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SOME ASPHERICAL MANIFOLDS

MICHAEL W. DAVIS

0. Introduction. Let Y denote the vector space of real, tridiagonal, symmet-
ric, (n + 1) (n + 1) matrices. Let A be any set of n + 1 distinct real numbers.
Let p n denote the set of those matrices in Y with spectrum equal to A. In [T],
Carlos Tomei proves that the space p is a closed n-manifold. Of course, this is
hardly surprising; however, Tomei goes on to show that these manifolds have
several amazing properties. The most surprising property is that P n is aspherical:
in fact, its universal cover isdiffeomorphic to Euclidean n-space. P1 is a circle.
p2 is a surface of genus two. p3 is the "double" of a certain hyperbolic
3-manifold of finite volume. 2 The proof of the asphericity of P" in [T] uses
results from [D1] on groups generated by reflections. Before continuing our
description of these manifolds, we need to make a few general remarks con-
cerning reflection groups.

Suppose tlat W is a discrete group acting smoothly and properly on a
manifold M and that W is generated by smooth reflections. A chamber X for W
on M is the closure of a component of the set of nonsingular points. Let S
denote the set of reflections on W across the codimension-one faces of X. Then
(W, S) is a Coxeter system (cf. [D1]). The manifold M can be reconstructed from
the chamber X and the group W: paste together copies of X, one for each
element of W, in the obvious fashion. In [D1], we gave simple necessary and
sufficient conditions for the result of this pasting construction to be contractible.

There is a natural group generated by reflections on Tomei’s manifold p n. This
can be seen as follows. The group O(n + 1) acts by conjugation on the vector
space of (n + 1) (n + 1) symmetric matrices. The kernel of this action is
(_ 1}. Let J denote the group {diagonal matrices in O(n + 1)}/( _+1}. Obvi-
ously, J (7//2)". The subspace Y is J-stable. J acts on Y as the group of all
possible sign changes of the off-diagonal entries. Thus, J is a linear reflection
group on Y. Since O(n + 1)/( _+ 1} preserves the spectrum of a symmetric
matrix, the submanifold P" is J-stable and J is a smooth reflection group on it.
A fundamental chamber Xn for J on P" is the intersection of P" with the set of

1To say that a matrix y (Yij) is "tridiagonal" means that Yij 0 whenever li -Jl > 1.
2This means that there is a compact 3-manifold M such that (a) each component of OM is

torus. (b) the interior of M is homeomorphic to a hyperbolic 3-manifold of finite volume, and (c) p3
is the double of M3.
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those matrices in Y with all off-diagonal entries > 0. Tomei’s results boil down
to the fact that Xn can be identified with a certain particularly nice convex
polyhedron. We shall call this polyhedron the "dual of the Coxeter complex of
the symmetric group on n + 1 letters". (The vertex set of this polyhedron can be
identified with the symmetric group.) The fixed point set of a reflection in J
intersects X in a disjoint union of several codimension-one faces. There is an
obvious w.ay of extracting from this situation an infinite Coxeter group f such
that (a) J has exactly one fundamental reflection for each codimension-one face
of X" and (b) there is an epimo.rphism f J with torsion-free kernel. (This is
explained in Section 3.)_Let P" denote the result of applying the pasting
construction to X" and J. It is easy to see that P" is a cov_ering space of P".
Tomei observes that it follows from the results of [D1] that Pn is diffeomorphic
to "; hence, P" is aspherical.
The above results suggest many further applications of the pasting construc-

tion. One of the most interesting applications is the following. Start by choosing
the fundamental chamber to be an n-cube and the Coxeter group to be W J
where J (’/2)" and where W is any finite Coxeter group of rank n. Next, pick
two opposite vertices v0 and v of the n-cube. Choose a bijection from a set of
fundamental reflections for W to the set of codimension-one faces of the n-cube
which contain v0. Also, choose a bijection from the set of fundamental reflections
of J to the remaining codimension-one faces of the n-cube (i.e., to the set of
eodimension-one faces which contain v). The pasting construction yields a
smooth closed n-manifold, M"(W), together with a W J-action on it. It is not
difficult to see that, up to diffeomorphism, this manifold depends only on W (or
more precisely, on a Coxeter system with underlying Coxeter group W). The
manifolds M"(W) have the following properties.

(1) The group W J is a reflection group on M"(W).
(a) A chamber for W J on M"(W) is combinatorially isomorphic to an

n-cube.
(b) A chamber for W on M"(W) is isomorphic to a larger n-cube.
(c) A chamber for J on M"(W) is isomorphic to the "dual of the Coxeter

complex of W". (The definition of this is given in Section 6.)
(2) If W is the symmetric group on n + 1 letters, then M"(W) is homeomor-

phic to Tomei’s manifold P".
(3) The universal cover of M"(W) is diffeomorphic to R n.
(4) The only Coxeter group of rank one is 7//2. If W is 7//2, then MI(W) is a

circle. The Coxeter groups of rank two are the dihedral groups. If W is the
dihedral group of order 2m, then M2(W) is a surface of genus rn- 1 (cf.
Remark 4.6).

(5) If W= W W2, then Mn(w) Mnx(w1)X Mn2(w2), where n=
rank(W/) (cf. Remark 4.5). For example, if W= (7//2)", then M"(W) is a
n-toms.

(6) M"(W) is stably parallelizable (of. Proposition 1.3).
(7) The homology of M"(W) can be explicitly computed (cf. Section 5). In

particular, Y’.7=oH(M"(W); 7/) is a free abelian group whose rank is equal to the
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order of W, and as a W-module, F,i=oHi(Mn(W); ) is isomorphic to the
regular representation (Cfo Theorem 5.4).
The discussion of Mn(W) and its properties occurs in Sections 1 through 9. In

light of these properties we conjecture that if W is not a direct product of
Coxeter groups of rank 1 and 2, then M(W) is not homeomorphic to a
manifold of the form I’ \ G/K for any Lie group G, maximal compact subgroup
K, and torsion-free uniform lattice I’.

In Sections 10 through 13 we generalize the manifolds P in a different
direction. Suppose that g is a real, semisimple, split Lie algebra of rank n. We
shall define a submanifold P(g) of g. It is a closed n-manifold with the
following properties:

(i) P(g) is homeomorphic to Mn(W), where W is the Weyl group of (g,
([9 a split Cartan subalgebra),

(ii) if g sl(n + 1, R), then P(g) can be naturally identified with manifold
pn.
The original motivation for considering the manifold p n of isospectral tridiag-

onal symmetric matrices came from the study of the mechanical system known as
the "Toda lattice". (See [M], [K], as well as, the references therein). After a
change of coordinates, the phase space for this mechanical system becomes the
set of y in Y with trace(y) 0 and with the off-diagonal entries of y all positive.
In these coordinates, the total energy is 1/2trace(y2). It follows from an argument
of Lax that the coefficients of the characteristic polynomial of y are constants of
motion, moreover, the Hamiltonian system is completely integrable. The interior
of X is an integral submanifold. (Here X is the fundamental chamber for J on
P.) Since the formula for the total energy (i.e., 1/2trace(y2)) makes sense on all of
Y, the Hamiltonian flow on the interior of X extends to all of P n. In a similar
fashion, to each real, semisimple, split Lie algebra g, one can associate a
generalized Toda lattice together with a Hamiltonian flow (or "Toda flow") on
P(g). (See [K].) This flow has no 1-dimensional closed orbits and its fixed points
are all hyperbolic. It is "perfect" in the sense of Morse theory. In the case of
Tomei’s manifold P, this was first proved by Fried [F].) Moreover, the topologi-
cal type of this flow is determined by (and determines) the Bruhat order on W.
These facts are discussed in Sections 9, 11, and 13.

1. Preliminaries. Mirror structures. Suppose that X is a CW-complex. A
mirror structure on X is a family (Xs)s s of subcomplexes indexed by
some set S. A subcomplex in this family is a mirror. For each point x in X let
S(x) denote the set of elements s in S such that x is in Xs. For each subset T of
S, put

(1) Xr X n N x,

(2) x U x,.
tT

Let Nerve(y/I) denote the nerve of the covering of Xs by the elements of /’.
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(Nerve(/) is a simplicial complex; its simplices can be identified with those
nonempty subsets T of S such that Xr is nonempty.)

The dual of a simplicial complex. Suppose that K is a simplicial complex.
Denote by Ver(K) its set of vertices, by Poset(K) its set of simplices partially
ordered by inclusion, and by Cone(K) the union of Poset(K) and (q). We shall
often identify a simplex of K with its set of vertices. Let K’ denote the
barycentric subdivision of K and let K * denote the cone on K’. (The complexes
K’ and K * are the geometric realizations of the posets, Poset(K) and Cone(K),
respectively.) For each v in Ver(K) let Ko* denote the closed star of o in K’
(i.e., K is the subcomplex consisting of all simplices in K’ which contain o).
The family of subcomplexes (Ko*)o VerK) is a mirror structure on K *. We shall
denote it by ’K and call it the canonical mirror structure on K *. Obviously,
Nerve(’r) K. The complex K * together with its canonical mirror structure
is called the dual of K.

Remark 1.1. If K is a PL-triangulation of an (n 1)-sphere, then K *(= K*)
is an n-cell and for each simplex T of K, the complex K is the dual cell of T.
For example, if K is the boundary complex of an octahedron, then K * is a cube.

Coxeter Systems. Suppose that S is a finite set and that m is a function from
S S to the positive integers union {z} satisfying the conditions: re(s, t)=
re(t, s), re(s, s) 1, and re(s, t) > 2 if s 4: t. These numbers give a presenta-
tion for a group W as follows: the set of generators is S and the set of relations
consists of all words of the form (st) ms,t), where (s, t) ranges over all elements
of S S such that re(s, t) 4: o. It is known (el. Proposition 4, page 92 in [B])
that

(i) the natural map S W is an injection (and hence, that S can be identified
with its image in W),

(ii) for each s in S, the order of s in W is 2, and
(iii) for each (s, t) in S S, the order of st in W is re(s, t) (rather than just

dividing m(s, t)).
The group W is a Coxeter group and the pair (W, S) is a Coxeter system. The
rank of (W, S) is the cardinality of S. The Coxeter system (W, S) is finite if W is
a finite group. For any subset T of S, let Wr (= {T)) denote the subgroup of W
generated by T (W (1)).

