a Tn-stable neighborhoodof C n . It follows that the polytope P must be simple. Such a manifold MC will becalled a toric manifold. We denote the quotient map MC ! P by �.Example 2.1.1. Consider an algebraic action of (C � )n on C PN . It is known thatsuch an action lifts to a linear action on CN+1 and any such action is conjugateto a diagonal action. We assume then, without loss of generality, that the actionon C PN is given by t � [z0; : : : ; zN ] = [tm0z0; : : : ; tmN zN ];where mi = (mi(1); : : : ;mi(n)) 2 Zn and tmi = tmi(1)1 � � � tmi(n)n for 0 � i � N .Let M be the closure of the orbit of [1; 1; : : : ; 1]. Under suitable conditions on theaction (see for example [Od] and the references therein), M is a projective toricvariety. If P is the convex hull (in Rn ) of the weights fm0; : : : ;mNg, then thereis a natural \moment map" M ! P given by[z0; : : : ; zN ] 7! P jzijmiP jzij ;which is a quotient map for the action of the compact torus Tn � (C � )n ([Jur]).The vertices of P correspond to Tn-�xed points and if M is smooth (hence, aK�ahler manifold) the exponential map at these �xed points gives a Tn-equivariantlocal homeomorphism with C n . Thus, a smooth projective toric variety is a toricmanifold. (In general,MC need not be a complex manifold. For example, C P2#C P2can be realized as a toric manifold, but does not admit a complex structure.)Toric manifolds have an elementary topological description as a quotient ofP � T by an equivalence relation de�ned over proper faces of P . Let F be the setof codimension-one faces of P . A map � : F ! Zn is a characteristic function forP if, for every vertex v of P , the set of vectors f�(F )jF 2 F ; v 2 Fg is a basisfor Zn. Given �, we de�ne an equivalence relation � on P � T as follows. Eachelement �(F ) of Zn determines a one-dimensional subtorus of Tn = Rn=Zn; weset (x; s) � (x; t) if x 2 F and st�1 is in the subtorus determined by �(F ). Theaction of Tn on itself descends to an action on the quotient (P � T )= �. A proofof the following can be found in Section 1.5 of [DJ1].



26 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTTProposition 2.1.2. Let M be a toric manifold over P . Then there is a charac-teristic function � for P and a Tn-equivariant homeomorphism M ! (P �T )= �,where � is the equivalence relation determined by �.Conversely, (P � T )= � is equivariantly homeomorphic to a toric manifold forany �.2.2. Small covers. Let (Z2)n be the subgroup f(�1; : : : ;�1)g in Tn, and let Mbe a smooth n-manifold with a (Z2)n-action and quotient space homeomorphic toa convex polytope P . If, in addition, M ! P is locally modeled on the quotientmap of the standard (Z2)n-action on Rn , then M is called a small cover of P .Example 2.2.1. In Example 2.1.1, replace (C � )n with the split torus (R� )n andC PN with RPN . Let M be the corresponding (R� )n-orbit closure. The restrictionof the moment map � to M � RPN � C PN still maps onto P (the convex hull ofthe weights) and is a quotient map for the (Z2)n-action. Under suitable conditionson the action, M is a nonsingular real projective toric variety and a small coverof P .More generally, if MC is a toric manifold over P , then by Proposition 2.1.2,there is a section P ! MC for the quotient map, and this section can be takento be smooth. Let M be the (Z2)n-orbit of this section. It is a small cover of Pand any two such small covers are equivariantly di�eomorphic (a consequence ofProposition 2.2.2, below). M will be called the small cover associated to MC .Again there is an elementary topological description of a small cover. Let F bethe set of codimension-one faces of P . A map � : F ! (Z2)n is a real characteristicfunction for P if, for every vertex v, the set f�(F )jF 2 F ; v 2 Fg is a basis for(Z2)n. Let � be the equivalence relation on P � (Z2)n de�ned by (x; s) � (x; t) ifx 2 F and s � t mod �(F ). The (Z2)n-action is compatible with this equivalencerelation, hence descends to the quotient P � (Z2)n= �.Proposition 2.2.2. Let M be a small cover of P . Then there exists a real charac-teristic function � and an equivariant homeomorphism M ! P � (Z2)n= � where� is the equivalence relation de�ned by �.We �rst address the nonpositive curvature question for small covers. It followsfrom the proposition above that M is homeomorphic to a simple cell complex Kall of whose cells are isomorphic to faces of P . This cell complex has a naturalsubdivision K2 into small cubes. Since the (Z2)n-action on M is modeled on thestandard action on Rn , the dual cell complex to K is zonotopal, the zonotopes be-ing big cubes. Since the vertices of this zonotopal complex are dual to the maximalcells (which are all copies of P ), Corollary 1.6.7 then implies the following.Proposition 2.2.3. The natural piecewise Euclidean cubical metric on a smallcover of P is nonpositively curved if and only if the boundary of P is dual to a agcomplex.



NONPOSITIVE CURVATURE OF BLOW-UPS 27It follows from this proposition that if @P is dual to a ag complex, then M isaspherical. The proof of the converse follows from the main result of [D1]. We recallthe basic construction in the case of the \right-angled" Coxeter group associatedto P . Let (W;S) be the Coxeter system de�ned as follows. There is one generator,which we denote by sF , for each codimension one face F 2 F . The relations are(sF )2 = 1 for all F , and sF sE = sEsF whenever E and F intersect (necessarily ina codimension-two face). The pair (W;S) is called the right-angled Coxeter systemassociated to the 1-skeleton of the simplicial polytope dual to P . Once again, wede�ne an equivalence relation, this time on P �W . We set (x; s) � (x; t) if st�1 isin the subgroup generated by fsF jx 2 Fg.Lemma 2.2.4. The quotient space fMR = (P �W )= � is the universal cover ofevery small cover of P .Proof. The construction fMR is precisely the space U(W;X) of [D1] with P =X . The group W acts on fMR with quotient space P (Section 13 of [D1]). Thecharacteristic function � for MR determines a surjective homomorphism W !(Z2)n given on generators by sF ! �(F ). The kernel K acts freely on fMR withquotient M . That fMR is simply-connected follows from Corollary 10.2 of [D1].Combining the previous proposition with the main result of [D1] applied to theuniversal cover MR gives the following.Theorem 2.2.5. Let M be a small cover of P . Then the following statements areequivalent.(i) M is aspherical.(ii) The boundary of P is dual to a ag complex.(iii) The natural piecewise Euclidean metric on the dual cubical cellulation of Mis nonpositively curved.Proof. (ii),(iii) is Proposition 2.2.3, so it su�ces to prove (i))(ii). The maintheorem of [D1] states that fMR will be contractible if and only if for every subset Sof F which generates a �nite subgroup ofW , the intersection \F2SF is nonempty.This is equivalent to the condition that @P be dual to a ag complex, since thesubsets S which generate �nite subgroups are precisely those with the propertythat any two elements are adjacent codimension-one faces.Remark 2.2.6. It is immediate from the construction of the universal cover fMRthat it is homeomorphic to a simple cell complex all of whose cells are faces ofP . In fact, the associated poset is anti-isomorphic to the poset WSf de�ned inExample 1.5.3. Thus, fMR has the structure of a zonotopal complex (the zonotopesare big cubes) and the link of every vertex is isomorphic to the dual of @P .



28 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTT3. Blowing up zonotopal cell complexesSuppose we are given an essential hyperplane arrangement in Rn+1 . It cuts thesphere Sn into convex spherical polytopes (which are combinatorially isomorphicto convex polytopes in a�ne space). Dividing by the antipodal map, we get acell structure on RPn , which is isomorphic to the cell complex P(X) describedin Example 1.5.2. The dual cells are zonotopes (because the local picture is thatof a hyperplane arrangement in Rn ), and the dual cell complex is the zonotopalcell complex P(Z) described in Example 1.5.1 The projective subspaces of theprojectivized arrangement in RPn are actually subspaces of the zonotopal cellcomplex P(Z) in the sense of Section 1.5.In [DP1], De Concini and Procesi introduce compacti�cations of complementsof subspace arrangements in which the union of subspaces in the arrangement isreplaced by a divisor with normal crossings. In the De Concini-Procesi procedure,certain subspaces of the arrangement are blown up. In the case of a projectivizedhyperplane arrangement, the e�ect of their procedure on P(X) is to truncate someof the faces of some of the n-cells, obtaining a new cell complex P(X)# with thesame number of n-cells. The dual cell complex P(Z)# is a new zonotopal cellcomplex with the same vertex set as P(Z) but with certain cells \blown up" as inExample 1.5.1. The new divisor is a union of subspaces in P(Z)#. The fact thatthe divisor has normal crossings translates to the statement that the zonotopalcells of P(Z)# are actually (big) cubes.3.1. Building sets and mine�elds. The fundamental notion for the construc-tion in [DP1] is that of a \building set". If H is a hyperplane arrangement in avector space V with dual collection C = H?, then a building set is a subset of Cwith respect to which all subspaces in C have natural direct sum decompositions.Given the correspondence between C and parallel classes of faces in the associatedzonotope ZH, we can give a similar de�nition for zonotopes and extend it to zono-topal cell complexes. The following should be compared with the de�nitions andproperties in [DP1].Let Z be a zonotope, and let CZ denote the set of parallel classes of faces ofZ as de�ned in Section 1.4. Recall that a subset ff1; : : : ; fkg of CZ is called adecomposition of f if, for every g � f , g = (f1 \ g) � � � � � (fk \ g). A parallelclass f is called irreducible if it admits no decomposition with more than onefactor, and we denote by IZ the set of all irreducible elements of CZ . A subset ofa decomposition is called a partial decomposition.De�nition 3.1.1. A subset GZ of CZ is a (partial) building set for Z if for anyf 2 CZ , the set of maximal elements of (GZ)�f is a (partial) decomposition of f .Of course, any partial decomposition F of f can be extended to a decompositionff1; : : : ; fkg of f . Although there may be more than one possible way to extendF , there is a unique one with a minimal number of elements (namely, adjoin to Fthe sum of the missing fi's). We call this the minimal decomposition containing F .