Associated to the Coxeter system (W, S), there is a simplicial complex, which
we shall denote by Nerve(W, S). The vertex set of Nerve(W, S) is S; its simplices
consist of those nonempty subsets T of S such that Wr is a finite group. For
example, the nerve of a finite Coxeter system of rank n is a simplex of dimension
n-1.

Reflection Groups. Suppose that (IV, S) is a Coxeter system, that X is a
CW-complex, and that ’ (Xs) s is a mirror structure on X indexed by S.
Define an equivalence relation on W X by (w, x) (w’, x’) x x’
and w-lw Ws(x). Denote the quotient space (W X)/-- by ag(W, X, /’)
(or simply by ok’ when there is no ambiguity). For any (w, x) in W X, denote
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its image in q/by [w, x ]. We can identify X with the subset of q/consisting of all
points of the form [1, x]. The space k’ is naturally a CW-complex and X is a
subcomplex. There is a natural action of Won defined by w’[ w, x] w’w, x].
The subcomplex X is a fundamental domain in the strong sense that every
W-orbit intersects X in exactly one point. The family of subcomplexes (wX)w w
are the chambers of W on q/, and X is the fundamental chamber. The action of a
conjugate of an element in S on is called a reflection on q/; an element of S is a

fundamental reflection.
The isotropy subgroup at [w, x] is wWs)w-1. The W-action on q/is proper if

and only if each isotropy subgroup is finite, i.e., if and only if Nerve(J/) is a
subcomplex of Nerve(W, S) (cf. Lemma 13.4 in [D1]). One of the principal
results of [D1] is that q/is contractible if and only if X is contractible and Xr is
nonempty and acyclic for each simplex T in Nerve(W, S). In particular, if q/is

contractible, then Nerve(W, S) is a subcomplex of Nerve(’).

Remark 1.2. We are using slightly different notation and terminology than in
[D1]. In [D1] a typical Coxeter system was denoted by (F, V) instead of (W, S),
Nerve(W, S) was denoted by K0(F, V), and Xr was denoted by Xor). Also, the
word "panel" was used in [D1] in place of "mirror."

The Canonical Representation. We recall from [B] or [V] that there is a
representation of 14’ as a linear reflection group on ", n s I, such that the
elements of S are represented as linear reflections across the faces of a simplicial
cone C. We shall call this the canonical representation of (W, S). (In [B] it is
called the "dual of the canonical representation.") Let Cf denote the union of
those faces of C with finite isotropy groups. The following well-known facts are
due to Tits (cf. [B]) and Vinberg (cf. [V]): WC, the union of translates of C, is a
convex cone, W acts properly on the interior f of this cone, and Cf is a chamber
for W on 2.
The existence of the canonical representation has many implications. One of

these is the following lemma which we shall need later. (I would like to thank
Frank Connolly for pointing out the necessity of proving this lemma.)

LEMMA 1.3. Any finite subgroup of W is conjugate to a subgroup of the form Wr
for some T in Nerve(W, S).

Proof Let G be a finite subgroup of W. Consider the W-action on f. Since fl
is convex and W acts through affine maps, G must have a fixed point y in f.
Then y wx for some x Cf and w W. The isotopy group at x is of the
form Wr for some T in Nerve(W, S) and hence, G wWrw-1.

Manifolds. Suppose that X is a smooth manifold with corners, that as a
manifold with corners it is "nice" in the sense of [D1], page 304, that the mirror
structure .//4’ is such that the W-action is proper (i.e., Nerve(t’) c Nerve(W, S)),
and that each mirror in ’ is a codimension-one face of X. As before, put
q/= q/(W, S, ’). Then q/is a manifold and it can be given a smooth structure
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which is compatible with the smooth structure on X and in which W acts
smoothly; moreover, this smooth structure on q/is unique up to isotopy (cf. [D1],
Section 17).

Tangent Bundles. Let r: q/- X be the orbit map defined by [w, x] x. The
tangent bundle of q/, denoted Tq/, is naturally a W-vector bundle. As a smooth
manifold with corners, X has a tangent bundle, denoted TX; it is a vector bundle
over X.3

PROPOSITION 1.4. The W-vector bundles Tql and rr*(TX) are W-equivariantly
stably equivalent.

(In this proposition, the W-action on X is the trivial action so that the map r:
ok’ X is W-equivariant.)

Proof Again, we consider the canonical representation of W on ". Let f
and C be as before and let p: fl Cf be the orbit map. Choose a face-preserv-
ing map h: X C. (This is possible since for each face of X the corresponding
face of C! is nonempty and contractible.) We may assume that h is smooth (as a
map of orbifolds) and transverse to the singular set. Consider the smooth map +:
X fl " defined by (x, y) h(x)-p(y). It is easy to see that 0 is a
regular value of q. Moreover, k-l(0) can be identified with q/ via the smooth
W..-equivariant embedding q/ X f defined by [w, x] Ix, wh (x). The
normal bundle of q/ in X " is W-equivariantly trivial. Since " is W-
equivariantly contractible, the inclusion q/ X " is W-homotopic to r:
q/ X. It follows that

T(X =-
On the other hand, the left-hand side of this equation is isomorphic to Tqt’ plus
the normal bundle (which is trivial). The proposition follows.

2. A method for constructing reflection groups. Suppose that K is a simplicial
complex with vertex set V, that (W, S) is a Coxeter system, and that f: V --> S is
a function. Consider the following two conditions on f.

(A) If v and v’ are the vertices of an edge in K, then f(v) 4: f(v’).
(B) If T is a simplex in K, then the subgroup WT) is finite.

Remark 2.1. Condition (B) is equivalent to the condition that f define a
simplicial map from K to Nerve(W, S). (This simplicial map will also be denoted
by f.) Condition (A) is then equivalent to the condition that the restriction of f
to any simplex of K is a bijection.

3Following [Th] it is possible to define the "tangent bundle" of X as an orbifold. This is not a
vector bundle, rather it is locally isomorphic to quotient of a vector bundle by a finite group. In our
case, the "tangent bundle" of X as an orbifold is just Tql/W.
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Suppose that we are given a function f: V S satisfying (A) and (B). For
each s in S, put

K*= (..J K*
vf-l(s)

where K * denotes the dual of K and Ko* is the canonical mirror dual to a vertex
v. Denote the family of subcomplexes (Kfl)s s by ’f. Then .//t’f is a mirror
structure on K * indexed by S. If T is a nonempty subset of S with m elements,
then K is the union of "dual faces" Kr*, where T’ ranges over the (m 1)-
simplices in f-l(T).
As in the previous section, we construct the complex q/(W, K *, .//t’f).
In view of condition (B), if K is nonempty, then T is a simplex in

Nerve(W, S). As we mentioned previously, the fact that Nerve(’y) is a subcom-
plex of Nerve(W, S) implies that the W-action on q/(w, K *, ./#’,) is proper.

Remark 2.2. Let T f(V). Put ag ok,(W K *, t’y) and ok" q/(w.,
K *, ’f). It is easy to see that ag, is connected and that ag is W-equivariantly
homeomorphic to the twisted product

W X wr ql ’.

In particular, q/is connected if and only if f: V S is surjective.

Remark 2.3. If K is a PL-triangulation of an (n- 1)-sphere, then K*
together with the mirror structure ’f is a "manifold with faces" in the sense of
Section 6 of [D1]. It follows that, in this case, ak’ is an n-manifold (cf. Theorem
15.2 in [D1]). Moreover, if K is a smooth triangulation, then K * can be given
the structure of a smooth orbifold so that k’ becomes smooth (cf. Section 17 in
[DI]).

3. The universal cover of q/. We retain the notation and hypotheses of the
previous section. We shall suppose that the function f: V S is surjective. From
the 1-skeleton of K and from the function f, we shall construct a new Coxeter
group W with V as its fundamental set of generators. We shall then use the
Coxeter system (1, V) together with the canonical mirror structure on K* to
construct the universal cover of q/(= (W, K *, ./g)).

For each pair of distinct vertices v and v’ in V, put

fit(v, v’) { m(f(v), f(v’)); if ( v, v’ } is an edge of K
otherwise,

where for any two elements s, s’ of S, m(s, s’) denotes the order of ss’ in W.
Also, put rh(v, v) 1 for each v V. As in Section 1, these numbers define a
Coxeter system (W, V). By_ co.nstruction, the function f: V S extends to a
surjective homomorphism f: W W. Denote the kernel of f by F.
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LEMMA 3.1.
(i) The function f V- S defines a simplicial map from Nerve(W, V) to

Nerve(W, S). Moreover, for any simplex T in Nerve(W, V), f takes T bijectively
onto f( T) andftakes IVr isomorphically onto

(ii) The complex K is a subcomplex of Nerve(, V). Moreover, these complexes
have the same 1-skeleton.

(iii) The group F is a torsion-free subgroup of fir’.

Proof. (i) Let T be a subset of V such that Wr is finite. Its homomorphic
image Wftr) is, of course, also finite. But this is precise.ly what is meant by the
statement that f defines a simplicial map from Nerve(W, V) to Nerve(W, S). It
follows immediately from condition (B) of Section 2 that the restriction of f to
each simplex is a bijection. Since re(v, v’) m(f(v), f(o’)) for any two vertices
v and v’ of T, it is clear that f takes the Coxeter system (Wr, T) isomorphically
onto (Wf(r), f(T)).