NONPOSITIVE CURVATURE OF BLOW-UPS 29Given a partial building set GZ for Z, the minimal decomposition of f containingthe maximal elements of (GZ)�f is called the GZ -decomposition of f .Example 3.1.2. (i) The set IZ of irreducible elements is a building set for Z. More-over, any building set must contain all of the irreducibles. For this reason, we callIZ the minimal building set for Z.(ii) The set CZ is a building set for Z, called the maximal building set for Z.The next lemma provides examples of partial building sets.Lemma 3.1.3. Let A be any subset of CZ and let GZ be a building set for Z. LetG�A denote the set of all elements g in GZ such that g � a for some a 2 A. ThenG�A is a partial building set. In particular, (CZ)�A is a partial building set (andpartial building sets of this form will be called \maximal partial building sets").Proof. It su�ces to show that, for any f 2 CZ , the maximal elements of (G�A)�fare all maximal in (GZ)�f . But this is clear since any element g of (GZ)�f whichis greater than or equal to an element in (G�A) is necessarily greater than or equalto an element of A; hence, g 2 (G�A)�f .More generally, let CK be the set of parallel classes of cells in any zonotopalcell complex K. If GK is a subset of CK , then for any subcomplex K 0, there is acorresponding subset GK0 of CK0 de�ned byGK0 = ff 0 2 CK0 jf 0 is parallel to some f 2 GKg;which we call the restriction of GK to K 0 (note that the parallel relation in CK0might be �ner than the parallel relation in CK). In particular, if Z is a zonotopeand F is any face, then the restriction of a (partial) building set GZ to F is a(partial) building set. This leads us to the general de�nition.De�nition 3.1.4. Let K be any zonotopal cell complex. Then a subset GK of CKis a (partial) building set if and only if for every cell Z in K, its restriction GZ isa (partial) building set for CZ .The following lemma is a straightforward consequence of the de�nition of apartial building set.Lemma 3.1.5. Let GK be any building set for K, and let A be any collection ofparallel classes in CK . Let G�A be the set of all parallel classes f 2 CK such thatf � a for some a 2 A. Then G�A is a partial building set.We will need to distinguish between parallel classes in a building set and thecells in these classes. We introduce the notion of a \mine�eld" as the collection ofcells in a building set (the point being that these cells are precisely the ones whichwill be \blown-up" in the next subsection). A subset M of P(K) is a (partial)mine�eld for K if it has the following properties(a) If Z 2M, then M contains all cells in P(K) which are parallel to Z.(b) The set of parallel classes in M are a (partial) building set for K.



30 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTTIf G is a (partial) building set for K, then there is an associated (partial) mine�eldM, consisting of all cells whose parallel classes lie in G. A partially mined zonotopalcomplex is a pair (K;M) where M is a partial mine�eld for K. It is mined if Mis a mine�eld. If K 0 is a subcomplex of K, then let MK0 be the set of all cells ofK 0 which lie in M.It is clear that for any partially mined zonotopal cell complex (K;M) andany subcomplex K 0 of K, the pair (K 0;MK0) is a partially mined zonotopal cellcomplex, called a subcomplex of (K;M). The product (K1;M1) � (K2;M2) oftwo partially mined zonotopal cell complexes is the partially mined zonotopal cellcomplex (K1 �K2;M1 �M2), where M1 �M2 consists of all products Z1 �Z2where Z1 2M1 and Z2 2 M2. The following lemma is clear.Lemma 3.1.6. Let Z be a zonotope and let M be the partial mine�eld corre-sponding to a partial building set GZ . Let F be the GZ -decomposition of Z. Fix avertex v of Z. Then for each f 2 F , there is a unique Zf 2 f which has v as avertex. Moreover, if (Zf ;Mf ) is the subcomplex of (Z;M) corresponding to Zf ,then there is a natural identi�cation(Z;M) = Yf2F(Zf ;Mf ):By a morphism of zonotopal cell complexes � : K1 ! K2, we shall mean anisomorphism onto a subcomplex. Equivalently, a morphism � : P(K1) ! P(K2)is an order-preserving injection such that for every Z 2 P(K1), � restricts to anisomorphism P(K1)�Z �= P(K2)��(Z).Similarly, a morphism � : (K1;M1) ! (K2;M2) is an isomorphism onto asubcomplex of (K2;M2).3.2. Blowing up zonotopal cell complexes. Let Z be the category of zono-topal cell complexes, and let eZ be the category of mined zonotopal cell complexes(with morphisms de�ned above). We denote by Zn and eZn the full subcategoriesconsisting of complexes of dimension � n.We are going to de�ne a functor from eZ to Z which we denote by (K;M) !K#M and call the blow-up of K along M. (We shall write simply K# when thereis no ambiguity.) Roughly speaking, we shall blow-up (as in Example 1.5.1) thecells in M and no others.The construction will also satisfy the following two properties.(P1) (Identity property.) If M = ;, then K#M = K.(P2) (Naturality with respect to products.) If (K;M) = (K1;M1)� (K2;M2),then K#M = (K1)#M1 � (K2)#M2 .The de�nition of this construction is inductive, i.e., we de�ne it on the sub-categories eZn by induction on n. (The following is fairly close to the expositionof the \M�obius band hyperbolization procedure" on pages 334-335 of [CD3].) IfdimK � 1, then K#M = K. (Hence, the construction leaves the 1-skeleton alone.)In other words, on eZ1, the functor is the natural projection onto Z1. Now supposeby induction that, for n > 1, the functor has been de�ned on eZn�1 and that it



NONPOSITIVE CURVATURE OF BLOW-UPS 31satis�es (P1) and (P2) for mined complexes in eZn�1. Let (K;M) be a partiallymined complex of dimension n. The (n�1)-skeleton of K#M must then be de�nedto be the blow-up of the (n� 1)-skeleton of K, i.e.,(K#M)(n�1) = (K(n�1))#MK(n�1) :Suppose Z is an n-cell in K. Let GZ be the partial building set associated to MZ(the restriction of M to Z).Case 1. Z 62 M. Let (Z;MZ) = Yf2F(Zf ;Mf )be the decomposition given in Lemma 3.1.6. The boundary @Z decomposes as[f2F @fZwhere @fZ = @Zf � Yg2F�ffgZg:Since (P2) holds for complexes of dimension n� 1,(@fZ)#M = (@Zf )#Mf � Yg2F�ffg(Zg)#Mg :In other words, (@Z)#M is naturally identi�ed with a subcomplex of the productYf2F(Zf )#Mf :Hence, we de�ne Z# = Z#M to beYf2F(Zf )#Mf :Case 2. Z 2 M. Consider the central symmetry a : @Z ! @Z. It induces aninvolution on any parallel class of faces in Z; hence, it takesM@Z to itself. That isto say, a : (@Z;M@Z)! (@Z;M@Z) is an automorphism of mined complexes. Byinduction (@Z)# is de�ned and by functoriality, we get an involution a# : (@Z)# !(@Z)#. As in Example 1.5.1, we shall de�ne Z# to be the canonical interval-bundleover (@Z)#=a#. In other words, Z# is the quotient space of (@Z)# � [�1; 1] bythe involution de�ned by (z; t) 7! (a#(z);�t). We note as before, that (@Z)# iscanonically identi�ed with the subcomplex (@Z)# �Z2 f�1g of Z#.This shows how to perform the construction on each n-cell. To do it on an n-dimensional complexK, we glue each blown up n-cell Z# toK(n�1)# via the naturalidenti�cation of (@Z)# with a subcomplex of K(n�1)# . We must also say how toextend morphisms across the n-cells. In Case 1, this follows since (by Lemma 3.1.6)any morphism of a product of mined zonotopes preserves the GZ -decompositions.In Case 2, we take the product of the morphism on (@Z)# with the identity map