(ii) Let T be a simplex of K. By condition (B), Wf(r) is finite. Hence, Wr
(being isomorphic to Wfr)) is also finite. Thus, K is a subcomplex of
Nerve(W, V). Their 1-skeletons are equal by construction.

(iii) .By Lemma 1.3, any finite subgroup of 1 is conjugate to a subgroup of the
form Wr where T is in Nerve(W, V). Since such subgroups are mapped injec-
tively by f it follows that the kernel of f is torsion-free.

Consider the lr-complex q/(if/’, K *, d/4’r) where d/4’r denotes the canoni-
cal mirror structure on K *. Let r" be the natural equivariant projec-
tion defined by [#, x] [f(#), x].

PROPOSITION 3.2. The complex all is the universal covering of all, r is the
covering projection, and F is the group of covering transformations.

Proof Let x be a point in K * and let V(x) be the set of v in V such that x
is in Ko*. Choose an open neighborhood Ux of x in K * which meets only the
mirrors which contain x (i.e., the mirrors indexed by V(x)). Then Wf(v(x))U is an
open neighbor.hood of x in ag. Its inverse image in a// is a disjoint union of
translates of Wv(x)U. Since f: Wv() Wf(v(x) is an isomorphism (by Lemma
3.1(i)) it follows that r evenly covers W(v())Ux. Similarly, r evenly covers the
translate of such an open set by an element in W. But any point in k’ has such a
neighborhood. Hence, r is a covering projection. It remains to prove that ag is
simply connected. By Corollary 10.2 and Theorem 13.5 in [D1] it suffices to show
that (a) K * is simply connected, (b) each mirror in ’/ is connected, (c) if
n (v, v’) 4: o for distinct vertices v, v’ in V, then K(*o, o, (= Ko* (q Ko*, ) is
nonempty. Each nonempty face of K * is a cone, hence, contractible. Since this
applies to K * itself and to each mirror, (a) and (b) hold. The face Ko,o
corresponds to an edge of Nerve(W, V). Since this edge is also in K (cf. Lemma
3.1(ii)), the face is nonempty, i.e., (c) holds.
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A simplicial complex L is determined by its 1-skeleton if it satisfies condition
(C) below.

(C) If T is a subset of Ver(L) such that any two elements of T bound an edge
in L, then T is a simplex in L.

Condition (C) is clearly equivalent to the following condition.

(C’) If L’ is any simplicial complex such that (a) L is a subcomplex of L’ and
(b) the 1-skeletons of L and L’ and equal, then L L’.

(In other words, L is determined by its 1-skeleton if it is the smallest full
subcomplex of the simplex on Ver(L) which contains the 1-skeleton of L.)
For example, the following simplicial complexes are determined by their

1-skeletons: (1) a simplex, (2) the boundary complex of an m-gon, m > 3, (3) the
boundary complex of an octahedron or of an icosahedron, (4) the derived
complex of any poset (cf. the proof of Lemma 11.3 in [D1]), e.g., the barycentric
subdivision of any convex cell complex.

THEOREM 3.3. If K is determined by its 1-skeleton, then all is aspherical.

Proof We must show that o is contractible. According to [D1] it suffices to
prove that (i) K * is contractible, (ii) each nonempty face of K * is acyclic, and
(iii) Nerve (t’r) Nerve(if’, V). Since each nonempty face of K * is a cone, (i)
and (ii) hold. Recall that Nerve(’K) K. We have that K c Nerve(W, V) and
that their 1-skeletons are equal (cf. Lemma 3.1(ii)). Since K is determined by its
1-skeleton, we see from condition (C’) that (iii) holds. This completes the proof.

Remark 3.4. If K is a PL-trian.gulation of an (n- 1)-sphere, and if K is
determined by its 1-skeleton, then a// is PL-homeomorpc to R n. The reason is
that the proof that is contractible actually shows that ag is an increasing union
of n-disks. (See the argument in Remark 10.6 of [D1].) Similarly, if K is a smooth
triangulation of S 1, then q is diffeomorphic to R n.
Remark 3.5. Let us make two observations. The first observation is that if, in

the above construction, q is contractible, then K Nerve(if’, V). Call a Coxeter
system (IV, S) right-angled if for any pair of distinct elements s and in S either
m (s, t) 2 or m (s, t) o. The second observation is that the nerve of any
right-angled Coxeter system is determined by its 1-skeleton. These two observa-
tions sometimes can be combined to show that a complex K is determined by its
1-skeleton. For example, suppose that K is the boundary comples of an n-
octahedron, that W (.7//2) 2", and that f is a bijection. Then K * is an n-cube,
q/ is an n-torus, and W is the direct product of n copies of the infinite dihedral
group. Since the universal cover q is " (which is contractible), we deduce that
K is determined by its 1-skeleton. Of course, the same conclusion could have
been reached by an easier route.
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4. Some examples with fundamental chamber an n-cube. We shall consider
some examples of the construction of Section 2 in the special case where the
fundamental chamber is combinatorially equivalent to an n-cube. There are two
situations in which these examples are wall-known. First, if the Coxcter group W
is a direct product of cyclic groups of order two, then the resulting manifold is an
n-torus and the translates of the fundamental chamber give a standard tiling of it
by n-cubes. Second, if n 2 and the Coxeter group is finite, then the resulting
closed 2-manifold will be a surface of genus > 0 tiled by quadrilaterals. When
the genus is > 1 such tilings are familiar in 2-dimensional hyperbolic geometry.
The examples which we shall discuss below can be regarded as generalizations of
the above two types.
Throughout this section K will denote the boundary complex of an n-

octahedron. Its dual K * can be identified with the n-cube. The vertex set of K is
the set of vectors in R" of the form + ei, where { el,... e, } is the standard basis.
A set of such vertices determines a simplex in K if and only if it contains no
pairs of antipodal vertices. It follows that K is determined by its 1-skdeton. (We
already knew this, cf. Remark 3.5) According to Theorem 3.3, this implies that
the results of our constructions will be aspherical manifolds. These manifolds will
be compact if W is finite.
We shall usually identify the vertex set of K with the set I, (+ 1}, where

I, {1, 2, n } and (i, e) corresponds to eei. Recall that the necessary data for
the construction consist of a Coxeter system (W, S) together with a surjection f:
i,, ( + 1} -> S satisfying conditions (A) and (B) of Section 2. In all four of our
examples the group W is finite, in which case condition (B) is automatic. In the
first three examples, f is a bijection, in which case condition (A) is also
automatic.

Example 4.1. Let (W, S) be any finite Coxeter system of rank 2n and let f:
I, { + 1} --> S be any bijection. Then ’(W, K *, t’f) is a closed aspherical
n-manifold. We shall denote it by U’(W, f).

Let us make two observations concerning how U’(W, f) depends of the choice
of f. If we vary f by a symmetry of K (i.e., by an element of the Coxeter group
B,), then the resulting manifolds are clearly diffeomorphic (in fact, W-equivari-
antly diffeomorphic). Similarly, if we vary f by a permutation of S corresponding
to a diagram automorphism of (W, S), then the resulting manifolds are again
diffeomorphic and the W-actions differ only by the corresponding outer automor-
phism of W. For example, if W= (’/2) 2", then any choice of f yields the
n-torus.

Remark 4.2. Suppose that S can be decomposed as SILIS2 where each
element of S commutes with each element of &.. Then W can be written as the
direct product of the corresponding groups W and W. Suppose further that I,
can be decomposed as I, AIIB in such a fashion that f decomposes as

f=f,LIA," (A x ( +_l})I I(B x (___1}) --) S1HS2.
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Then it is easy to see that U"(W, f) UP(W1, fA) uq(w2, fB) where p Ial
and q [B[.

Example 4.3. This is a special case of Example 4.1. Suppose that (W, S) is
the direct product of two subsystems (W1, $1) and (W2, S2), each of rank n. Let
us further require that the bijection f take I { + 1 } to $1 and I {- 1 } to

S. (I { + 1} is the vertex set of a top-dimensional simplex in K, and
I (- 1 } is the vertex set of the antipodal simplex.) Up to a symmetry of K
choosing such an f is equivalent to choosing a bijection 0: S S, where 0 and
f are related by the formula O(f(i, 1))= f(i,-1). In this case, we denote the
manifold un(w, f) by Mn(wI, W2, 0).

Example 4.4. This example is a further specialization. The only Coxeter
group of rank one is 7//2. Suppose that 14/"2 is the direct product of n copies of
7//2, and that S2 is the standard set of generators of (7//2) n. Let (W, S) be any
finite Coxeter system of rank n and put (W, Sx) (W, S). Since any bijection of
S to itself corresponds to a diagram automorphism of (W2, S), the manifold
Mn(W, W, O) is independent of 0. We shall denote this manifold by Mn(W). It
is one of the basic objects of study in this paper.

Remark 4.5. Suppose, in the previous example, that the Coxeter system
(W, S) is a direct product of two subsystems (W’,S’) and (W", S") (i.e.,
S S’LIS" and W= W’ W"). It then follows from Remark 4.2 that

(1) mn(w) mn’(w t) mn’(w it)

where n’ S’l and n" [S"[.

Remark 4.6. In Example 4.4, we associated to each finite Coxeter system
(W, S) of rank n, a closed n-manifold Mn(W). The Euler characteristics of these
manifolds can be computed. Since the Euler characteristic of the product of two
spaces is the product of their Euler characteristics, it suffices, in view of (1), to
consider finite irreducible Coxeter groups. Let us first consider the case n 2. In
this case, W is a dihedral group of order 2m and the Coxeter diagram of W is
m

o__o, m > 3. The surface M2(W) is tiled by W x J[ (--8m) copies of a

quadrilaterial. Hence, there are 8m two-cells. Since the isotropy group at each
edge is 7//2, the number of edges is (4)(8m)/2 (= 16m). Three of the vertices
have isotropy subgroup 7//2 7//2, the fourth vertex has isotropy subgroup W.
Hence, the number of vertices is 3(8m)/4 + 4 (= 6m + 4). Thus

(2) x(M(W)) 8m 16m + 6m + 4 4 2m.