32 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTTon [�1; 1]. Since, by Lemma 1.4.7, a lies in the center of Aut(P(Z)), this map isequivariant with respect to the involution. Hence, it induces a morphism on Z#.Remark 3.2.1. There is a functorial "blow-down" map � : K# ! K de�ned asfollows. We de�ne � by de�ning its restriction to Z# for every cell Z in K. IfZ 2 M, we can assume by induction that � : (@Z)# ! @Z is de�ned. IdentifyingZ with the cone on @Z (= @Z � [0; 1]= � where (z; 0) � (z0; 0)), we de�ne � onZ# = (@Z)# �Z2 [�1; 1] by �([z; t]) = [�(z); jtj]. If Z 62 M, then Z is a product�fZf of cells inM and we take � to be the product Z# = �f (Zf )# ! Z = �fZfof the corresponding blow-down maps.The locus in K consisting of points which have more than one preimage in K#is called the center of the blow-up. It is the union of the images of the subspacesEf ! K (Section 1.5) as f runs over all parallel classes in G. The preimage in K#of the center is a union of hyperplanes Hf ! K#, again indexed by f 2 G. Thisunion of hyperplanes is called the exceptional divisor of the blow-up.3.3. Links in blow-ups. It is immediate from the de�nition of the blow-upfunctor that the vertices of K correspond bijectively with the vertices of the blow-up K#M. Moreover, it turns out that the link of a vertex in K#M is a subdivisionof the link of the corresponding vertex in K. An example is shown in Figure 5. Thetwo �gures on the left are neighborhoods of the corresponding vertex in K andK#. A corner of a zonotope is shown intersecting each neighborhood in a smallcube. The �gures on the right represent the links of the vertices (the second onebeing a subdivision of the �rst). We next describe the functorial setting for thedescription of the link of a vertex in a blow-up K#M. It is more or less analogousto the construction of blow-ups.Suppose �1 and �2 are two convex polytopes in general position in some a�nespace of dimension greater than dim �1+dim�2. Then their convex hull is denoted�1 ��2 and called the join of �1 and �2. The combinatorial type of �1 ��2 does notdepend on the a�ne space or the embedding. For example, the join of a j-simplexand a k-simplex is a (j + k + 1)-simplex.A collection of disjoint faces f�1; : : : ; �kg of a convex cell � is a join decompo-sition if � is the join �1 � � � � � �k. A cell � is join-irreducible if it does not admita nontrivial join decomposition. A subset of a join decomposition for � is called apartial join decomposition for �.De�nition 3.3.1. Let L be a cell complex. A subset S of P(L) is a (partial)subdivision set for L if for every � 2 P(L), the set of maximal elements of S�� isa (partial) join decomposition of �.Example 3.3.2. The fundamental example of a partial subdivision set is the onewhich is induced on the link of a vertex in a zonotopal cell complex by a partialmine�eld. Let (K;M) be a partially mined zonotopal cell complex, v a vertex ofK, and L = Lk(v;K). Then the induced subset S = fLk(v; Z)jZ 2 M and v 2Zg � P(L) is a partial subdivision set for L.
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Figure 5.Example 3.3.3. Given any subset T � P(L) and any subdivision set S, let S�Tbe the set of all � 2 S such that there exists � 2 T with � � � . Then S�T is apartial subdivision set for L. In particular, if C�A is a maximal partial buildingset (as in Lemma 3.1.3) for a zonotopal cell complex K with corresponding partialmine�eldM, then the induced partial subdivision set on Lk(v;K) (Example 3.3.2)is P(L)�T where T is the set fLk(v; Z)j[Z] 2 C�A; v 2 Zg.As in Section 3.1, any partial join decomposition J can be extended to a joindecomposition with a minimal number of elements. We call this extension theminimal join decomposition containing J .



34 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTTGiven a partial subdivision set S and a cell � in L, the S-decomposition of � isthe minimal join decomposition of � containing the maximal elements of S�� . Iff�1; : : : ; �kg is the S-join decomposition of a cell �, thenS�� = kai=1Si;where Si = S��i , 1 � i � k (note at most one of the Si will be empty).Given a pair (L;S) where S is a partial subdivision set on a cell complex L,there is a functorial subdivision L�S of L such that:(i) If S = ;, then L�S = L, and(ii) If (L;S) = (L1 � L2;S1`S2), then L�S = (L1)�S1 � (L2)�S2 .The de�nition of L�S is again by induction on dimension. The vertex set of L�Sis equal to the vertex set of L. We suppose a subdivision L(n�1)�S of the (n� 1)-skeleton has been constructed. Let � be an n-cell, and let f�1; : : : ; �kg be theS-join decomposition of �. If this decomposition has more than one factor, thenwe de�ne ��S to be ��S = (�1)�S1 � � � � (�k)�Sk :If this decomposition has only one factor, then � 2 S. In this case, the boundarysubdivision @��S has been de�ned, and we introduce a barycenter in the interiorof � and cone o� the subdivision of the boundary.Remark 3.3.4. If L is the boundary complex of the dual of a convex polytopeP , then L�S is the boundary complex of the dual of a polytope obtained by\truncating" certain faces of P . Namely, one truncates exactly those faces whichare dual to cells in S.Example 3.3.5. The set S of all (positive dimensional) cells of L forms a subdi-vision set, called the maximal subdivision set, and it follows from the descriptionthat L�S is the barycentric subdivision of L. In particular, if L is the boundaryof an n-simplex, then it follows from the previous remark that L�S is the bound-ary complex of the polytope dual to the n-dimensional permutohedron (i.e., thepermutohedron is the full truncation of the simplex).Combinatorics.The combinatorics of the subdivision L�S can be described asfollows. The cells of L�S correspond bijectively with collections � = fF1; : : : ; Fkgwhere Fi (1 � i � k) is a ag of the form�0 < � � � < �j ;where �i 2 S for all i > 0 and where the set consisting of maximal elements of theags F1; : : : ; Fk is the S-join decomposition of a cell in L. The partial orderingis the obvious one: � � �0 if and only if for every F 2 � there exists an E 2 �0with F � E. The cell corresponding to � is isomorphic to the join of the maximalelements of the ags in �. Hence, we have the following.



NONPOSITIVE CURVATURE OF BLOW-UPS 35Lemma 3.3.6. The subdivision L�S is a simplicial cell complex if and only if Scontains every join-irreducible element of P(L) which is not a simplex (i.e., whichis not a vertex).Recall that a cell complex L is a complex if the intersection of any two cellsis either empty or a single cell. Thus, any cell in a complex is determined by itsvertex set. Clearly any subdivision of a complex is again a complex. Suppose S isa partial subdivision set for a complex L, and S satis�es the conditions of Lemma3.3.6. Then L�S is a simplicial complex. Let eS be the union of S and the setof vertices of L. Then the vertices of L�S correspond to singleton ags which areprecisely the elements of eS, and the simplices of L�S correspond to certain subsetsof eS.De�nition 3.3.7. A subset S � eS is nested if every subset of S whose elementsare pairwise noncomparable is a join decomposition of a cell not in S (two elements�1 and �2 in a poset are noncomparable if �1 6� �2 and �2 6� �1).Remark 3.3.8. The notion of nested subsets for indexing strata in compacti�ca-tions of con�guration spaces was introduced by Fulton and MacPherson in [FM].De Concini and Procesi generalized this notion to study the combinatorics of theircompacti�cations of complements of subspace arrangements [DP1].The following proposition follows immediately from the combinatorial descrip-tion of the cells of L�S in terms of collections of ags. Note that the hypothesisthat L be a complex (rather than just a cell complex) cannot be weakened.Proposition 3.3.9. Assume that L is a complex and that eS contains every joinirreducible element of P(L), then the simplices of L�S are in one-to-one corre-spondence with nested subsets of eS. In particular, L�S is a ag complex if andonly if every subset of eS consisting of pairwise nested elements is nested.As a special case, note that if S = P(L), then the cells of L�S correspond toags in P(L). Thus, P(L�S) = Fl(P(L)) and L�S is the barycentric subdivisionof L. More generally, suppose S is a partial decomposition set of the form P(L)�T(as in Example 3.3.3) where T is a subset of P(L) consisting of cells of positivedimension (subdividing vertices has no e�ect). Then the S-join decomposition ofany cell � is f�g; hence, L�S is an iterated stellar subdivision of L.Lemma 3.3.10. Let T be any subset of P(L) (with no vertices) and let S =P(L)�T . Assume further that L is a complex. Then L�S is a ag complex if andonly if eS contains every join irreducible cell of P(L) and T contains an edge ofevery empty simplex in L.Proof. Any subset S of eS consisting of pairwise nested elements must be ofthe form S = fv0; : : : ; vj ; �1; : : : ; �kg where �1 < � � � < �k is a ag of cells in Sand v0; : : : ; vj are pairwise joinable vertices of �1 whose edges are not in T . If Tcontains an edge of every empty simplex in L, then v0 � � � � � vj is a simplex in �1



36 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTTand S is nested. Conversely, if v0; : : : ; vj are vertices of an empty simplex with noedge in T (and therefore no edge in S), then fv0; : : : ; vjg is not nested.Links of vertices in blow-ups. The signi�cance of the partial subdivisionconstruction above is that it describes the link of a vertex in a blow-up K#M interms of the link of the vertex in K (note that the vertex sets of K and K# arethe same). Let Z be an n-dimensional cell in K and let v be a vertex of Z. LetZ = Yf2F Zfbe the decomposition given in Lemma 3.1.6, so v is a vertex of each Zf . On thelevel of links, we have by property (P2),Lk(v; Z#) = Lk(v; (YZf )#)= Lk(v;Y(Zf )#)= �f2F Lk(v; (Zf )#)If there is more than one factor in the above join decomposition (Case 1), theneach Zf has dimension less than n. By induction, this determines Lk(v; Z#). If thejoin decomposition has only one factor (Case 2), then the blow-up constructionon Z introduces a new one-dimensional cell IZ (corresponding to the restrictionof the canonical interval bundle over P(Z)# to the single point v). It follows fromthe blow-up construction thatLk(v; Z#) = Lk(v; (@Z)#) � Lk(v; IZ ):In other words, Lk(v; Z#) is the cone on Lk(v; (@Z)#). Hence, the subdivisionconstruction and this description of the links in the blow-up coincide. We statethis as the following lemma.Lemma 3.3.11. Let (K;M) be a mined zonotopal cell complex, and let v be avertex of K. Let S be the induced partial subdivision set S = fLk(v; Z)jZ 2M and v 2 Zg for Lk(v;K). ThenLk(v;K#M) = Lk(v;K)�S :Combining this with Lemma 3.3.6 we have the following corollary.Corollary 3.3.12. Let (K;M) be a partially mined zonotopal cell complex. ThenK#M is simple if and only if M satis�es the condition:(S) M contains every irreducible cell Z in K which is not simple.Example 3.3.13. (i) Let M be any mine�eld on K (not just a partial mine�eld).Then K#M is a cubical cell complex (in particular, the cells are simple).(ii) Let K be a zonotopal cell complex and let A be any subset of CK whichcontains the parallel class of every irreducible, non-simple cell. Then G = C�A (seeLemma 3.1.3) is a partial building set, and K#G is simple.