It follows that M2(W) is a surface of genus m- 1. For n > 2, the Euler
characteristics can be computed in a similar fashion. In each dimension n > 2,
there are only a finite number of finite irreducible Coxeter systems. There are



116 MICHAEL W. DAVIS

three families which appear for each n > 4. Their Coxeter diagrams are

A, (n > 1 vertices)

4

Bn o-----o (n > 2 vertices)

D (n > 4 vertices).

(There are only six other groups, the Coxeter diagrams of which are denoted by
a3, F4, H 4, E6, ET, and E8.) For the three infinite families there are the following
amazing formulas:

(3) x(Mn(An)) 2n+2(2n+2- 1)Bn+2/n + 2

(4) x(Mn(Bn)) 2hEn

x(mn(Dn)) 2nEn -.]-- 22n-1(2 1)O

where B is the n th Bernoulli number and E is the n th Euler number. (E is 0 if
n is odd; if n is even, it is defined by the equation

Formula (3) is due to Tomei [T]. Formulas (4) and (5) are due to K. Druschel.

Example 4.7. Suppose that (W, S) is a finite Coxeter system of rank n and
that g: InS is any bijection. Let f=gop: In {+1} S, where p:
I { +__ 1 } I denotes projection on the first factor. It is clear that f satisfies
condition (A) of Section 2. Since any two such f’s differ by a symmetry of K, the

re.suiting manifold all(W, K *, .l/[y) is independent of f (i.e., of g). Denote it by
Mn(w). (The geometric picture to have in mind as follows: a mirror correspond-
ing to an element s of S is thedisjoint union of two opposite codimension-one
faces of the n-cube.) In fact, Mn(w) is actually W-equivariantly diffeomorphic
to the manifold Mn(w) of the previous example. (However, recall that the larger
group W (//2)n acts on Mn(w).) This can be seen as follows. Let X(= K *)
be the fundamental chamber for W (7//2)" on M"(W). Consider the action of
W {1} on Mn(w). It is a reflection group with fundamental chamber (7//2)nX.
After a moment of thought, one sees that (7/2)nX is again a cube and that each
mirror is a union of opposite codimension-one faces. It follows that Mn(w) can
be obtained by pasting together W] copies of this cube exactly as we obtained
n(W), i.e., Mn(w) Mn(w). The case where n 2 and W is a dihedral
group generated by two elements Sl and s2 is illustrated in Figure 1.
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Remark 4.8. By Remark 3.4, the universal cover of each example in this
section is diffeomorphic to R". Since the tangent bundle of an n-cube is trivial, it
follows from Proposition 1.4, that each of these examples is stably parallelizable.

5. The homology of these manifolds. In [D2] the homology of q/(W, X, ’)
is calculated in terms of the relative homology groups H,(X, Xr), where T is a
subset of S and where Xr is the union of mirrors indexed by T. In order to apply
these calculations to the examples of the previous section, we need to know the
groups H,( X, Xr) when X is the n-cube I and Xr is a union of codimension-one
faces. The answer is provided by the following lemma, which states that such
homology groups vanish unless the pair (X, Xr) is isomorphic to (F, 0I) In-
for some j, with 0 < j < n. Its proof is left as an easy exercise for the reader.
Before giving the precise version of this lemma, we introduce some notation: for
any subset A of I (where I (1,..., n )) let T(A) be the subset of I ( + 1}
defined byT(A)=A x (1}UA x {-1}.
LEMMA 5.1. Suppose that X is an n-cube with its canonical mirror structure. Let

T be a subset of In.
(i) If T 4: T(A) for some subset A of In, then H,(X, Xr) is zero in each

dimension.
(ii) Suppose T T(A) where A has j elements. Then

’; =jHi(X,Xr) O; i4:j

Let us recall some notation from [D2]. Suppose that (W, S) is a finite Coxeter
system. Denote the word length (with respect to the generating set S) of an
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element w in W by l(w). Let T be a subset of S. Denote by Wr the set of w in
W such that l(ws)= l(w)- 1 if s is in T and l(ws)= l(w)+ 1 if s is in
S T. Denote by 71(Wr) the free abelian group with basis Wr. Define elements
r, /r, +r in rational group algebra Q(W) by

r Wrl -x w, r IWr1-1 (__ 1)
wWr Wr

+T-- S-TT"
PROPOSITION 5.2. Suppose that (W, S) is a finite Coxeter system of rank 2n

and that f: I { + 1} S is a bij’ection. For each subset A ofI let T(A A
{1} LJ A { 1} and let T ’(A) f(T(A)). The homology of the manifold
U(W, F) defined in Example 4.1 is given as follows:

(i) Hj(U"(W, f); 7/) ET/(Wr’(A)).
(ii) There is an isomorphism of rational representations of W,

Hj(U"(W, f); Q) -= Y[Q(W)+v,(A).

Here the summations in (i) and (ii) run over all subsets A of I, of cardinality j.

Proof Using Lemma 5.1, we see that (i) and (ii) are special cases of Theorem
A’ and Theorem B, respectively, in [D2].

COROLLARY 5.3. Suppose that (W1, S1) and (W2, S2) are finite Coxeter sys-
tems of rank n and that O: S --+ S2 is a bijection. Then the homology of the
manifold M"(W1, W2, O) of Example 4.3 is given as follows

(i) Hj(M"(W1, WE, 0); 7/) 7/ ( W1r) (R) 7/( W2 r )
(ii) There is an isomorphism of rational representations of W W2,

Hj(M"(W, W:, O); Q) -= E(I(W1)IPT (R) .(W2)IO(T).

Here the summations range over all subsets T of S of cardinality j.

Let J denote the group (7//2)" (where 7//2 is written multiplicatively as
{ 1 }). For 1 < < n, let p;: J 7//2 be projection on the ith factor (so that

Pi is a character) and let ri be the element of J which has th-component -1 and
all other components equal to 1. Put R { rl,..., r, }. In the case of the Coxeter
system (J, R) many of our previous constructions can be simplified. Suppose that
A is a subset of I,. Put

R(A) ( r RIi A }

rA=l-Ir
iA

PA H P,: J --+ 7I/2
iA

Aa the 1-dimensional O-vector space with J-action defined by e h
pA(e)h (e J, X AA).
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Clearly, jR(A) (rA). Also, an easy calculation shows that for any e in J, we
have e+R(A p(e)+R(,). Hence Q(J)+R(A) and AA are isomorphic as J-mod-
ules.
Now let us return to the situation of Corollary 5.3 in the special case where

(W., S_) (J, R) and (W1, $1) (W, S), with S (s,..., s,}. As we pointed
out in Example 4.4, the resulting manifold is independent of the bijection 0:
S R. Hence, we may as well assume that O(si) ri. For each subset A of I,,
put

S(A) (s Sli A}.

THEOREM 5.4. Suppose that (IV, S) is a finite Coxeter system of rank n. The
homology of the manifold Mn(IV) of Example 4.4 can be calculated as follows
(where summations range ooer the subsets A of I with j elements unless otherwise
specified).

(i) H.(M"(W); 7/) 7/(WS()).
(ii) There is an isomorphism of rational representations of W J,

Hj(M’(W); ) E(W)qs() (R) AA.

(iii) There is an isomorphism of W-spaces,

H(M’(W); )

(iv) As a W-space, H.(M’(W); ) (= Y’.i%oH(M’(W); )) is isomorphic to
the regular representation of W.

Proof Statements (i) and (ii) are special cases of Corollary 5.3. Statement (iii)
follows from (ii). Statement (iv) follows immediately from a theorem of Solomon
[S] which states that Q(W) is the direct sum of left ideals Q(W)+s(,), A c I.

6. Some examples with fundamental chamber the dual of a Coxeter complex.
Suppose that (IV, S) is a finite Coxeter system of rank n.

The Coxeter complex of (IV, S). There is a canonical representation of W on
R n SO that the elements are S are represented by orthogonal linear reflections and
so that a fundamental chamber is a simplicial cone. The intersection of this cone
with the unit sphere S"-1 is a spherical simplex A of dimension n- 1. The
translates of A by elements of IV give a triangulation of S"-1 by spherical
simplices. The underlying simplicial complex of this triangulation is denoted by
L(W) and called the Coxeter complex of (W, S).

Since A is a fundamental chamber for IV on S"-1, it inherits a mirror structure

’ indexed by S: for each s in S, the simplex A is the intersection of A with the
hyperplane fixed by s. We have a simplicial isomorphism

(1)
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For any proper subset T of S, the simplex hr is the intersection of A with the
codimension-one faces of A which are indexed by T. It follows that the codimen-
sion of A in A is ]T] (where ]T] denotes the cardinality of T). The stabilizer of

Ar is Wr. It follows from (1) that every simplex of L(W) has the form wAr for
some subset T of S and some element w in W. Furthermore, wA r w’A r’ if and
only if T= T’ and w-w’ WT. In other words, the simplices of L(W) of
codimension can be identified with LIW/WT, where T ranges over all subsets of
S with ]T[ i. In particular, the top-dimensional simplices of L(W) correspond
bijectively with W.
We can identify the vertex set of A with S by matching each vertex of A with

the reflection across the opposite face. (This induces an identification of A with
Nerve(W, S).) It follows from (1) that the orbit space of L(W) is A. The natural
projection is a simplicial map, which we shall denote by Type: L(W) -> A. We
shall denote the composition of the restriction of Type to Ver(L(W)) with the
natural identification Ver(A) --_ S by

(2) Type: Ver(L(W)) S.