NONPOSITIVE CURVATURE OF BLOW-UPS 373.4. Comparison with the DeConcini-Procesi procedure. Let H be anessential hyperplane arrangement in an n-dimensional real vector space V , C (=H?) the dual arrangement in V �, and Z and X the corresponding zonotope andits dual. Recall that C and CZ are naturally identi�ed. A partial building set for Cis de�ned analogously to De�nition 3.1.1, i.e., it corresponds to a partial buildingset for CZ . Let G be a partial building set for C. Following [DP1], putbV = V � [A2GA?and let � : bV ! V � YA2G P(V=A?)be the natural map. Then V#, the blow-up of V with respect to G, is de�ned tobe the closure of �(bV ) in the product. The blow-up of P(V ), denoted by P(V )# issimilarly de�ned except that one replaces V by P(V ) in the product. The closureof the image of X \ bV in V# is denoted by X#.Let s : V ! X be radial projection. That is, s(v) = v if v 2 X and if v 62 Xthen s(v) is the point where the line segment from 0 to v intersects @X . Sinces preserves subspaces through the origin, it induces a map s# : V# ! X#. Thefollowing lemma is then clear.Lemma 3.4.1. s# : V# ! X# is a deformation retraction.We recall that P(X) = @X=a and P(Z) = @Z=a are dual cell complexes. Itfollows from Example 1.5.2 and the fact that P(V )# can be obtained by a sequenceof blow-ups, as in [DP1], that if � is an open (n� 1)-cell in P(X), then its closure� in P(V )# is an (n� 1)-cell obtained from � by truncating certain faces. (To beprecise one truncates those faces of � which are dual to faces in the partial mine�eldM.) Thus, P(V )# is naturally a cell complex which we denote by P(X)#. The setof (n�1)-cells in P(X)# is naturally bijective with the set of (n�1)-cells in P(X).Let P(Z)# be the functorial blow-up of the zonotopal cell complex P(Z) along thepartial mine�eld M. The main result of this subsection is the following.Theorem 3.4.2. P(X)# and P(Z)# are dual cell complexes.Proof. The link of a vertex v in P(Z)# is obtained by subdividing Lk(v;P(Z)),as described in the previous subsection. This subdivision process is dual to theprocess of truncating Dv (where Dv denotes the cell in P(X) which is dual to v).The result follows.Remark 3.4.3. It follows from [DP1] that the manifold P(V )# (= P(X)# = P(Z)#)can be obtained from the real projective space P(V ) by a sequence of blow-upsalong smooth centers (in the sense of algebraic geometry). This shows that P(V )#has a natural smooth structure (in fact, a nonsingular real algebraic structure) inwhich the subspaces of P(Z)# are smooth submanifolds.



38 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTT3.5. Oriented blow-ups. If Z is a zonotope, the oriented blow-up of Z at itscenter is the product @Z � [0; 1]. The entire construction of the functor # canbe repeated for oriented blow-ups. In other words, there is a functor from minedzonotopal cell complexes to zonotopal cell complexes, denoted (K;M) ! K�M,which has the properties:(P1) K�; = K(P2) (K1 �K2)�M1�M2 = (K1)�M1 � (K2)�M2 .Again the construction is by induction.K(1)� = K(1) whereK(1) is the 1-skeletonof K. Assume by induction that K(n�1)� has been de�ned. For any n-cell Z, let(Z;MZ) =YF (Zf ;Mf )be the decomposition of Lemma 3.1.6. If there is more than one factor, then eachfactor has dimension less than n, so de�ne Z�M = Q(Zf )�Mf . If there is onlyone factor (i.e., if Z 2M or if P(Z)\M = ;), then (@Z)� has been de�ned, andZ� is de�ned to be the product (@Z)� � [0; 1].In both cases, (@Z)� is naturally identi�ed with a subcomplex of Z�. In the�rst case, this follows from the product structure. In the second case, (@Z)� is thesubcomplex (@Z)� � f1g of Z�. For each n-cell Z, the complex Z� is then gluedto K(n�1)� along the subcomplex (@Z)�.Remarks 3.5.1. (i) If Z is minimal in M, then Z� = @Z � [0; 1] while Z# =(@Z � [0; 1])= � where the equivalence relation identi�es (z; 0) and (a(z); 0). Toput this another way, Z� is obtained from Z# by cutting Z# open along @Z=a(=the image of @Z � 0). More generally, K# is an identi�cation space of K� formedby identifying certain points in the boundary via involutions.(ii) The notion of a maximal oriented blow-up makes sense for any cell complex,not just one which is zonotopal.(iii) In our de�nition of K� we have not altered the 1-skeleton of K. Dually, wehave not blown up codimension-one subspaces. Instead, we could have de�ned theoriented blow-up construction starting with the 0-skeleton of K, in which case1-cells in the partial mine�eld would be divided into two intervals. K� wouldthen tend to break up into more connected components. For example, if one wereto apply this procedure to the maximal mine�eld for @Z, the result would be adisjoint union of the truncation of all top dimensional cells in @X (= the dual of@Z).Let bK be the complement of all codimension � 2 immersed subspaces of K (seeSection 1.5) which are dual to cells in M. Then K� and bK both retract onto acommon subcomplex of K. Namely, let UM be the union of the interiors of allcells of K which have a face in M. Then the following is clear from the variousconstructions.Lemma 3.5.2. There are deformation retracts K� ! K�UM and bK ! K�UM.In particular, K� and the complement bK are homotopy equivalent.



NONPOSITIVE CURVATURE OF BLOW-UPS 39The oriented blow-up K� can also be obtained by \cutting open" the ordinaryblow-up K# along all of the hyperplanes in the exceptional divisor (see Remark3.2.1 and Figure 6). In fact the identi�cation map q : K� ! K# in the previousremark (part (i)) is just the corresponding reglueing map. If M contains everyirreducible non-simple cell of K, then K# will be a simple zonotopal cell complexby Corollary 3.3.12, hence, it has a natural cubical subdivision into small cubes.Moreover, the exceptional divisor will be a subcomplex of this cubical subdivion(K#)2, so K� will have a natural decomposition (K�)2 with respect to whichthe identi�cation map q : (K�)2 ! (K#)2 will be a map of cubical complexes.Observing the e�ect on the links when a simple zonotope is cut along hyperplanepieces, we obtain the following lemma.
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Figure 6.Lemma 3.5.3. SupposeM contains every irreducible, non-simple cell in K. Thenfor every vertex v 2 (K�)2, the simplicial complex Lk(v; (K�)2) is a full subcom-plex of Lk(q(v); (K#)2).3.6. \Doubling" an oriented blow-up. Suppose that K is a zonotopal cellcomplex, that G is a partial building set forK, and thatM is the associated partialmine�eld. For simplicity, let us also assume that for each g 2 G the correspondingimmersed subspace of K is actually embedded. (In other words, for any g 2 G andZ 2 P(K) with [Z] � g, there is exactly one parallel class of faces in Z in theequivalence class of g.) Let G(2) denote the set of subspaces in G of codimension� 2 (i.e., G(2) consists of those parallel classes which are represented by cellsof dimension � 2). We will de�ne below a distinguished family (�gK�)g2G(2) ofcodimension-one subcomplexes of K� indexed by G(2). Roughly speaking, �gK� isthe boundary of a regular neighborhood of the subspace corresponding to g in K.(Equivalently, �gK� is the double cover of the \exceptional divisor" correspondingto g in K#.) Once the �gK� have been de�ned, it will then be possible to gluetogether 2m copies of K�, where m = Card(G(2)), along the �gK� to get a newzonotopal cell complex DK�, called the \double" of K�.By de�nition, �gK� will be the union of the �gZ� where Z is a cell in K with[Z] � g, and where �gZ� will be de�ned below. If g is not less that or equal to



40 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTT[Z], then set �gZ� = ;. Suppose by induction that �gK 0� has been de�ned for allsubcomplexes K 0 of dimension < n, and that Z is an n-cell with [Z] � g. As inthe previous section, let (Z;M) = Yf2F(Zf ;Mf )be the GZ -decomposition of Lemma 3.1.6. If there is more than one factor, thenthere is exactly one element of F , call it f 0, such that g � f 0 (since we are assumingeach subspace is embedded). In this case, set�gZ� = �g(Zf 0)� Yf2F�f 0Zf :If there is only one factor, then Z 2 M and by the inductive hypothesis �g(@Z�)has been de�ned. If [Z] 6= g, then set�gZ� = �g(@Z�)� [0; 1];while if [Z] = g, then set �gZ� = (@Z�)� 0:Let J = (Z2)G(2) be a product of cyclic groups of order 2, and let fsggg2G(2) bea set of generators. De�ne DK� = (K� � J)= �where the equivalence relation is de�ned by (x; j) � (x0; j0) if and only if x = x0and j�1j0 belongs to the subgroup generated by fsgjx 2 �gK�g. The group J actsnaturally on DK� (as a reection group) and the orbit space is K�.In the case of a maximal blow-up or maximal partial blow-up (i.e., a blow-upwith respect to a maximal partial building set as in Lemma 3.1.3), there is a smaller\double" ofK�. Suppose that dimK = n. For each i 2 f2; : : : ; ng, let �iK� denotethe union of the �gK� where g corresponds to a subspace of codimension i. Letfsig2�i�n be a set of generators for (Z2)n�1 and seteDK� = (K� � (Z2)n�1)= �where the equivalence relation is de�ned as above. Since we are dealing with themaximal blow-up, �gK� \ �g0K� = ; if g and g0 are distinct and have the samecodimension. It follows that DK� is a covering space of eDK�.Remark 3.6.1. If G is the maximal building set, then eDK� is the \cross-with-interval hyperbolization procedure" of [DJ2] applied to the cell complex K. In thiscase, the (Z2)n�1-action on eDK� is discussed on page 334 of [CD3].Remark 3.6.2. K� is a retract of DK�. Hence, if DK� is aspherical, so is K�.Remark 3.6.3. If K is a smooth manifold (e.g., if K = P(Z)), then K� is a mani-fold with corners, and the �gK� are its codimension-one strata. Thus, K� has thestructure of an orbifold (a right-angled \reectofold" as in [CD3]), and DK� is asmooth manifold.



NONPOSITIVE CURVATURE OF BLOW-UPS 414. Nonpositive curvature of blow-upsLet K be a zonotopal cell complex, and let K# be the blow-up with respect tosome partial mine�eld. In this section we consider the question of when K# admitsa piecewise Euclidean metric of nonpositive curvature. We treat three cases: (1)K is any zonotopal cell complex and M consists of all cells, (2) K = P(Z) whereZ is a simple zonotope and M is the set of all irreducible cells, and (3) K isany zonotopal cell complex and M is a partial mine�eld with the property thatevery cell with a face in M is also in M. In the �rst two cases,M is a mine�eld,hence the blow-ups will be zonotopal cell complexes whose cells are all (big) cubes.Passing to the standard cubical subdivision does not essentially alter the metric.On the other hand, for case (3) the resulting zonotopes need not be cubes, so herewe must use the cubical subdivision (provided the zonotopes are simple) in orderto get a natural piecewise Euclidean structure. Case (3) is a generalization of case(1).4.1. Maximal blow-ups. Let K be a zonotopal cell complex, and letM be themine�eld consisting of all cells in K. We call K#M the maximal blow-up of K. Themaximal blow-up is a generalization of Gromov's \Moebius band hyperbolization"(see [CD3], for details). In particular, it is always nonpositively curved.Theorem 4.1.1. Let K be a zonotopal cell complex. Then the maximal blow-upK# has a natural piecewise Euclidean (cubical) metric of nonpositive curvature.Proof. By Gromov's Lemma (Corollary 1.6.7), it su�ces to show that Lk(v;K#)is a ag complex for every vertex v. But it follows from the explicit description ofthe links (Section 3.3) that Lk(v;K#) is isomorphic to the barycentric subdivisionof Lk(v;K). The latter is a ag complex by Example 1.6.2.Remark 4.1.2. By Lemma 3.5.3, the link of any vertex of the maximal orientedblow-up K�M is isomorphic to a full subcomplex of the link of a vertex in K#Mand is, therefore, a ag complex. Hence, K�M is nonpositively curved. Since K�Mis homotopy equivalent to the complement bK of all codimension-2 immersed sub-spaces of K (Lemma 3.5.2), it follows that bK is aspherical.Applying this theorem to the case of hyperplane arrangements, we have thefollowing.Corollary 4.1.3. Let H be an essential hyperplane arrangement in V , let P(V )#denote the maximal blow-up of P(V ) as in [DP1] (see Section 3.4). Then P(V )#admits a metric of nonpositive curvature.Proof. Let Z be the zonotope associated to H. From Section 3.4, P(Z)# isa cell decomposition for P(V )#, so (1) follows from Theorem 4.1.1 applied toK = P(Z).



42 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTT4.2. Manifolds tiled by permutohedra. We have previously mentioned sev-eral di�erent constructions of closed n-manifolds cellulated by n-dimensional per-mutohedra with precisely 2n of the permutohedra meeting at each vertex. It turnsout that these manifolds are \commensurable" in the sense that any two havea common �nite-sheeted covering space. We begin by discussing their commonuniversal covering space. We let Pn denote the n-dimensional permutohedron.Example 4.2.1. (The universal cover.) This is a special case of the constructiondescribed in the paragraph preceding Lemma 2.2.4. Let S be an index set for theset of codimension-one faces of Pn and let (W;S) be the corresponding right-angledCoxeter system (generators s and t commute if and only if the corresponding facesFs and Ft intersect). Set U = (Pn �W )= �where (x;w) � (x0; w0) if and only if x = x0 and w�1w0 belongs to the subgroupgenerated by fs 2 Sjx 2 Fsg. Then U is a simply-connected manifold tiled bypermutohedra. Moreover, it follows from the fact that the dual of @P is a agcomplex that U is contractible (e.g., see [D2]).An equivalent point of view to that of the preceding paragraph is the following.Pn can be regarded as a right-angled Coxeter orbifold in the sense of [CD3] or[DJ1]. Its orbifold fundamental group isW , and its universal covering space (in thesense of orbifolds) is U . Hence, if � is any torsion-free subgroup of W , then U=� isa manifold tiled by permutohedra, and the natural map U=�! Pn is an orbifoldcovering. Conversely, if Mn ! Pn is an orbifold covering and Mn is a manifold,then the universal covering space of Mn is U , and �1(Mn) can be identi�ed witha torsion free subgroup of W . We restate this as the following.Theorem 4.2.2. Suppose that Mn is a manifold tiled by permutohedra, with 2nmeeting at each vertex, and that p :Mn ! Pn is a map such that(i) the restriction of p to any n-dimensional permutohedron in Mn is a home-omorphism, and(ii) the map p is locally isomorphic to the orbit map Rn ! Rn=(Z2)n (where(Z2)n acts as a linear reection group on Rn).Then the universal cover of Mn is U , and �1(Mn) is a torsion-free subgroup ofW . If Mn is compact, then �1(Mn) has �nite index in W .The full group of symmetries � of the cellulation of U by permutohedra isslightly larger than W . In fact, we have an exact sequence1!W ! �! Gn ! 1where Gn is the group of combinatorial symmetries of Pn. It follows from thede�nition of Pn that the symmetric group Sn+1 is contained in Gn. Since Pn is azonotope, its symmetry group also contains the central symmetry. It is not hard tosee that, in fact, Gn is the product Sn+1�Z2 (the second factor being the centralsymmetry). Hence, there are 2n! copies of a fundamental domain for Gn in Pn.We also remark that (i) Sn+1 acts on Pn as a group generated by reections with



NONPOSITIVE CURVATURE OF BLOW-UPS 43quotient space a combinatorial cube, and (ii) the inverse image of Sn+1 in � is aCoxeter group W 0 with diagram as in Figure 7, discussed on page 337 of [CD3].1 1 1 1Figure 7.Theorem 4.2.2 applies to any small cover of Pn (see Section 2). Next we considersome speci�c small covers. First we state formally the coincidences among theexamples mentioned in the Introduction (Section 0.4).Theorem 4.2.3. For each integer n � 0, the following three manifolds are iso-morphic as manifolds tiled by permutohedra.(i) Mn1 , the maximal blow-up of the coordinate hyperplane arrangement in RPn .(ii) Mn2 , the closure of a generic (R� )n-orbit in the ag manifold SL(n+1;R)=B(where B is the Borel subgroup of upper triangular matrices).(iii) Mn3 , the quotient of the M�obius band hyperbolization of the boundary complexof an (n+ 1)-cube by the central involution.Proof. The coordinate hyperplanes give RPn the structure of a small cover ofthe n-simplex �n (it is the real part of the complex toric variety C Pn ! �n).If we blow-up such a toric variety along all (R� )n-stable subvarieties (in order ofincreasing dimension), we obtain another toric variety over the full truncation of�n, that is, over the permutohedron. Thus, Mn1 ! Pn is a small cover as well asthe real part of a toric variety. Mn2 is also the real part of a toric variety over Pn.An explicit computation (e.g., see [FH]) shows that Mn1 and Mn2 have the samecharacteristic function; hence,Mn1 =Mn2 . The coordinate hyperplane arrangementcuts RPn into n-simplices and, hence, gives it the structure of an n-dimensionalsimplicial cell complex. Explicitly, this cell complex is the boundary complex of an(n+ 1)-dimensional octahedron divided by the antipodal map. Its dual zonotopalcomplex is the boundary of the (n+1)-cube divided by the antipodal map. Hence,its maximal blow-up (which in this case is Gromov's M�obius band construction) isdi�eomorphic toMn1 . More precisely, if Mn3 is the dual cell complex to this cubicalmanifold, then Mn3 is cellulated by permutohedra and Mn3 =Mn1 .Example 4.2.4. (Tomei manifolds.) Fix a set 
 = f!1; : : : ; !n+1g of distinct realnumbers and let Nn be the set of symmetric tridiagonal matrices with spectrumequal to 
. As explained in [D2] and [T], (Z2)n acts as a reection group on Nn,and each chamber is isomorphic to Pn. Hence, Nn ! Pn is also a small coverof Pn. For n > 1, the manifold Nn is not di�eomorphic to the n-dimensionalmanifold in the previous theorem. For example N2 is orientable while M22 is not