The dual of a Coxeter complex. Let L*(W) denote the dual of the simplicial
complex L(W) (where "dual" is defined in Section 1). We can identify L*(W)
with an n-dimensional convex polyhedron as follows. Regard L(W) as a
triangulation of S"-. Put a vertex at the center of A and each of its translates.
The convex polyhedron spanned by these vertices can then be identified with
L*(W). (A detailed description of L*(W) in the case where W is A,, the
symmetric group on n + I symbols, is given in Section 3, pp. 986-989, of [T].)
The vertex set of L*(W) can be identified with W. The set of/-dimensional faces
of L*(W) then corresponds to the set of all cosets WWT where T ranges over all
subsets of S, with IT] i. (This is because the codimension-i simplices of L(W)
are identified with this same set of cosets.) The vertices of the/-face correspond-
ing to wWr are the elements of this coset.

Since the orthogonal reflection group W permutes the centers of the simplices
of L(W), it acts naturally on L*(W). A fundamental chamber of W on L*(W)
is the intersection of L*(W) with the fundamental simplicial cone. This poly-
hedron obviously can be identified with A*. (Recall that A* is the cone on the
barycentric subdivision of A.) The W-action defines a mirror structure ’0 on A*
indexed by S: for each s S, A* is the cone on A. Clearly,

(3) L*(W) oU(W,  Zo).

The examples.

Example 6.1. Suppose that (W1, $1) and (WE, SE) are finite Coxeter systems of
rank n and that 0: S S2 is a bijection. Define a function f: Ver(L(W1)) SE
by f= 0 Type, where Type: Ver(L(W1)) S is defined as in (2). Since Type:
L(W)---, A is a simplicial map which is bijective on the vertex set of each
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simplex and since A Nerve(W:z, $2), it follows from Remark 2.1 that f satisfies
conditions (A) and (B) of Section 2. Since L(W1) is a smooth triangulation of
S"-1, it follows from Remark 2.3 that the complex q/(W., L*(W1), ’f) is a
smooth n-manifold. We shall denote this manifold by N’(W1, W:z, 0). The group
W2 acts as a reflection group on N"(Wx, W2, O) with fundamental chamber
L*(W1). The group Wx acts on this fundamental chamber and the action extends
naturally to all of N’(Wx, W2, 0). Moreover, these actions commute. Thus,
W W2 is a reflection group on N’(WI, W, 0) with fundamental chamber A*.

In Example 4.3 we defined a manifold M"(W, IV:z, O) from the same data as
above. The group W1 W:z acted as a reflection group with fundamental cham-
ber an n-cube. We shall show that these two constructions are the same. First,
however, we shall consider the following special case of the example above.

Example 6.2. Suppose that W2 is the product of n copies of ’/2 and that
(WI, S) (W, S) is an arbitrary finite Coxeter system of rank n. As in Example
4.4, the resulting manifold N"(WI, W_, O) is independent of 0. We shall denote it
by N"(W).

TI-IEOIM 6.3. Suppose that (W, S) and (W, $2) are finite Coxeter systems
of rank n and that O: S --) S2 is a bijection. Then the manifold N"(W, W_, O)
of Example 6.1 is (W W:z)-equivariantly diffeomorphic to the manifold
M"(W, W2, O) of Example 4.3. In particular, if (W1, $1)= (W, S) then the

manifold N"(W) of Example 6.2 is diffeomorphic to M"(W) of Example 4.4.

As was mentioned previously, Wx W2 is a reflection group on Mn(w1, W2, O)
with fundamental chamber the n-cube K * (where K is the boundary complex of
the n-octahedron) and W1 W2 is also a reflection group on N"(W1, W, O) with
fundamental chamber A*. In other words:

(4) Mn(Wl, W2,

(5) N"( W1, W2, O) all (W W2, A*

where t’ is a certain mirror structure on K* and " is a mirror structure on
A*. Both mirror structures are indexed by SIIS2. Thus, the content of Theorem
6.3 is that (K*, ’) and (A*, //’,) are isomorphic as complexes with mirror
structures. Enumerate the elements of S1 as Sl,..., s,. Put s’ O(si) so that
S2 (s,..., s;}. To simplify the bookkeeping let us reindex everything by
I, { +_ 1} where (i, 1) corresponds to s and (i, -1) to s/’.

First let us consider the mirror structure ’ on K *. The face corresponding to
sg is the dual face to (i, 1) (where I, { +_ 1} is regarded as the vertex set of the
n-octahedron). Similarly, the face corresponding to s’ is the dual face to (i, -1).
In other words, /’ { K(i*,e)} where (i, e) ranges over I {-t-1} and where
K(i* ) denotes the face of the n-cube which is dual to the vertex eel.

Next, consider the mirror structure " on A*. The face corresponding to
s S is the cone on A,,. Let v denote the vertex of A which is opposite to the
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face A; (so that Ver(A) (01,..., O }). Then Ai,) is the cone on the face of A
opposite to v. The mirror of A* corresponding to s’ is the intersection of A*
with the codimension-one face of L*(W) corresponding to the coset I(W1)s- (, i-
Unwinding a few definitions, we see that this is precisely the dual face of the
vertex v in A*. That is to say, Ai, 1) is the dual face to vi.
Theorem 6.3 has now been reduced to the following lemma.

LEMMA 6.4. Let K * be the n-cube and A* the cone on the barycentric
subdioision of an (n 1)-simplex. Let and /4’ be the mirror structures defined
abooe. Then (K*, ,///) and (A*, f’) are isomorphic as complexes with mirror
structures.

Proof. Each face of K * is a cell, as is each face of A*. By construction,
Nerve(’) K. Thus, it suffices to show that Nerve(") K. In other words,
we must show that for any subset T of I (_+ 1), the intersection of mirrors

A,), (i, e) T, is nonempty if and only if T contains no pair of elements of the
form (i, 1) and (i, -1). But this is obvious.
As a corollary of Theorem 6.3 we have the following result.

PROPOSITION 6.5. The Coxeter complex of a finite Coxeter system is determined
by its 1-skeleton.

Proof. This follows easily from Remark 3.4.

Remark 6.6. If the Coxeter diagram of W is a straight line (i.e., if W is A n,

Bn, H 3, F4 or H4 or if W is a dihedral group), then W is the group of symmetries
of a regular polyhedron. Furthermore, the Coxeter complex L(W) can be
identified with the barycentric subdivision of this polyhedron and L*(W) is the
dual to the barycentric subdivision. This remark suggests a further class of
examples. Let P be any n-dimensional convex polyhedron and let L denotethe
barycentric subdivision of 0P. If o is a vertex of L, then it is the barycenter of a
face F of P. Let dim F be the dimension of this face and define d: Ver(L) - I
by d(o)- dim F / 1. (It is clear that d is the restriction of a simplicial map
from L to the simplex on In.) Let (W2, $2) be any finite Coxeter system of rank n
and let /9: I S2 be a bijection. Then O d: Ver(L) --) S2 satisfies conditions
(A) and (B). Hence, we obtain a manifold aY(W2, L*, .A’0od). It is aspherical
since L is determined by its 1-skeleton (cf. Theorem 3.3).

7. Faces of L*(W) and some submanifolds of M"(W). In this section we
shall describe the fixed point sets of the standard subgroups of J on Mn(W).
This description is facilitated by the fact that J --- (7//2) n. We begin with some
general remarks about this situation. Suppose that (J, R) is a smooth reflection
system on a manifold M with fundamental chamber X and that J -= (7//2)L For
any subset R’ of R, let Mn, denote the fixed point set of JR’ on M and let Xn,

denote the intersection of X with MR,. Then MR, is a smooth submanifold of M
of codimension R’I. The group JR-R’ centralizes JR’ and acts as a reflection
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group on each component of Mn, with fundamental chamber the corresponding
component of Xn,.
We can apply these remarks to the J-action on Mn(W) where, as before,

(W, S) is a finite Coxeter system of rank n. First we set up some notation for the
faces of the fundamental chamber L*(W).
The poset of faces of L*(W) is isomorphic to the" poset of cosets of the form

wWr. For each w in W and each subset T of S, let F(, T) be the face of
L*(W) corresponding to wWr. (F(w, T) F(w’, T’) if ,oad only if T T’ and
w-Xw’ Wr.) The dimension of F(w, T) is TI. (Thus. ,he number of k-dimen-
sional faces of L*(W) is El W/Wrl, where the summation ranges over all subsets
T of S of cardinality k.) Clearly,

(1) F(w, T) L*(Wr).

Let 0" S R be the bijection occurring in the definition of Mn(W). The
mirror of L*(W) corresponding to an element r in R is the union of all
(n- 1)-dimensional faces of the form F(w, S- 0-1(r)), where w 14/’. More
generally, for any subset T of S, we have that L*(W)R-O(r) is the union of all
faces of the form F(w, T). Suppose that TI k. Let M (w, T) denote the
component of the fixed set of JR-o(r) which contains F(w, T), i.e.,

(2) M(w,T) =4(r)F(w,T).

The group wWrw-1 acts naturally as a reflection group on Me(w, T). The
manifold Me(l, T) can be canonically identified with Me(Wr); moreover, this
identification is Wr J0(r)-equivariant. Translation by w-1 provides a diffeo-
morphism from Me(w, T) to Me(l, T). Thus,

(3) Mk(w, T)= Mk(Wr).

We shall call Mk(w, T) a standard submanifold of M(W).
The next result shows that the standard submanifolds are analogous to

incompressible surfaces in a 3-manifold.

LEMMA 7.1. The fundamental group of any standard submanifold is mapped
monomorphically into the fundamental group of M(W) by the map induced by the
inclusion.

Proof. It clearly suffices to prove this for standard submanifolds of the form
Me(l, T). We showed in Section 3 that the universal cover/(W) of M(W)
admits an action of a reflection group where f has one fundamental generator
for each codimension-one face of L*(W)..The fundamental group F of Mn(W)
is the kernel of the natural projection J J. The same construction applied
to L*.(Wr)(--- F(1, T)) yields a reflection group~(r) on lflk(Wr). It is clear
that Jo(r) can be identified with the subgroup of J generated by the fundamental
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generators of J corresponding to those codimension-one faces of L*(W) which
intersect F(1, T) in a codimension-one face of F(1, T). Thus, the fundamental
group Fr of Mk(1, T) is naturally identified with the intersection F n r), a
subgroup of F. This proves the lemma.

Call a subset T of S a commuting subset if any two elements in it commute
with each other. If T is a commuting subset of S, then the subgroup Wr is
isomorphic to (7//2) g, where k TI; hence, Mg(Wr) is a k-torus. Let q(W)
denote the cardinality of the largest commuting subset of S. It is clear that if the
Coxeter diagram of W is a straight line, then q(W) [(n + 1)/2]. Also, it is
easily checked that q(D,) [(n + 2)/2], q(E6) 3, and q(ET) q(Es) 4.
This takes care of all finite irreducible Coxeter systems. It is also clear that
q(W1 W_) q(W1) + q(W2). From these facts, we see that we always have
q(W) > n/2. An immediate corollary of Lemma 7.1 is the following result.

PROPOSITION 7.2. The fundamental group of M"(W) contains a free abelian
subgroup of rank q(W). Moreover, q(W) > n/2.

It seems to be a plausible conjecture that q(W) is the rank of the largest free
abelian subgroup of qrl(Mn(W)).

8. A presentation of the fundamental group of M"(W). There is a natural
CW-structure on M"(W): the cells are the translates of the faces of L*(W). The
k-skeleton of M’(W) is then the union of the standard k-dimensional submani-
folds. There is one such submanifold for each k-face of L*(W). From the
2-skeleton, we shall derive an explicit presentation for the fundamental group F
of M"(W). There will be one generator for each standard circle. Each standard
surface will contribute three relations.
The group W J is a reflection group on M(W) with fundamental chamber

an n-cube. As in Section 3, this leads to a reflection group 1 on the universal
cover "(W) with one fundamental generator for each codimension-one face of
the n-cube. We can naturally identify this set of fundamental generators with
SIIR. Let f’." 1 W J be the natural epimorphism, so that F is the kernel of
f’. (The group . utilized in the proof of Lemma 7.1, is.f-l((1} J)i) Also, the
gr.oups W and J can be identified with subgroups of W, namely, the subgroups
Ws an.d if’R, respectively. We shall give generators and relations for the subgroup
Fof W.

First let us set up some notation. Suppose that S (Sl,..., s,}, R
(rl,... r ), and O(si) ri. For each i, 1 < < n, put W Wsi, and for each
pair of distinct integers i, j between 1 and n, put W/j W. x. Thus, W/ is a

jJ

cyclic group of order 2 and I,Vj is a dihedral group of order 2mij where
mij m(si, 5)"

The generators. For each i, 1 < < n, and each w W, define an element
in W by

(1) O= W(’iSi)2W -1
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Since f’(r) and f’(s,) commute in W x J, we have that f’(a’) 1, i.e., that
belongs to F. From the equation si(rsg)s (rs) -1, we get that

w’ (Oli ) -1(2) ai whenever w wsi.

Moreover, it is clear that the element a’ corresponds to a loop around the
standard circle Ml(w, {si}). Thus, the family of elements (i), where ranges
over the integers 1, 2,..., n and w ranges over a set of representatives for the
cosets W/I/V, is a generating set for F.

The relations. Fix an dement w in W and a pair of distinct integers and j
between 1 and n. To simplify notation put rn m o. (= the order of sisj). The
face F(w, (Si, Sj}) is a 2m-gon. The standard submanifold M2(w, (Si, Sj}) is
made up of the 4 translates of this polygon under the group J{ r,, 5}. By Remark
4.6, the Euler characteristic of M2(w,( si, sj } is 4 2m, i.e., M2(w, { si, s })
is a surface of genus rn- 1. The fundamental group of M(w, {si, s}) is a
subgroup of F; we shall denote this subgroup by Fi. Define elements w
by

(3) Si

so that
defined by

(W1,... W2m }. Let Xl, X2,..., X2m be the generators of Fi

aj, if is even
(4) Xz= a iflisodd

where u wwt. Define words fl, 3’o, 8i in these generators as follows:

(5) i-’- X2mX2m-2 )2

3[ij X2m-lX2m-3 Xl

i/-" X2mX2m_ X1.

Easy calculations show that the relations [ij--"ij--ij 1 hold in 1. More-
over, it is not hard to see that (Xl,..., X.m; fl7’ "/i, 8) is a presentation for the
surface group Fi. A geometrical argument for these facts is illustrated in Figure
2, where the case m 3 is pictured. The central hexagon is the face F(w, { s, s: }).
The e.k, 1 < k < 6, are the edges of the hexagon. The quadrilaterals are chambers
for Wo. on /r(w, { s, s: }). The entire star-shaped polygon with 4m edges (12 in
this case) is a fundamental domain (in the weak sense) for I’i on the universal
cover of the surface. The 4m sides of the star-shaped polygon are identified in
pairs by the X to form a surface of genus rn 1. Under these identifications the
vertices of the star-shaped polygon fall into three equivalence classes. The three
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FGURE 2.

relations given by (5) can be read off from the translates of the polygon which
meet at a vertex from each equivalence class.
We should comment on the effect of replacing w in the above discussion by wa

for some a in Wj. If a is a "rotation" of the form w2k then the new ?l’s are
obtained from the old ones by a cyclic permutation. If a is "reflection" of the
form w 2k + 1, then the new ?i’s are obtained from the old by composing a cyclic
permutation with the transformation 1 (m+l-) -1- Hence, in either case
the set consisting of the generators and their inverses remains unchanged. Also,
the new relations are obviously equivalent to the old ones.

In summary we have the following result:

PROPOSITION 8.1. For each i, 1 < < n, choose a set A of representatives for
W/W andfor I < < j < n, choose a set of representatives A ij for W/Wij. Let G
be the set (’), where 1 < < n and w A i, and let Z be the set ( flij,
where I < < j < n and u Aij and where the elements of Z are regarded as
words in the elements of G and the inverses. Then the fundamental group F of
r (M (W)) has a presentation of the form G; Z).

9. A "perfect" cell structure on M"(W). For each w in W we shall define a
subset C(w) of M"(W) such that C(w) is homeomorphic to the interior of a cell
and such that M"(W) is the disjoint union of the C(w), w W.4 The closure of
C(w) is a standard submanifold. This cell structure is compatible with the Bruhat
ordering on W: the closure of C(w) is contained in cells of the form C(v), where
OW.

4This is not a CW-structure on M"(W). The boundary of a cell might be contained in cells of
higher dimension.
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The number of cells in this subdivision is [W[. This number is also the total
rank of H,(Mn(W)) (cf. Theorem 5.4). It follows that the cell structure is
"perfect" in the sense of Morse theory. That is to say, if we put p(t) Etdimc(w),
then p(t) is the Poincar6 polynomial of Mn(w).

This analogy with Morse theory is not a coincidence. We shall show in Section
13 that when W is the Weyl group of a split semisimple real Lie algebra, then the
cells C(w) are the ascending manifolds of a certain naturally defined Morse-Smale
flow on M"(W).

Combinatorics of Coxeter systems. Here we shall review some standard material
concerning the Coxeter system (W, S). Details and further information can be
found in [B] and [HI.
Denote by the set of all conjugates of elements of S. For each w in W, put

S(w) slt(w ) <

(2)

Then

(w) {r 9l/(rw) < l(w)).5

(3) I(w)l Z(w).

The Bruhat ordering is the partial ordering on W defined by: v < w if and only if
(o)(w).

For each subset T of S, put

(4) At= (w Wll(wt) > l(w) forall T)

WT= (w W]S(w) T}.

For any v Ar and a W, we have that

(6) Yt(va) (v)llg(a),

and consequently,

(7) l(va) l(v) + l(a).

For any w in W there is a unique element in wWr of shortest length. Further-
more, this element belongs to AT. Thus, we can write any element w uniquely in
the form w=va where oAr and a Wr. Let Pr: W-oAr denote the
function w -o v.

Geometrically, 9(w) is the set of reflections in W such that the corresponding wall separates the
fundamental chamber X from its translate wX. The set S(w) is the subset of S such that the walls
corresponding to the elements of wS(w)w-x separate X from wX.
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Now suppose that the subset T is such that the subgroup WT is finite. Then
there is a unique element of longest length in Wr. Denote it by w r. It can be
characterized as the only element in Wr which satisfies either of the following
two conditions"

(8) S(w ) r,

(9) (WT) n Wv.

It follows from (6) and the above discussion that the coset wWr contains a
unique maximum element, namely pr(w)wr, as well as a unique minimum
element, namely Pr(W). The next result follows immediately from these remarks.

LEMMA 9.1. An element w of W is the maximum in wWT if and only if
T c S(w). In particular, w is the maximum in wWs(w).
The cells. Let /(w, T) denote the interior of F(w, T) (where F(w, T) is the

face of L*(W) corresponding to the coset wWr). For each w in W, put

(10) H(w) I_[ l(w, T).
TcS(w)

In view of the previous lemma, we have that H(w) is the union of the interiors of
those faces whose maximum vertex is w (where we are identifying the vertex
F(w, q) with w). Since each face of L*(W) has a maximum vertex, the family
(H(W))w w is a disjoiont partition of L*(W).
The set H(w) is F(w, S(w)) with part of its boundary attached; H(w)

contains the vertex w as well as any face of F(w, S(w)) which contains w. It
follows that H(w) is isomorphic to a simplicial cone of dimension S(w)l. In
other words, H(w) is isomorphic to a fundamental chamber for the action of

Jo(s(w)) as a linear reflection group on Euclidean space.
Put

(11) C(w)

By the above remarks, C(w) is equivariantly diffeomorphic to Euclidean space of
dimension k(= IS(w)l) equipped with a linear Jo(s(w)) action (where Jo(sw
(7//2)k). The closure of C(w) is clearly Josw))F(w, S(w)), i.e., it is the standard
submanifold M(w, S(w)). Hence, C(w) C(w) is the union of the standard
submanifolds corresponding to the faces of F(w, S(w)) which are not in H(w).
The vertices of any face of F(w, S(w)) can be identified with the elements
of WWsw). If such a face is not in H(w), then its maximum vertex is some ele-
ment v in wWs(), with v 4: w. Since w is the maximum of wWs(w), we have
o < w. Thus, C(w) C(w) is contained in the union of cells of the form C(o)
where v is as above. In summary, we have proved the following result.
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PROPOSITION 9.2. (i) Suppose that w W and that S(w)l k, where S(w)
is the subject of S defined by (1). Then C(w) is diffeomorphic to the interior of a
k-cell. Moreover, C(w) is the standard submanifold Mk(w, S(w)).