44 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTT(however both have Euler characteristic �2). In fact, contrary to the assertion inthe �nal paragraph of [DJ1], Nn is not the real part of a toric variety.The natural action of Sn+1 on Pn extends to an action on Mn2 and to one onNn (as shown in [D2]). Hence, bothMn2 and Nn can be regarded as orbifold coversof the cube with orbifold fundamental group W 0 (whose diagram is the \comb" inFigure 7, above). Hence, �1(Mn2 ) and �1(Nn) are both subgroups of W 0 of index2n(n + 1)!. Let Bn+1 denote the semidirect product of (Z2)n+1 with Sn+1 whereSn+1 acts on (Z2)n+1 by permuting the coordinates. Since Mn2 = Mn3 , it followsfrom Proposition 4.1, p. 338 of [CD3], that �1(Mn2 ) can be identi�ed with thekernel of a natural surjection W 0 ! Bn+1. There is another natural surjectionW 0 ! (Z2)n+1 �Sn+1 (namely, (�1; �2) where �1 sends the generators on the topof the comb to the generators of (Z2)n+1 and the others to the identity element,and where �2 : W 0 ! Sn+1 sends the generators on the bottom of the comb tothose of Sn+1 via the obvious surjection and the others to the identity element).It follows from [D2] that �1(Nn) is the kernel of (�1; �2) :W 0 ! (Z2)n+1 � Sn+1.There are many di�erent small covers of Pn. What distinguishes the Tomeimanifold Nn as well as one of the manifolds Mn of Theorem 4.2.3 from the othersis that they both admit an action of the symmetric group Sn+1 inducing thereection group action on Pn. Thus, both Nn and Mn are orbifold covers (withthe same number of sheets) of the n-cube with the orbifold structure having W 0as fundamental group.Example 4.2.5. (Maximal blow-ups.) Suppose that H is a simplicial hyperplanearrangement in Rn+1 and that we are considering the maximal blow-up (so thatthe building set G consists of all subspaces of H?). Let X be the correspondingsimplicial polytope. Then the boundary of each n-cell in P(X)# is dual to thebarycentric subdivision of the boundary of an n-simplex (see Example 3.3.5). Inother words, each n-cell of P(X)# is a permutohedron. We now show that any twoof these maximal blow-ups are commensurable (as well as being commensurablewith manifolds in Theorem 4.2.3 and Example 4.2.4. First we need a lemma.Lemma 4.2.6. Let X be the simplicial polytope associated to a simplicial arrange-ment in Rn+1 and let �n be a top dimensional simplex (or chamber) in @X. Thenthere is a simplicial projection p : @X ! �n which takes each simplex in @Xisomorphically onto a face of �n.Proof. Suppose that �0 is an adjacent chamber to �. Let v0 (resp., v) be thevertex of �0 (resp., �) opposite to �0 \ �. Then there is a unique simplicialisomorphism �0 ! � which �xes �0 \ � and which maps v0 to v. Hence, if = (�0; : : : ;�m) is any sequence of adjacent chambers (i.e., a gallery) from� = �0 to �00 = �m, we get a simplicial isomorphism � : �00 ! � by composingthe above isomorphism. In fact this isomorphism depends only on the chambers�00 and �, not on the gallery . The reason for this is that two galleries withthe same endpoints are equivalent by a sequence of moves which involves goingaround a codimension-two face in a di�erent direction. Since each codimension-two



NONPOSITIVE CURVATURE OF BLOW-UPS 45face is contained in an even number of chambers, such moves do not a�ect � . If�00 and �0 are adjacent chambers, then the simplicial isomorphism �00 ! � and�0 ! � must agree on �00 \�0. It follows that we have a well-de�ned simplicialmap p : @X ! �n.Corollary 4.2.7. The map p : @X ! �n induces a projection p# : @X# ! Pnwhich is an orbifold covering.Combining this with Theorem 4.2.2 we have the following.Corollary 4.2.8. Let P(X)# be the maximal blow-up of a projective (n + 1)-dimensional simplicial arrangement. Then the universal cover of P(X)# is U (de-scribed in Example 4.2.1). Moreover, the maximal blow-ups of two such simplicialarrangements (of the same dimension) are commensurable.Proof. By the previous corollary, the universal cover of @X# is U . Since @X#is a 2-fold covering of P(X)#, it follows that U is also the universal covering ofP(X)#.Next suppose that X1 and X2 are polytopes corresponding to simplicial ar-rangements in Rn+1 . Then the fundamental groups of (@X1)# and (@X2)# aretorsion-free subgroups �1 and �2 of W , and U=(�1 \ �2) is the desired common�nite sheeted cover of both.Remark 4.2.9. One might speculate that any simply connected n-manifold, cellu-lated by permutohedra, with 2n at each vertex is isomorphic (as a cell complex) toU . In fact, this is false for n � 3. To see this, consider the 3-dimensional version ofU . At each vertex of a permutohedron P 3 we have two hexagons and one square.There is a two-dimensinonal subspace (= wall) containing each of these polygons.In the case of the hexagons, such a subspace is isomorphic to the hyperbolic planetiled by right-angled hexagons. For the square, it is isomorphic to the standardtiling of R2 by squares. Now cut U open along one of the hyperbolic planes, rotateby �=2, and glue back. The resulting manifold bU is cellulated by permutohedra,and the cellulation is not isomorphic to that of U . (The reason that this does notcontradict the previous discussion is that there is no map bU ! P 3.)4.3. Minimal blow-ups of simple zonotopes. The minimal blow-up of thebraid arrangement described in the Introduction (Example 0.1.7) is a special caseof the blow-up of a zonotopal cell complex of the form P(Z) along the mine�eldM consisting of all irreducible cells. If Z is a simple zonotope (i.e., if Z is thezonotope associated to any simplicial hyperplane arrangement), then the followingtheorem gives a simple necessary and su�cient condition for this irreducible blow-up P(Z)#M to be nonpositively curved.Theorem 4.3.1. Let Z be a simple zonotope. Let M be the set of all irreduciblecells in P(Z). Then P(Z)#M is nonpositively curved if and only if the irreducibledecomposition of Z has fewer than 3 factors.



46 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTTIn terms of hyperplane arrangements, we have the following.Corollary 4.3.2. If H is a simplicial hyperplane arrangement in P(V ), then thenatural cubical metric on the minimal blow-up P(V )# is nonpositively curved ifand only if the irreducible decomposition of V � has fewer than 3 factors.We will �rst reduce the proof of Theorem 4.3.1 to comparing the number ofconnected components in certain graphs associated to Z and to each vertex of Z.The �rst graph � is de�ned as follows. The vertex set of � is the set of parallelclasses of edges in Z. Two such classes e1 and e2 determine an edge of � if and onlyif fe1; e2g is not a decomposition of a face (i.e., if and only if any representativeface for e1 + e2 is not a square). There is a natural correspondence between thefactors in the irreducible decomposition of Z and the connected components of �.For any vertex v of Z, there is a similar graph �v de�ned as follows. The vertexset of �v is the set of edges of Z which contain v. Two such edges of Z determinean edge of �v if and only if they are both contained in an irreducible 2-dimensionalface of Z (i.e., a face which is not a isomorphic to a square). Since any parallelclass of edges in Z meets a given vertex v in at most one edge, �v is an embeddedsubgraph of �. Let v denote the image of v in P(Z) and let L = Lk(v;P(Z)). (L isjust the boundary complex of a simplex.) It follows from Lemma 3.3.11 that thelink of v in P(Z)#M is the subdivision L�Sv where Sv is the set of all simplices inL spanned by the vertex sets of connected subgraphs of �v .Lemma 4.3.3. L�Sv is a ag complex if and only if �v has fewer than 3 compo-nents.Proof. For a given simplex � in L, let �v(�) denote the full subgraph of �vcontained in �. Then S = f�1; : : : ; �kg is a nested subset of Sv if and only if each�v(�i) is in a di�erent connected component of �v and the union the �v(�i) isnot all of �v (since L itself is an empty simplex). The lemma then follows fromProposition 3.3.9.We shall prove Theorem 4.3.1 by showing that �v and � have the same numberof components for any vertex v of Z.For any vertex v in Z, we let E(v) denote the set of edges of Z which containv; thus, E(v) is the vertex set of �v. For any collection of edges E1; : : : ; Ek inE(v), we let E1 + � � �+Ek denote the unique k-dimensional face which they span.Suppose E is an edge of Z with vertices v and v0. Then there is a natural bijection� : E(v) ! E(v0) given by �(E) = E and for any other F 2 E(v), �(F ) is the uniqueedge in E(v0)� fEg with the property that E + F = E + �(F ). More generally, if is any sequence (v1; : : : ; vm) of adjacent vertices (or \path") in Z, then we geta bijection � : E(v1) ! E(vm) by composing the bijections � along each joiningedge. Since the path around any 2-dimensional face induces the identity map onE(v), there is a well-de�ned bijection � : E(v)! E(w) for any two vertices v and w,independent of the path joining them (this is just the dual version of statementsin the proof of Lemma 4.2.6).



NONPOSITIVE CURVATURE OF BLOW-UPS 47Lemma 4.3.4. Let v and v0 be two adjacent vertices and E the joining edge. Let� : E(v) ! E(v0) be the bijection de�ned above. Suppose E1 and E2 are two edges inE(v)�fEg, and F is the 3-dimensional zonotope E1+E2+E. Then the followingare equivalent.(i) E +E1 and E +E2 are reducible.(ii) E1 is parallel to �(E1) and E2 is parallel to �(E2).(iii) a(E1 +E2) = �(E1) + �(E2) where a is the antipodal map in F .Proof. (i) and (ii) are equivalent since two faces F1 and F2 of a face F3 in azonotope Z are parallel in Z if and only if they are parallel in F3. For the remainingimplications, suppose P1 and P2 are the hyperplane pieces in F which correspondto the parallel classes of E1 and E2, respectively. Then (ii))(iii) follows from thefact that Z is simple. That is, P1 and P2 must intersect in the barycenters ofE1 +E2 and �(E1) + �(E2), and the antipodal map exchanges these barycenters.To see that (iii))(ii), suppose a(E1 + E2) = �(E1) + �(E2). Since the antipodalmap is combinatorially de�ned, a(E1) and a(E2) are adjacent edges. It follows thatthe edge parallel to a(E1) (resp., a(E2)) in the 2-dimensional face a(E1+E2) mustbe �(E1) (resp., �(E2)) (see Figure 8). Since antipodal edges in F are parallel, (ii)must hold.
v0vE2 a(E1)a(E2)E1

P2
P1 Figure 8.Next suppose that E(v) can be partitioned into two nonempty subsets E1(v)and E2(v) such that E1 + E2 is reducible for every E1 2 E1(v) and E2 2 E2(v).For any other vertex w, let � be the bijection E(v) ! E(w) de�ned above. ThenE1(w) = �(E1(v)) and E2(w) = �(E2(v)) give a partition of E(w) into two disjointsubsets.Lemma 4.3.5. If E1 2 E1(v) and E2 2 E2(v), then �(E1) + �(E2) is reducible.Proof. We might as well assume that w is adjacent to v and that the edge Ewhich joins them is contained in E1(v). Let v, v0, w, w0, E0, E01, and �(E1)0 be asin Figure 9. By the previous lemma (applied to v and v0), a(E + E1) = E0 + E01.



48 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTTOn the other hand, E +E1 = E + �(E1) and E0 +E01 = E0 + �(E1)0. This impliesa(E + �(E1)) = E0 + �(E1)0, so by the previous lemma (applied to w and w0), wehave that �(E1) + �(E2) is reducible.
E2E �(E2) E0

�(E1) �(E1)0
E1 E01v v0

w w0
Figure 9.Proof of Theorem 4.3.1. Let v be a vertex of Z. Suppose E1(v) and E2(v) are apartition of E(v) such that no element of E1(v) is connected by an edge in �v to anelement of E2(v). Let E be the set of parallel classes of edges in Z (i.e., the vertexset of the graph �). For i = 1; 2 let Ei be the set of parallel classes generated byedges in Ei(v) as v ranges over all vertices. It follows from the previous lemma thatE1 and E2 partition E into disjoint subsets, and e1+e2 is reducible for every e1 2 E1and e2 2 E2. Hence, two elements of �v are in the same connected component of �vif and only if they (their parallel classes) are in the same connected component of�. Thus, �v and � have the same number of connected components. The theoremthen follows from Gromov's Lemma (Lemma 1.6.5) and Lemma 4.3.3.4.4. Maximal partial blow-ups and a conjecture of Khovanov. In thissection we consider the nonpositive curvature question for maximal partial blow-ups of zonotopal cell complexes. Let K be a zonotopal cell complex with theproperty that the link of every vertex is a complex. Let A be a subset of parallelclasses of dimension greater than one (blowing up 0 and 1-dimensional cells doesnothing), and letM be the partial mine�eld corresponding to the maximal partialbuilding set C�A (de�ned in Lemma 3.1.3). We will call such a mine�eld themaximal partial mine�eld associated to A. For any vertex v of K, the inducedpartial subdivision set Sv for L = Lk(v;K) is of the form P(L)�T where T consists



NONPOSITIVE CURVATURE OF BLOW-UPS 49of all Lk(v; Z) where Z 2 M. It follows from Lemma 3.3.10 that the link of v inK#M will be a ag complex if and only if it is simplicial and every empty simplex inL contains an edge in Sv . Hence, we have the following generalization of Theorem4.1.1.Theorem 4.4.1. Let K be a zonotopal cell complex all of whose links are com-plexes. Let M be the maximal partial mine�eld corresponding to a subset A of CK.Suppose that M contains every irreducible, nonsimple cell of K. Then the naturalcubical metric on K#M is nonpositively curved if and only if for every vertex v,every empty simplex in Lk(v;K) has an edge in Sv.Proof. By Corollary 3.3.12,K# is a simple zonotopal cell complex (so the naturalcubical decomposition is into small cubes). By Corollary 1.6.7, the metric d2 isnonpositively curved if and only if the link of every vertex in K# is a ag complex.Corollary 4.4.2. If Z is a simple zonotope and M is as above, then (@Z)#Mis nonpositively curved if and only if every vertex v is contained in some 2-dimensional cell in M.Proof. If Z is simple, then the 1-skeleton of Lk(v; @Z) is an empty simplex andthe only empty simplices which appear in links of vertices in @Z are of this form.Hence, the condition of Theorem 4.4.1 that every empty simplex in Lk(v; @Z) hasan edge in Sv is precisely the condition that v is a vertex of a 2-dimensional cellin M.In [Kh], Khovanov conjectures that for any real arrangement H associated toan orthogonal reection group W , the complement of any W -invariant union ofcodimension-2 subspaces in H is a K(�; 1)-space. This follows immediately as aspecial case of the following corollary.Corollary 4.4.3. Let H be a simplicial real hyperplane arrangement in V . Let Ebe any union of codimension-2 subspaces in H which intersects every chamber ina codimension-2 subcomplex. Then bV = V �E is aspherical.Proof. Suppose Z is the (simple) zonotope corresponding to H, and supposeX is its dual polytope. Let A be the set of all parallel classes of faces in @Zwhich are dual to the codimension-2 subspaces in E, and let M be the maximalpartial mine�eld associated to A. Since E intersects each chamber (i.e., the dualof a vertex of Z) in a codimension-2 subcomplex, every vertex of Z is a vertex ofsome 2-cell inM. By Corollary 4.4.2, (@Z)#M is, therefore, nonpositively curved.Hence, by Lemma 3.5.3, the oriented blow-up (@Z)�M is nonpositively curved andtherefore aspherical. Let c@Z be the complement of all subspaces dual to faces inM(or equivalently, the complement of all subspaces dual to elements of A). Then by



50 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTTLemma 3.5.2, c@Z is aspherical. But the latter is homeomorphic to bV \ @X whichis a deformation retract of bV . Hence, bV is aspherical.5. Asphericity of blow-upsNonpositive curvature implies asphericity; however, a priori, a cubical complexmight be aspherical even if its natural piecewise Euclidean metric is not nonposi-tively curved. (For example, the natural metric on the cubical subdivision of anytriangulation of an aspherical manifold will never be nonpositively curved.) In thissection we give some necessary conditions for the blow-up of a projective space tobe aspherical.5.1. The number of factors. Suppose Z is a zonotope, G � CZ is a building set,and thatM is the corresponding mine�eld. Also suppose that Z admits a maximalproper decomposition. By this we mean that G<Z is a building set. Hence, the setfZ1; : : : ; Zkg of maximal elements in G<Z is a decomposition of Z (and k � 2).(If Z 62 G, then its G-decomposition is a maximal proper decomposition.) Let Mibe the mine�eld for Zi corresponding to G�[Zi] where [Zi] denotes the parallelclass of Zi. Let ai : @Zi ! @Zi and a : @Z ! @Z be the antipodal maps. We letP(Zi)# = (@Zi)#=(ai)# and P(Z)# = (@Z)#=a#. (Note that P(Z)# can also beobtained by blowing up P(Z) along the image of the mine�eld M.)Lemma 5.1.1. P(Z)# is an RPk�1 -bundle over P(Z1)# � � � � � P(Zk)#.Proof. (Zi)# is a [�1; 1]-bundle over P(Zi)# and (ai)# acts on (Zi)# by mul-tiplication by �1 on each �ber. Hence, (Z1)# � � � � � (Zk)# is a [�1; 1]k-bundleover P(Z1)# � � � � � P(Zk)# and a# = (a1)# � � � � � (ak)#. It follows that @Z#is a @([�1; 1]k)-bundle (i.e., an Sk�1-bundle) over P(Z1)# � � � � � P(Zk)#. Takingthe quotient by a#, we obtain the result.Corollary 5.1.2. Suppose Z has a maximal proper decomposition with respect toG: Z = Z1 � � � � �Zk. Then �k�1(P(Z)#) contains an in�nite cyclic subgroup. Inparticular, if k � 3, then P(Z)# is not aspherical.Proof. In general, suppose E ! B is a bundle with �ber F . If E ! B admits asection, then in the homotopy sequence of the �bration, the map �i(E)! �i(B) issurjective and, hence, �i�1(F )! �i�1(E) is injective. In the case at hand, P(Z)#is an RPk�1 bundle over B = P(Z1)# � � � � � P(Zk)#. Moreover, since P(Z)# isthe projective space bundle associated to a sum of line bundles, there is a sectionb 7! [Lb] where L is the line bundle determined by one of the summands, Lb isits �ber at b, and [Lb] is the corresponding point in projective space. Hence, thein�nite cyclic group �k�1(RPk�1) injects into �k�1(P(Z)#).