(ii) The family (C(w)) w is a disjoint partition ofMn(W).
(iii) C(w) C(w) is contained in the union of cells of the form C(v), where v

ranges over wWs(w) { w }. In particular, any such v is < w.

Remark 9.3. In the summer of 1984, after listening to a lecture of mine,
David Fried told me that he could prove that the Toda flow on Tomei’s manifold
P n was perfect in the sense of Morse theory. (See Section 13.) These remarks of
Fried inspired me to prove the results of this section as well as those in Section 5
and in paper [D2]. After writing this paper, I read Fried’s arguments in [F]. The
elementary arguments of [F] show that Proposition 9.2 implies that the cell
structure on M(W) is perfect (without resorting to Theorem 5.4). The crucial
fact is that the closure of C(w) is the orientable submanifold Mk(w, S(w)) (that
it is orientable follows immediately from Proposition 1.4). Similarly, Fried’s other
arguments concerning the cohomology of M(W) go through with little change;
in particular, H*(M(W); 7l) is generated by HI(Mn(W); .).

10. Real semisimple split Lie algebras. In this section we shall set up some
notation and review some standard facts.

Let g be a real semisimple split Lie algebra and let 9 be a split Cartan
subalgebra.6 Denote by A the set of nonzero roots in the dual space ) *. For each
a in A, denote the corresponding root space by g .

Caftan decomposition. For each pair of roots { a,-a }, choose root vectors e
in and e_ in

_
such that

(1) (ee, e_e) 1,

where ( ) denotes the Killing form. There is an involutive automorphism :
g g, called a Cartan involution, defined by the requirements that tp takes to
itself by multiplication by -1 and that for each a in A, it takes e to -e_e. Put

(2) = E(e.- e_.)

(3)

where the summations run over all pairs { a, -a }. The decomposition g t (R)

is called a Cartan decomposition of g.
A fundamental chamber of a system of simple roots. The family of hyperplanes

(a 0) A partitions 9 into simplicial cones. Choose one of these simplicial

6To say that b is a split Cartan subalgebra means that for each x b, the eigenvalues of ad x are
real.
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cones. Denote it by C and its interior by (. The n-dimensional simplicial cone C
can be written uniquely as an intersection of n half-spaces, of the form a > 0,
where a is a root. The set of such a is denoted by H(= (al,..., an }) and called
the system of simple roots corresponding to C. Any a in A can be written
uniquely as an integral linear combination of elements in 1-I; furthermore, the
coefficients are either all nonnegative or all nonpositive. The a with nonnegative
coefficients (resp. nonpositive coefficients) are called the positive roots (resp.
negative roots) and denoted by A+ (resp. A_). For 1 < < n, let si denote the
orthogonal linear reflection on across the hyperplane a 0. Put S
(Sl,..., sn ). The Weft group W of (g, )) is the linear reflection group generated
by S. The simplicial cone C is a fundamental chamber for W on b.
Some vectors in . For any a in *, let h, be the unique dement of [3 defined

by the equation

(4) (h,, x> a(x), for all x.

It follows from (1) that for all a A, we have

(5) [e, e_] h.

For 1 < < n, define vectors h 9, fi , and g; f by

(6) h h

(7) f/= e,, + e_,

(8) gi e,- e_,.

The subspace Y of generalized tridiagonal matrices. Let Y be the 2n-dimen-
sional subspace of defined by

(9) Y= 9+ Rf.
i=1

(If g sl(n + 1, ), then we can take b to be the subspace of diagonal matrices
in g, the subspace of symmetric matrices, and Y the subspace of tridiagonal
symmetric matrices.)

Subgroups of the complex adjoint group. Let Gc denote the group of inner
automorphisms of the complex Lie algebra (R) C. Let Hc and Kc denote the
subgroups corresponding to the complex subalgebras b (R) and t (R) C, respec-
tively. Let G denote the subgroup of Gc which stabilizes the real subalgebra .7

7N.B. The identity component of G is the real adjoint group; however, in general, G will not be
connected.
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Define three more groups by

(10) K G q Kc,

(11) H= G n Hc,

(12) J K q H.

We determine the structure of J. For each a in A, let 8" He C *(= C {0})
be the homomorphism defined by the diagram

tl (R) C-----C z

exp !H C * e 2riz

For any h in Hc we have that

(13) h. e 8(h)e,.

Since (a,..., a} is a basis for (b (R) C)*, the map h - (&(h),..., 8(h)) is an
isomorphism from Hc onto (C *). Moreover, this isomorphism takes J onto the
subgroup ( _+ 1 } . For 1 < < n, let r be the element in Hc which maps to the
point in (C *) with ith coordinate -1 and all other coordinates equal to 1. Put

(14) R { rl,... r }.

Obviously J (R). From (13), we have that

(15) r e,;

(16) r .f.= (-1)’;f and r.g.= (-1)"gg.
The K-action on . The group K stabilizes p. Each K-orbit in p intersects b in

a W-orbit. Each W-orbit in b intersects the fundamental chamber C in a single
point. That is to say, the inclusions C c t)c induce homeomorphisms C-=
b/W O/K. We shall often identify C, b/W and p/K via these canonical
homeomorphisms.
A point x in b is regular if it lies in the interior of a chamber. A point x in

is regular if its orbit K(x) intersects b in regular elements. Denote boy reg and
}3 reg the set of regular elements in t) and p, respectively. Obviously, C I)reg//W

reg/K.
If x is a regular point in p, then its K-isotropy subgroup is conjugate to J. The

space reg is the union of principal orbits of K on p. The orbit map :p reg ( is
the projection map of a smooth fiber bundle with fiber K/J.
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The J-action on Y. Let (bl(y),... b,(y), a(y),..., a,(y)) be the linear coor-
dinates of a point y in Y with respect to the basis { hi,... h n, fl,-", fn ) of Y,
i.e.,

n

(17) y bi(Y)h + Y’. ai(Y)fi.
i=1 i-1

The group J stabilizes Y. The fixed point set of J on Y is b. A fundamental
generator r,. in R acts on Y as the orthogonal linear reflection across the
hyperplane a 0. It follows that a fundamental chamber for J on Y is the
convex set Y/ defined by the linear inequalities a > 0, 1 < < n. In other
words, the set Y/ is the Cartesian product of 3 with a simplicial cone.

11. The Toda flow. Let ,: --> f be the linear map with kernel 9 which for
each a in A+ sends e + e_ to e,- e_. Consider the linear differential
equation on the vector space p given by

The associated vector field (x) [(x), x] =- Txp is called the Toda vector

field. We collect some standard facts.

LEMMA 11.1. (i) The Toda vector fieM is J-equivariant.
(ii) The Toda vector fieM is tangent to each K-orbit.
(iii) Suppose x reg" Then (x) 0 if and only if x .
Proof. (i) It follows from (15) in Section 10 that for any e in J, (ex) e?(x).

Since J acts on through automorphisms, we have (ex), ex] e[ (x), x],
which proves (i).

(ii) For each x in the tangent space of the orbit K(x) is naturally identified
with If, x]. Since X(x) f, we have that (x) is tangent to K(x), i.e., (ii) holds.

(iii) Since x is regular, the linear map t---> p given by z---> [z, x] is an
injection. Hence, (x) 0 if and only if (x) 0, i.e., if and only if x .

Since K is compact, the Toda vector field is complete. The corresponding flow
is called the Toda flow.

LEMMA 11.2. The Toda vector fieM is tangent to Y.

Proof. Let Z be the image of Y under ,, i.e., Z ER gi. The restriction of h
to Y is the linear map defined by

n

(1) X(y) E ai(Y)gi
i=1

where (bl(y),... b,,(y), a(y),..., a,,(y)) are the linear coordinates on Y defined



SOME ASPHERICAL MANIFOLDS 133

by equation (17) of Section 10. For any h in 9, we have

(2) [gi, h] =ai(h)fi.

For j, we have [e, e_,,] 0, while [e, e_,,,] h;. If follows that

-[g, fi], for i,j
(3) [gi, f]

2hi, for =j"

From (2) and (3) we get

(4) [X(y) y] 2 Y’. ai(Y h + Si(y)ai(Y)f
i=1 i=1

where air is the linear form on Y defined by pre-composing a with the orthogonal
projection from Y onto . In particular, from (4) we see that [h(y), y] Y, i.e.,
q(y) is tangent to Y.

In the remainder of this section we are interested in restriction of the Toda
flow to Y, we shall denote it by kt: Y -+ Y. The proofs of the next two lemmas
are minor modifications of the proofs in Section 2 of [M] in the special case of
ordinary tridiagonal matrices (i.e., for g sl(n + 1, g)).

LEMMA 11.3. Let y(t) be an integral curve for the Toda vector field on Y. As
t + o, y(t) converges to points y(o) and y(- z) in .
By Lemma ll.l(ii), the integral curve y(t) lies in a single K-orbit; hence, y(o)

and y(- o) are also in this K-orbit. This K-orbit intersects b in a W-orbit and it
intersects C in a single point c. Since y(o) and y(-o) are in b, both these
points are W-translates of c, i.e., y(o) wc and y(-oo) w’c for some w and
w’ in W. The elements w and w’ are determined as follows.

LEMMA 11.4. Let y( ) be an integral curve for the Toda vectorfieM on Y and let
c be the point where the K-orbit of y(t) intersects C. Then y(-o)= c and
y(o) wsc, where ws is the element of longest length in W.

Denote the restriction of the orbit map p p/K C to Yg by r: Yr "The proof of the next result follows as in [T], Lemma 2.2.

LEMMA 11.5 (Tomei). The map r" Yreg is the projection map of a smooth

fiber bundle.

12. Some subsets, subgroups and subspaces. The purpose of this section is to
set up more notation and to collect some obvious facts. These facts will be stated
as lemmas, the proofs of which will be left to the reader. Throughout this section,
A will denote a subset of I. (Recall that I (1,..., n).)



134 MICHAEL W. DAVIS

First, we define linear subspaces of 9 as follows:

(11 O(A)= Eh,,
iA

(2) E
jln-A

where ( hi,..., h, ) is the basis for defined in Section 10, and where ( tl,..., t, )
is the basis for b which is dual to (a,..., a, }. Put

(3) S(A) (s, Sli

LEMMA 12.1.
(i) The subspace bA of is the intersection of the hyperplanes a O, A.
(ii) The subspaces t A and b(A) are orthogonal complements in .
(iii) The fixed point set of Ws(,) on is .
Define convex subsets of b as follows:

(4) C(A) the intersection of the half-spaces a, > 0, A,

the interior of C(A),

(6)

LEMMA 12.2.
(i) C(A) is a simpli__cial cone in (A).
(ii) C(A)= C(A).
(iii) C(A) is a chamber for WS(A) on ) and C(A) is a chamber for WS(A) on

(A).

It follows that the orbit space of Ws(A) on can be identified with C(A). We
denote the natural projection by

(7) qA" " C(A).

Let hA" C(A) C be the projection map defined by the following diagram:

(8)

C(A)- C

where q: 9 b/W C is the orbit map.
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Define subsets of A by

(9)
(10)

(11)

II(A)= (a,IlliA}
A(A) ( a A a is an integral linear

combination of elements of II (A) }

LEMMA 12.3. The set A(A) is naturally a root system in 9(A)*; II(A) is a

system of simple roots for A(A); and (Ws(A), S(A)) is the corresponding Coxeter
system.

Next, define subspaces of g as follows:

(12) (A) 9(A) + Z Re,
ah(A)

(13) (A) 9(A) + Z R(e. + e_.)
aeA+(A)

(14) (A) E (e,- e_)
aA+(A)

(15) g(A) A + (A)
(16) 0(A) gA + (A).

LEMMA 12.4.
(i) The subalgebra -(A) is a real semisimple split Lie algebra; (A) is a split

Cartan subalgebra; and -(A) (A) + (A) is a Cartan decomposition.
(ii) The subalgebra (A) is reductive and its center is A. Moreover, (A) is the

centralizer of A in 8.

Let K(A) denote the intersection of the stabilizer of 6(A) in G with K. The
group K(A) acts naturally on 5(A) and the orbit space can be identified with
C(A). Similarly, K(A) acts on O(A) with orbit space C(A). Denote the natural
projection by

(17) PA" O(A) - C(A).

LEMMA 12.5. The following diagram commutes,

(A) c

P’ 1 p

C(A) x-- c

where hA is defined by diagram (8).
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Define a subset of the set of fundamental generators for J by

(18) R(A) {r Rli A}.

Clearly, J K(A) c J.
Finally, consider the following linear subspaces of the space Y of generalized

tridiagonal matrices"

(19) (A) b(A) + E Nf,
iA

(20) Y(A) ) + E n fi.
iA

Obviously, Y(A) Y ( (A) and Y(A) Y (30(A).

LEMMA 12.6.
(i) Y(A) is the space of generalized tridiagonal matrices for -(A) and Y(A), + Y(A).
(ii) The fixed point set of the group JR-R() on Y is Y(A).
(iii) The group J() acts as a linear reflection group on Y(A) with fixed point

set

13. The isospectral fiber. The orbit map r: Yeg -) ( is the projection map of
a smooth fiber bundle (cf. Lemma 11.5). Fix a point x in ( and denote the fiber
of r at x by P’(g). In other words, P’(g) Y N K(x). Since J is a subgroup
of K, the J-action on Y stabilizes each fiber of r. Furthermore, J is a reflection
group on P’(6). A fundamental chamber is the manifold with corners X’()
defined by

(1) X’( g ) Y+ t P’( g ),

where Y/ is a fundamental chamber for J on Y. Let )’(6) denote the interior of
x"().
The goal of this section is to prove the following result.

THEOREM 13.1. The isospectralfiber P "( 6 ) is J-equivariantly homeomorphic
to the manifold M’(W) of Example 4.4.

In view of Theorem 6.3 proving this theorem is equivalent to proving the
following proposition.

PROPOSITION 13.2. There is a face-preserving homeomorphism from X’( 6) to
the dual of the Coxeter complex L*(W).

Remark. When sl(n + 1, R) this proposition is equivalent to the results
in Section 4, pp. 989-993, of [T]. Although Tomei makes no mention of Lie
algebras his arguments are similar to the proof given below.
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We shall prove this proposition by showing that
(A) the interior of each face of S"(g) is diffeomorphic to the interior of a cell,

and
(B) the faces of Xn(g) intersect in exactly the same fashion as do the faces of

*(w).
Using (A) and (B) it is easy to construct a face-preserving homeomorphism

from X"(g) to L*(W). (Undoubtedly, X"() and L*(W) are diffeomorphic as
smooth manifolds with corners (or as smooth orbifolds); however, the method of
proof indicated above is not well suited for proving this.) The proof of (A)Comes
down to the following result.

PROPOSITION 13.3 (Moser [M], Kostant [K]).
chamber )n() is diffeomorphic to gn.

The interior of the fundamental

This proposition follows from the fact that the Toda flow is a completely
integrable Hamiltonian flow on I7"+ and a general principle. The general principle
(Liouville’s Theorem) states that the integral submanifold X"() is diffeomor-
phic to a disjoint union of a products of the form T "-s where T is a torus.
It can then be shown that X"() is R ". In [M], Moser gives an explicit
diffeomorphism ’"() -_- " when g sl(n + 1, ). A different approach is
taken in [K] by Kostant, who works with an arbitrary real semisimple split Lie
algebra.

Next, consider the faces of X"(). We shall use the notation of Section 12. Let
A be a subset of I,. The group K(A) acts on (A) with orbit space C(A).
Denote the restriction of the orbit map to Y(A) Yg by r." Y(A) Yg
(A). Consider the following commutative diagram,

Y(A)reg_ rA (A)

where A is defined by diagram (8) in Section 12. We see that the intersection of
P"() (or X"()) with the subspace Y(A) has several components, one compo-
nent for each element of l(x). The dements of Xl(x) can be identified with
the right cosets Ws(, \ W. In fact, we can identify Xl(x) with the set of all
elements of the form q(wx) where w W and q: b C(A) is the orbit map
for Ws(,). For each dement w in W, put

(2) P(w, A) 71"l(qA(w-lx)),
and

(3) X(w, A) e(w, A) x"(g).
We have the following lemma.
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LEMMA 13.4. Let d IAI and let (A) be the semisimple Lie algebra of rank d
defined by equation (12) of Section 12.

(i) P(w, A) = Pd((A))
(ii) X(w, A) xd(-(A))
(iii) The interior of X(w, A) is diffeomorphic to R d.
(iv) The fixed point set of JR_R(A) on pn(g) is the intersection of Y(A) with

Pn(). This fixed point set can also be described as the disjoint union of the
d-dimensional submanifolds P(w, A) where w ranges over a set of representatives
for the cosets W/Ws(

Proof. Statements (i), (ii) and (iv) are obvious; (iii) follows from (ii) and
Proposition 13.3.
The next lemma describes the combinatorics of the face structure of xn().

The proof is obvious.

LEMMA 13.5. Suppose that A and A’ are subsets of I and that w and w’ are
elements of W. The following three statements are equivalent:

(a) P(w, A)
(b) X(w, A)

Suppose that (c) holds and that u wWs(a) w’Ws(a,), then
() wWs() n w’Ws(,)= uWs(,)

and
(e) X(w, A) n X(w’, A’) X(u, A n A’).

This completes the proof of statements (A) and (B). It follows that there is a
homeomorphism f: X()---> L*(W) such that f makes the face X(w,A)
homeomorphically onto the standard face F(w, S(A)) of L(W). This proves 13.2
and thereby, Theorem 13.1.

Remark 13.6. Consider the restriction of the Toda flow to a regular K-orbit
K(x). There are no dosed 1-dimensional orbits. The fixed points are isolated and
hyperbolic. The set of fixed points is the W-orbit K(x) . It follows that the
ascending submanifolds at the fixed points give a cell structure on the "flag
manifold" K(x) (K(x) K/J). It is known that these cells correspond to the
Bruhat decomposition of K/J. This cell decomposition is perfect in the sense that
the closures of the WI cells give a basis for the homology of K/J with
’/2-coefticients.
Now further restrict the Toda flow to pn({t). The fixed points in K(x) all lie in

P(); in fact, they correspond precisely to the vertices of X()( L*(W)). It
follows from Lemma 11.4 that the ascending submanifold at the vertex corre-
sponding to w is the cell C(w) described in Section 9. Therefore, the "perfect"
cell structure described in Section 9 is, on the one hand, induced by the Toda
flow on P"() and on the other hand, induced by intersecting the Bruhat
decomposition of K/J with P().
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When g sl(n + 1, R), Tomei [T] mentions that the restriction of the Toda
vector field to P"(g) essentially can be identified with the gradient field of a
certain Morse function. It seems likely that a formula similar to the one on the
bottom of p. 985 of [T] would also yield such a Morse function in the general
case.
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