NONPOSITIVE CURVATURE OF BLOW-UPS 51Corollary 5.1.3. Let Z be a simple zonotope, P(Z) the associated zonotopal cellstructure on projective space, and P(Z)# the minimal blow-up (with respect to themine�eld corresponding to IZ). Then the following are equivalent:(i) The cubical metric on P(Z)# is nonpositively curved.(ii) P(Z)# is aspherical.(iii) Z has fewer than 3-irreducible factors.Proof. The universal cover of any complete, nonpositively curved space is con-tractible so (i))(ii). By the previous corollary, (ii))(iii). By Theorem 4.3.1,(iii))(i).5.2. Retractions onto faces. In this subsection G is a partial building set for Z,M is the corresponding partial mine�eld, and G 2 M is a face of Z to be blown up.Let MG be the restriction of the partial mine�eld to G (corresponding to G�[G])and let Z# andG# be the blow-ups with respect toM andMG, respectively. Thus,G# is a subcomplex of Z#. Likewise, if P(G)# and P(Z)# are the correspondingblow-ups of the associated projective spaces, then P(G)# is a subcomplex of P(Z)#.Theorem 5.2.1. G# is a retract of Z#, and P(G)# is a retract of P(Z)#.What makes the proof di�cult to write down is that the retraction is mostnaturally de�ned in terms of the dual complexes X# and (XG)# (the dual of G#).We take notation from Section 3.4: H is the hyperplane arrangement in V , C is thedual arrangement. We identify C with CZ and G with the corresponding subset ofC. Also, let A 2 C be the subspace corresponding to G. Put VG = V=A?. Then C�Ais the dual of a hyperplane arrangement in VG. In addition, we have the convexpolytope X (= XH) in V and similarly XG (cut out by the induced hyperplanearrangement) in VG.Proof of Theorem 5.2.1. The natural projection V ! VG induces a projection� : V � YB2G P(V=B?)! VG � YB2G�A P(V=B?):Recalling that X# is the closure of the image of X\ bV in the domain, � restricts toa map X# ! (VG)#. Now choose a disk around the origin in VG of small enoughradius to be contained in �(X#) and scale XG so that it is contained in the disk.De�ne retractions sG : VG ! XG and (sG)# : (VG)# ! (XG)# as in Lemma 3.4.1.The retraction r : X# ! (XG)# is de�ned to be the composition (sG)# � �jX# .Noting that X# and (XG)# can be identi�ed with the barycentric subdivisions ofZ# and G#, respectively, we see that r is indeed a retraction.To see that P(G)# is a retract of P(Z)#, we can suppose without loss of gener-ality that Z 2 M. Then Z# is the canonical [�1; 1]-bundle over P(Z)# and G# isthe canonical [�1; 1]-bundle over P(G)#. The result then follows from the previousparagraph.



52 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTTRemark 5.2.2. The map � in the previous proof factors as p � q where the rangeof q (= the domain of p) is the partial productV � YB2G�A P(V=B?);and where p is the product of the projection V ! VG with the identity map.Moreover, q(V#) = A? � (VG)# and the inverse image of each point by the mapp : q(X#)! p � q(X#) is a convex subset of A?. It follows that q(X#)! (XG)#is a homotopy equivalence.Corollary 5.2.3. For any G 2 M, the inclusion P(G)# ! P(Z)# induces amonomorphism of homotopy groups. In particular, if P(Z)# is aspherical, then sois P(G)#.Combining this with the results of the previous subsection we get some necessaryconditions for the asphericity of P(Z)#.Corollary 5.2.4. If P(Z)# is aspherical, then (i) the minimal elements of G areat most 2-dimensional and (ii) no G 2 M admits a maximal proper decompositionG = G1 � � � � �Gk with k � 3.Proof. Suppose A 2 G is minimal and G is a representative face for the corre-sponding parallel class. Then G# is an interval bundle over P(G)# = P(G) whichis aspherical if and only if G has dimension 1 or 2. For (ii), let A be the sub-space corresponding to G. Applying Corollary 5.1.2 to the building set G�A forthe induced hyperplane arrangement in V=A?, we have that G# is not asphericalif k � 3. References[A] M.F. Atiyah. Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982),1-15.[AR] I. R. Aitchison and J. H. Rubinstein. An introduction to polyhedral metrics of nonpositivecurvature on 3-manifolds, Geometry of Low-Dimensional Manifolds, Volume II. CambridgeUniversity Press (1990), pp. 127-161.[BLSWZ] B. Bj�orner , M. Las Vergnas, B. Sturmfels, N. White, and G. Ziegler. Oriented Ma-troids. Cambridge University Press, Cambridge, 1993.[Bo] N. Bourbaki. Groupes et alg�ebres de Lie, Chapters 4-6, Masson, Paris, 1981.[Br] E. Brieskorn. Die Fundamentalgruppe des Raumes der regul�aren Orbits einer endlichenKomplexen Spiegelunsgruppe, Invent. Math. 12 (1971), 57-61.[Bro] Brown, K. Buildings. Springer-Verlag, New York, 1989.[Ca] S. Cappell.On homotopy invariance of higher signatures, Invent. Math. 33 (1976), 171-179.[CD1] R. Charney and M. Davis. The K(�; 1)-problem for hyperplane complements associatedto in�nite reection groups, Journal of the American Math. Soc. 8 (1995), 597-627.[CD2] R. Charney and M. Davis. Finite K(�; 1)s for Artin Groups, Prospects in Topology (ed.F. Quinn), Princeton Univ. Press, Princeton, Annals of Math. Studies 138 (1995), 110-124.[CD3] R. Charney and M. Davis. Strict hyperbolization, Topology (2) 34 (1995), 329-350.



NONPOSITIVE CURVATURE OF BLOW-UPS 53[D1] M. Davis. Groups generated by reections and aspherical manifolds not covered by Eu-clidean space, Ann. Math. (2) 117 (1983), 293-326.[D2] M. Davis. Some aspherical manifolds, Duke Math. J. 55 (1987), 105-139.[D3] M. Davis. Nonpositive curvature and reection groups, to appear in Handbook of GeometricTopology.[DJ1] M. Davis and T. Januszkiewicz. Convex polytopes, Coxeter orbifolds, and torus actions,Duke Math J. 62 (1991), 417-451.[DJ2] M. Davis and T. Januszkiewicz. Hyperbolization of polyhedra, J. Di�erential Geometry 34(1991), 347-388.[DP1] C. De Concini and C. Procesi.Wonderful models of subspace arrangements, Selecta Math.(N.S.) 1 (1995), 459-494.[DP2] C. De Concini and C. Procesi. Hyperplane arrangements and holonomy equations, SelectaMath. (N.S.) 1 (1995), 495-535.[De] P. Deligne. Les immeubles des groupes de tresses g�en�eralis�es, Invent. Math. 17 (1972),273-302.[FH] H. Flaschka and L. Haine. Torus orbits in G=P , Paci�c J. Math. (2) 149 (1991), 251-292.[FM] W. Fulton and R. MacPherson. A compacti�cation of con�guration spaces, Ann. Math.139 (1994), 183-225.[FN] R. H. Fox and L. Neuwirth. The braid groups, Math. Scand. 10 (1962), 119-126.[G] M. Gromov. Hyperbolic groups, in Essays in Group Theory, edited by S. M. Gersten,M.S.R.I. Publ. 8, Springer-Verlag, New York, 1987.[GM] I. M. Gelfand and R. MacPherson. Geometry of Grassmannians and a generalization ofthe dilogarithm, Adv. in Math. 44 (1982), 279-312.[GS] V. Guillemin and S. Sternberg. Convexity properties of the moment mapping, Invent. Math.67 (1982), 491-513.[Jur] J. Jurkiewicz. Torus embeddings, polyhedra, k�-actions, and homology, Dissert. Math. 236(1985), 52-57.[Ka1] M. M. Kapranov. The permutoassociahedron, Mac Lane's coherence theorem and asymp-totic zones for the KZ equation, J. Pure and Applied Algebra 85 (1993), 119-142.[Ka2] M. M. Kapranov. Chow quotients of Grassmannians. I, Adv. in Sov. Math. 16 (1993),29-110.[Kh] M. Khovanov. Real K(�;1) arrangements from �nite root systems,Math. Research Letters3 (1996), 261-274.[KY] Y. Kodama and J. Ye. Toda lattices with inde�nite metric II: topology of the iso-spectralmanifolds, preprint.[MM] N. E. Mn�ev and P. Mani. Lecture by Mani.[Od] T. Oda. Convex Bodies and Algebraic Geometry. An Introduction to the Theory of ToricVarieties, Ergeb. Math. Grenzgeb. (3) 15, Springer-Verlag, Berlin, 1988.[NR] G. Niblo and L. Reeves. The geometry of cube complexes and the complexity of theirfundamental groups, preprint, 1994.[Sag] M. Sageev. Ends of group pairs and non-positively curved cube complexes, Proc. LondonMath. Soc. 71 (1995), 585-617.[Sal] M. Salvetti. Topology of the complement of real hyperplanes in Cn , Invent. Math. 88 (1988),603-618.[St] J. Stashe�. Homotopy associativity of H-spaces. I,II, Trans. Amer. Math. Soc. 108 (1963),275-292.[T] C. Tomei. The topology of the isospectral manifolds of tridiagonal matrices, Duke Math.J. 51 (1984), 981-996.M. Davis, Department of Mathematics, The Ohio State University, Columbus, Ohio43210



54 M. DAVIS, T. JANUSZKIEWICZ, AND R. SCOTTT. Januszkiewicz, Mathematics Department, Wroc law University, pl. Grunwaldzki2/4, 50-384 Wroc law, Poland.R. Scott, Department of Mathematics, Santa Clara University, 500 El Camino Real,Santa Clara, California 95053.


